51
|
Hosaka H, Nagata A, Yoshida T, Shibata T, Nagao T, Tanaka T, Saito Y, Tatsuno I. Pancreatic polypeptide is secreted from and controls differentiation through its specific receptors in osteoblastic MC3T3-E1 cells. Peptides 2008; 29:1390-5. [PMID: 18440094 DOI: 10.1016/j.peptides.2008.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 03/15/2008] [Accepted: 03/17/2008] [Indexed: 12/22/2022]
Abstract
Although the neuropeptide Y (NPY) family has been demonstrated to control bone metabolism, the role of pancreatic polypeptide (PP), which has structural homology with NPY and peptide YY (PYY) to share the NPY family receptors, in peripheral bone tissues has remained unknown. In the present study, we studied the regulatory roles of PP and its Y receptors using MC3T3-E1 cells, a murine transformed osteoblastic cell line, as a model for osteoblastic differentiation. We found that (1) PP mRNA was detected and increased during cell-contact-induced differentiation in MC3T3-E1 cells; (2) the immunoreactivity of PP was detected by radioimmunoassay and increased in culture medium during differentiation; (3) all the types of NPY family receptor mRNAs (Y1, Y2, Y4, Y5, and y6) were found to increase during differentiation; (4) PP stimulated differentiation in MC3T3-E1 cells in terms of ALP mRNA and BMP-2 mRNA. These findings suggested that MC3T3-E1 cells produce and secrete PP, which may in turn stimulate the differentiation of MC3T3-E1 through its specific receptors in an autocrine manner.
Collapse
Affiliation(s)
- Hiroaki Hosaka
- Department of Clinical Cell Biology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Susperregui ARG, Viñals F, Ho PWM, Gillespie MT, Martin TJ, Ventura F. BMP-2 regulation of PTHrP and osteoclastogenic factors during osteoblast differentiation of C2C12 cells. J Cell Physiol 2008; 216:144-52. [PMID: 18247361 DOI: 10.1002/jcp.21389] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Bone morphogenetic protein-2 (BMP-2) is strongly involved in the induction of osteoblast differentiation from mesenchymal cell precursors, as well as in enhancing bone matrix production by osteoblastic cells. Likewise, the osteoporotic phenotype of PTHrP deficient mice makes clear the importance of this paracrine regulator in bone physiology. Here, we report that BMP-2 rapidly down-regulated PTHrP gene expression through a transcriptional mechanism in pluripotent mesenchymal C2C12 cells, whereas BMP-2 increased expression of PTHrP receptor. PTHrP did not significantly alter the BMP-dependent Smad transcriptional pathway. Similarly, PTHrP did not significantly modify the BMP-regulated expression of RANKL or OPG, cytokines involved in osteoclastogenesis. More importantly, addition of PTHrP, through the PKA signaling pathway, partially prevented the BMP-dependent induction of some osteogenic markers such as Runx2 and Osterix in C2C12 cells. Our data suggest that BMP-2 down-regulation of PTHrP could facilitate terminal differentiation of osteoblasts.
Collapse
Affiliation(s)
- Antonio R G Susperregui
- IDIBELL, Departament de Ciències Fisiològiques II, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain
| | | | | | | | | | | |
Collapse
|
53
|
Guillotin B, Bareille R, Bourget C, Bordenave L, Amédée J. Interaction between human umbilical vein endothelial cells and human osteoprogenitors triggers pleiotropic effect that may support osteoblastic function. Bone 2008; 42:1080-91. [PMID: 18387350 DOI: 10.1016/j.bone.2008.01.025] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 01/24/2008] [Accepted: 01/27/2008] [Indexed: 01/01/2023]
Abstract
Osteogenesis occurs in striking interaction with angiogenesis. There is growing evidence that endothelial cells are involved in the modulation of osteoblast differentiation. We hypothesized that primary human umbilical vein endothelial cells (HUVEC) should be able to modulate primary human osteoprogenitors (HOP) function in an in vitro co-culture model. In a previous study we demonstrated that a 3 day to 3 week co-culture stimulates HOP differentiation markers such as Alkaline Phosphatase (ALP) activity and mineralization. In the present study we addressed the effects induced by the co-culture on HOP within the first 48 hours. As a prerequisite, we validated a method based on immuno-magnetic beads to separate HOP from HUVEC after co-culture. Reverse transcription-real time quantitative PCR studies demonstrated up-regulation of the ALP expression in the co-cultured HOP, confirming previous results. Surprisingly, down-regulation of runx2 and osteocalcin was also shown. Western blot analysis revealed co-culture induced down-regulation of Connexin43 expression in both cell types. Connexin43 function may be altered in co-cultured HOP as well. Stimulation of the cAMP pathway was able to counterbalance the effect of the co-culture on the ALP activity, but was not able to rescue runx2 mRNA level. Co-culture effect on HOP transcriptome was analyzed with GEArray cDNA microarray showing endothelial cells may also modulate HOP extracellular matrix production. In accordance with previous work, we propose endothelial cells may support initial osteoblastic proliferation but do not alter the ability of the osteoblasts to produce extracellular mineralizing matrix.
Collapse
Affiliation(s)
- B Guillotin
- Laboratoire CIRID, UMR 5164 CNRS, Université Victor Segalen Bordeaux2, 146 rue Léo Saignat, 33076 Bordeaux, France.
| | | | | | | | | |
Collapse
|
54
|
Mukherjee S, Raje N, Schoonmaker JA, Liu JC, Hideshima T, Wein MN, Jones DC, Vallet S, Bouxsein ML, Pozzi S, Chhetri S, Seo YD, Aronson JP, Patel C, Fulciniti M, Purton LE, Glimcher LH, Lian JB, Stein G, Anderson KC, Scadden DT. Pharmacologic targeting of a stem/progenitor population in vivo is associated with enhanced bone regeneration in mice. J Clin Invest 2008; 118:491-504. [PMID: 18219387 DOI: 10.1172/jci33102] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Accepted: 11/28/2007] [Indexed: 11/17/2022] Open
Abstract
Drug targeting of adult stem cells has been proposed as a strategy for regenerative medicine, but very few drugs are known to target stem cell populations in vivo. Mesenchymal stem/progenitor cells (MSCs) are a multipotent population of cells that can differentiate into muscle, bone, fat, and other cell types in context-specific manners. Bortezomib (Bzb) is a clinically available proteasome inhibitor used in the treatment of multiple myeloma. Here, we show that Bzb induces MSCs to preferentially undergo osteoblastic differentiation, in part by modulation of the bone-specifying transcription factor runt-related transcription factor 2 (Runx-2) in mice. Mice implanted with MSCs showed increased ectopic ossicle and bone formation when recipients received low doses of Bzb. Furthermore, this treatment increased bone formation and rescued bone loss in a mouse model of osteoporosis. Thus, we show that a tissue-resident adult stem cell population in vivo can be pharmacologically modified to promote a regenerative function in adult animals.
Collapse
Affiliation(s)
- Siddhartha Mukherjee
- Center for Regenerative Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Suh JH, Lee HW, Lee JW, Kim JB. Hes1 stimulates transcriptional activity of Runx2 by increasing protein stabilization during osteoblast differentiation. Biochem Biophys Res Commun 2008; 367:97-102. [DOI: 10.1016/j.bbrc.2007.12.100] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Accepted: 12/11/2007] [Indexed: 10/22/2022]
|
56
|
Gordeladze JO, Noël D, Bony C, Apparailly F, Louis-Plence P, Jorgensen C. Transient down-regulation of cbfa1/Runx2 by RNA interference in murine C3H10T1/2 mesenchymal stromal cells delays in vitro and in vivo osteogenesis, but does not overtly affect chondrogenesis. Exp Cell Res 2008; 314:1495-506. [PMID: 18313048 DOI: 10.1016/j.yexcr.2007.12.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 12/06/2007] [Accepted: 12/15/2007] [Indexed: 11/16/2022]
Abstract
In order to ensure that MSCs designed for in vivo cartilage repair do not untowardly differentiate into osteoblasts and mineralize in situ, we tested whether siRNA-induced suppression of cbfa1/Runx2 affected the osteogenic and chondrogenic differentiation potential of the murine cell line C3H10T1/2. Anti-cbfa1/Runx2 siRNA decreased the levels of cbfa1/Runx2 mRNA and protein by 65-80%, and also markedly reduced the expression of osteoblast-related genes such as Dlx5, osterix, collagen type I, alkaline phosphatase (AP), osteocalcin, SPARC/osteonectin and osteopontin, leading to a temporal expression of AP enzyme activity and mineralization potential delayed by at least some 7-9 days. Furthermore, siRNA-transfected cells, grown under chondrogenic conditions did not display biologically significant changes in the expression of aggrecan, collagen type II or type X, or histology when grown in micropellets or monolayer cultures. Finally, when cells were propagated in osteogenic medium and injected into the tibial muscles of SCID mice, no overtly mineralized bone tissue emerged. These experiments indicate that a major transient reduction of cbfa1/Runx2 expression in MSCs is sufficient to delay osteoblastic differentiation, both in vitro and in vivo, while chondrogenesis seemed to be sustained.
Collapse
Affiliation(s)
- Jan O Gordeladze
- Institute of Basal Medical Sciences, Department of Biochemistry, University of Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
57
|
Kim SH, Kim YH, Song M, An SH, Byun HY, Heo K, Lim S, Oh YS, Ryu SH, Suh PG. O-GlcNAc modification modulates the expression of osteocalcin via OSE2 and Runx2. Biochem Biophys Res Commun 2007; 362:325-9. [PMID: 17707335 DOI: 10.1016/j.bbrc.2007.07.149] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Accepted: 07/26/2007] [Indexed: 11/18/2022]
Abstract
O-Linked beta-N-acetylglucosamine (O-GlcNAc) modification, a reversible post-translational modification, has been implicated in the regulation of protein stability, subcellular localization of proteins and protein-protein interaction. Here, we demonstrate that O-GlcNAc modification regulates the expression of osteocalcin, an osteoblast-specific marker, via Runx2 transcriptional activity in osteoblastic differentiation. Protein-associated O-GlcNAc was increased during osteoblastic differentiation in MC3T3-E1 preosteoblasts. In addition, PUGNAc, an inhibitor of O-GlcNAcase, potentiated the expression of osteocalcin caused by ascorbic acid, parathyroid hormone (PTH) and forskolin. By conducting activity assays of the osteocalcin promoter and transcription factor, we found that the OSE2 site in the osteocalcin promoter and Runx2 were important for increased osteocalcin promoter activity by PUGNAc. Furthermore, PUGNAc led to increased O-GlcNAc modification of Runx2, which regulated the transcription of its target gene osteocalcin. Thus, these data provide evidence that O-GlcNAc modification may be a new mode of osteoblastic differentiation regulation.
Collapse
Affiliation(s)
- Sun-Hee Kim
- Department of Life Science, Division of Molecular and Life Science, Biotech Center, Pohang University of Science and Technology, San 31 Hyoja-Dong, Nam-Gu, Pohang, Kyungbuk 790-784, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Simionescu A, Simionescu DT, Vyavahare NR. Osteogenic responses in fibroblasts activated by elastin degradation products and transforming growth factor-beta1: role of myofibroblasts in vascular calcification. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:116-23. [PMID: 17591959 PMCID: PMC1941602 DOI: 10.2353/ajpath.2007.060930] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Our objective was to establish the role of fibroblasts in medial vascular calcification, a pathological process known to be associated with elastin degradation and remodeling. Rat dermal fibroblasts were treated in vitro with elastin degradation products and transforming growth factor (TGF)-beta1, factors usually present in deteriorated matrix environments. Cellular changes were monitored at the gene and protein level by reverse transcriptase-polymerase chain reaction, enzyme-linked immunosorbent assay, immunofluorescence, and von Kossa staining for calcium deposits. By 21 days, multicellular calcified nodules were formed in the presence of elastin degradation products and TGF-beta1 separately and to a significantly greater extent when used together. Before mineralization, cells expressed alpha-smooth muscle actin and large amounts of collagen type I and matrix metalloproteinase-2, characteristic features of myofibroblasts, key elements in tissue remodeling and repair. Stimulated cells expressed increased levels of core-binding factor alpha1, osteocalcin, alkaline phosphatase, and osteoprotegerin, representative bone-regulating proteins. For most proteins analyzed, TGF-beta1 synergistically amplified responses of fibroblasts to elastin degradation products. In conclusion, elastin degradation products and TGF-beta1 promote myofibroblastic and osteogenic differentiation in fibroblasts. These results support the idea that elastin-related calcification involves dynamic remodeling events and suggest the possibility of a defective tissue repair process.
Collapse
Affiliation(s)
- Agneta Simionescu
- Department of Bioengineering, 501 Rhodes Center, Clemson University, Clemson, SC 29634, USA
| | | | | |
Collapse
|
59
|
Mullin BH, Spector TD, Curtis CC, Ong GN, Hart DJ, Hakim AJ, Worthy T, Wilson SG. Polymorphisms in ALOX12, but not ALOX15, are significantly associated with BMD in postmenopausal women. Calcif Tissue Int 2007; 81:10-7. [PMID: 17520163 DOI: 10.1007/s00223-007-9023-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Accepted: 02/24/2007] [Indexed: 12/16/2022]
Abstract
The murine arachidonate 15-lipoxygenase gene (Alox15) has recently been identified as a negative regulator of peak bone mineral density (BMD). The human ALOX15 gene shares significant sequence homology with the murine Alox15 gene; however, the human arachidonate 12-lipoxygenase gene (ALOX12) is functionally more similar to the mouse gene. Multiple single-nucleotide polymorphisms (SNPs) in the human ALOX15 and ALOX12 genes have previously been reported to be significantly associated with BMD in humans. On the basis of these data, we carried out our own investigation of the human ALOX15 and ALOX12 genes and their relationship with hip and spine BMD parameters. The study population consisted of 779 postmenopausal women with a mean (+/- standard deviation) age of 62.5 +/- 5.9 years at BMD measurement and was recruited from a single large general practice in Chingford, northeast London. Three SNPs from ALOX15 and five from ALOX12 were analyzed. None of the SNPs that we analyzed in ALOX15 were significantly associated with any of the BMD parameters or fracture data. However, we found that three SNPs from ALOX12, all previously associated with spine BMD in women, were significantly associated with spine and various hip BMD parameters in our cohort (P = 0.029-0.049). In conclusion, we found no association between polymorphism in ALOX15 and BMD phenotypes but were able to replicate previous findings that genetic variation in ALOX12 seems to play a role in determining bone structure in Caucasian women.
Collapse
Affiliation(s)
- B H Mullin
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Hospital Ave, Nedlands, 6009, Western Australia, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Chen X, Song IH, Dennis JE, Greenfield EM. Endogenous PKI gamma limits the duration of the anti-apoptotic effects of PTH and beta-adrenergic agonists in osteoblasts. J Bone Miner Res 2007; 22:656-64. [PMID: 17266398 DOI: 10.1359/jbmr.070122] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
UNLABELLED PKI gamma knockdown substantially extended the anti-apoptotic effects of PTH and beta-adrenergic agonists, whereas PKI gamma overexpression decreased these effects. Therefore, inhibition of PKI gamma activity may provide a useful co-therapy in combination with intermittent PTH or beta-adrenergic agonists for bone loss in conditions such as osteoporosis. INTRODUCTION PTH has both catabolic and anabolic effects on bone, which are primarily caused by cAMP/protein kinase A (PKA) signaling and regulation of gene expression. We previously showed that protein kinase inhibitor-gamma (PKI gamma) is required for efficient termination of cAMP/PKA signaling and gene expression after stimulation with PTH or beta-adrenergic agonists. Inhibition of osteoblast apoptosis is thought to be an important, but transient, mechanism partly responsible for the anabolic effects of intermittent PTH. Therefore, we hypothesized that endogenous PKI gamma also terminates the anti-apoptotic effect of PTH. MATERIALS AND METHODS PKI gamma knockdown by antisense transfection or siRNA was used to examine the ability of endogenous PKI gamma to modulate the anti-apoptotic effects of PTH and beta-adrenergic agonists in ROS 17/2.8 cells. RESULTS Knockdown of PKI gamma substantially extended the anti-apoptotic effects of PTH, whether apoptosis was induced by etoposide or dexamethasone. In contrast, overexpression of PKI gamma decreased the anti-apoptotic effect of PTH pretreatment. This study is also the first demonstration that beta-adrenergic agonists mimic the anti-apoptotic effects of PTH in osteoblasts. Moreover, PKI gamma knockdown also substantially extended this anti-apoptotic effect of beta-adrenergic agonists. Taken together, these results show that endogenous PKI gamma limits the duration of the anti-apoptotic effects of cAMP/PKA signaling in osteoblasts. CONCLUSIONS Because significant individual variability exists in the anabolic responses to PTH therapy in current clinical treatment of osteoporosis, inhibition of PKI gamma activity may provide a useful co-therapy in combination with intermittent PTH or beta-adrenergic agonists for bone loss in conditions such as osteoporosis. However, the potential use of such a co-therapy would depend on it not adversely affecting bone formation or other organ systems.
Collapse
Affiliation(s)
- Xin Chen
- Department of Orthopaedics, Case Western Reserve University and Case Medical Center, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|
61
|
Huang W, Yang S, Shao J, Li YP. Signaling and transcriptional regulation in osteoblast commitment and differentiation. FRONT BIOSCI-LANDMRK 2007; 12:3068-92. [PMID: 17485283 PMCID: PMC3571113 DOI: 10.2741/2296] [Citation(s) in RCA: 467] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The major event that triggers osteogenesis is the transition of mesenchymal stem cells into bone forming, differentiating osteoblast cells. Osteoblast differentiation is the primary component of bone formation, exemplified by the synthesis, deposition and mineralization of extracellular matrix. Although not well understood, osteoblast differentiation from mesenchymal stem cells is a well-orchestrated process. Recent advances in molecular and genetic studies using gene targeting in mouse enable a better understanding of the multiple factors and signaling networks that control the differentiation process at a molecular level. Osteoblast commitment and differentiation are controlled by complex activities involving signal transduction and transcriptional regulation of gene expression. We review Wnt signaling pathway and Runx2 regulation network, which are critical for osteoblast differentiation. Many other factors and signaling pathways have been implicated in regulation of osteoblast differentiation in a network manner, such as the factors Osterix, ATF4, and SATB2 and the TGF-beta, Hedgehog, FGF, ephrin, and sympathetic signaling pathways. This review summarizes the recent advances in the studies of signaling transduction pathways and transcriptional regulation of osteoblast cell lineage commitment and differentiation. The knowledge of osteoblast commitment and differentiation should be applied towards the development of new diagnostic and therapeutic alternatives for human bone diseases.
Collapse
Affiliation(s)
- Wei Huang
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Shuying Yang
- Department of Cytokine Biology, Forsyth Institute, Harvard School of Dental Medicine, Boston, Massachusetts
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts
| | - Jianzhong Shao
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yi-Ping Li
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Department of Cytokine Biology, Forsyth Institute, Harvard School of Dental Medicine, Boston, Massachusetts
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts
| |
Collapse
|
62
|
Nakano Y, Al-Jallad HF, Mousa A, Kaartinen MT. Expression and localization of plasma transglutaminase factor XIIIA in bone. J Histochem Cytochem 2007; 55:675-85. [PMID: 17341477 DOI: 10.1369/jhc.6a7091.2007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transglutaminases (TGs) are protein crosslinking enzymes involved in cell adhesion and signaling and matrix stabilization and maturation, in many cell types and tissues. We previously described that in addition to transglutaminase 2 (TG2), cultured MC3T3-E1 osteoblasts also express the plasma TG Factor XIIIA (FXIIIA). Here we report on the expression and localization of FXIIIA in bone in vivo and provide confirmatory in vitro data. Immunohistochemistry and in situ hybridization demonstrated that FXIIIA is expressed by osteoblasts and osteocytes in long bones formed by endochondral ossification (femur) and flat bones formed primarily by intramembranous ossification (calvaria and mandible). FXIIIA immunoreactivity was localized to osteoblasts, osteocytes, and the osteoid. RT-PCR analysis revealed FXIIIA expression by both primary osteoblasts and by the MC3T3-E1 osteoblast cell line. Western blot analysis of bone and MC3T3-E1 culture extracts demonstrated that FXIIIA is produced mainly as a small, 37-kDa form. Sequential RT-PCR analysis using overlapping PCR primers spanning the full FXIIIA gene showed that the entire FXIIIA gene is expressed, thus indicating that the 37-kDa FXIIIA is not a splice variant but a product of posttranslational proteolytic processing. Forskolin inhibition of osteoblast differentiation revealed that FXIIIA processing is regulated by the protein kinase A pathway.
Collapse
Affiliation(s)
- Yukiko Nakano
- Faculty of Dentistry, McGill University, Strathcona Bldg. Room M-72, 3640 University Street, Montreal, QC, Canada H3A
| | | | | | | |
Collapse
|
63
|
Abstract
A major unmet need in the medical field today is the availability of suitable treatments for the ever-increasing incidence of osteoporosis and the treatment of bone deficit conditions. Although therapies exist which prevent bone loss, the options are extremely limited for patients once a substantial loss of skeletal bone mass has occurred. Patients who have reduced bone mass are predisposed to fractures and further morbidity. The FDA recently approved PTH (1-34) (Teriparatide) for the treatment of postmenopausal osteoporosis after both preclinical animal and clinical human studies indicated it induces bone formation. This is the only approved bone anabolic agent available but unfortunately it has limited use, it is relatively expensive and difficult to administer. Consequently, the discovery of low cost orally available bone anabolic agents is critical for the future treatment of bone loss conditions. The intricate process of bone formation is co-ordinated by the action of many different bone growth factors, some stored in bone matrix and others released into the bone microenvironment from surrounding cells. Although all these factors play important roles, the bone morphogenetic proteins (BMPs) clearly play a central role in both bone cartilage formation and repair. Recent research into the regulation of the BMP pathway has led to the discovery of a number of small molecular weight compounds as candidate bone anabolic agents. These agents may usher in a new wave of more innovative and versatile treatments for osteoporosis as well as orthopedic and dental indications.
Collapse
|
64
|
Naviglio S, Spina A, Chiosi E, Fusco A, Illiano F, Pagano M, Romano M, Senatore G, Sorrentino A, Sorvillo L, Illiano G. Inorganic phosphate inhibits growth of human osteosarcoma U2OS cells via adenylate cyclase/cAMP pathway. J Cell Biochem 2006; 98:1584-96. [PMID: 16552724 DOI: 10.1002/jcb.20892] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In order to elucidate how phosphate regulates cellular functions, we investigated the effects of inorganic phosphate (Pi) on adenylate cyclase (AC)/cyclic AMP (cAMP) axis. Here we describe that Pi treatment of human osteosarcoma U2OS cells results in a decrease of both intracellular cAMP levels and AC activity, and in a cell growth inhibition. The phosphate-triggered effects observed in U2OS cells are not a widespread phenomenon regarding all cell lines, since other cell lines screened respond differently to parallel Pi treatments. In U2OS cell line, the AC activity/cAMP downregulation is accompanied by significant variations in the levels of some membrane proteins belonging to the AC system. Remarkably, the above effects are blunted by pharmacological inhibition of sodium-dependent phosphate transport. Moreover, 8-Br-cAMP and other cAMP-elevating agents, such as IBMX and forskolin, interestingly, prevent the cell growth inhibition in response to phosphate. Our results enforce the increasing evidences of phosphate as a signaling molecule, identifying in U2OS cell line the AC/cAMP axis, as a novel-signaling pathway modulated by phosphate to ultimately affect cell growth.
Collapse
Affiliation(s)
- Silvio Naviglio
- Department of Biochemistry and Biophysics, Second University of Naples, Medical School, 80138 Naples, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Bertaux K, Broux O, Chauveau C, Hardouin P, Jeanfils J, Devedjian JC. Runx2 regulates the expression of GNAS on SaOs-2 cells. Bone 2006; 38:943-50. [PMID: 16442859 DOI: 10.1016/j.bone.2005.11.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Revised: 11/04/2005] [Accepted: 11/04/2005] [Indexed: 11/24/2022]
Abstract
Runx2 is a key regulator of osteoblast-specific gene expression and controls the expression of multiple target genes during osteoblast differentiation. Although some transcriptional targets for Runx2 are known, it is believed that the osteogenic action of Runx2 is mediated by additional target genes, and increasing studies are performed in order to identify such Runx2-responsive genes. To identify genes following the inhibition of Runx2 in osteoblastic cell line, SaOs-2 was stably transfected with a dominant negative mutant of Runx2 (Deltacbfa1) under the control of a strong promoter. Comparison of gene expression patterns by differential display on selected SaOs-2 clones allowed us to observe that GNAS mRNA which encodes for the Gsalpha protein is overexpressed (5 to 8 fold) in cells presenting high levels of Deltacbfa1. This overexpression was also observed at the protein level and seemed to be reflected by an increased basal cAMP level. Gel shift experiments performed in this study indicate that Runx2 is able to bind to the promoter of GNAS, suggesting a direct regulation at the transcriptional level. Well-described GNAS mutations like fibrous dysplasia or Albright hereditary osteodystrophy are linked to abnormality in osteoblast function, and numerous evidences showed that Gsalpha coupled adrenergic receptors increase the expression of osteotrophic factors and regulate bone mass. Regulation of Gsalpha protein by Runx2 seems to be of particular interest considering the increasing evidences on bone metabolism regulation by G proteins.
Collapse
Affiliation(s)
- Karine Bertaux
- LR2B-Laboratoire de Recherche sur les Biomatériaux et les Biotechnologies, Université du Littoral Côte d'Opale, INSERM ERI002-EA2603, Quai Masset, Bassin Napoléon, 62327 BP 120 Boulogne-sur-mer Cedex, France
| | | | | | | | | | | |
Collapse
|
66
|
Perinpanayagam H, Martin T, Mithal V, Dahman M, Marzec N, Lampasso J, Dziak R. Alveolar bone osteoblast differentiation and Runx2/Cbfa1 expression. Arch Oral Biol 2006; 51:406-15. [PMID: 16253204 DOI: 10.1016/j.archoralbio.2005.09.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2005] [Revised: 09/06/2005] [Accepted: 09/19/2005] [Indexed: 11/19/2022]
Abstract
Alveolar bone cells have a unique origin and functionality, but may resemble skeletal osteoblasts. Osteoblast differentiation and gene expression are regulated by the Runx2/Cbfa1 transcription factor. However, most studies on Runx2/Cbfa1 expression have been on rodent cells and the few studies on human osteoblasts have had differing results. The purpose of this study was to characterize Runx2/Cbfa1 expression in primary cell cultures derived from human alveolar bone. An alveolar bone chip was incubated in alpha-minimum essential medium (alpha-MEM) supplemented with fetal calf serum (10% FCS). Explant cultures were harvested after 3-4 weeks of outgrowth and grown in alpha-MEM with FCS. This media was supplemented with ascorbate, beta-glycerophosphate and dexamethasone to promote osteoblast differentiation over 14 days. RT-PCR analysis and Western blots showed a rapid increase in Runx2/Cbfa1 mRNA (2.1-fold) and protein (2.3-fold) levels in 3 days, followed by a slight decline. There was also a rapid increase in bone sialoprotein expression (2.9-fold) in 3 days, followed by a further increase (3.6-fold) at 14 days. There was a slower increase in alkaline phosphatase expression (1.6-fold) and activity (3.1-fold) over 7 days, followed by a gradual decline. In contrast, collagen mRNA levels showed little change over 14 days. These findings attest to the osteogenic potential of primary cell cultures derived from human alveolar bone. Osteoblastic differentiation in human alveolar bone involves an increase in Runx2/Cbfa1 expression that may be an important component of the differentiation process.
Collapse
Affiliation(s)
- Hiran Perinpanayagam
- School of Dental Medicine, University at Buffalo, 135 Foster Hall, Buffalo, NY 14214-8031, USA.
| | | | | | | | | | | | | |
Collapse
|
67
|
Jeon EJ, Lee KY, Choi NS, Lee MH, Kim HN, Jin YH, Ryoo HM, Choi JY, Yoshida M, Nishino N, Oh BC, Lee KS, Lee YH, Bae SC. Bone morphogenetic protein-2 stimulates Runx2 acetylation. J Biol Chem 2006; 281:16502-11. [PMID: 16613856 DOI: 10.1074/jbc.m512494200] [Citation(s) in RCA: 274] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Runx2/Cbfa1/Pebp2aA is a global regulator of osteogenesis and is crucial for regulating the expression of bone-specific genes. Runx2 is a major target of the bone morphogenetic protein (BMP) pathway. Genetic analysis has revealed that Runx2 is degraded through a Smurf-mediated ubiquitination pathway, and its activity is inhibited by HDAC4. Here, we demonstrate the molecular link between Smurf, HDACs and Runx2, in BMP signaling. BMP-2 signaling stimulates p300-mediated Runx2 acetylation, increasing transactivation activity and inhibiting Smurf1-mediated degradation of Runx2. HDAC4 and HDAC5 dea-cetylate Runx2, allowing the protein to undergo Smurf-mediated degradation. Inhibition of HDAC increases Runx2 acetylation, and potentiates BMP-2-stimulated osteoblast differentiation and increases bone formation. These results demonstrate that the level of Runx2 is controlled by a dynamic equilibrium of acetylation, deacetylation, and ubiquitination. These findings have important medical implications because BMPs and Runx2 are of tremendous interest with regard to the development of therapeutic agents against bone diseases.
Collapse
Affiliation(s)
- Eun-Joo Jeon
- Department of Biochemistry, School of Medicine, and Institute for Tumor Research, Chungbuk National University, Cheongju 361-763, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Thomas T. Intermittent parathyroid hormone therapy to increase bone formation. Joint Bone Spine 2006; 73:262-9. [PMID: 16563840 DOI: 10.1016/j.jbspin.2005.11.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Accepted: 11/26/2005] [Indexed: 12/11/2022]
Abstract
Clinical data suggested that parathyroid hormone (PTH) might be effective in improving bone mass in patients with osteoporosis, providing its resorptive effects, which are particularly marked at cortical sites, were kept under control. We reviewed the evidence that intermittent PTH therapy is a valid treatment option whose predominant effect is bone anabolism. In cell culture studies, PTH affected both bone formation and bone resorption, suggesting that the net result of PTH therapy may be either bone gain or bone loss depending on the dosage, mode of administration, bone site, and animal species. Histological studies established that intermittent PTH therapy was associated with an increase in trabecular bone and, importantly, with improvements in trabecular and cortical microarchitectural parameters that have not been reported with antiresorptive drugs. This anabolic effect of intermittent PTH therapy translates into increased biomechanical strength, despite the increase in endocortical porosity seen in humans and nonhuman primates. The biochemical response profile to intermittent PTH therapy in clinical trials indicated a phase of isolated anabolism followed by an overall increase in bone remodeling that predominantly affected bone formation, the result being a large increase in spinal bone mineral density as early as the first treatment year. Thus, intermittent PTH therapy exerts predominantly anabolic effects on bone.
Collapse
Affiliation(s)
- Thierry Thomas
- Inserm E0366, Service de Rhumatologie, CHU de Saint-Etienne, France.
| |
Collapse
|
69
|
Shen R, Chen M, Wang YJ, Kaneki H, Xing L, O'keefe RJ, Chen D. Smad6 interacts with Runx2 and mediates Smad ubiquitin regulatory factor 1-induced Runx2 degradation. J Biol Chem 2006; 281:3569-76. [PMID: 16299379 PMCID: PMC2647593 DOI: 10.1074/jbc.m506761200] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Runx2 is a bone-specific transcription factor that plays a critical role in bone development, postnatal bone formation, and chondrocyte maturation. The protein levels of Runx2 are regulated by the ubiquitin-proteasome pathway. In previous studies we discovered that E3 ubiquitin ligase Smad ubiquitin regulatory factor 1 (Smurf1) induces Runx2 degradation in a ubiquitin-proteasome-dependent manner, and Smurf1 plays an important role in osteoblast function and bone formation. In the present studies we investigated the molecular mechanism of Smurf1-induced Runx2 degradation. Smurf1 interacts with the PY motif of substrate proteins, and a PY motif has been identified in the C terminus of the Runx2 protein. To determine whether Smurf1 induces Runx2 degradation through the interaction with the PY motif of Runx2, we created a mutant Runx2 with a PY motif deletion and found that Smurf1 retained some of its ability to induce the degradation of the mutant Runx2, suggesting that Smurf1 could induce Runx2 degradation through an indirect mechanism. Smurf1 has been shown to interact with Smads 1, 5, 6, and 7, and Smads 1 and 5 also interact with Runx2. In the present studies we found that Smads 1 and 5 had no effect on Smurf1-induced Runx2 degradation. Although Smads 6 and 7 bind Smurf1, it is not known if Smads 6 or 7 interacts with Runx2 and mediate Runx2 degradation. We performed immunoprecipitation assays and found that Smad6 but not Smad7 interacts with Runx2. Smad6 enhances Smurf1-induced Runx2 degradation in an ubiquitin-proteasome-dependent manner. These results demonstrate that in addition to its interaction with the PY motif of Runx2, Smurf1 induces Runx2 degradation in a Smad6-dependent manner. Smurf1-induced Runx2 degradation serves as a negative regulatory mechanism for the BMP-Smad-Runx2 signaling pathway.
Collapse
Affiliation(s)
- Run Shen
- Department of Orthopaedics and Department of Pathology, Center for Musculoskeletal Research, University of Rochester, School of Medicine, Rochester, New York 14642, USA
| | | | | | | | | | | | | |
Collapse
|
70
|
Abstract
Bone and cartilage and their disorders are addressed under the following headings: functions of bone; normal and abnormal bone remodeling; osteopetrosis and osteoporosis; epithelial-mesenchymal interaction, condensation and differentiation; osteoblasts, markers of bone formation, osteoclasts, components of bone, and pathology of bone; chondroblasts, markers of cartilage formation, secondary cartilage, components of cartilage, and pathology of cartilage; intramembranous and endochondral bone formation; RUNX genes and cleidocranial dysplasia (CCD); osterix; histone deacetylase 4 and Runx2; Ligand to receptor activator of NFkappaB (RANKL), RANK, osteoprotegerin, and osteoimmunology; WNT signaling, LRP5 mutations, and beta-catenin; the role of leptin in bone remodeling; collagens, collagenopathies, and osteogenesis imperfecta; FGFs/FGFRs, FGFR3 skeletal dysplasias, craniosynostosis, and other disorders; short limb chondrodysplasias; molecular control of the growth plate in endochondral bone formation and genetic disorders of IHH and PTHR1; ANKH, craniometaphyseal dysplasia, and chondrocalcinosis; transforming growth factor beta, Camurati-Engelmann disease (CED), and Marfan syndrome, types I and II; an ACVR1 mutation and fibrodysplasia ossificans progressiva; MSX1 and MSX2: biology, mutations, and associated disorders; G protein, activation of adenylyl cyclase, GNAS1 mutations, McCune-Albright syndrome, fibrous dysplasia, and Albright hereditary osteodystrophy; FLNA and associated disorders; and morphological development of teeth and their genetic mutations.
Collapse
Affiliation(s)
- M Michael Cohen
- Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
71
|
Simionescu A, Philips K, Vyavahare N. Elastin-derived peptides and TGF-beta1 induce osteogenic responses in smooth muscle cells. Biochem Biophys Res Commun 2005; 334:524-32. [PMID: 16005428 DOI: 10.1016/j.bbrc.2005.06.119] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Accepted: 06/20/2005] [Indexed: 11/28/2022]
Abstract
Elastin degradation associated with matrix metalloproteinase activity is a cell-mediated process, observed in almost all types of vascular calcification. In this study, we tested the hypothesis that elastin-derived peptides induce an osteogenic response in vascular smooth muscle cells (SMCs) in vitro. Using RT-PCR and specific protein assays, we demonstrated that rat aortic SMCs incubated with elastin peptides exhibited an increased expression of the 67 kDa elastin laminin receptor (ELR) and matrix metalloproteinase-2 and typical bone proteins, such as core binding factor alpha-1, osteocalcin, and alkaline phosphatase. The osteogenic gene expression in SMCs was further enhanced by the addition of TGF-beta1 along with the elastin peptides, in the absence of any other mineralizing agent. Conversely, lactose (an ELR antagonist) down-regulated expression of most investigated proteins. In conclusion, elastin-derived peptides and TGF-beta1 up-regulate the expression of typical bone proteins in cultured rat aortic SMCs, possibly via the ELR signaling.
Collapse
MESH Headings
- Animals
- Bone Morphogenetic Proteins/metabolism
- Cell Differentiation/drug effects
- Cell Differentiation/physiology
- Cells, Cultured
- Dose-Response Relationship, Drug
- Elastin/pharmacology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Osteogenesis/drug effects
- Osteogenesis/physiology
- Peptide Fragments/pharmacology
- Rats
- Transforming Growth Factor beta/pharmacology
- Transforming Growth Factor beta1
Collapse
Affiliation(s)
- Agneta Simionescu
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| | | | | |
Collapse
|
72
|
Celil AB, Campbell PG. BMP-2 and insulin-like growth factor-I mediate Osterix (Osx) expression in human mesenchymal stem cells via the MAPK and protein kinase D signaling pathways. J Biol Chem 2005; 280:31353-9. [PMID: 16000303 DOI: 10.1074/jbc.m503845200] [Citation(s) in RCA: 246] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Genetic studies place the transcription factor Osterix (Osx) downstream of Runx2, but limited information is available about Osx regulation during osteoblastic differentiation. An important role for bone morphogenetic protein-2 (BMP-2) and insulin-like growth factor-I (IGF-I) on Osx expression and the requirement for p38 for the BMP-2-mediated effect was reported previously by our group. In this study, we continued to investigate the molecular mechanisms by which BMP-2 and IGF-1 regulate Osx expression during osteoblast lineage progression. IGF-I-mediated Osx expression required all three MAPK components (Erk, p38, and JNK), whereas BMP-2 required p38 and JNK signaling. As a common mediator of growth factor signaling, we also investigated the involvement of protein kinase C/D (PKC/D) signaling. BMP-2- and IGF-I-mediated Osx expression was blocked in response to a PKD inhibitor. A selective inhibitor of conventional PKCs had no effect on the BMP-2-mediated Osx expression. BMP-2 and IGF-I induced a selective phosphorylation of PKD, and PKD was required for mineralization. PKC/D and MAPK signaling also mediate Runx2 activity. Therefore, to document the implication for Runx2 in Osx regulation, we blocked Runx2 activity using a dominant negative Runx2 construct and an ubiquitination mediator for Runx2 degradation. We showed that blocking Runx2 activity inhibited the BMP-2-mediated induction of Osx. These studies implicated that multiple signaling pathways mediate Osx, a critical gene for osteoblast differentiation and bone formation. In addition to Runx2, other signaling components may be necessary to regulate Osx during osteoblast lineage progression.
Collapse
Affiliation(s)
- Ayse B Celil
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | |
Collapse
|
73
|
Abstract
The Runx (runt-related protein) family of transcription factors plays important roles in different tissues and cell lineages. Runx1 determines commitment to the hematopoietic cell lineage and Runx2 determines commitment to the osteoblastic lineage. Cbfbeta is required for Runx1- and Runx2-dependent transcriptional regulation. Runx2 interacts with many other transcription factors and co-regulators in the transcriptional regulation of its target genes. Runx2 is essential for the commitment of multipotent mesenchymal cells into the osteoblastic lineage and inhibits adipocyte differentiation. Runx2 induces the gene expression of bone matrix proteins, while keeping the osteoblastic cells in an immature stage. Runx2 and Runx3 have redundant functions in chondrocytes, and they are essential for chondrocyte maturation. Runx2 directly induces Indian hedgehog (Ihh) expression and co-ordinates the proliferation and differentiation of chondrocytes. Therefore, elucidation of the signaling pathways through Runx2 and Runx3 will unravel the complex mechanism of skeletal development.
Collapse
Affiliation(s)
- Toshihisa Komori
- Department of Developmental and Reconstructive Medicine, Division of Oral Cytology and Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan.
| |
Collapse
|
74
|
Ishida A, Iijima R, Kobayashi A, Maeda M. Characterization of cAMP-dependent proteolysis of GATA-6. Biochem Biophys Res Commun 2005; 332:976-81. [PMID: 15913546 DOI: 10.1016/j.bbrc.2005.05.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Accepted: 05/11/2005] [Indexed: 11/28/2022]
Abstract
Cyclic AMP-dependent proteolysis of GATA-6(Delta50) was characterized using inhibitors for intracellular signaling pathways. Among these kinase inhibitors, only H-89 and K252a inhibited the proteolysis induced by dbcAMP, a membrane permeable cAMP analogue, others such as PD98059, SB203580, calphostine C, PP1, and KN-93 did not do so. These results suggest that A-kinase, but not C-kinase, MEK, P38 MAP-kinases or Src kinase, could participate in the observed phenomenon. We further demonstrated that an inhibitor for ubiquitin isopeptidase (Delta12-PGJ2) inhibited the degradation of GATA-6(Delta50) in the presence of dbcAMP, suggesting that the cAMP-dependent proteolysis could be mediated through the ubiquitin-proteasome pathway, although proteasome activity did not change significantly during dbcAMP treatment. The full-length GATA-6 was also responsive to the induced degradation. Furthermore, mutation of a potential phosphorylation site (Ser-290-->Ala) for A- and C-kinases, and deletion of the PEST sequence of GATA-6 did not abolish the degradation. All these results suggest that cellular factor(s) may play a crucial role in mediating the activation of the cAMP-dependent process.
Collapse
Affiliation(s)
- Akiko Ishida
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
75
|
Lietman SA, Ding C, Cooke DW, Levine MA. Reduction in Gsalpha induces osteogenic differentiation in human mesenchymal stem cells. Clin Orthop Relat Res 2005:231-8. [PMID: 15864058 DOI: 10.1097/01.blo.0000153279.90512.38] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We hypothesized that a decrease in Gsalpha expression occurs with osteogenic differentiation and that when Gsalpha expression was decreased by antisense oligonucleotides or direct inhibition of protein kinase A there was a concomitant increase in Runx2/Cbfa1. We also investigated the mechanism involved in the change in Runx2/Cbfa1 levels and whether the expression of other genes known to be involved in bone formation was altered. There was a decrease in Gsalpha expression with osteogenic differentiation and antisense oligonucleotides, and protein kinase A inhibition led to increased expression and DNA binding of the osteoblast-specific Runx2/Cbfa1. Additionally, with decreased Gsalpha expression or protein kinase A inhibition, Runx2/Cbfa1 protein was serine phosphorylated and ubiquitinated less. Microarray analysis, after the addition of antisense Gsalpha, showed a more than 10-fold increase in collagen Type I Alpha 2 mRNA (a target of Runx2/Cbfa1). These data show that reduced expression of Gsalpha can induce an osteoblast-like phenotype. The results also indicate a potential pathophysiologic role in patients with heterozygous inactivating mutations in GNAS1, the gene for the alpha chain (Gsalpha) of the heterotrimeric G protein, present in three disorders with ectopic intramembranous bone: Albright's hereditary osteodystrophy, progressive osseous heteroplasia, and osteoma cutis.
Collapse
Affiliation(s)
- Steven A Lietman
- Department of Orthopaedic Surgery, The Cleveland Clinic Foundation, Cleveland, OH, USA.
| | | | | | | |
Collapse
|
76
|
Maeda M, Ishida A, Ni L, Kobayashi A. Isolation of CHO-K1 clones defective in cAMP-dependent proteolysis, as determined by the stability of exogenously expressed GATA-6. Biochem Biophys Res Commun 2005; 329:140-6. [PMID: 15721285 DOI: 10.1016/j.bbrc.2005.01.118] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Indexed: 12/01/2022]
Abstract
Degradation of the GATA-6(Delta50) protein expressed in a CHO-K1 clone (tc1-17a) is stimulated in the presence of dbcAMP through proteasome without new protein synthesis [FEBS Lett. 408 (1997) 301], whereas the intrinsic GC-box-binding protein was stable. To examine the cellular mechanism responsible for this specific degradation of GATA-6(Delta50), we initially introduced the blasticidin-S deaminase gene carrying a promoter with GATA motifs that are recognized by GATA-6. The resulting cell line (tc2G2) grew in the presence of blasticidin S. However, the presence of both blasticidin S and dbcAMP was lethal due to degradation of GATA-6. Cells resistant to such lethality were isolated by chemical mutagenesis. The GATA-6(Delta50) in these resistant cells was stable in the presence of dbcAMP in contrast to that in the parent tc2G2 cells, as determined by gel-mobility shift analysis and Western blotting. These clones could be beneficial for identification and characterization of the components participating in the signaling pathway for both protein degradation and cAMP-dependent biological processes.
Collapse
Affiliation(s)
- Masatomo Maeda
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan.
| | | | | | | |
Collapse
|
77
|
Centrella M, Christakos S, McCarthy TL. Skeletal hormones and the C/EBP and Runx transcription factors: interactions that integrate and redefine gene expression. Gene 2005; 342:13-24. [PMID: 15527960 DOI: 10.1016/j.gene.2004.06.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Revised: 05/27/2004] [Accepted: 06/17/2004] [Indexed: 11/27/2022]
Abstract
Systemic hormones and local growth factors have significant and often complex roles in normal tissue development, growth, remodeling, and repair. Early efforts in skeletal tissue attempted to define active panels of these agents and their direct effects on cell proliferation, matrix production, and secretion of other soluble mediators of differentiated cell function. Initial results resolved many of these questions and began to unveil functional interactions between specific hormones and growth factors. More recent evidence suggests that interactions between individual hormone systems also occur in less anticipated but probably not less meaningful ways. In some cases, these interactions may help to define a spectrum of effects on gene expression by focusing, refocusing, or integrating the activity of previously recognized transcription regulators. Other studies in isolated osteoblasts predict that certain steroid hormones have distinctive effects on specific transcription factors with important roles in bone growth and repair. In this review, we focus on studies that define functional and physical interactions between molecular mediators of hormone activity that could directly effect skeletal growth factor biology.
Collapse
Affiliation(s)
- Michael Centrella
- Department of Surgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8041, USA.
| | | | | |
Collapse
|
78
|
Boumah CE, Selvamurugan N, Partridge NC. Transcription in the osteoblast: regulatory mechanisms utilized by parathyroid hormone and transforming growth factor-beta. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2005; 80:287-321. [PMID: 16164977 DOI: 10.1016/s0079-6603(05)80007-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Christine E Boumah
- Department of Physiology and Biophysics, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
79
|
Cheung R, Erclik MS, Mitchell J. Increased expression of G11α in osteoblastic cells enhances parathyroid hormone activation of phospholipase C and AP-1 regulation of matrix metalloproteinase-13 mRNA. J Cell Physiol 2005; 204:336-43. [PMID: 15693018 DOI: 10.1002/jcp.20299] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In osteoblasts parathyroid hormone (PTH) stimulates the PTH/PTH-related peptide (PTHrP) receptor (PTH1R) that couples via G(s) to adenylyl cyclase stimulation and via G(11) to phospholipase C (PLC) stimulation. We have investigated the effect of increasing G(11)alpha levels in UMR 106-01 osteoblastic cells by transient transfection with cDNA encoding G(11)alpha on PTH stimulation of PLC and protein kinase C (PKC) as well as PTH regulation of mRNA encoding matrix metalloproteinase-13 (MMP-13). Transfection with G(11)alpha cDNA resulted in a 5-fold increase in PTH-stimulated PLC activity with no change in PTH-stimulated adenylyl cyclase. PTH-induced translocation of PKC-betaI, -delta, and -zeta to the cell membrane and PKC-zeta to the nucleus was also increased. Increased G(11)alpha protein resulted in increased stimulation of MMP-13 mRNA levels at all doses of PTH. There was a 2.5 +/- 0.35 fold increase in maximal PTH-stimulation of c-jun mRNA and smaller but significant increases in c-fos accompanied by increased basal and PTH-stimulated AP-1 binding in cells expressing increased G(11)alpha. Runx-2 mRNA and protein levels were not significantly increased by increased G(11)alpha expression. The increase in PTH stimulation of c-jun, c-fos, and MMP-13 in G(11)alpha-transfected cells were all blocked by bisindolylmaleimide I, a selective inhibitor of PKC. These results demonstrate that regulation of the PLC pathway through the PTH1R is significantly increased by elevating expression of G(11)alpha in osteoblastic cells. This leads to increased PTH stimulation of MMP-13 expression by increased stimulation of AP-1 factors c-jun and c-fos.
Collapse
Affiliation(s)
- Ricky Cheung
- Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
80
|
Schroeder TM, Jensen ED, Westendorf JJ. Runx2: A master organizer of gene transcription in developing and maturing osteoblasts. ACTA ACUST UNITED AC 2005; 75:213-25. [PMID: 16187316 DOI: 10.1002/bdrc.20043] [Citation(s) in RCA: 244] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Runx2 is essential for osteoblast development and proper bone formation. A member of the Runt domain family of transcription factors, Runx2 binds specific DNA sequences to regulate transcription of numerous genes and thereby control osteoblast development from mesenchymal stem cells and maturation into osteocytes. Although necessary for gene transcription and osteoblast development, Runx2 is not sufficient for optimal gene expression or bone formation. Runx2 cooperates with numerous proteins, including transcription factors and cofactors, is posttranslationally modified, and associates with the nuclear matrix to integrate a variety of signals and organize crucial events during osteoblast development and maturation. Consistent with its role as a master organizer, alterations in Runx2 expression levels are associated with skeletal diseases. Runx2 haploinsufficiency causes cleidocranial dysplasia, while Runx2 overexpression is common in many bone-metastatic cancers. In this review, we summarize the molecular mechanisms by which Runx2 integrates signals through coregulatory interactions, and discuss how its role as a master organizer may shift depending on promoter structure, developmental cues, and cellular context.
Collapse
Affiliation(s)
- Tania M Schroeder
- Graduate Program in Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
81
|
Moreau A, Wang DS, Forget S, Azeddine B, Angeloni D, Fraschini F, Labelle H, Poitras B, Rivard CH, Grimard G. Melatonin signaling dysfunction in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 2004; 29:1772-81. [PMID: 15303021 DOI: 10.1097/01.brs.0000134567.52303.1a] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN In vitro assays were performed with bone-forming cells isolated from 41 patients with adolescent idiopathic scoliosis and 17 control patients exhibiting another type of scoliosis or none. OBJECTIVE To determine whether a dysfunction of the melatonin-signaling pathway in tissues targeted by this hormone is involved in adolescent idiopathic scoliosis. SUMMARY OF BACKGROUND DATA Pinealectomy in chicken has led to the formation of a scoliotic deformity, thereby suggesting that a melatonin deficiency may be at the source of adolescent idiopathic scoliosis. However, the relevance of melatonin in the etiopathogenesis of that condition is controversial because most studies have reported no significant change in circulating levels of melatonin in patients with adolescent idiopathic scoliosis. METHODS Primary osteoblast cultures prepared from bone specimens obtained intraoperatively during spine surgeries were used to test the ability of melatonin and Gpp(NH)p, a GTP analogue, to block cAMP accumulation induced by forskolin. In parallel, melatonin receptor and Gi protein functions were evaluated by immunohistochemistry and by coimmunoprecipitation experiments. RESULTS The cAMP assays demonstrated that melatonin signaling was impaired in osteoblasts isolated from adolescent idiopathic scoliosis patients to different degrees allowing their classification in 3 distinct groups based on their responsiveness to melatonin or Gpp(NH)p. CONCLUSION Melatonin signaling is clearly impaired in osteoblasts of all patients with adolescent idiopathic scoliosis tested. Classification of patients with adolescent idiopathic scoliosis in 3 groups based on functional in vitro assays suggests the presence of distinct mutations interfering with the melatonin signal transduction. Posttranslational modifications affecting Gi protein function, such as serine residues phosphorylation, should be considered as one possible mechanism in the etiopathogenesis of AIS.
Collapse
Affiliation(s)
- Alain Moreau
- Research Center, Sainte-Justine Hospital, Bone Molecular Genetics and Musculoskeletal Malformations Laboratory, Montreal, Quebec, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Schroeder TM, Kahler RA, Li X, Westendorf JJ. Histone deacetylase 3 interacts with runx2 to repress the osteocalcin promoter and regulate osteoblast differentiation. J Biol Chem 2004; 279:41998-2007. [PMID: 15292260 DOI: 10.1074/jbc.m403702200] [Citation(s) in RCA: 196] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Runt domain transcription factor Runx2 (AML-3, and Cbfa1) is essential for osteoblast development, differentiation, and bone formation. Runx2 positively or negatively regulates osteoblast gene expression by interacting with a variety of transcription cofactor complexes. In this study, we identified a trichostatin A-sensitive autonomous repression domain in the amino terminus of Runx2. Using a candidate approach, we found that histone deacetylase (HDAC) 3 interacts with the amino terminus of Runx2. In transient transfection assays, HDAC3 repressed Runx2-mediated activation of the osteocalcin promoter. HDAC inhibitors and HDAC3-specific short hairpin RNAs reversed this repression. In vivo, Runx2 and HDAC3 associated with the osteocalcin promoter. These data indicate that HDAC3 regulates Runx2-mediated transcription of osteoblast genes. Suppression of HDAC3 in MC3T3 preosteoblasts by RNA interference accelerated the expression of Runx2 target genes, osteocalcin, osteopontin, and bone sialoprotein but did not significantly alter Runx2 levels. Matrix mineralization also occurred earlier in HDAC3-suppressed cells, but alkaline phosphatase expression was not affected. Thus, HDAC3 regulates osteoblast differentiation and bone formation. Although HDAC3 is likely to affect the activity of multiple proteins in osteoblasts, our data show that it actively regulates the transcriptional activity of the osteoblast master protein, Runx2.
Collapse
Affiliation(s)
- Tania M Schroeder
- Graduate Program in Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
83
|
Klein RF, Allard J, Avnur Z, Nikolcheva T, Rotstein D, Carlos AS, Shea M, Waters RV, Belknap JK, Peltz G, Orwoll ES. Regulation of bone mass in mice by the lipoxygenase gene Alox15. Science 2004; 303:229-32. [PMID: 14716014 DOI: 10.1126/science.1090985] [Citation(s) in RCA: 206] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The development of osteoporosis involves the interaction of multiple environmental and genetic factors. Through combined genetic and genomic approaches, we identified the lipoxygenase gene Alox15 as a negative regulator of peak bone mineral density in mice. Crossbreeding experiments with Alox15 knockout mice confirmed that 12/15-lipoxygenase plays a role in skeletal development. Pharmacologic inhibitors of this enzyme improved bone density and strength in two rodent models of osteoporosis. These results suggest that drugs targeting the 12/15-lipoxygenase pathway merit investigation as a therapy for osteoporosis.
Collapse
Affiliation(s)
- Robert F Klein
- Bone and Mineral Research Unit, Department of Medicine, School of Medicine, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Affiliation(s)
- Ung-Il Chung
- Division of Tissue Engineering, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
85
|
Affiliation(s)
- Ian Anglin
- University of Maryland at Baltimore, Greenebaum Cancer Center, USA
| | | |
Collapse
|
86
|
Edlund M, Sung SY, Chung LWK. Modulation of prostate cancer growth in bone microenvironments. J Cell Biochem 2004; 91:686-705. [PMID: 14991761 DOI: 10.1002/jcb.10702] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Bone remains one of the major sites, and most lethal host organs, for prostate cancer metastasis. Prostate cell spread and establishment in bone depends on multiple reciprocal modifications of bone stromal and epithelial cancer cell behaviors. This review focuses on recent advances in the characterization of cell-cell and cell-matrix interplay, effects on cell growth, adhesion and invasion, and several therapeutic possibilities for co-targeting prostate cancer cells and bone stroma. We address the topic from three main perspectives: (1) the normal and aging bone stromal environment, (2) the "reactive" bone stromal environment, and (3) the cancerous prostate epithelial cells themselves. First, normal, and especially aging, bones provide uniquely rich and "fertile soil" for roaming cancer cells. The interactions between prostate cancer cells and insoluble extracellular matrices, soluble growth factors, and/or sex steroid hormones trigger bone remodeling, through increased osteoclastogenesis and furthur matrix metalloproteinase activity. Second, after cancer cell arrival and establishment in the bone, host stromal cells respond, becoming "reactive" in a process again involving extracellular matrix remodeling, together with growth factor and steroid receptor signaling this process ultimately enhances cancer cell migration, stromal transdifferentiation, and invasion of the cancer tissues by stromal, inflammatory, and immune-responsive cells. Third, prostate cancer cells also respond to supportive bone microenvironments, where soluble and matrix-associated molecules affect cancer cell growth and gene expression, especially altering cancer cell surface receptor and integrin-mediated cell signaling. We discuss both integrin cell-matrix and gap junctional cell-cell communication between cancer cells and their microenvironments during prostate cancer progression.
Collapse
Affiliation(s)
- Magnus Edlund
- Department of Urology, Molecular Urology and Therapeutics Program, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
87
|
Jiang D, Franceschi RT, Boules H, Xiao G. Parathyroid hormone induction of the osteocalcin gene. Requirement for an osteoblast-specific element 1 sequence in the promoter and involvement of multiple-signaling pathways. J Biol Chem 2003; 279:5329-37. [PMID: 14634012 DOI: 10.1074/jbc.m311547200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Parathyroid hormone (PTH) is an important peptide hormone regulator of bone formation and osteoblast activity. However, its mechanism of action in bone cells is largely unknown. This study examined the effect of PTH on mouse osteocalcin gene expression in MC3T3-E1 preosteoblastic cells and primary cultures of bone marrow stromal cells. PTH increased the levels of osteocalcin mRNA 4-5-fold in both cell types. PTH also stimulated transcriptional activity of a 1.3-kb fragment of the mouse osteocalcin gene 2 (mOG2) promoter. Inhibitor studies revealed a requirement for protein kinase A, protein kinase C, and mitogen-activated protein kinase pathways in the PTH response. Deletion of the mOG2 promoter sequence from -1316 to -116 caused no loss in PTH responsiveness whereas deletion from -116 to -34 completely prevented PTH stimulation. Interestingly, this promoter region does not contain the RUNX2 binding site shown to be necessary for PTH responsiveness in other systems. Nuclear extracts from PTH-treated MC3T3-E1 cells exhibited increased binding to OSE1, a previously described osteoblast-specific enhancer in the mOG2 promoter. Furthermore, mutation of OSE1 in DNA transfection assays established the requirement for this element in the PTH response. Collectively, these studies establish that actions of PTH on the osteocalcin gene are mediated by multiple signaling pathways and require OSE1 and associated nuclear proteins.
Collapse
Affiliation(s)
- Di Jiang
- Department of Periodontics, Prevention, and Geriatrics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109-1078, USA
| | | | | | | |
Collapse
|
88
|
Nurminskaya M, Magee C, Faverman L, Linsenmayer TF. Chondrocyte-derived transglutaminase promotes maturation of preosteoblasts in periosteal bone. Dev Biol 2003; 263:139-52. [PMID: 14568552 DOI: 10.1016/s0012-1606(03)00445-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
During endochondral development, elongation of the bone collar occurs coordinately with growth of the underlying cartilaginous growth plate. Transglutaminases (TGases) are upregulated in hypertrophic chondrocytes, and correlative evidence suggests a relationship between these enzymes and mineralization. To examine whether TGases are involved in regulating mineralization/osteogenesis during bone development, we devised a coculture system in which one cellular component (characterized as preosteoblastic) is derived from the nonmineralized region of the bone, and the other cellular component is hypertrophic chondrocytes. In these cocultures, mineralization is extensive, with the preosteoblasts producing the mineralized matrix, and the chondrocytes regulating this process. Secreted regulators are involved, as conditioned medium from chondrocytes induces mineralization in preosteoblasts, but not vice versa. One factor is TGase. In the cocultures, inhibition of TGase reduces mineralization, and addition of the enzyme enhances it. Exogenous TGase also induces markers of osteoblastic differentiation (i.e., bone sialoprotein and osteocalcin) in the preosteoblasts, suggesting their differentiation into osteoblasts. Two possible signaling pathways may be affected by TGase and result in increased mineralization (i.e., TGF-beta and protein kinase A pathways). Addition of exogenous TGF-beta2 to the cocultures increases mineralization; though, when mineralization is induced by TGase, there is no detectible elevation of TGF-beta, suggesting that these two factors stimulate osteogenesis by different pathways. However, an interrelationship seems to exist between TGase and PKA-dependent signaling. When mineralization of the cocultures is stimulated through the addition of TGase, a concomitant reduction (50%) in PKA activity occurs. Consistent with this observation, addition of an activator of PKA (cyclic AMP) to the cultures inhibits matrix mineralization, while known inhibitors of PKA (H-89 and a peptide inhibitor) cause an increase in mineralization. Thus, at least one mechanism of TGase stimulation probably involves inhibition of the PKA-mediated signaling.
Collapse
Affiliation(s)
- Maria Nurminskaya
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA 02111, USA.
| | | | | | | |
Collapse
|
89
|
Kajinami K, Takekoshi N, Matsui S, Kanemitsu S, Okubo S, Kanayama S, Yamashita N, Sato R. Effect of pretreatment vitamin D levels on in vivo effects of atorvastatin on bone metabolism in patients with heterozygous familial hypercholesterolemia. Am J Cardiol 2003; 92:1113-6. [PMID: 14583368 DOI: 10.1016/j.amjcard.2003.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
To find the clinical variables associated with atorvastatin's effects on bone metabolism markers, 35 patients with heterozygous familial hypercholesterolemia were treated with atorvastatin for 24 weeks, and the levels of bone formation markers (bone-specific alkaline phosphatase and osteocalcin) and resorption marker (urine collagen type-1 cross-linked N-telopeptide) were determined. Pretreatment vitamin D levels showed significant and positive associations with changes in 2 bone formation markers. The serial changes in 3 markers were favorable-increased bone formation markers and unchanged bone resorption marker-but the changes occurred only in patients with pretreatment vitamin D levels >50 pg/ml.
Collapse
Affiliation(s)
- Kouji Kajinami
- Department of Cardiology, Kanazawa Medical University, Daigaku, Uchinada-machi, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Abstract
Steroids significantly effect skeletal integrity. For example, bone mass decreases with glucocorticoid excess or with estrogen depletion after menopause. Glucocorticoid suppresses gene expression by an essential skeletal tissue transcription factor, Runx2, in rat osteoblasts. We now report that estrogen enhances Runx2 activity in dose- and estrogen receptor-dependent ways independently of changes in Runx2 levels or its DNA binding potential. Estrogen receptor and Runx2 can be collected by co-immunoprecipitation. By two-hybrid gene expression analysis, high affinity complex formation involves portions of Runx2 outside of its own DNA binding domain and the DNA binding domain of the estrogen receptor. Consistent with this interaction, the stimulatory effect of estrogen on Runx2 activity is lost when the DNA binding domain of the estrogen receptor is eliminated. Unlike the stimulatory effect of estrogen and the inhibitory effect of glucocorticoid, androgen fails to increase Runx2 activity, whereas Runx2 potently suppresses gene expression induced by all three steroids. Finally, estrogen increases gene transcription by the transforming growth factor-beta type I receptor gene promoter, which contains several Runx binding sequences, and enhances Smad dependent gene expression by transforming growth factor-beta in osteoblasts. These results reveal that Runx2 can integrate complex effects on gene transcription in hormone-, growth factor-, and tissue-restricted ways.
Collapse
Affiliation(s)
- Thomas L McCarthy
- Department of Surgery, Yale University School of Medicine, New Haven, Connecticut 06520-8041, USA.
| | | | | | | |
Collapse
|
91
|
Bellido T, Ali AA, Plotkin LI, Fu Q, Gubrij I, Roberson PK, Weinstein RS, O'Brien CA, Manolagas SC, Jilka RL. Proteasomal degradation of Runx2 shortens parathyroid hormone-induced anti-apoptotic signaling in osteoblasts. A putative explanation for why intermittent administration is needed for bone anabolism. J Biol Chem 2003; 278:50259-72. [PMID: 14523023 DOI: 10.1074/jbc.m307444200] [Citation(s) in RCA: 281] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It is unknown why sustained elevation of parathyroid hormone (PTH) stimulates bone resorption, whereas intermittent administration stimulates bone formation. We show in mice that daily injections of PTH attenuate osteoblast apoptosis, thereby increasing osteoblast number, bone formation rate, and bone mass, but do not affect osteoclast number. In contrast, sustained elevation of PTH, achieved either by infusion or by raising endogenous hormone secretion with a calcium-deficient diet, does not affect osteoblast apoptosis but increases osteoclast number. Attenuation of apoptosis by PTH in cultured osteoblastic cells requires protein kinase A-mediated phosphorylation and inactivation of the pro-apoptotic protein Bad as well as transcription of survival genes, like Bcl-2, mediated by CREB (cAMP response element-binding protein) and Runx2. But, PTH also increases proteasomal proteolysis of Runx2. Moreover, the anti-apoptotic effect of PTH is prolonged by inhibition of proteasomal activity, by overexpressing a dominant negative form of the E3 ligase (ubiquitin-protein isopeptide ligase) that targets Runx2 for degradation (Smurf1), or by overexpressing Runx2 itself. The duration of the anti-apoptotic effect of PTH, thus, depends on the level of Runx2, which in turn is decreased by PTH via Smurf1-mediated proteasomal proteolysis. The self-limiting nature of PTH-induced survival signaling might explain why intermittent administration of the hormone is required for bone anabolism.
Collapse
Affiliation(s)
- Teresita Bellido
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, Central Arkansas Veterans Healthcare System, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Hinoi E, Fujimori S, Yoneda Y. Modulation of cellular differentiation by N-methyl-D-aspartate receptors in osteoblasts. FASEB J 2003; 17:1532-4. [PMID: 12824297 DOI: 10.1096/fj.02-0820fje] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
N-methyl-D-aspartate (NMDA) receptors for the central neurotransmitter l-glutamate (Glu) have been shown to be present in both osteoblasts and osteoclasts. Sustained exposure to the NMDA channel antagonist dizocilpine (MK-801) significantly prevented increases in both alkaline phosphatase activity and Ca2+ accumulation in a concentration-dependent manner in osteoblasts cultured for 7-28 days in vitro (DIV), without significantly affecting cell survivability. Osteocalcin expression was markedly reduced in the presence of MK-801 in osteoblasts cultured for 28 DIV. Both an NMDA domain antagonist and a glycine domain antagonist similarly prevented Ca2+ accumulation in osteoblasts exposed for 28 consecutive DIV. MK-801 was effective in significantly inhibiting Ca2+ accumulation determined at 28 DIV in osteoblasts exposed before 7 DIV but was ineffective in cells exposed after 11-21 DIV. Sustained exposure to MK-801 significantly inhibited DNA binding activity and expression of core binding factor alpha-1 (CBFA1) in osteoblasts exposed after 7 DIV up to 28 DIV, but not in those exposed before 7 DIV. These results suggest that heteromeric NMDA receptor channels may be functionally expressed to regulate mechanisms underlying cellular differentiation rather than proliferation and/or maturation through modulation of expression of CBFA1 in cultured rat calvarial osteoblasts.
Collapse
Affiliation(s)
- Eiichi Hinoi
- Laboratory of Molecular Pharmacology, Kanazawa University Graduate School of Natural Science and Technology, 13-1 Takara-machi, Kanazawa, Ishikawa 920-0934, Japan
| | | | | |
Collapse
|
93
|
Nakashima K, de Crombrugghe B. Transcriptional mechanisms in osteoblast differentiation and bone formation. Trends Genet 2003; 19:458-66. [PMID: 12902164 DOI: 10.1016/s0168-9525(03)00176-8] [Citation(s) in RCA: 330] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Osteoblasts, the cells responsible for bone formation, differentiate from mesenchymal cells. Here, we discuss transcription factors that are involved in regulating the multistep molecular pathway of osteoblast differentiation. Runx2 and Osx, a newly identified zinc-finger-containing protein, are transcription factors that are expressed selectively and at high levels in osteoblasts. Null mutations of either leads to a complete absence of bone in mice. Runx2 plus its companion subunit Cbf beta are needed for an early step in this pathway, whereas Osx is required for a subsequent step, namely the differentiation of preosteoblasts into fully functioning osteoblasts. The finding that Osx-null cells acquire a chondrocyte phenotype implies that Osx is a negative regulator of Sox9 and of the chondrocyte phenotype. This leads to the hypothesis that Osx might have a role in the segregation of osteoblasts from osteochondroprogenitors. We also discuss recent progress in studies of other transcription factors that affect skeletal patterning and development.
Collapse
Affiliation(s)
- Kazuhisa Nakashima
- Department of Molecular Genetics, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| | | |
Collapse
|
94
|
Zhao M, Qiao M, Oyajobi BO, Mundy GR, Chen D. E3 ubiquitin ligase Smurf1 mediates core-binding factor alpha1/Runx2 degradation and plays a specific role in osteoblast differentiation. J Biol Chem 2003; 278:27939-44. [PMID: 12738770 DOI: 10.1074/jbc.m304132200] [Citation(s) in RCA: 227] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Osteoblast differentiation and bone formation is stimulated by bone morphogenetic protein (BMP)-2 and its downstream signaling molecules Smad1 and -5 and the osteoblast-specific transcription factor core-binding factor alpha1 (Cbfa1). Proteolytic degradation of Smad1 and Cbfa1 is proteasome-dependent, and intracellular concentrations of Smad1 and Cbfa1 are enhanced by inhibition of the 26 S proteasome. Smad1 degradation is mediated by the E3 ubiquitin ligase Smurf1 (Smad ubiquitin regulatory factor 1), but the specific E3 ligase responsible for Cbfa1 degradation has not been identified. Because Cbfa1 interacts with Smad1, whose degradation is mediated by Smurf1, we examined the effect of Smurf1 on Cbfa1 degradation in osteoblast precursor cells. Smurf1 interacts directly with Cbfa1 and mediates Cbfa1 degradation in a ubiquitin- and proteasome-dependent manner. Because Smurf1 controls the intracellular concentrations of several key molecules in the bone formation cascade, we examined the effect of a mutant form of Smurf1 in osteoblasts and found that expression of mutant Smurf1 markedly enhanced osteoblast differentiation. Smurf1 therefore appears to be an important regulatory factor in osteoblast differentiation and a potential molecular target for identification of bone anabolic agents.
Collapse
Affiliation(s)
- Ming Zhao
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA
| | | | | | | | | |
Collapse
|
95
|
Abstract
The identification of Runx2 (runt-related protein 2) function has greatly advanced the understanding of skeletal development over the last 5 years. Runx2 is regulated transcriptionally and post-translationally through the activity of many identified factors, although, the physiological significance of each remains to be demonstrated. The interaction of Runx2 with other transcription factors and cofactors has been shown to be important in Runx2-dependent gene regulation. Runx2 plays important roles in multiple steps of skeletal development. Runx2 determines the lineage of osteoblasts from multipotent mesenchymal cells, enhances osteoblast differentiation at an early stage, and inhibits osteoblast differentiation at a late stage. Runx2 plays crucial roles in chondrocyte maturation and in the specification of cartilage phenotypes. Furthermore, Runx2 is involved in vascular invasion into cartilage and osteoclastogenesis. Therefore, the determination of Runx2 function and the investigation of the cascades of Runx2-dependent gene regulation are important in the elucidation of skeletal biology.
Collapse
Affiliation(s)
- Toshihisa Komori
- Department of Molecular Medicine, Osaka University Medical School, Suita, Osaka 565-0871, Japan
| |
Collapse
|
96
|
Cui CB, Cooper LF, Yang X, Karsenty G, Aukhil I. Transcriptional coactivation of bone-specific transcription factor Cbfa1 by TAZ. Mol Cell Biol 2003; 23:1004-13. [PMID: 12529404 PMCID: PMC140696 DOI: 10.1128/mcb.23.3.1004-1013.2003] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2002] [Revised: 06/26/2002] [Accepted: 11/12/2002] [Indexed: 11/20/2022] Open
Abstract
Core-binding factor 1 (Cbfa1; also called Runx2) is a transcription factor belonging to the Runt family of transcription factors that binds to an osteoblast-specific cis-acting element (OSE2) activating the expression of osteocalcin, an osteoblast-specific gene. Using the yeast two-hybrid system, we identified a transcriptional coactivator, TAZ (transcriptional coactivator with PDZ-binding motif), that binds to Cbfa1. A functional relationship between Cbfa1 and TAZ is demonstrated by the coimmunoprecipitation of TAZ by Cbfa1 and by the fact that TAZ induces a dose-dependent increase in the activity of osteocalcin promoter-luciferase constructs by Cbfa1. A dominant-negative construct of TAZ in which the coactivation domains have been deleted reduces osteocalcin gene expression down to basal levels. NIH 3T3, MC 3T3, and ROS 17/2.8 cells showed the expected nuclear localization of Cbfa1, whereas TAZ was distributed throughout the cytoplasm with some nuclear localization when transfected with either Cbfa1 or TAZ. Upon cotransfection by both Cbfa1 and TAZ, the transfected TAZ shows predominant nuclear localization. The dominant-negative construct of TAZ shows minimal nuclear localization upon cotransfection with Cbfa1. These data indicate that TAZ is a transcription coactivator for Cbfa1 and may be involved in the regulation of osteoblast differentiation.
Collapse
Affiliation(s)
- Cai Bin Cui
- Department of Periodontology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | |
Collapse
|
97
|
Whitfield JF, Morley P, Willick GE. Bone growth stimulators. New tools for treating bone loss and mending fractures. VITAMINS AND HORMONES 2003; 65:1-80. [PMID: 12481542 DOI: 10.1016/s0083-6729(02)65059-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In the new millennium, humans will be traveling to Mars and eventually beyond with skeletons that respond to microgravity by self-destructing. Meanwhile in Earth's aging populations growing numbers of men and many more women are suffering from crippling bone loss. During the first decade after menopause all women suffer an accelerating loss of bone, which in some of them is severe enough to result in "spontaneous" crushing of vertebrae and fracturing of hips by ordinary body movements. This is osteoporosis, which all too often requires prolonged and expensive care, the physical and mental stress of which may even kill the patient. Osteoporosis in postmenopausal women is caused by the loss of estrogen. The slower development of osteoporosis in aging men is also due at least in part to a loss of the estrogen made in ever smaller amounts in bone cells from the declining level of circulating testosterone and is needed for bone maintenance as it is in women. The loss of estrogen increases the generation, longevity, and activity of bone-resorbing osteoclasts. The destructive osteoclast surge can be blocked by estrogens and selective estrogen receptor modulators (SERMs) as well as antiosteoclast agents such as bisphosphonates and calcitonin. But these agents stimulate only a limited amount of bone growth as the unaffected osteoblasts fill in the holes that were dug by the now suppressed osteoclasts. They do not stimulate osteoblasts to make bone--they are antiresorptives not bone anabolic agents. (However, certain estrogen analogs and bisphosphates may stimulate bone growth to some extent by lengthening osteoblast working lives.) To grow new bone and restore bone strength lost in space and on Earth we must know what controls bone growth and destruction. Here we discuss the newest bone controllers and how they might operate. These include leptin from adipocytes and osteoblasts and the statins that are widely used to reduce blood cholesterol and cardiovascular damage. But the main focus of this article is necessarily the currently most promising of the anabolic agents, the potent parathyroid hormone (PTH) and certain of its 31- to 38-aminoacid fragments, which are either in or about to be in clinical trial or in the case of Lilly's Forteo [hPTH-(1-34)] tentatively approved by the Food and Drug Administration for treating osteoporosis and mending fractures.
Collapse
Affiliation(s)
- James F Whitfield
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario, Canada K1A 0R6
| | | | | |
Collapse
|
98
|
Black DM, Bouillon R, Ducy P, Miller PD, Papapoulos SE, Ralston SH, Ross P, Schipani E, Seeman E, Strewler GJ, Teti A, Thakker RV, Vanderschueren D. Meeting report from the 24th annual meeting of the American society for bone and mineral research. ACTA ACUST UNITED AC 2002. [DOI: 10.1138/2002065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
99
|
Byers BA, Pavlath GK, Murphy TJ, Karsenty G, García AJ. Cell-type-dependent up-regulation of in vitro mineralization after overexpression of the osteoblast-specific transcription factor Runx2/Cbfal. J Bone Miner Res 2002; 17:1931-44. [PMID: 12412799 DOI: 10.1359/jbmr.2002.17.11.1931] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Functional expression of the transcriptional activator Runx2/Cbfal is essential for osteoblastic differentiation and bone formation and maintenance. Forced expression of Runx2 in nonosteoblastic cells induces expression of osteoblast-specific genes, but the effects of Runx2 overexpression on in vitro matrix mineralization have not been determined. To examine whether exogenous Runx2 expression is sufficient to direct in vitro mineralization, we investigated sustained expression of Runx2 in nonosteoblastic and osteoblast-like cell lines using retroviral gene delivery. As expected, forced expression of Runx2 induced several osteoblast-specific genes in NIH3T3 and C3H10T1/2 fibroblasts and up-regulated expression in MC3T3-E1 immature osteoblast-like cells. However, Runx2 expression enhanced matrix mineralization in a cell-type-dependent manner. NIH3T3 and IMR-90 fibroblasts overexpressing Runx2 did not produce a mineralized matrix, indicating that forced expression of Runx2 in these nonosteogenic cell lines is not sufficient to direct in vitro mineralization. Consistent with the pluripotent nature of the cell line, a fraction (25%) of Runx2-expressing C3H10T1/2 fibroblast cultures produced mineralized nodules in a viral supernatant-dependent manner. Notably, bone sialoprotein (BSP) gene expression was detected at significantly higher levels in mineralizing Runx2-infected C3H10T1/2 cells compared with Runx2-expressing cultures which did not mineralize. Treatment of Runx2-infected C3H10T1/2 cultures with dexamethasone enhanced osteoblastic phenotype expression, inducing low levels of mineralization independent of viral supernatant. Finally, Runx2 overexpression in immature osteoblast-like MC3T3-E1 cells resulted in acceleration and robust up-regulation of matrix mineralization compared with controls. These results suggest that, although functional Runx2 is essential to multiple osteoblast-specific activities, in vitro matrix mineralization requires additional tissue-specific cofactors, which supplement Runx2 activity.
Collapse
Affiliation(s)
- Benjamin A Byers
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, USA
| | | | | | | | | |
Collapse
|
100
|
Miles RR, Sluka JP, Halladay DL, Santerre RF, Hale LV, Bloem L, Patanjali SR, Galvin RJS, Ma L, Hock JM, Onyia JE. Parathyroid hormone (hPTH 1-38) stimulates the expression of UBP41, an ubiquitin-specific protease, in bone. J Cell Biochem 2002; 85:229-42. [PMID: 11948679 DOI: 10.1002/jcb.10129] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Parathyroid hormone (PTH) stimulates bone formation in both animals and humans, and the expression of a number of genes has been implicated in the mediation of this effect. To discover new bone factors that initiate and support this phenomenon, we used differential display reverse transcription polymerase chain reaction (DDRT-PCR) and screened for genes, which are differentially expressed in osteoblast-enriched femoral metaphyseal primary spongiosa of young male rats after a single subcutaneous (s.c.) injection of hPTH (1-38) (8 microg/100 g). We found and cloned one full-length cDNA, which encodes a putative 348 amino acid protein. Sequence analysis of this protein demonstrates a 98, 93.7, and 82.5% identity with mouse, human, and chicken ubiquitin-specific protease UBP41, respectively. Northern blot analysis confirmed that a 3.8-4 kb UBP41 mRNA transcript was rapidly increased 1 h after acute hPTH (1-38) exposure in both metaphyseal (6- to 8-fold) and diaphyseal (3-fold) bone, but returned to control levels by 24 h after exposure. In contrast, continuous exposure to hPTH (1-38), resulted in a rapid and sustained elevation of UBP41 mRNA. PTH (1-31), which stimulates intracellular cAMP, and PTHrP (1-34) both induced UBP41 mRNA expression; whereas PTH analogs (3-34) and (7-34), that do not stimulate cAMP, had no effect on UBP41 expression. UBP41 mRNA expression was also rapidly induced 1 h after injection of PGE2, but returned to the control level by 6 to 24 h. In vitro, UBP41 mRNA is expressed in primary osteoblasts (metaphyseal and diaphyseal derived) and in the osteoblast-like cell lines UMR106, ROS17/2.8, and BALC. PTH (1-38) treatment induced UPB41 expression (3.6- to 13-fold) in both primary cultures of osteoblasts and in UMR106 cells. Further analysis in UMR 106 cells demonstrated that PGE2, forskolin and dibutyryl cAMP increased UBP41 mRNA expression 4-, 4.5-, and 2.4-fold, respectively. Tissue distribution analysis of UBP41 mRNA detected transcripts in brain, heart, skeletal muscle, kidney, liver, and testis. Together, these results demonstrate that UBP41, an ubiquitin-specific protease, is selectively upregulated in bone by the osteotropic agents PTH, PTHrP, and PGE2, possibly via the PKA/cAMP pathway. We speculate that the rapid induction of UBP41 in response to these physiological regulators contributes to the mechanism by which either the structure, activity, half-life or localization of essential proteins are modified to maintain bone homeostasis.
Collapse
Affiliation(s)
- R R Miles
- Gene Regulation, Bone and Inflammation Research Division, Lilly Research Labs, Eli Lilly & Co, Indianapolis, Indiana 46285, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|