51
|
Targeting complex, adaptive responses in melanoma therapy. Cancer Treat Rev 2020; 86:101997. [PMID: 32179238 DOI: 10.1016/j.ctrv.2020.101997] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 02/21/2020] [Accepted: 02/27/2020] [Indexed: 01/09/2023]
Abstract
Our understanding of the complex, adaptive mechanisms of response to targeted therapies in metastatic melanoma is now leading to more effective combination treatments. These include the simultaneous inhibition of signalling pathways and metabolic programmes, as well as epigenetic mechanisms or immunological checkpoints. We review the latest pre-clinical and clinical results of strategies to delay tumor progression through combination approaches, and also highlight some of the problems ahead, including patient stratification, the complexity of targeting adaptive responses, and the management of more severe toxicities that result from double and triple-drug treatments.
Collapse
|
52
|
The Role of Carcinogenesis-Related Biomarkers in the Wnt Pathway and Their Effects on Epithelial-Mesenchymal Transition (EMT) in Oral Squamous Cell Carcinoma. Cancers (Basel) 2020; 12:cancers12030555. [PMID: 32121061 PMCID: PMC7139589 DOI: 10.3390/cancers12030555] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/27/2022] Open
Abstract
As oral squamous cell carcinoma (OSCC) can develop from potentially malignant disorders (PMDs), it is critical to develop methods for early detection to improve the prognosis of patients. Epithelial-mesenchymal transition (EMT) plays an important role during tumor progression and metastasis. The Wnt signaling pathway is an intercellular pathway in animals that also plays a fundamental role in cell proliferation and regeneration, and in the function of many cell or tissue types. Specific components of master regulators such as epithelial cadherin (E-cadherin), Vimentin, adenomatous polyposis coli (APC), Snail, and neural cadherin (N-cadherin), which are known to control the EMT process, have also been implicated in the Wnt cascade. Here, we review recent findings on the Wnt signaling pathway and the expression mechanism. These regulators are known to play roles in EMT and tumor progression, especially in OSCC. Characterizing the mechanisms through which both EMT and the Wnt pathway play a role in these cellular pathways could increase our understanding of the tumor genesis process and may allow for the development of improved therapeutics for OSCC.
Collapse
|
53
|
Brás MM, Radmacher M, Sousa SR, Granja PL. Melanoma in the Eyes of Mechanobiology. Front Cell Dev Biol 2020; 8:54. [PMID: 32117980 PMCID: PMC7027391 DOI: 10.3389/fcell.2020.00054] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/21/2020] [Indexed: 12/23/2022] Open
Abstract
Skin is the largest organ of the human body with several important functions that can be impaired by injury, genetic or chronic diseases. Among all skin diseases, melanoma is one of the most severe, which can lead to death, due to metastization. Mechanotransduction has a crucial role for motility, invasion, adhesion and metastization processes, since it deals with the response of cells to physical forces. Signaling pathways are important to understand how physical cues produced or mediated by the Extracellular Matrix (ECM), affect healthy and tumor cells. During these processes, several molecules in the nucleus and cytoplasm are activated. Melanocytes, keratinocytes, fibroblasts and the ECM, play a crucial role in melanoma formation. This manuscript will address the synergy among melanocytes, keratinocytes, fibroblasts cells and the ECM considering their mechanical contribution and relevance in this disease. Mechanical properties of melanoma cells can also be influenced by pigmentation, which can be associated with changes in stiffness. Mechanical changes can be related with the adhesion, migration, or invasiveness potential of melanoma cells promoting a high metastization capacity of this cancer. Mechanosensing, mechanotransduction, and mechanoresponse will be highlighted with respect to the motility, invasion, adhesion and metastization in melanoma cancer.
Collapse
Affiliation(s)
- M. Manuela Brás
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | | | - Susana R. Sousa
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Pedro L. Granja
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
54
|
Monti M, Consoli F, Vescovi R, Bugatti M, Vermi W. Human Plasmacytoid Dendritic Cells and Cutaneous Melanoma. Cells 2020; 9:E417. [PMID: 32054102 PMCID: PMC7072514 DOI: 10.3390/cells9020417] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/12/2022] Open
Abstract
The prognosis of metastatic melanoma (MM) patients has remained poor for a long time. However, the recent introduction of effective target therapies (BRAF and MEK inhibitors for BRAFV600-mutated MM) and immunotherapies (anti-CTLA-4 and anti-PD-1) has significantly improved the survival of MM patients. Notably, all these responses are highly dependent on the fitness of the host immune system, including the innate compartment. Among immune cells involved in cancer immunity, properly activated plasmacytoid dendritic cells (pDCs) exert an important role, bridging the innate and adaptive immune responses and directly eliminating cancer cells. A distinctive feature of pDCs is the production of high amount of type I Interferon (I-IFN), through the Toll-like receptor (TLR) 7 and 9 signaling pathway activation. However, published data indicate that melanoma-associated escape mechanisms are in place to hijack pDC functions. We have recently reported that pDC recruitment is recurrent in the early phases of melanoma, but the entire pDC compartment collapses over melanoma progression. Here, we summarize recent advances on pDC biology and function within the context of melanoma immunity.
Collapse
Affiliation(s)
- Matilde Monti
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.M.); (R.V.); (M.B.)
| | - Francesca Consoli
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Medical Oncology, University of Brescia at ASST-Spedali Civili, 25123 Brescia, Italy;
| | - Raffaella Vescovi
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.M.); (R.V.); (M.B.)
| | - Mattia Bugatti
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.M.); (R.V.); (M.B.)
| | - William Vermi
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.M.); (R.V.); (M.B.)
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
55
|
Mohapatra P, Yadav V, Toftdahl M, Andersson T. WNT5A-Induced Activation of the Protein Kinase C Substrate MARCKS Is Required for Melanoma Cell Invasion. Cancers (Basel) 2020; 12:cancers12020346. [PMID: 32033033 PMCID: PMC7072258 DOI: 10.3390/cancers12020346] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 01/21/2020] [Accepted: 01/27/2020] [Indexed: 12/16/2022] Open
Abstract
WNT5A is a well-known mediator of melanoma cell invasion and metastasis via its ability to activate protein kinase C (PKC), which is monitored by phosphorylation of the endogenous PKC substrate myristoylated alanine-rich c-kinase substrate (MARCKS). However, a possible direct contribution of MARCKS in WNT5A-mediated melanoma cell invasion has not been investigated. Analyses of melanoma patient databases suggested that similar to WNT5A expression, MARCKS expression appears to be associated with increased metastasis. A relationship between the two is suggested by the findings that recombinant WNT5A (rWNT5A) induces both increased expression and phosphorylation of MARCKS, whereas WNT5A silencing does the opposite. Moreover, WNT5A-induced invasion of melanoma cells was blocked by siRNA targeting MARCKS, indicating a crucial role of MARCKS expression and/or its phosphorylation. Next, we employed a peptide inhibitor of MARCKS phosphorylation that did not affect MARCKS expression and found that it abolished WNT5A-induced melanoma cell invasion. Similarly, rWNT5A induced the accumulation of phosphorylated MARCKS in membrane protrusions at the leading edge of melanoma cells. Our results demonstrate that WNT5A-induced phosphorylation of MARCKS is not only an indicator of PKC activity but also a crucial regulator of the metastatic behavior of melanoma and therefore an attractive future antimetastatic target in melanoma patients.
Collapse
Affiliation(s)
| | | | | | - Tommy Andersson
- Correspondence: (P.M.); (T.A.); Tel.: +46-40-391167 (P.M. & T.A.)
| |
Collapse
|
56
|
Genetic Interactions Affect Lung Function in Patients with Systemic Sclerosis. G3-GENES GENOMES GENETICS 2020; 10:151-163. [PMID: 31694854 PMCID: PMC6945038 DOI: 10.1534/g3.119.400775] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Scleroderma, or systemic sclerosis (SSc), is an autoimmune disease characterized by progressive fibrosis of the skin and internal organs. The most common cause of death in people with SSc is lung disease, but the pathogenesis of lung disease in SSc is insufficiently understood to devise specific treatment strategies. Developing targeted treatments requires not only the identification of molecular processes involved in SSc-associated lung disease, but also understanding of how these processes interact to drive pathology. One potentially powerful approach is to identify alleles that interact genetically to influence lung outcomes in patients with SSc. Analysis of interactions, rather than individual allele effects, has the potential to delineate molecular interactions that are important in SSc-related lung pathology. However, detecting genetic interactions, or epistasis, in human cohorts is challenging. Large numbers of variants with low minor allele frequencies, paired with heterogeneous disease presentation, reduce power to detect epistasis. Here we present an analysis that increases power to detect epistasis in human genome-wide association studies (GWAS). We tested for genetic interactions influencing lung function and autoantibody status in a cohort of 416 SSc patients. Using Matrix Epistasis to filter SNPs followed by the Combined Analysis of Pleiotropy and Epistasis (CAPE), we identified a network of interacting alleles influencing lung function in patients with SSc. In particular, we identified a three-gene network comprising WNT5A, RBMS3, and MSI2, which in combination influenced multiple pulmonary pathology measures. The associations of these genes with lung outcomes in SSc are novel and high-confidence. Furthermore, gene coexpression analysis suggested that the interactions we identified are tissue-specific, thus differentiating SSc-related pathogenic processes in lung from those in skin.
Collapse
|
57
|
Vijayakumar G, Narwal A, Kamboj M, Sen R. Association of SOX2, OCT4 and WNT5A Expression in Oral Epithelial Dysplasia and Oral Squamous Cell Carcinoma: An Immunohistochemical Study. Head Neck Pathol 2020; 14:749-757. [PMID: 31902091 PMCID: PMC7413951 DOI: 10.1007/s12105-019-01114-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 12/10/2019] [Indexed: 01/06/2023]
Abstract
The cancer stem cells deliver uncontrolled proliferative capacity within the tumor imparting to increasing size while epithelial mesenchymal transition adds to the invasive potential. Studies using specific markers elucidating the role of these phenomena may bring advancement in the targeted therapy of tumor. SOX2 and OCT4 are two among few stem cell markers indicative of proliferative potential and WNT5A is an epithelial mesenchymal transition marker indicative of invasive potential. We aimed to determine the association between expression of SOX2, OCT4 and WNT5A in oral epithelial dysplasia, oral squamous cell carcinoma and normal oral mucosa. 20 cases of oral squamous cell carcinoma, 20 cases of oral epithelial dysplasia (leukoplakia with dysplasia) and 25 normal oral mucosa tissues specimens were immunohistochemically stained to assess SOX2, OCT4 and WNT5A expression. SOX2 expression was higher in oral squamous cell carcinoma than in oral epithelial dysplasia and very low in normal oral mucosa. OCT4 was very low in oral squamous cell carcinoma and oral epithelial dysplasia when compared to SOX2, while negative in normal tissues. Co-expression of SOX2 and OCT4 showed statistically non-significant difference for tumor proliferation. WNT5A expression was found to be increasing from normal oral mucosa to oral epithelial dysplasia and oral squamous cell carcinoma. In conformity with present study, SOX2 itself can act as a potential marker for proliferation in tumor cells while OCT4 has non-significant role in regulation of tumor behavior in oral squamous cell carcinoma as well as in oral epithelial dysplasia. WNT5A can be a putative marker in studying invasive potential of oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Gopikrishnan Vijayakumar
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, Post Graduate Institute of Dental Sciences, Pt. BD Sharma University of Health Sciences, Rohtak, Haryana, India.
| | - Anjali Narwal
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, Post Graduate Institute of Dental Sciences, Pt. BD Sharma University of Health Sciences, Rohtak, Haryana, India
| | - Mala Kamboj
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, Post Graduate Institute of Dental Sciences, Pt. BD Sharma University of Health Sciences, Rohtak, Haryana, India
| | - Rajeev Sen
- Department of General Pathology, Post Graduate Institute of Medical Sciences, Pt. BD Sharma University of Health Sciences, Rohtak, Haryana, India
| |
Collapse
|
58
|
Dongre A, Weinberg RA. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol 2019; 20:69-84. [PMID: 30459476 DOI: 10.1038/s41580-018-0080-4] [Citation(s) in RCA: 2454] [Impact Index Per Article: 409.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is a cellular programme that is known to be crucial for embryogenesis, wound healing and malignant progression. During EMT, cell-cell and cell-extracellular matrix interactions are remodelled, which leads to the detachment of epithelial cells from each other and the underlying basement membrane, and a new transcriptional programme is activated to promote the mesenchymal fate. In the context of neoplasias, EMT confers on cancer cells increased tumour-initiating and metastatic potential and a greater resistance to elimination by several therapeutic regimens. In this Review, we discuss recent findings on the mechanisms and roles of EMT in normal and neoplastic tissues, and the cell-intrinsic signals that sustain expression of this programme. We also highlight how EMT gives rise to a variety of intermediate cell states between the epithelial and the mesenchymal state, which could function as cancer stem cells. In addition, we describe the contributions of the tumour microenvironment in inducing EMT and the effects of EMT on the immunobiology of carcinomas.
Collapse
Affiliation(s)
- Anushka Dongre
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Robert A Weinberg
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA. .,MIT Ludwig Center for Molecular Oncology, Cambridge, MA, USA. .,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
59
|
Webster MR, Fane ME, Alicea GM, Basu S, Kossenkov AV, Marino GE, Douglass SM, Kaur A, Ecker BL, Gnanapradeepan K, Ndoye A, Kugel C, Valiga A, Palmer J, Liu Q, Xu X, Morris J, Yin X, Wu H, Xu W, Zheng C, Karakousis GC, Amaravadi RK, Mitchell TC, Almeida FV, Xiao M, Rebecca VW, Wang YJ, Schuchter LM, Herlyn M, Murphy ME, Weeraratna AT. Paradoxical Role for Wild-Type p53 in Driving Therapy Resistance in Melanoma. Mol Cell 2019; 77:633-644.e5. [PMID: 31836388 DOI: 10.1016/j.molcel.2019.11.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 07/17/2019] [Accepted: 11/06/2019] [Indexed: 12/29/2022]
Abstract
Metastatic melanoma is an aggressive disease, despite recent improvements in therapy. Eradicating all melanoma cells even in drug-sensitive tumors is unsuccessful in patients because a subset of cells can transition to a slow-cycling state, rendering them resistant to most targeted therapy. It is still unclear what pathways define these subpopulations and promote this resistant phenotype. In the current study, we show that Wnt5A, a non-canonical Wnt ligand that drives a metastatic, therapy-resistant phenotype, stabilizes the half-life of p53 and uses p53 to initiate a slow-cycling state following stress (DNA damage, targeted therapy, and aging). Inhibiting p53 blocks the slow-cycling phenotype and sensitizes melanoma cells to BRAF/MEK inhibition. In vivo, this can be accomplished with a single dose of p53 inhibitor at the commencement of BRAF/MEK inhibitor therapy. These data suggest that taking the paradoxical approach of inhibiting rather than activating wild-type p53 may sensitize previously resistant metastatic melanoma cells to therapy.
Collapse
Affiliation(s)
- Marie R Webster
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, PA, 19104, U.S.A.; Lankenau Institute for Medical Research, Wynnewood, PA 19096, USA.
| | - Mitchell E Fane
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, PA, 19104, U.S.A
| | - Gretchen M Alicea
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, PA, 19104, U.S.A.; University of the Sciences, Philadelphia, PA 19104, USA
| | - Subhasree Basu
- Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, PA 19104, USA
| | | | - Gloria E Marino
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, PA, 19104, U.S.A
| | - Stephen M Douglass
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, PA, 19104, U.S.A
| | - Amanpreet Kaur
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, PA, 19104, U.S.A.; University of the Sciences, Philadelphia, PA 19104, USA
| | - Brett L Ecker
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, PA, 19104, U.S.A.; Department of Surgery, University of Pennsylvania Hospital, Philadelphia, PA 19104, USA
| | - Keerthana Gnanapradeepan
- Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, PA 19104, USA; Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Abibatou Ndoye
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, PA, 19104, U.S.A.; University of the Sciences, Philadelphia, PA 19104, USA
| | - Curtis Kugel
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, PA, 19104, U.S.A
| | - Alexander Valiga
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, PA, 19104, U.S.A
| | - Jessica Palmer
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, PA, 19104, U.S.A
| | - Qin Liu
- Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Xiaowei Xu
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jessicamarie Morris
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, PA, 19104, U.S.A
| | - Xiangfan Yin
- Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Hong Wu
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Wei Xu
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cathy Zheng
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Giorgos C Karakousis
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ravi K Amaravadi
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tara C Mitchell
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Filipe V Almeida
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, PA, 19104, U.S.A
| | - Min Xiao
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, PA, 19104, U.S.A
| | - Vito W Rebecca
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, PA, 19104, U.S.A
| | - Ying-Jie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang 310003, China
| | - Lynn M Schuchter
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Tara Miller Melanoma Center at Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Meenhard Herlyn
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, PA, 19104, U.S.A
| | - Maureen E Murphy
- Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Ashani T Weeraratna
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, PA, 19104, U.S.A.; Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health and Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
60
|
Takahashi H, Ogoyama M, Nagayama S, Suzuki H, Ohkuchi A, Matsubara S, Takizawa T. Extravillous trophoblast invasion accelerated by WNT3A, 5A, and 10B via CD44. J Matern Fetal Neonatal Med 2019; 34:3377-3385. [PMID: 31736372 DOI: 10.1080/14767058.2019.1684891] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Appropriate extravillous trophoblast (EVT) invasion is essential for successful pregnancy. Previously, we showed that EVTs express CD44, which accelerated EVT invasion. However, its regulation mechanism via CD44 remains unknown. Our hypothesis was that WNT signaling enhanced EVT invasion via CD44. To test this hypothesis, we investigated the effects of WNT ligands on CD44 expression and EVT invasion using EVT cell lines and isolated primary EVTs. METHODS We used EVT cell lines (HTR8/SVneo and HChEpC1b) and isolated primary EVTs, extracted from first-trimester trophoblasts. The cells were supplemented with WNT3A, 5A, and 10B. We examined cell invasion and the expressions of CD44 and matrix metalloproteinase (MMP) 9. Next, to clarify the pathway of WNT10B in EVTs, we knock-downed WNT10B using siRNA and activated or inhibited the WNT canonical pathway using an activator (lithium chloride) or inhibitor (FH535, XAV939) with WNT10B addition. RESULTS WNT3A, 5A, and 10B accelerated the invasion in the EVT lines and isolated primary EVTs. The expressions of CD44 and MMP9 were also upregulated by WNT ligands. WNT10B knockdown significantly inhibited EVT invasion concomitantly with CD44 expression. The WNT canonical pathway activator upregulated CD44 expression and its inhibitor downregulated it with WNT10B addition. CONCLUSIONS The present study is the first to show the possibility that WNT3A, WNT5A, and WNT10B exist upstream of CD44 in EVTs. Among them, WNT10B may be a novel accelerator of EVT invasion. WNT signaling mediated by multiple WNT ligands may contribute to EVT invasion.
Collapse
Affiliation(s)
- Hironori Takahashi
- Department of Obstetrics and Gynecology, Jichi Medical University, Tochigi, Japan.,Department of Molecular Medicine and Anatomy, Nippon Medical School, Tokyo, Japan
| | - Manabu Ogoyama
- Department of Obstetrics and Gynecology, Jichi Medical University, Tochigi, Japan.,Department of Molecular Medicine and Anatomy, Nippon Medical School, Tokyo, Japan
| | - Shiho Nagayama
- Department of Obstetrics and Gynecology, Jichi Medical University, Tochigi, Japan
| | - Hirotada Suzuki
- Department of Obstetrics and Gynecology, Jichi Medical University, Tochigi, Japan
| | - Akihide Ohkuchi
- Department of Obstetrics and Gynecology, Jichi Medical University, Tochigi, Japan
| | - Shigeki Matsubara
- Department of Obstetrics and Gynecology, Jichi Medical University, Tochigi, Japan
| | - Toshihiro Takizawa
- Department of Molecular Medicine and Anatomy, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
61
|
Zhang Q, Fan H, Liu H, Jin J, Zhu S, Zhou L, Liu H, Zhang F, Zhan P, Lv T, Song Y. WNT5B exerts oncogenic effects and is negatively regulated by miR-5587-3p in lung adenocarcinoma progression. Oncogene 2019; 39:1484-1497. [PMID: 31666682 DOI: 10.1038/s41388-019-1071-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 10/05/2019] [Accepted: 10/11/2019] [Indexed: 12/29/2022]
Abstract
WNT5B glycoprotein belongs to the Wnt protein family. Limited investigations revealed a possible role of WNT5B in malignancies, such as triple-negative breast cancer and oral squamous cell carcinoma. However, whether WNT5B contributes to the progression of lung adenocarcinoma (LAD) remains unclear. Here, we initially determine that WNT5B is highly expressed in LAD and is positively correlated with lymph node metastasis and TNM stage. Consistently, clinical analysis reveals WNT5B as an independent prognostic biomarker in LAD. Silencing WNT5B suppresses the proliferation of LAD both in vitro and in vivo by interfering G1/S cell-cycle progression and modulating amino acid metabolism, revealing its remarkable oncogenic role in LAD. Of note, we also identified miR-5587-3p as a negative upstream regulator of WNT5B in LAD, which may help develop therapies targeting LAD patients with high WNT5B expression. Taken together, our results revealed an oncogenic role of WNT5B in LAD, which could be a prognostic biomarker and promising therapeutic target for LAD patients.
Collapse
Affiliation(s)
- Qun Zhang
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, Jiangsu, China.,Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Hang Fan
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, Jiangsu, China
| | - Hongda Liu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jiajia Jin
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University, Nanjing, 210002, Jiangsu, China
| | - Suhua Zhu
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, Jiangsu, China
| | - Li Zhou
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, Jiangsu, China
| | - Hongbin Liu
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, Jiangsu, China
| | - Fang Zhang
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, Jiangsu, China
| | - Ping Zhan
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, Jiangsu, China.
| | - Tangfeng Lv
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, Jiangsu, China.
| | - Yong Song
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, Jiangsu, China.
| |
Collapse
|
62
|
Yu W, Yang L, Li T, Zhang Y. Cadherin Signaling in Cancer: Its Functions and Role as a Therapeutic Target. Front Oncol 2019; 9:989. [PMID: 31637214 PMCID: PMC6788064 DOI: 10.3389/fonc.2019.00989] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022] Open
Abstract
Cadherin family includes lists of transmembrane glycoproteins which mediate calcium-dependent cell-cell adhesion. Cadherin-mediated adhesion regulates cell growth and differentiation throughout life. Through the establishment of the cadherin-catenin complex, cadherins provide normal cell-cell adhesion and maintain homeostatic tissue architecture. In the process of cell recognition and adhesion, cadherins act as vital participators. As results, the disruption of cadherin signaling has significant implications on tumor formation and progression. Altered cadherin expression plays a vital role in tumorigenesis, tumor progression, angiogenesis, and tumor immune response. Based on ongoing research into the role of cadherin signaling in malignant tumors, cadherins are now being considered as potential targets for cancer therapies. This review will demonstrate the mechanisms of cadherin involvement in tumor progression, and consider the clinical significance of cadherins as therapeutic targets.
Collapse
Affiliation(s)
- Weina Yu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, China
| | - Li Yang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, China
| | - Ting Li
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
63
|
An Autocrine Wnt5a Loop Promotes NF-κB Pathway Activation and Cytokine/Chemokine Secretion in Melanoma. Cells 2019; 8:cells8091060. [PMID: 31510045 PMCID: PMC6770184 DOI: 10.3390/cells8091060] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/29/2019] [Accepted: 09/05/2019] [Indexed: 12/19/2022] Open
Abstract
Wnt5a signaling has been implicated in the progression of cancer by regulating multiple cellular processes, largely migration and invasion, epithelial-mesenchymal transition (EMT), and metastasis. Since Wnt5a signaling has also been involved in inflammatory processes in infectious and inflammatory diseases, we addressed the role of Wnt5a in regulating NF-κB, a pivotal mediator of inflammatory responses, in the context of cancer. The treatment of melanoma cells with Wnt5a induced phosphorylation of the NF-κB subunit p65 as well as IKK phosphorylation and IκB degradation. By using cDNA overexpression, RNA interference, and dominant negative mutants we determined that ROR1, Dvl2, and Akt (from the Wnt5a pathway) and TRAF2 and RIP (from the NF-κB pathway) are required for the Wnt5a/NF-κB crosstalk. Wnt5a also induced p65 nuclear translocation and increased NF-κB activity as evidenced by reporter assays and a NF-κB-specific upregulation of RelB, Bcl-2, and Cyclin D1. Further, stimulation of melanoma cells with Wnt5a increased the secretion of cytokines and chemokines, including IL-6, IL-8, IL-11, and IL-6 soluble receptor, MCP-1, and TNF soluble receptor I. The inhibition of endogenous Wnt5a demonstrated that an autocrine Wnt5a loop is a major regulator of the NF-κB pathway in melanoma. Taken together, these results indicate that Wnt5a activates the NF-κB pathway and has an immunomodulatory effect on melanoma through the secretion of cytokines and chemokines.
Collapse
|
64
|
Abstract
Developmental signaling pathways control a vast array of biological processes during embryogenesis and in adult life. The WNT pathway was discovered simultaneously in cancer and development. Recent advances have expanded the role of WNT to a wide range of pathologies in humans. Here, we discuss the WNT pathway and its role in human disease and some of the advances in WNT-related treatments.
Collapse
|
65
|
Larivé E, Nicolas M, Kaya G, Riggi N, Moulin AP. β-Catenin Expression and Activation in Conjunctival Melanoma. Dermatopathology (Basel) 2019; 6:50-62. [PMID: 31700844 PMCID: PMC6827456 DOI: 10.1159/000500682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 04/10/2019] [Indexed: 12/12/2022] Open
Abstract
Purpose To assess the role of the canonical Wnt pathway via activation of β-catenin in tumor progression of conjunctival melanoma. Methods β-Catenin localization was assessed by immunohistochemistry in 43 conjunctival nevi, 48 primary acquired melanoses (PAM; conjunctival melanocytic intraepithelial neoplasia), and 44 conjunctival melanomas. Activation of the canonical or the noncanonical Wnt pathway was tested in vitro in 4 conjunctival melanoma cell lines with stimulation of either Wnt5a or Wnt3a. Wound healing assays were performed with Wnt5a. Results Nuclear β-catenin expression was found in 16% of the nevi, in 15% of the melanomas, and in 4% of the PAM. Membranous β-catenin expression was identified in all the nevi and PAM and in 97.7% of the melanomas. In vitro, Wnt5a stimulation in the 4 conjunctival melanomas and in 1 skin melanoma cell line did not induce nuclear translocation of β-catenin, nor did it increase cell motility in the wound healing assays. Wnt3a stimulation did not induce nuclear localization of β-catenin in any of the cell lines tested. Conclusions In conjunctival melanoma, nuclear localization and activation of β-catenin appear to be limited, suggesting that inhibition of ARF6, responsible for β-catenin activation, in subsets of skin melanoma may not represent a treatment option for this tumor. In vitro, Wnt3a or Wnt5a did not induce nuclear β-catenin localization.
Collapse
Affiliation(s)
| | - Michael Nicolas
- Jules-Gonin Eye Hospital, Lausanne University, FAA, Lausanne, Switzerland
| | - Gürkan Kaya
- Dermatopathology Unit, Department of Dermatology, University Hospital of Geneva, Geneva, Switzerland
| | - Nicolo Riggi
- Experimental Pathology, Lausanne University Pathology Institute, Lausanne, Switzerland
| | - Alexandre P Moulin
- Jules-Gonin Eye Hospital, Lausanne University, FAA, Lausanne, Switzerland
| |
Collapse
|
66
|
Abolghasemi M, Yousefi T, Maniati M, Qujeq D. The interplay of Klotho with signaling pathway and microRNAs in cancers. J Cell Biochem 2019; 120:14306-14317. [DOI: 10.1002/jcb.29022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Maryam Abolghasemi
- Cellular and Molecular Biology Research Center, Health Research Institute Babol University of Medical Sciences Babol Iran
- Department of Clinical Biochemistry, School of Medicine Babol University of Medical Sciences Babol Iran
- Student Research Committee Babol University of Medical Sciences Babol Iran
| | - Tooba Yousefi
- Cellular and Molecular Biology Research Center, Health Research Institute Babol University of Medical Sciences Babol Iran
- Department of Clinical Biochemistry, School of Medicine Babol University of Medical Sciences Babol Iran
- Student Research Committee Babol University of Medical Sciences Babol Iran
| | - Mahmood Maniati
- Assistant Professor of the English Department Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center, Health Research Institute Babol University of Medical Sciences Babol Iran
- Department of Clinical Biochemistry, School of Medicine Babol University of Medical Sciences Babol Iran
| |
Collapse
|
67
|
Tan M, Asad M, Heong V, Wong MK, Tan TZ, Ye J, Kuay KT, Thiery JP, Scott C, Huang RYJ. The FZD7-TWIST1 axis is responsible for anoikis resistance and tumorigenesis in ovarian carcinoma. Mol Oncol 2019; 13:757-780. [PMID: 30548372 PMCID: PMC6441896 DOI: 10.1002/1878-0261.12425] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/24/2018] [Accepted: 11/20/2018] [Indexed: 12/20/2022] Open
Abstract
Frizzled family receptor 7 (FZD7), a Wnt signaling receptor, is associated with the maintenance of stem cell properties and cancer progression. FZD7 has emerged as a potential therapeutic target because it is capable of transducing both canonical and noncanonical Wnt signals. In this study, we investigated the regulatory pathway downstream of FZD7 and its functional roles. We found that FZD7 expression was crucial to the maintenance of the mesenchymal phenotype, anoikis resistance, and spheroid and tumor formation in ovarian cancer (OC). We identified TWIST1 as the crucial downstream effector of the FZD7 pathway. TWIST1, a basic helix loop helix transcription factor, is known to associate with mesenchymal and cancer stem cell phenotypes. Manipulating TWIST1 expression mimicked the functional consequences observed in the FZD7 model, and overexpression of TWIST1 partially rescued the functional phenotypes abolished by FZD7 knockdown. We further proved that FZD7 regulated TWIST1 expression through epigenetic modifications of H3K4me3 and H3K27ac at the TWIST1 proximal promoter. We also identified that the FZD7‐TWIST1 axis regulates the expression of BCL2, a gene that controls apoptosis. Identification of this FZD7‐TWIST1‐BCL2 pathway reaffirms the mechanism of anoikis resistance in OC. We subsequently showed that the FZD7‐TWIST1 axis can be targeted by using a small molecule inhibitor of porcupine, an enzyme essential for secretion and functional activation of Wnts. In conclusion, our results identified that the FZD7‐TWIST1 axis is important for tumorigenesis and anoikis resistance, and therapeutic inhibition results in cell death in OCs.
Collapse
Affiliation(s)
- Ming Tan
- Cancer Science Institute of Singapore, Singapore.,Center for Translational Medicine, National University of Singapore, Singapore
| | - Mohammad Asad
- Cancer Science Institute of Singapore, Singapore.,Center for Translational Medicine, National University of Singapore, Singapore.,Department of Obstetrics and Gynaecology, National University Hospital of Singapore, Singapore
| | - Valerie Heong
- Cancer Science Institute of Singapore, Singapore.,Center for Translational Medicine, National University of Singapore, Singapore.,Department of Haematology-Oncology, National University Cancer Institute Singapore, Singapore.,Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Meng Kang Wong
- Cancer Science Institute of Singapore, Singapore.,Center for Translational Medicine, National University of Singapore, Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, Singapore.,Center for Translational Medicine, National University of Singapore, Singapore
| | - Jieru Ye
- Cancer Science Institute of Singapore, Singapore.,Center for Translational Medicine, National University of Singapore, Singapore
| | - Kuee Theng Kuay
- Cancer Science Institute of Singapore, Singapore.,Center for Translational Medicine, National University of Singapore, Singapore
| | - Jean Paul Thiery
- Cancer Science Institute of Singapore, Singapore.,Center for Translational Medicine, National University of Singapore, Singapore.,Department of Biochemistry, National University of Singapore, Singapore.,Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Clare Scott
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Ruby Yun-Ju Huang
- Cancer Science Institute of Singapore, Singapore.,Center for Translational Medicine, National University of Singapore, Singapore.,Department of Obstetrics and Gynaecology, National University Hospital of Singapore, Singapore.,Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
68
|
Liu J, Wang C, Ma X, Tian Y, Wang C, Fu Y, Luo Y. High expression of CCR5 in melanoma enhances epithelial-mesenchymal transition and metastasis via TGFβ1. J Pathol 2019; 247:481-493. [PMID: 30474221 DOI: 10.1002/path.5207] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 10/16/2018] [Accepted: 10/30/2018] [Indexed: 02/06/2023]
Abstract
Chemokine receptors are highly expressed in various cancers and play crucial roles in tumor progression. However, their expression patterns and functions in melanoma are unclear. The present study aimed to identify the chemokine receptors that play critical roles in melanoma progression and unravel the underlying molecular mechanisms. We found that CCR5 was more abundant in melanoma cells than normal cells and was positively associated with tumor malignancy in clinical patients. Animal experiments suggested that CCR5 deficiency in B16/F10 or A375 cells suppressed primary tumor growth and lung metastasis, whereas CCR5 overexpression in B16/F0 cells enhanced primary tumor growth and lung metastasis. CCR5 played a critical role in proliferation and migration of melanoma cells in vitro. Importantly, CCR5 was required for maintenance of the mesenchymal phenotype of metastatic melanoma cells. Mechanistically, CCR5 positively regulated expression of TGFβ1, which in turn induced epithelial-mesenchymal transition and migration via PI3K/AKT/GSK3β signaling. Collectively, our results establish a critical role of CCR5 expressed by melanoma cells in cancer progression and reveal the novel mechanisms controlling this process, which suggests the prognostic value of CCR5 in melanoma patients and provides novel insights into CCR5-targeted strategies for melanoma treatment. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jie Liu
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing, PR China.,Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, PR China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, PR China
| | - Caihong Wang
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing, PR China.,Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, PR China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, PR China
| | - Xuhui Ma
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing, PR China.,Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, PR China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, PR China
| | - Yang Tian
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing, PR China.,Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, PR China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, PR China
| | - Chunying Wang
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing, PR China.,Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, PR China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, PR China
| | - Yan Fu
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing, PR China.,Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, PR China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, PR China
| | - Yongzhang Luo
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing, PR China.,Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, PR China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, PR China
| |
Collapse
|
69
|
Chen Y, Zou D, Wang N, Tan T, Liu Y, Zhao Q, Pu Y, Thapa RJ, Chen J. SFRP5 inhibits the migration and invasion of melanoma cells through Wnt signaling pathway. Onco Targets Ther 2018; 11:8761-8772. [PMID: 30584334 PMCID: PMC6287589 DOI: 10.2147/ott.s181146] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background Secreted frizzled-related protein 5 (SFRP5) plays a key role in the development and progression of multiple tumors. However, the role and underlying mechanisms of SFRP5 in melanoma cells remain unknown. Materials and methods We used immunohistochemistry and Western blot analysis to detect the expression of SFRP5 in melanoma tissues and melanoma cells, respectively. Furthermore, both in vitro and in vivo assays were used to determine the effect of SFRP5 on malignant behavior in melanoma cells. Results We found that SFRP5 was markedly downregulated in melanoma tissues and cell lines. The SFRP5 overexpression exhibited no effect on the proliferation and apoptosis of melanoma cells but markedly suppressed the migration and invasion of melanoma cells in vitro. Regarding mechanisms, the SFRP5 overexpression inhibited the migration and invasion of melanoma cells by suppressing the epithelial–mesenchymal transition process and decreasing the matrix metalloproteinase-2/9 expression through the Wnt signaling pathway. Finally, in a xenograft animal model, we illustrated that the SFRP5 overexpression suppressed the tumor growth by decreasing angiogenesis and declined lung metastasis. Conclusion This study suggests that SFRP5 expression could be potentially useful in the invasion and metastasis of melanoma and serve as a putative promising target for human melanoma therapy.
Collapse
Affiliation(s)
- Yangmei Chen
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China,
| | - Daopei Zou
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China,
| | - Nan Wang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Tao Tan
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yu Liu
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China,
| | - Qing Zhao
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China,
| | - Yihuan Pu
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China,
| | - Rabin Jung Thapa
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China,
| | - Jin Chen
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China,
| |
Collapse
|
70
|
Zeng S, Zhu B, Zeng J, Wu W, Jiang C. Zeylenone represses the progress of human prostate cancer by downregulating the Wnt/β‑catenin pathway. Mol Med Rep 2018; 18:5572-5578. [PMID: 30365080 PMCID: PMC6236222 DOI: 10.3892/mmr.2018.9564] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 08/31/2018] [Indexed: 12/22/2022] Open
Abstract
Prostate cancer (PCa) is one of the most common types of cancer in the urinary system in men. Zeylenone (Zey), a naturally occurring cyclohexene oxide, has an anticancer effect. In the present study, the role and potential mechanism of Zey in PCa were examined. The proliferative, invasive and migratory capacities of DU145 cells were analyzed using Cell Counting Kit-8, transwell and wound healing assays, respectively. The expression levels of matrix metalloproteinase (MMP)-2 and MMP-9 were determined with an ELISA. Reverse transcription-quantitative polymerase chain reaction and western blotting assays were performed to evaluate the expression levels of extracellular matrix, epithelial-mesenchymal transition and Wnt/β-catenin pathway-associated factors. In the present study, it was observed that Zey not only suppressed the viability of DU145 cells; however, it additionally attenuated the invasive and migratory capacities of cells in a concentration-dependent manner. Treatment of Zey decreased the expression levels of MMP-2, MMP-9 and fibronectin-1; whereas, it increased tissue inhibitor of metalloproteinases-1 and collagen-1 expression levels. Additionally, the vimentin expression level was downregulated, however, the epithelial-cadherin expression level was upregulated in cells treated with Zey. Furthermore, Zey decreased the expression levels of wnt5a, β-catenin and cyclin D1. In conclusion, the present results demonstrated that Zey decreased the viability and metastasis of human PCa cells (DU145), via the Wnt/β-catenin signaling pathway. Therefore, Zey may be applied as a novel drug for treating PCa in the future.
Collapse
Affiliation(s)
- Shaohua Zeng
- Department of Urology Surgery, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Baoyi Zhu
- Department of Urology Surgery, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Jun Zeng
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Wenqi Wu
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, Guangdong 510230, P.R. China
| | - Chonghe Jiang
- Department of Urology Surgery, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| |
Collapse
|
71
|
Sadeghi RS, Kulej K, Kathayat RS, Garcia BA, Dickinson BC, Brady DC, Witze ES. Wnt5a signaling induced phosphorylation increases APT1 activity and promotes melanoma metastatic behavior. eLife 2018; 7:34362. [PMID: 29648538 PMCID: PMC5919757 DOI: 10.7554/elife.34362] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 04/11/2018] [Indexed: 11/13/2022] Open
Abstract
Wnt5a has been implicated in melanoma progression and metastasis, although the exact downstream signaling events that contribute to melanoma metastasis are poorly understood. Wnt5a signaling results in acyl protein thioesterase 1 (APT1) mediated depalmitoylation of pro-metastatic cell adhesion molecules CD44 and MCAM, resulting in increased melanoma invasion. The mechanistic details that underlie Wnt5a-mediated regulation of APT1 activity and cellular function remain unknown. Here, we show Wnt5a signaling regulates APT1 activity through induction of APT1 phosphorylation and we further investigate the functional role of APT1 phosphorylation on its depalmitoylating activity. We found phosphorylation increased APT1 depalmitoylating activity and reduced APT1 dimerization. We further determined APT1 phosphorylation increases melanoma invasion in vitro, and also correlated with increased tumor grade and metastasis. Our results further establish APT1 as an important regulator of melanoma invasion and metastatic behavior. Inhibition of APT1 may represent a novel way to treat Wnt5a driven cancers.
Collapse
Affiliation(s)
- Rochelle Shirin Sadeghi
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Katarzyna Kulej
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | | | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Bryan C Dickinson
- Department of Chemistry, University of Chicago, Chicago, United States
| | - Donita C Brady
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Eric S Witze
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
72
|
Saling M, Duckett JK, Ackers I, Coschigano K, Jenkinson S, Malgor R. Wnt5a / planar cell polarity signaling pathway in urothelial carcinoma, a potential prognostic biomarker. Oncotarget 2018; 8:31655-31665. [PMID: 28427201 PMCID: PMC5458237 DOI: 10.18632/oncotarget.15877] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 02/01/2017] [Indexed: 01/27/2023] Open
Abstract
Bladder cancer is the fourth most common cancer in men and the most common malignancy of the urinary tract. Bladder cancers detected at an early stage have a very high five-year survival rate, but when detected after local metastasis the rate is only about 50%. Our group recently reported a positive correlation between the expression of Wnt5a, a member of the Wnt proteins family, and histopathological grade and stage of urothelial carcinoma (UC). The objective of this study was to analyze UC cases reported in Athens, Ohio and investigate the major components of Wnt5a / planar cell polarity (PCP) signaling pathway in UC human tissue samples and UC cell lines. Formalin fixed and paraffin embedded transurethral resection tissues were immunostained for Wnt5a, Ror-2, CTHRC1 and E-cadherin. In addition, in vitro studies using UC cell lines were investigated for Wnt5a/PCP signaling and epithelial mesenchymal transition (EMT) gene expression. The IHC results showed a correlation between the expression of Wnt5a, Ror2 and CTHRC1 with high histological grade of the tumor, while E-cadherin showed an opposite trend of expression. Real time RT-PCR results showed that RNA expression of the Wnt5a/ PCP pathway genes vary in low and high grade UC cell lines and that the high grade cell lines exhibited signs of EMT. These findings support that Wnt5a-Ror2 signaling plays a role in UC, support the potential use of Wnt5a as a prognostic marker and provide evidence that Wnt5a signaling may be used as an effective molecular target for novel therapeutic tools.
Collapse
Affiliation(s)
- Mark Saling
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| | - Jordan K Duckett
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| | - Ian Ackers
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| | - Karen Coschigano
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA.,Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, Ohio, USA.,The Diabetes Institute of Ohio University, Athens, Ohio, USA
| | - Scott Jenkinson
- University Medical Associates, Inc., Pathology, Athens, Ohio, USA
| | - Ramiro Malgor
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA.,Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, Ohio, USA.,The Diabetes Institute of Ohio University, Athens, Ohio, USA
| |
Collapse
|
73
|
Wang C, Ruan L, Shi H, Xu X. Wnt5b regulates apoptosis in Litopenaeus vannamei against white spot syndrome virus. FISH & SHELLFISH IMMUNOLOGY 2018; 74:318-324. [PMID: 29325710 DOI: 10.1016/j.fsi.2018.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/02/2018] [Accepted: 01/05/2018] [Indexed: 06/07/2023]
Abstract
The Wnt signaling mediated by Wnt proteins that orchestrate and influence a myriad of cellular processes, such as cell proliferation, differentiation, tumorigenesis, apoptosis, and participation in immune defense during microbe infection. Wnt5b is one of the Wnt signaling molecules that initiate the cascade. In this study, we cloned and characterized a Wnt5b homolog from Litopenaeus vannamei designed as LvWnt5b. The full length of LvWnt5b transcript was 1726 bp with an 1107 bp open reading frame that encoded a 368 aa protein, which contained 24 discontinuous and highly conserved cysteine. Real-time quantitative PCR showed that the transcriptional level of LvWnt5b was down-regulated when infected with white spot syndrome virus (WSSV). Knock-down of LvWnt5b resulted in inhibition of the transcriptional level of WSSV gene ie1, indicating that LvWnt5b mediated signaling pathway may play an important role in defense against WSSV infection. When LvWnt5b was silenced, caspase3/7 activity in hemocytes was increased significantly, and the transcription of viral gene was decreased as well. Moreover, overexpression of LvWnt5b in HEK293T cells led to inhibition of caspase3/7 activity, which further proved the role of LvWnt5b in restraining apoptosis. The study showed that the shrimp may decrease the expression of LvWnt5b initiatively to act as an immune defense mechanism against WSSV infection via promoting apoptosis. It will be helpful for understanding the function of Wnt signaling pathway in virus invasion and host defense.
Collapse
Affiliation(s)
- Chuanqi Wang
- School of Life Science, Xiamen University, Xiamen, 361005, PR China; State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of State Oceanic Administration, Third Institute of Oceanography, State Oceanic Administration, Fujian Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Xiamen, 361005, PR China
| | - Lingwei Ruan
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of State Oceanic Administration, Third Institute of Oceanography, State Oceanic Administration, Fujian Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Xiamen, 361005, PR China.
| | - Hong Shi
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of State Oceanic Administration, Third Institute of Oceanography, State Oceanic Administration, Fujian Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Xiamen, 361005, PR China
| | - Xun Xu
- School of Life Science, Xiamen University, Xiamen, 361005, PR China; State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of State Oceanic Administration, Third Institute of Oceanography, State Oceanic Administration, Fujian Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Xiamen, 361005, PR China
| |
Collapse
|
74
|
Ye Y, Long X, Zhang L, Chen J, Liu P, Li H, Wei F, Yu W, Ren X, Yu J. NTS/NTR1 co-expression enhances epithelial-to-mesenchymal transition and promotes tumor metastasis by activating the Wnt/β-catenin signaling pathway in hepatocellular carcinoma. Oncotarget 2018; 7:70303-70322. [PMID: 27611941 PMCID: PMC5342554 DOI: 10.18632/oncotarget.11854] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 08/23/2016] [Indexed: 01/07/2023] Open
Abstract
Neurotensin (NTS) is a neuropeptide distributed in central nervous and digestive systems. In this study, the significant association between ectopic NTS expression and tumor invasion was confirmed in hepatocellular carcinoma (HCC). In primary HCC tissues, the NTS and neurotensin receptor 1 (NTR1) co-expression (NTS+NTR1+) is a poor prognostic factor correlated with aggressive biological behaviors and poor clinical prognosis. Enhanced epithelial-to-mesenchymal transition (EMT) features, including decreased E-cadherin, increased β-catenin translocation and N-cadherin expression, were identified in NTS+NTR1+ HCC tissues. Varied NTS-responsible HCC cell lines were established using NTR1 genetically modified Hep3B and HepG2 cells which were used to elucidate the molecular mechanisms regulating NTS-induced EMT and tumor invasion in vitro. Results revealed that inducing exogenous NTS stimulation and enhancing NTR1 expression promoted tumor invasion rather than proliferation by accelerating EMT in HCC cells. The NTS-induced EMT was correlated with the remarkable increase in Wnt1, Wnt3, Wnt5, Axin, and p-GSK3β expression and was significantly reversed by blocking the NTS signaling via the NTR1 antagonist SR48692 or by inhibiting the activation of the Wnt/β-catenin pathway via specific inhibitors, such as TSW119 and DKK-1. SR48692 also inhibited the metastases of NTR1-overexpressing HCC xenografts in the lungs in vivo. This finding implied that NTS may be an important stimulus to promote HCC invasion and metastasis both in vitro and in vivo, and NTS signaling enhanced the tumor EMT and invasion potentials by activating the canonical Wnt/β-catenin signaling pathway. Therefore, NTS may be a valuable therapeutic target to prevent tumor progression in HCC.
Collapse
Affiliation(s)
- Yingnan Ye
- Cancer Molecular Diagnostic Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin, P. R. China
| | - Xinxin Long
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, P. R. China
| | - Lijie Zhang
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, P. R. China
| | - Jieying Chen
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, P. R. China
| | - Pengpeng Liu
- Cancer Molecular Diagnostic Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin, P. R. China
| | - Hui Li
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, P. R. China.,Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin, P. R. China
| | - Feng Wei
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, P. R. China
| | - Wenwen Yu
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, P. R. China
| | - Xiubao Ren
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, P. R. China
| | - Jinpu Yu
- Cancer Molecular Diagnostic Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin, P. R. China.,Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, P. R. China
| |
Collapse
|
75
|
Sinnberg T, Levesque MP, Krochmann J, Cheng PF, Ikenberg K, Meraz-Torres F, Niessner H, Garbe C, Busch C. Wnt-signaling enhances neural crest migration of melanoma cells and induces an invasive phenotype. Mol Cancer 2018; 17:59. [PMID: 29454361 PMCID: PMC5816360 DOI: 10.1186/s12943-018-0773-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/29/2018] [Indexed: 01/04/2023] Open
Abstract
Background During embryonic development Wnt family members and bone morphogenetic proteins (BMPs) cooperatively induce epithelial-mesenchymal transition (EMT) in the neural crest. Wnt and BMPs are reactivated during malignant transformation in melanoma. We previously demonstrated that the BMP-antagonist noggin blocked the EMT phenotype of melanoma cells in the neural crest and malignant invasion of melanoma cells in the chick embryo; vice-versa, malignant invasion was induced in human melanocytes in vivo by pre-treatment with BMP-2. Results Although there are conflicting results in the literature about the role of β-catenin for invasion of melanoma cells, we found Wnt/β-catenin signaling to be analogously important for the EMT-like phenotype of human metastatic melanoma cells in the neural crest and during invasion: β-catenin was frequently expressed at the invasive front of human primary melanomas and Wnt3a expression was inversely correlated with survival of melanoma patients. Accordingly, cytoplasmic β-catenin levels were increased during invasion of melanoma cells in the rhombencephalon of the chick embryo. Fibroblast derived Wnt3a reduced melanoma cell adhesion and enhanced migration, while the β-catenin inhibitor PKF115–584 increased adhesion and reduced migration in vitro and in the chick embryonic neural crest environment in vivo. Similarly, knockdown of β-catenin impaired intradermal melanoma cell invasion and PKF115–584 efficiently reduced liver metastasis in a chick chorioallantoic membrane model. Our observations were accompanied by specific alterations in gene expression which are linked to overall survival of melanoma patients. Conclusion We present a novel role for Wnt-signaling in neural crest like melanoma cell invasion and metastasis, stressing the crucial role of embryonic EMT-inducing neural crest signaling for the spreading of malignant melanoma. Electronic supplementary material The online version of this article (10.1186/s12943-018-0773-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tobias Sinnberg
- Center for Dermatooncology, Department of Dermatology, University Hospital Tübingen, University of Tübingen, Liebermeisterstr.25, 72076, Tübingen, Germany.
| | - Mitchell P Levesque
- Department of Dermatology, Universitaets Spital Zürich, Gloriastrasse 31, 8091, Zürich, Switzerland
| | - Jelena Krochmann
- Center for Dermatooncology, Department of Dermatology, University Hospital Tübingen, University of Tübingen, Liebermeisterstr.25, 72076, Tübingen, Germany
| | - Phil F Cheng
- Department of Dermatology, Universitaets Spital Zürich, Gloriastrasse 31, 8091, Zürich, Switzerland
| | - Kristian Ikenberg
- Institute of Clinical Pathology, University Hospital Zürich, Schmelzbergstrasse 12, 8091, Zürich, Switzerland
| | - Francisco Meraz-Torres
- Center for Dermatooncology, Department of Dermatology, University Hospital Tübingen, University of Tübingen, Liebermeisterstr.25, 72076, Tübingen, Germany
| | - Heike Niessner
- Center for Dermatooncology, Department of Dermatology, University Hospital Tübingen, University of Tübingen, Liebermeisterstr.25, 72076, Tübingen, Germany
| | - Claus Garbe
- Center for Dermatooncology, Department of Dermatology, University Hospital Tübingen, University of Tübingen, Liebermeisterstr.25, 72076, Tübingen, Germany
| | - Christian Busch
- Center for Dermatooncology, Department of Dermatology, University Hospital Tübingen, University of Tübingen, Liebermeisterstr.25, 72076, Tübingen, Germany. .,Dermateam, Bankstrasse 4, 8400, Winterthur, Switzerland.
| |
Collapse
|
76
|
Shao Y, Zheng Q, Wang W, Xin N, Song X, Zhao C. Biological functions of macrophage-derived Wnt5a, and its roles in human diseases. Oncotarget 2018; 7:67674-67684. [PMID: 27608847 PMCID: PMC5341904 DOI: 10.18632/oncotarget.11874] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 08/27/2016] [Indexed: 12/31/2022] Open
Abstract
Wnt5a is implicated in development and tissue homeostasis by activating β-catenin-independent pathway. Excessive production of Wnt5a is related to some human diseases. Macrophage recruitment is a character of inflammation and cancer, therefore macrophage-derived Wnt5a is supposed to be a player in these conditions. Actually, macrophage-derived Wnt5a maintains macrophage immune function, stimulates pro-inflammatory cytokine release, and induces angiogenesis and lymphangiogenesis. Furthermore, macrophage-derived Wnt5a is involved in insulin resistance, atherosclerosis and cancer. These findings indicate that macrophage-derived Wnt5a may be a target in the treatment of these diseases. Notably, unlike macrophages, the exact role of macrophage-derived Wnt5a in bacterial infection remains largely unknown.
Collapse
Affiliation(s)
- Yue Shao
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Qianqian Zheng
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Wei Wang
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Na Xin
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Xiaowen Song
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Chenghai Zhao
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| |
Collapse
|
77
|
Demonstration of a WNT5A-IL-6 positive feedback loop in melanoma cells: Dual interference of this loop more effectively impairs melanoma cell invasion. Oncotarget 2018; 7:37790-37802. [PMID: 27191257 PMCID: PMC5122349 DOI: 10.18632/oncotarget.9332] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 04/28/2016] [Indexed: 01/07/2023] Open
Abstract
Increased expression and signalling of WNT5A and interleukin-6 (IL-6) have both been shown to promote melanoma progression. Here, we investigated the proposed existence of a WNT5A-IL-6 positive feedback loop that drives melanoma migration and invasion. First, the HOPP algorithm revealed that the invasive phenotype of cultured melanoma cells was significantly correlated with increased expression of WNT5A or IL-6. In three invasive melanoma cell lines, endogenous WNT5A protein expression was related to IL-6 protein secretion. Knockdown with anti-IL-6 siRNAs or treating WM852 melanoma cells with a neutralising anti-IL-6 antibody reduced WNT5A protein expression. Conversely, the silencing of WNT5A expression by WNT5A siRNAs or treating WM852 melanoma cells with Box5 (a WNT5A antagonist) significantly reduced IL-6 secretion. Interestingly, these effects occurred at the protein level but not at the transcriptional levels. Functionally, we demonstrated that combined siRNA knockdown of WNT5A and IL-6 expression or the simultaneous inhibition of WNT5A and IL-6 signalling inhibited melanoma cell invasion more effectively than suppressing each factor individually. Together, our results demonstrate that WNT5A and IL-6 are connected through a positive feedback loop in melanoma cells and that the combined targeting of both molecules could serve as an effective therapeutic means to reduce melanoma metastasis.
Collapse
|
78
|
Zins K, Schäfer R, Paulus P, Dobler S, Fakhari N, Sioud M, Aharinejad S, Abraham D. Frizzled2 signaling regulates growth of high-risk neuroblastomas by interfering with β-catenin-dependent and β-catenin-independent signaling pathways. Oncotarget 2018; 7:46187-46202. [PMID: 27323822 PMCID: PMC5216790 DOI: 10.18632/oncotarget.10070] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/30/2016] [Indexed: 12/11/2022] Open
Abstract
Frizzled2 (FZD2) is a receptor for Wnts and may activate both canonical and non-canonical Wnt signaling pathways in cancer. However, no studies have reported an association between FZD2 signaling and high-risk NB so far. Here we report that FZD2 signaling pathways are critical to NB growth in MYCN-single copy SK-N-AS and MYCN-amplified SK-N-DZ high-risk NB cells. We demonstrate that stimulation of FZD2 by Wnt3a and Wnt5a regulates β-catenin-dependent and -independent Wnt signaling factors. FZD2 blockade suppressed β-catenin-dependent signaling activity and increased phosphorylation of PKC, AKT and ERK in vitro, consistent with upregulation of β-catenin-independent signaling activity. Finally, FZD2 small interfering RNA knockdown suppressed tumor growth in murine NB xenograft models associated with suppressed β-catenin-dependent signaling and a less vascularized phenotype in both NB xenografts. Together, our study suggests a role for FZD2 in high-risk NB cell growth and provides a potential candidate for therapeutic inhibition in FZD2-expressing NB patients.
Collapse
Affiliation(s)
- Karin Zins
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, A-1090, Austria
| | | | - Patrick Paulus
- Department of Anesthesiology and Operative Intensive Care Medicine, Kepler University Hospital, Linz, A-4040, Austria
| | - Silvia Dobler
- Department of Anesthesiology and Operative Intensive Care Medicine, Kepler University Hospital, Linz, A-4040, Austria
| | - Nazak Fakhari
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, A-1090, Austria
| | - Mouldy Sioud
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, N-0310, Norway
| | - Seyedhossein Aharinejad
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, A-1090, Austria
| | - Dietmar Abraham
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, A-1090, Austria.,Comprehensive Cancer Center (CCC), Medical University of Vienna, Vienna, A-1090, Austria
| |
Collapse
|
79
|
Piperigkou Z, Manou D, Karamanou K, Theocharis AD. Strategies to Target Matrix Metalloproteinases as Therapeutic Approach in Cancer. Methods Mol Biol 2018; 1731:325-348. [PMID: 29318564 DOI: 10.1007/978-1-4939-7595-2_27] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases that are capable of degrading numerous extracellular matrix (ECM) components thus participating in physiological and pathological processes. Apart from the remodeling of ECM, they affect cell-cell and cell-matrix interactions and are implicated in the development and progression of various diseases such as cancer. Numerous studies have demonstrated that MMPs evoke epithelial to mesenchymal transition (EMT) of cancer cells and affect their signaling, adhesion, migration and invasion to promote cancer cell aggressiveness. Various studies have suggested MMPs as suitable targets for treatment of malignancies, and several MMP inhibitors (MMPIs) have been developed. Although initial trials have failed to establish MMPIs as anticancer agents due to lack of specificity and side effects, new MMPIs have been developed with improved action that are currently being investigated. Furthermore, novel strategies that target MMPs for improving drug delivery and regulating their activity in tumors are presented. This review summarizes the implication of MMPs in cancer progression and discusses the advancements in their targeting.
Collapse
Affiliation(s)
- Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Dimitra Manou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Konstantina Karamanou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Achilleas D Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece.
| |
Collapse
|
80
|
low neurotrophin receptor CD271 regulates phenotype switching in melanoma. Nat Commun 2017; 8:1988. [PMID: 29215016 PMCID: PMC5719420 DOI: 10.1038/s41467-017-01573-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 09/29/2017] [Indexed: 01/22/2023] Open
Abstract
Cutaneous melanoma represents the most fatal skin cancer due to its high metastatic capacity. According to the “phenotype switching” model, the aggressive nature of melanoma cells results from their intrinsic potential to dynamically switch from a high-proliferative/low-invasive to a low-proliferative/high-invasive state. Here we identify the low affinity neurotrophin receptor CD271 as a key effector of phenotype switching in melanoma. CD271 plays a dual role in this process by decreasing proliferation, while simultaneously promoting invasiveness. Dynamic modification of CD271 expression allows tumor cells to grow at low levels of CD271, to reduce growth and invade when CD271 expression is high, and to re-expand at a distant site upon decrease of CD271 expression. Mechanistically, the cleaved intracellular domain of CD271 controls proliferation, while the interaction of CD271 with the neurotrophin receptor Trk-A modulates cell adhesiveness through dynamic regulation of a set of cholesterol synthesis genes relevant for patient survival. The aggressive nature of melanoma cells relies on their ability to switch from a high-proliferative/low-invasive to a low-proliferative/high-invasive state; however, the mechanisms governing this switch are unclear. Here, using in vivo models of human melanoma, the authors show that CD271 is a key regulator of phenotype switching and metastasis formation.
Collapse
|
81
|
Tao J, Shi L, Huang L, Shi H, Chen H, Wang Y, Wang T. EZH2 is involved in silencing of WNT5A during epithelial-mesenchymal transition of colon cancer cell line. J Cancer Res Clin Oncol 2017; 143:2211-2219. [PMID: 28748258 DOI: 10.1007/s00432-017-2479-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/15/2017] [Indexed: 12/20/2022]
Abstract
PURPOSE Transforming growth factor-β (TGF-β) induction of epithelial-mesenchymal transition (EMT) in SW480 was established as a system for studies of colon cancer metastasis. However, the epigenetic mechanisms underlying this process remain unknown. In mammal, polycomb repressive complex-2 (PRC2) is a highly conserved histone methyltransferase involved in epigenetic regulations. Enhancer of zeste Homolog 2 (EZH2) is the catalytic subunit of PRC2, which catalyzes methylation of lysine 27 of histone H3 (H3K27). METHODS An inducible EMT system in colorectal cancer was utilized to study its mechanistic and phenotypic changes. Particularly, gene expression analysis was studied after immunoprecipitation. RESULTS In this study, we reported that EZH2 is significantly enriched in the promoter region of WNT5A after TGF-β induction in SW480 colon cancer cell line, which in turn silenced the expression of WNT5A. Furthermore, EZH2 inhibitor antagonized the TGF-β-induced morphological conversion associated with epithelial-mesenchymal transition (EMT). Conversely, inhibition of histone H3K27me3 reader CBX does not affect the WNT5A expression level during TGF-β-induced EMT. CONCLUSIONS Our results indicate that EZH2 was essential for the silencing of WNT5A during TGF-β-induced epithelial-mesenchymal transition of colon cancer cells.
Collapse
Affiliation(s)
- Jianxin Tao
- Department of Endoscopy Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, People's Republic of China
| | - Liping Shi
- Department of Endoscopy Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, People's Republic of China
| | - Longchang Huang
- Department of Endoscopy Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, People's Republic of China
| | - Haoze Shi
- Department of Endoscopy Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, People's Republic of China
| | - Hang Chen
- Department of Endoscopy Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, People's Republic of China
| | - Yixin Wang
- Department of Endoscopy Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, People's Republic of China
| | - Tong Wang
- Department of Endoscopy Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, People's Republic of China.
| |
Collapse
|
82
|
Li S, Wu J, Zhu S, Liu YJ, Chen J. Disease-Associated Plasmacytoid Dendritic Cells. Front Immunol 2017; 8:1268. [PMID: 29085361 PMCID: PMC5649186 DOI: 10.3389/fimmu.2017.01268] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 09/22/2017] [Indexed: 12/20/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs), also called natural interferon (IFN)-producing cells, represent a specialized cell type within the innate immune system. pDCs are specialized in sensing viral RNA and DNA by toll-like receptor-7 and -9 and have the ability to rapidly produce massive amounts of type 1 IFNs upon viral encounter. After producing type 1 IFNs, pDCs differentiate into professional antigen-presenting cells, which are capable of stimulating T cells of the adaptive immune system. Chronic activation of human pDCs by self-DNA or mitochondrial DNA contributes to the pathogenesis of systemic lupus erythematosis and IFN-related autoimmune diseases. Under steady-state conditions, pDCs play an important role in immune tolerance. In many types of human cancers, recruitment of pDCs to the tumor microenvironment contributes to the induction of immune tolerance. Here, we provide a systemic review of recent progress in studies on the role of pDCs in human diseases, including cancers and autoimmune/inflammatory diseases.
Collapse
Affiliation(s)
- Shuang Li
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
| | - Jing Wu
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
| | - Shan Zhu
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
| | - Yong-Jun Liu
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China.,Sanofi Research and Development, Cambridge, MA, United States
| | - Jingtao Chen
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
| |
Collapse
|
83
|
Aznar N, Sun N, Dunkel Y, Ear J, Buschman MD, Ghosh P. A Daple-Akt feed-forward loop enhances noncanonical Wnt signals by compartmentalizing β-catenin. Mol Biol Cell 2017; 28:3709-3723. [PMID: 29021338 PMCID: PMC5706997 DOI: 10.1091/mbc.e17-06-0405] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/04/2017] [Accepted: 10/06/2017] [Indexed: 01/12/2023] Open
Abstract
Balance between canonical and noncanonical Wnt pathways controls the β-catenin transcriptional program; how the noncanonical pathway antagonizes the canonical pathway remains unclear. We show that Daple, an enhancer of noncanonical Wnt signals, accomplishes that goal by dictating the subcellular distribution of β-catenin in cells. Cellular proliferation is antagonistically regulated by canonical and noncanonical Wnt signals; their dysbalance triggers cancers. We previously showed that a multimodular signal transducer, Daple, enhances PI3-K→Akt signals within the noncanonical Wnt signaling pathway and antagonistically inhibits canonical Wnt responses. Here we demonstrate that the PI3-K→Akt pathway serves as a positive feedback loop that further enhances noncanonical Wnt signals by compartmentalizing β-catenin. By phosphorylating the phosphoinositide- (PI) binding domain of Daple, Akt abolishes Daple’s ability to bind PI3-P-enriched endosomes that engage dynein motor complex for long-distance trafficking of β-catenin/E-cadherin complexes to pericentriolar recycling endosomes (PCREs). Phosphorylation compartmentalizes Daple/β-catenin/E-cadherin complexes to cell–cell contact sites, enhances noncanonical Wnt signals, and thereby suppresses colony growth. Dephosphorylation compartmentalizes β-catenin on PCREs, a specialized compartment for prolonged unopposed canonical Wnt signaling, and enhances colony growth. Cancer-associated Daple mutants that are insensitive to Akt mimic a constitutively dephosphorylated state. This work not only identifies Daple as a platform for cross-talk between Akt and the noncanonical Wnt pathway but also reveals the impact of such cross-talk on tumor cell phenotypes that are critical for cancer initiation and progression.
Collapse
Affiliation(s)
- Nicolas Aznar
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Nina Sun
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Ying Dunkel
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Jason Ear
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Matthew D Buschman
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Pradipta Ghosh
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093 .,Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093.,Moores Cancer Centre, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
84
|
Ratnayake WS, Apostolatos AH, Ostrov DA, Acevedo-Duncan M. Two novel atypical PKC inhibitors; ACPD and DNDA effectively mitigate cell proliferation and epithelial to mesenchymal transition of metastatic melanoma while inducing apoptosis. Int J Oncol 2017; 51:1370-1382. [PMID: 29048609 PMCID: PMC5642393 DOI: 10.3892/ijo.2017.4131] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/18/2017] [Indexed: 12/19/2022] Open
Abstract
Atypical protein kinase Cs (aPKC) are involved in cell cycle progression, tumorigenesis, cell survival and migration in many cancers. We believe that aPKCs play an important role in cell motility of melanoma by regulating cell signaling pathways and inducing epithelial to mesenchymal transition (EMT). We have investigated the effects of two novel aPKC inhibitors; 2-acetyl-1,3-cyclopentanedione (ACPD) and 3,4-diaminonaphthalene-2,7-disulfonic acid (DNDA) on cell proliferation, apoptosis, migration and invasion of two malignant melanoma cell lines compared to normal melanocytes. Molecular docking data suggested that both inhibitors specifically bind to protein kinase C-zeta (PKC-ζ) and PKC-iota (PKC-ι) and kinase activity assays were carried out to confirm these observations. Both inhibitors decreased the levels of total and phosphorylated PKC-ζ and PKC-ι. Increased levels of E-cadherin, RhoA, PTEN and decreased levels of phosphorylated vimentin, total vimentin, CD44, β-catenin and phosphorylated AKT in inhibitor treated cells. This suggests that inhibition of both PKC-ζ and PKC-ι using ACPD and DNDA downregulates EMT and induces apoptosis in melanoma cells. We also carried out PKC-ι and PKC-ζ directed siRNA treatments to prove the above observations. Immunoprecipitation data suggested an association between PKC-ι and vimentin and PKC-ι siRNA treatments confirmed that PKC-ι activates vimentin by phosphorylation. These results further suggested that PKC-ι is involved in signaling pathways which upregulate EMT and which can be effectively suppressed using ACPD and DNDA. Our results summarize that melanoma cells proliferate via aPKC/AKT/NF-κB mediated pathway while inducing the EMT via PKC-ι/Par6/RhoA pathway. Overall, results show that aPKCs are essential for melanoma progression and metastasis, suggesting that ACPD and DNDA can be effectively used as potential therapeutic drugs for melanoma by inhibiting aPKCs.
Collapse
Affiliation(s)
| | | | - David A Ostrov
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | | |
Collapse
|
85
|
Susman MW, Karuna EP, Kunz RC, Gujral TS, Cantú AV, Choi SS, Jong BY, Okada K, Scales MK, Hum J, Hu LS, Kirschner MW, Nishinakamura R, Yamada S, Laird DJ, Jao LE, Gygi SP, Greenberg ME, Ho HYH. Kinesin superfamily protein Kif26b links Wnt5a-Ror signaling to the control of cell and tissue behaviors in vertebrates. eLife 2017; 6:e26509. [PMID: 28885975 PMCID: PMC5590807 DOI: 10.7554/elife.26509] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 08/15/2017] [Indexed: 12/20/2022] Open
Abstract
Wnt5a-Ror signaling constitutes a developmental pathway crucial for embryonic tissue morphogenesis, reproduction and adult tissue regeneration, yet the molecular mechanisms by which the Wnt5a-Ror pathway mediates these processes are largely unknown. Using a proteomic screen, we identify the kinesin superfamily protein Kif26b as a downstream target of the Wnt5a-Ror pathway. Wnt5a-Ror, through a process independent of the canonical Wnt/β-catenin-dependent pathway, regulates the cellular stability of Kif26b by inducing its degradation via the ubiquitin-proteasome system. Through this mechanism, Kif26b modulates the migratory behavior of cultured mesenchymal cells in a Wnt5a-dependent manner. Genetic perturbation of Kif26b function in vivo caused embryonic axis malformations and depletion of primordial germ cells in the developing gonad, two phenotypes characteristic of disrupted Wnt5a-Ror signaling. These findings indicate that Kif26b links Wnt5a-Ror signaling to the control of morphogenetic cell and tissue behaviors in vertebrates and reveal a new role for regulated proteolysis in noncanonical Wnt5a-Ror signal transduction.
Collapse
Affiliation(s)
- Michael W Susman
- Department of NeurobiologyHarvard Medical SchoolBostonUnited States
| | - Edith P Karuna
- Department of Cell Biology and Human AnatomyUniversity of California, Davis School of MedicineDavisUnited States
| | - Ryan C Kunz
- Department of Cell BiologyHarvard Medical SchoolBostonUnited States
| | - Taranjit S Gujral
- Department of Systems BiologyHarvard Medical SchoolBostonUnited States
- Division of Human BiologyFred Hutchinson Cancer Research CenterSeattleUnited States
| | - Andrea V Cantú
- Department of Obstetrics, Gynecology and Reproductive SciencesCenter for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of CaliforniaSan FranciscoUnited States
| | - Shannon S Choi
- Department of Cell Biology and Human AnatomyUniversity of California, Davis School of MedicineDavisUnited States
| | - Brigette Y Jong
- Department of Cell Biology and Human AnatomyUniversity of California, Davis School of MedicineDavisUnited States
| | - Kyoko Okada
- Department of Cell Biology and Human AnatomyUniversity of California, Davis School of MedicineDavisUnited States
| | - Michael K Scales
- Department of Cell Biology and Human AnatomyUniversity of California, Davis School of MedicineDavisUnited States
| | - Jennie Hum
- Department of Cell Biology and Human AnatomyUniversity of California, Davis School of MedicineDavisUnited States
| | - Linda S Hu
- Department of NeurobiologyHarvard Medical SchoolBostonUnited States
| | - Marc W Kirschner
- Department of Systems BiologyHarvard Medical SchoolBostonUnited States
| | - Ryuichi Nishinakamura
- Department of Kidney DevelopmentInstitute of Molecular Embryology and Genetics, Kumamoto UniversityKumamotoJapan
| | - Soichiro Yamada
- Department of Biomedical EngineeringUniversity of CaliforniaDavisUnited States
| | - Diana J Laird
- Department of Obstetrics, Gynecology and Reproductive SciencesCenter for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of CaliforniaSan FranciscoUnited States
| | - Li-En Jao
- Department of Cell Biology and Human AnatomyUniversity of California, Davis School of MedicineDavisUnited States
| | - Steven P Gygi
- Department of Cell BiologyHarvard Medical SchoolBostonUnited States
| | | | - Hsin-Yi Henry Ho
- Department of NeurobiologyHarvard Medical SchoolBostonUnited States
- Department of Cell Biology and Human AnatomyUniversity of California, Davis School of MedicineDavisUnited States
| |
Collapse
|
86
|
Arozarena I, Wellbrock C. Targeting invasive properties of melanoma cells. FEBS J 2017; 284:2148-2162. [PMID: 28196297 DOI: 10.1111/febs.14040] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/26/2017] [Accepted: 02/10/2017] [Indexed: 02/11/2024]
Abstract
Melanoma is a skin cancer notorious for its metastatic potential. As an initial step of the metastatic cascade, melanoma cells part from the primary tumour and invade the surrounding tissue, which is crucial for their dissemination and the formation of distant secondary tumours. Over the last two decades, our understanding of both, general and melanoma specific mechanisms of invasion has significantly improved, but to date no efficient therapeutic strategy tackling the invasive properties of melanoma cells has reached the clinic. In this review, we assess the major contributions towards the understanding of the molecular biology of melanoma cell invasion with a focus on melanoma specific traits. These traits are based on the neural crest origin of melanoma cells and explain their intrinsic invasive nature. A particular emphasis is given not only to lineage specific signalling mediated by TGFβ, and noncanonical and canonical WNT signalling, but also to the role of PDE5A and RHO-GTPases in modulating modes of melanoma cell invasion. We discuss existing caveats in the current understanding of the metastatic properties of melanoma cells, as well as the relevance of the 'phenotype switch' model and 'co-operativity' between different phenotypes in heterogeneous tumours. At the centre of these phenotypes is the lineage commitment factor microphthalmia-associated transcription factor, one of the most crucial regulators of the balance between de-differentiation (neural crest specific gene expression) and differentiation (melanocyte specific gene expression) that defines invasive and noninvasive melanoma cell phenotypes. Finally, we provide insight into the current evidence linking resistance to targeted therapies to invasive properties of melanoma cells.
Collapse
Affiliation(s)
- Imanol Arozarena
- Cancer Signalling Group, Navarrabiomed (Miguel Servet Foundation), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Claudia Wellbrock
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, The University of Manchester, UK
| |
Collapse
|
87
|
Behera R, Kaur A, Webster MR, Kim S, Ndoye A, Kugel CH, Alicea GM, Wang J, Ghosh K, Cheng P, Lisanti S, Marchbank K, Dang V, Levesque M, Dummer R, Xu X, Herlyn M, Aplin AE, Roesch A, Caino C, Altieri DC, Weeraratna AT. Inhibition of Age-Related Therapy Resistance in Melanoma by Rosiglitazone-Mediated Induction of Klotho. Clin Cancer Res 2017; 23:3181-3190. [PMID: 28232477 PMCID: PMC5474161 DOI: 10.1158/1078-0432.ccr-17-0201] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/08/2017] [Accepted: 02/10/2017] [Indexed: 01/21/2023]
Abstract
Purpose: Aging is a poor prognostic factor for melanoma. We have shown that melanoma cells in an aged microenvironment are more resistant to targeted therapy than identical cells in a young microenvironment. This is dependent on age-related secreted factors. Klotho is an age-related protein whose serum levels decrease dramatically by age 40. Most studies on klotho in cancer have focused on the expression of klotho in the tumor cell. We have shown that exogenous klotho inhibits internalization and signaling of Wnt5A, which drives melanoma metastasis and resistance to targeted therapy. We investigate here whether increasing klotho in the aged microenvironment could be an effective strategy for the treatment of melanoma.Experimental Design: PPARγ increases klotho levels and is increased by glitazones. Using rosiglitazone, we queried the effects of rosiglitazone on Klotho/Wnt5A cross-talk, in vitro and in vivo, and the implications of that for targeted therapy in young versus aged animals.Results: We show that rosiglitazone increases klotho and decreases Wnt5A in tumor cells, reducing the burden of both BRAF inhibitor-sensitive and BRAF inhibitor-resistant tumors in aged, but not young mice. However, when used in combination with PLX4720, tumor burden was reduced in both young and aged mice, even in resistant tumors.Conclusions: Using glitazones as adjuvant therapy for melanoma may provide a new treatment strategy for older melanoma patients who have developed resistance to vemurafenib. As klotho has been shown to play a role in other cancers too, our results may have wide relevance for multiple tumor types. Clin Cancer Res; 23(12); 3181-90. ©2017 AACR.
Collapse
Affiliation(s)
- Reeti Behera
- The Wistar Institute, Philadelphia, Pennsylvania
| | - Amanpreet Kaur
- The Wistar Institute, Philadelphia, Pennsylvania
- University of the Sciences, Philadelphia, Pennsylvania
| | | | - Suyeon Kim
- The Wistar Institute, Philadelphia, Pennsylvania
| | - Abibatou Ndoye
- The Wistar Institute, Philadelphia, Pennsylvania
- University of the Sciences, Philadelphia, Pennsylvania
| | | | - Gretchen M Alicea
- The Wistar Institute, Philadelphia, Pennsylvania
- University of the Sciences, Philadelphia, Pennsylvania
| | - Joshua Wang
- The Wistar Institute, Philadelphia, Pennsylvania
| | - Kanad Ghosh
- The Wistar Institute, Philadelphia, Pennsylvania
| | - Phil Cheng
- University of Zurich, Zurich, Switzerland
| | | | | | - Vanessa Dang
- The Wistar Institute, Philadelphia, Pennsylvania
| | | | | | - Xiaowei Xu
- Department of Pathology, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Andrew E Aplin
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Alexander Roesch
- Department of Dermatology, University Hospital, West German Cancer Center, University Duesburg-Essen, Essen, Germany
| | | | | | | |
Collapse
|
88
|
Xu Y, Ma YH, Pang YX, Zhao Z, Lu JJ, Mao HL, Liu PS. Ectopic repression of receptor tyrosine kinase-like orphan receptor 2 inhibits malignant transformation of ovarian cancer cells by reversing epithelial-mesenchymal transition. Tumour Biol 2017; 39:1010428317701627. [PMID: 28475014 DOI: 10.1177/1010428317701627] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Receptor tyrosine kinase-like orphan receptor 2 is an enzyme-linked receptor which specifically modulates WNT5A signaling and plays an important role in tumorigenesis, invasion, and metastasis; however, the precise role of receptor tyrosine kinase-like orphan receptor 2 in cancer is controversial. The purpose of this study was to investigate the expression and role of receptor tyrosine kinase-like orphan receptor 2 in ovarian carcinoma and clarify the biological functions and interactions of receptor tyrosine kinase-like orphan receptor 2 with non-canonical Wnt pathways in ovarian cancer. The result of the human ovary tissue microarray revealed that the receptor tyrosine kinase-like orphan receptor 2-positive rate increased in malignant epithelial ovarian cancers and was extremely higher in the metastatic tumor tissues, which was also higher than that in the malignant ovarian tumor tissues. In addition, high expression of receptor tyrosine kinase-like orphan receptor 2 was closely related with ovarian cancer grading. The expression of receptor tyrosine kinase-like orphan receptor 2 protein was higher in SKOV3 and A2780 cells than OVCAR3 and 3AO cells. Knockdown of receptor tyrosine kinase-like orphan receptor 2 inhibited ovarian cancer cell proliferation, migration, invasion, and induced morphologic as well as digestive state alterations in stably transfected SKOV3 cells. Detailed study further revealed that silencing of receptor tyrosine kinase-like orphan receptor 2 reversed the epithelial-mesenchymal transition and inhibited non-canonical Wnt signaling. Our findings suggest that receptor tyrosine kinase-like orphan receptor 2 may be an important regulator of epithelial-mesenchymal transition, primarily regulated the non-canonical Wnt signaling pathway in ovarian cancer cells, and may display a promising therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Ying Xu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Yan-Hui Ma
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Ying-Xin Pang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Zhe Zhao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Jing-Jing Lu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Hong-Luan Mao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Pei-Shu Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
89
|
Prgomet Z, Andersson T, Lindberg P. Higher expression of WNT5A protein in oral squamous cell carcinoma compared with dysplasia and oral mucosa with a normal appearance. Eur J Oral Sci 2017; 125:237-246. [PMID: 28603941 PMCID: PMC5519933 DOI: 10.1111/eos.12352] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
WNT5A is a secreted signaling protein that promotes migration and invasion of oral squamous cell carcinoma (OSCC) cells through activation of non‐canonical WNT signaling. Here, we examined expression of WNT5A, β‐catenin, and E‐cadherin by immunohistochemistry in 21 human diagnostic incision biopsies that each had regions of oral mucosa with a normal appearance adjacent to the affected tissue, dysplasia, and OSCC. We also investigated the effect of recombinant WNT5A (rWNT5A) on expression of the cell‐adhesion proteins E‐cadherin and β‐catenin by western blot analysis. No expression of WNT5A protein was present in oral mucosa with a normal appearance or in mild grade dysplasia. However, expression of WNT5A increased along with increasing grade of dysplasia, and the highest expression was detected in OSCCs. Expression of membranous β‐catenin and of E‐cadherin was lower, whereas expression of cytoplasmic β‐catenin was higher, in OSCCs than in non‐cancerous regions. However, there was no correlation between expression of WNT5A and expression of either β‐catenin or E‐cadherin. Furthermore, treatment of OSCC cells with rWNT5A had no effect on the expression of β‐catenin or E‐cadherin. Taken together with previous results, we conclude that WNT5A influences the progression of OSCC without affecting the canonical WNT/β‐catenin pathway and without down‐regulating E‐cadherin. WNT5A may have potential as a biological marker for malignant transformation of dysplasia to OSCC.
Collapse
Affiliation(s)
- Zdenka Prgomet
- Oral Pathology, Faculty of Odontology, Malmö University, Malmö, Sweden.,Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Tommy Andersson
- Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Pia Lindberg
- Oral Pathology, Faculty of Odontology, Malmö University, Malmö, Sweden
| |
Collapse
|
90
|
Dong X, Liao W, Zhang L, Tu X, Hu J, Chen T, Dai X, Xiong Y, Liang W, Ding C, Liu R, Dai J, Wang O, Lu L, Lu X. RSPO2 suppresses colorectal cancer metastasis by counteracting the Wnt5a/Fzd7-driven noncanonical Wnt pathway. Cancer Lett 2017; 402:153-165. [PMID: 28600110 DOI: 10.1016/j.canlet.2017.05.024] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/18/2017] [Accepted: 05/26/2017] [Indexed: 01/01/2023]
Abstract
R-spondins play critical roles in development, stem cell survival, and tumorigenicity by modulating Wnt/β-catenin signaling; however, the role of R-spondins in noncanonical Wnt signaling regulation remains largely unknown. We demonstrate here that R-spondin 2 (RSPO2) has an inhibitory effect on colorectal cancer (CRC) cell migration, invasion, and metastasis. Reduced RSPO2 expression was associated with tumor metastasis and poor survival in CRC patients. The metastasis-suppressive activity of RSPO2 was independent of the Wnt/β-catenin signaling pathway but dependent on the Fzd7-mediated noncanonical Wnt signaling pathway. The physical interaction of RSPO2 and Fzd7 increased the degradation of cell surface Fzd7 via ZNRF3-mediated ubiquitination, which led to the suppression of the downstream PKC/ERK signaling cascade. In late-stage metastatic cancer, Wnt5a promoted CRC cell migration by preventing degradation of Fzd7, and RSPO2 antagonized Wnt5a-driven noncanonical Wnt signaling activation and tumor cell migration by blocking the binding of Wnt5a to the Fzd7 receptor. Our study reveals a novel RSPO2/Wnt5a-competing noncanonical Wnt signaling mechanism that regulates cellular migration and invasion, and our data suggest that secreted RSPO2 protein could serve as a potential therapy for Wnt5a/Fzd7-driven aggressive CRC tumors.
Collapse
Affiliation(s)
- Xiaoming Dong
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Wanqin Liao
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Li Zhang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Xi Tu
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province, Zhejiang, 317000, China
| | - Jin Hu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Tianke Chen
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Xiaowei Dai
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Yan Xiong
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Weicheng Liang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Chaodong Ding
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Rui Liu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Juji Dai
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Ouchen Wang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Liting Lu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Xincheng Lu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
91
|
Chen X, Wu Q, Depeille P, Chen P, Thornton S, Kalirai H, Coupland SE, Roose JP, Bastian BC. RasGRP3 Mediates MAPK Pathway Activation in GNAQ Mutant Uveal Melanoma. Cancer Cell 2017; 31:685-696.e6. [PMID: 28486107 PMCID: PMC5499527 DOI: 10.1016/j.ccell.2017.04.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 12/07/2016] [Accepted: 04/05/2017] [Indexed: 01/14/2023]
Abstract
Constitutive activation of Gαq signaling by mutations in GNAQ or GNA11 occurs in over 80% of uveal melanomas (UMs) and activates MAPK. Protein kinase C (PKC) has been implicated as a link, but the mechanistic details remained unclear. We identified PKC δ and ɛ as required and sufficient to activate MAPK in GNAQ mutant melanomas. MAPK activation depends on Ras and is caused by RasGRP3, which is significantly and selectively overexpressed in response to GNAQ/11 mutation in UM. RasGRP3 activation occurs via PKC δ- and ɛ-dependent phosphorylation and PKC-independent, DAG-mediated membrane recruitment, possibly explaining the limited effect of PKC inhibitors to durably suppress MAPK in UM. The findings nominate RasGRP3 as a therapeutic target for cancers driven by oncogenic GNAQ/11.
Collapse
Affiliation(s)
- Xu Chen
- Departments of Dermatology and Pathology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Qiuxia Wu
- Departments of Dermatology and Pathology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Philippe Depeille
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Peirong Chen
- Departments of Dermatology and Pathology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sophie Thornton
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Mewdicine, University of Liverpool, Liverpool L7 8TX, UK
| | - Helen Kalirai
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Mewdicine, University of Liverpool, Liverpool L7 8TX, UK
| | - Sarah E Coupland
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Mewdicine, University of Liverpool, Liverpool L7 8TX, UK
| | - Jeroen P Roose
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Boris C Bastian
- Departments of Dermatology and Pathology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
92
|
Lee S, Elaskandrany M, Lau LF, Lazzaro D, Grant MB, Chaqour B. Interplay between CCN1 and Wnt5a in endothelial cells and pericytes determines the angiogenic outcome in a model of ischemic retinopathy. Sci Rep 2017; 7:1405. [PMID: 28469167 PMCID: PMC5431199 DOI: 10.1038/s41598-017-01585-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/31/2017] [Indexed: 02/06/2023] Open
Abstract
CYR61-CTGF-NOV (CCN)1 is a dynamically expressed extracellular matrix (ECM) protein with critical functions in cardiovascular development and tissue repair. Angiogenic endothelial cells (ECs) are a major cellular source of CCN1 which, once secreted, associates with the ECM and the cell surface and tightly controls the bidirectional flow of information between cells and the surrounding matrix. Endothelium-specific CCN1 deletion in mice using a cre/lox strategy induces EC hyperplasia and causes blood vessels to coalesce into large flat hyperplastic sinuses with no distinctive hierarchical organization. This is consistent with the role of CCN1 as a negative feedback regulator of vascular endothelial growth factor (VEGF) receptor activation. In the mouse model of oxygen-induced retinopathy (OIR), pericytes become the predominant CCN1 producing cells. Pericyte-specific deletion of CCN1 significantly decreases pathological retinal neovascularization following OIR. CCN1 induces the expression of the non-canonical Wnt5a in pericyte but not in EC cultures. In turn, exogenous Wnt5a inhibits CCN1 gene expression, induces EC proliferation and increases hypersprouting. Concordantly, treatment of mice with TNP470, a non-canonical Wnt5a inhibitor, reestablishes endothelial expression of CCN1 and significantly decreases pathological neovascular growth in OIR. Our data highlight the significance of CCN1-EC and CCN1-pericyte communication signals in driving physiological and pathological angiogenesis.
Collapse
Affiliation(s)
- Sangmi Lee
- Department of Cell Biology, State University of New York (SUNY), Downstate Medical Center, College of Medicine, Brooklyn, NY, 11203, USA
| | - Menna Elaskandrany
- Department of Cell Biology, State University of New York (SUNY), Downstate Medical Center, College of Medicine, Brooklyn, NY, 11203, USA
| | - Lester F Lau
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago College of Medicine, Chicago, IL, 60607, USA
| | - Douglas Lazzaro
- Department of Ophthalmology, Downstate Medical Center, Brooklyn, NY, 11203, USA
| | - Maria B Grant
- Departments of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Brahim Chaqour
- Department of Cell Biology, State University of New York (SUNY), Downstate Medical Center, College of Medicine, Brooklyn, NY, 11203, USA.
- Department of Ophthalmology, Downstate Medical Center, Brooklyn, NY, 11203, USA.
| |
Collapse
|
93
|
Wu ZC, Xiong L, Wang LX, Miao XY, Liu ZR, Li DQ, Zou Q, Liu KJ, Zhao H, Yang ZL. Comparative study of ROR2 and WNT5a expression in squamous/adenosquamous carcinoma and adenocarcinoma of the gallbladder. World J Gastroenterol 2017; 23:2601-2612. [PMID: 28465645 PMCID: PMC5394524 DOI: 10.3748/wjg.v23.i14.2601] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/01/2017] [Accepted: 03/02/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the expression and clinical pathological significance of ROR2 and WNT5a in gallbladder squamous/adenosquamous carcinoma (SC/ASC) and adenocarcinoma (AC). METHODS EnVision immunohistochemistry was used to stain for ROR2 and WNT5a in 46 SC/ASC patients and 80 AC patients. RESULTS Poorly differentiated AC among AC patients aged > 45 years were significantly more frequent compared with SC/ASC patients, while tumors with a maximal diameter > 3 cm in the SC/ASC group were significantly more frequent compared with the AC group. Positive ROR2 and WNT5a expression was significantly lower in SC/ASC or AC with a maximal mass diameter ≤ 3 cm, a TNM stage of I + II, no lymph node metastasis, no surrounding invasion, and radical resection than in patients with a maximal mass diameter > 3 cm, TNM stage IV, lymph node metastasis, surrounding invasion, and no resection. Positive ROR2 expression in patients with highly differentiated SC/ASC was significantly lower than in patients with poorly differentiated SC/ASC. Positive ROR2 and WNT5a expression levels in highly differentiated AC were significantly lower than in poorly differentiated AC. Kaplan-Meier survival analysis showed that differentiation degree, maximal mass diameter, TNM stage, lymph node metastasis, surrounding invasion, surgical procedure and the ROR2 and WNT5a expression levels were closely related to average survival of SC/ASC or AC. The survival of SC/ASC or AC patients with positive expression of ROR2 and WNT5a was significantly shorter than that of patients with negative expression results. Cox multivariate analysis revealed that poor differentiation, a maximal diameter of the mass ≥ 3 cm, TNM stage III or IV, lymph node metastasis, surrounding invasion, unresected surgery and positive ROR2 or WNT5a expression in the SC/ASC or AC patients were negatively correlated with the postoperative survival rate and positively correlated with mortality, which are risk factors and independent prognostic predictors. CONCLUSION SC/ASC or AC patients with positive ROR2 or WNT5a expression generally have a poor prognosis.
Collapse
|
94
|
Abstract
Compelling evidence have demonstrated that bulk tumors can arise from a unique subset of cells commonly termed "cancer stem cells" that has been proposed to be a strong driving force of tumorigenesis and a key mechanism of therapeutic resistance. Recent advances in epigenomics have illuminated key mechanisms by which epigenetic regulation contribute to cancer progression. In this review, we present a discussion of how deregulation of various epigenetic pathways can contribute to cancer initiation and tumorigenesis, particularly with respect to maintenance and survival of cancer stem cells. This information, together with several promising clinical and preclinical trials of epigenetic modulating drugs, offer new possibilities for targeting cancer stem cells as well as improving cancer therapy overall.
Collapse
Affiliation(s)
- Tan Boon Toh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Jhin Jieh Lim
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Edward Kai-Hua Chow
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Centre for Translational Medicine, National University of Singapore, 14 Medical Drive #12-01, Singapore, 117599 Singapore
| |
Collapse
|
95
|
Daulat AM, Borg JP. Wnt/Planar Cell Polarity Signaling: New Opportunities for Cancer Treatment. Trends Cancer 2017; 3:113-125. [PMID: 28718442 DOI: 10.1016/j.trecan.2017.01.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/29/2016] [Accepted: 01/02/2017] [Indexed: 01/08/2023]
Abstract
Cancer cells are addicted to a large spectrum of extracellular cues implicated in initiation, stem cell renewal, tumor growth, dissemination in the body, and resistance to treatment. Wingless/Int-1 (Wnt) ligands and their associated signaling cascades contribute to most of these processes, paving the way for opportunities in therapeutic development. The developmental Wnt/planar cell polarity (PCP) pathway is the most recently described branch of Wnt signaling strongly implicated in cancer development at early and late stages. We describe here some of the latest knowledge accumulated on this pathway and the pending questions, present the most convincing findings about its role in cancer, and review the most promising strategies currently designed to target its components.
Collapse
Affiliation(s)
- Avais M Daulat
- Centre de Recherche en Cancérologie de Marseille, Aix Marseille Univ UM105, Inst Paoli-Calmettes, UMR7258 CNRS, U1068 INSERM, 'Cell Polarity, Cell Signalling, and Cancer - Equipe Labellisée Ligue Contre le Cancer', Marseille, France
| | - Jean-Paul Borg
- Centre de Recherche en Cancérologie de Marseille, Aix Marseille Univ UM105, Inst Paoli-Calmettes, UMR7258 CNRS, U1068 INSERM, 'Cell Polarity, Cell Signalling, and Cancer - Equipe Labellisée Ligue Contre le Cancer', Marseille, France.
| |
Collapse
|
96
|
Wnt5a Increases Properties of Lung Cancer Stem Cells and Resistance to Cisplatin through Activation of Wnt5a/PKC Signaling Pathway. Stem Cells Int 2016; 2016:1690896. [PMID: 27895670 PMCID: PMC5118537 DOI: 10.1155/2016/1690896] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 08/31/2016] [Accepted: 09/22/2016] [Indexed: 02/07/2023] Open
Abstract
The development of chemoresistance to cisplatin regimens causes a poor prognosis in patients with advanced NSCLC. The role of noncanonical Wnt signaling in the regulation of properties of lung cancer stem cells and chemoresistance was interrogated, by accessing capacities of cell proliferation, migration, invasion, and clonogenicity as well as the apoptosis in A549 cell lines and cisplatin-resistant A549 cells treated with Wnt5a conditional medium or protein kinase C (PKC) inhibitor GF109203X. Results showed that the noncanonical Wnt signaling ligand, Wnt5a, could promote the proliferation, migration, invasion, and colony formation in A549 lung adenocarcinoma cells and cisplatin-resistant A549/DDP cells and increase the fraction of ALDH-positive cell in A549/DDP cells. An exposure of cells to Wnt5a led to a significant reduction of A549/DDP cell apoptosis but not A549 cells. An addition of GF109203X could both strikingly increase the baseline apoptosis and resensitize the Wnt5a-inhibited cell apoptosis. Interestingly, an inhibition of Wnt/PKC signaling pathway could reduce properties of lung cancer stem cells, promote cell apoptosis, and resensitize cisplatin-resistant cells to cisplatin via a caspase/AIF-dependent pathway. These data thus suggested that the Wnt5a could promote lung cancer cell mobility and cisplatin-resistance through a Wnt/PKC signaling pathway and a blockage of this signaling may be an alternative therapeutic strategy for NSCLC patients with resistance to chemotherapies.
Collapse
|
97
|
Gu L, Feng J, Zheng Z, Xu H, Yu W. Polyphyllin I inhibits the growth of ovarian cancer cells in nude mice. Oncol Lett 2016; 12:4969-4974. [PMID: 28105203 PMCID: PMC5228467 DOI: 10.3892/ol.2016.5348] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 09/06/2016] [Indexed: 11/06/2022] Open
Abstract
Polyphyllin I (PPI) is an active component in Rhizoma Paridis, which displays extensive pharmacological antitumor activities. In a previous study, we found that polyphyllin I exhibited inhibitory effects on cell growth in the human ovarian cancer HO-8910PM cell line, as well as promoting apoptosis and the inhibition of cell migration. Furthermore, gene expression was also profiled by microarray, which showed that numerous genes were altered by PPI; three genes were of particular note that were associated with tumor progression, namely, Caspase-9, C-jun and Wnt5a. In the present study, the effect of PPI on subcutaneous tumor growth (HO-8910PM cells) in nude mice was further evaluated, and immunohistochemistry and reverse transcription polymerase chain reaction (RT-PCR) were used to examine the expression of Caspase-9, C-jun and Wnt5a in subcutaneous and lung metastatic tumor tissues, in order to investigate the possible mechanisms involved. The results showed that PPI significantly inhibited the tumor growth in vivo without a marked impact on body weight, and through use of immunohistochemical staining and RT-PCR, it was found that the expression of Caspase-9 and Wnt5a was decreased, while the expression of C-jun was increased, in subcutaneous and lung metastatic tumor tissue; this was consistent with the in vitro results. In conclusion, the present study showed that PPI exerted antitumor activity on ovarian cancer cells in vivo, and indicated that the modulation of Caspase-9, C-jun and Wnt5a may be involved in the antitumor effect of PPI.
Collapse
Affiliation(s)
- Linhui Gu
- Research Institute, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China; Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Jianguo Feng
- Research Institute, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China; Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Zhiguo Zheng
- Research Institute, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China; Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Haiyan Xu
- Biological Specimen Bank, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Wei Yu
- Biological Specimen Bank, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| |
Collapse
|
98
|
Agarwalla P, Mukherjee S, Sreedhar B, Banerjee R. Glucocorticoid receptor-mediated delivery of nano gold-withaferin conjugates for reversal of epithelial-to-mesenchymal transition and tumor regression. Nanomedicine (Lond) 2016; 11:2529-46. [PMID: 27622735 DOI: 10.2217/nnm-2016-0224] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
AIM To explore the potential of glucocorticoid receptor-targeted nano-gold formulation as antitumor drug sensitizing agent. MATERIALS & METHODS Simultaneous conjugation of gold nanoparticle with thiol-modified dexamethasone, a synthetic glucocorticoid and anticancer drug withaferin A afforded stable gold nanoparticle-modifed dexamethasone-withaferin A nanoconjugate. RESULTS This metallic nanoparticle formulation showed glucocorticoid receptor-dependent cancer cell selective cytotoxicity, inhibited growth of aggressive mouse melanoma tumor, reduced mice mortality, while reversing epithelial-to-mesenchymal transition in tumor cells. Same treatment also leads to near-complete downregulation of ABCG2 drug transporter in tumor-associated cells thus attributing it to its drug sensitizing ability. CONCLUSION The presently synthesized nanoconjugate holds a great promise to sensitize cancer cells to chemotherapeutics and induce epithelial-to-mesenchymal transition reversal in tumor cells preventing metastasis.
Collapse
Affiliation(s)
- Pritha Agarwalla
- Biomaterials Group, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Tarnaka, Hyderabad, Telangana 500007, India.,Academy of Scientific & Innovative Research (AcSIR), 2 Rafi Marg, New Delhi 110 001, India
| | - Sudip Mukherjee
- Biomaterials Group, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Tarnaka, Hyderabad, Telangana 500007, India.,Academy of Scientific & Innovative Research (AcSIR), 2 Rafi Marg, New Delhi 110 001, India
| | - Bojja Sreedhar
- Inorganic & Physical Chemistry Division, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Tarnaka, Hyderabad, Telangana 500007, India
| | - Rajkumar Banerjee
- Biomaterials Group, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Tarnaka, Hyderabad, Telangana 500007, India.,Academy of Scientific & Innovative Research (AcSIR), 2 Rafi Marg, New Delhi 110 001, India
| |
Collapse
|
99
|
Prasad CP, Chaurasiya SK, Guilmain W, Andersson T. WNT5A signaling impairs breast cancer cell migration and invasion via mechanisms independent of the epithelial-mesenchymal transition. J Exp Clin Cancer Res 2016; 35:144. [PMID: 27623766 PMCID: PMC5022188 DOI: 10.1186/s13046-016-0421-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/07/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND WNT5A (-/-) mammary tissue has been shown to exhibit increased ductal elongation, suggesting elevated mammary cell migration. Increased epithelial cell migration/invasion has often but not always been linked to the epithelial-mesenchymal transition (EMT). In the current study, we investigated the loss of WNT5A in HB2 human mammary epithelial cells and hypothesized that this loss increased their invasion via the EMT. Based on these results, we postulated that suppression of breast cancer cell migration and invasion by WNT5A is due to EMT reversal. METHODS WNT5A was transiently knocked down using specific siRNAs, whereas WNT5A signaling was induced in MDA-MB468 and MDA-MB231 breast cancer cells by stably transfecting cells with WNT5A or treating them with recombinant WNT5A (rWNT5A). Changes in EMT markers, CD44, pAKT and AKT expression were assessed using Western blotting and immunofluorescence. The physiological relevance of altered WNT5A signaling was assessed using migration and invasion assays. RESULTS WNT5A knockdown in HB2 mammary epithelial cells resulted in EMT-like changes and increased invasiveness, and these changes were partially reversed by the addition of rWNT5A. These data suggest that WNT5A might inhibit breast cancer cell migration and invasion by a similar EMT reversal. Contrary to our expectations, we did not observe any changes in the EMT status of breast cancer cells, either after treatment with rWNT5A or stable transfection with a WNT5A plasmid, despite the parallel WNT5A-induced inhibition of migration and invasion. Instead, we found that WNT5A signaling impaired CD44 expression and its downstream signaling via AKT. Moreover, knocking down CD44 in breast cancer cells using siRNA impaired cell migration and invasion. CONCLUSIONS WNT5A bi-directionally regulates EMT in mammary epithelial cells, thereby affecting their migration and invasion. However, the ability of WNT5A to inhibit breast cancer cell migration and invasion is an EMT-independent mechanism that, at least in part, can be explained by decreased CD44 expression.
Collapse
Affiliation(s)
- Chandra Prakash Prasad
- Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Clinical Research Centre, Skåne University Hospital, SE-20502, Malmö, Sweden.
| | - Shivendra Kumar Chaurasiya
- Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Clinical Research Centre, Skåne University Hospital, SE-20502, Malmö, Sweden.,Present Address: Department of Applied Microbiology, School of Biological Sciences, Dr HS Gour Central University, Sagar, Madhya Pradesh, India
| | - William Guilmain
- Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Clinical Research Centre, Skåne University Hospital, SE-20502, Malmö, Sweden
| | - Tommy Andersson
- Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Clinical Research Centre, Skåne University Hospital, SE-20502, Malmö, Sweden
| |
Collapse
|
100
|
Wnt5a Signaling in Cancer. Cancers (Basel) 2016; 8:cancers8090079. [PMID: 27571105 PMCID: PMC5040981 DOI: 10.3390/cancers8090079] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/09/2016] [Accepted: 08/22/2016] [Indexed: 01/07/2023] Open
Abstract
Wnt5a is involved in activating several non-canonical WNT signaling pathways, through binding to different members of the Frizzled- and Ror-family receptors. Wnt5a signaling is critical for regulating normal developmental processes, including proliferation, differentiation, migration, adhesion and polarity. However, the aberrant activation or inhibition of Wnt5a signaling is emerging as an important event in cancer progression, exerting both oncogenic and tumor suppressive effects. Recent studies show the involvement of Wnt5a in regulating cancer cell invasion, metastasis, metabolism and inflammation. In this article, we review findings regarding the molecular mechanisms and roles of Wnt5a signaling in various cancer types, and highlight Wnt5a in ovarian cancer.
Collapse
|