51
|
Abstract
The ubiquitin-proteasome pathway is responsible for the major portion of specific cellular protein degradation. Ubiquitin-mediated degradation is involved in physiological regulation of many cellular processes, including cell cycle progression, differentiation, and signal transduction. Here, we review the basic mechanisms of the ubiquitin system and the various ways in which ubiquitin-mediated degradation can be modulated by physiological signals.
Collapse
Affiliation(s)
- D Kornitzer
- Department of Molecular Microbiology, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| | | |
Collapse
|
52
|
Furukawa Y, Kubo N, Kikuchi J, Tokura A, Fujita N, Sakurabayashi I. Regulation of macrophage-specific gene expression by degenerated lipoproteins. Electrophoresis 2000; 21:338-46. [PMID: 10675012 DOI: 10.1002/(sici)1522-2683(20000101)21:2<338::aid-elps338>3.0.co;2-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The effect of aggregated low-density lipoprotein (agLDL) on cell viability and macrophage-specific gene expression using human peripheral blood monocytes in culture was investigated. AgLDL suppressed activation-induced cell death of phorbol ester-treated macrophages. The inhibition of apoptosis was accompanied by downregulation of apoptosis-promoting proteases, including interleukin-1beta-converting enzyme (ICE) and CPP32 and upregulation of anti-apoptotic cytokine (interleukin-1beta (IL-1beta)). In contrast, macrophage-colony stimulating factor (M-CSF) enhanced cell death of lipid-bearing macrophages, suggesting that the anti-atherogenic action of M-CSF is at least in part mediated through apoptotic elimination of macrophages. Then, we attempted to isolate the genes specifically induced by agLDL in macrophages using a subtraction-based cloning strategy. One of the genes isolated, termed LIG (LDL-inducible gene), encodes a human homolog of E2 ubiquitin-conjugating enzyme. Ubiquitination of multiple intracellular proteins was observed in agLDL-treated macrophages, which coincided with upregulation of LIG. These results suggest that LIG acts as a direct mediator of foam cell formation through polyubiquitination and subsequent degradation of cellular proteins with apoptosis-inducing properties. The regulation of apoptosis by macrophage-specific gene expression may contribute to foam cell formation and atherosclerosis.
Collapse
Affiliation(s)
- Y Furukawa
- Division of Molecular Hemopoiesis, Center for Molecular Medicine, Jichi Medical School, Tochigi, Japan.
| | | | | | | | | | | |
Collapse
|
53
|
Kikuchi J, Furukawa Y, Kubo N, Tokura A, Hayashi N, Nakamura M, Matsuda M, Sakurabayashi I. Induction of ubiquitin-conjugating enzyme by aggregated low density lipoprotein in human macrophages and its implications for atherosclerosis. Arterioscler Thromb Vasc Biol 2000; 20:128-34. [PMID: 10634809 DOI: 10.1161/01.atv.20.1.128] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recently, we have found that aggregated low density lipoprotein (agLDL) inhibits apoptosis of lipid-bearing macrophages, thereby facilitating foam cell formation and atherosclerosis. To clarify the mechanisms by which agLDL inhibits apoptosis of macrophages, we isolated the genes specifically induced by agLDL by using a subtraction-based cloning strategy. One of the cloned genes, termed low density lipoprotein (LDL)-inducible gene (LIG), encodes a human homologue of bovine ubiquitin-conjugating enzyme E2-25K. Although LIG mRNA was ubiquitously expressed among human tissues, including hematopoietic cells, the abundance of transcripts was markedly increased by agLDL treatment in activated monocytes. LIG mRNA expression was not enhanced by nonatherogenic lipoproteins such as native LDL and high density lipoprotein, suggesting a role in atherosclerosis. Polyubiquitination of intracellular proteins was observed in monocytes cultured with agLDL, which coincided with upregulation of LIG. Furthermore, ubiquitin-dependent degradation of p53, an inducer of apoptosis, was accompanied by LIG induction in agLDL-treated monocytes. The antiapoptotic effect of agLDL was abrogated by a specific proteasome inhibitor, which also increased the half-life of p53 in monocytes. These results suggest that LIG contributes to foam cell formation by the suppression of apoptosis of lipid-bearing macrophages through ubiquitination and subsequent degradation of p53.
Collapse
Affiliation(s)
- J Kikuchi
- Division of Molecular Hemopoiesis, Center for Molecular Medicine, Jichi Medical School, Tochigi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Kuelzer F, Kuah P, Bishoff ST, Cheng L, Nambu JR, Schwartz LM. Cloning and analysis of small cytoplasmic leucine-rich repeat protein (SCLP), a novel, phylogenetically-conserved protein that is dramatically up-regulated during the programmed death of moth skeletal muscle. JOURNAL OF NEUROBIOLOGY 1999; 41:482-94. [PMID: 10590172 DOI: 10.1002/(sici)1097-4695(199912)41:4<482::aid-neu4>3.0.co;2-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We used the abdominal intersegmental muscles (ISMs) of the moth Manduca sexta as a source of transcripts that are dramatically up-regulated during programmed cell death. One of these transcripts, Small Cytoplasmic Leucine-Rich Repeat Protein (SCLP), encodes a protein of approximately 24 kD that contains four perfect and two imperfect leucine-rich repeat (LRR) motifs. DNA sequence database analysis suggests that SCLP is a phylogenetically-conserved gene of unknown function. Both Northern and Western blots demonstrated that SCLP is expressed in the ISMs at all stages examined, but increases greater than 10-fold when the cells become committed to die. This increase in expression is regulated by the same change in the circulating ecdysteroid titer that controls death. Low levels of SCLP expression are also seen in flight muscle and fat body, but not in ovary, male sexual accessory gland, or Malpighian tubules. Immunohistochemical analysis demonstrates that SCLP is a cytoplasmic protein. Western blot analysis of proteins from the fly Drosophila suggests that an SCLP-related protein is expressed at the larval and pupal stages, but not in embryos or adults. Targeted expression of moth SCLP to a variety of different tissues in Drosophila using the Gal4/UAS P element system failed to generate an overt phenotype. These data are interpreted as suggesting that whereas SCLP presumably plays an important role in programmed cell death of muscle, perhaps by acting as an adaptor protein, its expression is insufficient to initiate death by itself.
Collapse
Affiliation(s)
- F Kuelzer
- Department of Biology, University of Massachusetts, Amherst 01003, USA
| | | | | | | | | | | |
Collapse
|
55
|
Abstract
Sensitization of defensive reflexes in Aplysia is a simple behavioral paradigm for studying both short- and long-term memory. In the marine mollusk, as in other animals, memory has at least two phases: a short-term phase lasting minutes and a long-term phase lasting several days or longer. Short-term memory is produced by covalent modification of pre-existing proteins. In contrast, long-term memory needs gene induction, synthesis of new protein, and the growth of new synapses. The switch from short-term (STF) to long-term facilitation (LTF) in Aplysia sensory neurons requires not only positive regulation through gene induction, but also the specific removal of several inhibitory proteins. One important inhibitory protein is the regulatory (R) subunit of the cAMP-dependent protein kinase (PKA). Degradation of R subunits, which is essential for initiating long-term stable memory, occurs through the ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- D G Chain
- Center for Neurobiology and Behavior, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | |
Collapse
|
56
|
Hastings RA, Eyheralde I, Dawson SP, Walker G, Reynolds SE, Billett MA, Mayer RJ. A 220-kDa activator complex of the 26 S proteasome in insects and humans. A role in type II programmed insect muscle cell death and cross-activation of proteasomes from different species. J Biol Chem 1999; 274:25691-700. [PMID: 10464306 DOI: 10.1074/jbc.274.36.25691] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The S10b (SUG2) ATPase cDNA has been cloned by reverse transcription-polymerase chain reaction/rapid amplification of cDNA ends from mRNA of intersegmental muscles of the tobacco horn moth (Manduca sexta). The S10b ATPase is a component of the 26 S proteasome, and its concentration and that of its mRNA increase dramatically during development in a manner similar to other ATPases of the 19 S regulator of the 26 S proteasome. The S10b and S6' (TBP1) ATPases are also present in a complex of approximately 220 kDa in intersegmental muscles. The 220-kDa complex markedly activates (2-10-fold) the 26 S proteasome, even when bound to anti-S10b antibodies immobilized on Sepharose, and increases in concentration approximately 5-fold like the 26 S proteasome in the intersegmental muscles in preparation for the programmed death of the muscle cells. A similar activator complex is present in human brain and placenta. Free activator complexes cross-activate: the Manduca complex activates rat skeletal muscle 26 S proteasomes, and the placental complex activates Manduca 26 S proteasomes. The placental activator complex contains S10b and S6', but not p27. This 220-kDa activator complex has been evolutionarily conserved between species from insect to man and may have a fundamental role in proteasome regulation.
Collapse
Affiliation(s)
- R A Hastings
- Laboratory for Intracellular Proteolysis, Molecular and Cellular Biology Section, School of Biomedical Sciences, Faculty of Medicine, University of Nottingham Medical School, Clifton Boulevard, Nottingham NG7 2UH, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
57
|
Rajapurohitam V, Morales CR, El-Alfy M, Lefrançois S, Bedard N, Wing SS. Activation of a UBC4-dependent pathway of ubiquitin conjugation during postnatal development of the rat testis. Dev Biol 1999; 212:217-28. [PMID: 10419697 DOI: 10.1006/dbio.1999.9342] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During spermatogenesis, germ cells undergo mitotic and meiotic divisions to form haploid round spermatids which mature to functional elongated spermatozoa. During this process there occurs remodeling of cell structure and loss of most of the cytoplasm and a large fraction of cellular proteins. To evaluate the role of the ubiquitin proteolytic system in this protein loss, we measured levels of ubiquitinated proteins and rates of ubiquitin conjugation in extracts of testes from rats of different ages. Endogenous ubiquitin-protein conjugates increased till day 30 and then reached a plateau. In parallel, there was a progressive increase in the rate of conjugation of ubiquitin to proteins in testis extracts from these animals. To test the importance of two major ubiquitin conjugating enzyme families in the conjugation, immunoprecipitation of UBC2 or UBC4 from 10- and 30-day-old testis extracts was carried out and the remaining conjugation activity in supernatants was assayed. Depletion of either enzyme family resulted in decreased conjugation. However, most of the conjugation activity and, more importantly, the increased conjugation during development were UBC4-dependent. Immunocytochemistry demonstrated a marked increase in expression of UBC4 in spermatids, consistent with the UBC4-dependent activation of conjugation seen in vitro. In situ hybridization studies evaluated the contribution of various UBC4 isoforms to this induction. UBC4-1 mRNA was expressed in most cells. UBC4-2 mRNA was restricted to germ cells with high levels of expression in round and elongated spermatids. UBC4-testis had previously been shown to be expressed only in spermatids. Our data suggest that induction of various UBC4 isoforms activates overall conjugation and plays an important role in the cellular remodeling and protein loss occurring during spermatogenesis.
Collapse
Affiliation(s)
- V Rajapurohitam
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
58
|
Piedimonte G, Crinelli R, Della Salda L, Corsi D, Pennisi MG, Kramer L, Casabianca A, Sarli G, Bendinelli M, Marcato PS, Magnani M. Protein degradation and apoptotic death in lymphocytes during Fiv infection: activation of the ubiquitin-proteasome proteolytic system. Exp Cell Res 1999; 248:381-90. [PMID: 10222130 DOI: 10.1006/excr.1999.4410] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The movement of a cell through the sequential phases of apoptosis is accompanied by a progressive decrease in cell size with loss in protein mass. In lymphocytes from Hiv-infected persons, protein loss during apoptosis is due to increased protein degradation rather than decreased synthesis. To identify and characterize the proteolytic enzymes or enzyme systems involved in this process, we studied several features of protein turnover in lymphocytes from peripheral blood and lymph nodes during the natural and experimental infection by feline immunodeficiency virus (Fiv). This animal model allowed us to integrate in vivo results with in vitro observations of protein damage. Here we report that protein breakdown in apoptotic cells is concomitant with the activation of the ATP and ubiquitin-dependent multicatalytic system (proteasome). We suggest that proteasome activation is part of the proteolytic cascade in the execution phases of apoptosis in AIDS.
Collapse
Affiliation(s)
- G Piedimonte
- Facoltà di Medicina Veterinaria, Università di Messina, Messina, 98123, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Obin M, Mesco E, Gong X, Haas AL, Joseph J, Taylor A. Neurite outgrowth in PC12 cells. Distinguishing the roles of ubiquitylation and ubiquitin-dependent proteolysis. J Biol Chem 1999; 274:11789-95. [PMID: 10206996 DOI: 10.1074/jbc.274.17.11789] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nerve growth factor (NGF)-induced neurite outgrowth from rat PC12 cells was coincident with elevated (>/=2-fold) levels of endogenous ubiquitin (Ub) protein conjugates, elevated rates of formation of 125I-labeled Ub approximately E1 (Ub-activating enzyme) thiol esters and 125I-labeled Ub approximately E2 (Ub carrier protein) thiol esters in vitro, and enhanced capacity to synthesize 125I-labeled Ub-protein conjugates de novo. Activities of at least four E2s were increased in NGF-treated cells, including E2(14K), a component of the N-end rule pathway. Ubiquitylation of 125 I-labeled beta-lactoglobulin was up to 4-fold greater in supernatants from NGF-treated cells versus untreated cells and was selectively inhibited by the dipeptide Leu-Ala, an inhibitor of Ub isopeptide ligase (E3). However, Ub-dependent proteolysis of 125I-labeled beta-lactoglobulin was not increased in supernatants from NGF-treated cells, suggesting that neurite outgrowth is promoted by enhanced rates of synthesis (rather than degradation) of Ub-protein conjugates. Consistent with this observation, neurite outgrowth was induced by proteasome inhibitors (lactacystin and clasto-lactacystin beta-lactone) and was associated with elevated levels of ubiquitylated protein and stabilization of the Ub-dependent substrate, p53. Lactacystin-induced neurite outgrowth was blocked by the dipeptide Leu-Ala (2 mM) but not by His-Ala. These data 1) demonstrate that the enhanced pool of ubiquitylated protein observed during neuritogenesis in PC12 cells reflects coordinated up-regulation of Ub-conjugating activity, 2) suggest that Ub-dependent proteolysis is a negative regulator of neurite outgrowth in vitro, and 3) support a role for E2(14K)/E3-mediated protein ubiquitylation in PC12 cell neurite outgrowth.
Collapse
Affiliation(s)
- M Obin
- Laboratory for Nutrition and Vision Research, Jean Mayer United States Department of Agriculture-Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts 02111, USA.
| | | | | | | | | | | |
Collapse
|
60
|
Abstract
Recent work on structural/functional relationships in arthropod proteasomes is reviewed. Taking advantage of our ability to induce a stable, proteolytically-active conformation of the lobster proteasome, the structures of basal and heat-activated complexes were probed with exogenous proteases. Increased sensitivity to chymotrypsin and trypsin showed that heat activation induced a more 'open' conformation, allowing entry of large substrates into the catalytic chamber. In Drosophila, the effects of two developmental mutant alleles (DTS-7 and DTS-5) encoding proteasome subunits (Z and C5, respectively) on the subunit composition and catalytic activities of the enzyme were examined. Both qualitative and quantitative differences in compositions between wild-type (+/+) and heterozygotes (+/DTS) indicated that incorporation of mutant subunits alters post-translational modifications of the complex. Catalytic activities, however, were similar, which suggests that the developmental defect involves other proteasome properties, such as intracellular localization and/or interactions with endogenous regulators. A hypothetical model in which DTS subunits act as poison subunits is presented.
Collapse
Affiliation(s)
- D L Mykles
- Department of Biology, Colorado State University, Fort Collins 80523, USA.
| |
Collapse
|
61
|
Arnold J, Dawson S, Fergusson J, Lowe J, Landon M, Mayer RJ. Ubiquitin and its role in neurodegeneration. PROGRESS IN BRAIN RESEARCH 1999; 117:23-34. [PMID: 9932397 DOI: 10.1016/s0079-6123(08)64004-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- J Arnold
- Department of Biochemistry, University of Nottingham Medical School, Queen's Medical Centre, UK.
| | | | | | | | | | | |
Collapse
|
62
|
Afonso CL, Tulman ER, Lu Z, Oma E, Kutish GF, Rock DL. The genome of Melanoplus sanguinipes entomopoxvirus. J Virol 1999; 73:533-52. [PMID: 9847359 PMCID: PMC103860 DOI: 10.1128/jvi.73.1.533-552.1999] [Citation(s) in RCA: 171] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The family Poxviridae contains two subfamilies: the Entomopoxvirinae (poxviruses of insects) and the Chordopoxvirinae (poxviruses of vertebrates). Here we present the first characterization of the genome of an entomopoxvirus (EPV) which infects the North American migratory grasshopper Melanoplus sanguinipes and other important orthopteran pests. The 236-kbp M. sanguinipes EPV (MsEPV) genome consists of a central coding region bounded by 7-kbp inverted terminal repeats and contains 267 open reading frames (ORFs), of which 107 exhibit similarity to previously described genes. The presence of genes not previously described in poxviruses, and in some cases in any other known virus, suggests significant viral adaptation to the arthropod host and the external environment. Genes predicting interactions with host cellular mechanisms include homologues of the inhibitor of apoptosis protein, stress response protein phosphatase 2C, extracellular matrixin metalloproteases, ubiquitin, calcium binding EF-hand protein, glycosyltransferase, and a triacylglyceride lipase. MsEPV genes with putative functions in prevention and repair of DNA damage include a complete base excision repair pathway (uracil DNA glycosylase, AP endonuclease, DNA polymerase beta, and an NAD+-dependent DNA ligase), a photoreactivation repair pathway (cyclobutane pyrimidine dimer photolyase), a LINE-type reverse transcriptase, and a mutT homologue. The presence of these specific repair pathways may represent viral adaptation for repair of environmentally induced DNA damage. The absence of previously described poxvirus enzymes involved in nucleotide metabolism and the presence of a novel thymidylate synthase homologue suggest that MsEPV is heavily reliant on host cell nucleotide pools and the de novo nucleotide biosynthesis pathway. MsEPV and lepidopteran genus B EPVs lack genome colinearity and exhibit a low level of amino acid identity among homologous genes (20 to 59%), perhaps reflecting a significant evolutionary distance between lepidopteran and orthopteran viruses. Divergence between MsEPV and the Chordopoxvirinae is indicated by the presence of only 49 identifiable chordopoxvirus homologues, low-level amino acid identity among these genes (20 to 48%), and the presence in MsEPV of 43 novel ORFs in five gene families. Genes common to both poxvirus subfamilies, which include those encoding enzymes involved in RNA transcription and modification, DNA replication, protein processing, virion assembly, and virion structural proteins, define the genetic core of the Poxviridae.
Collapse
Affiliation(s)
- C L Afonso
- Plum Island Animal Disease Center, Agricultural Research Service, U. S. Department of Agriculture, Greenport, New York 11944, USA
| | | | | | | | | | | |
Collapse
|
63
|
Podhorska-Okolow M, Sandri M, Zampieri S, Brun B, Rossini K, Carraro U. Apoptosis of myofibres and satellite cells: exercise-induced damage in skeletal muscle of the mouse. Neuropathol Appl Neurobiol 1998; 24:518-31. [PMID: 9888162 DOI: 10.1046/j.1365-2990.1998.00149.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Apoptosis is well accepted as a type of cell death occurring in the development of mammalian muscles, but the death of adult myofibres in neuromuscular disorders and exercise-induced muscle damage is usually explained in terms of muscle necrosis. The current view that apoptosis precedes necrosis in death of dystrophin-deficient muscle fibres of mdx mouse has been well substantiated. Moreover, apoptotic myonuclei have been reported to increase in mdx mice 2 days after spontaneous exercise. To investigate the contribution of apoptosis to exercise-induced damage of normal muscle fibre a time-course analysis has been performed in adult C57BL/6 mice. Groups of five mice were sacrificed immediately after the end of the exercise, and after a rest period of 6 or 96 h. The amount of apoptosis in leg muscles was assessed by electron microscopy, by the terminal deoxynucleotidyl transferase assay and by electrophoretic detection of fragmented DNA; the expression of Bcl-2, Bax, Fas, ICE, p53 and ubiquitin was examined by immunohistochemistry and Western blot. Absent in muscles of normal 'sedentary' mice, apoptotic myonuclei peak in muscles of normal mice after a night of spontaneous wheel-running (4% +/- 3.5, immediately and 2.5% +/- 1.8 after 6 h rest, P < 0.05 vs non-runner mice); they then decrease but are present 4 days later (0.8% +/- 1.5). Satellite cells are also involved in the apoptotic process. Myofibre content of Bcl-2 decreases whereas Bax, Fas, ICE and ubiquitin modify their pattern of expression in correlation with the changes in apoptotic myonuclei. Apoptosis of endothelial cells is present after the night of wheel-running and with a twofold increase 4 days later (1.5 +/- 2.3 and 4.8 +/- 4.4 P < 0.05, respectively). Satellite cells are also involved in the apoptotic process. Thus, spontaneous running in unaccustomed mice increases the number of apoptotic nuclei in adult muscle fibres and in endothelial cells. It remains to be established whether muscle apoptosis is restricted to the repair mechanisms, as often suggested in many pathologic processes, or it is also part of pathogenesis of muscle damage. Regardless of whether these results are extended to human dystrophies, the clinical implications in terms of secondary pathogenetic mechanisms and muscle training are obvious.
Collapse
|
64
|
Scrofano MM, Shang F, Nowell TR, Gong X, Smith DE, Kelliher M, Dunning J, Mura CV, Taylor A. Calorie restriction, stress and the ubiquitin-dependent pathway in mouse livers. Mech Ageing Dev 1998; 105:273-90. [PMID: 9862235 DOI: 10.1016/s0047-6374(98)00097-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Calorie restriction (R) is the only known method to delay the aging process and extend mean and maximal lifespan in rodents. R has been shown to delay the age-related accumulation of damaged proteins and to protect organisms from various stresses which can produce damaged proteins. Such stresses include irradiation, heat shock, and oxidative stress. The ubiquitin- and ATP-dependent proteolytic pathway (UPP) has been associated with the degradation of abnormal and/or damaged proteins. We examined the effect of diet and oxidative stress on activities of the UPP in supernatants from livers taken from 23-month-old Emory mice which had been exposed to an in-vivo injection of paraquat. Paraquat induces oxidative stress by generating superoxide radicals. In livers from non-stressed animals, steady-state levels of endogenous ubiquitin conjugates, de novo conjugate formation, and E1 and E2 activities were significantly lower in R animals than in control (C) animals. However, after exposure to paraquat, levels of endogenous ubiquitin conjugates were significantly higher in R versus C animals, and de novo conjugate formation and E1 and E2 activities in R animals rose to levels which were indistinguishable from levels of these activities noted in C animals. R was associated with an increased ability to degrade beta-lactoglobulin by the UPP after an oxidative stress was imposed. Ability to degrade beta-lactoglobulin by the C or R livers in non-stressed animals was not significantly different. Taken together, these data indicate that oxidative stress in R animals is associated with enhanced levels of ubiquitin conjugates and that this enhancement may be due to an increase in UPP activity. These data also indicate that the ability to form ubiquitin conjugates and the UPP system does not change with oxidative stress in C animals. The latter is consistent with prior reports that suggests that older C animals may already be in a state of enhanced oxidative stress and that activities of the UPP provide a sensitive indicator of levels of cellular redox status.
Collapse
Affiliation(s)
- M M Scrofano
- Laboratory for Nutrition and Vision Research, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Abstract
The selective degradation of many short-lived proteins in eukaryotic cells is carried out by the ubiquitin system. In this pathway, proteins are targeted for degradation by covalent ligation to ubiquitin, a highly conserved small protein. Ubiquitin-mediated degradation of regulatory proteins plays important roles in the control of numerous processes, including cell-cycle progression, signal transduction, transcriptional regulation, receptor down-regulation, and endocytosis. The ubiquitin system has been implicated in the immune response, development, and programmed cell death. Abnormalities in ubiquitin-mediated processes have been shown to cause pathological conditions, including malignant transformation. In this review we discuss recent information on functions and mechanisms of the ubiquitin system. Since the selectivity of protein degradation is determined mainly at the stage of ligation to ubiquitin, special attention is focused on what we know, and would like to know, about the mode of action of ubiquitin-protein ligation systems and about signals in proteins recognized by these systems.
Collapse
Affiliation(s)
- A Hershko
- Unit of Biochemistry, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | |
Collapse
|
66
|
Woffenden BJ, Freeman TB, Beers EP. Proteasome inhibitors prevent tracheary element differentiation in zinnia mesophyll cell cultures. PLANT PHYSIOLOGY 1998; 118:419-30. [PMID: 9765527 PMCID: PMC34817 DOI: 10.1104/pp.118.2.419] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/1998] [Accepted: 07/21/1998] [Indexed: 05/20/2023]
Abstract
To determine whether proteasome activity is required for tracheary element (TE) differentiation, the proteasome inhibitors clasto-lactacystin beta-lactone and carbobenzoxy-leucinyl-leucinyl-leucinal (LLL) were used in a zinnia (Zinnia elegans) mesophyll cell culture system. The addition of proteasome inhibitors at the time of culture initiation prevented differentiation otherwise detectable at 96 h. Inhibition of the proteasome at 48 h, after cellular commitment to differentiation, did not alter the final percentage of TEs compared with controls. However, proteasome inhibition at 48 h delayed the differentiation process by approximately 24 h, as indicated by examination of both morphological markers and the expression of putative autolytic proteases. These results indicate that proteasome function is required both for induction of TE differentiation and for progression of the TE program in committed cells. Treatment at 48 h with LLL but not clasto-lactacystin beta-lactone resulted in partial uncoupling of autolysis from differentiation. Results from gel analysis of protease activity suggested that the observed incomplete autolysis was due to the ability of LLL to inhibit TE cysteine proteases.
Collapse
Affiliation(s)
- BJ Woffenden
- Department of Horticulture, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | | | |
Collapse
|
67
|
Sandri M, Massimino ML, Cantini M, Giurisato E, Sandri C, Arslan P, Carraro U. Dystrophin deficient myotubes undergo apoptosis in mouse primary muscle cell culture after DNA damage. Neurosci Lett 1998; 252:123-6. [PMID: 9756337 DOI: 10.1016/s0304-3940(98)00563-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Apoptosis has been demonstrated to occur in differentiated myocardial muscle, neonatal skeletal muscle and skeletal myoblasts in response to injury. In this report, we studied differentiated normal and dystrophin deficient murine skeletal muscle cell cultures that have been injured by a pulse of cis-platinum (2 h). Forty-eight hours after DNA damage, dystrophin positive myotubes appeared almost normal though some myoblasts showed DNA fragmentation. On the other hand, dystrophin deficient myotubes presented progressive degeneration via apoptosis detected either by TUNEL or by nuclear morphology. Degeneration of mdx muscle fibers was confirmed by counting both the number of myotubes observed by contrast phase microscopy and myonuclei viewed by immunoreaction for MyoD. A 6-fold decrease in the number of muscle cells was observed in the dystrophin-deficient cell culture compared to the parental culture (P < 0.001). Direct evidence of degenerating myotubes displaying MyoD- and TUNEL-positive nuclei was obtained. Like myoblasts, differentiated dystrophin deficient myotubes were able to degenerate via apoptosis, showing that mature dystrophin deficient cells are fragile and undergo apoptosis when subjected to a mild injury which would normally be repaired in parental cells.
Collapse
Affiliation(s)
- M Sandri
- C.N.R. Unit for Muscle Biology and Physiopathology, Department of Biomedical Sciences, University of Padova, Italy.
| | | | | | | | | | | | | |
Collapse
|
68
|
Mykles DL. Intracellular proteinases of invertebrates: calcium-dependent and proteasome/ubiquitin-dependent systems. INTERNATIONAL REVIEW OF CYTOLOGY 1998; 184:157-289. [PMID: 9697313 DOI: 10.1016/s0074-7696(08)62181-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cytosolic proteinases carry out a variety of regulatory functions by controlling protein levels and/or activities within cells. Calcium-dependent and ubiquitin/proteasome-dependent pathways are common to all eukaryotes. The former pathway consists of a diverse group of Ca(2+)-dependent cysteine proteinases (CDPs; calpains in vertebrate tissues). The latter pathway is highly conserved and consists of ubiquitin, ubiquitin-conjugating enzymes, deubiquitinases, and the proteasome. This review summarizes the biochemical properties and genetics of invertebrate CDPs and proteasomes and their roles in programmed cell death, stress responses (heat shock and anoxia), skeletal muscle atrophy, gametogenesis and fertilization, development and pattern formation, cell-cell recognition, signal transduction and learning, and photoreceptor light adaptation. These pathways carry out bulk protein degradation in the programmed death of the intersegmental and flight muscles of insects and of individuals in a colonial ascidian; molt-induced atrophy of crustacean claw muscle; and responses of brine shrimp, mussels, and insects to environmental stress. Selective proteolysis occurs in response to specific signals, such as in modulating protein kinase A activity in sea hare and fruit fly associated with learning; gametogenesis, differentiation, and development in sponge, echinoderms, nematode, ascidian, and insects; and in light adaptation of photoreceptors in the eyes of squid, insects, and crustaceans. Proteolytic activities and specificities are regulated through proteinase gene expression (CDP isozymes and proteasomal subunits), allosteric regulators, and posttranslational modifications, as well as through specific targeting of protein substrates by a diverse assemblage of ubiquitin-conjugases and deubiquitinases. Thus, the regulation of intracellular proteolysis approaches the complexity and versatility of transcriptional and translational mechanisms.
Collapse
Affiliation(s)
- D L Mykles
- Department of Biology, Colorado State University, Fort Collins 80523, USA
| |
Collapse
|
69
|
Scrofano MM, Shang F, Nowell TR, Gong X, Smith DE, Kelliher M, Dunning J, Mura CV, Taylor A. Aging, calorie restriction and ubiquitin-dependent proteolysis in the livers of Emory mice. Mech Ageing Dev 1998; 101:277-96. [PMID: 9622231 DOI: 10.1016/s0047-6374(97)00178-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Calorie restriction (R), the only known method to delay the aging process and extend mean and maximal lifespan, has been shown to delay the age-related decline in protein degradation. There are several proteolytic pathways. The ubiquitin- and ATP-dependent proteolytic pathway (UPP) is frequently associated with degradation of damaged abnormal and/or regulatory proteins. We examined the effect of aging and R on supernatants of livers taken from young (4.5 months) and old (23 months) Emory mice. Aging was associated with increased levels of endogenous ubiquitin conjugates, enhanced ability to form high molecular weight conjugates and ubiquitin activating (E1) and ubiquitin conjugating (E2) activity in the control (C) liver supernatants. The age-related increase in levels of endogenous ubiquitin conjugates in liver appears to be primarily due to increased E1 and E2 activities. R prevented the age-related increase in E1 and E2 activity, and thus prevented the age-related increase in levels of ubiquitin conjugates. In spite of the age-related increase in ubiquitin conjugates, no age-related changes in ubiquitin-dependent proteolytic pathway were observed in the C animals. R was associated with an enhanced ability (130%) to degrade beta-lactoglobulin by the ubiquitin-dependent proteolytic pathway in livers from 4.5-month-old animals relative to age-matched C livers. However, rates of the ubiquitin-dependent degradation of beta-lactoglobulin in the 23-month-old C and R animals were indistinguishable. There were no age- or diet-related differences in the ability to degrade another substrate, oxidized ribonuclease (RNase).
Collapse
Affiliation(s)
- M M Scrofano
- Laboratory for Nutrition and Vision Research, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Attaix D, Taillandier D. The Critical Role of the Ubiquitin-Proteasome Pathway in Muscle Wasting in Comparison to Lysosomal and Ca2+-Dependent Systems. INTRACELLULAR PROTEIN DECRADATION 1998. [DOI: 10.1016/s1569-2558(08)60463-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
71
|
Affiliation(s)
- E Bonilla
- Department of Neurology, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
72
|
Sun D, Swaffield JC, Johnston SA, Milligan CE, Zoeller RT, Schwartz LM. Identification of a phylogenetically conserved Sug1 CAD family member that is differentially expressed in the mouse nervous system. ACTA ACUST UNITED AC 1997. [DOI: 10.1002/(sici)1097-4695(199712)33:7<877::aid-neu2>3.0.co;2-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
73
|
Shang F, Gong X, Taylor A. Activity of ubiquitin-dependent pathway in response to oxidative stress. Ubiquitin-activating enzyme is transiently up-regulated. J Biol Chem 1997; 272:23086-93. [PMID: 9287309 DOI: 10.1074/jbc.272.37.23086] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Relations between the ubiquitin pathway and cellular stress have been noted, but data regarding responses of the ubiquitin pathway to oxidative stress are scanty. This paper documents the response of this pathway to oxidative stress in lens cells. A brief exposure of lens epithelial cells to physiologically relevant levels of H2O2 induces a transient increase in activity of the ubiquitin-dependent pathway. Ubiquitin conjugation activity was maximal and increased 3. 5-9.2-fold over the activity noted in untreated cells by 4 h after removal of H2O2. By 24 h after removal of H2O2, ubiquitin conjugation activity returned to the level noted in untreated cells. In parallel to the changes in ubiquitin conjugation activity, the activity of ubiquitin-activating enzyme (E1), as determined by thiol ester formation, increased 2-6.7-fold during recovery from oxidation. Addition of exogenous E1 resulted in an increase in ubiquitin conjugation activity and in the levels of ubiquitin carrier protein (E2)-ubiquitin thiol esters in both the untreated cells and the H2O2-treated cells. These data suggest that E1 is the rate-limiting enzyme in the ubiquitin conjugation process and that the increases in ubiquitin conjugation activity which are induced upon recovery from oxidation are primarily due to increased E1 activity. The oxidation- and recovery-induced up-regulation of E1 activity is primarily due to post-synthetic events. Substrate availability and up-regulation of E2 activities also appear to be related to the enhancement in ubiquitinylation upon recovery from oxidative stress. The oxidation-induced increases in ubiquitin conjugation activity were associated with an increase in intracellular proteolysis, suggesting that the transient increase in ubiquitinylation noted upon recovery from oxidative stress may play a role in removal of damaged proteins from the cells.
Collapse
Affiliation(s)
- F Shang
- Laboratory for Nutrition and Vision Research, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
74
|
Crinelli R, Fraternale A, Casabianca A, Magnani M. Up-regulation of the ubiquitin-conjugating and proteolytic systems in murine acquired immunodeficiency syndrome. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 247:91-7. [PMID: 9249013 DOI: 10.1111/j.1432-1033.1997.00091.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Lymphoproliferation, chronic B-cell activation resulting in hypergammaglobulinemia, and profound immunodeficiency are prominent features of retrovirus-induced murine acquired immunodeficiency syndrome (murine AIDS). Here we demonstrate that in murine AIDS the ATP-dependent and ubiquitin-dependent proteolytic system is strongly affected, at least in the lymph nodes of infected mice. Solid-phase immunochemical assays show that the ubiquitin-conjugate pools increase by about threefold 10 weeks after infection, then decline slightly 15 weeks after infection to a twofold increase. Accumulation of ubiquitin conjugates is accompanied by induction of the ubiquitin-conjugating pathway, involving several carrier-protein isozymes (E2), mainly 14-kDa E2 and 17-kDa E2. Furthermore, accumulation of ubiquitin conjugates and induction of the conjugating system are coincident with an increase in the proteolytic activity supported by the 26S proteolytic complex. However, 15 weeks after infection, when the conjugation rate and levels of ubiquitin conjugates decrease, proteasome activity returns to values similar to those of the control, suggesting that a higher proteosomal activity is no longer needed. The concerted induction of the ubiquitin-conjugating and proteolytic systems in murine AIDS apparently does not involve the breakdown of viral products nor is it supported by virus-coded events, but probably arises as a cellular response to viral infection.
Collapse
Affiliation(s)
- R Crinelli
- Institute of Biological Chemistry, G. Fornaini, University of Urbino, Italy
| | | | | | | |
Collapse
|
75
|
Affiliation(s)
- A M Weissman
- Laboratory of Immune Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1152, USA.
| |
Collapse
|
76
|
Affiliation(s)
- J Pallarés-Trujillo
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Spain
| | | | | | | | | |
Collapse
|
77
|
Auclair D, Garrel DR, Chaouki Zerouala A, Ferland LH. Activation of the ubiquitin pathway in rat skeletal muscle by catabolic doses of glucocorticoids. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 272:C1007-16. [PMID: 9124503 DOI: 10.1152/ajpcell.1997.272.3.c1007] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To evaluate whether catabolic levels of glucocorticoids activate the ubiquitin pathway in conjunction with their known proteolytic effect in skeletal muscle, rats were injected daily with corticosterone (CTC; 10 mg/100 g body wt) for 7 days. Two peaks of urinary excretion of 3-methylhistidine (3-MH), a specific marker of myofibrillar proteolysis, were observed at days 1 and 3 (165 and 295% of controls, respectively). Levels of ubiquitin pathway mRNAs in skeletal muscle were assessed around the 3-MH peaks. In the extensor digitorum longus, a first rise of two polyubiquitin (pUb) mRNAs was seen at day 1 (183 and 162% of control for the UbB and UbC transcripts, respectively, P < 0.01). An accumulation of both E2-14k mRNAs (140%, P < 0.02, and 157% of controls, P < 0.01) and proteasome C8 subunit mRNA (222% of control, P < 0.05) was seen at day 2. A second more important peak of induction of pUb mRNA was seen at day 3 (251 and 217% of controls for the UbB and UbC transcripts, respectively, P < 0.001). All transcripts returned to near control levels by day 4. In the soleus, induction of E2-14k mRNA started at day 3 and reached 216 and 208% of controls at day 4 (P < 0.001), whereas an increase of pUb mRNA was observed at days 3 (213 and 241%, P < 0.05) and 4 (211 and 221%, P < 0.001). A rise of proteasome C8 subunit mRNA accumulation was also seen in the soleus at days 3 (217%, P < 0.05) and 4 (157%, P < 0.05). Reduced ubiquitin conjugate levels, possibly due to their rapid degradation through increased proteasome activity, were observed in both muscle types at day 3. The parallel between the catabolic effects of CTC and activation of the ubiquitin pathway in muscles of CTC-treated rats strongly suggests the involvement of this system in glucocorticoid-induced muscular atrophy.
Collapse
Affiliation(s)
- D Auclair
- Département de Nutrition, Université de Montréal, Quebec, Canada
| | | | | | | |
Collapse
|
78
|
Dawson S, Hastings R, Takayanagi K, Reynolds S, Løw P, Billett M, Mayer RJ. The 26S-proteasome: regulation and substrate recognition. Mol Biol Rep 1997; 24:39-44. [PMID: 9228279 DOI: 10.1023/a:1006800522814] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
There is extensive reprogramming of the ATPase regulators of the 26S proteasome before the programmed elimination of the abdominal intersegmental muscles (ISM) after eclosion in Manduca sexta [1]. This extensive ATPase reprogramming only occurs in ISM which are destined to die and not in flight muscle (FM). The MS73 ATPase also increases in the proleg retractor muscles which die at a developmentally different stage to ISM. The non-ATPase regulator S5a shows a similar increase to the ATPase regulators. We have cloned the Manduca SUG2 ATPase and shown that this ATPase is a component of the 26S proteasome. This ATPase shows a similar increase in concentration to the other ATPases in 26S proteasomes before muscle death. The SUG2 ATPase is also associated with other smaller complexes besides the 26S proteasome which act as activators of the 26S proteasome. Finally, in a yeast two-hybrid genetic screen we have identified a protein in human brain which interacts with the MS73 ATPase (and human S6). The interacting protein contains 6 ankyrin repeats and is co-immunoprecipitated with anti-MS73 antiserum after in vitro transcription/translation. The ankyrin repeat protein may interact with the MS73 ATPase as part of the substrate recognition process by the 26S proteasome. Many proteins degraded by the 26S proteasome contain ankyrin repeats, e.g. IkB and some cyclins: binding through ankyrin repeats to an ATPase regulator may complement protein ubiquitination and S5a binding as recognition signals by the 26S proteasome.
Collapse
Affiliation(s)
- S Dawson
- Department of Biochemistry, University of Nottingham Medical School, Queen's Medical Centre, UK
| | | | | | | | | | | | | |
Collapse
|
79
|
Carraro U, Franceschi C. Apoptosis of skeletal and cardiac muscles and physical exercise. AGING (MILAN, ITALY) 1997; 9:19-34. [PMID: 9177583 DOI: 10.1007/bf03340125] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Besides the well-known reciprocal influences of skeletal muscle and heart during and after physical exercise, a new perspective is emerging on the short- and long-term effects of exercise-induced damage, in particular the pathogenic role of inappropriate apoptosis in skeletal and cardiac muscle. Cells from multicellular organisms self-destruct when they are no longer needed, or have become damaged; they do this by activating a genetically controlled cell suicide machinery that leads to programmed cell death (PCD), or apoptosis. Apoptosis is a specific form of programmed cell death that plays an important role in development, growth regulation and disease. Skeletal muscles in adult animals are fully differentiated syncytial cells. Apoptosis, which is known to be present in tissues that modulate their cellular homeostasis under the influence of growth and/or hormonal factors, has been recently described in early stages of myocardial infarct, and in dystrophic skeletal muscle. The role and the cellular and molecular aspects of muscle cell death and apoptosis are far from clear, particularly following several types of muscle damage (genetic defects, exercise-induced damage, oxidative stress, etc.). It can be predicted that apoptosis plays a major role in regulating myoblast proliferation during muscle regeneration, and in the progression of dystrophinopathies. A particularly important area has recently developed concerning cardiac muscle and reperfusion injury after ischemia; in this case as well, a major role of apoptosis is emerging.
Collapse
Affiliation(s)
- U Carraro
- C.N.R. Unit for Muscle Biology and Physiopathology, Department of Biomedical Sciences, University of Padova, Italy
| | | |
Collapse
|
80
|
Pizzuti A, Novelli G, Ratti A, Amati F, Mari A, Calabrese G, Nicolis S, Silani V, Marino B, Scarlato G, Ottolenghi S, Dallapiccola B. UFD1L, a developmentally expressed ubiquitination gene, is deleted in CATCH 22 syndrome. Hum Mol Genet 1997; 6:259-65. [PMID: 9063746 DOI: 10.1093/hmg/6.2.259] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The CATCH 22 acronym outlines the main clinical features of 22q11.2 deletions (cardiac defects, abnormal facies, thymic hypoplasia, cleft palate and hypocalcemia), usually found in DiGeorge (DGS) and velo-cardio-facial (VCFS) syndromes. Hemizygosity of this region may also be the cause of over 100 different clinical signs. The CATCH 22 locus maps within a 1.5 Mb region, which encompasses several genes. However, no single defect in 22q11.2 hemizygous patients can be ascribed to any gene so far isolated from the critical region of deletion. We have identified a gene in the CATCH 22 critical region, whose functional features and tissue-specific expression suggest a distinct role in embryogenesis. This gene, UFD1L, encodes the human homolog of the yeast ubiquitin fusion degradation 1 protein (UFD1p), involved in the degradation of ubiquitin fusion proteins. Cloning and characterization of the murine homolog (Ufd1l) showed it to be expressed during embryogenesis in the eyes and in the linear ear primordia. These data suggest that the proteolytic pathway that recognizes ubiquitin fusion proteins for degradation is conserved in vertebrates and that the UFD1L gene hemizygosity is the cause of some of the CATCH 22-associated developmental defects.
Collapse
Affiliation(s)
- A Pizzuti
- Istituto di Neurologia, Università di Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Gottlieb RA, Babior BM. Regulation of Fas-mediated apoptosis. CURRENT TOPICS IN CELLULAR REGULATION 1997; 35:69-105. [PMID: 9192176 DOI: 10.1016/s0070-2137(97)80003-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- R A Gottlieb
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
82
|
Myer A, Schwartz LM. Allelic variation of the polyubiquitin gene in the tobacco hawkmoth, Manduca sexta, and its regulation by heat shock and programmed cell death. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 1996; 26:1037-1046. [PMID: 9035386 DOI: 10.1016/s0965-1748(96)00038-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The intersegmental muscles (ISMs) of the tobacco hawkmoth, Manduca sexta, undergo programmed cell death (PCD) following adult eclosion in response to a decline in the circulating titer of the hormone 20-hydroxyecdysone. The ability of the ISMs to die requires de novo gene expression and a number of cDNAs representing differentially expressed genes have been isolated from condemned cells. One of the genes that is dramatically up-regulated with ISM death is polyubiquitin, which has been shown in many organisms to function as a heat shock protein and as an essential mediator of proteolysis. Northern blot analysis of ISM RNA samples pooled from multiple individuals demonstrated the presence of several polyubiquitin transcripts. In this study, we sought to determine: 1) if these transcripts were the product of multiple genes or multiple alleles, and 2) if all polyubiquitin genes/alleles in the moth are regulated by both heat shock and the endocrine signals that regulate death. Data from Southern blot analysis suggested that the Manduca genome has a single polyubiquitin gene that is represented by multiple alleles. Transcript analysis supported the hypothesis that all polyubiquitin alleles are regulated by both heat shock and the hormonal cues that regulate muscle death. Polyubiquitin transcripts accumulated to much higher levels and had longer half-lives following hormonal induction relative to that seen in response to heat shock. These data suggest that there are multiple polyubiquitin alleles in the laboratory population of Manduca, all of which share common regulatory sequences that drive expression to meet the needs for proteolysis involved in both heat stress and death.
Collapse
Affiliation(s)
- A Myer
- Program in Molecular and Cellular Biology, Morrill Science Center, University of Massachusetts, Amherst 01003-5810, USA. sa08023.mdacc.tmc.edu
| | | |
Collapse
|
83
|
Kalchman MA, Graham RK, Xia G, Koide HB, Hodgson JG, Graham KC, Goldberg YP, Gietz RD, Pickart CM, Hayden MR. Huntingtin is ubiquitinated and interacts with a specific ubiquitin-conjugating enzyme. J Biol Chem 1996; 271:19385-94. [PMID: 8702625 DOI: 10.1074/jbc.271.32.19385] [Citation(s) in RCA: 264] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Using the yeast two-hybrid system, we have identified a human ubiquitin-conjugating enzyme (hE2-25K) as a protein that interacts with the gene product for Huntington disease (HD) (Huntingtin). This protein has complete amino acid identity with the bovine E2-25K protein and has striking similarity to the UBC-1, -4 and -5 enzymes of Saccharomyces cerevisiae. This protein is highly expressed in brain and a slightly larger protein recognized by an anti-E2-25K polyclonal antibody is selectively expressed in brain regions affected in HD. The huntingtin-E2-25K interaction is not obviously modulated by CAG length. We also demonstrate that huntingtin is ubiquitinated. These findings have implications for the regulated catabolism of the gene product for HD.
Collapse
Affiliation(s)
- M A Kalchman
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Obin MS, Jahngen-Hodge J, Nowell T, Taylor A. Ubiquitinylation and ubiquitin-dependent proteolysis in vertebrate photoreceptors (rod outer segments). Evidence for ubiquitinylation of Gt and rhodopsin. J Biol Chem 1996; 271:14473-84. [PMID: 8662797 DOI: 10.1074/jbc.271.24.14473] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In corroboration of the hypothesized regulation of phototransduction proteins by the ubiquitin-dependent pathway, we identified free ubiquitin (8 kDa) and ubiquitin-protein conjugates (50 to >200 kDa; pI 5.3-6.8 by two-dimensional electrophoresis) in bovine rod outer segments (ROS). A 38-kDa ubiquitinylated protein and transducin (Gt) were eluted together from light-adapted ROS membranes with GTP. When ROS were dark-adapted, this 38-kDa ubiquitinylated species and Gt were readily solubilized in buffer lacking GTP. These data are consistent with ubiquitinylation of Gt and corroborate previous cell-free experiments identifying Gt as a substrate for ubiquitin-dependent proteolysis (Obin, M. S., Nowell, T., and Taylor, A. (1994) Biochem. Biophys. Res. Commun. 200, 1169-1176). Evidence for ubiquitinylation of rhodopsin (36 kDa), the (photo)receptor coupled to Gt, included (i) the presence in ROS membranes "stripped" of peripheral membrane proteins of numerous ubiquitin-protein conjugates, including two whose masses (44 and 50 kDa) are consistent with mono- and diubiquitinylated rhodopsin; (ii) catalysis by permeabilized ROS of 125I-labeled ubiquitin-protein conjugates whose masses (42, 50, and 58 kDa) suggest a "ladder" of mono-, di-, and triubiquitinylated rhodopsin; (iii) parallel mobility shifts on SDS-polyacrylamide gels of rhodopsin and these 125I-labeled ubiquitin-protein conjugates; and (iv) generation of enhanced levels of 125I-labeled ubiquitin-protein conjugates when stripped, detergent-solubilized ROS membranes (95% rhodopsin) were incubated with reticulocyte lysate. A functional ubiquitin-dependent pathway in ROS is demonstrated by the presence of (i) the ubiquitin-activating enzyme (E1); (ii) four ubiquitin carrier proteins (E214K, E220K, E225K, and E235K) and pronounced activity of E214K, an enzyme required for "N-end rule" proteolysis; (iii) ATP-dependent 26 S proteasome activity that rapidly degrades high mass 125I-labeled ubiquitin-ROS protein conjugates; and (iv) distinct ubiquitin C-terminal isopeptidase/hydrolase activities, including potent ubiquitin-aldehyde-insensitive activity directed at high mass ubiquitinylated moieties. Considered together, the data support a novel role for the ubiquitin-dependent pathway in the regulation of mammalian phototransduction protein levels and/or activities and provide the first identification of a non-calpain proteolytic system in photoreceptors.
Collapse
Affiliation(s)
- M S Obin
- Laboratory for Nutrition and Vision Research, United States Department of Agriculture-Jean Mayer Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts 02111, USA
| | | | | | | |
Collapse
|
85
|
Thoma S, Sullivan ML, Vierstra RD. Members of two gene families encoding ubiquitin-conjugating enzymes, AtUBC1-3 and AtUBC4-6, from Arabidopsis thaliana are differentially expressed. PLANT MOLECULAR BIOLOGY 1996; 31:493-505. [PMID: 8790283 DOI: 10.1007/bf00042223] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Covalent attachment of ubiquitin to other intracellular proteins is essential for many physiological processes in eukaryotes, including selective protein degradation. Selection of proteins for ubiquitin conjugation is accomplished, in part, by a group of enzymes designated E2s or ubiquitin-conjugating enzymes (UBCs). At least six types of E2s have been identified in the plant Arabidopsis thaliana; each type is encoded by a small gene family. Previously, we described the isolation and characterization of two three-member gene families, designated AtUBC1-3 and AtUBC4-6, encoding two of these E2 types. Here, we investigated the expression patterns, of the AtUBC1-3 and AtUBC4-6 genes by the histochemical analysis of transgenic Arabidopsis containing the corresponding promoters fused to the beta-glucuronidase-coding region. Staining patterns showed that these genes are active in many stages of development and some aspects of cell death, but are not induced by heat stress. Within the two gene families, individual members exhibited both overlapping and complementary expression patterns, indicating that at least one member of each gene family is expressed in most cell types and at most developmental stages. Different composite patterns of expression were observed between the AtUBC1-3 and AtUBC4-6 families, suggesting distinct biochemical and/or physiological functions for the encoded E2s in Arabidopsis.
Collapse
Affiliation(s)
- S Thoma
- Department of Horticulture, University of Wisconsin-Madison 53706, USA
| | | | | |
Collapse
|
86
|
Hermida-Matsumoto ML, Chock PB, Curran T, Yang DC. Ubiquitinylation of transcription factors c-Jun and c-Fos using reconstituted ubiquitinylating enzymes. J Biol Chem 1996; 271:4930-6. [PMID: 8617766 DOI: 10.1074/jbc.271.9.4930] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Recombinant c-Jun and c-Fos were ubiquitinylated by the ubiquitin carrier enzymes E214K, E220K, or E232K in the presence of the ubiquitin-activating enzyme, E1. Addition of ubiquitin protein ligase E3 substantially enhanced the E214K-mediated ubiquitinylation of c-Jun and c-Fos. Truncated c-Jun and c-Fos mutant proteins including wbJun and wbFos were also ubiquitinylated under the same conditions, suggesting the sites of ubiquitinylation are located within the dimerization and DNA binding domains of c-Jun and c-Fos. The E3-dependent ubiquitinylation of c-Jun was inhibited upon the heterodimerization of c-Jun with c-Fos. Further addition of E220K significantly enhanced ubiquitinylation of c-Jun in the heterodimer suggesting a regulatory role of E220K. Polyubiquitinylated c-Jun, wbFos, and wbJun, but not E220K-ubiquitinylated c-Jun, were readily degraded by the ATP-dependent 26 S multicatalytic proteases. These results suggest that the temporal control of c-Jun and c-Fos may be regulated through the ubiquitinylation pathways, and the ubiquitinylation of c-Jun and c-Fos may in turn be regulated in response to the heterodimerization between them and the cooperation between E220K and E3 mediated polyubiquitinylation.
Collapse
|
87
|
Shean BS, Mykles DL. Polyubiquitin in crustacean striated muscle: increased expression and conjugation during molt-induced claw muscle atrophy. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1264:312-22. [PMID: 8547319 DOI: 10.1016/0167-4781(95)00167-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The claw muscles of decapod crustaceans undergo a molt-induced atrophy to facilitate withdrawal of the claws at ecdysis. Polyubiquitin expression, as well as the levels of ubiquitin conjugates, a ubiquitin-conjugating enzyme involved in the ATP/ubiquitin-dependent proteolytic pathway (crustacean E2(16 kDa) homolog of Drosophila UbcD1), and proteasome, were examined to determine the role of ATP/ubiquitin-dependent proteolysis in the enhanced degradation of myofibrillar proteins during muscle atrophy. A partial-length clone (1.7 kb) of polyubiquitin was isolated from a lobster muscle cDNA library; the 5' end lacked the 5' untranslated region (UTR) and the beginning of the first ubiquitin monomer, while the 3' end contained the terminal ubiquitin monomer and 3' UTR. The deduced amino acid sequence was 100% identical with that from Manduca, Drosophila, and human. In land crab claw muscle, the polyubiquitin mRNA (2.7 kb) increased about 5-fold and ubiquitin-protein conjugates (> 200 kDa) increased about 8-fold during atrophy. In contrast, the level of a ubiquitin-conjugating enzyme (E2(16 kDa)) remained unchanged. The proteasome, which constitutes the catalytic core of the ATP/ubiquitin-dependent proteinase complex, increased about 2-fold during proecdysis, reaching its highest level immediately before ecdysis. These results suggest that the ATP/ubiquitin-dependent proteolytic pathway contributes to the changes in protein metabolism that occur during molt-induced muscle atrophy.
Collapse
Affiliation(s)
- B S Shean
- Department of Biology, Colorado State University, Fort Collins 80523, USA
| | | |
Collapse
|
88
|
Wunsch AM, Haas AL. Ubiquitin-protein conjugates selectively distribute during early chicken embryogenesis. Dev Dyn 1995; 204:118-32. [PMID: 8589436 DOI: 10.1002/aja.1002040203] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The major mechanism for proteolysis in eucaryotes involves an ATP-dependent pathway for which the covalent attachment of ubiquitin targets proteins for degradation. The involvement of ubiquitin conjugation in early embryonic vertebrate development was investigated by examining the amounts and localization of ubiquitin conjugates at different stages of development in the chicken using an affinity-purified antibody specific for conjugated ubiquitin. Solid phase immunochemical assays measuring whole embryo pools of free and conjugated ubiquitin demonstrated a progressive increase in conjugate pools to stage 18, followed by a decline to stage 24. In contrast, levels of free polypeptide showed a dramatic increase after stage 5, indicating a change in the dynamics of the two pools during development. Immunohistochemistry revealed that the distribution of ubiquitin adducts between stages 3 and 22 was pronounced in regions undergoing extensive cellular remodeling. Ubiquitin conjugates were detected in the primitive streak where cells ingress during gastrulation. The presence of these degradative intermediates in both neuroectodermal cells of the neural folds and subsequent neural crest cells migrating from the dorsum of the neural tube is consistent with an involvement in key morphogenetic events. The localization of ubiquitin conjugates at other selected tissue interfaces including limb bud ectoderm/mesoderm, and cardiac atrioventricular myocardium/endothelium suggests an active role for ubiquitin-mediated protein modification in similar developmental interactions. Conjugates were distributed first between somites, then in myotomes with a pattern spatially identical that of the ubiquitin conjugating enzyme, E214K, the major cognate isozyme for isopeptide ligase (E3)-dependent degradation. The potential involvement of ubiquitin conjugation at sites of epithelial-mesenchymal associations was further analyzed in culture using atrioventricular canal (AV) endothelium. Immunoreactivity was abundant in cells immediately prior to and during their transformation into mesenchyme. Collectively, the specific temporal and spatial changes in ubiquitin conjugates during early vertebrate development suggest a regulatory role for this degradative pathway in the cellular remodeling accompanying embryonic growth and differentiation.
Collapse
Affiliation(s)
- A M Wunsch
- Department of Cellular Biology, Medical College of Wisconsin, Milwaukee 53226, USA
| | | |
Collapse
|
89
|
Alvarez J, Montero M, Garcia-Sancho J. High affinity inhibition of Ca(2+)-dependent K+ channels by cytochrome P-450 inhibitors. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)49767-6] [Citation(s) in RCA: 207] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|