51
|
Padyana AK, Qiu H, Roll-Mecak A, Hinnebusch AG, Burley SK. Structural basis for autoinhibition and mutational activation of eukaryotic initiation factor 2alpha protein kinase GCN2. J Biol Chem 2005; 280:29289-99. [PMID: 15964839 DOI: 10.1074/jbc.m504096200] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The GCN2 protein kinase coordinates protein synthesis with levels of amino acid stores by phosphorylating eukaryotic translation initiation factor 2. The autoinhibited form of GCN2 is activated in cells starved of amino acids by binding of uncharged tRNA to a histidyl-tRNA synthetase-like domain. Replacement of Arg-794 with Gly in the PK domain (R794G) activates GCN2 independently of tRNA binding. Crystal structures of the GCN2 protein kinase domain have been determined for wild-type and R794G mutant forms in the apo state and bound to ATP/AMPPNP. These structures reveal that GCN2 autoinhibition results from stabilization of a closed conformation that restricts ATP binding. The R794G mutant shows increased flexibility in the hinge region connecting the N- and C-lobes, resulting from loss of multiple interactions involving Arg794. This conformational change is associated with intradomain movement that enhances ATP binding and hydrolysis. We propose that intramolecular interactions following tRNA binding remodel the hinge region in a manner similar to the mechanism of enzyme activation elicited by the R794G mutation.
Collapse
|
52
|
Nameki N, Yoneyama M, Koshiba S, Tochio N, Inoue M, Seki E, Matsuda T, Tomo Y, Harada T, Saito K, Kobayashi N, Yabuki T, Aoki M, Nunokawa E, Matsuda N, Sakagami N, Terada T, Shirouzu M, Yoshida M, Hirota H, Osanai T, Tanaka A, Arakawa T, Carninci P, Kawai J, Hayashizaki Y, Kinoshita K, Güntert P, Kigawa T, Yokoyama S. Solution structure of the RWD domain of the mouse GCN2 protein. Protein Sci 2005; 13:2089-100. [PMID: 15273307 PMCID: PMC2279815 DOI: 10.1110/ps.04751804] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
GCN2 is the alpha-subunit of the only translation initiation factor (eIF2alpha) kinase that appears in all eukaryotes. Its function requires an interaction with GCN1 via the domain at its N-terminus, which is termed the RWD domain after three major RWD-containing proteins: RING finger-containing proteins, WD-repeat-containing proteins, and yeast DEAD (DEXD)-like helicases. In this study, we determined the solution structure of the mouse GCN2 RWD domain using NMR spectroscopy. The structure forms an alpha + beta sandwich fold consisting of two layers: a four-stranded antiparallel beta-sheet, and three side-by-side alpha-helices, with an alphabetabetabetabetaalphaalpha topology. A characteristic YPXXXP motif, which always occurs in RWD domains, forms a stable loop including three consecutive beta-turns that overlap with each other by two residues (triple beta-turn). As putative binding sites with GCN1, a structure-based alignment allowed the identification of several surface residues in alpha-helix 3 that are characteristic of the GCN2 RWD domains. Despite the apparent absence of sequence similarity, the RWD structure significantly resembles that of ubiquitin-conjugating enzymes (E2s), with most of the structural differences in the region connecting beta-strand 4 and alpha-helix 3. The structural architecture, including the triple beta-turn, is fundamentally common among various RWD domains and E2s, but most of the surface residues on the structure vary. Thus, it appears that the RWD domain is a novel structural domain for protein-binding that plays specific roles in individual RWD-containing proteins.
Collapse
|
53
|
Kazemi S, Papadopoulou S, Li S, Su Q, Wang S, Yoshimura A, Matlashewski G, Dever TE, Koromilas AE. Control of alpha subunit of eukaryotic translation initiation factor 2 (eIF2 alpha) phosphorylation by the human papillomavirus type 18 E6 oncoprotein: implications for eIF2 alpha-dependent gene expression and cell death. Mol Cell Biol 2004; 24:3415-29. [PMID: 15060162 PMCID: PMC381675 DOI: 10.1128/mcb.24.8.3415-3429.2004] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Phosphorylation of the alpha subunit of eukaryotic translation initiation factor 2 (eIF2alpha) at serine 51 inhibits protein synthesis in cells subjected to various forms of stress including virus infection. The human papillomavirus (HPV) E6 oncoprotein contributes to virus-induced pathogenicity through multiple mechanisms including the inhibition of apoptosis and the blockade of interferon (IFN) action. We have investigated a possible functional relationship between the E6 oncoprotein and eIF2alpha phosphorylation by an inducible-dimerization form of the IFN-inducible protein kinase PKR. Herein, we demonstrate that HPV type 18 E6 protein synthesis is rapidly repressed upon eIF2alpha phosphorylation caused by the conditional activation of the kinase. The remainder of E6, however, can rescue cells from PKR-mediated inhibition of protein synthesis and induction of apoptosis. E6 physically associates with GADD34/PP1 holophosphatase complex, which mediates translational recovery, and facilitates eIF2alpha dephosphorylation. Inhibition of eIF2alpha phosphorylation by E6 mitigates eIF2alpha-dependent responses to transcription and translation of proapoptotic genes. These findings demonstrate, for the first time, a role of the oncogenic E6 in apoptotic signaling induced by PKR and eIF2alpha phosphorylation. The functional interaction between E6 and the eIF2alpha phosphorylation pathway may have important implications for HPV infection and associated pathogenesis.
Collapse
Affiliation(s)
- Shirin Kazemi
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montréal, Québec H3T 1E2, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Narasimhan J, Staschke KA, Wek RC. Dimerization Is Required for Activation of eIF2 Kinase Gcn2 in Response to Diverse Environmental Stress Conditions. J Biol Chem 2004; 279:22820-32. [PMID: 15010461 DOI: 10.1074/jbc.m402228200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae, starvation for amino acids induces phosphorylation of the alpha subunit of eukaryotic initiation factor 2alpha by Gcn2 protein kinase, leading to elevated translation of GCN4. Gcn4p is a transcriptional activator of hundreds of genes involved in remedying nutrient deprivation. In addition to a conserved kinase domain, Gcn2p has a regulatory region homologous to histidyl tRNA synthetase enzymes that binds uncharged tRNA that accumulates during amino acid starvation. Flanking the carboxyl terminus of the histidyl-tRNA synthetase-related domain is a region spanning 162 residues that participates in the activation of the protein kinase. Gel filtration and chemical cross-linking analysis of the recombinant carboxyl-terminal Gcn2 protein revealed that this region is a stable homodimer that is highly resistant to high concentrations of salt. Residue alterations in three hydrophobic segments and one segment with a proposed amphipathic alpha-helix in this Gcn2p carboxyl terminus blocked oligomerization, supporting the role of hydrophobic interactions in the dimerization interface of Gcn2p. Introduction of residue substitutions that impaired dimerization into the full-length protein prevented the ability of Gcn2p to phosphorylate its substrate eukaryotic initiation factor-2alpha and induce GCN4 translational expression in yeast cells subjected to a variety of stresses including amino acid limitation or exposure to rapamycin or high levels of NaCl. This latter stress can be overcome by addition of increasing amounts of K+ ions, indicating that the Na+/K+ ion balance is central to this stress induction. We conclude that dimerization involving hydrophobic segments in the carboxyl-terminal region is required for activation of Gcn2p in response to a multitude of stresses.
Collapse
Affiliation(s)
- Jana Narasimhan
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | |
Collapse
|
55
|
Gietzen DW, Ross CM, Hao S, Sharp JW. Phosphorylation of eIF2alpha is involved in the signaling of indispensable amino acid deficiency in the anterior piriform cortex of the brain in rats. J Nutr 2004; 134:717-23. [PMID: 15051816 DOI: 10.1093/jn/134.4.717] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Sensing of indispensable amino acid (IAA) deficiency, an acute challenge to protein homeostasis, is demonstrated by rats as rejection of IAA-deficient diets within 20 min. The anterior piriform cortex (APC) of the brain in rats and birds is essential for this nutrient sensing, and is activated by IAA deficiency. Yet the mechanisms that sense and transduce IAA reduction to signaling in the APC, or indeed in any animal cells, are unknown. Because rejection of a deficient diet within 20 min is too rapid to be explained by transcription-derived signals, brain tissue was taken from rats after 20 min access to either a threonine-basal, -devoid, or -corrected diet and examined for proteins associated with early signaling of IAA deficiency in the yeast model. Western blots and immunohistochemistry showed that the phosphorylation of eukaryotic initiation factor 2-alpha (p-eIF2alpha[Ser51]) and translation of its downstream product, c-Jun, were increased (47%, P < 0.005, and 55%, P < 0.025, respectively) in APC from rats offered devoid, but not corrected diets, compared with those offered basal diets. This was not seen in other brain areas. In cells intensely labeled for cytoplasmic p-eIF2alpha, there was intense fluorescence for c-Jun in the nucleus. Thus, p-eIF2alpha, which is pivotal in the initiation of global protein translation, and its downstream product, the leucine zipper protein, c-Jun, are increased in the mammalian APC within the time frame necessary for the behavioral response. We suggest that p-eIF2alpha and c-Jun participate in signaling nutrient deficiency in the IAA-sensitive neurons of the APC.
Collapse
Affiliation(s)
- Dorothy W Gietzen
- Department of Anatomy, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA.
| | | | | | | |
Collapse
|
56
|
Jiang HY, Wek SA, McGrath BC, Lu D, Hai T, Harding HP, Wang X, Ron D, Cavener DR, Wek RC. Activating transcription factor 3 is integral to the eukaryotic initiation factor 2 kinase stress response. Mol Cell Biol 2004; 24:1365-77. [PMID: 14729979 PMCID: PMC321431 DOI: 10.1128/mcb.24.3.1365-1377.2004] [Citation(s) in RCA: 400] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In response to environmental stress, cells induce a program of gene expression designed to remedy cellular damage or, alternatively, induce apoptosis. In this report, we explore the role of a family of protein kinases that phosphorylate eukaryotic initiation factor 2 (eIF2) in coordinating stress gene responses. We find that expression of activating transcription factor 3 (ATF3), a member of the ATF/CREB subfamily of basic-region leucine zipper (bZIP) proteins, is induced in response to endoplasmic reticulum (ER) stress or amino acid starvation by a mechanism requiring eIF2 kinases PEK (Perk or EIF2AK3) and GCN2 (EIF2AK4), respectively. Increased expression of ATF3 protein occurs early in response to stress by a mechanism requiring the related bZIP transcriptional regulator ATF4. ATF3 contributes to induction of the CHOP transcriptional factor in response to amino acid starvation, and loss of ATF3 function significantly lowers stress-induced expression of GADD34, an eIF2 protein phosphatase regulatory subunit implicated in feedback control of the eIF2 kinase stress response. Overexpression of ATF3 in mouse embryo fibroblasts partially bypasses the requirement for PEK for induction of GADD34 in response to ER stress, further supporting the idea that ATF3 functions directly or indirectly as a transcriptional activator of genes targeted by the eIF2 kinase stress pathway. These results indicate that ATF3 has an integral role in the coordinate gene expression induced by eIF2 kinases. Given that ATF3 is induced by a very large number of environmental insults, this study supports involvement of eIF2 kinases in the coordination of gene expression in response to a more diverse set of stress conditions than previously proposed.
Collapse
Affiliation(s)
- Hao-Yuan Jiang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Igarashi J, Sato A, Kitagawa T, Yoshimura T, Yamauchi S, Sagami I, Shimizu T. Activation of heme-regulated eukaryotic initiation factor 2alpha kinase by nitric oxide is induced by the formation of a five-coordinate NO-heme complex: optical absorption, electron spin resonance, and resonance raman spectral studies. J Biol Chem 2004; 279:15752-62. [PMID: 14752110 DOI: 10.1074/jbc.m310273200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Heme-regulated eukaryotic initiation factor 2alpha kinase (HRI) regulates the synthesis of hemoglobin in reticulocytes in response to heme availability. HRI contains a tightly bound heme at the N-terminal domain. Earlier reports show that nitric oxide (NO) regulates HRI catalysis. However, the mechanism of this process remains unclear. In the present study, we utilize in vitro kinase assays, optical absorption, electron spin resonance (ESR), and resonance Raman spectra of purified full-length HRI for the first time to elucidate the regulation mechanism of NO. HRI was activated via heme upon NO binding, and the Fe(II)-HRI(NO) complex displayed 5-fold greater eukaryotic initiation factor 2alpha kinase activity than the Fe(III)-HRI complex. The Fe(III)-HRI complex exhibited a Soret peak at 418 nm and a rhombic ESR signal with g values of 2.49, 2.28, and 1.87, suggesting coordination with Cys as an axial ligand. Interestingly, optical absorption, ESR, and resonance Raman spectra of the Fe(II)-NO complex were characteristic of five-coordinate NO-heme. Spectral findings on the coordination structure of full-length HRI were distinct from those obtained for the isolated N-terminal heme-binding domain. Specifically, six-coordinate NO-Fe(II)-His was observed but not Cys-Fe(III) coordination. It is suggested that significant conformational change(s) in the protein induced by NO binding to the heme lead to HRI activation. We discuss the role of NO and heme in catalysis by HRI, focusing on heme-based sensor proteins.
Collapse
Affiliation(s)
- Jotaro Igarashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | | | | | | | | | | | | |
Collapse
|
58
|
Cherkasova VA, Hinnebusch AG. Translational control by TOR and TAP42 through dephosphorylation of eIF2alpha kinase GCN2. Genes Dev 2003; 17:859-72. [PMID: 12654728 PMCID: PMC196024 DOI: 10.1101/gad.1069003] [Citation(s) in RCA: 231] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Yeast protein kinase GCN2 stimulates the translation of transcriptional activator GCN4 by phosphorylating eIF2alpha in response to amino acid starvation. Kinase activation requires binding of uncharged tRNA to a histidyl tRNA synthetase-related domain in GCN2. Phosphorylation of serine 577 (Ser 577) in GCN2 by another kinase in vivo inhibits GCN2 function in rich medium by reducing tRNA binding activity. We show that rapamycin stimulates eIF2alpha phosphorylation by GCN2, with attendant induction of GCN4 translation, while reducing Ser 577 phosphorylation in nonstarved cells. The alanine 577 (Ala 577) mutation in GCN2 (S577A) dampened the effects of rapamycin on eIF2alpha phosphorylation and GCN4 translation, suggesting that GCN2 activation by rapamycin involves Ser 577 dephosphorylation. Rapamycin regulates the phosphorylation of Ser 577 and eIF2alpha by inhibiting the TOR pathway. Rapamycin-induced dephosphorylation of Ser 577, eIF2alpha phosphorylation, and induction of GCN4 all involve TAP42, a regulator of type 2A-related protein phosphatases. Our results add a new dimension to the regulation of protein synthesis by TOR proteins and demonstrate cross-talk between two major pathways for nutrient control of gene expression in yeast.
Collapse
Affiliation(s)
- Vera A Cherkasova
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
59
|
Zhan K, Vattem KM, Bauer BN, Dever TE, Chen JJ, Wek RC. Phosphorylation of eukaryotic initiation factor 2 by heme-regulated inhibitor kinase-related protein kinases in Schizosaccharomyces pombe is important for fesistance to environmental stresses. Mol Cell Biol 2002; 22:7134-46. [PMID: 12242291 PMCID: PMC139816 DOI: 10.1128/mcb.22.20.7134-7146.2002] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein synthesis is regulated by the phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF2alpha) in response to different environmental stresses. One member of the eIF2alpha kinase family, heme-regulated inhibitor kinase (HRI), is activated under heme-deficient conditions and blocks protein synthesis, principally globin, in mammalian erythroid cells. We identified two HRI-related kinases from Schizosaccharomyces pombe which have full-length homology with mammalian HRI. The two HRI-related kinases, named Hri1p and Hri2p, exhibit autokinase and kinase activity specific for Ser-51 of eIF2alpha, and both activities were inhibited in vitro by hemin, as previously described for mammalian HRI. Overexpression of Hri1p, Hri2p, or the human eIF2alpha kinase, double-stranded-RNA-dependent protein kinase (PKR), impeded growth of S. pombe due to elevated phosphorylation of eIF2alpha. Cells from strains with deletions of the hri1(+) and hri2(+) genes, individually or in combination, exhibited a reduced growth rate when exposed to heat shock or to arsenic compounds. Measurements of in vivo phosphorylation of eIF2alpha suggest that Hri1p and Hri2p differentially phosphorylate eIF2alpha in response to these stress conditions. These results demonstrate that HRI-related enzymes are not unique to vertebrates and suggest that these eIF2alpha kinases are important participants in diverse stress response pathways in some lower eukaryotes.
Collapse
Affiliation(s)
- Ke Zhan
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | |
Collapse
|
60
|
Baltzis D, Li S, Koromilas AE. Functional characterization of pkr gene products expressed in cells from mice with a targeted deletion of the N terminus or C terminus domain of PKR. J Biol Chem 2002; 277:38364-72. [PMID: 12161430 DOI: 10.1074/jbc.m203564200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interferon-inducible double-stranded RNA (dsRNA)-activated protein kinase, PKR, plays an important role in messenger (m) RNA translation by phosphorylating the alpha subunit of eukaryotic initiation factor 2. Through this capacity PKR is thought to be a mediator of the antiviral and antiproliferative actions of interferon. In addition to translational function, PKR has been implicated in many signaling pathways to gene transcription by modulating the activities of a number of transcription factors, including NF-kappa B and STATs. However, experiments with two different PKR knockout (PKR(-/-)) mouse models have failed to verify many of the biological functions attributed to PKR. In addition, results with cells from the two PKR(-/-) mice have been contradictory and confusing. Here, we show that the first PKR(-/-) mouse with deletion of exons 2 and 3, corresponding to the N terminus domain of PKR (N-PKR(-/-)), expresses a truncated protein, resulting from the translation of the exon-skipped mouse PKR (ES-mPKR) mRNA. The ES-mPKR protein is defective in dsRNA binding but remains catalytically active both in vitro and in vivo. Furthermore, we show that the second PKR(-/-) mouse with a targeted deletion of exon 12, which corresponds to the C terminus of the molecule (C-PKR(-/-)), expresses a truncated mPKR produced by alternative splicing of exon 12. Although the spliced form of mPKR (SF-mPKR) is catalytically inactive, it retains the dsRNA-binding properties of the wild type mPKR. Reverse transcription-PCRs demonstrate that SF-mPKR mRNA is expressed in several normal mouse tissues, and appears to be under developmental control during embryogenesis. Our data demonstrate that both PKR(-/-) models are incomplete knockouts, and expression of the PKR variants may account, at least in part, for the significant signaling differences between cells from the two PKR(-/-) mice.
Collapse
Affiliation(s)
- Dionissios Baltzis
- Lady Davis Institute for Medical Research, McGill University, Sir Mortimer B. Davis-Jewish General Hospital, 3755 Côte-Ste-Catherine Street, Montréal, Québec H3T 1E2, Canada
| | | | | |
Collapse
|
61
|
Ramelot TA, Cort JR, Yee AA, Liu F, Goshe MB, Edwards AM, Smith RD, Arrowsmith CH, Dever TE, Kennedy MA. Myxoma virus immunomodulatory protein M156R is a structural mimic of eukaryotic translation initiation factor eIF2alpha. J Mol Biol 2002; 322:943-54. [PMID: 12367520 DOI: 10.1016/s0022-2836(02)00858-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Phosphorylation of the translation initiation factor eIF2 on Ser51 of its alpha subunit is a key event for regulation of protein synthesis in all eukaryotes. M156R, the product of the myxoma virus M156R open reading frame, has sequence similarity to eIF2alpha as well as to a family of viral proteins that bind to the interferon-induced protein kinase PKR and inhibit phosphorylation of eIF2alpha. In this study, we demonstrate that, like eIF2alpha. M156R is an efficient substrate for phosphorylation by PKR and can compete with eIF2alpha. To gain insights into the substrate specificity of the eIF2alpha kinases, we have determined the nuclear magnetic resonance (NMR) structure of M156R, the first structure of a myxoma virus protein. The fold consists of a five-stranded antiparallel beta-barrel with two of the strands connected by a loop and an alpha-helix. The similarity between M156R and the beta-barrel structure in the N terminus of eIF2alpha suggests that the viral homologs mimic eIF2alpha structure in order to compete for binding to PKR. A homology-modeled structure of the well-studied vaccinia virus K3L was generated on the basis of alignment with M156R. Comparison of the structures of the K3L model, M156R, and human eIF2alpha indicated that residues important for binding to PKR are located at conserved positions on the surface of the beta-barrel and in the mobile loop, identifying the putative PKR recognition motif.
Collapse
Affiliation(s)
- Theresa A Ramelot
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Zhang P, McGrath BC, Reinert J, Olsen DS, Lei L, Gill S, Wek SA, Vattem KM, Wek RC, Kimball SR, Jefferson LS, Cavener DR. The GCN2 eIF2alpha kinase is required for adaptation to amino acid deprivation in mice. Mol Cell Biol 2002; 22:6681-8. [PMID: 12215525 PMCID: PMC134046 DOI: 10.1128/mcb.22.19.6681-6688.2002] [Citation(s) in RCA: 349] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The GCN2 eIF2alpha kinase is essential for activation of the general amino acid control pathway in yeast when one or more amino acids become limiting for growth. GCN2's function in mammals is unknown, but must differ, since mammals, unlike yeast, can synthesize only half of the standard 20 amino acids. To investigate the function of mammalian GCN2, we have generated a Gcn2(-/-) knockout strain of mice. Gcn2(-/-) mice are viable, fertile, and exhibit no phenotypic abnormalities under standard growth conditions. However, prenatal and neonatal mortalities are significantly increased in Gcn2(-/-) mice whose mothers were reared on leucine-, tryptophan-, or glycine-deficient diets during gestation. Leucine deprivation produced the most pronounced effect, with a 63% reduction in the expected number of viable neonatal mice. Cultured embryonic stem cells derived from Gcn2(-/-) mice failed to show the normal induction of eIF2alpha phosphorylation in cells deprived of leucine. To assess the biochemical effects of the loss of GCN2 in the whole animal, liver perfusion experiments were conducted. Histidine limitation in the presence of histidinol induced a twofold increase in the phosphorylation of eIF2alpha and a concomitant reduction in eIF2B activity in perfused livers from wild-type mice, but no changes in livers from Gcn2(-/-) mice.
Collapse
Affiliation(s)
- Peichuan Zhang
- Department of Biology, The Pennsylvania State University, University Park 16802, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Garcia-Barrio M, Dong J, Cherkasova VA, Zhang X, Zhang F, Ufano S, Lai R, Qin J, Hinnebusch AG. Serine 577 is phosphorylated and negatively affects the tRNA binding and eIF2alpha kinase activities of GCN2. J Biol Chem 2002; 277:30675-83. [PMID: 12070158 DOI: 10.1074/jbc.m203187200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein kinase GCN2 regulates translation initiation by phosphorylating eukaryotic initiation factor 2alpha (eIF2alpha), impeding general protein synthesis but specifically inducing translation of GCN4, a transcriptional activator of amino acid biosynthetic genes in Saccharomyces cerevisiae. GCN2 activity is stimulated in amino acid-deprived cells through binding of uncharged tRNA to a domain related to histidyl tRNA synthetase. We show that GCN2 is phosphorylated by another kinase on serine 577, located N-terminal to the kinase domain. Mutation of Ser-577 to alanine produced partial activation of GCN2 in nonstarved cells, increasing the level of phosphorylated eIF2alpha, derepressing GCN4 expression, and elevating the cellular levels of tryptophan and histidine. The Ala-577 mutation also increased the tRNA binding affinity of purified GCN2, which can account for the elevated kinase activity of GCN2-S577A in nonstarved cells where uncharged tRNA levels are low. Whereas Ser-577 remains phosphorylated in amino acid-starved cells, its dephosphorylation could mediate GCN2 activation in other stress or starvation conditions by lowering the threshold of uncharged tRNA required to activate the protein.
Collapse
Affiliation(s)
- Minerva Garcia-Barrio
- Laboratory of Gene Regulation and Development, NICHD/National Institutes of Health, Building 6A, Rm. B1A13, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Ma K, Vattem KM, Wek RC. Dimerization and release of molecular chaperone inhibition facilitate activation of eukaryotic initiation factor-2 kinase in response to endoplasmic reticulum stress. J Biol Chem 2002; 277:18728-35. [PMID: 11907036 DOI: 10.1074/jbc.m200903200] [Citation(s) in RCA: 192] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphorylation of eukaryotic initiation factor-2 (eIF2) by pancreatic eIF2 kinase (PEK), induces a program of translational expression in response to accumulation of malfolded protein in the endoplasmic reticulum (ER). This study addresses the mechanisms activating PEK, also designated PERK or EIF2AK3. We describe the characterization of two regions in the ER luminal portion of the transmembrane PEK that carry out distinct functions in the regulation of this eIF2 kinase. The first region mediates oligomerization between PEK polypeptides, and deletion of this portion of PEK blocked induction of eIF2 kinase activity. The second characterized region of PEK facilitates interaction with ER chaperones. In the absence of stress, PEK associates with ER chaperones GRP78 (BiP) and GRP94, and this binding is released in response to ER stress. ER luminal sequences flanking the transmembrane domain are required for GRP78 interaction, and deletion of this portion of PEK led to its activation even in the absence of ER stress. These results suggest that this ER chaperone serves as a repressor of PEK activity, and release of ER chaperones from PEK when misfolded proteins accumulate in the ER induces gene expression required to enhance the protein folding capacity of the ER.
Collapse
Affiliation(s)
- Kun Ma
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | |
Collapse
|
65
|
Gaba A, Wang Z, Krishnamoorthy T, Hinnebusch AG, Sachs MS. Physical evidence for distinct mechanisms of translational control by upstream open reading frames. EMBO J 2001; 20:6453-63. [PMID: 11707416 PMCID: PMC125715 DOI: 10.1093/emboj/20.22.6453] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Saccharomyces cerevisiae GCN4 mRNA 5'-leader contains four upstream open reading frames (uORFs) and the CPA1 leader contains a single uORF. To determine how these uORFs control translation, we examined mRNAs containing these leaders in cell-free translation extracts to determine where ribosomes were loaded first and where they were loaded during steady-state translation. Ribosomes predominantly loaded first at GCN4 uORF1. Following its translation, but not the translation of uORF4, they efficiently reinitiated protein synthesis at Gcn4p. Adding purified eIF2 increased reinitiation at uORFs 3 or 4 and reduced reinitiation at Gcn4p. This indicates that eIF2 affects the site of reinitiation following translation of GCN4 uORF1 in vitro. In contrast, for mRNA containing the CPA1 uORF, ribosomes reached the downstream start codon by scanning past the uORF. Addition of arginine caused ribosomes that had synthesized the uORF polypeptide to stall at its termination codon, reducing loading at the downstream start codon, apparently by blocking scanning ribosomes, and not by affecting reinitiation. The GCN4 and CPA1 uORFs thus control translation in fundamentally different ways.
Collapse
Affiliation(s)
- Anthony Gaba
- Department of Biochemistry and Molecular Biology, OGI School of Science and Engineering, Oregon Health and Science University, 20 000 NW Walker Road, Beaverton, OR 97006-8921, National Institute of Child Health and Human Development, Laboratory of Eukaryotic Gene Regulation, Bethesda, MD 20892-2716 and Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97201-3098, USA Present address: Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720-3204, USA Present address: Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA Corresponding author e-mail:
| | - Zhong Wang
- Department of Biochemistry and Molecular Biology, OGI School of Science and Engineering, Oregon Health and Science University, 20 000 NW Walker Road, Beaverton, OR 97006-8921, National Institute of Child Health and Human Development, Laboratory of Eukaryotic Gene Regulation, Bethesda, MD 20892-2716 and Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97201-3098, USA Present address: Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720-3204, USA Present address: Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA Corresponding author e-mail:
| | - Thanuja Krishnamoorthy
- Department of Biochemistry and Molecular Biology, OGI School of Science and Engineering, Oregon Health and Science University, 20 000 NW Walker Road, Beaverton, OR 97006-8921, National Institute of Child Health and Human Development, Laboratory of Eukaryotic Gene Regulation, Bethesda, MD 20892-2716 and Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97201-3098, USA Present address: Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720-3204, USA Present address: Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA Corresponding author e-mail:
| | - Alan G. Hinnebusch
- Department of Biochemistry and Molecular Biology, OGI School of Science and Engineering, Oregon Health and Science University, 20 000 NW Walker Road, Beaverton, OR 97006-8921, National Institute of Child Health and Human Development, Laboratory of Eukaryotic Gene Regulation, Bethesda, MD 20892-2716 and Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97201-3098, USA Present address: Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720-3204, USA Present address: Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA Corresponding author e-mail:
| | - Matthew S. Sachs
- Department of Biochemistry and Molecular Biology, OGI School of Science and Engineering, Oregon Health and Science University, 20 000 NW Walker Road, Beaverton, OR 97006-8921, National Institute of Child Health and Human Development, Laboratory of Eukaryotic Gene Regulation, Bethesda, MD 20892-2716 and Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97201-3098, USA Present address: Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720-3204, USA Present address: Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA Corresponding author e-mail:
| |
Collapse
|
66
|
Jammi NV, Beal PA. Phosphorylation of the RNA-dependent protein kinase regulates its RNA-binding activity. Nucleic Acids Res 2001; 29:3020-9. [PMID: 11452027 PMCID: PMC55795 DOI: 10.1093/nar/29.14.3020] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The RNA-dependent protein kinase (PKR) is an interferon-induced, RNA-activated enzyme that phosphorylates the alpha-subunit of eukaryotic initiation factor 2 (eIF2alpha), inhibiting the function of the eIF2 complex and continued initiation of translation. When bound to an activating RNA and ATP, PKR undergoes autophosphorylation reactions at multiple serine and threonine residues. This autophosphorylation reaction stimulates the eIF2alpha kinase activity of PKR. The binding of certain viral RNAs inhibits the activation of PKR. Wild-type PKR is obtained as a highly phosphorylated protein when overexpressed in Escherichia coli. We report here that treatment of the isolated phosphoprotein with the catalytic subunit of protein phosphatase 1 dephosphorylates the enzyme. The in vitro autophosphorylation and eIF2alpha kinase activities of the dephosphorylated enzyme are stimulated by addition of RNA. Thus, inactivation by phosphatase treatment of autophosphorylated PKR obtained from overexpression in bacteria generates PKR in a form suitable for in vitro analysis of the RNA-induced activation mechanism. Furthermore, we used gel mobility shift assays, methidiumpropyl-EDTA.Fe footprinting and affinity chromatography to demonstrate differences in the RNA-binding properties of phospho- and dephosphoPKR. We found that dephosphorylation of PKR increases binding affinity of the enzyme for both kinase activating and inhibiting RNAs. These results are consistent with an activation mechanism that includes release of the activating RNA upon autophosphorylation of PKR prior to phosphorylation of eIF2alpha.
Collapse
Affiliation(s)
- N V Jammi
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | | |
Collapse
|
67
|
Natarajan K, Meyer MR, Jackson BM, Slade D, Roberts C, Hinnebusch AG, Marton MJ. Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast. Mol Cell Biol 2001; 21:4347-68. [PMID: 11390663 PMCID: PMC87095 DOI: 10.1128/mcb.21.13.4347-4368.2001] [Citation(s) in RCA: 572] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2001] [Accepted: 04/03/2001] [Indexed: 11/20/2022] Open
Abstract
Starvation for amino acids induces Gcn4p, a transcriptional activator of amino acid biosynthetic genes in Saccharomyces cerevisiae. In an effort to identify all genes regulated by Gcn4p during amino acid starvation, we performed cDNA microarray analysis. Data from 21 pairs of hybridization experiments using two different strains derived from S288c revealed that more than 1,000 genes were induced, and a similar number were repressed, by a factor of 2 or more in response to histidine starvation imposed by 3-aminotriazole (3AT). Profiling of a gcn4Delta strain and a constitutively induced mutant showed that Gcn4p is required for the full induction by 3AT of at least 539 genes, termed Gcn4p targets. Genes in every amino acid biosynthetic pathway except cysteine and genes encoding amino acid precursors, vitamin biosynthetic enzymes, peroxisomal components, mitochondrial carrier proteins, and autophagy proteins were all identified as Gcn4p targets. Unexpectedly, genes involved in amino acid biosynthesis represent only a quarter of the Gcn4p target genes. Gcn4p also activates genes involved in glycogen homeostasis, and mutant analysis showed that Gcn4p suppresses glycogen levels in amino acid-starved cells. Numerous genes encoding protein kinases and transcription factors were identified as targets, suggesting that Gcn4p is a master regulator of gene expression. Interestingly, expression profiles for 3AT and the alkylating agent methyl methanesulfonate (MMS) overlapped extensively, and MMS induced GCN4 translation. Thus, the broad transcriptional response evoked by Gcn4p is produced by diverse stress conditions. Finally, profiling of a gcn4Delta mutant uncovered an alternative induction pathway operating at many Gcn4p target genes in histidine-starved cells.
Collapse
Affiliation(s)
- K Natarajan
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
68
|
Qiu H, Dong J, Hu C, Francklyn CS, Hinnebusch AG. The tRNA-binding moiety in GCN2 contains a dimerization domain that interacts with the kinase domain and is required for tRNA binding and kinase activation. EMBO J 2001; 20:1425-38. [PMID: 11250908 PMCID: PMC145529 DOI: 10.1093/emboj/20.6.1425] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
GCN2 stimulates translation of GCN4 mRNA in amino acid-starved cells by phosphorylating translation initiation factor 2. GCN2 is activated by binding of uncharged tRNA to a domain related to histidyl-tRNA synthetase (HisRS). The HisRS-like region contains two dimerization domains (HisRS-N and HisRS-C) required for GCN2 function in vivo but dispensable for dimerization by full-length GCN2. Residues corresponding to amino acids at the dimer interface of Escherichia coli HisRS were required for dimerization of recombinant HisRS-N and for tRNA binding by full-length GCN2, suggesting that HisRS-N dimerization promotes tRNA binding and kinase activation. HisRS-N also interacted with the protein kinase (PK) domain, and a deletion impairing this interaction destroyed GCN2 function without reducing tRNA binding; thus, HisRS-N-PK interaction appears to stimulate PK function. The C-terminal domain of GCN2 (C-term) interacted with the PK domain in a manner disrupted by an activating PK mutation (E803V). These results suggest that the C-term is an autoinhibitory domain, counteracted by tRNA binding. We conclude that multiple domain interactions, positive and negative, mediate the activation of GCN2 by uncharged tRNA.
Collapse
Affiliation(s)
| | | | | | - Christopher S. Francklyn
- Laboratory of Eukaryotic Gene Regulation, National Institute of Child Health and Human Development, Bethesda, MD 20892 and
Department of Biochemistry, University of Vermont, College of Medicine, C-444, Burlington, VT 05405, USA Corresponding author e-mail:
| | - Alan G. Hinnebusch
- Laboratory of Eukaryotic Gene Regulation, National Institute of Child Health and Human Development, Bethesda, MD 20892 and
Department of Biochemistry, University of Vermont, College of Medicine, C-444, Burlington, VT 05405, USA Corresponding author e-mail:
| |
Collapse
|
69
|
Abstract
Aminoacyl-tRNAs are substrates for translation and are pivotal in determining how the genetic code is interpreted as amino acids. The function of aminoacyl-tRNA synthesis is to precisely match amino acids with tRNAs containing the corresponding anticodon. This is primarily achieved by the direct attachment of an amino acid to the corresponding tRNA by an aminoacyl-tRNA synthetase, although intrinsic proofreading and extrinsic editing are also essential in several cases. Recent studies of aminoacyl-tRNA synthesis, mainly prompted by the advent of whole genome sequencing and the availability of a vast body of structural data, have led to an expanded and more detailed picture of how aminoacyl-tRNAs are synthesized. This article reviews current knowledge of the biochemical, structural, and evolutionary facets of aminoacyl-tRNA synthesis.
Collapse
Affiliation(s)
- M Ibba
- Center for Biomolecular Recognition, IMBG Laboratory B, The Panum Institute, DK-2200, Copenhagen N, Denmark.
| | | |
Collapse
|
70
|
Kimball SR, Clemens MJ, Tilleray VJ, Wek RC, Horetsky RL, Jefferson LS. The double-stranded RNA-activated protein kinase PKR is dispensable for regulation of translation initiation in response to either calcium mobilization from the endoplasmic reticulum or essential amino acid starvation. Biochem Biophys Res Commun 2001; 280:293-300. [PMID: 11162513 DOI: 10.1006/bbrc.2000.4103] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The alpha-subunit of eukaryotic initiation factor eIF2 is a preferred substrate for the double-stranded RNA-activated protein kinase, PKR. Phosphorylation of eIF2alpha converts the factor from a substrate into a competitive inhibitor of the guanine nucleotide exchange factor, eIF2B, leading to a decline in mRNA translation. Early studies provided evidence implicating PKR as the kinase that phosphorylates eIF2alpha under conditions of cell stress such as the accumulation of misfolded proteins in the lumen of the endoplasmic reticulum, i.e., the unfolded protein response (UPR). However, the recent identification of a trans-microsomal membrane eIF2alpha kinase, termed PEK or PERK, suggests that this kinase, and not PKR, might be the kinase that is activated by misfolded protein accumulation. Similarly, genetic studies in yeast provide compelling evidence that a kinase termed GCN2 phosphorylates eIF2alpha in response to amino acid deprivation. However, no direct evidence showing activation of the mammalian homologue of GCN2 by amino acid deprivation has been reported. In the present study, we find that in fibroblasts treated with agents that promote the UPR, protein synthesis is inhibited as a result of a decrease in eIF2B activity. Furthermore, the reduction in eIF2B activity is associated with enhanced phosphorylation of eIF2alpha. Importantly, the magnitude of the change in each parameter is identical in wildtype cells and in fibroblasts containing a chromosomal deletion in the PKR gene (PKR-KO cells). In a similar manner, we find that during amino acid deprivation the inhibition of protein synthesis and extent of increase in eIF2alpha phosphorylation are identical in wildtype and PKR-KO cells. Overall, the results show that PKR is not required for increased eIF2alpha phosphorylation or inhibition of protein synthesis under conditions promoting the UPR or in response to amino acid deprivation.
Collapse
Affiliation(s)
- S R Kimball
- Department of Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | |
Collapse
|
71
|
Dong J, Qiu H, Garcia-Barrio M, Anderson J, Hinnebusch AG. Uncharged tRNA activates GCN2 by displacing the protein kinase moiety from a bipartite tRNA-binding domain. Mol Cell 2000; 6:269-79. [PMID: 10983975 DOI: 10.1016/s1097-2765(00)00028-9] [Citation(s) in RCA: 381] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Protein kinase GCN2 regulates translation in amino acid-starved cells by phosphorylating elF2. GCN2 contains a regulatory domain related to histidyl-tRNA synthetase (HisRS) postulated to bind multiple deacylated tRNAs as a general sensor of starvation. In accordance with this model, GCN2 bound several deacylated tRNAs with similar affinities, and aminoacylation of tRNAphe weakened its interaction with GCN2. Unexpectedly, the C-terminal ribosome binding segment of GCN2 (C-term) was required in addition to the HisRS domain for strong tRNA binding. A combined HisRS+ C-term segment bound to the isolated protein kinase (PK) domain in vitro, and tRNA impeded this interaction. An activating mutation (GCN2c-E803V) that weakens PK-C-term association greatly enhanced tRNA binding by GCN2. These results provide strong evidence that tRNA stimulates the GCN2 kinase moiety by preventing an inhibitory interaction with the bipartite tRNA binding domain.
Collapse
Affiliation(s)
- J Dong
- Laboratory of Eukaryotic Gene Regulation, National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
72
|
Kubota H, Sakaki Y, Ito T. GI domain-mediated association of the eukaryotic initiation factor 2alpha kinase GCN2 with its activator GCN1 is required for general amino acid control in budding yeast. J Biol Chem 2000; 275:20243-6. [PMID: 10801780 DOI: 10.1074/jbc.c000262200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In response to the starvation of a single amino acid, the budding yeast Saccharomyces cerevisiae activates numerous genes involved in various amino acid biosynthetic pathways, all of which are under the control of transcription factor GCN4. This general amino acid control response is based on de-repressed translation of GCN4 mRNA, which is induced by the activation of the eIF2alpha kinase, GCN2. Although it is known that in vivo activation of GCN2 requires GCN1, the mode of GCN1 action remains to be elucidated at the molecular level. Here, we show that GCN2 interacts with GCN1 via the GI domain, a novel protein-binding module that occurs at the N terminus; mutations to conserved residues of this domain abolish its binding to GCN1. Furthermore, the yeast cells with GCN2 defective in interaction with GCN1 fail to display general control response. A similar phenotype is observed in cells overexpressing the GI domain of GCN2 or its target region on GCN1. Thus, GI domain-mediated association of GCN2 to GCN1 is required for general amino acid control. This finding provides the first insight into the molecular mechanism for the activation of GCN2 by GCN1.
Collapse
Affiliation(s)
- H Kubota
- Division of Genome Biology, Cancer Research Institute, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-0934, Tokyo, Japan
| | | | | |
Collapse
|
73
|
Garcia-Barrio M, Dong J, Ufano S, Hinnebusch AG. Association of GCN1-GCN20 regulatory complex with the N-terminus of eIF2alpha kinase GCN2 is required for GCN2 activation. EMBO J 2000; 19:1887-99. [PMID: 10775272 PMCID: PMC302013 DOI: 10.1093/emboj/19.8.1887] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Stimulation of GCN4 mRNA translation due to phosphorylation of the alpha-subunit of initiation factor 2 (eIF2) by its specific kinase, GCN2, requires binding of uncharged tRNA to a histidyl-tRNA synthetase (HisRS)-like domain in GCN2. GCN2 function in vivo also requires GCN1 and GCN20, but it was unknown whether these latter proteins act directly to promote the stimulation of GCN2 by uncharged tRNA. We found that the GCN1-GCN20 complex physically interacts with GCN2, binding to the N-terminus of the protein. Overexpression of N-terminal GCN2 segments had a dominant-negative phenotype that correlated with their ability to interact with GCN1-GCN20 and impede association between GCN1 and native GCN2. Consistently, this Gcn(-) phenotype was suppressed by overexpressing GCN2, GCN1-GCN20 or tRNA(His). The requirement for GCN1 was also reduced by overexpressing tRNA(His) in a gcn1Delta strain. We conclude that binding of GCN1-GCN20 to GCN2 is required for its activation by uncharged tRNA. The homologous N-terminus of Drosophila GCN2 interacted with yeast GCN1-GCN20 and had a dominant Gcn(-) phenotype, suggesting evolutionary conservation of this interaction.
Collapse
Affiliation(s)
- M Garcia-Barrio
- Laboratory of Eukaryotic Gene Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
74
|
Yang R, Wek SA, Wek RC. Glucose limitation induces GCN4 translation by activation of Gcn2 protein kinase. Mol Cell Biol 2000; 20:2706-17. [PMID: 10733573 PMCID: PMC85486 DOI: 10.1128/mcb.20.8.2706-2717.2000] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF-2alpha) is a well-characterized mechanism regulating protein synthesis in response to environmental stresses. In the yeast Saccharomyces cerevisiae, starvation for amino acids induces phosphorylation of eIF-2alpha by Gcn2 protein kinase, leading to elevated translation of GCN4, a transcriptional activator of more than 50 genes. Uncharged tRNA that accumulates during amino acid limitation is proposed to activate Gcn2p by associating with Gcn2p sequences homologous to histidyl-tRNA synthetase (HisRS) enzymes. Given that eIF-2alpha phosphorylation in mammals is induced in response to both carbohydrate and amino acid limitations, we addressed whether activation of Gcn2p in yeast is also controlled by different nutrient deprivations. We found that starvation for glucose induces Gcn2p phosphorylation of eIF-2alpha and stimulates GCN4 translation. Induction of eIF-2alpha phosphorylation by Gcn2p during glucose limitation requires the function of the HisRS-related domain but is largely independent of the ribosome binding sequences of Gcn2p. Furthermore, Gcn20p, a factor required for Gcn2 protein kinase stimulation of GCN4 expression in response to amino acid starvation, is not essential for GCN4 translational control in response to limitation for carbohydrates. These results indicate there are differences between the mechanisms regulating Gcn2p activity in response to amino acid and carbohydrate deficiency. Gcn2p induction of GCN4 translation during carbohydrate limitation enhances storage of amino acids in the vacuoles and facilitates entry into exponential growth during a shift from low-glucose to high-glucose medium. Gcn2p function also contributes to maintenance of glycogen levels during prolonged glucose starvation, suggesting a linkage between amino acid control and glycogen metabolism.
Collapse
Affiliation(s)
- R Yang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | |
Collapse
|
75
|
Qiu H, Hu C, Anderson J, Björk GR, Sarkar S, Hopper AK, Hinnebusch AG. Defects in tRNA processing and nuclear export induce GCN4 translation independently of phosphorylation of the alpha subunit of eukaryotic translation initiation factor 2. Mol Cell Biol 2000; 20:2505-16. [PMID: 10713174 PMCID: PMC85456 DOI: 10.1128/mcb.20.7.2505-2516.2000] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/1999] [Accepted: 12/30/1999] [Indexed: 11/20/2022] Open
Abstract
Induction of GCN4 translation in amino acid-starved cells involves the inhibition of initiator tRNA(Met) binding to eukaryotic translation initiation factor 2 (eIF2) in response to eIF2 phosphorylation by protein kinase GCN2. It was shown previously that GCN4 translation could be induced independently of GCN2 by overexpressing a mutant tRNA(AAC)(Val) (tRNA(Val*)) or the RNA component of RNase MRP encoded by NME1. Here we show that overexpression of the tRNA pseudouridine 55 synthase encoded by PUS4 also leads to translational derepression of GCN4 (Gcd(-) phenotype) independently of eIF2 phosphorylation. Surprisingly, the Gcd(-) phenotype of high-copy-number PUS4 (hcPUS4) did not require PUS4 enzymatic activity, and several lines of evidence indicate that PUS4 overexpression did not diminish functional initiator tRNA(Met) levels. The presence of hcPUS4 or hcNME1 led to the accumulation of certain tRNA precursors, and their Gcd(-) phenotypes were reversed by overexpressing the RNA component of RNase P (RPR1), responsible for 5'-end processing of all tRNAs. Consistently, overexpression of a mutant pre-tRNA(Tyr) that cannot be processed by RNase P had a Gcd(-) phenotype. Interestingly, the Gcd(-) phenotype of hcPUS4 also was reversed by overexpressing LOS1, required for efficient nuclear export of tRNA, and los1Delta cells have a Gcd(-) phenotype. Overproduced PUS4 appears to impede 5'-end processing or export of certain tRNAs in the nucleus in a manner remedied by increased expression of RNase P or LOS1, respectively. The mutant tRNA(Val*) showed nuclear accumulation in otherwise wild-type cells, suggesting a defect in export to the cytoplasm. We propose that yeast contains a nuclear surveillance system that perceives defects in processing or export of tRNA and evokes a reduction in translation initiation at the step of initiator tRNA(Met) binding to the ribosome.
Collapse
Affiliation(s)
- H Qiu
- Laboratory of Eukaryotic Gene Regulation, National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
76
|
Sood R, Porter AC, Olsen DA, Cavener DR, Wek RC. A mammalian homologue of GCN2 protein kinase important for translational control by phosphorylation of eukaryotic initiation factor-2alpha. Genetics 2000; 154:787-801. [PMID: 10655230 PMCID: PMC1460965 DOI: 10.1093/genetics/154.2.787] [Citation(s) in RCA: 216] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A family of protein kinases regulates translation in response to different cellular stresses by phosphorylation of the alpha subunit of eukaryotic initiation factor-2 (eIF-2alpha). In yeast, an eIF-2alpha kinase, GCN2, functions in translational control in response to amino acid starvation. It is thought that uncharged tRNA that accumulates during amino acid limitation binds to sequences in GCN2 homologous to histidyl-tRNA synthetase (HisRS) enzymes, leading to enhanced kinase catalytic activity. Given that starvation for amino acids also stimulates phosphorylation of eIF-2alpha in mammalian cells, we searched for and identified a GCN2 homologue in mice. We cloned three different cDNAs encoding mouse GCN2 isoforms, derived from a single gene, that vary in their amino-terminal sequences. Like their yeast counterpart, the mouse GCN2 isoforms contain HisRS-related sequences juxtaposed to the kinase catalytic domain. While GCN2 mRNA was found in all mouse tissues examined, the isoforms appear to be differentially expressed. Mouse GCN2 expressed in yeast was found to inhibit growth by hyperphosphorylation of eIF-2alpha, requiring both the kinase catalytic domain and the HisRS-related sequences. Additionally, lysates prepared from yeast expressing mGCN2 were found to phosphorylate recombinant eIF-2alpha substrate. Mouse GCN2 activity in both the in vivo and in vitro assays required the presence of serine-51, the known regulatory phosphorylation site in eIF-2alpha. Together, our studies identify a new mammalian eIF-2alpha kinase, GCN2, that can mediate translational control.
Collapse
Affiliation(s)
- R Sood
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | |
Collapse
|
77
|
Donzé O, Picard D. Hsp90 binds and regulates Gcn2, the ligand-inducible kinase of the alpha subunit of eukaryotic translation initiation factor 2 [corrected]. Mol Cell Biol 1999; 19:8422-32. [PMID: 10567567 PMCID: PMC84941 DOI: 10.1128/mcb.19.12.8422] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The protein kinase Gcn2 stimulates translation of the yeast transcription factor Gcn4 upon amino acid starvation. Using genetic and biochemical approaches, we show that Gcn2 is regulated by the molecular chaperone Hsp90 in budding yeast Saccharomyces cerevisiae. Specifically, we found that (i) several Hsp90 mutant strains exhibit constitutive expression of a GCN4-lacZ reporter plasmid; (ii) Gcn2 and Hsp90 form a complex in vitro as well as in vivo; (iii) the specific inhibitors of Hsp90, geldanamycin and macbecin I, enhance the association of Gcn2 with Hsp90 and inhibit its kinase activity in vitro; (iv) in vivo, macbecin I strongly reduces the levels of Gcn2; (v) in a strain expressing the temperature-sensitive Hsp90 mutant G170D, both the accumulation and activity of Gcn2 are abolished at the restrictive temperature; and (vi) the Hsp90 cochaperones Cdc37, Sti1, and Sba1 are required for the response to amino acid starvation. Taken together, these data identify Gcn2 as a novel target for Hsp90, which plays a crucial role for the maturation and regulation of Gcn2.
Collapse
Affiliation(s)
- O Donzé
- Département de Biologie Cellulaire, Université de Genève, Sciences III, CH-1211 Geneva 4, Switzerland
| | | |
Collapse
|
78
|
Abstract
Comparative path lengths in amino acid biosynthesis and other molecular indicators of the timing of codon assignment were examined to reconstruct the main stages of code evolution. The codon tree obtained was rooted in the 4 N-fixing amino acids (Asp, Glu, Asn, Gln) and 16 triplets of the NAN set. This small, locally phased (commaless) code evidently arose from ambiguous translation on a poly(A) collector strand, in a surface reaction network. Copolymerisation of these amino acids yields polyanionic peptide chains, which could anchor uncharged amide residues to a positively charged mineral surface. From RNA virus structure and replication in vitro, the first genes seemed to be RNA segments spliced into tRNA. Expansion of the code reduced the risk of mutation to an unreadable codon. This step was conditional on initiation at the 5'-codon of a translated sequence. Incorporation of increasingly hydrophobic amino acids accompanied expansion. As codons of the NUN set were assigned most slowly, they received the most nonpolar amino acids. The origin of ferredoxin and Gln synthetase was traced to mid-expansion phase. Surface metabolism ceased by the end of code expansion, as cells bounded by a proteo-phospholipid membrane, with a protoATPase, had emerged. Incorporation of positively charged and aromatic amino acids followed. They entered the post-expansion code by codon capture. Synthesis of efficient enzymes with acid-base catalysis was then possible. Both types of aminoacyl-tRNA synthetases were attributed to this stage. tRNA sequence diversity and error rates in RNA replication indicate the code evolved within 20 million yr in the preIsuan era. These findings on the genetic code provide empirical evidence, from a contemporaneous source, that a surface reaction network, centred on C-fixing autocatalytic cycles, rapidly led to cellular life on Earth.
Collapse
Affiliation(s)
- B K Davis
- Research Foundation of Southern California Inc., La Jolla 92037, USA
| |
Collapse
|
79
|
Berlanga JJ, Santoyo J, De Haro C. Characterization of a mammalian homolog of the GCN2 eukaryotic initiation factor 2alpha kinase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 265:754-62. [PMID: 10504407 DOI: 10.1046/j.1432-1327.1999.00780.x] [Citation(s) in RCA: 209] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In eukaryotic cells, protein synthesis is regulated in response to various environmental stresses by phosphorylating the alpha subunit of the eukaryotic initiation factor 2 (eIF2alpha). Three different eIF2alpha kinases have been identified in mammalian cells, the heme-regulated inhibitor (HRI), the interferon-inducible RNA-dependent kinase (PKR) and the endoplasmic reticulum-resident kinase (PERK). A fourth eIF2alpha kinase, termed GCN2, was previously characterized from Saccharomyces cerevisiae, Drosophila melanogaster and Neurospora crassa. Here we describe the cloning of a mouse GCN2 cDNA (MGCN2), which represents the first mammalian GCN2 homolog. MGCN2 has a conserved motif, N-terminal to the kinase subdomain V, and a large insert of 139 amino acids located between subdomains IV and V that are characteristic of the known eIF2alpha kinases. Furthermore, MGCN2 contains a class II aminoacyl-tRNA synthetase domain and a degenerate kinase segment, downstream and upstream of the eIF2alpha kinase domain, respectively, and both are singular features of GCN2 protein kinases. MGCN2 mRNA is expressed as a single message of approximately 5.5 kb in a wide range of different tissues, with the highest levels in the liver and the brain. Specific polyclonal anti-(MGCN2) immunoprecipitated an eIF2alpha kinase activity and recognized a 190 kDa phosphoprotein in Western blots from either mouse liver or MGCN2-transfected 293 cell extracts. Interestingly, serum starvation increased eIF2alpha phosphorylation in MGCN2-transfected human 293T cells. This finding provides evidence that GCN2 is the unique eIF2alpha kinase present in all eukaryotes from yeast to mammals and underscores the role of MGCN2 kinase in translational control and its potential physiological significance.
Collapse
Affiliation(s)
- J J Berlanga
- Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Spain
| | | | | |
Collapse
|
80
|
Sissler M, Delorme C, Bond J, Ehrlich SD, Renault P, Francklyn C. An aminoacyl-tRNA synthetase paralog with a catalytic role in histidine biosynthesis. Proc Natl Acad Sci U S A 1999; 96:8985-90. [PMID: 10430882 PMCID: PMC17719 DOI: 10.1073/pnas.96.16.8985] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In addition to their essential catalytic role in protein biosynthesis, aminoacyl-tRNA synthetases participate in numerous other functions, including regulation of gene expression and amino acid biosynthesis via transamidation pathways. Herein, we describe a class of aminoacyl-tRNA synthetase-like (HisZ) proteins based on the catalytic core of the contemporary class II histidyl-tRNA synthetase whose members lack aminoacylation activity but are instead essential components of the first enzyme in histidine biosynthesis ATP phosphoribosyltransferase (HisG). Prediction of the function of HisZ in Lactococcus lactis was assisted by comparative genomics, a technique that revealed a link between the presence or the absence of HisZ and a systematic variation in the length of the HisG polypeptide. HisZ is required for histidine prototrophy, and three other lines of evidence support the direct involvement of HisZ in the transferase function. (i) Genetic experiments demonstrate that complementation of an in-frame deletion of HisG from Escherichia coli (which does not possess HisZ) requires both HisG and HisZ from L. lactis. (ii) Coelution of HisG and HisZ during affinity chromatography provides evidence of direct physical interaction. (iii) Both HisG and HisZ are required for catalysis of the ATP phosphoribosyltransferase reaction. This observation of a common protein domain linking amino acid biosynthesis and protein synthesis implies an early connection between the biosynthesis of amino acids and proteins.
Collapse
Affiliation(s)
- M Sissler
- Department of Biochemistry, College of Medicine, Given Building, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | | | |
Collapse
|
81
|
Abstract
Histidyl-tRNA synthetase (HisRS) is responsible for the synthesis of histidyl-transfer RNA, which is essential for the incorporation of histidine into proteins. This amino acid has uniquely moderate basic properties and is an important group in many catalytic functions of enzymes. A compilation of currently known primary structures of HisRS shows that the subunits of these homo-dimeric enzymes consist of 420-550 amino acid residues. This represents a relatively short chain length among aminoacyl-tRNA synthetases (aaRS), whose peptide chain sizes range from about 300 to 1100 amino acid residues. The crystal structures of HisRS from two organisms and their complexes with histidine, histidyl-adenylate and histidinol with ATP have been solved. HisRS from Escherichia coli and Thermus thermophilus are very similar dimeric enzymes consisting of three domains: the N-terminal catalytic domain containing the six-stranded antiparallel beta-sheet and the three motifs characteristic of class II aaRS, a HisRS-specific helical domain inserted between motifs 2 and 3 that may contact the acceptor stem of the tRNA, and a C-terminal alpha/beta domain that may be involved in the recognition of the anticodon stem and loop of tRNA(His). The aminoacylation reaction follows the standard two-step mechanism. HisRS also belongs to the group of aaRS that can rapidly synthesize diadenosine tetraphosphate, a compound that is suspected to be involved in several regulatory mechanisms of cell metabolism. Many analogs of histidine have been tested for their properties as substrates or inhibitors of HisRS, leading to the elucidation of structure-activity relationships concerning configuration, importance of the carboxy and amino group, and the nature of the side chain. HisRS has been found to act as a particularly important antigen in autoimmune diseases such as rheumatic arthritis or myositis. Successful attempts have been made to identify epitopes responsible for the complexation with such auto-antibodies.
Collapse
Affiliation(s)
- W Freist
- Max-Planck-Institut für experimentelle Medizin, Abteilung Molekulare Biologie Neuronaler Signale, Göttingen, Germany
| | | | | | | | | |
Collapse
|
82
|
Cuddihy AR, Wong AH, Tam NW, Li S, Koromilas AE. The double-stranded RNA activated protein kinase PKR physically associates with the tumor suppressor p53 protein and phosphorylates human p53 on serine 392 in vitro. Oncogene 1999; 18:2690-702. [PMID: 10348343 DOI: 10.1038/sj.onc.1202620] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The tumor suppressor p53 is a multifunctional protein that plays a critical role in modulating cellular responses upon DNA damage or other stresses. These functions of p53 are regulated both by protein-protein interactions and phosphorylation. The double-stranded RNA activated protein kinase PKR is a serine/threonine kinase that modulates protein synthesis through the phosphorylation of translation initiation factor eIF-2alpha. PKR is an interferon (IFN)-inducible protein that is thought to mediate the anti-viral and anti-proliferative effects of IFN via its capacity to inhibit protein synthesis. Here we report that PKR physically associates with p53. The interaction of PKR with p53 is enhanced by IFNs and upon conditions that p53 acquires a wild type conformation. PKR/p53 complex formation in vitro requires the N-terminal regulatory domain of PKR and the last 30 amino acids of the C-terminus of human p53. In addition, p53 may function as a substrate of PKR since phosphorylation of human p53 on serine392 is induced by activated PKR in vitro. These novel findings raise the possibility of a functional interaction between PKR and p53 in vivo, which may account, at least in part, for the ability of each protein to regulate gene expression at both the transcriptional and the translational levels.
Collapse
Affiliation(s)
- A R Cuddihy
- Department of Oncology, McGill University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
83
|
Shi Y, Vattem KM, Sood R, An J, Liang J, Stramm L, Wek RC. Identification and characterization of pancreatic eukaryotic initiation factor 2 alpha-subunit kinase, PEK, involved in translational control. Mol Cell Biol 1998; 18:7499-509. [PMID: 9819435 PMCID: PMC109330 DOI: 10.1128/mcb.18.12.7499] [Citation(s) in RCA: 637] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/1998] [Accepted: 09/06/1998] [Indexed: 11/20/2022] Open
Abstract
In response to various environmental stresses, eukaryotic cells down-regulate protein synthesis by phosphorylation of the alpha subunit of eukaryotic translation initiation factor 2 (eIF-2alpha). In mammals, the phosphorylation was shown to be carried out by eIF-2alpha kinases PKR and HRI. We report the identification and characterization of a cDNA from rat pancreatic islet cells that encodes a new related kinase, which we term pancreatic eIF-2alpha kinase, or PEK. In addition to a catalytic domain with sequence and structural features conserved among eIF-2alpha kinases, PEK contains a distinctive amino-terminal region 550 residues in length. Using recombinant PEK produced in Escherichia coli or Sf-9 insect cells, we demonstrate that PEK is autophosphorylated on both serine and threonine residues and that the recombinant enzyme can specifically phosphorylate eIF-2alpha on serine-51. Northern blot analyses indicate that PEK mRNA is expressed in all tissues examined, with highest levels in pancreas cells. Consistent with our mRNA assays, PEK activity was predominantly detected in pancreas and pancreatic islet cells. The regulatory role of PEK in protein synthesis was demonstrated both in vitro and in vivo. The addition of recombinant PEK to reticulocyte lysates caused a dose-dependent inhibition of translation. In the Saccharomyces model system, PEK functionally substituted for the endogenous yeast eIF-2alpha kinase, GCN2, by a process requiring the serine-51 phosphorylation site in eIF-2alpha. We also identified PEK homologs from both Caenorhabditis elegans and the puffer fish Fugu rubripes, suggesting that this eIF-2alpha kinase plays an important role in translational control from nematodes to mammals.
Collapse
Affiliation(s)
- Y Shi
- Diabetes Research, Endocrine Division, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, USA.
| | | | | | | | | | | | | |
Collapse
|
84
|
Sattlegger E, Hinnebusch AG, Barthelmess IB. cpc-3, the Neurospora crassa homologue of yeast GCN2, encodes a polypeptide with juxtaposed eIF2alpha kinase and histidyl-tRNA synthetase-related domains required for general amino acid control. J Biol Chem 1998; 273:20404-16. [PMID: 9685394 DOI: 10.1074/jbc.273.32.20404] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Based on characteristic amino acid sequences of kinases that phosphorylate the alpha subunit of eukaryotic translation initiation factor 2 (eIF2alpha kinases), degenerate oligonucleotide primers were constructed and used to polymerase chain reaction-amplify from genomic DNA of Neurospora crassa a sequence encoding part of a putative protein kinase. With this sequence an open reading frame was identified encoding a predicted polypeptide with juxtaposed eIF2alpha kinase and histidyl-tRNA synthetase-related domains. The 1646 amino acid sequence of this gene, called cpc-3, showed 35% positional identity over almost the entire sequence with GCN2 of yeast, which stimulates translation of the transcriptional activator of amino acid biosynthetic genes encoded by GCN4. Strains disrupted for cpc-3 were unable to induce increased transcription and derepression of amino acid biosynthetic enzymes in amino acid-deprived cells. The cpc-3 mutation did not affect the ability to up-regulate mRNA levels of cpc-1, encoding the GCN4 homologue and transcriptional activator of amino acid biosynthetic genes in N. crassa, but the mutation abolished the dramatic increase of CPC1 protein level in response to amino acid deprivation. These findings suggest that cpc-3 is the functional homologue of GCN2, being required for increased translation of cpc-1 mRNA in amino acid-starved cells.
Collapse
Affiliation(s)
- E Sattlegger
- Institute of Applied Genetics, University of Hannover, Herrenhäuser Strasse 2, D-30419 Hannover, Germany.
| | | | | |
Collapse
|
85
|
Francklyn C, Adams J, Augustine J. Catalytic defects in mutants of class II histidyl-tRNA synthetase from Salmonella typhimurium previously linked to decreased control of histidine biosynthesis regulation. J Mol Biol 1998; 280:847-58. [PMID: 9671554 DOI: 10.1006/jmbi.1998.1902] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The expression of histidine biosynthetic genes in enteric bacteria is regulated by an attenuation mechanism in which the level of histidyl-tRNA serves as a key sensor of the intracellular histidine pool. Among the early observations that led to the formation of this model for Salmonella typhimurium were the identification of mutants in the gene (hisS) encoding histidyl-tRNA synthetase. We report here the detailed biochemical characterization of five of these S. typhimurium bradytrophic mutants isolated by selection for resistance to histidine analogs, including identification of the deduced amino acid substitutions and determination of the resulting effects on the kinetics of adenylation and aminoacylation. Using the crystal structure of the closely related Escherichia coli histidyl-tRNA synthetase (HisRS) as a guide, two mutants were mapped to a highly conserved proline residue in motif 2 (P117S, P117Q), and were correlated with a fivefold decrease in the kcat for the pyrophosphate exchange reaction, as well as a tenfold increase in the Km for tRNA in the aminoacylation reaction. Another mutant substitution (A302T) mapped to a residue adjacent to the histidine binding pocket, leading to a tenfold increase in Km for histidine in the pyrophosphate exchange reaction. The remaining two mutants (S167F, N254T) substitute residues in or directly adjacent to the hinge region, which joins the insertion domain between motif 2 and motif 3 to the catalytic core, and cause the Km for tRNA to increase four- to tenfold. The kinetic analysis of these mutants establishes a direct link between critical interactions within the active site of HisRS and regulation of histidine biosynthesis, and provides further evidence for the importance of local conformational changes during the catalytic cycle.
Collapse
Affiliation(s)
- C Francklyn
- Department of Biochemistry, University of Vermont College of Medicine, Health Sciences Complex, Burlington, VT, 05405, USA. franck@emba/uvm.edu
| | | | | |
Collapse
|
86
|
Murray LE, Rowley N, Dawes IW, Johnston GC, Singer RA. A yeast glutamine tRNA signals nitrogen status for regulation of dimorphic growth and sporulation. Proc Natl Acad Sci U S A 1998; 95:8619-24. [PMID: 9671727 PMCID: PMC21125 DOI: 10.1073/pnas.95.15.8619] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Dimorphic growth of the budding yeast Saccharomyces cerevisiae is regulated by the quality of the nitrogen supply. On a preferred nitrogen source diploid cells grow as ellipsoidal cells by using a bipolar pattern of budding, whereas on a poor nitrogen source a unipolar pattern of budding is adopted, resulting in extended pseudohyphal chains of filamentous cells. Here we report that the quality of the nitrogen source is signaled by the glutamine tRNA isoform with a 5'-CUG anticodon (tRNACUG). Mutations that alter this tRNA impair assessment of the nitrogen supply without measurably affecting protein synthesis, so that mutant cells display pseudohyphal growth even on a preferred nitrogen source. The nitrogen status for other nitrogen-responsive processes such as catabolic gene expression and sporulation also is signaled by this tRNA: mutant cells inappropriately induce the nitrogen-repressed gene CAR1 and undergo precocious sporulation in nitrogen-rich media. Therefore, in addition to its role in mRNA translation, this tRNA also transduces nitrogen signals that regulate development.
Collapse
Affiliation(s)
- L E Murray
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7
| | | | | | | | | |
Collapse
|
87
|
Akama K, Yukawa Y, Sugiura M, Small I. Plant cytosolic tRNAHis possesses an exceptional C54 in the canonical TPsiC loop. Nucleic Acids Res 1998; 26:2708-14. [PMID: 9592158 PMCID: PMC147610 DOI: 10.1093/nar/26.11.2708] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A nuclear gene coding for tRNAHis from Arabidopsis has been reported to contain C54in the TPsiC loop, although the corresponding nucleotide is an invariant U or a derivative in nearly all other tRNAs. The only previously reported plant cytosolic tRNAHis sequence, from lupin, has U54. To re-examine plant cytosolic tRNAsHis and their genes we have used DNA and RNA sequence analyses, restriction enzyme digestion of PCR-amplified tRNA genes, RNA hybridization and in vivo aminoacylation assays. Our results suggest that Arabidopsis nuclear tRNAHis genes ubiquitously contain C54, as do those from tobacco, lupin and pea. The C54 nucleotide is maintained in the mature tRNAHis, which is aminoacylated in vivo , but to a relatively low level compared with other tRNAs examined. Finally, it was shown that an Arabidopsis tRNAHis gene with T54in place of C54 is over 5-fold more transcriptionally active than the wild-type gene using an in vitro system derived from plant nuclei. A possible role for this apparently sub-optimal tRNAHis sequence is suggested.
Collapse
Affiliation(s)
- K Akama
- Department of Biological Science, Shimane University, Matsue 690, Japan.
| | | | | | | |
Collapse
|
88
|
Qiu H, Garcia-Barrio MT, Hinnebusch AG. Dimerization by translation initiation factor 2 kinase GCN2 is mediated by interactions in the C-terminal ribosome-binding region and the protein kinase domain. Mol Cell Biol 1998; 18:2697-711. [PMID: 9566889 PMCID: PMC110649 DOI: 10.1128/mcb.18.5.2697] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The protein kinase GCN2 stimulates translation of the transcriptional activator GCN4 in yeast cells starved for amino acids by phosphorylating translation initiation factor 2. Several regulatory domains, including a pseudokinase domain, a histidyl-tRNA synthetase (HisRS)-related region, and a C-terminal (C-term) segment required for ribosome association, have been identified in GCN2. We used the yeast two-hybrid assay, coimmunoprecipitation analysis, and in vitro binding assays to investigate physical interactions between the different functional domains of GCN2. A segment containing about two thirds of the protein kinase (PK) catalytic domain and another containing the C-term region of GCN2 interacted with themselves in the two-hybrid assay, and both the PK and the C-term domains could be coimmunoprecipitated with wild-type GCN2 from yeast cell extracts. In addition, in vitro-translated PK and C-term segments showed specific binding in vitro to recombinant glutathione S-transferase (GST)-PK and GST-C-term fusion proteins, respectively. Wild-type GCN2 could be coimmunoprecipitated with a full-length LexA-GCN2 fusion protein from cell extracts, providing direct evidence for dimerization by full-length GCN2 molecules. Deleting the C-term or PK segments abolished or reduced, respectively, the yield of GCN2-LexA-GCN2 complexes. These results provide in vivo and in vitro evidence that GCN2 dimerizes through self-interactions involving the C-term and PK domains. The PK domain showed pairwise in vitro binding interactions with the pseudokinase, HisRS, and C-term domains; additionally, the HisRS domain interacted with the C-term region. We propose that physical interactions between the PK domain and its flanking regulatory regions and dimerization through the PK and C-term domains both play important roles in restricting GCN2 kinase activity to amino acid-starved cells.
Collapse
Affiliation(s)
- H Qiu
- Laboratory of Eukaryotic Gene Regulation, National Institute of Child Health and Human Development, Bethesda, Maryland 20892-2716, USA
| | | | | |
Collapse
|
89
|
Romano PR, Garcia-Barrio MT, Zhang X, Wang Q, Taylor DR, Zhang F, Herring C, Mathews MB, Qin J, Hinnebusch AG. Autophosphorylation in the activation loop is required for full kinase activity in vivo of human and yeast eukaryotic initiation factor 2alpha kinases PKR and GCN2. Mol Cell Biol 1998; 18:2282-97. [PMID: 9528799 PMCID: PMC121479 DOI: 10.1128/mcb.18.4.2282] [Citation(s) in RCA: 225] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/1997] [Accepted: 12/22/1997] [Indexed: 02/07/2023] Open
Abstract
The human double-stranded RNA-dependent protein kinase (PKR) is an important component of the interferon response to virus infection. The activation of PKR is accompanied by autophosphorylation at multiple sites, including one in the N-terminal regulatory region (Thr-258) that is required for full kinase activity. Several protein kinases are activated by phosphorylation in the region between kinase subdomains VII and VIII, referred to as the activation loop. We show that Thr-446 and Thr-451 in the PKR activation loop are required in vivo and in vitro for high-level kinase activity. Mutation of either residue to Ala impaired translational control by PKR in yeast cells and COS1 cells and led to tumor formation in mice. These mutations also impaired autophosphorylation and eukaryotic initiation factor 2 subunit alpha (eIF2alpha) phosphorylation by PKR in vitro. Whereas the Ala-446 substitution substantially reduced PKR function, the mutant kinase containing Ala-451 was completely inactive. PKR specifically phosphorylated Thr-446 and Thr-451 in synthetic peptides in vitro, and mass spectrometry analysis of PKR phosphopeptides confirmed that Thr-446 is an autophosphorylation site in vivo. Substitution of Glu-490 in subdomain X of PKR partially restored kinase activity when combined with the Ala-451 mutation. This finding suggests that the interaction between subdomain X and the activation loop, described previously for MAP kinase, is a regulatory feature conserved in PKR. We found that the yeast eIF2alpha kinase GCN2 autophosphorylates at Thr-882 and Thr-887, located in the activation loop at exactly the same positions as Thr-446 and Thr-451 in PKR. Thr-887 was more critically required than was Thr-882 for GCN2 kinase activity, paralleling the relative importance of Thr-446 and Thr-451 in PKR. These results indicate striking similarities between GCN2 and PKR in the importance of autophosphorylation and the conserved Thr residues in the activation loop.
Collapse
Affiliation(s)
- P R Romano
- Laboratory of Eukaryotic Gene Regulation, National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Zhu S, Wek RC. Ribosome-binding domain of eukaryotic initiation factor-2 kinase GCN2 facilitates translation control. J Biol Chem 1998; 273:1808-14. [PMID: 9430731 DOI: 10.1074/jbc.273.3.1808] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A family of protein kinases regulate translation initiation in response to cellular stresses by phosphorylation of eukaryotic initiation factor-2 (eIF-2). One family member from yeast, GCN2, contains a region homologous to histidyl-tRNA synthetases juxtaposed to the kinase catalytic domain. It is thought that uncharged tRNA accumulating during amino acid starvation binds to the synthetase-related sequences and stimulates phosphorylation of the alpha subunit of eIF-2. In this report, we define another domain in GCN2 that functions to target the kinase to ribosomes. A truncated version of GCN2 containing only amino acid residues 1467 to 1590 can independently associate with the translational machinery. Interestingly, this region of GCN2 shares sequence similarities with the core of the double-stranded RNA-binding domain (DRBD). Substitutions of the lysine residues conserved among DRBD sequences block association of GCN2 with ribosomes and impaired the ability of the kinase to stimulate translational control in response to amino acid limitation. Additionally, as found for other DRBD sequences, recombinant protein containing GCN2 residues 1467-1590 can bind double-stranded RNA in vitro, suggesting that interaction with rRNA mediates ribosome targeting. These results indicate that appropriate ribosome localization of the kinase is an obligate step in the mechanism leading to translational control by GCN2.
Collapse
Affiliation(s)
- S Zhu
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202-5122, USA
| | | |
Collapse
|
91
|
Hinnebusch AG. Translational regulation of yeast GCN4. A window on factors that control initiator-trna binding to the ribosome. J Biol Chem 1997; 272:21661-4. [PMID: 9268289 DOI: 10.1074/jbc.272.35.21661] [Citation(s) in RCA: 404] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- A G Hinnebusch
- Laboratory of Eukaryotic Gene Regulation, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
92
|
Affiliation(s)
- M Belfort
- Wadsworth Center, New York State Department of Health and School of Public Health, State University of New York at Albany, 12201-2002, USA
| | | |
Collapse
|
93
|
Zhu S, Romano PR, Wek RC. Ribosome targeting of PKR is mediated by two double-stranded RNA-binding domains and facilitates in vivo phosphorylation of eukaryotic initiation factor-2. J Biol Chem 1997; 272:14434-41. [PMID: 9162083 DOI: 10.1074/jbc.272.22.14434] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Protein kinase PKR is activated in mammalian cells during viral infection, leading to phosphorylation of the alpha subunit of eukaryotic initiation factor-2 (eIF-2alpha) and inhibition of protein synthesis. This antiviral response is thought to be mediated by association of double-stranded RNA (ds-RNA), a by-product of viral replication, with two ds-RNA-binding domains (DRBDs) located in the amino terminus of PKR. Recent studies have observed that expression of mammalian PKR in yeast leads to a slow growth phenotype due to hyperphosphorylation of eIF-2alpha. In this report, we observed that while DRBD sequences are required for PKR to function in the yeast model system, these sequences are not required for in vitro phosphorylation of eIF-2alpha. To explain this apparent contradiction, we proposed that these sequences are required to target the kinase to the translation machinery. Using sucrose gradient sedimentation, we found that wild-type PKR was associated with ribosomes, specifically with 40 S particles. Deletions or residue substitutions in the DRBD sequences blocked kinase interaction with ribosomes. These results indicate that in addition to mediating ds-RNA control of PKR, the DRBD sequences facilitate PKR association with ribosomes. Targeting to ribosomes may enhance in vivo phosphorylation of eIF-2alpha, by providing PKR access to its substrate.
Collapse
Affiliation(s)
- S Zhu
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5122, USA
| | | | | |
Collapse
|
94
|
Santoyo J, Alcalde J, Méndez R, Pulido D, de Haro C. Cloning and characterization of a cDNA encoding a protein synthesis initiation factor-2alpha (eIF-2alpha) kinase from Drosophila melanogaster. Homology To yeast GCN2 protein kinase. J Biol Chem 1997; 272:12544-50. [PMID: 9139706 DOI: 10.1074/jbc.272.19.12544] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Phosphorylation of the alpha subunit of the eukaryotic initiation factor 2 (eIF-2alpha) is one of the best-characterized mechanisms for downregulating protein synthesis in mammalian cells in response to various stress conditions. In Drosophila, such a regulatory mechanism has not been elucidated. We report the molecular cloning and characterization of DGCN2, a Drosophila eIF-2alpha kinase related to yeast GCN2 protein kinase. DGCN2 contains all of the 12 catalytic subdomains characteristic of eukaryotic Ser/Thr protein kinases and the conserved sequence of eIF-2alpha kinases in subdomain V. A large insert of 94 amino acids, which is characteristic of eIF-2alpha kinases, is also present between subdomains IV and V. It is particularly notable that DGCN2 possesses an amino acid sequence related to class II aminoacyl-tRNA synthetases, a unique feature of yeast GCN2 protein kinase. DGCN2 expression is developmentally regulated. During embryogenesis, DGCN2 mRNA is dynamically expressed in several tissues. Interestingly, at later stages this expression becomes restricted to a few cells of the central nervous system. Affinity-purified antibodies, raised against a synthetic peptide based on the predicted DGCN2 sequence, specifically immunoprecipitated an eIF-2alpha kinase activity and recognized an approximately 175 kDa phosphoprotein in Western blots of Drosophila embryo extracts.
Collapse
Affiliation(s)
- J Santoyo
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Canto Blanco, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|