51
|
Barthel SR, Medvedev R, Heinrich T, Büchner SM, Kettern N, Hildt E. Hepatitis B virus inhibits insulin receptor signaling and impairs liver regeneration via intracellular retention of the insulin receptor. Cell Mol Life Sci 2016; 73:4121-40. [PMID: 27155659 PMCID: PMC11108314 DOI: 10.1007/s00018-016-2259-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/05/2016] [Accepted: 04/28/2016] [Indexed: 12/22/2022]
Abstract
Hepatitis B virus (HBV) causes severe liver disease but the underlying mechanisms are incompletely understood. During chronic HBV infection, the liver is recurrently injured by immune cells in the quest for viral elimination. To compensate tissue injury, liver regeneration represents a vital process which requires proliferative insulin receptor signaling. This study aims to investigate the impact of HBV on liver regeneration and hepatic insulin receptor signaling. After carbon tetrachloride-induced liver injury, liver regeneration is delayed in HBV transgenic mice. These mice show diminished hepatocyte proliferation and increased expression of fibrosis markers. This is in accordance with a reduced activation of the insulin receptor although HBV induces expression of the insulin receptor via activation of NF-E2-related factor 2. This leads to increased intracellular amounts of insulin receptor in HBV expressing hepatocytes. However, intracellular retention of the receptor simultaneously reduces the amount of functional insulin receptors on the cell surface and thereby attenuates insulin binding in vitro and in vivo. Intracellular retention of the insulin receptor is caused by elevated amounts of α-taxilin, a free syntaxin binding protein, in HBV expressing hepatocytes preventing proper targeting of the insulin receptor to the cell surface. Consequently, functional analyses of insulin responsiveness revealed that HBV expressing hepatocytes are less sensitive to insulin stimulation leading to delayed liver regeneration. This study describes a novel pathomechanism that uncouples HBV expressing hepatocytes from proliferative signals and thereby impedes compensatory liver regeneration after liver injury.
Collapse
Affiliation(s)
| | - Regina Medvedev
- Department of Virology, Paul-Ehrlich-Institut, Langen, Germany
| | - Thekla Heinrich
- Department of Virology, Paul-Ehrlich-Institut, Langen, Germany
| | | | - Nadja Kettern
- Department of Virology, Paul-Ehrlich-Institut, Langen, Germany
| | - Eberhard Hildt
- Department of Virology, Paul-Ehrlich-Institut, Langen, Germany.
- German Center for Infection Research (DZIF), Gießen-Marburg-Langen, Gießen, Germany.
| |
Collapse
|
52
|
Nagahashi M, Matsuda Y, Moro K, Tsuchida J, Soma D, Hirose Y, Kobayashi T, Kosugi SI, Takabe K, Komatsu M, Wakai T. DNA damage response and sphingolipid signaling in liver diseases. Surg Today 2016; 46:995-1005. [PMID: 26514817 PMCID: PMC5053096 DOI: 10.1007/s00595-015-1270-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 10/04/2015] [Indexed: 02/06/2023]
Abstract
Patients with unresectable hepatocellular carcinoma (HCC) cannot generally be cured by systemic chemotherapy or radiotherapy due to their poor response to conventional therapeutic agents. The development of novel and efficient targeted therapies to increase their treatment options depends on the elucidation of the molecular mechanisms that underlie the pathogenesis of HCC. The DNA damage response (DDR) is a network of cell-signaling events that are triggered by DNA damage. Its dysregulation is thought to be one of the key mechanisms underlying the generation of HCC. Sphingosine-1-phosphate (S1P), a lipid mediator, has emerged as an important signaling molecule that has been found to be involved in many cellular functions. In the liver, the alteration of S1P signaling potentially affects the DDR pathways. In this review, we explore the role of the DDR in hepatocarcinogenesis of various etiologies, including hepatitis B and C infection and non-alcoholic steatohepatitis. Furthermore, we discuss the metabolism and functions of S1P that may affect the hepatic DDR. The elucidation of the pathogenic role of S1P may create new avenues of research into therapeutic strategies for patients with HCC.
Collapse
Affiliation(s)
- Masayuki Nagahashi
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan.
| | - Yasunobu Matsuda
- Department of Medical Technology, Niigata University Graduate School of Health Sciences, 2-746 Asahimachi-dori, Chuo-ku, Niigata, 951-8518, Japan
| | - Kazuki Moro
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Junko Tsuchida
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Daiki Soma
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Yuki Hirose
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Takashi Kobayashi
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Shin-Ichi Kosugi
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Kazuaki Takabe
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine and the Massey Cancer Center, West Hospital 7-402, 1200 East Broad Street, Richmond, VA, 23298-0011, USA
| | - Masaaki Komatsu
- Department of Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Toshifumi Wakai
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| |
Collapse
|
53
|
Cheng YL, Lin YS, Chen CL, Tsai TT, Tsai CC, Wu YW, Ou YD, Chu YY, Wang JM, Yu CY, Lin CF. Activation of Nrf2 by the dengue virus causes an increase in CLEC5A, which enhances TNF-α production by mononuclear phagocytes. Sci Rep 2016; 6:32000. [PMID: 27561946 PMCID: PMC4999957 DOI: 10.1038/srep32000] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/27/2016] [Indexed: 12/11/2022] Open
Abstract
Infection by the dengue virus (DENV) threatens global public health due to its high prevalence and the lack of effective treatments. Host factors may contribute to the pathogenesis of DENV; herein, we investigated the role of nuclear factor (erythroid-derived 2)-like 2 (Nrf2), which is activated by DENV in mononuclear phagocytes. DENV infection selectively activates Nrf2 following nuclear translocation. Following endoplasmic reticular (ER) stress, protein kinase R-like ER kinase (PERK) facilitated Nrf2-mediated transcriptional activation of C-type lectin domain family 5, member A (CLEC5A) to increase CLEC5A expression. Signaling downstream of the Nrf2-CLEC5A interaction enhances Toll-like receptor 3 (TLR3)-independent tumor necrosis factor (TNF)-α production following DENV infection. Forced expression of the NS2B3 viral protein induces Nrf2 nuclear translocation/activation and CLEC5A expression which increases DENV-induced TNF-α production. Animal studies confirmed Nrf2-induced CLEC5A and TNF-α in brains of DENV-infected mice. These results demonstrate that DENV infection causes Nrf2-regulated TNF-α production by increasing levels of CLEC5A.
Collapse
Affiliation(s)
- Yi-Lin Cheng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.,Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 701, Taiwan
| | - Yee-Shin Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.,Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 701, Taiwan.,Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Chia-Ling Chen
- Translational Research Center, Taipei Medical University, Taipei 110, Taiwan
| | - Tsung-Ting Tsai
- Department of Microbiology and Immunology, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Cheng-Chieh Tsai
- Department of Nursing, Chung Hwa University of Medical Technology, Tainan 717, Taiwan
| | - Yan-Wei Wu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.,Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 701, Taiwan
| | - Yi-Dan Ou
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Yu-Yi Chu
- Institute of Bioinformatics and Biosignal Transduction, National Cheng Kung University, Tainan 701, Taiwan
| | - Ju-Ming Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.,Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 701, Taiwan.,Institute of Bioinformatics and Biosignal Transduction, National Cheng Kung University, Tainan 701, Taiwan
| | - Chia-Yi Yu
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Chiou-Feng Lin
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 701, Taiwan.,Department of Microbiology and Immunology, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
54
|
Stolt C, Schmidt IHE, Sayfart Y, Steinmetz I, Bast A. Heme Oxygenase-1 and Carbon Monoxide PromoteBurkholderia pseudomalleiInfection. THE JOURNAL OF IMMUNOLOGY 2016; 197:834-46. [DOI: 10.4049/jimmunol.1403104] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 05/26/2016] [Indexed: 12/25/2022]
|
55
|
Characterization of α-taxilin as a novel factor controlling the release of hepatitis C virus. Biochem J 2015; 473:145-55. [PMID: 26527738 DOI: 10.1042/bj20150717] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 11/02/2015] [Indexed: 01/07/2023]
Abstract
Although it is well established that the release of HCV (hepatitis C virus) occurs through the secretory pathway, many aspects concerning the control of this process are not yet fully understood. α-Taxilin was identified as a novel binding partner of syntaxin-4 and of other members of the syntaxin family, which are part of SNARE (soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor) complexes and so are involved in intracellular vesicle traffic. Since α-taxilin prevents t-SNARE (target SNARE) formation by binding exclusively to free syntaxin-4, it exerts an inhibitory effect on the vesicular transport. HCV-replicating Huh7.5 cells and HCV-infected primary human hepatocytes and liver samples of patients suffering from chronic HCV contain significantly less α-taxilin compared with the controls. HCV impairs the expression of α-taxilin via NS5A-dependent interruption of the Raf/MEK [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase] signal transduction cascade. Moreover, the half-life of α-taxilin is significantly reduced in HCV-replicating cells. Whereas modulation of α-taxilin expression does not significantly affect genome replication, the overexpression of α-taxilin prevents the release of HCV. In contrast with this, silencing of α-taxilin expression leads to increased release of infectious viral particles. This is due to the negative effect of α-taxilin on t-SNARE formation that leads to impaired vesicular trafficking. Accordingly, overexpression of the t-SNARE component syntaxin-4 increases release of HCV, whereas silencing leads to an impaired release. These data identify α-taxilin as a novel factor that controls the release of HCV and reveal the mechanism by which HCV controls the activity of α-taxilin.
Collapse
|
56
|
Komaravelli N, Tian B, Ivanciuc T, Mautemps N, Brasier AR, Garofalo RP, Casola A. Respiratory syncytial virus infection down-regulates antioxidant enzyme expression by triggering deacetylation-proteasomal degradation of Nrf2. Free Radic Biol Med 2015; 88:391-403. [PMID: 26073125 PMCID: PMC4628892 DOI: 10.1016/j.freeradbiomed.2015.05.043] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 05/21/2015] [Accepted: 05/27/2015] [Indexed: 11/23/2022]
Abstract
Respiratory syncytial virus (RSV) is the most important cause of viral acute respiratory tract infections and hospitalizations in children, for which no vaccine or treatment is available. RSV infection in cells, mice, and children leads to rapid generation of reactive oxygen species, which are associated with oxidative stress and lung damage, due to a significant decrease in the expression of airway antioxidant enzymes (AOEs). Oxidative stress plays an important role in the pathogenesis of RSV-induced lung disease, as antioxidants ameliorate clinical disease and inflammation in vivo. The aim of this study is to investigate the unknown mechanism(s) of virus-induced inhibition of AOE expression. RSV infection is shown to induce a progressive reduction in nuclear and total cellular levels of the transcription factor NF-E2-related factor 2 (Nrf2), resulting in decreased binding to endogenous AOE gene promoters and decreased AOE expression. RSV induces Nrf2 deacetylation and degradation via the proteasome pathway in vitro and in vivo. Histone deacetylase and proteasome inhibitors block Nrf2 degradation and increase Nrf2 binding to AOE endogenous promoters, resulting in increased AOE expression. Known inducers of Nrf2 are able to increase Nrf2 activation and subsequent AOE expression during RSV infection in vitro and in vivo, with significant amelioration of oxidative stress. This is the first study to investigate the mechanism(s) of virus-induced inhibition of AOE expression. RSV-induced inhibition of Nrf2 activation, due to deacetylation and proteasomal degradation, could be targeted for therapeutic intervention aimed to increase airway antioxidant capacity during infection.
Collapse
Affiliation(s)
- Narayana Komaravelli
- Department of Pediatrics, University of Texas Medical Branch at Galveston, TX 77555, USA
| | - Bing Tian
- Department of Internal Medicine, University of Texas Medical Branch at Galveston, TX 77555, USA
| | - Teodora Ivanciuc
- Department of Pediatrics, University of Texas Medical Branch at Galveston, TX 77555, USA
| | - Nicholas Mautemps
- Department of Pediatrics, University of Texas Medical Branch at Galveston, TX 77555, USA
| | - Allan R Brasier
- Department of Internal Medicine, University of Texas Medical Branch at Galveston, TX 77555, USA; Department of Sealy Center for Molecular Medicine, University of Texas Medical Branch at Galveston, TX 77555, USA
| | - Roberto P Garofalo
- Department of Pediatrics, University of Texas Medical Branch at Galveston, TX 77555, USA
| | - Antonella Casola
- Department of Pediatrics, University of Texas Medical Branch at Galveston, TX 77555, USA; Department of Sealy Center for Molecular Medicine, University of Texas Medical Branch at Galveston, TX 77555, USA.
| |
Collapse
|
57
|
Abed DA, Goldstein M, Albanyan H, Jin H, Hu L. Discovery of direct inhibitors of Keap1-Nrf2 protein-protein interaction as potential therapeutic and preventive agents. Acta Pharm Sin B 2015; 5:285-99. [PMID: 26579458 PMCID: PMC4629420 DOI: 10.1016/j.apsb.2015.05.008] [Citation(s) in RCA: 238] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 05/11/2015] [Indexed: 02/07/2023] Open
Abstract
The Keap1–Nrf2–ARE pathway is an important antioxidant defense mechanism that protects cells from oxidative stress and the Keap1–Nrf2 protein–protein interaction (PPI) has become an important drug target to upregulate the expression of ARE-controlled cytoprotective oxidative stress response enzymes in the development of therapeutic and preventive agents for a number of diseases and conditions. However, most known Nrf2 activators/ARE inducers are indirect inhibitors of Keap1–Nrf2 PPI and they are electrophilic species that act by modifying the sulfhydryl groups of Keap1׳s cysteine residues. The electrophilicity of these indirect inhibitors may cause "off-target" side effects by reacting with cysteine residues of other important cellular proteins. Efforts have recently been focused on the development of direct inhibitors of Keap1–Nrf2 PPI. This article reviews these recent research efforts including the development of high throughput screening assays, the discovery of peptide and small molecule direct inhibitors, and the biophysical characterization of the binding of these inhibitors to the target Keap1 Kelch domain protein. These non-covalent direct inhibitors of Keap1–Nrf2 PPI could potentially be developed into effective therapeutic or preventive agents for a variety of diseases and conditions.
Collapse
Key Words
- 1O2, singlet oxygen
- AD, Alzheimer׳s disease
- ARE, antioxidant response element
- BTB, broad complex, tramtrack and bric-a-brac
- Bach1, BTB and CNC homology 1
- CBP, cAMP response element binding (CREB) protein
- CDDO-Me, bardoxolone methyl
- COPD, chronic obstructive pulmonary disease
- CTR, C-terminal region
- CVD, cardiovascular disease
- DGR, double glycine repeats
- Direct inhibitors of protein–protein interaction
- FITC, flurescein isothiocyanate
- FP, fluorescence polarization
- GCL, glutamate-cysteine ligase
- GPx, glutathione peroxidase
- GST, glutathione S-transferase
- H2O2, hydrogen peroxide
- HO-1, heme-oxygenase-1
- HTS, high-throughput screening
- High throughput screening assays
- IBS, inflammatory bowel disease
- IVR, intervening region
- Keap1
- Keap1, Kelch-like ECH-associated protein 1
- MD, molecular dynamics
- NMR, .
- NO, nitric oxide
- NQO1, NAD(P)H quinone oxidoreductase I
- NTR, N-terminal region
- Nrf2
- Nrf2, nuclear factor erythroid 2–related factor 2
- Oxidative stress
- PD, Parkinson׳s disease
- PPI, protein–protein interaction
- RNS, reactive nitrogen species
- ROS, reactive oxygen species
- SOD, superoxide dismutase
- SPR, surface plasmon resonance
- STZ, streptozotocin
- Structure–activity relationships
- THIQ, tetrahydroisoquinoline
- TRX, thioredoxin
- X-ray crystallography
- [Formula: see text], peroxynitrate
- [Formula: see text], superoxide, OH·, hydroxyl radical
- vitamin C, ascorbate
- vitamin E, tocopherols
Collapse
|
58
|
Basler CF. Innate immune evasion by filoviruses. Virology 2015; 479-480:122-30. [DOI: 10.1016/j.virol.2015.03.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 03/17/2015] [Indexed: 01/07/2023]
|
59
|
Peiffer KH, Akhras S, Himmelsbach K, Hassemer M, Finkernagel M, Carra G, Nuebling M, Chudy M, Niekamp H, Glebe D, Sarrazin C, Zeuzem S, Hildt E. Intracellular accumulation of subviral HBsAg particles and diminished Nrf2 activation in HBV genotype G expressing cells lead to an increased ROI level. J Hepatol 2015; 62:791-8. [PMID: 25445396 DOI: 10.1016/j.jhep.2014.11.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 10/06/2014] [Accepted: 11/23/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Hepatitis B virus genotype G (HBV/G) is characterized by a lack of HBeAg secretion and very low HBsAg secretion. This study aimed at (1) comparing HBV genotype G and A2 with respect to morphogenesis and release of HBV-derived particles, (2) characterizing factors contributing to HBV/G-associated pathogenesis. METHODS HBV/G- and HBV/A-expressing hepatoma cells and infected HepaRG cells were analyzed by confocal laser scanning microscopy, Western blot, real-time PCR, density gradient centrifugation, and electron microscopy. Modulation of the transcription factors Nrf2 and AP-1 was analyzed. RESULTS While the release of viral particles is not affected in HBV/G replicating cells, the secretion of subviral particles is impaired, although they are produced in high amounts. These subviral particles, which display an increased density and a predominantly filamentous morphology, accumulate at the endoplasmic reticulum. The PreS1PreS2 domain of genotype G, which forms aggregates, causes the block of HBsAg-secretion at the ER and leads to decreased transcriptional activator function of LHBs. Intracellular accumulation of HBsAg and impaired induction of the cytoprotective transcription factor Nrf2 lead to an elevated level of ROIs. This results in activation of JNK and as a consequence in Ser-phosphorylation of IRS-1, which is known to impair insulin signaling, a key factor for liver regeneration. CONCLUSIONS Although competent for release of viral particles, secretion of subviral particles is impaired in HBV/G expressing cells leading to ER-stress. In parallel, HBV-induced Nrf2 activation diminishes, which causes a decrease of the capacity to inactivate ROIs. This might be related to genotype-specific pathogenesis.
Collapse
Affiliation(s)
- Kai-Henrik Peiffer
- Goethe-University Hospital Frankfurt, Department of Gastroenterology and Hepatology, D-60590 Frankfurt am Main, Germany; Paul Ehrlich Institut, Division of Virology, D-63325 Langen, Germany.
| | - Sami Akhras
- Paul Ehrlich Institut, Division of Virology, D-63325 Langen, Germany
| | | | - Matthias Hassemer
- Paul Ehrlich Institut, Division of Virology, D-63325 Langen, Germany
| | - Malin Finkernagel
- Paul Ehrlich Institut, Division of Virology, D-63325 Langen, Germany
| | - Gert Carra
- Paul Ehrlich Institut, Division of Virology, D-63325 Langen, Germany
| | - Michael Nuebling
- Paul Ehrlich Institut, Division of Virology, D-63325 Langen, Germany
| | - Michael Chudy
- Paul Ehrlich Institut, Division of Virology, D-63325 Langen, Germany
| | - Hauke Niekamp
- Justus-Liebig University, Institute of Medical Virology, National Reference Centre for Hepatitis B and D Viruses, D-35392 Giessen, Germany; DZIF, German Center for Infection Research, Germany
| | - Dieter Glebe
- Justus-Liebig University, Institute of Medical Virology, National Reference Centre for Hepatitis B and D Viruses, D-35392 Giessen, Germany; DZIF, German Center for Infection Research, Germany
| | - Christoph Sarrazin
- Goethe-University Hospital Frankfurt, Department of Gastroenterology and Hepatology, D-60590 Frankfurt am Main, Germany
| | - Stefan Zeuzem
- Goethe-University Hospital Frankfurt, Department of Gastroenterology and Hepatology, D-60590 Frankfurt am Main, Germany
| | - Eberhard Hildt
- Paul Ehrlich Institut, Division of Virology, D-63325 Langen, Germany; DZIF, German Center for Infection Research, Germany.
| |
Collapse
|
60
|
Montella M, D'Arena G, Crispo A, Capunzo M, Nocerino F, Grimaldi M, Barbieri A, D'Ursi AM, Tecce MF, Amore A, Galdiero M, Ciliberto G, Giudice A. Role of Sex Hormones in the Development and Progression of Hepatitis B Virus-Associated Hepatocellular Carcinoma. Int J Endocrinol 2015; 2015:854530. [PMID: 26491442 PMCID: PMC4600563 DOI: 10.1155/2015/854530] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/29/2015] [Accepted: 07/01/2015] [Indexed: 12/25/2022] Open
Abstract
Infection with hepatitis B virus (HBV) is a major risk factor for hepatocellular carcinoma (HCC) in developed countries. Epidemiological reports indicate that the incidence of HBV-related HCC is higher in males and postmenopausal females than other females. Increasing evidence suggests that sex hormones such as androgens and estrogens play an important role in the progression of an HBV infection and in the development of HBV-related HCC. While androgen is supposed to stimulate the androgen signaling pathway and cooperate to the increased transcription and replication of HBV genes, estrogen may play a protecting role against the progression of HBV infections and in the development of HBV-related HCC through decreasing HBV RNA transcription and inflammatory cytokines levels. Additionally, sex hormones can also affect HBV-related hepatocarcinogenesis by inducing epigenetic changes such as the regulation of mRNA levels by microRNAs (miRNAs), DNA methylation, and histone modification in liver tissue. This review describes the molecular mechanisms underlying the gender disparity in HBV-related HCC with the aim of improving the understanding of key factors underneath the sex disparity often observed in HBV infections. Furthermore, the review will propose more effective prevention strategies and treatments of HBV-derived diseases.
Collapse
Affiliation(s)
- Maurizio Montella
- Epidemiology Unit, National Cancer Institute of Naples “G. Pascale Foundation”, IRCCS, 80131 Naples, Italy
- *Maurizio Montella:
| | - Giovanni D'Arena
- Department of Onco-Hematology, IRCCS, Cancer Referral Center of Basilicata, 85028 Rionero in Vulture, Italy
| | - Anna Crispo
- Epidemiology Unit, National Cancer Institute of Naples “G. Pascale Foundation”, IRCCS, 80131 Naples, Italy
| | - Mario Capunzo
- Department of Medicine and Surgery, University of Salerno, 84081 Fisciano, Italy
| | - Flavia Nocerino
- Epidemiology Unit, National Cancer Institute of Naples “G. Pascale Foundation”, IRCCS, 80131 Naples, Italy
| | - Maria Grimaldi
- Epidemiology Unit, National Cancer Institute of Naples “G. Pascale Foundation”, IRCCS, 80131 Naples, Italy
| | - Antonio Barbieri
- Animal Facility, National Cancer Institute of Naples “G. Pascale Foundation”, IRCCS, 80131 Naples, Italy
| | - Anna Maria D'Ursi
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Salerno, Italy
| | - Mario Felice Tecce
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Salerno, Italy
| | - Alfonso Amore
- Department of Surgery, National Cancer Institute of Naples “G. Pascale Foundation”, IRCCS, 80131 Naples, Italy
| | | | - Gennaro Ciliberto
- National Cancer Institute “G. Pascale Foundation”, IRCCS, 80131 Naples, Italy
| | - Aldo Giudice
- Epidemiology Unit, National Cancer Institute of Naples “G. Pascale Foundation”, IRCCS, 80131 Naples, Italy
| |
Collapse
|
61
|
Kaposi's sarcoma-associated herpesvirus induces Nrf2 activation in latently infected endothelial cells through SQSTM1 phosphorylation and interaction with polyubiquitinated Keap1. J Virol 2014; 89:2268-86. [PMID: 25505069 DOI: 10.1128/jvi.02742-14] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Nuclear factor erythroid 2-related factor 2 (Nrf2), the cellular master regulator of the antioxidant response, dissociates from its inhibitor Keap1 when activated by stress signals and participates in the pathogenesis of viral infections and tumorigenesis. Early during de novo infection of endothelial cells, KSHV induces Nrf2 through an intricate mechanism involving reactive oxygen species (ROS) and prostaglandin E2 (PGE2). When we investigated the Nrf2 activity during latent KSHV infection, we observed increased nuclear serine-40-phosphorylated Nrf2 in human KS lesions compared to that in healthy tissues. Using KSHV long-term-infected endothelial cells (LTC) as a cellular model for KS, we demonstrated that KSHV infection induces Nrf2 constitutively by extending its half-life, increasing its phosphorylation by protein kinase Cζ (PKCζ) via the infection-induced cyclooxygenase-2 (COX-2)/PGE2 axis and inducing its nuclear localization. Nrf2 knockdown in LTC decreased expression of antioxidant genes and genes involved in KS pathogenesis such as the NAD(P)H quinone oxidase 1 (NQO1), gamma glutamylcysteine synthase heavy unit (γGCSH), the cysteine transporter (xCT), interleukin 6 (IL-6), and vascular endothelial growth factor A (VEGF-A) genes. Nrf2 activation was independent of oxidative stress but dependent on the autophagic protein sequestosome-1 (SQSTM1; p62). SQSTM1 levels were elevated in LTC, a consequence of protein accumulation due to decreased autophagy and Nrf2-mediated transcriptional activation. SQSTM1 was phosphorylated on serine-351 and -403, while Keap1 was polyubiquitinated with lysine-63-ubiquitin chains, modifications known to increase their mutual affinity and interaction, leading to Keap1 degradation and Nrf2 activation. The latent KSHV protein Fas-associated death domain-like interleukin-1β-converting enzyme-inhibitory protein (vFLIP) increased SQSTM1 expression and activated Nrf2. Collectively, these results demonstrate that KSHV induces SQSTM1 to constitutively activate Nrf2, which is involved in the regulation of genes participating in KSHV oncogenesis. IMPORTANCE The transcription factor Nrf2 is activated by stress signals, including viral infection, and responds by activating the transcription of cytoprotective genes. Recently, Nrf2 has been implicated in oncogenesis and was shown to be activated during de novo KSHV infection of endothelial cells through ROS-dependent pathways. The present study was undertaken to determine the mechanism of Nrf2 activation during prolonged latent infection of endothelial cells, using an endothelial cell line latently infected with KSHV. We show that Nrf2 activation was elevated in KSHV latently infected endothelial cells independently of oxidative stress but dependent on the autophagic protein sequestosome-1 (SQSTM1), which was involved in the degradation of the Nrf2 inhibitor Keap1. Furthermore, our results indicated that the KSHV latent protein vFLIP participates in Nrf2 activation. This study suggests that KSHV hijacks the host's autophagic protein SQSTM1 to induce Nrf2 activation, thereby manipulating the infected host gene regulation to promote KS pathogenesis.
Collapse
|
62
|
Abstract
Oxidative stress is a common feature observed in a wide spectrum of chronic liver diseases including viral hepatitis, alcoholic, and nonalcoholic steatohepatitis. The nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs) are emerging as major sources of reactive oxygen species (ROS). Several major isoforms are expressed in the liver, including NOX1, NOX2, and NOX4. While the phagocytic NOX2 has been known to play an important role in Kupffer cell and neutrophil phagocytic activity and inflammation, the nonphagocytic NOX homologues are increasingly recognized as key enzymes in oxidative injury and wound healing. In this review, we will summarize the current advances in knowledge on the regulatory pathways of NOX activation, their cellular distribution, and their role in the modulation of redox signaling in liver diseases.
Collapse
|
63
|
Tang W, Jiang YF, Ponnusamy M, Diallo M. Role of Nrf2 in chronic liver disease. World J Gastroenterol 2014; 20:13079-13087. [PMID: 25278702 PMCID: PMC4177487 DOI: 10.3748/wjg.v20.i36.13079] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/08/2014] [Accepted: 05/26/2014] [Indexed: 02/06/2023] Open
Abstract
Nuclear erythroid 2-related factor 2 (Nrf2) is a central regulator of antioxidative response elements-mediated gene expression. It has a significant role in adaptive responses to oxidative stress by interacting with the antioxidant response element, which induces the expression of a variety of downstream targets aimed at cytoprotection. Previous studies suggested oxidative stress and associated damage could represent a common link between different forms of diseases. Oxidative stress has been implicated in various liver diseases, including viral hepatitis, nonalcoholic fatty liver disease/steatohepatitis, alcoholic liver disease and drug-induced liver injury. Nrf2 activation is initiated by oxidative or electrophilic stress, and aids in the detoxification and elimination of potentially harmful exogenous chemicals and their metabolites. The expression of Nrf2 has been observed throughout human tissue, with high expression in detoxification organs, especially the liver. Thus, Nrf2 may serve as a major regulator of several cellular defense associated pathways by which hepatic cells combat oxidative stress. We review the relevant literature concerning the crucial role of Nrf2 and its signaling pathways against oxidative stress to protect hepatic cell from oxidative damage during development of common chronic liver diseases. We also review the use of Nrf2 as a therapeutic target to prevent and treat liver diseases.
Collapse
|
64
|
Geismann C, Arlt A, Sebens S, Schäfer H. Cytoprotection "gone astray": Nrf2 and its role in cancer. Onco Targets Ther 2014; 7:1497-518. [PMID: 25210464 PMCID: PMC4155833 DOI: 10.2147/ott.s36624] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Nrf2 has gained great attention with respect to its pivotal role in cell and tissue protection. Primarily defending cells against metabolic, xenobiotic and oxidative stress, Nrf2 is essential for maintaining tissue integrity. Owing to these functions, Nrf2 is regarded as a promising drug target in the chemoprevention of diseases, including cancer. However, much evidence has accumulated that the beneficial role of Nrf2 in cancer prevention essentially depends on the tight control of its activity. In fact, the deregulation of Nrf2 is a critical determinant in oncogenesis and found in many types of cancer. Therefore, amplified Nrf2 activity has profound effects on the phenotype of tumor cells, including radio/chemoresistance, apoptosis protection, invasiveness, antisenescence, autophagy deficiency, and angiogenicity. The deregulation of Nrf2 can result from various epigenetic and genetic alterations directly affecting Nrf2 control or from the complex interplay of Nrf2 with numerous oncogenic signaling pathways. Additionally, alterations of the cellular environment, eg, during inflammation, contribute to Nrf2 deregulation and its persistent activation. Therefore, the status of Nrf2 as anti- or protumorigenic is defined by many different modalities. A better understanding of these modalities is essential for the safe use of Nrf2 as an activation target for chemoprevention on the one hand and as an inhibition target in cancer therapy on the other. The present review mainly addresses the conditions that promote the oncogenic function of Nrf2 and the resulting consequences providing the rationale for using Nrf2 as a target structure in cancer therapy.
Collapse
Affiliation(s)
- Claudia Geismann
- Laboratory of Molecular Gastroenterology, Department of Internal Medicine I, Universitätsklinikum Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Alexander Arlt
- Laboratory of Molecular Gastroenterology, Department of Internal Medicine I, Universitätsklinikum Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Susanne Sebens
- Inflammatory Carcinogenesis Research Group, Institute of Experimental Medicine, Universitätsklinikum Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Heiner Schäfer
- Laboratory of Molecular Gastroenterology, Department of Internal Medicine I, Universitätsklinikum Schleswig-Holstein Campus Kiel, Kiel, Germany
| |
Collapse
|
65
|
Dietary Lycium barbarum polysaccharide induces Nrf2/ARE pathway and ameliorates insulin resistance induced by high-fat via activation of PI3K/AKT signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:145641. [PMID: 25045414 PMCID: PMC4089200 DOI: 10.1155/2014/145641] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 06/03/2014] [Indexed: 02/08/2023]
Abstract
Lycium barbarum polysaccharide (LBP), an antioxidant from wolfberry, displays the antioxidative and anti-inflammatory effects on experimental models of insulin resistance in vivo. However, the effective mechanism of LBP on high-fat diet-induced insulin resistance is still unknown. The objective of the study was to investigate the mechanism involved in LBP-mediated phosphatidylinositol 3-kinase (PI3K)/AKT/Nrf2 axis against high-fat-induced insulin resistance. HepG2 cells were incubated with LBP for 12 hrs in the presence of palmitate. C57BL/6J mice were fed a high-fat diet supplemented with LBP for 24 weeks. We analyzed the expression of nuclear factor-E2-related factor 2 (Nrf2), Jun N-terminal kinases (JNK), and glycogen synthase kinase 3β (GSK3β) involved in insulin signaling pathway in vivo and in vitro. First, LBP significantly induced phosphorylation of Nrf2 through PI3K/AKT signaling. Second, LBP obviously increased detoxification and antioxidant enzymes expression and reduced reactive oxygen species (ROS) levels via PI3K/AKT/Nrf2 axis. Third, LBP also regulated phosphorylation levels of GSK3β and JNK through PI3K/AKT signaling. Finally, LBP significantly reversed glycolytic and gluconeogenic genes expression via the activation of Nrf2-mediated cytoprotective effects. In summary, LBP is novel antioxidant against insulin resistance induced by high-fat diet via activation of PI3K/AKT/Nrf2 pathway.
Collapse
|
66
|
Zhang HM, Dai H, Hanson PJ, Li H, Guo H, Ye X, Hemida MG, Wang L, Tong Y, Qiu Y, Liu S, Wang F, Song F, Zhang B, Wang JG, Zhang LX, Yang D. Antiviral activity of an isatin derivative via induction of PERK-Nrf2-mediated suppression of cap-independent translation. ACS Chem Biol 2014; 9:1015-24. [PMID: 24547890 DOI: 10.1021/cb400775z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We report here an isatin derivative 45 (ID45) against coxsackievirus B3 (CVB3) replication, which was synthesized based on a high-throughput screen of a unique natural product library. ID45 showed the most potent anti-CVB3 activity among the four synthesized compounds. Treatment of cells with ID45 before or after infection significantly reduced viral particle formation, resulting in protection of cells from virus-induced apoptosis. In addition, ID45 treatment caused remarkable up-regulation of glucose-regulated protein 78 (GRP78), a hallmark of endoplasmic reticulum (ER) stress and an indicator of enhanced cell viability. In identifying the ER stress response pathway induced by ID45, we found that ID45 activated PKR-like ER protein kinase (PERK) but failed to up-regulate eIF2α phosphorylation. Instead ID45 activated transcription factor Nrf2 (NF-E2-related factor-2), which is evidenced by its nuclear translocation and upregulation of its downstream target genes NQO1 (NAD(P)H quinone-oxidoreductase 1) and GCLM (glutamate-cysteine ligase, modifier subunit). This observation was further verified by using siRNAs of GRP78 or Nrf2, which blocked both the translocation of Nrf2 and up-regulation of its target genes, leading to aggressive viral replication and enhanced cell apoptosis. Finally, we found that ID45-induced up-regulation of NQO1 protected eIF4GI, a eukaryotic cap-dependent translation initiation factor, from cleavage by CVB3 protease and degradation by proteasomes. Taken together, our findings established that a novel antiviral mechanism of isatin derivative ID45 inhibits CVB3 replication by promoting cell survival through a PERK/Nrf2-dependent ER stress pathway, which benefits host cap-dependent translation but suppresses CVB3 cap-independent translation.
Collapse
Affiliation(s)
- Huifang M. Zhang
- Department
of Pathology and Laboratory Medicine, University of British Columbia, Institute for Heart and Lung Health, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
| | - Huanqin Dai
- Key Laboratory of Pathogenic Microbiology & Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Paul J. Hanson
- Department
of Pathology and Laboratory Medicine, University of British Columbia, Institute for Heart and Lung Health, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
| | - Huidong Li
- State-Key
Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin, China
| | - Hui Guo
- Key Laboratory of Pathogenic Microbiology & Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Graduate
University, Chinese Academy of Sciences, Beijing, China
| | - Xin Ye
- Department
of Pathology and Laboratory Medicine, University of British Columbia, Institute for Heart and Lung Health, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
| | - Maged G. Hemida
- Department
of Pathology and Laboratory Medicine, University of British Columbia, Institute for Heart and Lung Health, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
| | - Luoqiang Wang
- Key Laboratory of Pathogenic Microbiology & Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- School
of Life Sciences, Anhui University, Hefei, China
| | - Yaojun Tong
- Key Laboratory of Pathogenic Microbiology & Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Graduate
University, Chinese Academy of Sciences, Beijing, China
| | - Ye Qiu
- Department
of Pathology and Laboratory Medicine, University of British Columbia, Institute for Heart and Lung Health, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
| | - Selina Liu
- Department
of Pathology and Laboratory Medicine, University of British Columbia, Institute for Heart and Lung Health, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
| | - Fengping Wang
- Department
of Pathology and Laboratory Medicine, University of British Columbia, Institute for Heart and Lung Health, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
- Department
of Emergency, Harbin Medical University, Heilongjiang, China
| | - Fuhang Song
- Key Laboratory of Pathogenic Microbiology & Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Buchang Zhang
- School
of Life Sciences, Anhui University, Hefei, China
| | - Jian-Guo Wang
- State-Key
Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin, China
| | - Li-Xin Zhang
- Key Laboratory of Pathogenic Microbiology & Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- School
of Life Sciences, Anhui University, Hefei, China
| | - Decheng Yang
- Department
of Pathology and Laboratory Medicine, University of British Columbia, Institute for Heart and Lung Health, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
| |
Collapse
|
67
|
Matsuda Y, Sanpei A, Wakai T, Kubota M, Osawa M, Hirose Y, Sakata J, Kobayashi T, Fujimaki S, Takamura M, Yamagiwa S, Yano M, Ohkoshi S, Aoyagi Y. Hepatitis B virus X stimulates redox signaling through activation of ataxia telangiectasia mutated kinase. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:2032-2043. [PMID: 24966912 PMCID: PMC4069949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 03/25/2014] [Indexed: 06/03/2023]
Abstract
Hepatitis B virus X (HBX) protein plays a crucial role in carcinogenesis, but its mechanism is unclear. The involvement of ataxia telangiectasia mutated (ATM) kinase in the enhanced redox system was investigated by examining the phosphorylation level of ATM in HBX gene-transfected cells and in transgenic mice following redox system manipulation by treatment with hydrogen peroxide (H2O2) or antioxidant. Western blotting and immunostaining showed that phospho-ATM was significantly increased by HBX both in vitro (3.2-fold; p<0.05) and in vivo (4-fold; p<0.05), and this effect was abrogated by antioxidant treatment. The level of PKC-δ in HBX-expressing cells was increased 3.5-fold compared to controls. Nuclear localized NF-E2-related factor 2 (Nrf2) was increased in HBX-expressing cells exposed to H2O2, but remained at lower levels after the treatment with rottlerin, KU55933, or caffeine. The levels of anti-oxidant molecules were increased in HBX expressing cells and in transgenic mice, indicating that HBX stimulates the Nrf2-mediated redox system. The levels of intracellular reactive oxygen species (ROS) were significantly increased in HBX-expressing cells treated with hydrogen peroxide in the presence of ATM inhibitor KU55933 or caffeine. Treatment of HBX-expressing cells with KU55933 or caffeine before the exposure to H2O2 increased the ratio of cell apoptosis to 33±4% (p<0.05) and 22±4% (p<0.05), respectively. Collectively, HBX stimulates the ATM-mediated PKC-δ/Nrf2 pathway, and maintains the enhanced activity of the redox system. Therefore, manipulating ATM kinase activity might be a useful strategy for treating HBX-induced carcinogenesis.
Collapse
Affiliation(s)
- Yasunobu Matsuda
- Department of Medical Technology, Niigata University Graduate School of Health Sciences2-746 Asahimachi-dori, Chuo-Ku, Niigata 951-8518, Japan
| | - Ayumi Sanpei
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences1-757, Asahimachi-dori, Chuo-Ku, Niigata 951-8122, Japan
| | - Toshifumi Wakai
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences1-757, Asahimachi-dori, Chuo-Ku, Niigata 951-8122, Japan
| | - Masayuki Kubota
- Division of Pediatric Surgery, Niigata University Graduate School of Medical and Dental Sciences1-757, Asahimachi-dori, Chuo-Ku, Niigata 951-8122, Japan
| | - Mami Osawa
- Division of Pediatric Surgery, Niigata University Graduate School of Medical and Dental Sciences1-757, Asahimachi-dori, Chuo-Ku, Niigata 951-8122, Japan
| | - Yuki Hirose
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences1-757, Asahimachi-dori, Chuo-Ku, Niigata 951-8122, Japan
| | - Jun Sakata
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences1-757, Asahimachi-dori, Chuo-Ku, Niigata 951-8122, Japan
| | - Takashi Kobayashi
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences1-757, Asahimachi-dori, Chuo-Ku, Niigata 951-8122, Japan
| | - Shun Fujimaki
- Department of Medical Technology, Niigata University Graduate School of Health Sciences2-746 Asahimachi-dori, Chuo-Ku, Niigata 951-8518, Japan
| | - Masaaki Takamura
- Division of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences1-757, Asahimachi-dori, Chuo-Ku, Niigata 951-8122, Japan
| | - Satoshi Yamagiwa
- Division of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences1-757, Asahimachi-dori, Chuo-Ku, Niigata 951-8122, Japan
| | - Masahiko Yano
- Division of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences1-757, Asahimachi-dori, Chuo-Ku, Niigata 951-8122, Japan
| | - Shogo Ohkoshi
- Division of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences1-757, Asahimachi-dori, Chuo-Ku, Niigata 951-8122, Japan
| | - Yutaka Aoyagi
- Division of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences1-757, Asahimachi-dori, Chuo-Ku, Niigata 951-8122, Japan
| |
Collapse
|
68
|
The adjuvant component α-tocopherol triggers via modulation of Nrf2 the expression and turnover of hypocretin in vitro and its implication to the development of narcolepsy. Vaccine 2014; 32:2980-8. [PMID: 24721530 DOI: 10.1016/j.vaccine.2014.03.085] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 03/18/2014] [Accepted: 03/26/2014] [Indexed: 11/21/2022]
Abstract
BACKGROUND After the H1N1 swine flu vaccination campaign an increased number of narcolepsy cases in children and adolescents was observed in Scandinavian and later in further European countries that correlated with the vaccination by an AS03-adjuvanted influenza vaccine (Pandemrix). Narcolepsy is a chronic sleep disorder characterized by the loss of hypocretin in the cerebrospinal fluid due to selective destruction of hypocretin-producing neurons in the perifornical hypothalamus. In >99% of the cases narcolepsy is associated with the HLA-subtype DQB1*602 giving the link to an autoimmune process. In contrast to other squalene-based adjuvants, for which no association with narcolepsy was reported so far, ASO3 contains in addition α-tocopherol. It could be observed recently that α-tocopherol activates the transcription factor Nrf2. Nrf2 triggers the expression of cytoprotective genes, i.e. the catalytic active subunits of the constitutive proteasome, by binding to the antioxidant response element (ARE). It was hypothesized that α-tocopherol via activation of Nrf2 affects expression and turnover of hypocretin, leading to an increased amount of hypocretinα-specific fragments that bind to DQB1*602. RESULTS α-Tocopherol activates Nrf2 in neuronal cells in vitro. Promoter analysis revealed an ARE sequence in the hypocretin promoter. Indeed, α-tocopherol increases by activation of Nrf2 the expression of hypocretin. In parallel, α-tocopherol -dependent induction of Nrf2 augments expression of catalytic subunits of the proteasome leading to increased degradation of hypocretin. Moreover, elevated activation of Nrf2 is associated with a decreased activity of NF-κB that results in an increased sensitivity to apoptotic stimuli. CONCLUSION In case of a genetic predisposition (DQB1*602) α-tocopherol could confer to development of narcolepsy by activation of Nrf2 that finally leads to an elevated formation of longer hypocretin-derived fragments that can be presented by HLA-subtype DQB1*602. These cells are recognized by the immune system and due to their increased sensitivity to apoptotic stimuli they can be destroyed, finally leading to a lack of hypocretin.
Collapse
|
69
|
Edwards MR, Johnson B, Mire CE, Xu W, Shabman RS, Speller LN, Leung DW, Geisbert TW, Amarasinghe GK, Basler CF. The Marburg virus VP24 protein interacts with Keap1 to activate the cytoprotective antioxidant response pathway. Cell Rep 2014; 6:1017-1025. [PMID: 24630991 DOI: 10.1016/j.celrep.2014.01.043] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 12/12/2013] [Accepted: 01/30/2014] [Indexed: 12/16/2022] Open
Abstract
Kelch-like ECH-associated protein 1 (Keap1) is a ubiquitin E3 ligase specificity factor that targets transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2) for ubiquitination and degradation. Disrupting Keap1-Nrf2 interaction stabilizes Nrf2, resulting in Nrf2 nuclear accumulation, binding to antioxidant response elements (AREs), and transcription of cytoprotective genes. Marburg virus (MARV) is a zoonotic pathogen that likely uses bats as reservoir hosts. We demonstrate that MARV protein VP24 (mVP24) binds the Kelch domain of either human or bat Keap1. This binding is of high affinity and 1:1 stoichiometry and activates Nrf2. Modeling based on the Zaire ebolavirus (EBOV) VP24 (eVP24) structure identified in mVP24 an acidic loop (K-loop) critical for Keap1 interaction. Transfer of the K-loop to eVP24, which otherwise does not bind Keap1, confers Keap1 binding and Nrf2 activation, and infection by MARV, but not EBOV, activates ARE gene expression. Therefore, MARV targets Keap1 to activate Nrf2-induced cytoprotective responses during infection.
Collapse
Affiliation(s)
- Megan R Edwards
- Department Microbiology, Icahn School of Medicine, Mount Sinai, New York, NY 10029, USA
| | - Britney Johnson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chad E Mire
- Galveston National Laboratory, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Wei Xu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Reed S Shabman
- Department Microbiology, Icahn School of Medicine, Mount Sinai, New York, NY 10029, USA
| | - Lauren N Speller
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daisy W Leung
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Thomas W Geisbert
- Galveston National Laboratory, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Christopher F Basler
- Department Microbiology, Icahn School of Medicine, Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
70
|
Page A, Volchkova V, Reid S, Mateo M, Bagnaud-Baule A, Nemirov K, Shurtleff A, Lawrence P, Reynard O, Ottmann M, Lotteau V, Biswal S, Thimmulappa R, Bavari S, Volchkov V. Marburgvirus Hijacks Nrf2-Dependent Pathway by Targeting Nrf2-Negative Regulator Keap1. Cell Rep 2014; 6:1026-1036. [DOI: 10.1016/j.celrep.2014.02.027] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 12/13/2013] [Accepted: 02/18/2014] [Indexed: 12/26/2022] Open
|
71
|
Higgs MR, Chouteau P, Lerat H. 'Liver let die': oxidative DNA damage and hepatotropic viruses. J Gen Virol 2014; 95:991-1004. [PMID: 24496828 DOI: 10.1099/vir.0.059485-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Chronic infections by the hepatotropic viruses hepatitis B virus (HBV) and hepatitis C virus (HCV) are major risk factors for the development of hepatocellular carcinoma (HCC). It is estimated that more than 700,000 individuals per year die from HCC, and around 80 % of HCC is attributable to HBV or HCV infection. Despite the clear clinical importance of virus-associated HCC, the underlying molecular mechanisms remain largely elusive. Oxidative stress, in particular DNA lesions associated with oxidative damage, play a major contributory role in carcinogenesis, and are strongly linked to the development of many cancers, including HCC. A large body of evidence demonstrates that both HBV and HCV induce hepatic oxidative stress, with increased oxidative DNA damage being observed both in infected individuals and in murine models of infection. Here, we review the impact of HBV and HCV on the incidence and repair of oxidative DNA damage. We begin by giving a brief overview of oxidative stress and the repair of DNA lesions induced by oxidative stress. We then review in detail the evidence surrounding the mechanisms by which both viruses stimulate oxidative stress, before focusing on how the viral proteins themselves may perturb the cellular response to oxidative DNA damage, impacting upon genome stability and thus hepatocarcinogenesis.
Collapse
Affiliation(s)
- Martin R Higgs
- School of Cancer Sciences, University of Birmingham, Birmingham, UK
| | | | - Hervé Lerat
- INSERM U955, Université Paris-Est, Créteil, France
| |
Collapse
|
72
|
Lupberger J, Schaedler S, Peiran A, Hildt E. Identification and characterization of a novel bipartite nuclear localization signal in the hepatitis B virus polymerase. World J Gastroenterol 2013; 19:8000-8010. [PMID: 24307793 PMCID: PMC3848147 DOI: 10.3748/wjg.v19.i44.8000] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/10/2013] [Accepted: 09/17/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To characterize the nuclear import of hepatitis B virus (HBV) polymerase (P) and its relevance for the viral life cycle.
METHODS: Sequence analysis was performed to predict functional motives within P. Phosphorylation of P was analyzed by in vitro phosphorylation. Phosphorylation site and nuclear localization signal (NLS) were destroyed by site directed mutagenesis. Functionality of the identified NLS was analyzed by confocal fluorescence microscopy and characterizing the karyopherin binding. Relevance of the structural motives for viral life cycle was studied by infection of primary Tupaia hepatocytes with HBV.
RESULTS: We identified by sequence alignment and functional experiments a conserved bipartite NLS containing a casein kinase II (CKII) phosphorylation site located within the terminal protein domain (TP) of the HBV polymerase. Inhibition of CKII impairs the functionality of this NLS and thereby prevents the nuclear import of the polymerase. Binding of the import factor karyopherin-α2 to the polymerase depends on its CKII-mediated phosphorylation of the bipartite NLS. In HBV-infected primary Tupaia hepatocytes CKII inhibition in the early phase (post entry phase) of the infection process prevents the establishment of the infection.
CONCLUSION: Based on these data it is suggested that during HBV infection the final import of the genome complex into the nucleus is mediated by a novel bipartite NLS localized in the TP domain of HBV polymerase.
Collapse
|
73
|
Hoffmann J, Boehm C, Himmelsbach K, Donnerhak C, Roettger H, Weiss TS, Ploen D, Hildt E. Identification of α-taxilin as an essential factor for the life cycle of hepatitis B virus. J Hepatol 2013; 59:934-41. [PMID: 23816704 DOI: 10.1016/j.jhep.2013.06.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 06/04/2013] [Accepted: 06/20/2013] [Indexed: 01/11/2023]
Abstract
BACKGROUND & AIMS α-taxilin was identified as binding partner of syntaxins and is supposed to regulate vesicular trafficking. However, the physiological functions of α-taxilin and its potential relevance for the life cycle of hepatitis B virus (HBV) are still poorly understood. METHODS Transfected hepatoma cells, infected primary human hepatocytes, and liver tissue of HBV-infected patients were used to study the expression of α-taxilin. Subcellular localization and colocalization were analyzed by confocal laser scanning microscopy (CLSM). Protein-protein interactions were further investigated by co-immunoprecipitations. Silencing of α-taxilin expression was performed by lentiviral gene transfer. RESULTS HBV producing cells show a significant higher level of α-taxilin. HBV induces α-taxilin expression, by its regulatory proteins HBx and LHBs via c-Raf. This indicates that α-taxilin is essential for the release of HBV particles. CLSM and co-immunoprecipitations demonstrated that the PreS1PreS2 domain of LHBs interacts with α-taxilin. α-taxilin harbors a YXXL motif that represents a classic late domain. In accordance with this, it was found by co-immunoprecipitations that α-taxilin interacts with the ESCRT I component tsg101. CLSM revealed that a fraction of α-taxilin colocalizes with LHBs and tsg101. CONCLUSIONS α-taxilin plays an essential role for release of HBV-DNA containing particles. It might act as an adapter that binds, on the one hand, to LHBs and, on the other hand, to tsg101 and thereby helps recruit the ESCRT machinery to the viral envelope proteins.
Collapse
Affiliation(s)
- Jasmin Hoffmann
- Paul-Ehrlich-Institute, Division of Virology, D-63325 Langen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Anand SK, Tikoo SK. Viruses as modulators of mitochondrial functions. Adv Virol 2013; 2013:738794. [PMID: 24260034 PMCID: PMC3821892 DOI: 10.1155/2013/738794] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 08/30/2013] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are multifunctional organelles with diverse roles including energy production and distribution, apoptosis, eliciting host immune response, and causing diseases and aging. Mitochondria-mediated immune responses might be an evolutionary adaptation by which mitochondria might have prevented the entry of invading microorganisms thus establishing them as an integral part of the cell. This makes them a target for all the invading pathogens including viruses. Viruses either induce or inhibit various mitochondrial processes in a highly specific manner so that they can replicate and produce progeny. Some viruses encode the Bcl2 homologues to counter the proapoptotic functions of the cellular and mitochondrial proteins. Others modulate the permeability transition pore and either prevent or induce the release of the apoptotic proteins from the mitochondria. Viruses like Herpes simplex virus 1 deplete the host mitochondrial DNA and some, like human immunodeficiency virus, hijack the host mitochondrial proteins to function fully inside the host cell. All these processes involve the participation of cellular proteins, mitochondrial proteins, and virus specific proteins. This review will summarize the strategies employed by viruses to utilize cellular mitochondria for successful multiplication and production of progeny virus.
Collapse
Affiliation(s)
- Sanjeev K. Anand
- Vaccine & Infection Disease Organization-International Vaccine Center (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, Canada S7E 5E3
- Veterinary Microbiology, University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, Canada S7E 5E3
| | - Suresh K. Tikoo
- Vaccine & Infection Disease Organization-International Vaccine Center (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, Canada S7E 5E3
- Veterinary Microbiology, University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, Canada S7E 5E3
- School of Public Health, University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, Canada S7E 5E3
| |
Collapse
|
75
|
Dayoub R, Vogel A, Schuett J, Lupke M, Spieker SM, Kettern N, Hildt E, Melter M, Weiss TS. Nrf2 activates augmenter of liver regeneration (ALR) via antioxidant response element and links oxidative stress to liver regeneration. Mol Med 2013; 19:237-44. [PMID: 23887691 DOI: 10.2119/molmed.2013.00027] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 07/22/2013] [Indexed: 12/12/2022] Open
Abstract
Liver regeneration can be impaired by permanent oxidative stress and activation of nuclear factor erythroid 2-related factor 2 (Nrf2), known to regulate the cellular antioxidant response, and has been shown to improve the process of liver regeneration. A variety of factors regulate hepatic tissue regeneration, among them augmenter of liver regeneration (ALR), attained great attention as being survival factors for the liver with proproliferative and antiapoptotic properties. Here we determined the Nrf2/antioxidant response element (ARE) regulated expression of ALR and show ALR as a target gene of Nrf2 in vitro and in vivo. The ALR promoter comprises an ARE binding site and, therefore, ALR expression can be induced by ARE-activator tertiary butylhydroquinone (tBHQ) in hepatoma cells and primary human hepatocytes (PHH). Promoter activity and expression of ALR were enhanced after cotransfection of Nrf2 compared with control and dominant negative mutant of Nrf2. Performing partial hepatectomy in livers from Nrf2+/+ mice compared with Nrf2-/- knock-out (KO) mice, we found increased expression of ALR in addition to known antioxidant ARE-regulated genes. Furthermore, we observed increased ALR expression in hepatitis B virus (HBV) compared with hepatitis C virus (HCV) positive hepatoma cells and PHH. Recently, it was demonstrated that HBV infection activates Nrf2 and, now, we add results showing increased ALR expression in liver samples from patients infected with HBV. ALR is regulated by Nrf2, acts as a liver regeneration and antioxidative protein and, therefore, links oxidative stress to hepatic regeneration to ensure survival of damaged cells.
Collapse
Affiliation(s)
- Rania Dayoub
- Department of Pediatrics and Juvenile Medicine, University of Regensburg Hospital, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Role of the Nrf2-ARE pathway in liver diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:763257. [PMID: 23766860 PMCID: PMC3665261 DOI: 10.1155/2013/763257] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 04/12/2013] [Indexed: 12/14/2022]
Abstract
The liver is a central organ that performs a wide range of functions such as detoxification and metabolic homeostasis. Since it is a metabolically active organ, liver is particularly susceptible to oxidative stress. It is well documented that liver diseases including hepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma are highly associated with antioxidant capacity. NF-E2-related factor-2 (Nrf2) is an essential transcription factor that regulates an array of detoxifying and antioxidant defense genes expression in the liver. It is activated in response to electrophiles and induces its target genes by binding to the antioxidant response element (ARE). Therefore, the roles of the Nrf2-ARE pathway in liver diseases have been extensively investigated. Studies from several animal models suggest that the Nrf2-ARE pathway collectively exhibits diverse biological functions against viral hepatitis, alcoholic and nonalcoholic liver disease, fibrosis, and cancer via target gene expression. In this review, we will discuss the role of the Nrf2-ARE pathway in liver pathophysiology and the potential application of Nrf2 as a therapeutic target to prevent and treat liver diseases.
Collapse
|
77
|
Lee J, Koh K, Kim YE, Ahn JH, Kim S. Upregulation of Nrf2 expression by human cytomegalovirus infection protects host cells from oxidative stress. J Gen Virol 2013; 94:1658-1668. [PMID: 23580430 DOI: 10.1099/vir.0.052142-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
NF-E2 related factor 2 (Nrf2) is a transcription factor that plays a key role(s) in cellular defence against oxidative stress. In this study, we showed that the expression of Nrf2 was upregulated in primary human foreskin fibroblasts (HFFs), following human cytomegalovirus (HCMV/HHV-5) infection. The expression of haem oxygenase-1, a downstream target of Nrf2, was also increased by HCMV infection, and this induction was suppressed in HFFs expressing a small hairpin RNA (shRNA) against Nrf2. The HCMV-mediated increase in Nrf2 expression was abolished when UV-irradiated virus was used or when the activity of casein kinase 2 was inhibited. Host cells infected by HCMV had higher survival rates following oxidative stress induced by buthionine sulfoximine compared with uninfected control cells, but this cell-protective effect was abolished by the use of Nrf2 shRNA. Our results suggest that HCMV-mediated activation of Nrf2 might be beneficial to the virus by increasing the host cell's ability to cope with oxidative stress resulting from viral infection and/or inflammation.
Collapse
Affiliation(s)
- Junsub Lee
- School of Biological Sciences, Seoul National University, Seoul 151-747, Korea
| | - Kyungmi Koh
- School of Biological Sciences, Seoul National University, Seoul 151-747, Korea
| | - Young-Eui Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Kyonggido 440-746, Korea
| | - Jin-Hyun Ahn
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Kyonggido 440-746, Korea
| | - Sunyoung Kim
- School of Biological Sciences, Seoul National University, Seoul 151-747, Korea
| |
Collapse
|
78
|
Deramaudt TB, Dill C, Bonay M. Regulation of oxidative stress by Nrf2 in the pathophysiology of infectious diseases. Med Mal Infect 2013; 43:100-7. [PMID: 23499316 DOI: 10.1016/j.medmal.2013.02.004] [Citation(s) in RCA: 242] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 02/04/2013] [Accepted: 02/05/2013] [Indexed: 11/28/2022]
Abstract
The innate immune system, including phagocytic cells, is the first line of defense against pathogens. During infection by microorganisms such as viruses, bacteria, or parasites, phagocytic cells produce an excess of oxidants, a crucial process for the clearance of pathogens. This increase in oxidants creates an imbalance between oxidants and endogenous antioxidants. Left unchecked, this acute or chronic oxidative stress can lead to apoptotic cell-death and oxidative stress-induced diseases including neurodegenerative and cardiovascular disorders, premature aging, secondary infections, and cancer. The activation of nuclear factor E2-related factor 2 (Nrf2) is an efficient antioxidant defensive mechanism used by host cells to counteract oxidative stress. The transcription factor Nrf2 has been identified as the master regulator of several hundred of genes involved in the antioxidant defense response. The review objectives were to collect recent findings on the contribution of oxidative stress to complications of infection, and to highlight the beneficial impact of antioxidants in reducing inflammation and oxidant-related tissue damage. Furthermore, a direct relationship between infection and decline in Nrf2 activity has been demonstrated. Thus, an interesting therapeutic approach in disease prevention and treatment of stress-related diseases may consist in optimizing antibiotic or antiviral therapy with a combination of Nrf2 inducer treatment.
Collapse
Affiliation(s)
- T B Deramaudt
- EA 4497, Equipe Handicap, Motricité et Immunité, Faculté des Sciences de la Santé Paris-Île-de-France-Ouest, Université de Versailles Saint-Quentin-en-Yvelines, 2 Avenue de la Source-de-la-Bièvre, 78180 Montigny-le-Bretonneux, France.
| | | | | |
Collapse
|
79
|
Inhibition of the Nrf2 transcription factor by the alkaloid trigonelline renders pancreatic cancer cells more susceptible to apoptosis through decreased proteasomal gene expression and proteasome activity. Oncogene 2012; 32:4825-35. [PMID: 23108405 DOI: 10.1038/onc.2012.493] [Citation(s) in RCA: 251] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 08/30/2012] [Accepted: 09/13/2012] [Indexed: 12/12/2022]
Abstract
Evidence accumulates that the transcription factor nuclear factor E2-related factor 2 (Nrf2) has an essential role in cancer development and chemoresistance, thus pointing to its potential as an anticancer target and undermining its suitability in chemoprevention. Through the induction of cytoprotective and proteasomal genes, Nrf2 confers apoptosis protection in tumor cells, and inhibiting Nrf2 would therefore be an efficient strategy in anticancer therapy. In the present study, pancreatic carcinoma cell lines (Panc1, Colo357 and MiaPaca2) and H6c7 pancreatic duct cells were analyzed for the Nrf2-inhibitory effect of the coffee alkaloid trigonelline (trig), as well as for its impact on Nrf2-dependent proteasome activity and resistance to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and anticancer drug-induced apoptosis. Chemoresistant Panc1 and Colo357 cells exhibit high constitutive Nrf2 activity, whereas chemosensitive MiaPaca2 and H6c7 cells display little basal but strong tert-butylhydroquinone (tBHQ)-inducible Nrf2 activity and drug resistance. Trig efficiently decreased basal and tBHQ-induced Nrf2 activity in all cell lines, an effect relying on a reduced nuclear accumulation of the Nrf2 protein. Along with Nrf2 inhibition, trig blocked the Nrf2-dependent expression of proteasomal genes (for example, s5a/psmd4 and α5/psma5) and reduced proteasome activity in all cell lines tested. These blocking effects were absent after treatment with Nrf2 siRNA, a condition in which proteasomal gene expression and proteasome activity were already decreased, whereas siRNA against the related transcription factor Nrf1 did not affect proteasome activity and the inhibitory effect of trig. Depending on both Nrf2 and proteasomal gene expression, the sensitivity of all cell lines to anticancer drugs and TRAIL-induced apoptosis was enhanced by trig. Moreover, greater antitumor responses toward anticancer drug treatment were observed in tumor-bearing mice when receiving trig. In conclusion, representing an efficient Nrf2 inhibitor capable of blocking Nrf2-dependent proteasome activity and thereby apoptosis protection in pancreatic cancer cells, trig might be beneficial in improving anticancer therapy.
Collapse
|
80
|
Smirnova OA, Isaguliants MG, Hyvonen MT, Keinanen TA, Tunitskaya VL, Vepsalainen J, Alhonen L, Kochetkov SN, Ivanov AV. Chemically induced oxidative stress increases polyamine levels by activating the transcription of ornithine decarboxylase and spermidine/spermine-N1-acetyltransferase in human hepatoma HUH7 cells. Biochimie 2012; 94:1876-1883. [PMID: 22579641 DOI: 10.1016/j.biochi.2012.04.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Accepted: 04/26/2012] [Indexed: 01/23/2023]
Abstract
Biogenic polyamines spermine and spermidine participate in numerous cellular processes including transcription, RNA processing and translation. Specifically, they counteract oxidative stress, an alteration of cell redox balance involved in generation and progression of various pathological states including cancer. Here, we investigated how chemically induced oxidative stress affects polyamine metabolism, specifically the expression and activities of enzymes catalyzing polyamine synthesis (ornithine decarboxylase; ODC) and degradation (spermidine/spermine-N(1)-acetyltransferase; SSAT), in human hepatoma cells. Oxidative stress induced the up-regulation of ODC and SSAT gene transcription mediated by Nrf2, and in case of SSAT, also by NF-κB transcription factors. Activation of transcription led to the elevated intracellular activities of both enzymes. The balance in antagonistic activities of ODC and SSAT in the stressed hepatoma cells was shifted towards polyamine biosynthesis, which resulted in increased intracellular levels of putrescine, spermidine, and spermine. Accumulation of putrescine is indicating for accelerated degradation of polyamines by SSAT - acetylpolyamine oxidase (APAO) pathway generating toxic products that promote carcinogenesis, whereas accelerated polyamine synthesis via activation of ODC is favorable for proliferation of cells including those sub-lethally damaged by oxidative stress.
Collapse
Affiliation(s)
- Olga A Smirnova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str. 32, 119991 Moscow, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Sebens S, Bauer I, Geismann C, Grage-Griebenow E, Ehlers S, Kruse ML, Arlt A, Schäfer H. Inflammatory macrophages induce Nrf2 transcription factor-dependent proteasome activity in colonic NCM460 cells and thereby confer anti-apoptotic protection. J Biol Chem 2011; 286:40911-21. [PMID: 21990354 PMCID: PMC3220482 DOI: 10.1074/jbc.m111.274902] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 10/07/2011] [Indexed: 12/11/2022] Open
Abstract
Adaptation of epithelial cells to persistent oxidative stress plays an important role in inflammation-associated carcinogenesis. This adaptation process involves activation of Nrf2 (nuclear factor-E2-related factor-2), which has been recently shown to contribute to carcinogenesis through the induction of proteasomal gene expression and proteasome activity. To verify this possible link between inflammation, oxidative stress, and Nrf2-dependent proteasome activation, we explored the impact of inflammatory (M1) macrophages on the human colon epithelial cell line NCM460. Transwell cocultures with macrophages differentiated from granulocyte monocyte-colony-stimulating factor-treated monocytes led to an increased activity of Nrf2 in NCM460 cells along with an elevated proteasome activity. This higher proteasome activity resulted from Nrf2-dependent induction of proteasomal gene expression, as shown for the 19 and 20 S subunit proteins S5a and α5, respectively. These effects of macrophage coculture were preceded by an increase of reactive oxygen species in cocultured NCM460 cells and could be blocked by catalase or by the reactive oxygen species scavenger Tiron, whereas transient treatment of NCM460 cells with H(2)O(2) similarly led to Nrf2-dependent proteasome activation. Through the Nrf2-dependent increase of proteasomal gene expression and proteasome activity, the sensitivity of NCM460 cells to tumor necrosis factor-related apoptosis-inducing ligand- or irinotecan-induced apoptosis declined. These findings indicate that inflammatory conditions such as the presence of M1 macrophages and the resulting oxidative stress are involved in the Nrf2-dependent gain of proteasome activity in epithelial cells, e.g. colonocytes, giving rise of greater resistance to apoptosis. This mechanism might contribute to inflammation-associated carcinogenesis, e.g. of the colon.
Collapse
Affiliation(s)
- Susanne Sebens
- From the Department of Internal Medicine I, Laboratory of Molecular Gastroenterology & Hepatology and
- Institute for Experimental Medicine, Universitätsklinikum Schleswig Holstein-Campus Kiel, Kiel, Germany and
| | - Iris Bauer
- From the Department of Internal Medicine I, Laboratory of Molecular Gastroenterology & Hepatology and
| | - Claudia Geismann
- From the Department of Internal Medicine I, Laboratory of Molecular Gastroenterology & Hepatology and
| | - Evelin Grage-Griebenow
- From the Department of Internal Medicine I, Laboratory of Molecular Gastroenterology & Hepatology and
- Institute for Experimental Medicine, Universitätsklinikum Schleswig Holstein-Campus Kiel, Kiel, Germany and
| | - Stefan Ehlers
- the Division of Molecular Inflammation Medicine, Research Center Borstel, Leibniz Center for Medicine & Biosciences, Borstel, Germany
| | - Marie-Luise Kruse
- From the Department of Internal Medicine I, Laboratory of Molecular Gastroenterology & Hepatology and
| | - Alexander Arlt
- From the Department of Internal Medicine I, Laboratory of Molecular Gastroenterology & Hepatology and
| | - Heiner Schäfer
- From the Department of Internal Medicine I, Laboratory of Molecular Gastroenterology & Hepatology and
| |
Collapse
|
82
|
Cross SA, Cook DR, Chi AWS, Vance PJ, Kolson LL, Wong BJ, Jordan-Sciutto KL, Kolson DL. Dimethyl fumarate, an immune modulator and inducer of the antioxidant response, suppresses HIV replication and macrophage-mediated neurotoxicity: a novel candidate for HIV neuroprotection. THE JOURNAL OF IMMUNOLOGY 2011; 187:5015-25. [PMID: 21976775 DOI: 10.4049/jimmunol.1101868] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite antiretroviral therapy (ART), HIV infection promotes cognitive dysfunction and neurodegeneration through persistent inflammation and neurotoxin release from infected and/or activated macrophages/microglia. Furthermore, inflammation and immune activation within both the CNS and periphery correlate with disease progression and morbidity in ART-treated individuals. Accordingly, drugs targeting these pathological processes in the CNS and systemic compartments are needed for effective, adjunctive therapy. Using our in vitro model of HIV-mediated neurotoxicity, in which HIV-infected monocyte-derived macrophages release excitatory neurotoxins, we show that HIV infection dysregulates the macrophage antioxidant response and reduces levels of heme oxygenase-1 (HO-1). Furthermore, restoration of HO-1 expression in HIV-infected monocyte-derived macrophages reduces neurotoxin release without altering HIV replication. Given these novel observations, we have identified dimethyl fumarate (DMF), used to treat psoriasis and showing promising results in clinical trials for multiple sclerosis, as a potential neuroprotectant and HIV disease-modifying agent. DMF, an immune modulator and inducer of the antioxidant response, suppresses HIV replication and neurotoxin release. Two distinct mechanisms are proposed: inhibition of NF-κB nuclear translocation and signaling, which could contribute to the suppression of HIV replication, and induction of HO-1, which is associated with decreased neurotoxin release. Finally, we found that DMF attenuates CCL2-induced monocyte chemotaxis, suggesting that DMF could decrease recruitment of activated monocytes to the CNS in response to inflammatory mediators. We propose that dysregulation of the antioxidant response during HIV infection drives macrophage-mediated neurotoxicity and that DMF could serve as an adjunctive neuroprotectant and HIV disease modifier in ART-treated individuals.
Collapse
Affiliation(s)
- Stephanie A Cross
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Carvajal-Yepes M, Himmelsbach K, Schaedler S, Ploen D, Krause J, Ludwig L, Weiss T, Klingel K, Hildt E. Hepatitis C virus impairs the induction of cytoprotective Nrf2 target genes by delocalization of small Maf proteins. J Biol Chem 2011; 286:8941-51. [PMID: 21216956 DOI: 10.1074/jbc.m110.186684] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The expression of a variety of cytoprotective genes is regulated by short cis-acting elements in their promoters, called antioxidant response elements (AREs). A central regulator of ARE-mediated gene expression is the NF-E2-related factor 2 (Nrf2). Nrf2/ARE-regulated genes are crucial for the maintenance of cellular integrity. Hepatitis C virus inhibits the induction of ARE-regulated genes, but neither induction nor inhibition of ARE-regulated gene expression affects HCV replication directly. In HCV-replicating cells the core protein triggers the delocalization of sMaf proteins from the nucleus to the replicon complex. Here sMafs bind to NS3. The extranuclear sMaf proteins prevent Nrf2 from entry in the nucleus and thereby inhibit the induction of Nrf2/ARE-regulated genes. This results in the decreased expression of cytoprotective genes. Consistent with this finding, the elimination of ROI is impaired in HCV-replicating cells as demonstrated by elevated protein oxidation or 8-OH-dG formation, reflecting DNA damage. In conclusion, these data identified a novel mechanism of Nrf2 regulation and suggest that the HCV-dependent inhibition of Nrf2/ARE-regulated genes confers to the HCV-associated pathogenesis by elevation of intracellular ROI that affect integrity of the host genome and regenerative processes.
Collapse
Affiliation(s)
- Monica Carvajal-Yepes
- Institute of Infection Medicine, Molecular Medical Virology, University of Kiel, D-24105 Kiel, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|