51
|
Leonarski E, Kuasnei M, Cesca K, Oliveira DD, Zielinski AAF. Black rice and its by-products: anthocyanin-rich extracts and their biological potential. Crit Rev Food Sci Nutr 2023; 64:9261-9279. [PMID: 37194647 DOI: 10.1080/10408398.2023.2211169] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Recently, growing demand for products enriched with natural compounds that support human health has been observed. Black rice, its by-products, and residues are known to have in their composition a large amount of these compounds with biological potential, mainly anthocyanins. These compounds have reported effects on anti-obesity, antidiabetic, antimicrobial, anticancer, neuroprotective, and cardiovascular disease. Therefore, the extract from black rice or its by-products have great potential for application as ingredients in functional foods, supplements, or pharmacological formulations. This overview summarizes the methods employed for the extraction of anthocyanins from both black rice and its by-products. In addition, trends in applications of these extracts are also evaluated regarding their biological potential. Commonly, the extraction methods used to recover anthocyanins are conventional (maceration) and some emerging technologies (Ultrasound-Assisted Extraction - UAE, and Microwave-Assisted Extraction - MAE). Anthocyanin-rich extracts from black rice have presented a biological potential for human health. In vitro and in vivo assays (in mice) showed these compounds mainly with anti-cancer properties. However, more clinical trials are still needed to prove these potential biological effects. Extracts from black rice and its by-products have great potential in applying functional products with beneficial characteristics to humans and reducing agro-industrial residues.
Collapse
Affiliation(s)
- Eduardo Leonarski
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Mayara Kuasnei
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Karina Cesca
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Débora de Oliveira
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Acácio A F Zielinski
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
52
|
Suárez-Jacobo Á, Díaz Pacheco A, Bonales-Alatorre E, Castillo-Herrera GA, García-Fajardo JA. Cannabis Extraction Technologies: Impact of Research and Value Addition in Latin America. Molecules 2023; 28:molecules28072895. [PMID: 37049659 PMCID: PMC10095677 DOI: 10.3390/molecules28072895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
The Cannabis genus of plants has been widely used in different cultures for various purposes. It is separated into three main species: sativa, indica, and ruderalis. In ancient practices, the plant was used as a multipurpose crop and valued for its fiber, food, and medicinal uses. Since methodologies for the extraction, processing, and identification of components have become available, medical, and food applications have been increasing, allowing potential development in the pharmaceutical and healthy functional food industries. Although the growing legalization and adoption of cannabis for the treatment of diseases are key factors pushing the growth of its market, the biggest challenge is to obtain higher-quality products in a time- and cost-effective fashion, making the process of extraction and separation an essential step. Latin American countries exhibit great knowledge of extraction technologies; nevertheless, it is still necessary to verify whether production costs are economically profitable. In addition, there has been an increase in commercial cannabis products that may or may not be allowed, with or without quality fact sheets, which can pose health risks. Hence, legalization is mandatory and urgent for the rest of Latin American countries. In this article, the phytochemical compounds (cannabinoids, terpenes, and phenolic compounds), the current status of legalization, extraction techniques, and research advances in cannabis in Latin America are reviewed.
Collapse
Affiliation(s)
- Ángela Suárez-Jacobo
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Zapopan 45019, Mexico
| | - Adrián Díaz Pacheco
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Tlaxcala del Instituto Politécnico Nacional, Tlaxcala 90000, Mexico
| | - Edgar Bonales-Alatorre
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima 28045, Mexico
| | - Gustavo Adolfo Castillo-Herrera
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Zapopan 45019, Mexico
| | - Jorge Alberto García-Fajardo
- Subsede Noreste, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Parque de Investigación e Innovación Tecnológica, Apodaca 66628, Mexico
| |
Collapse
|
53
|
Pawar KR, Nema PK. Apricot kernel characterization, oil extraction, and its utilization: a review. Food Sci Biotechnol 2023; 32:249-263. [PMID: 36778095 PMCID: PMC9905367 DOI: 10.1007/s10068-022-01228-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 01/09/2023] Open
Abstract
Apricot (Prunus armeniaca L.) kernels, one of the economical stone fruit kernels, are utilized worldwide for edible, cosmetic, and medicinal purposes. Oil from the apricot kernel is valued by the richness of unsaturated fatty acids, the high proportion of oleic acids, phenols, and tocopherol content. Oil yield with quality from apricot kernel varies with region, variety, and adopted method of oil extraction. This review discusses apricot kernel characterization, different conventional and novel methods of oil extraction, their merits and demerits as reported in the literature. Novel technologies such as microwave-assisted oil extraction, ultrasound-assisted oil extraction, enzyme-assisted oil extraction, and supercritical fluid oil extraction have emerged as the most promising extraction methods that allow efficient oil recovery in very environment-friendly ways. Knowledge of the extraction technique aids in giving higher oil recovery with minimal nutritional losses while retaining the original organoleptic properties. Graphical abstract
Collapse
Affiliation(s)
- Krantidip R. Pawar
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana 131028 India
| | - Prabhat K. Nema
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana 131028 India
| |
Collapse
|
54
|
Astragaloside IV: A promising natural neuroprotective agent for neurological disorders. Biomed Pharmacother 2023; 159:114229. [PMID: 36652731 DOI: 10.1016/j.biopha.2023.114229] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 01/18/2023] Open
Abstract
Neurological disorders are characterized by high morbidity, disability, and mortality rates, which seriously threaten human health. However, clinically satisfactory agents for treatment are still currently lacking. Therefore, finding neuroprotective agents with minimum side effects and better efficacy is a challenge. Chinese herbal medicine, particularly natural preparations extracted from herbs or plants, has become an unparalleled resource for discovering new agent candidates. Astragali Radix is an important Qi tonic drug in traditional Chinese medicine and has a long medicinal history. As a natural medicine, it has a good prevention and treatment effect on neurological disorders. Here, the role and mechanism of astragaloside IV in the treatment of neurological disorders were evaluated and discussed through previous research results. Related information from major scientific databases, such as PubMed, MEDLINE, Web of Science, ScienceDirect, Embase, BIOSIS Previews, and the Cochrane Central Register of Controlled Trials and Cochrane Library, covering between 2001 and 2021 was compiled, using "Astragaloside IV" and "Neurological disorders," "Astragaloside IV," and "Neurodegenerative diseases" as reference terms. By summarizing previous research results, we found that astragaloside IV may play a neuroprotective role through various mechanisms: anti-inflammatory, anti-oxidative, anti-apoptotic protection of nerve cells and regulation of nerve growth factor, as well as by inhibiting neurodegeneration and promoting nerve regeneration. Astragaloside IV is a promising natural neuroprotective agent. By determining its pharmacological mechanism, astragaloside IV may be a new candidate drug for the treatment of neurological disorders.
Collapse
|
55
|
Schincaglia A, Aspromonte J, Franchina FA, Chenet T, Pasti L, Cavazzini A, Purcaro G, Beccaria M. Current Developments of Analytical Methodologies for Aflatoxins' Determination in Food during the Last Decade (2013-2022), with a Particular Focus on Nuts and Nut Products. Foods 2023; 12:527. [PMID: 36766055 PMCID: PMC9914313 DOI: 10.3390/foods12030527] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/09/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
This review aims to provide a clear overview of the most important analytical development in aflatoxins analysis during the last decade (2013-2022) with a particular focus on nuts and nuts-related products. Aflatoxins (AFs), a group of mycotoxins produced mainly by certain strains of the genus Aspergillus fungi, are known to impose a serious threat to human health. Indeed, AFs are considered carcinogenic to humans, group 1, by the International Agency for Research on Cancer (IARC). Since these toxins can be found in different food commodities, food control organizations worldwide impose maximum levels of AFs for commodities affected by this threat. Thus, they represent a cumbersome issue in terms of quality control, analytical result reliability, and economical losses. It is, therefore, mandatory for food industries to perform analysis on potentially contaminated commodities before the trade. A full perspective of the whole analytical workflow, considering each crucial step during AFs investigation, namely sampling, sample preparation, separation, and detection, will be presented to the reader, focusing on the main challenges related to the topic. A discussion will be primarily held regarding sample preparation methodologies such as partitioning, solid phase extraction (SPE), and immunoaffinity (IA) related methods. This will be followed by an overview of the leading analytical techniques for the detection of aflatoxins, in particular liquid chromatography (LC) coupled to a fluorescence detector (FLD) and/or mass spectrometry (MS). Moreover, the focus on the analytical procedure will not be specific only to traditional methodologies, such as LC, but also to new direct approaches based on imaging and the ability to detect AFs, reducing the need for sample preparation and separative techniques.
Collapse
Affiliation(s)
- Andrea Schincaglia
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| | - Juan Aspromonte
- Laboratorio de Investigación y Desarrollo de Métodos Analíticos, LIDMA, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CIC-PBA, CONICET, Calle 47 Esq. 115, La Plata 1900, Argentina
| | - Flavio A. Franchina
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| | - Tatiana Chenet
- Department of Environmental and Prevention Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
| | - Luisa Pasti
- Department of Environmental and Prevention Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
| | - Alberto Cavazzini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| | - Giorgia Purcaro
- Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, 5030 Gembloux, Belgium
| | - Marco Beccaria
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
- Organic and Biological Analytical Chemistry Group, MolSys Research Unit, University of Liège, 4000 Liège, Belgium
| |
Collapse
|
56
|
Nguyen DTC, Tran TV, Nguyen TTT, Nguyen DH, Alhassan M, Lee T. New frontiers of invasive plants for biosynthesis of nanoparticles towards biomedical applications: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159278. [PMID: 36216068 DOI: 10.1016/j.scitotenv.2022.159278] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/17/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Above 1000 invasive species have been growing and developing ubiquitously on Earth. With extremely vigorous adaptability, strong reproduction, and spreading powers, invasive species have posed an alarming threat to indigenous plants, water quality, soil, as well as biodiversity. It was estimated that an economic loss of billions of dollars or equivalent to 1 % of gross domestic product as a consequence of lost crops, control efforts, and damage costs caused by invasive plants in the United States. While eradicating invasive plants from the ecosystems is practically infeasible, taking advantage of invasive plants as a sustainable, locally available, and zero-cost source to provide valuable phytochemicals for bionanoparticles fabrication is worth considering. Here, we review the harms, benefits, and role of invasive species as important botanical sources to extract natural compounds such as piceatannol, resveratrol, and quadrangularin-A, flavonoids, and triterpenoids, which are linked tightly to the formation and application of bionanoparticles. As expected, the invasive plant-mediated bionanoparticles have exhibited outstanding antibacterial, antifungal, anticancer, and antioxidant activities. The mechanism of biomedical activities of the invasive plant-mediated bionanoparticles was insightfully addressed and discussed. We also expect that this review not only contributes to efforts to combat invasive plant species but also opens new frontiers of bionanoparticles in the biomedical applications, therapeutic treatment, and smart agriculture.
Collapse
Affiliation(s)
- Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam; NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam.
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam.
| | - Thuy Thi Thanh Nguyen
- Faculty of Science, Nong Lam University, Thu Duc District, Ho Chi Minh City 700000, Viet Nam
| | - Dai Hai Nguyen
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City 70000, Viet Nam
| | - Mansur Alhassan
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia; Department of Chemistry, Sokoto State University, PMB 2134, Airport Road, Sokoto, Nigeria
| | - Taeyoon Lee
- Department of Environmental Engineering, College of Environmental and Marine, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea.
| |
Collapse
|
57
|
Tsiaka T, Lantzouraki DZ, Polychronaki G, Sotiroudis G, Kritsi E, Sinanoglou VJ, Kalogianni DP, Zoumpoulakis P. Optimization of Ultrasound- and Microwave-Assisted Extraction for the Determination of Phenolic Compounds in Peach Byproducts Using Experimental Design and Liquid Chromatography-Tandem Mass Spectrometry. Molecules 2023; 28:molecules28020518. [PMID: 36677576 PMCID: PMC9867053 DOI: 10.3390/molecules28020518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/27/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023] Open
Abstract
The conversion of plant byproducts, which are phenolic-rich substrates, to valuable co-products by implementing non-conventional extraction techniques is the need of the hour. In the current study, ultrasound- (UAE) and microwave-assisted extraction (MAE) were applied for the recovery of polyphenols from peach byproducts. Two-level screening and Box-Behnken design were adopted to optimize extraction efficiency in terms of total phenolic content (TPC). Methanol:water 4:1% v/v was the extraction solvent. The optimal conditions of UAE were 15 min, 8 s ON-5 s OFF, and 35 mL g-1, while MAE was maximized at 20 min, 58 °C, and 16 mL g-1. Regarding the extracts' TPC and antioxidant activity, MAE emerged as the method of choice, whilst their antiradical activity was similar in both techniques. Furthermore, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated to determine chlorogenic acid and naringenin in byproducts' extracts. 4-Chloro-4'-hydroxybenzophenone is proposed as a new internal standard in LC-MS/MS analysis in foods and byproducts. Chlorogenic acid was extracted in higher yields when UAE was used, while MAE favored the extraction of the flavonoid compound, naringenin. To conclude, non-conventional extraction could be considered as an efficient and fast alternative for the recovery of bioactive compounds from plant matrices.
Collapse
Affiliation(s)
- Thalia Tsiaka
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece
- Institute of Chemical Biology, National Hellenic Research Foundation, 48, Vas. Constantinou Ave., 11635 Athens, Greece
- Correspondence: (T.T.); (P.Z.)
| | - Dimitra Z. Lantzouraki
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece
- Institute of Chemical Biology, National Hellenic Research Foundation, 48, Vas. Constantinou Ave., 11635 Athens, Greece
| | - Georgia Polychronaki
- Analytical/Bioanalytical Chemistry & Nanotechnology Group, Department of Chemistry, University of Patras, 26504 Rio Patras, Greece
| | - Georgios Sotiroudis
- Institute of Chemical Biology, National Hellenic Research Foundation, 48, Vas. Constantinou Ave., 11635 Athens, Greece
| | - Eftichia Kritsi
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece
| | - Vassilia J. Sinanoglou
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece
| | - Despina P. Kalogianni
- Analytical/Bioanalytical Chemistry & Nanotechnology Group, Department of Chemistry, University of Patras, 26504 Rio Patras, Greece
| | - Panagiotis Zoumpoulakis
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece
- Institute of Chemical Biology, National Hellenic Research Foundation, 48, Vas. Constantinou Ave., 11635 Athens, Greece
- Correspondence: (T.T.); (P.Z.)
| |
Collapse
|
58
|
Srivastava R, Parambil JV. Evolution of extraction technique for the separation of bioactive compounds from Aegle marmelos. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2151470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Rashi Srivastava
- Department of Chemical and Biochemical Engineering, Indian Institute of Technology Patna, Patna, Bihar, India
| | - Jose V Parambil
- Department of Chemical and Biochemical Engineering, Indian Institute of Technology Patna, Patna, Bihar, India
| |
Collapse
|
59
|
Plant Extraction in Water: Towards Highly Efficient Industrial Applications. Processes (Basel) 2022. [DOI: 10.3390/pr10112233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Since the beginning of this century, the world has experienced a growing need for enabling techniques and more environmentally friendly protocols that can facilitate more rational industrial production. Scientists are faced with the major challenges of global warming and safeguarding water and food quality. Organic solvents are still widely used and seem to be hard to replace, despite their enormous environmental and toxicological impact. The development of water-based strategies for the extraction of primary and secondary metabolites from plants on a laboratory scale is well documented, with several intensified processes being able to maximize the extraction power of water. Technologies, such as ultrasound, hydrodynamic cavitation, microwaves and pressurized reactors that achieve subcritical water conditions can dramatically increase extraction rates and yields. In addition, significant synergistic effects have been observed when using combined techniques. Due to the limited penetration depth of microwaves and ultrasonic waves, scaling up entails changes to reactor design. Nevertheless, the rich academic literature from laboratory-scale investigations may contribute to the engineering work involved in maximizing mass/energy transfer. In this article, we provide an overview of current and innovative techniques for solid-liquid extraction in water for industrial applications, where continuous and semi-continuous processes can meet the high demands for productivity, profitability and quality.
Collapse
|
60
|
Cravotto C, Fabiano-Tixier AS, Claux O, Abert-Vian M, Tabasso S, Cravotto G, Chemat F. Towards Substitution of Hexane as Extraction Solvent of Food Products and Ingredients with No Regrets. Foods 2022; 11:3412. [PMID: 36360023 PMCID: PMC9655691 DOI: 10.3390/foods11213412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 08/13/2023] Open
Abstract
Hexane is a solvent used extensively in the food industry for the extraction of various products such as vegetable oils, fats, flavours, fragrances, colour additives or other bioactive ingredients. As it is classified as a "processing aid", it does not have to be declared on the label under current legislation. Therefore, although traces of hexane may be found in final products, especially in processed products, its presence is not known to consumers. However, hexane, and in particular the n-hexane isomer, has been shown to be neurotoxic to humans and has even been listed as a cause of occupational diseases in several European countries since the 1970s. In order to support the European strategy for a toxic-free environment (and toxic-free food), it seemed important to collect scientific information on this substance by reviewing the available literature. This review contains valuable information on the nature and origin of the solvent hexane, its applications in the food industry, its toxicological evaluation and possible alternatives for the extraction of natural products. Numerous publications have investigated the toxicity of hexane, and several studies have demonstrated the presence of its toxic metabolite 2,5-hexanedione (2,5-HD) in the urine of the general, non-occupationally exposed population. Surprisingly, a tolerable daily intake (TDI) has apparently never been established by any food safety authority. Since hexane residues are undoubtedly found in various foods, it seems more than necessary to clearly assess the risks associated with this hidden exposure. A clear indication on food packaging and better information on the toxicity of hexane could encourage the industry to switch towards one of the numerous other alternative extraction methods already developed.
Collapse
Affiliation(s)
- Christian Cravotto
- GREEN Extraction Team, INRAE, UMR 408, Avignon University, F-84000 Avignon, France
| | | | - Ombéline Claux
- GREEN Extraction Team, INRAE, UMR 408, Avignon University, F-84000 Avignon, France
| | - Maryline Abert-Vian
- GREEN Extraction Team, INRAE, UMR 408, Avignon University, F-84000 Avignon, France
| | - Silvia Tabasso
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy
| | - Giancarlo Cravotto
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy
| | - Farid Chemat
- GREEN Extraction Team, INRAE, UMR 408, Avignon University, F-84000 Avignon, France
| |
Collapse
|
61
|
Ding S, Wang P, Pang X, Zhang L, Qian L, Jia X, Chen W, Ruan S, Sun L. The new exploration of pure total flavonoids extracted from Citrus maxima (Burm.) Merr. as a new therapeutic agent to bring health benefits for people. Front Nutr 2022; 9:958329. [PMID: 36276813 PMCID: PMC9582534 DOI: 10.3389/fnut.2022.958329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
The peel and fruit of Citrus varieties have been a raw material for some traditional Chinese medicine (TCM). Pure total flavonoids from Citrus maxima (Burm.) Merr. (PTFC), including naringin, hesperidin, narirutin, and neohesperidin, have been attracted increasing attention for their multiple clinical efficacies. Based on existing in vitro and in vivo research, this study systematically reviewed the biological functions of PTFC and its components in preventing or treating liver metabolic diseases, cardiovascular diseases, intestinal barrier dysfunction, as well as malignancies. PTFC and its components are capable of regulating glycolipid metabolism, blocking peroxidation and persistent inflammation, inhibiting tumor progression, protecting the integrity of intestinal barrier and positively regulating intestinal microbiota, while the differences in fruit cultivation system, picking standard, manufacturing methods, delivery system and individual intestinal microecology will have impact on the specific therapeutic effect. Thus, PTFC is a promising drug for the treatment of some chronic diseases, as well as continuous elaborate investigations are necessary to improve its effectiveness and bioavailability.
Collapse
Affiliation(s)
- Shuning Ding
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Peipei Wang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xi Pang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Leyin Zhang
- Department of Medical Oncology, Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Lihui Qian
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinru Jia
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wenqian Chen
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shanming Ruan
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Leitao Sun
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| |
Collapse
|
62
|
Xue H, Wang W, Bian J, Gao Y, Hao Z, Tan J. Recent advances in medicinal and edible homologous polysaccharides: Extraction, purification, structure, modification, and biological activities. Int J Biol Macromol 2022; 222:1110-1126. [PMID: 36181889 DOI: 10.1016/j.ijbiomac.2022.09.227] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/06/2022] [Accepted: 09/24/2022] [Indexed: 11/05/2022]
Abstract
110 kinds of traditional Chinese medicines can be used for medicine and food from Chinese pharmacopoeia in 2021. With the deepening of research in recent years, medicinal and edible homologous (MEH) traditional Chinese medicines have great development and application prospects in many fields. Polysaccharides are one of the major and representative pharmacologically active macromolecules in traditional Chinese medicines with MEH. Moreover, traditional Chinese medicines with MEH have become the main source of natural polysaccharides with safety, high efficiency, and low side effects. Increasing researches have confirmed that MEH polysaccharides (MEHPs) have multiple biological activities both in vitro and in vivo methods, such as antioxidant, immunomodulatory, anti-tumor, anti-aging, anti-inflammatory, hypoglycemic, hypolipidemic activities, and regulating intestinal flora. Additionally, different raw materials, extraction, purification, and chemical modification methods result in differences in the structure and biological activities of MEHPs. The purpose of the present review is to provide comprehensively and systematically reorganized information in the extraction, purification, structure, modification, biological activities, and potential mechanism of MEHPs to support their therapeutic effects and health functions. New valuable insights and theoretical basis for the future researches and developments regarding MEHPs were proposed in the fields of medicine and food.
Collapse
Affiliation(s)
- Hongkun Xue
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Wenli Wang
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Jiayue Bian
- School of Basic Medical Sciences, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Yuchao Gao
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Zitong Hao
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Jiaqi Tan
- Medical Comprehensive Experimental Center, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China.
| |
Collapse
|
63
|
Kakoei H, Mortazavian AM, Mofid V, Gharibzahedi SMT, Hosseini H. Single and combined hydrodistillation techniques of microwave and ultrasound for extracting bio-functional hydrosols from Iranian Eryngium caucasicum Trautv. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02474-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
64
|
de la Fuente B, Pinela J, Mandim F, Heleno SA, Ferreira ICFR, Barba FJ, Berrada H, Caleja C, Barros L. Nutritional and bioactive oils from salmon (Salmo salar) side streams obtained by Soxhlet and optimized microwave-assisted extraction. Food Chem 2022; 386:132778. [PMID: 35344720 DOI: 10.1016/j.foodchem.2022.132778] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 11/04/2022]
Abstract
The efficiency of the microwave-assisted extraction (MAE) technique on recovering nutritional and bioactive oils from salmon (Salmo salar) side streams was evaluated and compared to Soxhlet extraction. The response surface methodology (RSM) coupled with a central composite rotatable design was used to optimize time, microwave power, and solid/liquid ratio of the MAE process in terms of oil yield. The optimal MAE conditions were 14.6 min, 291.9 W, 80.1 g/L for backbones, 10.8 min, 50.0 W, 80.0 g/L for heads, and 14.3 min, 960.6 W, 99.5 g/L for viscera, which resulted in a recovery of 69% of the total lipid content for backbones and heads and 92% for viscera. The oils obtained under optimal MAE conditions showed a healthy lipid profile as well as cytotoxic, antioxidant, anti-inflammatory, or antimicrobial properties. These results highlight that oils from underutilized salmon by-products could be exploited by different industrial sectors under the circular economy approach.
Collapse
Affiliation(s)
- Beatriz de la Fuente
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal; Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, 46100 València, Spain
| | - José Pinela
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal
| | - Filipa Mandim
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal
| | - Sandrina A Heleno
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal
| | - Francisco J Barba
- Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, 46100 València, Spain
| | - Houda Berrada
- Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, 46100 València, Spain
| | - Cristina Caleja
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal.
| |
Collapse
|
65
|
Samota MK, Sharma M, Kaur K, Sarita, Yadav DK, Pandey AK, Tak Y, Rawat M, Thakur J, Rani H. Onion anthocyanins: Extraction, stability, bioavailability, dietary effect, and health implications. Front Nutr 2022; 9:917617. [PMID: 35967791 PMCID: PMC9363841 DOI: 10.3389/fnut.2022.917617] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Anthocyanins are high-value compounds, and their use as functional foods and their natural colorant have potential health benefits. Anthocyanins seem to possess antioxidant properties, which help prevent neuronal diseases and thereby exhibit anti-inflammatory, chemotherapeutic, cardioprotective, hepatoprotective, and neuroprotective activities. They also show different therapeutic effects against various chronic diseases. Anthocyanins are present in high concentrations in onion. In recent years, although both conventional and improved methods have been used for extraction of anthocyanins, nowadays, improved methods are of great importance because of their higher yield and stability of anthocyanins. In this review, we compile anthocyanins and their derivatives found in onion and the factors affecting their stability. We also analyze different extraction techniques of anthocyanins. From this point of view, it is very important to be precisely aware of the impact that each parameter has on the stability and subsequently potentiate its bioavailability or beneficial health effects. We present up-to-date information on bioavailability, dietary effects, and health implications of anthocyanins such as antioxidant, antidiabetic, anticancerous, antiobesity, cardioprotective, and hepatoprotective activities.
Collapse
Affiliation(s)
- Mahesh Kumar Samota
- Horticulture Crop Processing (HCP) Division, ICAR-Central Institute of Post-Harvest Engineering & Technology (CIPHET), Punjab, India
| | - Madhvi Sharma
- Post Graduate Department of Biotechnology, Khalsa College, Amritsar, Punjab, India
| | - Kulwinder Kaur
- Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Sarita
- College of Agriculture, Agriculture University, Jodhpur, Rajasthan, India
| | - Dinesh Kumar Yadav
- Division of Environmental Soil Science, ICAR-Indian Institute of Soil Science (IISS), Bhopal, MP, India
| | - Abhay K Pandey
- Department of Mycology and Microbiology, Tea Research Association-North Bengal Regional R & D Center, Nagrakata, West Bengal, India
| | - Yamini Tak
- Agricultural Research Station (ARS), Agriculture University, Kota, Rajasthan, India
| | - Mandeep Rawat
- Department of Horticulture, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Julie Thakur
- Department of Botany, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, India
| | - Heena Rani
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, Punjab, India
| |
Collapse
|
66
|
Rodrigues RP, Gando-Ferreira LM, Quina MJ. Increasing Value of Winery Residues through Integrated Biorefinery Processes: A Review. Molecules 2022; 27:molecules27154709. [PMID: 35897883 PMCID: PMC9331683 DOI: 10.3390/molecules27154709] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/04/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
The wine industry is one of the most relevant socio-economic activities in Europe. However, this industry represents a growing problem with negative effects on the environment since it produces large quantities of residues that need appropriate valorization or management. From the perspective of biorefinery and circular economy, the winery residues show high potential to be used for the formulation of new products. Due to the substantial quantities of phenolic compounds, flavonoids, and anthocyanins with high antioxidant potential in their matrix, these residues can be exploited by extracting bioactive compounds before using the remaining biomass for energy purposes or for producing fertilizers. Currently, there is an emphasis on the use of new and greener technologies in order to recover bioactive molecules from solid and liquid winery residues. Once the bio compounds are recovered, the remaining residues can be used for the production of energy through bioprocesses (biogas, bioethanol, bio-oil), thermal processes (pyrolysis, gasification combustion), or biofertilizers (compost), according to the biorefinery concept. This review mainly focuses on the discussion of the feasibility of the application of the biorefinery concept for winery residues. The transition from the lab-scale to the industrial-scale of the different technologies is still lacking and urgent in this sector.
Collapse
|
67
|
Impact of Cell Disintegration Techniques on Curcumin Recovery. FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-022-09319-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
In recent years, the improvement of curcumin recovery from turmeric by cell and tissue disintegration techniques has been gaining more attention; these emerging techniques were used for a reproducible and robust curcumin extraction process. Additionally, understanding the material characteristics is also needed to choose the optimized technique and appropriate processing parameters. In this review, an outlook about the distribution of different fractions in turmeric rhizomes is reviewed to explain matrix challenges on curcumin extraction. Moreover, the most important part, this review provides a comprehensive summary of the latest studies on ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE), enzyme-assisted extraction (EAE), high-pressure-assisted extraction (HPAE), pulsed electric field-assisted extraction (PEFAE), and ohmic heating-assisted extraction (OHAE). Lastly, a detailed discussion about the advantages and disadvantages of emerging techniques will provide an all-inclusive understanding of the food industry’s potential of different available processes.
Collapse
|
68
|
Vlčko T, Rathod NB, Kulawik P, Ozogul Y, Ozogul F. The impact of aromatic plant-derived bioactive compounds on seafood quality and safety. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 102:275-339. [PMID: 36064295 DOI: 10.1016/bs.afnr.2022.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Plant-derived bioactive compounds have been extensively studied and used within food industry for the last few decades. Those compounds have been used to extend the shelf-life and improve physico-chemical and sensory properties on food products. They have also been used as nutraceuticals due to broad range of potential health-promoting properties. Unlike the synthetic additives, the natural plant-derived compounds are more acceptable and often regarded as safer by the consumers. This chapter summarizes the extraction methods and sources of those plant-derived bioactives as well as recent findings in relation to their health-promoting properties, including cardio-protective, anti-diabetic, anti-inflammatory, anti-carcinogenic, immuno-modulatory and neuro-protective properties. In addition, the impact of applying those plant-derived compounds on seafood products is also investigated by reviewing the recent studies on their use as anti-microbial, anti-oxidant, coloring and flavoring agents as well as freshness indicators. Moreover, the current limitations of the use of plant-derived bioactive compounds as well as future prospects are discussed. The discoveries show high potential of those compounds and the possibility to apply on many different seafood. The compounds can be applied as individual while more and more studies are showing synergetic effect when those compounds are used in combination providing new important research possibilities.
Collapse
Affiliation(s)
- Tomáš Vlčko
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak Agriculture University in Nitra, Nitra, Slovakia
| | - Nikheel Bhojraj Rathod
- Department of Post Harvest Management of Meat, Poultry and Fish, Post Graduate Institute of Post-Harvest Management, Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Roha, Maharashtra, India
| | - Piotr Kulawik
- Department of Animal Products Technology, Faculty of Food Technology, University of Agriculture, Kraków, Poland
| | - Yesim Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey.
| |
Collapse
|
69
|
Chen CY, Li YH, Li Z, Lee MR. Characterization of effective phytochemicals in traditional Chinese medicine by mass spectrometry. MASS SPECTROMETRY REVIEWS 2022:e21782. [PMID: 35638257 DOI: 10.1002/mas.21782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/23/2021] [Accepted: 04/08/2022] [Indexed: 06/15/2023]
Abstract
Traditional Chinese medicines (TCMs) have been widely used in clinical and healthcare applications around the world. The characterization of the phytochemical components in TCMs is very important for studying the therapeutic mechanism of TCMs. In the analysis process, sample preparation and instrument analysis are key steps to improve analysis performance and accuracy. In recent years, chromatography combined with mass spectrometry (MS) has been widely used for the separation and detection of trace components in complex TCM samples. This article reviews various sample preparation techniques and chromatography-MS techniques, including the application of gas chromatography-MS and liquid chromatography-MS and other MS techniques in the characterization of phytochemicals in TCM materials and Chinese medicine products. This article also describes a new ambient ionization MS method for rapid and high-throughput analysis of TCM components.
Collapse
Affiliation(s)
- Chung-Yu Chen
- Research Center for Cancer Biology, China Medical University, Taichung, Taiwan, ROC
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Yen-Hsien Li
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Zuguang Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Maw-Rong Lee
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan, ROC
- Graduate Institute of Food Safety, National Chung Hsing University, Taichung, Taiwan, ROC
| |
Collapse
|
70
|
Xie W, Li H, Sun Y, Li W, Yi F, Xia L, Lei F. Separating and purifying of Panax notoginseng saponins using a rosin-based polymer-bonded with silica as a high-performance liquid chromatography stationary phase. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
71
|
Tagkouli D, Tsiaka T, Kritsi E, Soković M, Sinanoglou VJ, Lantzouraki DZ, Zoumpoulakis P. Towards the Optimization of Microwave-Assisted Extraction and the Assessment of Chemical Profile, Antioxidant and Antimicrobial Activity of Wine Lees Extracts. Molecules 2022; 27:molecules27072189. [PMID: 35408586 PMCID: PMC9000764 DOI: 10.3390/molecules27072189] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/01/2023] Open
Abstract
Wine lees, a sub-exploited byproduct of vinification, is considered a rich source of bioactive compounds, such as (poly)phenols, anthocyanins and tannins. Thus, the effective and rapid recovery of these biomolecules and the assessment of the bioactive properties of wine lees extracts is of utmost importance. Towards this direction, microwave-assisted extraction (MAE) factors (i.e., extraction time, microwave power and solvent/material ratio) were optimized using experimental design models in order to maximize the (poly)phenolic yield of the extracts. After optimizing the MAE process, the total phenolic content (TPC) as well as the antiradical, antioxidant and antimicrobial activity of the extracts were evaluated. Furthermore, Fourier transform infrared spectroscopy (FTIR) was employed to investigate the chemical profile of wine lees extracts. Red varieties exhibited higher biological activity than white varieties. The geographical origin and fermentation stage were also considered as critical factors. The white variety Moschofilero presented the highest antioxidant, antiradical and antimicrobial activity, while Merlot and Agiorgitiko samples showed noteworthy activities among red varieties. Moreover, IR spectra confirmed the presence of sugars, amino acids, organic acids and aromatic compounds. Thus, an efficient, rapid and eco-friendly process was proposed for further valorization of wine lees extracts.
Collapse
Affiliation(s)
- Dimitra Tagkouli
- Institute of Chemical Biology, National Hellenic Research Foundation, 48, Vas. Constantinou Ave., 11635 Athens, Greece; (D.T.); (T.T.)
| | - Thalia Tsiaka
- Institute of Chemical Biology, National Hellenic Research Foundation, 48, Vas. Constantinou Ave., 11635 Athens, Greece; (D.T.); (T.T.)
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece; (E.K.); (V.J.S.)
| | - Eftichia Kritsi
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece; (E.K.); (V.J.S.)
| | - Marina Soković
- Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia;
| | - Vassilia J. Sinanoglou
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece; (E.K.); (V.J.S.)
| | - Dimitra Z. Lantzouraki
- Institute of Chemical Biology, National Hellenic Research Foundation, 48, Vas. Constantinou Ave., 11635 Athens, Greece; (D.T.); (T.T.)
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece; (E.K.); (V.J.S.)
- Correspondence: (D.Z.L.); (P.Z.)
| | - Panagiotis Zoumpoulakis
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece; (E.K.); (V.J.S.)
- Correspondence: (D.Z.L.); (P.Z.)
| |
Collapse
|
72
|
Taghian Dinani S, van der Goot AJ. Challenges and solutions of extracting value-added ingredients from fruit and vegetable by-products: a review. Crit Rev Food Sci Nutr 2022; 63:7749-7771. [PMID: 35275755 DOI: 10.1080/10408398.2022.2049692] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Every year, huge amounts of fruit and vegetable by-products in the food processing factories are produced. These by-products have great potential to be used for different targets especially the extraction of value-added ingredients. The target of this study is to review the challenges of extraction of value-added ingredients from fruit and vegetable by-products on the industrial scale and to describe current trends in solving these problems. In addition, some strategies such as multi-component extraction as well as application of fermentation before or after the extraction process, and production of biofuel, organic fertilizers, animal feeds, etc. on final residues after extraction of value-added ingredients are discussed in this review paper. In fact, simultaneous extraction of different value-added ingredients from fruit and vegetable by-products can increase the extraction efficiency and reduce the cost of value-added ingredients as well as the final volume of these by-products. After extraction of value-added ingredients, the residues can be used to produce biofuels, or they can be used to produce organic fertilizers, animal feeds, etc. Therefore, the application of several appropriate strategies to treat the fruit and vegetable by-products can increase their application, protect the environment, and improve the food economy.
Collapse
Affiliation(s)
| | - Atze Jan van der Goot
- Food Process Engineering, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
73
|
Xiang B, Zhou X, Qin D, Li C, Xi J. Infrared assisted extraction of bioactive compounds from plant materials: Current research and future prospect. Food Chem 2022; 371:131192. [PMID: 34592627 DOI: 10.1016/j.foodchem.2021.131192] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 01/24/2023]
Abstract
The extraction of bioactive compounds from plant materials has attracted much attention due to their potential therapeutic effects. This article reviews the basic principles, characteristics, and recent applications of infrared assisted extraction (IAE) of bioactive compounds from plant materials. The advantages and disadvantages of IAE are considered, and operation mode and technological improvements, processes, solvents used and other future developments are identified. The review indicated that IAE was a simple, rapid, and cost-effective technique with the capacity for industrial scale application. Future research should focus on energy consumption reduction, green chemistry extraction processes, simplified operation steps, intelligent extraction process, and the establishment of kinetic and thermodynamic models. This article provides a comprehensive understanding of the principles and applications of IAE for the preparation of bioactive compounds, which will be of benefit to researchers and users of the technology.
Collapse
Affiliation(s)
- Bing Xiang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Xin Zhou
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Danyang Qin
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Chenyue Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Jun Xi
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
74
|
Bureš MS, Maslov Bandić L, Vlahoviček-Kahlina K. Determination of Bioactive Components in Mandarin Fruits: A Review. Crit Rev Anal Chem 2022; 53:1489-1514. [PMID: 35157545 DOI: 10.1080/10408347.2022.2035209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
During the last decade, there has been a continuous rise in the consumption of fresh easy-to-peel mandarins. However, the majority of the knowledge comes from other citrus fruit, like orange, while there are relatively few studies about mandarins and no comprehensive research on literature data about them. One of the most important steps in the analytical process is sample preparation. Its value is evident in analyzing the samples with complex matrices, such as in mandarin fruit. In addition, mandarin contains hundreds to thousands of various compounds and metabolites, some of them present in extremely low concentrations, that interfere with the detection of one another. Hence, mandarin samples are commonly pretreated by extraction to facilitate analysis of bioactive compounds, improve accuracy and quantification levels. There is an abundance of extraction techniques available, depending on the group of compounds of interest. Finally, modern analytical techniques, have been applied to cope with numerous bioactive compounds in mandarins. Considering all the above, this review aims to (i) list the most valuable procedures of sample preparation, (ii) highlight the most important techniques for extraction of bioactive compounds from mandarin fruit, and (iii) summarize current trends in the identification and determination of bioactive compounds in mandarin.
Collapse
Affiliation(s)
| | - Luna Maslov Bandić
- Department of Chemistry, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | | |
Collapse
|
75
|
Mediani A, Kamal N, Lee SY, Abas F, Farag MA. Green Extraction Methods for Isolation of Bioactive Substances from Coffee Seed and Spent. SEPARATION & PURIFICATION REVIEWS 2022. [DOI: 10.1080/15422119.2022.2027444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Ahmed Mediani
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM Bangi, 43600, Malaysia
| | - Nurkhalida Kamal
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM Bangi, 43600, Malaysia
| | - Soo Yee Lee
- Natural Medicines and Products Research Laboratory (NaturMeds), Institute of Bioscience Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Faridah Abas
- Natural Medicines and Products Research Laboratory (NaturMeds), Institute of Bioscience Universiti Putra Malaysia, 43400 Serdang, Malaysia
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Mohamed A. Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
76
|
Tena N, Asuero AG. Up-To-Date Analysis of the Extraction Methods for Anthocyanins: Principles of the Techniques, Optimization, Technical Progress, and Industrial Application. Antioxidants (Basel) 2022; 11:antiox11020286. [PMID: 35204169 PMCID: PMC8868086 DOI: 10.3390/antiox11020286] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 01/24/2023] Open
Abstract
Nowadays, food industries are concerned about satisfying legal requirements related to waste policy and environmental protection. In addition, they take steps to ensure food safety and quality products that have high nutritional properties. Anthocyanins are considered high added-value compounds due to their sensory qualities, colors, and nutritional properties; they are considered bioactive ingredients. They are found in high concentrations in many by-products across the food industry. Thus, the non-conventional extraction techniques presented here are useful in satisfying the current food industry requirements. However, selecting more convenient extraction techniques is not easy. Multiple factors are implicated in the decision. In this review, we compile the most recent applications (since 2015) used to extract anthocyanins from different natural matrices, via conventional and non-conventional extraction techniques. We analyze the main advantages and disadvantages of anthocyanin extraction techniques from different natural matrices and discuss the selection criteria for sustainability of the processes. We present an up-to-date analysis of the principles of the techniques and an optimization of the extraction conditions, technical progress, and industrial applications. Finally, we provide a critical comparison between these techniques and some recommendations, to select and optimize the techniques for industrial applications.
Collapse
|
77
|
ANZUM R, ALAWAMLEH HSK, BOKOV DO, JALIL AT, HOI HT, ABDELBASSET WK, THOI NT, WIDJAJA G, KUROCHKIN A. A review on separation and detection of copper, cadmium, and chromium in food based on cloud point extraction technology. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.80721] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Rabeya ANZUM
- International Islamic University Malaysia, Malaysia
| | | | - Dmitry Olegovich BOKOV
- Sechenov First Moscow State Medical University, Russian Federation; Federal Research Center of Nutrition, Biotechnology and Food Safety, Russian Federation
| | | | | | | | | | | | | |
Collapse
|
78
|
Yeasmen N, Orsat V. Green extraction and characterization of leaves phenolic compounds: a comprehensive review. Crit Rev Food Sci Nutr 2021:1-39. [PMID: 34904469 DOI: 10.1080/10408398.2021.2013771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although containing significant levels of phenolic compounds (PCs), leaves biomass coming from either forest, agriculture, or the processing industry are considered as waste, which upon disposal, brings in environmental issues. As the demand for PCs in functional food, pharmaceutical, nutraceutical and cosmetic sector is escalating day by day, recovering PCs from leaves biomass would solve both the waste disposal problem while ensuring a valuable "societal health" ingredient thus highly contributing to a sustainable food chain from both economic and environmental perspectives. In our search for environmentally benign, efficient, and cost-cutting techniques for the extraction of PCs, green extraction (GE) is presenting itself as the best option in modern industrial processing. This current review aims to highlight the recent progress, constraints, legislative framework, and future directions in GE and characterization of PCs from leaves, concentrating particularly on five plant species (tea, moringa, stevia, sea buckthorn, and pistacia) based on the screened journals that precisely showed improvements in extraction efficiency along with maintaining extract quality. This overview will serve researchers and relevant industries engaged in the development of suitable techniques for the extraction of PCs with increasing yield.
Collapse
Affiliation(s)
- Nushrat Yeasmen
- Department of Bioresource Engineering, McGill University, Quebec, Canada.,Department of Food Technology and Rural Industries, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Valérie Orsat
- Department of Bioresource Engineering, McGill University, Quebec, Canada
| |
Collapse
|
79
|
Sik B, Székelyhidi R, Lakatos E, Kapcsándi V, Ajtony Z. Analytical procedures for determination of phenolics active herbal ingredients in fortified functional foods: an overview. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03908-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
AbstractFortification of foods with phenolic compounds is becoming increasingly popular due to their beneficial physiological effects. The biological activities reported include antioxidant, anticancer, antidiabetic, anti-inflammatory, or neuroprotective effects. However, the analysis of polyphenols in functional food matrices is a difficult task because of the complexity of the matrix. The main challenge is that polyphenols can interact with other food components, such as carbohydrates, proteins, or lipids. The chemical reactions that occur during the baking technologies in the bakery and biscuit industry may also affect the results of measurements. The analysis of polyphenols found in fortified foods can be done by several techniques, such as liquid chromatography (HPLC and UPLC), gas chromatography (GC), or spectrophotometry (TPC, DPPH, FRAP assay etc.). This paper aims to review the available information on analytical methods to fortified foodstuffs while as presenting the advantages and limitations of each technique.
Collapse
|
80
|
Rizwan M, Gilani SR, Durrani AI, Naseem S. Low temperature green extraction of Acer platanoides cellulose using nitrogen protected microwave assisted extraction (NPMAE) technique. Carbohydr Polym 2021; 272:118465. [PMID: 34420725 DOI: 10.1016/j.carbpol.2021.118465] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/26/2021] [Accepted: 07/17/2021] [Indexed: 11/23/2022]
Abstract
Practicability of advanced and innovative techniques facilitates the high yield of cellulose extraction within a short period. The research aimed at the extraction of naturally abundant cellulose from Acer platanoides by "Nitrogen protected microwave assisted extraction (NPMAE)". The NPMAE uses microwaves for heating the sample and helps in fast extraction of cellulose in the presence of nitrogen atmosphere. Cellulose extraction was intensified by bleaching treatment in closed multimode NPMAE system at 100 W and 120 °C for 15 min. Experiment's result found that Acer platanoides fiber contains 70% cellulose content and diffferent analysis were studied for all chemically pre-treated fibers and found variations in results after each chemical treatment. The SEM results of bleached fibers show the rough surface due to the removal of lignin and hemicellulose. XRD pattern and FTIR analysis are in the favor of cellulose extraction and results show the presence of type I cellulose with 65% crystallinity index whileTGA and dTGA results explain that cellulose of Acer platanoides bleached fibers (APBF) is more thermally stable below 370 °C than other pre-treated fibers.
Collapse
Affiliation(s)
| | | | | | - Sobia Naseem
- University of Engineering & Technology Lahore, Pakistan
| |
Collapse
|
81
|
Current Methods for the Extraction and Analysis of Isothiocyanates and Indoles in Cruciferous Vegetables. ANALYTICA 2021. [DOI: 10.3390/analytica2040011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cruciferous vegetables are characterized by the presence of sulfur-containing secondary plant metabolites known as glucosinolates (GLS). The consumption of cruciferous vegetables such as broccoli, cabbage, rocket salad, and cauliflower has been related to the prevention of non-communicable diseases. Their beneficial effects are attributed to the enzymatic degradation products of GLS, e.g., isothiocyanates and indoles. Owing to these properties, there has been a shift in the last few years towards the research of these compounds and a wide range of methods for their extraction and analytical determination have been developed. The aim of this review is to present the sample preparation and extraction procedures of isothiocyanates and indoles from cruciferous vegetables and the analytical methods for their determination. The majority of the references that have been reviewed are from the last decade. Although efforts towards the application of eco-friendly non-conventional extraction methods have been made, the use of conventional solvent extraction is mainly applied. The major analytical techniques employed for the qualitative and quantitative analysis of isothiocyanates and indoles are high-performance liquid chromatography and gas chromatography coupled with or without mass spectrometry detection. Nevertheless, the analytical determination of isothiocyanates presents several problems due to their instability and the absence of chromophores, making the simultaneous determination of isothiocyanates and indoles a challenging task.
Collapse
|
82
|
Emerging Green Techniques for the Extraction of Antioxidants from Agri-Food By-Products as Promising Ingredients for the Food Industry. Antioxidants (Basel) 2021; 10:antiox10091417. [PMID: 34573049 PMCID: PMC8471374 DOI: 10.3390/antiox10091417] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 09/01/2021] [Indexed: 11/18/2022] Open
Abstract
Nowadays, the food industry is heavily involved in searching for green sources of valuable compounds, to be employed as potential food ingredients, to cater to the evolving consumers’ requirements for health-beneficial food ingredients. In this frame, agri-food by-products represent a low-cost source of natural bioactive compounds, including antioxidants. However, to effectively recover these intracellular compounds, it is necessary to reduce the mass transfer resistances represented by the cellular envelope, within which they are localized, to enhance their extractability. To this purpose, emerging extraction technologies, have been proposed, including Supercritical Fluid Extraction, Microwave-Assisted Extraction, Ultrasound-Assisted Extraction, High-Pressure Homogenization, Pulsed Electric Fields, High Voltage Electrical Discharges. These technologies demonstrated to be a sustainable alternative to conventional extraction, showing the potential to increase the extraction yield, decrease the extraction time and solvent consumption. Additionally, in green extraction processes, also the contribution of solvent selection, as well as environmental and economic aspects, represent a key factor. Therefore, this review focused on critically analyzing the main findings on the synergistic effect of low environmental impact technologies and green solvents towards the green extraction of antioxidants from food by-products, by discussing the main associated advantages and drawbacks, and the criteria of selection for process sustainability.
Collapse
|
83
|
Rifna EJ, Misra NN, Dwivedi M. Recent advances in extraction technologies for recovery of bioactive compounds derived from fruit and vegetable waste peels: A review. Crit Rev Food Sci Nutr 2021; 63:719-752. [PMID: 34309440 DOI: 10.1080/10408398.2021.1952923] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Fruits and vegetables are the most important commodities of trade value among horticultural produce. They are utilized as raw or processed, owing to the presence of health-promoting components. Significant quantities of waste are produced during fruits and vegetables processing that are majorly accounted by waste peels (∼90-92%). These wastes, however, are usually exceptionally abundant in bioactive molecules. Retrieving these valuable compounds is a core objective for the valorization of waste peel, besides making them a prevailing source of beneficial additives in food and pharmaceutical industry. The current review is focused on extraction of bioactive compounds derived from fruit and vegetable waste peels and highlights the supreme attractive conventional and non-conventional extraction techniques, such as microwave-assisted, ultrasound assisted, pulsed electric fields, pulsed ohmic heating, pressurized liquid extraction, supercritical fluid extraction, pressurized hot water, high hydrostatic pressure, dielectric barrier discharge plasma extraction, enzyme-assisted extraction and the application of "green" solvents say as well as their synergistic effects that have been applied to recover bioactive from waste peels. Superior yields achieved with non-conventional technologies were identified to be of chief interest, considering direct positive economic consequences. This review also emphasizes leveraging efficient, modern extraction technologies for valorizing abundantly available low-cost waste peel, to achieve economical substitutes, whilst safeguarding the environment and building a circular economy. It is supposed that the findings discussed though this review might be a valuable tool for fruit and vegetable processing industry to imply an economical and effectual sustainable extraction methods, converting waste peel by-product to a high added value functional product.
Collapse
Affiliation(s)
- E J Rifna
- Department of Food Process Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - N N Misra
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Madhuresh Dwivedi
- Department of Food Process Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| |
Collapse
|
84
|
Banožić M, Banjari I, Flanjak I, Paštar M, Vladić J, Jokić S. Optimization of MAE for the Separation of Nicotine and Phenolics from Tobacco Waste by Using the Response Surface Methodology Approach. Molecules 2021; 26:4363. [PMID: 34299637 PMCID: PMC8303117 DOI: 10.3390/molecules26144363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/14/2021] [Accepted: 07/17/2021] [Indexed: 11/17/2022] Open
Abstract
This study intends to valorize by-products of the industrial processing of tobacco to obtain nicotine and phenolics as value-added compounds. Three influential parameters of the microwave-assisted extraction-MAE (temperature, treatment time, and solvent/solid ratio) were studied for the optimization of the extraction protocol for tobacco leaves and three types of waste-scrap, dust, and midrib, respectively. Nicotine was the dominant bioactive compound in all extracts, ranging from 1.512 to 5.480% in leaves, 1.886 to 3.709% in scrap, 2.628 to 4.840% dust, and 0.867 to 1.783% in midrib extracts. Five phenolic compounds were identified and quantified, predominated by chlorogenic acid and rutin. Additionally, total phenol content and antioxidant activity were determined using spectrophotometric assays. Optimization was performed in two aspects: to obtain a maximum extraction yield with minimum nicotine content and to obtain a maximum extraction yield with maximum nicotine content. These findings demonstrate that tobacco waste is a valuable source of bioactive compounds and MAE can be a promising alternative technique to obtain extracts rich in targeted bioactive compounds, especially nicotine.
Collapse
Affiliation(s)
- Marija Banožić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia; (M.B.); (I.B.); (I.F.)
| | - Ines Banjari
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia; (M.B.); (I.B.); (I.F.)
| | - Ivana Flanjak
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia; (M.B.); (I.B.); (I.F.)
| | - Mate Paštar
- Public Institution RERA S.D. for Coordination and Development of Split-Dalmatia County, Domovinskog rata 2, 21000 Split, Croatia;
| | - Jelena Vladić
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Stela Jokić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia; (M.B.); (I.B.); (I.F.)
| |
Collapse
|
85
|
Chen P, Liu X, Wang L, Wang C, Fu J. Weighing paper‐assisted magnetic ionic liquid headspace single‐drop microextraction using microwave distillation followed by gas chromatography–mass spectrometry for the determination of essential oil components in lavender. J Sep Sci 2020; 44:585-599. [DOI: 10.1002/jssc.202000751] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Ping Chen
- College of Chemistry and Chemical Engineering Xinjiang University Urumqi P. R. China
| | - Xin Liu
- College of Chemistry and Chemical Engineering Xinjiang University Urumqi P. R. China
| | - Lili Wang
- College of Chemistry and Chemical Engineering Xinjiang University Urumqi P. R. China
| | - Caijuan Wang
- College of Chemistry and Chemical Engineering Xinjiang University Urumqi P. R. China
| | - Jihong Fu
- College of Chemistry and Chemical Engineering Xinjiang University Urumqi P. R. China
| |
Collapse
|
86
|
Nguyen TT, Zhang W. Techno-economic feasibility analysis of microwave-assisted biorefinery of multiple products from Australian lobster shells. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
87
|
Fruits and fruit by-products as sources of bioactive compounds. Benefits and trends of lactic acid fermentation in the development of novel fruit-based functional beverages. Food Res Int 2020; 140:109854. [PMID: 33648172 DOI: 10.1016/j.foodres.2020.109854] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/07/2020] [Accepted: 10/25/2020] [Indexed: 12/11/2022]
Abstract
Current awareness about the benefits of a balanced diet supports ongoing trends in humans towards a healthier diet. This review provides an overview of fruits and fruit-by products as sources of bioactive compounds and their extraction techniques, and the use of lactic acid fermentation of fruit juices to increase their functionality. Fruit matrices emerge as a technological alternative to be fermented by autochthonous or allochthonous lactic acid bacteria (LAB such as Lactiplantibacillus plantarum, Lacticaseibacillus rhamnosus, and other Lactobacillus species), and also as probiotic vehicles. During fermentation, microbial enzymes act on several fruit phytochemicals producing new derived compounds with impact on the aroma and the functionality of the fermented drinks. Moreover, fermentation significantly reduces the sugar content improving their nutritional value and extending the shelf-life of fruit-based beverages. The generation of new probiotic beverages as alternatives to consumers with intolerance to lactose or with vegan or vegetarian diets is promising for the worldwide functional food market. An updated overview on the current knowledge of the use of fruit matrices to be fermented by LAB and the interaction between strains and the fruit phytochemical compounds to generate new functional foods as well as their future perspectives in association with the application of nanotechnology techniques are presented in this review.
Collapse
|
88
|
Microwave-Assisted Improved Extraction and Purification of Anticancer Nimbolide from Azadirachta indica (Neem) Leaves. Molecules 2020; 25:molecules25122913. [PMID: 32599926 PMCID: PMC7356096 DOI: 10.3390/molecules25122913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 02/01/2023] Open
Abstract
Nimbolide, a limonoid present in leaves of the neem tree (Azadirachta indica), is an anticancer compound against a panel of human cancer cell lines. The rapid process of extraction and purification of the nimbolide from the leaves of neem tree through microwave-assisted extraction (MAE) coupled with a chromatographic technique was accomplished. The crude with a maximum content of nimbolide could be recovered from neem leaves through MAE. By using three-factors, three-level Box–Behnken design of response surface methodology (RSM), the optimal conditions for nimbolide extraction (R2 = 0.9019) were solid/liquid ratio 1:16 g/mL, microwave power 280 W, and extraction time 22 min. The enriched extract was further purified by a preparative thin-layer chromatography (PTLC), where nimbolide was obtained as 0.0336 g (0.67% yield, purity over 98%) with ethyl acetate/hexane = 4:6 in 3.0 h. Structural elucidation was performed through spectroscopic techniques, including FT-IR, 1H, and 13C-NMR. This method was simple and had a good potential for the purification of bioactive compounds from a natural product.
Collapse
|