51
|
Yemelyanov A, Czwornog J, Gera L, Joshi S, Chatterton RT, Budunova I. Novel steroid receptor phyto-modulator compound a inhibits growth and survival of prostate cancer cells. Cancer Res 2008; 68:4763-73. [PMID: 18559523 DOI: 10.1158/0008-5472.can-07-6104] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Androgen receptor (AR)- and glucocorticoid receptor (GR)- mediated signaling play opposite roles in prostate tumorigenesis: AR promotes prostate carcinoma (PC) development, whereas GR acts as a tumor suppressor. Compound A (CpdA) is a stable analogue of an aziridine precursor from the African shrub Salsola tuberculatiformis Botschantzev. It was shown recently that, in model cells, CpdA inhibits AR function and strongly enhances anti-inflammatory function of GR. We determined the effects of CpdA in prostate cells with different AR/GR status: (a) RWPE-1 cells (AR(low)/GR(low)), (b) PC3 and DU145 cells (GR(+)/AR(-)), (c) LNCaP cells (GR(-)/AR(+)), and (d) LNCaP-GR cells expressing both receptors. Similar to steroid hormones, CpdA induces nuclear translocation of both receptors in prostate cells. Despite this, CpdA inhibits DNA-binding and transactivation potential of AR. In addition, CpdA inhibits GR-mediated transactivation but induces GR transrepression via inhibition of several transcription factors, including nuclear factor-kappaB, AP-1, Ets-1, Elk-1, SRF, CRE/ATF, and NFATc. CpdA strongly decreases growth and induces caspase-dependent apoptosis in highly malignant PC3 and DU145 cells and in other AR/GR-expressing PC cells. The cytostatic effect of CpdA is receptor dependent: down-regulation of GR or AR expression drastically attenuates CpdA-induced PC cell growth inhibition. Finally, virtual docking analysis indicates that CpdA shares binding cavities in AR and GR ligand-binding domains with corresponding hormones and forms hydrogen bonds (H-bond) with the same amino acids that are involved in H-bond formation during steroid binding. Overall, our data suggest that CpdA is a unique dual-target steroid receptor modulator that has a high potential for PC therapy.
Collapse
|
52
|
Beck IME, Vanden Berghe W, Vermeulen L, Bougarne N, Vander Cruyssen B, Haegeman G, De Bosscher K. Altered subcellular distribution of MSK1 induced by glucocorticoids contributes to NF-kappaB inhibition. EMBO J 2008; 27:1682-93. [PMID: 18511904 PMCID: PMC2435130 DOI: 10.1038/emboj.2008.95] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Accepted: 04/15/2008] [Indexed: 11/09/2022] Open
Abstract
Glucocorticoids are widely used anti-inflammatory and immunomodulatory agents, of which the action mechanism is mainly based on interference of hormone-activated glucocorticoid receptor (GR) with the activity of transcription factors, such as nuclear factor-kappaB (NF-kappaB). In addition to the well described interaction-based mutual repression mechanism between the GR and NF-kappaB, additional mechanisms are at play, which help to explain the efficacy of glucocorticoid-mediated gene repression. In this respect, we found that glucocorticoids counteract the recruitment of activated Mitogen- and Stress-activated protein Kinase-1 (MSK1) at inflammatory gene promoters resulting in the inhibition of NF-kappaB p65 transactivation and of concurrent histone H3 phosphorylation. Additionally, we observed that activated GR can trigger redistribution of nuclear MSK1 to the cytoplasm through a CRM1-dependent export mechanism, as a result of an interaction between liganded GR and activated MSK1. These findings unveil a novel aspect within the GR-mediated NF-kappaB-targeting anti-inflammatory mechanism.
Collapse
Affiliation(s)
- Ilse M E Beck
- Laboratory of Eukaryotic Gene Expression and Signal Transduction (LEGEST), Department of Molecular Biology, Gent University, Gent, Belgium
| | - Wim Vanden Berghe
- Laboratory of Eukaryotic Gene Expression and Signal Transduction (LEGEST), Department of Molecular Biology, Gent University, Gent, Belgium
| | - Linda Vermeulen
- Laboratory of Eukaryotic Gene Expression and Signal Transduction (LEGEST), Department of Molecular Biology, Gent University, Gent, Belgium
| | - Nadia Bougarne
- Laboratory of Eukaryotic Gene Expression and Signal Transduction (LEGEST), Department of Molecular Biology, Gent University, Gent, Belgium
| | | | - Guy Haegeman
- Laboratory of Eukaryotic Gene Expression and Signal Transduction (LEGEST), Department of Molecular Biology, Gent University, Gent, Belgium
- Both of these authors share senior authorship
| | - Karolien De Bosscher
- Laboratory of Eukaryotic Gene Expression and Signal Transduction (LEGEST), Department of Molecular Biology, Gent University, Gent, Belgium
- Both of these authors share senior authorship
| |
Collapse
|
53
|
Drug insight: selective agonists and antagonists of the glucocorticoid receptor. ACTA ACUST UNITED AC 2008; 4:91-101. [PMID: 18212811 DOI: 10.1038/ncpendmet0745] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Accepted: 11/14/2007] [Indexed: 12/31/2022]
Abstract
Glucocorticoid hormones exert a wide spectrum of metabolic and immunological effects. They function through the glucocorticoid receptor, a member of the nuclear receptor superfamily. Glucocorticoids are particularly effective as anti-inflammatory agents but often cause severe side effects. The structure of the ligand-binding domain of the glucocorticoid receptor has now been elucidated, and a series of studies have shown that even subtle changes to the ligand structure alter the final conformation of the ligand-receptor complex, with consequences for both protein recruitment and the function of the receptor. This has led to concerted efforts to find selective ligands for the glucocorticoid receptor that preserve the beneficial anti-inflammatory activity but reduce the side-effect profile. The direct health-care benefits of such a simple, safe, orally active agent targeting the underlying inflammatory process in, for example, rheumatoid arthritis would be considerable in terms of reduced patient suffering; furthermore, the indirect benefits in terms of reducing the costs of therapeutic delivery and preventing loss of productivity would be even greater.
Collapse
|
54
|
Matthews L, Berry A, Ohanian V, Ohanian J, Garside H, Ray D. Caveolin mediates rapid glucocorticoid effects and couples glucocorticoid action to the antiproliferative program. Mol Endocrinol 2008; 22:1320-30. [PMID: 18308897 DOI: 10.1210/me.2007-0154] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Many glucocorticoid (Gc) actions are of rapid onset and therefore require acute regulation of intracellular signaling cascades. Integration of diverse extracellular signals requires cross-talk between intracellular pathways, suggesting the existence of nodes for signal interaction, such as the specialized membrane microdomains caveolae. We have identified rapid Gc-dependent phosphorylation of caveolin, and protein kinase B (PKB)/Akt, in the lung epithelial cell line A549 and found this was dependent on src kinases. There was also activation of PKB downstream molecules glycogen synthase kinase-3beta, and mammalian target of rapamycin. Subcellular fractionation colocalized glucocorticoid receptor (GR) and c-src to caveolin-containing membrane fractions. Coimmunoprecipitation studies also identified interactions between GR and caveolin and suggested that the activation function 1 domain within the GR may serve to support an interaction between GR and caveolin. Disruption of lipid raft formation, impairment of caveolin function using dominant-negative caveolin, down-regulation of caveolin-1 using short hairpin RNA or complete ablation of caveolin-1 prevented Gc-induced activation of PKB. Loss of caveolin-1 also prevents Gc activation of glycogen synthase kinase-3beta and mammalian target of rapamycin. In contrast, caveolin interference/down-regulation had no effect on Gc transactivation. Functional analysis of caveolin-1 knockdown and knockout cells identified profound loss of Gc-mediated growth inhibition compared with controls, with a requirement for caveolin in order for Gc to regulate cell cycle progression. Therefore, disruption of caveolae leads to dissociation of Gc action, with impaired induction of PKB activation, and cell growth inhibition, but with negligible effects on Gc transactivation. These observations have implications for understanding the diverse physiological actions of Gc.
Collapse
Affiliation(s)
- L Matthews
- University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom
| | | | | | | | | | | |
Collapse
|
55
|
Fitzsimons CP, Ahmed S, Wittevrongel CFW, Schouten TG, Dijkmans TF, Scheenen WJJM, Schaaf MJM, de Kloet ER, Vreugdenhil E. The microtubule-associated protein doublecortin-like regulates the transport of the glucocorticoid receptor in neuronal progenitor cells. Mol Endocrinol 2008; 22:248-62. [PMID: 17975023 PMCID: PMC5419639 DOI: 10.1210/me.2007-0233] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Accepted: 10/23/2007] [Indexed: 02/05/2023] Open
Abstract
In neuronal cells, activated glucocorticoid receptor (GR) translocates to the nucleus guided by the cytoskeleton. However, the detailed mechanisms underlying GR translocation remain unclear. Using gain and loss of function studies, we report here for the first time that the microtubule-associated protein doublecortin-like (DCL) controls GR translocation to the nucleus. DCL overexpression in COS-1 cells, neuroblastoma cells, and rat hippocampus organotypic slice cultures impaired GR translocation and decreased GR-dependent transcriptional activity, measured by a specific reporter gene assay, in COS-1 cells. Moreover, DCL and GR directly interact on microtubule bundles formed by DCL overexpression. A C-terminal truncated DCL with conserved microtubule-bundling activity did not influence GR translocation. In N1E-115 mouse neuroblastoma cells and neuronal progenitor cells in rat hippocampus organotypic slice cultures, laser-scanning confocal microscopy showed colabeling of endogenously expressed DCL and GR. In these systems, RNA-interference-mediated DCL knockdown hampered GR translocation. Thus, we conclude that DCL expression is tightly regulated to adequately control GR transport. Because DCL is primarily expressed in neuronal progenitor cells, our results introduce this microtubule-associated protein as a new modulator of GR signaling in this cell type and suggest the existence of cell-specific mechanisms regulating GR translocation to the nucleus.
Collapse
Affiliation(s)
- Carlos P Fitzsimons
- Leiden/Amsterdam Center for Drug Research/Medical Pharmacology Department, Einsteinweg 55, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Krätzner R, Fröhlich F, Lepler K, Schröder M, Röher K, Dickel C, Tzvetkov MV, Quentin T, Oetjen E, Knepel W. A peroxisome proliferator-activated receptor gamma-retinoid X receptor heterodimer physically interacts with the transcriptional activator PAX6 to inhibit glucagon gene transcription. Mol Pharmacol 2008; 73:509-17. [PMID: 17962386 DOI: 10.1124/mol.107.035568] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
The peptide hormone glucagon stimulates hepatic glucose output, and its levels in the blood are elevated in type 2 diabetes mellitus. The nuclear receptor peroxisome proliferator-activated receptor-gamma (PPARgamma) has essential roles in glucose homeostasis, and thiazolidinedione PPARgamma agonists are clinically important antidiabetic drugs. As part of their antidiabetic effect, thiazolidinediones such as rosiglitazone have been shown to inhibit glucagon gene transcription through binding to PPARgamma and inhibition of the transcriptional activity of PAX6 that is required for cell-specific activation of the glucagon gene. However, how thiazolidinediones and PPARgamma inhibit PAX6 activity at the glucagon promoter remained unknown. After transient transfection of a glucagon promoter-reporter fusion gene into a glucagon-producing pancreatic islet alpha-cell line, ligand-bound PPARgamma was found in the present study to inhibit glucagon gene transcription also after deletion of its DNA-binding domain. Like PPARgamma ligands, also retinoid X receptor (RXR) agonists inhibited glucagon gene transcription in a PPARgamma-dependent manner. In glutathione transferase pull-down assays, the ligand-bound PPARgamma-RXR heterodimer bound to the transactivation domain of PAX6. This interaction depended on the presence of the ligand and RXR, but it was independent of the PPARgamma DNA-binding domain. Chromatin immunoprecipitation experiments showed that PPARgamma is recruited to the PAX6-binding proximal glucagon promoter. Taken together, the results of the present study support a model in which a ligand-bound PPARgamma-RXR heterodimer physically interacts with promoter-bound PAX6 to inhibit glucagon gene transcription. These data define PAX6 as a novel physical target of PPARgamma-RXR.
Collapse
Affiliation(s)
- Ralph Krätzner
- Molecular Pharmacology, University of Goettingen, Robert-Koch-Str. 40, 37099 Goettingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Bhavsar PK, Sukkar MB, Khorasani N, Lee KY, Chung KF. Glucocorticoid suppression of CX3CL1 (fractalkine) by reduced gene promoter recruitment of NF-kappaB. FASEB J 2008; 22:1807-16. [PMID: 18230685 DOI: 10.1096/fj.07-094235] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Glucocorticoids are an important anti-inflammatory treatment of many inflammatory diseases including asthma. However, the mechanisms by which they mediate their suppressive effects are not fully understood. Respiratory epithelial cells are a source of CX(3)CL1 (fractalkine), which mediates cell adhesion and acts as a chemoattractant for monocytes, T cells, and mast cells. We show, in lung A549 epithelial cells, that the tumor necrosis factor-alpha (TNF-alpha) and IFNgamma synergistically induced protein release and mRNA expression of CX(3)CL1 is inhibited by dexamethasone, without interfering with cytokine-induced nuclear translocation of NF-kappaB, and by an inhibitor of IkappaB kinase 2, AS602868. DNA binding assays confirmed the ability of NF-kappaB to bind to the proximal CX(3)CL1 promoter. Chromatin immunoprecipitation assays showed a 5-fold increase in the recruitment of NF-kappaB to the CX(3)CL1 gene promoter in response to IFNgamma/TNF-alpha; this too was reversed by dexamethasone. In contrast, dexamethasone did not displace NF-kappaB from the granulocyte-macrophage colony-stimulating factor gene promoter. We conclude that CX(3)CL1 expression is regulated through the NF-kappaB pathway and that dexamethasone inhibits CX(3)CL1 expression through a glucocorticoid receptor-dependent (RU486 sensitive) mechanism. This study also provides support for the action of glucocorticoids mediating their suppressive effects on expression by interfering with the binding of transcriptional activators at native gene promoters.
Collapse
Affiliation(s)
- Pankaj K Bhavsar
- Experimental Studies, Airway Disease Section, National Heart and Lung Institute, Imperial College London, UK.
| | | | | | | | | |
Collapse
|
58
|
Newton R, Holden NS. Separating transrepression and transactivation: a distressing divorce for the glucocorticoid receptor? Mol Pharmacol 2007; 72:799-809. [PMID: 17622575 DOI: 10.1124/mol.107.038794] [Citation(s) in RCA: 228] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Glucocorticoids (corticosteroids) are highly effective in combating inflammation in the context of a variety of diseases. However, clinical utility can be compromised by the development of side effects, many of which are attributed to the ability of the glucocorticoid receptor (GR) to induce the transcription of, or transactivate, certain genes. By contrast, the anti-inflammatory effects of glucocorticoids are due largely to their ability to reduce the expression of pro-inflammatory genes. This effect has been predominantly attributed to the repression of key inflammatory transcription factors, including AP-1 and NF-kappaB, and is termed transrepression. The ability to functionally separate these transcriptional functions of GR has prompted a search for dissociated GR ligands that can differentially induce transrepression but not transactivation. In this review, we present evidence that post-transcriptional mechanisms of action are highly important to the anti-inflammatory actions of glucocorticoids. Furthermore, we present the case that mechanistically distinct forms of glucocorticoid-inducible gene expression are critical to the development of anti-inflammatory effects by repressing inflammatory signaling pathways and inflammatory gene expression at multiple levels. Considerable care is therefore required to avoid loss of anti-inflammatory effectiveness in the development of novel transactivation-defective ligands of GR.
Collapse
Affiliation(s)
- Robert Newton
- Department of Cell Biology and Anatomy, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada.
| | | |
Collapse
|
59
|
Kassel O, Herrlich P. Crosstalk between the glucocorticoid receptor and other transcription factors: molecular aspects. Mol Cell Endocrinol 2007; 275:13-29. [PMID: 17689856 DOI: 10.1016/j.mce.2007.07.003] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Revised: 06/26/2007] [Accepted: 07/03/2007] [Indexed: 01/10/2023]
Abstract
Glucocorticoids (GCs) regulate cell fate by altering gene expression via the glucocorticoid receptor (GR). Ligand-bound GR can activate the transcription of genes carrying the specific GR binding sequence, the glucocorticoid response element (GRE). In addition, GR can modulate, positively or negatively, directly or indirectly, the activity of other transcription factors (TFs), a process referred to as "crosstalk". In the indirect crosstalk, GR interferes with transduction pathways upstream of other TFs. In the direct crosstalk, GR and other TFs modulate each other's activity when bound to the promoters of their target genes. The multiplicity of molecular actions exerted by TFs, particularly the GR, is not only fascinating in terms of molecular structure, it also implies that the TFs participate in a wide range of regulatory processes, broader than anticipated. This review focuses on the molecular mechanisms involved in the crosstalk, on both current ideas and unresolved questions, and discusses the possible significance of the crosstalk for the physiologic and therapeutic actions of GCs.
Collapse
Affiliation(s)
- Olivier Kassel
- Forschungszentrum Karlsruhe, Institute of Toxicology and Genetics, D-76021 Karlsruhe, Germany.
| | | |
Collapse
|
60
|
Clark AR. Anti-inflammatory functions of glucocorticoid-induced genes. Mol Cell Endocrinol 2007; 275:79-97. [PMID: 17561338 DOI: 10.1016/j.mce.2007.04.013] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Accepted: 04/25/2007] [Indexed: 01/12/2023]
Abstract
There is a broad consensus that glucocorticoids (GCs) exert anti-inflammatory effects largely by inhibiting the function of nuclear factor kappaB (NFkappaB) and consequently the transcription of pro-inflammatory genes. In contrast, side effects are thought to be largely dependent on GC-induced gene expression. Biochemical and genetic evidence suggests that the positive and negative effects of GCs on transcription can be uncoupled from one another. Hence, novel GC-related drugs that mediate inhibition of NFkappaB but do not activate gene expression are predicted to retain therapeutic effects but cause fewer or less severe side effects. Here, we critically re-examine the evidence in favor of the consensus, binary model of GC action and discuss conflicting evidence, which suggests that anti-inflammatory actions of GCs depend on the induction of anti-inflammatory mediators. We propose an alternative model, in which GCs exert anti-inflammatory effects at both transcriptional and post-transcriptional levels, both by activating and inhibiting expression of target genes. The implications of such a model in the search for safer anti-inflammatory drugs are discussed.
Collapse
Affiliation(s)
- Andrew R Clark
- Kennedy Institute of Rheumatology Division, Imperial College London, 1 Aspenlea Road, Hammersmith, London W6 8LH, United Kingdom.
| |
Collapse
|
61
|
Pfleger KDG, Seeber RM, Eidne KA. Bioluminescence resonance energy transfer (BRET) for the real-time detection of protein-protein interactions. Nat Protoc 2007; 1:337-45. [PMID: 17406254 DOI: 10.1038/nprot.2006.52] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A substantial range of protein-protein interactions can be readily monitored in real time using bioluminescence resonance energy transfer (BRET). The procedure involves heterologous coexpression of fusion proteins, which link proteins of interest to a bioluminescent donor enzyme or acceptor fluorophore. Energy transfer between these proteins is then detected. This protocol encompasses BRET1, BRET2 and the recently described eBRET, including selection of the donor, acceptor and substrate combination, fusion construct generation and validation, cell culture, fluorescence and luminescence detection, BRET detection and data analysis. The protocol is particularly suited to studying protein-protein interactions in live cells (adherent or in suspension), but cell extracts and purified proteins can also be used. Furthermore, although the procedure is illustrated with references to mammalian cell culture conditions, this protocol can be readily used for bacterial or plant studies. Once fusion proteins are generated and validated, the procedure typically takes 48-72 h depending on cell culture requirements.
Collapse
Affiliation(s)
- Kevin D G Pfleger
- 7TM Laboratory/Laboratory for Molecular Endocrinology, Western Australian Institute for Medical Research, University of Western Australia, Nedlands, Perth, Western Australia 6009, Australia.
| | | | | |
Collapse
|
62
|
Kim YH, Chung IY, Choi MY, Kim YS, Lee JH, Park CH, Kang SS, Roh GS, Choi WS, Yoo JM, Cho GJ. Triamcinolone suppresses retinal vascular pathology via a potent interruption of proinflammatory signal-regulated activation of VEGF during a relative hypoxia. Neurobiol Dis 2007; 26:569-76. [PMID: 17434742 DOI: 10.1016/j.nbd.2007.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2006] [Revised: 01/31/2007] [Accepted: 02/04/2007] [Indexed: 10/23/2022] Open
Abstract
We examined the effect of triamcinolone acetonide (TA), a corticosteroid, on the relationship between vascular pathophysiology and vascular endothelial growth factor (VEGF) activation in the retina of a rat model of oxygen-induced retinopathy (OIR). OIR was induced by exposure of hyperoxia (80% oxygen) to Sprague-Dawley (SD) rats from P2 to P14 and then returned to normoxic conditions. TA was intravitreal-injected once into the right eye of OIR rats at P15. Effects of TA on vascular pathophysiology or changes of various genes in response to hypoxia and/or proinflammation under hypoxic retina were assessed by the Evans-blue method, fluorescein isothiocyanate-dextran (FITC-D) infusion, immunoblotting, and ELIZA. TA not only reduced retinal neovascularization and vascular leakage in the OIR-rat retina, but also blocked the induction of hypoxia-response proinflammatory genes before it negatively controlled VEGF activation. These findings suggest a potential that TA suppresses retinal neovascular pathophysiology via proinflammation-mediated activation of VEGF during hypoxia.
Collapse
Affiliation(s)
- Y H Kim
- Department of Anatomy and Neurobiology, College of Medicine, Gyeongsang National University, Chilam-dong 92, Jinju, Gyungnam 660-751, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Sommer P, Le Rouzic P, Gillingham H, Berry A, Kayahara M, Huynh T, White A, Ray DW. Glucocorticoid receptor overexpression exerts an antisurvival effect on human small cell lung cancer cells. Oncogene 2007; 26:7111-21. [PMID: 17496926 DOI: 10.1038/sj.onc.1210524] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Small cell lung cancer (SCLC) is an aggressive tumour with an abysmal prognosis. These cancers are characteristically resistant to glucocorticoid (Gc) action, owing to impaired expression of the glucocorticoid receptor (GR). We identified reduced GR expression in human SCLC cell lines, compared to a non-SCLC cell line. The SCLC cells also showed no Gc inhibition of proliferation, in contrast to non-SCLC cells. Retroviral overexpression of GR resulted in significantly increased cell death, which was partially blocked by the GR antagonist, RU486. Indeed, in cells sorted for GR expression, there was rapid, near complete loss of live cells by 72 h, in contrast to control cells that proliferated as expected. Flow cytometry using Annexin V revealed that cell death was by apoptosis. In addition, confocal analysis of fixed cells showed that cells overexpressing GR displayed a significant increase in fragmenting apoptotic nuclei. Microarray studies showed that transgenic GR expression upregulated the proapoptotic genes, BAD and BAX. We have, therefore, identified a profound apoptotic effect of GR in SCLC cells, which may explain the low levels of endogenous GR in SCLC cells. Understanding how GR overexpression leads to apoptotic cell death in SCLC cells may uncover new therapeutic strategies.
Collapse
Affiliation(s)
- P Sommer
- Faculty of Medical and Human Sciences, Department of Medicine, Centre for Molecular Medicine and Endocrine Sciences Research Group, University of Manchester, Manchester, UK
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Abstract
The transcription factor nuclear factor-kappa B (NF-kappaB) is a crucial regulator of many physiological and patho-physiological processes, including control of the adaptive and innate immune responses, inflammation, proliferation, tumorigenesis, and apoptosis. Thus, the tight regulation of NF-kappaB activity within a cell is extremely important. The central mechanism of NF-kappaB regulation is the signal-induced proteolytic degradation of a family of cytoplasmic inhibitors of NF-kappaB, the IkappaBs. However, with the discovery of an IkappaB-independent noncanonical or "alternative" pathway of NF-kappaB activation, the importance of other regulatory mechanisms responsible for the fine-tuning of NF-kappaB became clear. Post-translational modification, especially phosphorylation, of the Rel proteins, of which dimeric NF-kappaB is composed, are such alternative regulatory mechanisms. The best analyzed example is RelA phosphorylation, which takes place at specific amino acids resulting in distinct functional changes of this gene regulatory protein. The interaction of NF-kappaB with other proteins such as glucocorticoid receptors is very important for the regulation of NF-kappaB activity. Recently, exciting new concepts of IkappaB-independent NF-kappaB control like dimer exchange and nucleolar sequestration of RelA have been described, indicating that many aspects of NF-kappaB control are waiting to be discovered.
Collapse
Affiliation(s)
- Manfred Neumann
- Institute of Experimental Internal Medicine, Otto-von-Guericke University, Medical Faculty, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | | |
Collapse
|
65
|
Zhu XY, Liu YJ, Diao F, Fan J, Lu J, Xu RB. Role of glucocorticoids and glucocorticoid receptor in priming of macrophages caused by glucocorticoid receptor blockade. Endocrine 2007; 31:130-7. [PMID: 17873323 DOI: 10.1007/s12020-007-0019-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Revised: 05/10/2007] [Accepted: 05/14/2007] [Indexed: 11/29/2022]
Abstract
We previously reported that glucocorticoid receptor (GR) blockade (injected with GR antagonist RU486) primed the host responses to lipopolysaccharide. Since decrease of GR and elevated glucocorticoids (GCs) have been always reported as parallel responses, we hypothesize that both GCs and GR play important roles in GR blockade induced priming. We first confirm that the production of nitric oxide (NO), superoxide (O2-), and PKCalpha expression are all increased in peritoneal macrophages from GR blockade rats, indicating that macrophages are primed by GR blockade. Furthermore, using unilateral adrenalectomy rats, we find that the elevated GCs caused by a feedback mechanism following GR blockade may be involved in the process of priming. In vitro experiments in RAW264.7 cells show the inhibitory effect of GCs on NO production, which can be thoroughly blocked by RU486, indicating the increase of NO production in GR blockade rats is due to the elimination of GCs's anti-inflammatory function. In contrast, 10(-7) M corticosterone induces significant increases in O2- release, PKCalpha expression and phosphorylation, which cannot be reversed by RU486, demonstrating a previously unrecognized pro-inflammatory role of GCs in enhancing PM activation through a GR-independent pathway. The effect of GCs on PKCalpha expression even exists in GR deficient COS-7 cells as well as in GR knock-down RAW264.7 cells. In conclusion, both GR impairment and elevation of GCs are involved in the priming of macrophages caused by GR blockade. The findings of the divergent roles of GCs in modulation of inflammation may change therapeutic strategy for inflammatory diseases with GCs.
Collapse
Affiliation(s)
- Xiao-Yan Zhu
- Department of Physiology, Second Millitary Medical University, 800 Xiang Yin Road, Shanghai, 200433, PR China.
| | | | | | | | | | | |
Collapse
|
66
|
Thompson PD, Webb M, Beckett W, Hinsley T, Jowitt T, Sharrocks AD, Tassabehji M. GTF2IRD1 regulates transcription by binding an evolutionarily conserved DNA motif ‘GUCE’. FEBS Lett 2007; 581:1233-42. [PMID: 17346708 DOI: 10.1016/j.febslet.2007.02.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Revised: 02/14/2007] [Accepted: 02/16/2007] [Indexed: 12/28/2022]
Abstract
GTF2IRD1 is a member of a family of transcription factors whose defining characteristic is varying numbers of a helix-loop-helix like motif, the I-repeat. Here, we present functional analysis of human GTF2IRD1 in regulation of three genes (HOXC8, GOOSECOID and TROPONIN I(SLOW)). We define a regulatory motif (GUCE-GTF2IRD1 Upstream Control Element) common to all three genes. GUCE is bound in vitro by domain I-4 of GTF2IRD1 and mediates transcriptional regulation by GTF2IRD1 in vivo. Definition of this site will assist in identification of other downstream targets of GTF2IRD1 and elucidation of its role in the human developmental disorder Williams-Beuren syndrome.
Collapse
Affiliation(s)
- P D Thompson
- Academic Unit of Medical Genetics, The University of Manchester, St Mary's Hospital, Hathersage Road, Manchester M13 0JH, UK
| | | | | | | | | | | | | |
Collapse
|
67
|
Abstract
Inflammatory lung diseases are characterised by increased expression of multiple inflammatory genes that are regulated by proinflammatory transcription factors, such as NF-kappaB. Gene expression is regulated by modifications such as acetylation of core histones through the concerted action of coactivators such as CBP (cAMP-response element binding protein (CREB)-binding protein) which have intrinsic histone acetyltransferase (HAT) activity and are able to recruit other HAT enzymes. Conversely gene repression is mediated via histone deacetylases (HDAC) and other corepressors. In biopsies from asthmatic subjects there is an increase in HAT activity and some reduction in HDAC activity. Both of these changes are partially reversed by corticosteroid therapy. Corticosteroids switch off inflammatory genes in asthma through a combination of a direct inhibition of HAT activity and by the recruitment of HDAC2 to the activated NF-kappaB-stimulated inflammatory gene complex. In chronic obstructive pulmonary disease (COPD), a corticosteroid insensitive disease, there is a reduction in HDAC activity and HDAC2 expression, which may account for the amplified inflammation and resistance to the actions of corticosteroids. The reduction in HDAC2 may be secondary to oxidative and nitrative stress as a result of cigarette smoking and severe inflammation. This may also occur to differing degrees in severe asthma, smoking asthmatic patients and cystic fibrosis. Similar mechanisms may also account for the steroid resistance seen within latent adenovirus infections. The reduction in HDAC activity induced by oxidative stress can be restored by theophylline, acting through specific kinases, which may be able to reverse steroid resistance in COPD and other inflammatory lung diseases. The modulation of HAT/HDAC activity may lead to the development of novel anti-inflammatory approaches to inflammatory lung diseases that are currently difficult to treat.
Collapse
Affiliation(s)
- Ian M Adcock
- National Heart and Lung Institute, Imperial College London, UK.
| | | | | |
Collapse
|
68
|
Donn R, Berry A, Stevens A, Farrow S, Betts J, Stevens R, Clayton C, Wang J, Warnock L, Worthington J, Scott L, Graham S, Ray D. Use of gene expression profiling to identify a novel glucocorticoid sensitivity determining gene, BMPRII. FASEB J 2006; 21:402-14. [PMID: 17185747 DOI: 10.1096/fj.06-7236com] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Wide variation in glucocorticoid (Gc) sensitivity exists between individuals which may influence susceptibility to, and treatment response of, inflammatory diseases. To determine a genetic fingerprint of Gc sensitivity 100 healthy human volunteers were polarized into the 10% most Gc-sensitive and 10% most Gc-resistant following a low dose dexamethasone (0.25 mg) suppression test. Gene expression profiling of primary lymphocytes identified the 98 most significantly Gc regulated genes. These genes were used to build a subnetwork of Gc signaling, with 54 genes mapping as nodes, and 6 non-Gc regulated genes inferred as signaling nodes. Twenty four of the 98 genes showed a difference in Gc response in vitro dependent on the Gc sensitivity of their donor individuals in vivo. A predictive model was built using both partial least squares discriminate analysis and support vector machines that predicted donor glucocorticoid sensitivity with 87% accuracy. Discriminating genes included bone morphogenetic protein receptor, type II (BMPRII). Transfection studies showed that BMPRII modulated Gc action. These studies reveal a broad base of gene expression that predicts Gc sensitivity and determine a Gc signaling network in human primary T lymphocytes. Furthermore, this combined gene profiling, and functional analysis approach has identified BMPRII as a modulator of Gc signaling.
Collapse
Affiliation(s)
- Rachelle Donn
- Centre for Molecular Medicine, University of Manchester, Oxford Rd., Manchester, M13 9PT, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
De Bosscher K, Vanden Berghe W, Haegeman G. Cross-talk between nuclear receptors and nuclear factor kappaB. Oncogene 2006; 25:6868-86. [PMID: 17072333 DOI: 10.1038/sj.onc.1209935] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A variety of studies have shown that some activated nuclear receptors (NRs), especially the glucorticoid receptor, the estrogen receptor and peroxisome proliferator-activated receptor, can inhibit the activity of the transcription factor nuclear factor kappaB (NF-kappaB), which plays a key role in the control of genes involved in inflammation, cell proliferation and apoptosis. This review describes the molecular mechanisms of cross-talk between NRs and NF-kappaB and the biological relevance of this cross-talk. The importance and mechanistic aspects of selective NR modulation are discussed. Also included are future research prospects, which will lead to a new era in the field of NR research with the aim of specifically inhibiting NF-kappaB-driven gene expression for anti-inflammatory, anti-tumor and immune-modulatory purposes.
Collapse
Affiliation(s)
- K De Bosscher
- Laboratory for Eukaryotic Gene Expression and Signal Transduction (LEGEST), Department of Molecular Biology, Ghent University, Gent, Belgium.
| | | | | |
Collapse
|
70
|
Dale E, Davis M, Faustman DL. A role for transcription factor NF-kappaB in autoimmunity: possible interactions of genes, sex, and the immune response. ADVANCES IN PHYSIOLOGY EDUCATION 2006; 30:152-8. [PMID: 17108242 DOI: 10.1152/advan.00065.2006] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Sex hormones have long been implicated in autoimmune diseases because women account for 80% of cases. The mechanism of hormonal action in autoimmunity is unknown. Drawing on genetic studies of autoimmune disease, this article discusses how both genes and sex hormones may exert their effects through the same general mechanism, dysregulation of transcription factor NF-kappaB, an immunoregulatory protein. Gene and hormone alterations of the NF-kappaB signaling cascade provide a unifying hypothesis to explain the wide-ranging human and murine autoimmune disease phenotypes regulated by NF-kappaB, including cytokine balance, antigen presentation, lymphoid development, and lymphoid repertoire selection by apoptosis.
Collapse
Affiliation(s)
- Elizabeth Dale
- Harvard Medical School and Massachusetts General Hospital-East, Boston, Massachusetts 02192, USA
| | | | | |
Collapse
|
71
|
Chivers JE, Gong W, King EM, Seybold J, Mak JC, Donnelly LE, Holden NS, Newton R. Analysis of the dissociated steroid RU24858 does not exclude a role for inducible genes in the anti-inflammatory actions of glucocorticoids. Mol Pharmacol 2006; 70:2084-2095. [PMID: 16988013 DOI: 10.1124/mol.106.025841] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Although repression of inflammatory gene expression makes glucocorticoids powerful anti-inflammatory agents, side effects limit usage and drive the search for improved glucocorticoid receptor (GR) ligands. In A549 pulmonary cells, dexamethasone and the prototypical dissociated ligand RU24858 (Mol Endocrinol 11:1245-1255, 1997) repress interleukin (IL)-1beta-induced expression of cyclooxygenase (COX)-2 and IL-8. Although RU24858 is a weaker GR ligand, both glucocorticoids showed similar efficacies on transrepression of nuclear factor kappaB (NF-kappaB)-dependent transcription, whereas RU24858 yielded less than 12% of the response to dexamethasone on a classic glucocorticoid response element (GRE) reporter (transactivation). Modest NF-kappaB-dependent transrepression ( approximately 40%), along with analysis of IL-8 transcription rate and the accumulation of unspliced nuclear RNA, indicates that transrepression does not fully account for the repression of genes such as IL-8. This was confirmed by the finding that mRNA degradation is increased by both dexamethasone and RU24858. Analysis of IL-1beta-induced steady-state mRNA levels for IL-8 and COX-2 show that dexamethasone- and RU24858-dependent repression of these genes is attenuated by inhibitors of transcription and protein synthesis. Because similar effects were observed with respect to COX-2 and IL-8 protein expression, we conclude that glucocorticoid-dependent gene expression is necessary for repression by both glucocorticoids. Despite RU24858 being defective at classic GRE-dependent transactivation, both dexamethasone and RU24858 induced the expression of potentially anti-inflammatory genes and metabolic genes, suggesting the importance of nontraditional glucocorticoid-dependent gene expression. Thus, classic transactivation- and transrepressionbased screens for anti-inflammatory "dissociated" GR ligands may be flawed because they may not reflect the effects on real glucocorticoid-inducible genes.
Collapse
Affiliation(s)
- Joanna E Chivers
- Department of Cell Biology & Anatomy, Respiratory Research Group, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | | | | | |
Collapse
|
72
|
McMaster A, Ray DW. Modelling the glucocorticoid receptor and producing therapeutic agents with anti-inflammatory effects but reduced side-effects. Exp Physiol 2006; 92:299-309. [PMID: 17138619 DOI: 10.1113/expphysiol.2006.036194] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Glucocorticoid hormones exert a wide spectrum of metabolic and immunological effects. They are synthesized from a cholesterol precursor and are structurally related to the other steroid hormones, progesterone, aldosterone and oestrogen. They act through the glucocorticoid receptor (GR), a member of the nuclear receptor superfamily. The GR is an intracellular receptor; the hydrophobic ligand accesses its receptor by diffusion across the plasma membrane. The ligand-activated GR translocates to the nucleus to regulate expression of its target genes. The GR, in common with the rest of the receptor family, can be functionally divided into an N-terminal transcription activation domain, a central DNA binding domain and a C-terminal ligand binding domain, which also includes a second transactivation domain. Although synthetic glucocorticoids are the most potent anti-inflammatory agents known, their use is limited owing to the range and severity of their side-effects. The structure of the ligand binding domain of the glucocorticoid receptor has now been solved, and a series of studies has shown that even subtle changes to the ligand structure alter the final conformation of the ligand-receptor complex, with consequences for further protein recruitment and for the function of the receptor. This, coupled with the successful development of selective oestrogen receptor agonists, has led to concerted efforts to find selective GR ligands, with preserved beneficial anti-inflammatory activity, but reduced side-effect profile. Current efforts have identified several useful tool compounds, and further molecules are in development in several pharmaceutical companies.
Collapse
Affiliation(s)
- Andrew McMaster
- Endocrine Sciences Research Group, Room 3-903, Stopford Building, University of Manchester, Manchester M13 9PT, UK.
| | | |
Collapse
|
73
|
Guo SW. Nuclear factor-kappab (NF-kappaB): an unsuspected major culprit in the pathogenesis of endometriosis that is still at large? Gynecol Obstet Invest 2006; 63:71-97. [PMID: 17028437 DOI: 10.1159/000096047] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Endometriosis, defined as the ectopic presence of endometrial glandular and stromal cells outside the uterine cavity, is a common benign gynecological disorder with an enigmatic pathogenesis. Many genes and gene products have been reported to be altered in endometriosis, yet some of them may not be major culprits but merely unwitting accomplices or even innocent bystanders. Therefore, the identification and apprehension of major culprits in the pathogenesis of endometriosis are crucial to the understanding of the pathogenesis and would help to develop better therapeutics for endometriosis. Although so far NF-kappaB only has left few traces of incriminating fingerprints, several lines of investigation suggest that NF-kappaB, a pivotal pro-inflammatory transcription factor, could promote and maintain endometriosis. Various inflammatory agents, growth factors, and oxidative stress activate NF-kappaB. NF-kappaB proteins themselves and proteins regulated by them have been linked to cellular transformation, proliferation, apoptosis, angiogenesis, and invasion. Interestingly, all existing and nearly all investigational medications for endometriosis appear to act through suppression of NF-kappaB activation. In endometriotic cells, NF-kappaB appears to be constitutively activated, and suppression of NF-kappaB activity by NF-kappaB inhibitors or proteasome inhibitors suppresses proliferation in vitro. Viewing NF-kappaB as a major culprit, an autoregulatory loop model can be postulated, which is consistent with existing data and, more importantly, can explain several puzzling phenomena that are otherwise difficult to interpret based on prevailing theories. This view has immediate and important implications for novel ways to treat endometriosis. Further research is warranted to precisely delineate the roles of NF-kappaB in the pathogenesis of endometriosis and to indict and convict its aiders and abettors.
Collapse
Affiliation(s)
- Sun-Wei Guo
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226-0509, USA.
| |
Collapse
|
74
|
Tahera Y, Meltser I, Johansson P, Hansson AC, Canlon B. Glucocorticoid receptor and nuclear factor-kappa B interactions in restraint stress-mediated protection against acoustic trauma. Endocrinology 2006; 147:4430-7. [PMID: 16777974 DOI: 10.1210/en.2006-0260] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The role of glucocorticoid receptors (GRs) in the protective effect of restraint stress (RS) before acoustic trauma was studied in spiral ganglion neurons of CBA mice. RS increased corticosterone and protected against elevated auditory brain stem thresholds caused by acoustic trauma. This protection was inhibited by the pretreatment with a corticosterone synthesis inhibitor, metyrapone (MET), and a GR antagonist (RU486). RS followed by acoustic trauma caused an immediate increase in corticosterone that triggered nuclear translocation of GR, without a change in the expression of GR protein. RU486 + MET before RS and acoustic trauma caused an immediate increase in GR mRNA followed by increased GR protein expression (24 h after trauma). GR signaling was further characterized by analyzing nuclear factor-kappaB (NF kappaB) nuclear translocation and protein expression. NF kappaB nuclear translocation was reduced after acoustic trauma or pretreatment with RU486 + MET before RS and acoustic trauma. On the contrary, RS protected against the trauma-induced NF kappaB reduction of its nuclear translocation in inhibitory-kappaB (I kappaB)-dependent manner. RU486 + MET caused a simultaneous decreased I kappaB expression and NF kappaB nuclear translocation, demonstrating an interference with the I kappaB-mediated activation of NF kappaB. In summary, RS protects the cochlea from acoustic trauma by increasing corticosterone and activating GRs. These results emphasis how GR activity modulates hearing sensitivity and its importance for the rationale use of glucocorticoids in inner ear diseases.
Collapse
Affiliation(s)
- Yeasmin Tahera
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
75
|
Lu YS, Lien HC, Yeh PY, Kuo SH, Chang WC, Kuo ML, Cheng AL. Glucocorticoid receptor expression in advanced non-small cell lung cancer: clinicopathological correlation and in vitro effect of glucocorticoid on cell growth and chemosensitivity. Lung Cancer 2006; 53:303-310. [PMID: 16806572 DOI: 10.1016/j.lungcan.2006.05.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Revised: 03/23/2006] [Accepted: 05/05/2006] [Indexed: 11/17/2022]
Abstract
The current study aimed to immunohistochemically examine the tumor glucocorticoids receptor (GR) expression in patients with advanced non-small cell lung cancer (NSCLC) and to examine the effect of glucocorticoids (GCs) on the in vitro NSCLC cells growth and chemosensitivity. High GR expression was detected in 51% of the tumor specimens. The difference in tumor GR expression was not associated with cell type, gender, age, or stage. The outcome was significantly superior for patients whose tumor showed high GR expression compared to those with either low expression or non-expression. The median progression-free survival was 8.0 versus 5.6 months (p=0.039) and overall survival was 18.1 versus 10.2 months, (p=0.003), respectively. Almost all these patients have received GC as antiemetics or allergic preventive treatment during chemotherapy courses, therefore, the effect of GC on the chemosensitivity in vivo was not evaluable. However, in vitro cytotoxicity assay showed that dexamethasone (DEX) had heterogeneous effects on the growth and chemosensitivity of the NSCLC cell lines. These findings suggest that tumor samples express high levels of GR in about half of the patients with advanced NSCLC, and this high expression of GR may be associated with better outcome. The effect of GC treatment on the chemosensitivity in NSCLC patients remains to be established.
Collapse
Affiliation(s)
- Yen-Shen Lu
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
76
|
Frego L, Davidson W. Conformational changes of the glucocorticoid receptor ligand binding domain induced by ligand and cofactor binding, and the location of cofactor binding sites determined by hydrogen/deuterium exchange mass spectrometry. Protein Sci 2006; 15:722-30. [PMID: 16600964 PMCID: PMC2242475 DOI: 10.1110/ps.051781406] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
HXMS (hydrogen/deuterium exchange mass spectrometry) of the glucocorticoid receptor ligand-binding domain (GR LBD) complexed with the agonist dexamethasone and the antagonist RU-486 is described. Variations in the rates of exchange were observed in regions consistent with the published crystal structures of GR LBD complexed with RU-486 when compared with the GR dexamethasone complex. We also report the HXMS results for agonist-bound GR LBD with the coactivator transcriptional intermediary factor 2 (TIF2) and anatagonist-bound GR LBD with nuclear receptor corepressor (NCoR). Alterations in exchange rates observed for agonist-bound GR LBD with TIF2 present were consistent with the published crystal structural contacts for the complex. Alterations in exchange rates observed for antagonist-bound GR LBD with NCoR were a subset of those observed with TIF2 binding, suggesting a common or overlapping binding site for coactivator and corepressor.
Collapse
Affiliation(s)
- Lee Frego
- Boehringer Ingelheim Phramaceuticals, Research and Development Center, Ridgefield, Connecticut 06877, USA.
| | | |
Collapse
|
77
|
Koterba KL, Rowan BG. Measuring ligand-dependent and ligand-independent interactions between nuclear receptors and associated proteins using Bioluminescence Resonance Energy Transfer (BRET). NUCLEAR RECEPTOR SIGNALING 2006; 4:e021. [PMID: 17016546 PMCID: PMC1555634 DOI: 10.1621/nrs.04021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Accepted: 05/24/2006] [Indexed: 11/20/2022]
Abstract
Bioluminescent resonance energy transfer (BRET2) is a recently developed technology for the measurement of protein-protein interactions in a live, cell-based system. BRET2 is characterized by the efficient transfer of excited energy between a bioluminescent donor molecule (Renilla luciferase) and a fluorescent acceptor molecule (a mutant of Green Fluorescent Protein (GFP2)). The BRET2 assay offers advantages over fluorescence resonance energy transfer (FRET) because it does not require an external light source thereby eliminating problems of photobleaching and autoflourescence. The absence of contamination by light results in low background that permits detection of very small changes in the BRET2 signal. BRET2 is dependent on the orientation and distance between two fusion proteins and therefore requires extensive preliminary standardization experiments to conclude a positive BRET2 signal independent of variations in protein titrations and arrangement in tertiary structures. Estrogen receptor (ER) signaling is modulated by steroid receptor coactivator 1 (SRC-1). To establish BRET2 in a ligand inducible system we used SRC-1 as the donor moiety and ER as the acceptor moiety. Expression and functionality of the fusion proteins were assessed by transient transfection in HEK-293 cells followed by Western blot analysis and measurement of ER-dependent reporter gene activity. These preliminary determinations are required prior to measuring nuclear receptor protein-protein interactions by BRET2. This article describes in detail the BRET2 methodology for measuring interaction between full-length ER and coregulator proteins in real-time, in an in vivo environment.
Collapse
|
78
|
Ito K, Chung KF, Adcock IM. Update on glucocorticoid action and resistance. J Allergy Clin Immunol 2006; 117:522-43. [PMID: 16522450 DOI: 10.1016/j.jaci.2006.01.032] [Citation(s) in RCA: 255] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Revised: 01/25/2006] [Accepted: 01/25/2006] [Indexed: 12/11/2022]
Abstract
Extensive development of inhaled and oral glucocorticoids has resulted in highly potent molecules that have been optimized to target activity to the lung and minimize systemic exposure. These have proved highly effective for most asthmatic subjects, but despite these developments, there are a number of subjects with asthma who fail to respond to even high doses of inhaled or even oral glucocorticoids. Advances in delineating the fundamental mechanisms of glucocorticoid pharmacology, especially the concepts of transactivation and transrepression and cofactor recruitment, have resulted in better understanding of the molecular mechanisms whereby glucocorticoids suppress inflammation. The existence of multiple mechanisms underlying glucocorticoid insensitivity raises the possibility that this might indeed reflect different diseases with a common phenotype, and studies examining the efficacy of potential new agents should be targeted toward subgroups of patients with severe corticosteroid-resistant asthma who clearly require effective new drugs and other approaches to improved asthma control.
Collapse
Affiliation(s)
- Kazuhiro Ito
- Cell and Molecular Biology, Airways Disease Section, National Heart and Lung Institute, Imperial College London, UK
| | | | | |
Collapse
|
79
|
Schaaf MJM, Willetts L, Hayes BP, Maschera B, Stylianou E, Farrow SN. The relationship between intranuclear mobility of the NF-kappaB subunit p65 and its DNA binding affinity. J Biol Chem 2006; 281:22409-22420. [PMID: 16760470 DOI: 10.1074/jbc.m511086200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It has been hypothesized that the main determinant of the intranuclear mobility of transcription factors is their ability to bind DNA. In the present study, we have extensively tested the relationship between the intranuclear mobility of the NF-kappaB subunit p65 and binding to its consensus target sequence. The affinity of p65 for this binding site is altered by mutation of specific acetylation sites, so these mutants provide a model system to study the relationship between specific DNA binding affinity and intranuclear mobility. DNA binding affinity was measured in vitro using an enzyme-linked immunosorbent assay-based method, and intranuclear mobility was measured using the fluorescence recovery after photobleaching technique on yellow fluorescent protein-tagged p65 constructs. A negative correlation was observed between DNA binding affinity and intranuclear mobility of p65 acetylation site mutants. However, moving the yellow fluorescent protein tag from the C terminus of p65 to the N terminus resulted in an increased mobility but did not significantly affect DNA binding affinity. Thus, all changes in DNA binding affinity produce alterations in mobility, but not vice versa. Finally, a positive correlation was observed between mobility and the randomness of the intranuclear distribution of p65. Our data are in line with a model in which the intranuclear mobility and distribution of a transcription factor are determined by its affinity for specific DNA sequences, which may be altered by protein-protein interactions.
Collapse
Affiliation(s)
- Marcel J M Schaaf
- Department of Asthma Biology, GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY.
| | - Lynsey Willetts
- Department of Asthma Biology, GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY; School of Biomedical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, United Kingdom
| | - Brian P Hayes
- Department of Asthma Biology, GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY
| | - Barbara Maschera
- Department of Asthma Biology, GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY
| | - Eleni Stylianou
- School of Biomedical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, United Kingdom
| | - Stuart N Farrow
- Department of Asthma Biology, GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY
| |
Collapse
|
80
|
Ray DW, Donn R, Berry A. Glucocorticoid sensitivity: pathology, mutations and clinical implications. Expert Rev Endocrinol Metab 2006; 1:403-412. [PMID: 30764078 DOI: 10.1586/17446651.1.3.403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Glucocorticoids exert diverse effects on virtually all cell types and tissues. Subtle changes in sensitivity may be generalized and congenital or acquired in a tissue-specific manner. Such changes may lead to altered susceptibility to metabolic diseases, such as ischemic heart disease, or to insensitivity to the therapeutic actions of synthetic glucocorticoids such as in inflammatory disease. This review will cover current theories of how glucocorticoids exert genetic and other congenital effects on glucocorticoid sensitivity, and acquired changes in glucocorticoid sensitivity seen principally in inflammatory and malignant disease. Recent important developments in the field include the impact of genetic variation within the glucocorticoid receptor gene, the effects of early life experience on long-term glucocorticoid sensitivity, studies identifying the role of nuclear factor κB in modulating glucocorticoid sensitivity in vitro and in vivo, and the action of macrophage migration inhibitory factor in modulating the anti-inflammatory effects of glucocorticoids. The role of chromatin organization in regulating glucocorticoid action on proinflammatory genes is discussed, as is the regulation of glucocorticoid sensitivity in human malignancy in the context of pathogenesis and treatment response.
Collapse
Affiliation(s)
- David W Ray
- a Professor of Medicine and Endocrinology, University of Manchester, Centre for Molecular Medicine, Stopford Building, Manchester, M13 9PT, UK.
| | - Rachelle Donn
- b University of Manchester, Centre for Molecular Medicine, Stopford Building, Manchester, M13 9PT, UK.
| | - Andrew Berry
- c Graduate Student, University of Manchester, Centre for Molecular Medicine, Stopford Building, Manchester, M13 9PT, UK.
| |
Collapse
|
81
|
Dvorák Z, Vrzal R, Maurel P, Ulrichová J. Differential effects of selected natural compounds with anti-inflammatory activity on the glucocorticoid receptor and NF-κB in HeLa cells. Chem Biol Interact 2006; 159:117-28. [PMID: 16289013 DOI: 10.1016/j.cbi.2005.10.105] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Revised: 09/27/2005] [Accepted: 10/05/2005] [Indexed: 01/29/2023]
Abstract
Natural compounds have been used in the treatment of various diseases for centuries. Herein, we investigated the effects of structurally diverse alkaloids with anti-inflammatory activity (berberine, sanguinarine, chelerythrine, and colchicine) on two important anti-inflammatory and pro-inflammatory players, i.e. glucocorticoid receptor (GR) and nuclear factor kappa B (NF-kappaB), respectively. Sanguinarine and chelerythrine elicited nuclear translocation of the p65 subunit of NF-kappaB. The nuclear import of p65 was strongly augmented by these akaloids in non-stimulated cells as well as in cells challenged with tumor necrosis factor alpha (TNFalpha). Colchicine and berberine had no effect on p65 nuclear translocation regardless of the presence or absence of TNFalpha. Colchicine caused rapid degradation of the GR protein, whereas berberine had no effect on GR content or cellular localization. Sanguinarine and chelerythrine induced accumulation of GR in the nucleus with concomitant diminution of cytosolic GR. Analyses on the transcriptional activity of GR and NF-kappaB monitored by reporter assays using HeLa cells transiently transfected with glucocorticoid response element (pGRE-LUC) and/or NF-kappaB elements fused to luciferase gene (pNF-kappaB-luc) showed that none of the compounds tested had the capability to trigger GR and/or NF-kappaB transcriptional activities, respectively. The ligand binding assay showed that colchicine and berberine are not GR ligands whereas sanguinarine and chelerythrine significantly decreased binding of (3)H-labelled dexamethasone to GR. In conclusion, structurally diverse natural antiflogistics displayed differential effects on GR and NF-kappaB in HeLa cells.
Collapse
Affiliation(s)
- Zdenek Dvorák
- Institute of Medical Chemistry and Biochemistry, Medical Faculty, Palacký University Olomouc, Hnevotínská 3, 77515 Olomouc, Czech Republic.
| | | | | | | |
Collapse
|
82
|
Friedrichsen S, Harper CV, Semprini S, Wilding M, Adamson AD, Spiller DG, Nelson G, Mullins JJ, White MRH, Davis JRE. Tumor necrosis factor-alpha activates the human prolactin gene promoter via nuclear factor-kappaB signaling. Endocrinology 2006; 147:773-81. [PMID: 16254029 PMCID: PMC1863827 DOI: 10.1210/en.2005-0967] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Pituitary function has been shown to be regulated by an increasing number of intrapituitary factors, including cytokines. Here we show that the important cytokine TNF-alpha activates prolactin gene transcription in pituitary GH3 cells stably expressing luciferase under control of 5 kb of the human prolactin promoter. Similar regulation of the endogenous rat prolactin gene by TNF-alpha in GH3 cells was confirmed using real-time PCR. Luminescence microscopy revealed heterogeneous dynamic response patterns of promoter activity in individual cells. In GH3 cells treated with TNF-alpha, Western blot analysis showed rapid inhibitory protein kappaB (IkappaBalpha) degradation and phosphorylation of p65. Confocal microscopy of cells expressing fluorescence-labeled p65 and IkappaBalpha fusion proteins showed transient cytoplasmic-nuclear translocation and subsequent oscillations in p65 localization and confirmed IkappaBalpha degradation. This was associated with increased nuclear factor kappaB (NF-kappaB)-mediated transcription from an NF-kappaB-responsive luciferase reporter construct. Disruption of NF-kappaB signaling by expression of dominant-negative variants of IkappaB kinases or truncated IkappaBalpha abolished TNF-alpha activation of the prolactin promoter, suggesting that this effect was mediated by NF-kappaB. TNF-alpha signaling was found to interact with other endocrine signals to regulate prolactin gene expression and is likely to be a major paracrine modulator of lactotroph function.
Collapse
Affiliation(s)
- Sönke Friedrichsen
- Endocrine Science Research Group School of Biological Sciences, University of Manchester, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Masuda M, Nagashima R, Kanzaki S, Fujioka M, Ogita K, Ogawa K. Nuclear factor-kappa B nuclear translocation in the cochlea of mice following acoustic overstimulation. Brain Res 2005; 1068:237-47. [PMID: 16376312 DOI: 10.1016/j.brainres.2005.11.020] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Revised: 11/01/2005] [Accepted: 11/02/2005] [Indexed: 12/15/2022]
Abstract
There is increasing evidence to suggest that the expression of many molecules in the lateral wall of the cochlea plays an important role in noise-induced stress responses. In this study, activation of the nuclear transcription factor nuclear factor-kappa B (NF-kappaB) was investigated in the cochlea of mice treated with intense noise exposure (4 kHz, octave band, 124 dB, for 2 h). The present noise exposure led to remarkable auditory brainstem response threshold shifts and cochlear damage on surface preparations. To assess the effects of noise exposure on NF-kappaB/DNA binding activity in the cochlea, we prepared nuclear extracts from the cochlea at different time points after noise exposure and carried out an electrophoretic mobility shift assay using a probe specific to NF-kappaB. NF-kappaB/DNA binding was significantly enhanced in the cochlea 2-6 h after noise exposure and returned to basal levels after 12 h. Supershift analysis using antibodies against p65 and p50 proteins, which are components of NF-kappaB, demonstrated that enhancement of NF-kappaB/DNA binding was at least in part due to nuclear translocation of p65. An immunohistochemical study also showed that nuclear translocation of both p65 and p50 was observed in the lateral wall after noise exposure and that there may be a possible close association between p65 and enhanced inducible nitric oxide synthase expression. These results suggest that NF-kappaB may have a detrimental role in the response to acoustic overstimulation in the cochlea of mice.
Collapse
Affiliation(s)
- Masatsugu Masuda
- Department of Otolaryngology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan.
| | | | | | | | | | | |
Collapse
|
84
|
Abstract
Preterm birth remains the leading cause of perinatal mortality and morbidity, largely as a result of a poor understanding of the precise mechanisms controlling labour onset in humans. Inflammation has long been recognised as a key feature of both preterm and term labour, with an influx of inflammatory cells into the uterus and elevated levels of pro-inflammatory cytokines observed during parturition. Nuclear factor kappa B (NF-κB) is a transcription factor family classically associated with inflammation. Accumulating evidence points to a role for NF-κB in the physiology and pathophysiology of labour. NF-κB activity increases with labour onset and is central to multiple prolabour pathways. Premature or aberrant activation of NF-κB may thus contribute to preterm labour. The current understanding of NF-κB in the context of human labour is discussed here.
Collapse
Affiliation(s)
- Tamsin M Lindström
- Parturition Research Group, Institute of Reproductive and Developmental Biology, 3rd Floor IRDB, Hammersmith Campus, Imperial College, Du Cane Road, London W12 0NN, United Kingdom.
| | | |
Collapse
|
85
|
Affiliation(s)
- Turk Rhen
- Department of Biology, University of North Dakota, Grand Forks, USA
| | | |
Collapse
|
86
|
Yoshikawa N, Yamamoto K, Shimizu N, Yamada S, Morimoto C, Tanaka H. The distinct agonistic properties of the phenylpyrazolosteroid cortivazol reveal interdomain communication within the glucocorticoid receptor. Mol Endocrinol 2005; 19:1110-24. [PMID: 15677712 DOI: 10.1210/me.2004-0264] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Recent structural analyses of the nuclear receptors establish a paradigm of receptor activation, in which agonist binding induces the ligand binding domain (LBD)/activation function-2 helix to form a charge clamp for coactivator recruitment. However, these analyses have not sufficiently addressed the mechanisms for differential actions of various synthetic steroids in terms of fine tuning of multiple functions of whole receptor molecules. In the present study, we used the glucocorticoid receptor (GR)-specific agonist cortivazol (CVZ) to probe the plasticity and functional modularity of the GR. Structural docking analysis revealed that although CVZ is more bulky than other agonists, it can be accommodated in the ligand binding pocket of the GR by reorientation of several amino acid side chains but without major alterations in the active conformation of the LBD. In this induced fit model, the phenylpyrazole A-ring of CVZ establishes additional contacts with helices 3 and 5 of the LBD that may contribute to a more stable LBD configuration. Structural and functional analysis revealed that CVZ is able to compensate for the deleterious effects of a C-terminal deletion of the LBD in a manner that mimics the stabilizing influence of the F602S point mutation. CVZ-mediated productive recruitment of transcriptional intermediary factor 2 to the C-terminally deleted LBD requires the receptor's own DNA binding domain and is positively influenced by the N-terminal regions of GR or progesterone receptor. These results support a model where ligand-dependent conformational changes in the LBD play a role in GR-mediated gene regulation via modular interaction with the DBD and activation function-1.
Collapse
Affiliation(s)
- Noritada Yoshikawa
- Division of the Clinical Immunology, the Advanced Clinical Research Center, the Institute of Medical Science, the University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | |
Collapse
|