51
|
Rider MH, Bertrand L, Vertommen D, Michels PA, Rousseau GG, Hue L. 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase: head-to-head with a bifunctional enzyme that controls glycolysis. Biochem J 2004; 381:561-79. [PMID: 15170386 PMCID: PMC1133864 DOI: 10.1042/bj20040752] [Citation(s) in RCA: 313] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Accepted: 06/01/2004] [Indexed: 12/21/2022]
Abstract
Fru-2,6-P2 (fructose 2,6-bisphosphate) is a signal molecule that controls glycolysis. Since its discovery more than 20 years ago, inroads have been made towards the understanding of the structure-function relationships in PFK-2 (6-phosphofructo-2-kinase)/FBPase-2 (fructose-2,6-bisphosphatase), the homodimeric bifunctional enzyme that catalyses the synthesis and degradation of Fru-2,6-P2. The FBPase-2 domain of the enzyme subunit bears sequence, mechanistic and structural similarity to the histidine phosphatase family of enzymes. The PFK-2 domain was originally thought to resemble bacterial PFK-1 (6-phosphofructo-1-kinase), but this proved not to be correct. Molecular modelling of the PFK-2 domain revealed that, instead, it has the same fold as adenylate kinase. This was confirmed by X-ray crystallography. A PFK-2/FBPase-2 sequence in the genome of one prokaryote, the proteobacterium Desulfovibrio desulfuricans, could be the result of horizontal gene transfer from a eukaryote distantly related to all other organisms, possibly a protist. This, together with the presence of PFK-2/FBPase-2 genes in trypanosomatids (albeit with possibly only one of the domains active), indicates that fusion of genes initially coding for separate PFK-2 and FBPase-2 domains might have occurred early in evolution. In the enzyme homodimer, the PFK-2 domains come together in a head-to-head like fashion, whereas the FBPase-2 domains can function as monomers. There are four PFK-2/FBPase-2 isoenzymes in mammals, each coded by a different gene that expresses several isoforms of each isoenzyme. In these genes, regulatory sequences have been identified which account for their long-term control by hormones and tissue-specific transcription factors. One of these, HNF-6 (hepatocyte nuclear factor-6), was discovered in this way. As to short-term control, the liver isoenzyme is phosphorylated at the N-terminus, adjacent to the PFK-2 domain, by PKA (cAMP-dependent protein kinase), leading to PFK-2 inactivation and FBPase-2 activation. In contrast, the heart isoenzyme is phosphorylated at the C-terminus by several protein kinases in different signalling pathways, resulting in PFK-2 activation.
Collapse
Affiliation(s)
- Mark H Rider
- Hormone and Metabolic Research Unit, Université Catholique de Louvain and Christian de Duve Institute of Cellular Pathology, 75, Avenue Hippocrate, B-1200 Brussels, Belgium.
| | | | | | | | | | | |
Collapse
|
52
|
Plumb-Rudewiez N, Clotman F, Strick-Marchand H, Pierreux CE, Weiss MC, Rousseau GG, Lemaigre FP. Transcription factor HNF-6/OC-1 inhibits the stimulation of the HNF-3alpha/Foxa1 gene by TGF-beta in mouse liver. Hepatology 2004; 40:1266-74. [PMID: 15562441 DOI: 10.1002/hep.20459] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A network of liver-enriched transcription factors controls differentiation and morphogenesis of the liver. These factors interact via direct, feedback, and autoregulatory loops. Previous work has suggested that hepatocyte nuclear factor (HNF)-6/OC-1 and HNF-3alpha/FoxA1 participate coordinately in this hepatic network. We investigated how HNF-6 controls the expression of Foxa1. We observed that Foxa1 expression was upregulated in the liver of Hnf6(-/-) mouse embryos and in bipotential mouse embryonic liver (BMEL) cell lines derived from embryonic Hnf6(-/-) liver, suggesting that HNF-6 inhibits the expression of Foxa1. Because no evidence for a direct repression of Foxa1 by HNF-6 was found, we postulated the existence of an indirect mechanism. We found that the expression of a mediator and targets of the transforming growth factor beta (TGF-beta) signaling was increased both in Hnf6(-/-) liver and in Hnf6(-/-) BMEL cell lines. Using these cell lines, we demonstrated that TGF-beta signaling was increased in the absence of HNF-6, and that this resulted from upregulation of TGF-beta receptor II expression. We also found that TGF-beta can stimulate the expression of Foxa1 in Hnf6(+/+) cells and that inhibition of TGF-beta signaling in Hnf6(-/-) cells down-regulates the expression of Foxa1. In conclusion, we propose that Foxa1 upregulation in the absence of HNF-6 results from increased TGF-beta signaling via increased expression of the TGF-beta receptor II. We further conclude that HNF-6 inhibits Foxa1 by inhibiting the activity of the TGF-beta signaling pathway. This identifies a new mechanism of interaction between liver-enriched transcription factors whereby one factor indirectly controls another by modulating the activity of a signaling pathway.
Collapse
Affiliation(s)
- Nicolas Plumb-Rudewiez
- Hormone and Metabolic Research Unit, Institute of Cellular Pathology and Université Catholique de Louvain, Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
53
|
Pierreux CE, Vanhorenbeeck V, Jacquemin P, Lemaigre FP, Rousseau GG. The Transcription Factor Hepatocyte Nuclear Factor-6/Onecut-1 Controls the Expression of Its Paralog Onecut-3 in Developing Mouse Endoderm. J Biol Chem 2004; 279:51298-304. [PMID: 15381696 DOI: 10.1074/jbc.m409038200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During development, the endoderm gives rise to several organs, including the pancreas and liver. This differentiation process requires spatial and temporal regulation of gene expression in the endoderm by a network of tissue-specific transcription factors whose elucidation is far from complete. These factors include the Onecut protein hepatocyte nuclear factor-6 (HNF-6), which controls pancreas and liver development as shown in our previous work on Hnf6 knock-out embryos. In mammals, HNF-6 has two paralogs, Onecut-2 (OC-2) and OC-3, whose patterns of expression in the adult overlap with that of HNF-6. In the present work, we examine the expression profile of the three Onecut factors in the developing mouse endoderm. We show that HNF-6, OC-2, and OC-3 are expressed sequentially, which defines new steps in endoderm differentiation. By analyzing Hnf6 knock-out embryos we find that HNF-6 is required for expression of the Oc3 gene in the endoderm. We show that OC-3 colocalizes with HNF-6 in the endoderm and in embryonic pancreas and liver. Based on transfection, chromatin immunoprecipitation, and whole embryo electroporation experiments, we demonstrate that HNF-6 can bind to and stimulate the expression of the Oc3 gene. This study identifies a regulatory cascade between two paralogous transcription factors, sheds new light on the interpretation of the Hnf6 knock-out phenotype, and broadens the transcription factors network operating during development of the endoderm, liver, and pancreas.
Collapse
Affiliation(s)
- Christophe E Pierreux
- Hormone and Metabolic Research Unit, Institute of Cellular Pathology and Université catholique de Louvain, 75 Avenue Hippocrate, B-1200 Brussels, Belgium.
| | | | | | | | | |
Collapse
|
54
|
Matthews RP, Lorent K, Russo P, Pack M. The zebrafish onecut gene hnf-6 functions in an evolutionarily conserved genetic pathway that regulates vertebrate biliary development. Dev Biol 2004; 274:245-59. [PMID: 15385156 DOI: 10.1016/j.ydbio.2004.06.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2004] [Revised: 06/10/2004] [Accepted: 06/11/2004] [Indexed: 11/21/2022]
Abstract
Targeted disruption of the onecut transcription factor, hnf-6, alters mammalian biliary system development. We have identified a related zebrafish cDNA expressed in the developing liver that is a functional ortholog of mammalian hnf-6. Antisense-mediated knockdown of zebrafish hnf-6 perturbs development of the intrahepatic biliary system. Knockdown of zebrafish hnf-6 alters expression of vhnf1 and the zebrafish orthologs of other mammalian genes regulated by hnf-6. Coinjection of mRNA encoding zebrafish vhnf1 rescues the biliary phenotype of hnf-6 morphants. These experiments strongly suggest that hnf-6 and vhnf1 function within an evolutionarily conserved pathway that regulates biliary development. Forced expression of either hnf-6 or vhnf1 also produces biliary phenotypes. Altered bile duct development in both loss- and gain-of-function experiments suggests that zebrafish biliary cells are sensitive to the dosage of hnf-6-mediated gene transcription.
Collapse
Affiliation(s)
- Randolph P Matthews
- Division of Gastroenterology and Nutrition, Children's Hospital of Philadelphia and Department of Pediatrics, University of Pennsylvania School of Medicine, 19104, USA
| | | | | | | |
Collapse
|
55
|
Otim O, Amore G, Minokawa T, McClay DR, Davidson EH. SpHnf6, a transcription factor that executes multiple functions in sea urchin embryogenesis. Dev Biol 2004; 273:226-43. [PMID: 15328009 DOI: 10.1016/j.ydbio.2004.05.033] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Revised: 05/21/2004] [Accepted: 05/21/2004] [Indexed: 10/26/2022]
Abstract
The Strongylocentrotus purpuratus hnf6 (Sphnf6) gene encodes a new member of the ONECUT family of transcription factors. The expression of hnf6 in the developing embryo is triphasic, and loss-of-function analysis shows that the Hnf6 protein is a transcription factor that has multiple distinct roles in sea urchin development. hnf6 is expressed maternally, and before gastrulation its transcripts are distributed globally. Early in development, its expression is required for the activation of PMC differentiation genes such as sm50, pm27, and msp130, but not for the activation of any known PMC regulatory genes, for example, alx, ets1, pmar1, or tbrain. Micromere transplantation experiments show that the gene is not involved in early micromere signaling. Early hnf6 expression is also required for expression of the mesodermal regulator gatac. The second known role of hnf6 is its participation after gastrulation in the oral ectoderm gene regulatory network (GRN), in which its expression is essential for the maintenance of the state of oral ectoderm specification. The third role is in the neurogenic ciliated band, which is foreshadowed exactly by a trapezoidal band of hnf6 expression at the border of the oral ectoderm and where it continues to be expressed through the end of embryogenesis. Neither oral ectoderm regulatory functions nor ciliated band formation occur normally in the absence of hnf6 expression.
Collapse
Affiliation(s)
- Ochan Otim
- Division of Biology 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | |
Collapse
|
56
|
Poustka AJ, Kühn A, Radosavljevic V, Wellenreuther R, Lehrach H, Panopoulou G. On the origin of the chordate central nervous system: expression of onecut in the sea urchin embryo. Evol Dev 2004; 6:227-36. [PMID: 15230963 DOI: 10.1111/j.1525-142x.2004.04028.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We identified a transcription factor of the onecut class in the sea urchin Strongylocentrotus purpuratus that represents an ortholog of the mammalian gene HNF6, the founding member of the onecut class of proteins. The isolated sea urchin gene, named SpOnecut, encodes a protein of 483 amino acids with one cut domain and a homeodomain. Phylogenetic analysis clearly places the sea urchin gene into this family, most closely related to the ascidian onecut gene HNF-6. Nevertheless, phylogenetic analysis reveals a difficult phylogeny indicating that certain members of the family evolve more rapidly than others and also that the cut domain and homeodomain evolve at a different pace. In fly, worm, ascidian, and teleost fish, the onecut genes isolated so far are exclusively expressed in cells of the central nervous system (CNS), whereas in mammals the two copies of the gene have acquired additional functions in liver and pancreas development. In the sea urchin embryo, expression is first detected in the emerging ciliary band at the late blastula stage. During the gastrula stage, expression is limited to the ciliary band. In the early pluteus stage, SpOnecut is expressed at the apical organ and the elongating arms but continues most prominently in the ciliary band. This is the first gene known that exclusively marks the ciliary band and therein the apical organ in a pluteus larva, whereas chordate orthologs execute essential functions in dorsal CNS development. The significance of this finding for the hypothesis that the ciliary bands and apical organs of the hypothetical "dipleurula"-like chordate ancestor and the chordate/vertebrate CNS are of common origin is discussed.
Collapse
Affiliation(s)
- Albert J Poustka
- Max Planck Institute for Molecular Genetics, Department of Vertebrate Genomics, Evolution and Development Group, Ihnestrasse 73, 14195 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
57
|
Sheng W, Yan H, Rausa FM, Costa RH, Liao X. Structure of the hepatocyte nuclear factor 6alpha and its interaction with DNA. J Biol Chem 2004; 279:33928-36. [PMID: 15169783 DOI: 10.1074/jbc.m403805200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Hepatocyte nuclear factor 6 (HNF-6) belongs to the family of One Cut transcription factors (also known as OC-1) and is essential for the development of the mouse pancreas, gall bladder, and the interhepatic bile ducts. HNF-6 binds to DNA as a monomer utilizing a single cut domain and a divergent homeodomain motif located at its C terminus. Here, we have used NMR methods to determine the solution structures of the 162 amino acid residue DNA-binding domain of the HNF-6alpha protein. The resulting overall structure of HNF-6alpha has two different distinct domains: the Cut domain and the Homeodomain connected by a long flexible linker. Our NMR structure shows that the Cut domain folds into a topology homologous to the POU DNA-binding domain, even though the sequences of these two protein families do not show homology. The DNA contact sequence of the HNF-6alpha was mapped with chemical shift perturbation methods. Our data also show that a proposed CREB-binding protein histone acetyltransferase protein-recruiting sequence, LSDLL, forms a helix and is involved in the hydrophobic core of the Cut domain. The structure implies that this sequence has to undergo structural changes when it interacts with CREB-binding protein.
Collapse
Affiliation(s)
- Wanyun Sheng
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | | | | | | | | |
Collapse
|
58
|
Briançon N, Bailly A, Clotman F, Jacquemin P, Lemaigre FP, Weiss MC. Expression of the alpha7 isoform of hepatocyte nuclear factor (HNF) 4 is activated by HNF6/OC-2 and HNF1 and repressed by HNF4alpha1 in the liver. J Biol Chem 2004; 279:33398-408. [PMID: 15159395 DOI: 10.1074/jbc.m405312200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The hepatocyte nuclear factor (HNF) 4alpha gene possesses two promoters, proximal P1 and distal P2, whose use results in HNF4alpha1 and HNF4alpha7 transcripts, respectively. Both isoforms are expressed in the embryonic liver, whereas HNF4alpha1 is almost exclusively in the adult liver. A 516-bp fragment, encompassing a DNase I-hypersensitive site associated with P2 activity that is still retained in adult liver, contains functional HNF1 and HNF6 binding sites and confers full promoter activity in transient transfections. We demonstrate a critical role of the Onecut factors in P2 regulation using site-directed mutagenesis and embryos doubly deficient for HNF6 and OC-2 that show reduced hepatic HNF4alpha7 transcript levels. Transient transgenesis showed that a 4-kb promoter region is sufficient to drive expression of a reporter gene in the stomach, intestine, and pancreas, but not the liver, for which additional activating sequences may be required. Quantitative PCR analysis revealed that throughout liver development HNF4alpha7 transcripts are lower than those of HNF4alpha1. HNF4alpha1 represses P2 activity in transfection assays and as deduced from an increase in P2-derived transcript levels in recombinant mice in which HNF4alpha1 has been deleted and replaced by HNF4alpha7. We conclude that although HNF6/OC-2 and perhaps HNF1 activate the P2 promoter in the embryo, increasing HNF4alpha1 expression throughout development causes a switch to essentially exclusive P1 promoter activity in the adult liver.
Collapse
Affiliation(s)
- Nadège Briançon
- Unité de Génétique de la Différenciation, URA 2578 du CNRS, Département de Biologie du Développement, Institut Pasteur, Paris Cedex 15 75724, France
| | | | | | | | | | | |
Collapse
|
59
|
Montuenga LM, Guembe L, Burrell MA, Bodegas ME, Calvo A, Sola JJ, Sesma P, Villaro AC. The diffuse endocrine system: from embryogenesis to carcinogenesis. PROGRESS IN HISTOCHEMISTRY AND CYTOCHEMISTRY 2003; 38:155-272. [PMID: 12756892 DOI: 10.1016/s0079-6336(03)80004-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In the present review we will summarise the current knowledge about the cells comprising the Diffuse Endocrine System (DES) in mammalian organs. We will describe the morphological, histochemical and functional traits of these cells in three major systems gastrointestinal, respiratory and prostatic. We will also focus on some aspects of their ontogeny and differentiation, as well as to their relevance in carcinogenesis, especially in neuroendocrine tumors. The first chapter describes the characteristics of DES cells and some of their specific biological and biochemical traits. The second chapter deals with DES in the gastrointestinal organs, with special reference to the new data on the differentiation mechanisms that leads to the appearance of endocrine cells from an undifferentiated stem cell. The third chapter is devoted to DES of the respiratory system and some aspects of its biological role, both, during development and adulthood. Neuroendocrine hyperplasia and neuroendocrine lung tumors are also addressed. Finally, the last chapter deals with the prostatic DES, discussing its probable functional role and its relevance in hormone-resistant prostatic carcinomas.
Collapse
Affiliation(s)
- Luis M Montuenga
- Department of Histology and Pathology, Schools of Science and Medicine, University of Navarra, 31080 Pamplona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Jacquemin P, Pierreux CE, Fierens S, van Eyll JM, Lemaigre FP, Rousseau GG. Cloning and embryonic expression pattern of the mouse Onecut transcription factor OC-2. Gene Expr Patterns 2003; 3:639-44. [PMID: 12971999 DOI: 10.1016/s1567-133x(03)00110-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Onecut (OC) transcription factors are evolutionarily conserved proteins with important developmental functions. They contain a bipartite DNA-binding domain composed of a single cut domain associated with a divergent homeodomain. The human genome contains three Onecut paralogues, Hnf6 (also called Oc1), Oc2 and Oc3. We describe here the cloning of mouse (m) OC-2 and its expression pattern in the mouse embryo. The mOc2 gene was localized on chromosome 18. Analysis of the mOC-2 amino acid sequence revealed overall identities of 67% with mHNF-6 and of 56% with mOC-3, and the presence of functional domains delineated earlier in HNF-6. The sequence of the 153 residue-long cut-homeodomain was very conserved, as it was 92% identical to that of mHNF-6 and 89% identical to that of mOC-3. In situ hybridization showed expression of mOc2 in the developing nervous system and gut endoderm. Like Hnf6, Oc2 was expressed in developing liver and pancreas. As many genes that are targeted by Onecut factors are recognized by both OC-2 and HNF-6, this overlap of expression patterns may have functional implications.
Collapse
Affiliation(s)
- Patrick Jacquemin
- Hormone and Metabolic Research Unit, Institute of Cellular Pathology and Université catholique de Louvain, 75 Avenue Hippocrate, B-1200, Brussels, Belgium.
| | | | | | | | | | | |
Collapse
|
61
|
Bouzin C, Clotman F, Renauld JC, Lemaigre FP, Rousseau GG. The onecut transcription factor hepatocyte nuclear factor-6 controls B lymphopoiesis in fetal liver. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:1297-303. [PMID: 12874218 DOI: 10.4049/jimmunol.171.3.1297] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mouse genetic models have helped to identify transcription factors that are expressed by hemopoietic cells and control their differentiation into lymphoid cells. However, little is known on transcription factors that are involved in this process, but are expressed in nonhemopoietic cells of the microenvironment. We show in this study that inactivation of the gene coding for hepatocyte nuclear factor-6 (HNF-6) in mice led to B lymphopenia in the bone marrow and spleen. This phenotype disappeared shortly after birth when fetal B lymphopoiesis is no longer active, pointing to a defect in fetal liver. Indeed, the number of B cells was decreased in this organ as well. An analysis of B cell developmental markers in fetal liver cells showed that B lymphopoiesis was impaired just beyond the pre-pro B cell stage. Hemopoietic cells from hnf6(-/-) fetal liver could reconstitute the lymphoid system when injected into scid mice. Because parenchymal cells, but not hemopoietic cells, expressed hnf6 in normal liver, we concluded that HNF-6 controls B lymphopoiesis in fetal liver and that HNF-6 exerts this control indirectly by acting in parenchymal cells. The involvement, in the B cell defect of hnf6(-/-) fetuses, of genes known to exert such an indirect control was ruled out by expression analysis, including microarrays, and by in vivo rescue experiments. This work identifies HNF-6 as the first noncell-intrinsic transcription factor known to control B lymphopoiesis specifically in fetal liver.
Collapse
Affiliation(s)
- Caroline Bouzin
- Hormone and Metabolic Research Unit, Université Catholique de Louvain and Institute of Cellular Pathology, Brussels, Belgium
| | | | | | | | | |
Collapse
|
62
|
Jacquemin P, Lemaigre FP, Rousseau GG. The Onecut transcription factor HNF-6 (OC-1) is required for timely specification of the pancreas and acts upstream of Pdx-1 in the specification cascade. Dev Biol 2003; 258:105-16. [PMID: 12781686 DOI: 10.1016/s0012-1606(03)00115-5] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The pancreas derives from cells in the ventral and dorsal foregut endoderm that express the transcription factor Pdx-1. These specified cells give rise to the precursors of the endocrine, ductal, and exocrine pancreatic cells. The identification of transcription factors that regulate the onset of Pdx-1 expression is therefore essential to understand pancreas development. No such factor that acts both in the ventral and in the dorsal endoderm is known. We showed previously that the Onecut transcription factor HNF-6 promotes differentiation of the endocrine cell precursors in which it stimulates expression of the proendocrine gene Ngn-3. By analyzing the phenotype of HNF-6 null mice, we now demonstrate that HNF-6 also controls an earlier step in pancreas development. Indeed, the pancreas of Hnf6(-/-) mice was hypoplastic. This did not result from decreased proliferation or from increased apoptosis, but from retarded pancreatic specification of endodermal cells. The onset of Pdx-1 expression was delayed both in the ventral and in the dorsal endoderm, leading to a reduction in the number of endodermal cells expressing Pdx-1 at the time of pancreatic budding. In normal embryos, HNF-6 was detected in the endoderm prior to the expression of Pdx-1. Moreover, HNF-6 could directly stimulate the Pdx1 promoter. Our data therefore identify HNF-6 as the first factor known to control Pdx-1 expression both in the ventral and in the dorsal endoderm. We conclude that HNF-6 controls the timing of pancreas specification and that HNF-6 acts upstream of Pdx-1 in this developmental process. Together with the known role of HNF-6 in pancreatic endocrine cell differentiation, our data point to HNF-6 as a key regulator of pancreas development.
Collapse
Affiliation(s)
- Patrick Jacquemin
- Hormone and Metabolic Research Unit, Université catholique de Louvain and Institute of Cellular Pathology, Avenue Hippocrate 75, B-1200 Brussels, Belgium
| | | | | |
Collapse
|
63
|
Wada S, Tokuoka M, Shoguchi E, Kobayashi K, Di Gregorio A, Spagnuolo A, Branno M, Kohara Y, Rokhsar D, Levine M, Saiga H, Satoh N, Satou Y. A genomewide survey of developmentally relevant genes in Ciona intestinalis. II. Genes for homeobox transcription factors. Dev Genes Evol 2003; 213:222-34. [PMID: 12736825 DOI: 10.1007/s00427-003-0321-0] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2002] [Accepted: 03/11/2003] [Indexed: 11/25/2022]
Abstract
Homeobox-containing genes play crucial roles in various developmental processes, including body-plan specification, pattern formation and cell-type specification. The present study searched the draft genome sequence and cDNA/EST database of the basal chordate Ciona intestinalis to identify 83 homeobox-containing genes in this animal. This number of homeobox genes in the Ciona genome is smaller than that in the Caenorhabditis elegans, Drosophila melanogaster, human and mouse genomes. Of the 83 genes, 76 have possible human orthologues and 7 may be unique to Ciona. The ascidian homeobox genes were classified into 11 classes, including Hox class, NK class, Paired class, POU class, LIM class, TALE class, SIX class, Prox class, Cut class, ZFH class and HNF1 class, according to the classification scheme devised for known homeobox genes. As to the Hox cluster, the Ciona genome contains single copies of each of the paralogous groups, suggesting that there is a single Hox cluster, if any, but genes orthologous to Hox7, 8, 9 and 11 were not found in the genome. In addition, loss of genes had occurred independently in the Ciona lineage and was noticed in Gbx of the EHGbox subclass, Sax, NK3, Vax and vent of the NK class, Cart, Og9, Anf and Mix of the Paired class, POU-I, III, V and VI of the POU class, Lhx6/7 of the LIM class, TGIF of the TALE class, Cux and SATB of the Cut class, and ZFH1 of the ZFH class, which might have reduced the number of Ciona homeobox genes. Interestingly, one of the newly identified Ciona intestinalis genes and its vertebrate counterparts constitute a novel subclass of HNF1 class homeobox genes. Furthermore, evidence for the gene structures and expression of 54 of the 83 homeobox genes was provided by analysis of ESTs, suggesting that cDNAs for these 54 genes are available. The present data thus reveal the repertoire of homeodomain-containing transcription factors in the Ciona genome, which will be useful for future research on the development and evolution of chordates.
Collapse
Affiliation(s)
- Shuichi Wada
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Houard N, Rousseau GG, Lemaigre FP. HNF-6-independent differentiation of mouse embryonic stem cells into insulin-producing cells. Diabetologia 2003; 46:378-85. [PMID: 12687336 DOI: 10.1007/s00125-003-1041-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2002] [Revised: 09/13/2002] [Indexed: 12/19/2022]
Abstract
AIMS/HYPOTHESIS Embryonic stem cells, when grown as embryoid bodies, spontaneously generate insulin-producing cells which could be used in therapy of diabetes mellitus, provided that their selection and differentiation are optimized. To achieve such optimization, one needs to know whether the differentiation of cells in embryoid bodies mimicks that of pancreatic beta cells in embryos. To address this question we verified if the differentiation of the insulin-producing cells in embryoid bodies requires Hepatocyte Nuclear Factor-6 (HNF-6), a transcription factor known to control pancreatic endocrine differentiation in embryos. METHODS We generated mouse Hnf6-/- embryonic stem cells and grew them as embryoid bodies. The expression of HNF-6, insulin, and transcription factors that are regulated by HNF-6 in developing pancreas was compared in wild-type and Hnf6-/- embryoid bodies. RESULTS No difference was observed in the expression of insulin between wild-type and Hnf6-/-embryoid bodies. In both cases insulin was expressed in the outer layer of cells, which is similar to the visceral endoderm. In wild-type embryoid bodies HNF-6 was transiently expressed in the outer layer of cells, but was not co-expressed with insulin. The expression of genes that are targets of HNF-6 in developing pancreas was unaffected in Hnf6-/-embryoid bodies. CONCLUSION/INTERPRETATION In contrast to the development of pancreatic beta cells, the differentiation of insulin-producing cells in embryoid bodies did not require HNF-6. Thus, the differentiation mechanism of insulin-producing cells in embryoid bodies differs from that of the beta cells and it is likely to resemble that of insulin-producing cells in the visceral endoderm.
Collapse
Affiliation(s)
- N Houard
- HORM Université Catholique de Lourain and Institute of Cellular Pathology, 75 Avenue Hippocrate, box 7529, 1200 Brussels, Belgium
| | | | | |
Collapse
|
65
|
Nacer-Cherif H, Bois-Joyeux B, Rousseau GG, Lemaigre FP, Danan JL. Hepatocyte nuclear factor-6 stimulates transcription of the alpha-fetoprotein gene and synergizes with the retinoic-acid-receptor-related orphan receptor alpha-4. Biochem J 2003; 369:583-91. [PMID: 12379144 PMCID: PMC1223101 DOI: 10.1042/bj20021229] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2002] [Revised: 09/27/2002] [Accepted: 10/15/2002] [Indexed: 11/17/2022]
Abstract
The rat alpha-fetoprotein ( afp ) gene is controlled by three enhancers whose function depends on their interaction with liver-enriched transcription factors. The afp enhancer III, located at -6 kb, is composed of three regions that act in synergy. Two of these regions, called s1 and s2, contain a putative binding site for hepatocyte nuclear factor-6 (HNF-6). This factor is the prototype of the ONECUT family of cut-homoeodomain proteins and is a known regulator of liver gene expression in adults and during development. We show here that the two splicing isoforms of HNF-6 bind to a site in the s1 region and in the s2 region. The core sequence of the s1 site corresponds to none of the known HNF-6 binding sites. Nevertheless, the binding properties of the s1 site are identical with those of the s2 site and of previously characterized HNF-6 binding sequences. The HNF-6 consensus should therefore be rewritten as DRRTCVATND. Binding of HNF-6 to the s1 and s2 sites requires both the cut and the homoeo domains, is co-operative and induces DNA bending. HNF-6 strongly stimulates the activity of the afp enhancer III in transient transfection experiments. This effect requires the stereo-specific alignment of the two HNF-6 sites. Moreover, HNF-6 stimulates the enhancer in synergy with the retinoic-acid-receptor-related orphan receptor alpha (RORalpha), which binds to a neighbouring site in the s1 region. Thus expression of the afp gene requires functional interactions between HNF-6 molecules and between HNF-6 and RORalpha.
Collapse
Affiliation(s)
- Habib Nacer-Cherif
- Centre de Recherche sur l'Endocrinologie Moléculaire et le Développement, CNRS UPR 9078, 9 rue Jules Hetzel, F 92190 Meudon, France
| | | | | | | | | |
Collapse
|
66
|
Rausa FM, Tan Y, Costa RH. Association between hepatocyte nuclear factor 6 (HNF-6) and FoxA2 DNA binding domains stimulates FoxA2 transcriptional activity but inhibits HNF-6 DNA binding. Mol Cell Biol 2003; 23:437-49. [PMID: 12509444 PMCID: PMC151533 DOI: 10.1128/mcb.23.2.437-449.2003] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2002] [Revised: 08/06/2002] [Accepted: 10/18/2002] [Indexed: 01/04/2023] Open
Abstract
In previous studies we used transgenic mice or recombinant adenovirus infection to increase hepatic expression of forkhead box A2 (FoxA2, previously called hepatocyte nuclear factor 3beta [HNF-3beta]), which caused diminished hepatocyte glycogen levels and reduced expression of glucose homeostasis genes. Because this diminished expression of FoxA2 target genes was associated with reduced levels of the Cut-Homeodomain HNF-6 transcription factor, we conducted the present study to determine whether there is a functional interaction between HNF-6 and FoxA2. Human hepatoma (HepG2) cotransfection assays demonstrated that HNF-6 synergistically stimulated FoxA2 but not FoxA1 or FoxA3 transcriptional activity, and protein-binding assays showed that this protein interaction required the HNF-6 Cut-Homeodomain and FoxA2 winged-helix DNA binding domains. Furthermore, we show that the HNF-6 Cut-Homeodomain sequences were sufficient to synergistically stimulate FoxA2 transcriptional activation by recruiting the p300/CBP coactivator proteins. This was supported by the fact that FoxA2 transcriptional synergy with HNF-6 was dependent on retention of the HNF-6 Cut domain LXXLL sequence, which mediated recruitment of the p300/CBP proteins. Moreover, cotransfection and DNA binding assays demonstrated that increased FoxA2 levels caused a decrease in HNF-6 transcriptional activation of the glucose transporter 2 (Glut-2) promoter by interfering with the binding of HNF-6 to its target DNA sequence. These data suggest that at a FoxA-specific site, HNF-6 serves as a coactivator protein to enhance FoxA2 transcription, whereas at an HNF-6-specific site, FoxA2 represses HNF-6 transcription by inhibiting HNF-6 DNA binding activity. This is the first reported example of a liver-enriched transcription factor (HNF-6) functioning as a coactivator protein to potentiate the transcriptional activity of another liver factor, FoxA2.
Collapse
Affiliation(s)
- Francisco M Rausa
- Department of Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | | | | |
Collapse
|
67
|
Clotman F, Lannoy VJ, Reber M, Cereghini S, Cassiman D, Jacquemin P, Roskams T, Rousseau GG, Lemaigre FP. The onecut transcription factor HNF6 is required for normal development of the biliary tract. Development 2002; 129:1819-28. [PMID: 11934848 DOI: 10.1242/dev.129.8.1819] [Citation(s) in RCA: 235] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During liver development, hepatoblasts differentiate into hepatocytes or biliary epithelial cells (BEC). The BEC delineate the intrahepatic and extrahepatic bile ducts, and the gallbladder. The transcription factors that control the development of the biliary tract are unknown. Previous work has shown that the onecut transcription factor HNF6 is expressed in hepatoblasts and in the gallbladder primordium. We now show that HNF6 is also expressed in the BEC of the developing intrahepatic bile ducts, and investigate its involvement in biliary tract development by analyzing the phenotype of Hnf6–/– mice. In these mice, the gallbladder was absent, the extrahepatic bile ducts were abnormal and the development of the intrahepatic bile ducts was perturbed in the prenatal period. The morphology of the intrahepatic bile ducts was identical to that seen in mice whose Hnf1β gene has been conditionally inactivated in the liver. HNF1β expression was downregulated in the intrahepatic bile ducts of Hnf6–/– mice during development. Furthermore, we found that HNF6 can stimulate the Hnf1β promoter. We conclude that HNF6 is essential for differentiation and morphogenesis of the biliary tract and that intrahepatic bile duct development is controlled by a HNF6→HNF1β cascade.
Collapse
Affiliation(s)
- Frédéric Clotman
- Hormone and Metabolic Research Unit, Institute of Cellular Pathology and Université catholique de Louvain, Avenue Hippocrate 75, B-1200 Brussels, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Vanhorenbeeck V, Jacquemin P, Lemaigre FP, Rousseau GG. OC-3, a novel mammalian member of the ONECUT class of transcription factors. Biochem Biophys Res Commun 2002; 292:848-54. [PMID: 11944891 DOI: 10.1006/bbrc.2002.6760] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transcription factors of the ONECUT class possess a single cut domain and a divergent homeodomain. They regulate gene networks by controlling the expression of other transcription factors and they play an important role in cell differentiation and metabolism. We identified earlier in mammals HNF-6 (ONECUT-1), the founding member of the class, and ONECUT-2 (OC-2). We have now characterized in the mouse a third ONECUT member, which we call OC-3. Its gene is located on chromosome 10. The sequence of OC-3 (490 residues) displays 51% amino acid identity with HNF-6 and 50% with OC-2. OC-3 has a DNA-binding specificity similar to that of HNF-6 and it is a stimulator of gene transcription. OC-3 mRNA is found in brain, stomach, and upper intestine in the adult and embryonic mouse. Our earlier work on HNF-6 and the expression patterns of the three mammalian ONECUT genes suggest that they all participate to the control of organ development from the foregut and midgut endoderm.
Collapse
Affiliation(s)
- Vinciane Vanhorenbeeck
- Hormone and Metabolic Research Unit, Université catholique de Louvain and Institute of Cellular Pathology, 75 Avenue Hippocrate, Brussels, B-1200, Belgium
| | | | | | | |
Collapse
|
69
|
Goldhaber-Gordon I, Early MH, Gray MK, Baker TA. Sequence and positional requirements for DNA sites in a mu transpososome. J Biol Chem 2002; 277:7703-12. [PMID: 11756424 DOI: 10.1074/jbc.m110342200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transposition of bacteriophage Mu uses two DNA cleavage sites and six transposase recognition sites, with each recognition site divided into two half-sites. The recognition sites can activate transposition of non-Mu DNA sequences if a complete set of Mu sequences is not available. We have analyzed 18 sequences from a non-Mu DNA molecule, selected in a functional assay for the ability to be transposed by MuA transposase. These sequences are remarkably diverse. Nonetheless, when viewed as a group they resemble a Mu DNA end, with a cleavage site and a single recognition site. Analysis of these "pseudo-Mu ends" indicates that most positions in the cleavage and recognition sites contribute sequence-specific information that helps drive transposition, though only the strongest contributors are apparent from mutagenesis data. The sequence analysis also suggests variability in the alignment of recognition half-sites. Transposition assays of specifically designed DNA substrates support the conclusion that the transposition machinery is flexible enough to permit variability in half-site spacing and also perhaps variability in the placement of the recognition site with respect to the cleavage site. This variability causes only local perturbations in the protein-DNA complex, as indicated by experiments in which altered and unaltered DNA substrates are paired.
Collapse
Affiliation(s)
- Ilana Goldhaber-Gordon
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
70
|
Abstract
The pancreas, as most of the digestive tract, derives from the endoderm. Differentiation of these early gut endoderm cells into the endocrine cells forming the pancreatic islets of Langerhans depends on a cascade of gene activation events. These are controlled by different classes of transcription factors including the homeodomain, the basic helix-loop-helix (bHLH) and the winged helix proteins. Recently, considerable progress has been made delineating this cascade. The present review focuses on the role of the different transcription factors during pancreas development, with a particular emphasis on the newly identified bHLH transcription factor neurogenin3.
Collapse
Affiliation(s)
- V M Schwitzgebel
- Division of Pediatric Endocrinology and Diabetology, Hôpital des Enfants, University of Geneva, 6, rue Willi Donzé, CH-1211 Geneva, Switzerland.
| |
Collapse
|
71
|
Luo Z, Hines RN. Regulation of flavin-containing monooxygenase 1 expression by ying yang 1 and hepatic nuclear factors 1 and 4. Mol Pharmacol 2001; 60:1421-30. [PMID: 11723251 DOI: 10.1124/mol.60.6.1421] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The flavin-containing monooxygenases (FMOs) are important for the oxidation of a variety of environmental toxicants, natural products, and therapeutics. Consisting of six family members (FMO1-5), these enzymes exhibit distinct but broad and overlapping substrate specificity and are expressed in a highly tissue- and species-selective manner. Corresponding to previously identified regulatory domains, a YY1 binding site was identified at the major rabbit FMO1 promoter, position -8 to -2, two overlapping HNF1alpha sites, position -132 to -105, and two HNF4alpha sites, position -467 to -454 and -195 to -182. Cotransfection studies with HNF1alpha and HNF4alpha expression vectors demonstrated a major role for each of these factors in enhancing FMO1 promoter activity. In contrast, YY1 was shown by site-directed mutagenesis to be dispensable for basal promoter activity but suppressed the ability of the upstream domains to enhance transcription. Finally, comparisons between rabbit and human FMO1 demonstrated conservation of each of these regulatory elements. With the exception of the most distal HNF4alpha site, each of the orthologous human sequences also was able to compete with rabbit FMO1 cis-elements for specific protein binding. These data are consistent with these same elements being important for regulating human FMO1 developmental- and tissue-specific expression.
Collapse
Affiliation(s)
- Z Luo
- Departments of Pediatrics and Pharmacology and Toxicology, Birth Defects Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226-4801, USA
| | | |
Collapse
|
72
|
Bailly A, Torres-Padilla ME, Tinel AP, Weiss MC. An enhancer element 6 kb upstream of the mouse HNF4alpha1 promoter is activated by glucocorticoids and liver-enriched transcription factors. Nucleic Acids Res 2001; 29:3495-505. [PMID: 11522818 PMCID: PMC55877 DOI: 10.1093/nar/29.17.3495] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We have characterized a 700 bp enhancer element around -6 kb relative to the HNF4alpha1 transcription start. This element increases activity and confers glucocorticoid induction to a heterologous as well as the homologous promoters in differentiated hepatoma cells and is transactivated by HNF4alpha1, HNF4alpha7, HNF1alpha and HNF1beta in dedifferentiated hepatoma cells. A 240 bp sub-region conserves basal and hormone-induced enhancer activity. It contains HNF1, HNF4, HNF3 and C/EBP binding sites as shown by DNase I footprinting and electrophoretic mobility shift assays using nuclear extracts and/or recombinant HNF1alpha and HNF4alpha1. Mutation analyses showed that the HNF1 site is essential for HNF1alpha transactivation and is required for full basal enhancer activity, as is the C/EBP site. Glucocorticoid response element consensus sites which overlap the C/EBP, HNF4 and HNF3 sites are crucial for optimal hormonal induction. We present a model that accounts for weak expression of HNF4alpha1 in the embryonic liver and strong expression in the newborn/adult liver via the binding sites identified in the enhancer.
Collapse
Affiliation(s)
- A Bailly
- Unité de Génétique de la Différenciation, FRE 2364 du CNRS, Institut Pasteur, 25 Rue du Dr Roux, 75724 Paris Cedex 15, France
| | | | | | | |
Collapse
|
73
|
Jacquemin P, Lannoy VJ, O'Sullivan J, Read A, Lemaigre FP, Rousseau GG. The transcription factor onecut-2 controls the microphthalmia-associated transcription factor gene. Biochem Biophys Res Commun 2001; 285:1200-5. [PMID: 11478782 DOI: 10.1006/bbrc.2001.5294] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Microphthalmia-associated transcription factor (MITF) is essential for melanocyte differentiation. MITF mutations are associated with some cases of Waardenburg syndrome (WS) type 2. WS is a dominantly inherited disease characterized by auditory-pigmentary defects that result from the absence of melanocytes. The lack of mutation in MITF coding sequences in some WS2 patients suggests that unidentified factors controlling MITF expression might be involved. We show here that the cut-homeodomain transcription factor Onecut-2 (OC-2) is expressed in melanocytes and binds to the MITF gene promoter. Overexpression of OC-2 in transfected cells stimulates MITF promoter activity. Mutations that prevent OC-2 binding decrease MITF promoter activity by 75%. Based on these results, we searched in 56 WS2 patients for mutations in the OC2 gene or in OC-2 binding sites in the MITF promoter, but none was found. These results show that OC-2 stimulates MITF expression and that OC2 is a candidate gene, but not a common cause, of WS.
Collapse
Affiliation(s)
- P Jacquemin
- Hormone and Metabolic Research Unit, Université Catholique de Louvain and Institute of Cellular Pathology, Avenue Hippocrate 75, Brussels, B-1200, Belgium
| | | | | | | | | | | |
Collapse
|
74
|
Streeper RS, Hornbuckle LA, Svitek CA, Goldman JK, Oeser JK, O'Brien RM. Protein kinase A phosphorylates hepatocyte nuclear factor-6 and stimulates glucose-6-phosphatase catalytic subunit gene transcription. J Biol Chem 2001; 276:19111-8. [PMID: 11279202 DOI: 10.1074/jbc.m101442200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Glucose-6-phosphatase is a multicomponent system that catalyzes the terminal step in gluconeogenesis. To examine the effect of the cAMP signal transduction pathway on expression of the gene encoding the mouse glucose-6-phosphatase catalytic subunit (G6Pase), the liver-derived HepG2 cell line was transiently co-transfected with a series of G6Pase-chloramphenicol acetyltransferase fusion genes and an expression vector encoding the catalytic subunit of cAMP-dependent protein kinase A (PKA). PKA markedly stimulated G6Pase-chloramphenicol acetyltransferase fusion gene expression, and mutational analysis of the G6Pase promoter revealed that multiple cis-acting elements were required for this response. One of these elements was mapped to the G6Pase promoter region between -114 and -99, and this sequence was shown to bind hepatocyte nuclear factor (HNF)-6. This HNF-6 binding site was able to confer a stimulatory effect of PKA on the expression of a heterologous fusion gene; a mutation that abolished HNF-6 binding also abolished the stimulatory effect of PKA. Further investigation revealed that PKA phosphorylated HNF-6 in vitro. Site-directed mutation of three consensus PKA phosphorylation sites in the HNF-6 carboxyl terminus markedly reduced this phosphorylation. These results suggest that the stimulatory effect of PKA on G6Pase fusion gene transcription in HepG2 cells may be mediated in part by the phosphorylation of HNF-6.
Collapse
Affiliation(s)
- R S Streeper
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, Nashville, Tennessee 37232, USA
| | | | | | | | | | | |
Collapse
|
75
|
Watada H, Mirmira RG, Leung J, German MS. Transcriptional and translational regulation of beta-cell differentiation factor Nkx6.1. J Biol Chem 2000; 275:34224-30. [PMID: 10938085 DOI: 10.1074/jbc.m004981200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In the mature pancreas, the homeodomain transcription factor Nkx6.1 is uniquely restricted to beta-cells. Nkx6.1 also is expressed in developing beta-cells and plays an essential role in their differentiation. Among cell lines, both beta- and alpha-cell lines express nkx6.1 mRNA; but no protein can be detected in the alpha-cell lines, suggesting that post-transcriptional regulation contributes to the restriction of Nkx6.1 to beta-cells. To investigate the regulator of Nkx6.1 expression, we outlined the structure of the mouse nkx6.1 gene, and we identified regions that direct cell type-specific expression. The nkx6.1 gene has a long 5'-untranslated region (5'-UTR) downstream of a cluster of transcription start sites. nkx6.1 gene sequences from -5.6 to +1.0 kilobase pairs have specific promoter activity in beta-cell lines but not in NIH3T3 cells. This activity is dependent on sequences located at about -800 base pairs and on the 5'-UTR. Electrophoretic mobility shift assays demonstrate that homeodomain transcription factors PDX1 and Nkx2.2 can bind to the sequence element located at -800 base pairs. In addition, dicistronic assays establish that the 5'-UTR region functions as a potent internal ribosomal entry site, providing cell type-specific regulation of translation. These data demonstrate that complex regulation of both Nkx6.1 transcription and translation provides the specificity of expression required during pancreas development.
Collapse
Affiliation(s)
- H Watada
- Hormone Research Institute, University of California, San Francisco, California 94143-0534, USA
| | | | | | | |
Collapse
|
76
|
Nguyen DN, Rohrbaugh M, Lai Z. The Drosophila homolog of Onecut homeodomain proteins is a neural-specific transcriptional activator with a potential role in regulating neural differentiation. Mech Dev 2000; 97:57-72. [PMID: 11025207 DOI: 10.1016/s0925-4773(00)00431-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We report here the characterization of the Drosophila homolog of the onecut homeobox gene, which encodes a protein product with one cut domain and one homeodomain. We present evidence that D-Onecut can bind to similar DNA sequences with high specificity and affinity as other Onecut proteins through the highly conserved cut domain and homeodomain. Interestingly, the cut domain alone can mediate DNA-binding, but the homeodomain cannot. However, depending upon the promoter context, we observed cooperative interactions between the two domains to confer high DNA-binding affinity and specificity. D-Onecut appears to be a moderate transcriptional activator and functions as a nuclear protein in neuronal tissues of both the CNS and PNS during development and in the adult. In the eye, D-Onecut expression is independent of glass, a transcriptional regulator of R cell differentiation. Taken together, our results suggest a role for D-Onecut in the regulation of some aspects of neural differentiation or maintenance. In support of this notion, overexpression of a putative dominant negative form of D-Onecut during eye development does not affect early cell fate specification, but severely affects photoreceptor differentiation.
Collapse
Affiliation(s)
- D N Nguyen
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
77
|
Lannoy VJ, Rodolosse A, Pierreux CE, Rousseau GG, Lemaigre FP. Transcriptional stimulation by hepatocyte nuclear factor-6. Target-specific recruitment of either CREB-binding protein (CBP) or p300/CBP-associated factor (p/CAF). J Biol Chem 2000; 275:22098-103. [PMID: 10811635 DOI: 10.1074/jbc.m000855200] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription factors of the ONECUT class, whose prototype is HNF-6, contain a single cut domain and a divergent homeodomain characterized by a phenylalanine at position 48 and a methionine at position 50. The cut domain is required for DNA binding. The homeodomain is required either for DNA binding or for transcriptional stimulation, depending on the target gene. Transcriptional stimulation by the homeodomain involves the F48M50 dyad. We investigate here how HNF-6 stimulates transcription. We identify transcriptionally active domains of HNF-6 that are conserved among members of the ONECUT class and show that the cut domain of HNF-6 participates to DNA binding and, via a LXXLL motif, to transcriptional stimulation. We also demonstrate that, on a target gene to which HNF-6 binds without requirement for the homeodomain, transcriptional stimulation involves an interaction of HNF-6 with the coactivator CREB-binding protein (CBP). This interaction depends both on the LXXLL motif of the cut domain and on the F48M50 dyad of the homeodomain. On a target gene for which the homeodomain is required for DNA binding, but not for transcriptional stimulation, HNF-6 interacts with the coactivator p300/CBP-associated factor but not with CBP. These data show that a transcription factor can act via different, sequence-specific, mechanisms that combine distinct modes of DNA binding with the use of different coactivators.
Collapse
Affiliation(s)
- V J Lannoy
- Hormone and Metabolic Research Unit, Université catholique de Louvain and Christian de Duve Institute of Cellular Pathology (ICP), Avenue Hippocrate 75, B-1200 Brussels, Belgium
| | | | | | | | | |
Collapse
|
78
|
Rastegar M, Lemaigre FP, Rousseau GG. Control of gene expression by growth hormone in liver: key role of a network of transcription factors. Mol Cell Endocrinol 2000; 164:1-4. [PMID: 11026552 DOI: 10.1016/s0303-7207(00)00263-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Growth hormone (GH) controls gene expression in liver. Recent work suggests that this can result in part from the stimulation by GH of the synthesis of liver-specific transcription factors, one of which is HNF-6. The liver-specific factors HNF-4 and C/EBP alpha respectively stimulate and inhibit transcription of the hnf 6 gene. Upon GH stimulation, the affinity of HNF-4 for the hnf 6 promoter is increased and the binding of C/EBP alpha is decreased. GH therefore controls hnf 6 by a combination of stimulatory and derepressive mechanisms. On the other hand, HNF-6 stimulates transcription of the hnf 3beta and hnf 4 genes, the stimulation of hnf 4 resulting most likely from the GH-induced increase in HNF-6 concentration. We conclude that in liver GH is likely to control the synthesis of a whole set of proteins whose genes are regulated by a GH-sensitive network of transcription factors, which regulate each other by feed-back and autoregulatory loops.
Collapse
Affiliation(s)
- M Rastegar
- Hormone and Metabolic Research Unit, University catholique de Louvain and Christian de Duve Institute of Cellular Pathology, Brussels, Belgium
| | | | | |
Collapse
|
79
|
Jacquemin P, Durviaux SM, Jensen J, Godfraind C, Gradwohl G, Guillemot F, Madsen OD, Carmeliet P, Dewerchin M, Collen D, Rousseau GG, Lemaigre FP. Transcription factor hepatocyte nuclear factor 6 regulates pancreatic endocrine cell differentiation and controls expression of the proendocrine gene ngn3. Mol Cell Biol 2000; 20:4445-54. [PMID: 10825208 PMCID: PMC85812 DOI: 10.1128/mcb.20.12.4445-4454.2000] [Citation(s) in RCA: 260] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hepatocyte nuclear factor 6 (HNF-6) is the prototype of a new class of cut homeodomain transcription factors. During mouse development, HNF-6 is expressed in the epithelial cells that are precursors of the exocrine and endocrine pancreatic cells. We have investigated the role of HNF-6 in pancreas differentiation by inactivating its gene in the mouse. In hnf6(-/-) embryos, the exocrine pancreas appeared to be normal but endocrine cell differentiation was impaired. The expression of neurogenin 3 (Ngn-3), a transcription factor that is essential for determination of endocrine cell precursors, was almost abolished. Consistent with this, we demonstrated that HNF-6 binds to and stimulates the ngn3 gene promoter. At birth, only a few endocrine cells were found and the islets of Langerhans were missing. Later, the number of endocrine cells increased and islets appeared. However, the architecture of the islets was perturbed, and their beta cells were deficient in glucose transporter 2 expression. Adult hnf6(-/-) mice were diabetic. Taken together, our data demonstrate that HNF-6 controls pancreatic endocrine differentiation at the precursor stage and identify HNF-6 as the first positive regulator of the proendocrine gene ngn3 in the pancreas. They also suggest that HNF-6 is a candidate gene for diabetes mellitus in humans.
Collapse
Affiliation(s)
- P Jacquemin
- Hormone and Metabolic Research Unit, Université catholique de Louvain and Christian de Duve Institute of Cellular Pathology, 1200 Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Rastegar M, Rousseau GG, Lemaigre FP. CCAAT/enhancer-binding protein-alpha is a component of the growth hormone-regulated network of liver transcription factors. Endocrinology 2000; 141:1686-92. [PMID: 10803577 DOI: 10.1210/endo.141.5.7478] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
GH regulates gene expression by modulating the concentration or activity of transcription factors. To identify transcription factors that mediate the effects of GH in liver we analyzed the promoter of the gene coding for hepatocyte nuclear factor-6 (HNF-6), whose expression in liver is stimulated by GH. In protein-DNA interaction studies and in transfection experiments, we found that the liver-enriched transcription factor CCAAT/enhancer-binding protein-alpha (C/EBPalpha) binds to the hnf6 gene and inhibits its expression. This inhibitory effect involved an N-terminal subdomain of C/EBPalpha and two sites in the hnf6 gene promoter. Using liver nuclear extracts from GH-treated hypophysectomized rats, we found that GH induces a rapid, transient decrease in the amount of C/EBPalpha protein. This GH-induced change is concomitant with the transient stimulatory effect of GH on the hnf6 gene. Stimulation of the hnf6 gene by GH therefore involves lifting of the repression exerted by C/EBPalpha in addition to the known GH-induced stimulatory effects of STAT5 (signal transducer and activator of transcription-5) and HNF-4 on that gene. Our data provide further evidence that GH controls a network of liver transcription factors and show that C/EBPalpha participates in this process.
Collapse
Affiliation(s)
- M Rastegar
- Hormone and Metabolic Research Unit, Université Catholique de Louvain, Belgium
| | | | | |
Collapse
|
81
|
Lahuna O, Rastegar M, Maiter D, Thissen JP, Lemaigre FP, Rousseau GG. Involvement of STAT5 (signal transducer and activator of transcription 5) and HNF-4 (hepatocyte nuclear factor 4) in the transcriptional control of the hnf6 gene by growth hormone. Mol Endocrinol 2000; 14:285-94. [PMID: 10674400 DOI: 10.1210/mend.14.2.0423] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
HNF-6 is a tissue-restricted transcription factor that participates in the regulation of several genes in liver. We reported earlier that in adult rats, HNF-6 mRNA concentration in liver drops to almost undetectable levels after hypophysectomy and returns to normal after 1 week of GH treatment. We now show that this results from a rapid effect of GH, and we characterize its molecular mechanism. In hypophysectomized rats, HNF-6 mRNAs increased within 1 h after a single injection of GH. The same GH-dependent induction was reproduced on isolated hepatocytes. To determine whether GH regulates hnf6 expression at the gene level, we studied its promoter. DNA binding experiments showed that 1) the transcription factors STAT5 (signal transducer and activator of transcription 5) and HNF-4 (hepatocyte nuclear factor 4) bind to sites located around -110 and -650, respectively; and 2) STAT5 binding is induced and HNF-4 binding affinity is increased in liver within 1 h after GH injection to hypophysectomized rats. Using transfection experiments and site-directed mutagenesis, we found that STAT5 and HNF-4 stimulated transcription of an hnf6 gene promoter-reporter construct. Furthermore, GH stimulated transcription of this construct in cells that express GH receptors. Consistent with our earlier finding that HNF-6 stimulates the hnf4 and hnf3beta gene promoters, GH treatment of hypophysectomized rats increased the liver concentration of HNF-4 and HNF-3beta mRNAs. Together, these data demonstrate that GH stimulates transcription of the hnf6 gene by a mechanism involving STAT5 and HNF-4. They show that HNF-6 participates not only as an effector, but also as a target, to the regulatory network of liver transcription factors, and that several members of this network are GH regulated.
Collapse
Affiliation(s)
- O Lahuna
- Hormone and Metabolic Research Unit, Christian de Duve Instiute of Cellular Patholoyg, Universté catholique de Louvain, Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
82
|
Maltais A, Labelle Y. Structure and expression of the mouse gene encoding the orphan nuclear receptor TEC. DNA Cell Biol 2000; 19:121-30. [PMID: 10701778 DOI: 10.1089/104454900314636] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Translocated in extraskeletal chondrosarcoma (TEC) is an orphan nuclear receptor involved in the control of cell proliferation and apoptosis and is expressed mainly in the mammalian central nervous system. To help understand the regulation of its expression, we have characterized the mouse genomic locus encoding TEC and analyzed its expression pattern in various tissues. The gene spans approximately 40 kb and contains 8 exons, of which the first two are noncoding. The promoter region does not contain any identifiable TATA box or CCAAT box elements; however, several binding sites for the transcription factors cyclic AMP-responsive element binding (CREB) protein and Spl are present. Two types of transcripts generated by alternative splicing were characterized by RT-PCR: one encodes the full-length receptor of 627 amino acids; the other encodes a truncated receptor of 429 amino acids lacking the entire carboxyl-terminal domain. Northern blots and RT-PCR analyses showed that mRNAs encoding both isoforms are expressed in all mouse tissues examined, with the highest levels being found in the brain. This expression pattern suggests that TEC may perform some basic housekeeping cellular function in addition to its role in cell proliferation.
Collapse
Affiliation(s)
- A Maltais
- Unit'e de recherche en g'en'etique humaine et mol'eculaire, Pavillon Saint-François d'Assise, CHUQ, Qc, Qu'ebec, Canada
| | | |
Collapse
|
83
|
Pierreux CE, Stafford J, Demonte D, Scott DK, Vandenhaute J, O'Brien RM, Granner DK, Rousseau GG, Lemaigre FP. Antiglucocorticoid activity of hepatocyte nuclear factor-6. Proc Natl Acad Sci U S A 1999; 96:8961-6. [PMID: 10430878 PMCID: PMC17715 DOI: 10.1073/pnas.96.16.8961] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Glucocorticoids exert their effects on gene transcription through ubiquitous receptors that bind to regulatory sequences present in many genes. These glucocorticoid receptors are present in all cell types, yet glucocorticoid action is controlled in a tissue-specific way. One mechanism for this control relies on tissue-specific transcriptional activators that bind in the vicinity of the glucocorticoid receptor and are required for receptor action. We now describe a gene-specific and tissue-specific inhibitory mechanism through which glucocorticoid action is repressed by a tissue-restricted transcription factor, hepatocyte nuclear factor-6 (HNF-6). HNF-6 inhibits the glucocorticoid-induced stimulation of two genes coding for enzymes of liver glucose metabolism, namely 6-phosphofructo-2-kinase and phosphoenolpyruvate carboxykinase. Binding of HNF-6 to DNA is required for inhibition of glucocorticoid receptor activity. In vitro and in vivo experiments suggest that this inhibition is mediated by a direct HNF-6/glucocorticoid receptor interaction involving the amino-terminal domain of HNF-6 and the DNA-binding domain of the receptor. Thus, in addition to its known property of stimulating transcription of liver-expressed genes, HNF-6 can antagonize glucocorticoid-stimulated gene transcription.
Collapse
Affiliation(s)
- C E Pierreux
- Hormone and Metabolic Research Unit, Université catholique de Louvain and Christian de Duve Institute of Cellular Pathology, 75 Avenue Hippocrate, B-1200 Brussels, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Jacquemin P, Lannoy VJ, Rousseau GG, Lemaigre FP. OC-2, a novel mammalian member of the ONECUT class of homeodomain transcription factors whose function in liver partially overlaps with that of hepatocyte nuclear factor-6. J Biol Chem 1999; 274:2665-71. [PMID: 9915796 DOI: 10.1074/jbc.274.5.2665] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription factors of the ONECUT class, whose prototype is hepatocyte nuclear factor (HNF)-6, are characterized by the presence of a single cut domain and by a peculiar homeodomain (Lannoy, V. J., Bürglin, T. R., Rousseau, G. G., and Lemaigre, F. P. (1998) J. Biol. Chem. 273, 13552-13562). We report here the identification and characterization of human OC-2, the second mammalian member of this class. The OC-2 gene is located on human chromosome 18. The distribution of OC-2 mRNA in humans is tissue-restricted, the strongest expression being detected in the liver and skin. The amino acid sequence of OC-2 contains several regions of high similarity to HNF-6. The recognition properties of OC-2 for binding sites present in regulatory regions of liver-expressed genes differ from, but overlap with, those of HNF-6. Like HNF-6, OC-2 stimulates transcription of the hnf-3beta gene in transient transfection experiments, suggesting that OC-2 participates in the network of transcription factors required for liver differentiation and metabolism.
Collapse
Affiliation(s)
- P Jacquemin
- Hormone and Metabolic Research Unit, Louvain University Medical School and the Christian de Duve Institute of Cellular Pathology, Avenue Hippocrate 75, B-1200 Brussels, Belgium
| | | | | | | |
Collapse
|
85
|
Rastegar M, Szpirer C, Rousseau GG, Lemaigre FP. Hepatocyte nuclear factor 6: organization and chromosomal assignment of the rat gene and characterization of its promoter. Biochem J 1998; 334 ( Pt 3):565-9. [PMID: 9729463 PMCID: PMC1219724 DOI: 10.1042/bj3340565] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hepatocyte nuclear factor 6 (HNF-6) is the prototype of a family of tissue-specific transcription factors characterized by a bipartite DNA-binding domain consisting of a single cut domain and a novel type of homeodomain. We have previously cloned rat cDNA species coding for two isoforms, HNF-6alpha (465 residues) and beta (491 residues), which differ only by the length of the spacer between the two DNA-binding domains. We have now localized the rat Hnf6 gene to chromosome 8q24-q31 by Southern blotting of DNA from somatic cell hybrids and by fluorescence in situ hybridization. Cloning and sequencing of the rat gene showed that the two HNF-6 isoforms are generated by alternative splicing of three exons that are more than 10 kb apart from each other. Exon 1 codes for the N-terminal part and the cut domain, exon 2 codes for the 26 HNF-6beta-specific amino acids, and exon 3 codes for the homeodomain and the C-terminal amino acids. The transcription initiation site was mapped by ribonuclease protection and 5' rapid amplification of cDNA ends. Transfection experiments showed that promoter activity was contained within 0.75 kb upstream of the transcription initiation site. This activity was detected by the transfection of liver-derived HepG2 cells, but not of Rat-1 fibroblasts, suggesting that the promoter is sufficient to confer liver-specific expression.
Collapse
Affiliation(s)
- M Rastegar
- Hormone and Metabolic Research Unit, Louvain University Medical School and Christian de Duve Institute of Cellular Pathology (ICP), Avenue Hippocrate 75, B-1200 Brussels, Belgium
| | | | | | | |
Collapse
|
86
|
Pierreux CE, Ursø B, De Meyts P, Rousseau GG, Lemaigre FP. Inhibition by insulin of glucocorticoid-induced gene transcription: involvement of the ligand-binding domain of the glucocorticoid receptor and independence from the phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways. Mol Endocrinol 1998; 12:1343-54. [PMID: 9731703 DOI: 10.1210/mend.12.9.0172] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Insulin can inhibit the stimulatory effect of glucocorticoid hormones on the transcription of genes coding for enzymes involved in glucose metabolism. We reported earlier that insulin inhibits the glucocorticoid-stimulated transcription of the gene coding for liver 6-phosphofructo-2-kinase (PFK-2). To elucidate the mechanism of these hormonal effects, we have studied the regulatory regions of the PFK-2 gene in transfection experiments. We found that both glucocorticoids and insulin act via the glucocorticoid response unit (GRU) located in the first intron. Footprinting experiments showed that the GRU binds not only the glucocorticoid receptor (GR), but also ubiquitous [nuclear factor I (NF-I)] and liver-enriched [hepatocyte nuclear factor (HNF)-3, HNF-6, CAAT/enhancer binding protein (C/EBP)] transcription factors. Site-directed mutational analysis of the GRU revealed that these factors modulate glucocorticoid action but that none of them seems to be individually involved in the inhibitory effect of insulin. We did not find an insulin response element in the GRU, but we showed that insulin targets the GR. Insulin-induced inhibition of the glucocorticoid stimulation required the ligand-binding domain of the GR. Finally, the insulin-signaling cascade involved was independent of the phosphatidylinositol-3-kinase and mitogen-activated protein kinase pathways. Together, these results suggest that insulin acts on the PFK-2 gene via another pathway and targets either the GR in its ligand-binding domain or a cofactor interacting with this domain.
Collapse
Affiliation(s)
- C E Pierreux
- Hormone and Metabolic Research Unit, Louvain University Medical School, Christian de Duve Institute of Cellular Pathology, Brussels, Belgium
| | | | | | | | | |
Collapse
|