51
|
Hou Y, Zhang M, Jiang Q, Yang Y, Liu J, Yuan K, Sun Z, Liu X. Microbial signatures of neonatal bacterial meningitis from multiple body sites. Front Cell Infect Microbiol 2023; 13:1169101. [PMID: 37674578 PMCID: PMC10477713 DOI: 10.3389/fcimb.2023.1169101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 08/03/2023] [Indexed: 09/08/2023] Open
Abstract
As a common central nervous system infection in newborns, neonatal bacterial meningitis (NBM) can seriously affect their health and growth. However, although metagenomic approaches are being applied in clinical diagnostic practice, there are some limitations for whole metagenome sequencing and amplicon sequencing in handling low microbial biomass samples. Through a newly developed ultra-sensitive metagenomic sequencing method named 2bRAD-M, we investigated the microbial signatures of central nervous system infections in neonates admitted to the neonatal intensive care unit. Particularly, we recruited a total of 23 neonates suspected of having NBM and collected their blood, cerebrospinal fluid, and skin samples for 2bRAD-M sequencing. Then we developed a novel decontamination method (Reads Level Decontamination, RLD) for 2bRAD-M by which we efficiently denoised the sequencing data and found some potential biomarkers that have significantly different relative abundance between 12 patients that were diagnosed as NBM and 11 Non-NBM based on their cerebrospinal fluid (CSF) examination results. Specifically, we discovered 11 and 8 potential biomarkers for NBM in blood and CSF separately and further identified 16 and 35 microbial species that highly correlated with the physiological indicators in blood and CSF. Our study not only provide microbiological evidence to aid in the diagnosis of NBM but also demonstrated the application of an ultra-sensitive metagenomic sequencing method in pathogenesis study.
Collapse
Affiliation(s)
- Yuyang Hou
- Women and Children’s Hospital, Qingdao University, Qingdao, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Meng Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Qiannan Jiang
- Women and Children’s Hospital, Qingdao University, Qingdao, Shandong, China
| | - Yuping Yang
- Women and Children’s Hospital, Qingdao University, Qingdao, Shandong, China
| | - Jiang Liu
- Qingdao OE Biotechnology Company Limited, Qingdao, Shandong, China
| | - Ke Yuan
- Women and Children’s Hospital, Qingdao University, Qingdao, Shandong, China
| | - Zheng Sun
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Xiuxiang Liu
- Women and Children’s Hospital, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
52
|
Gu YY, Cui XB, Jiang J, Zhang YX, Liu MH, Cheng SB, Li YY, Liu LL, Liao RX, Zhao P, Jin W, Jia YH, Wang J, Zhou FH. Dingxin recipe Ⅲ ameliorates hyperlipidemia injury in SD rats by improving the gut barrier, particularly the SCFAs/GPR43 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116483. [PMID: 37059245 DOI: 10.1016/j.jep.2023.116483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/03/2023] [Accepted: 04/09/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dingxin Recipe Ⅲ (DXR Ⅲ) is a traditional Chinese medicine compound used for hyperlipidemia treatment in clinical practice. However, its curative effects and pharmacological mechanisms in hyperlipidemia have not been clarified to date. AIM OF THE STUDY Studies have demonstrated that gut barrier was strongly implicated in lipid deposition. Based on gut barrier and lipid metabolism, this study examined the effects and molecular mechanisms of DXR Ⅲ in hyperlipidemia. MATERIALS AND METHODS The bioactive compounds of DXR Ⅲ were detected by ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry, and its effects were evaluated in high-fat diet-fed rats. Specifically, the serum levels of lipids and hepatic enzymes were measured using the appropriate kits; colon and liver sections were obtained for histological analyses; gut microbiota and metabolites were analyzed by 16S rDNA sequencing and liquid chromatography-MS/MS; and the expression of genes and proteins was determined by real-time quantitative polymerase chain reaction and western blotting and immunohistochemistry, respectively. The pharmacological mechanisms of DXR Ⅲ were further explored by fecal microbiota transplantation and short-chain fatty acid (SCFAs)-based interventions. RESULTS DXR Ⅲ treatment significantly downregulated serum lipid levels, mitigated hepatocyte steatosis and improved lipid metabolism. Moreover, DXR Ⅲ improved the gut barrier, specifically by improving the physical barrier in the colon, causing part composition changes in the gut microbiota, and increasing the serum SCFAs level. DXR Ⅲ also upregulated the expression of colon GPR43/GPR109A. Fecal microbiota transplantation from rats treated with DXR Ⅲ downregulated part hyperlipidemia-related phenotypes, while the SCFAs intervention significantly improved most of the hyperlipidemia-related phenotypes and upregulated the expression of GPR43. Moreover, both DXR Ⅲ and SCFAs upregulated the expression of colon ABCA1. CONCLUSION DXR Ⅲ protects against hyperlipidemia by improving the gut barrier, particularly the SCFAs/GPR43 pathway.
Collapse
Affiliation(s)
- Yu-Yan Gu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xiao-Bing Cui
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Department of Cardiology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Jing Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Ya-Xin Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Meng-Hua Liu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Sai-Bo Cheng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yu-Ye Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Lin-Ling Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Rong-Xin Liao
- Center of TCM Preventive Treatment, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Peng Zhao
- Center of TCM Preventive Treatment, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Wen Jin
- Department of Cardiac Intensive Care Unit, Cardiovascular Hospital, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Yu-Hua Jia
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Jing Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Feng-Hua Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Center of TCM Preventive Treatment, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China.
| |
Collapse
|
53
|
Chen Y, Chai H, Li Z, Liu B, Tan M, Li S, Ma Y. Gut microbiota and their metabolite profiles following peripheral nerve xenotransplantation. Heliyon 2023; 9:e18529. [PMID: 37554826 PMCID: PMC10404661 DOI: 10.1016/j.heliyon.2023.e18529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/08/2023] [Accepted: 07/20/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Intestinal pathogens are associated with xenotransplantation tolerance and rejection. However, changes in the gut microbiota in patients who have undergone peripheral nerve xenotransplantation and their association with immune rejection have not yet been reported. OBJECTIVE We aimed to explore intestinal microbes and their metabolites at different time points after peripheral nerve transplantation to provide new insight into improving transplant tolerance. METHODS A peripheral nerve xenotransplantation model was constructed by suturing the segmented nerves of Sprague Dawley rats to those of C57 male mice using xenotransplantation nerve bridging. Fecal samples and intestinal contents were collected at three time points: before surgery (Pre group; n = 10), 1 month after transplantation (Pos1 m group; n = 10), and 3 months after transplantation (Pos3 m group; n = 10) for 16S DNA sequencing and nontargeted metabolome detection. RESULTS Alpha diversity results suggested that species diversity was significantly downregulated after peripheral nerve xenotransplantation. There were six gut flora genera with significantly different expression levels after xenotransplantation: four were downregulated and two were upregulated. A comparison of the Pre vs. Pos1 m groups and the Pos1 m vs. Pos3 m groups revealed that the most significant differentially expressed Kyoto Encyclopedia of Genes and Genomes metabolite pathways were involved in phenylalanine, tyrosine, and tryptophan biosynthesis, as well as histidine metabolism. Metabolites with a strong relationship to the differentially expressed microbial flora were identified. CONCLUSION Our study found lower gut microbiome diversity, with increased short-chain fatty acid (SCFA)-producing and sulfate-reducing bacteria at 1 month post peripheral nerve xenotransplantation, and these were decreased at 3 months post-transplantation. The identification of specific bacterial metabolites is essential for recognizing potential diagnostic markers of xenotransplantation rejection or characterizing therapeutic targets to prevent post-transplant infection.
Collapse
Affiliation(s)
- Yongsheng Chen
- Department of Neurosurgery, Dongguan People's Hospital (Affiliated Dongguan Hospital, Southern Medical University), Dongguan, Guangdong, China
| | - Huihui Chai
- Department of Cerebrovascular Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510360, Guangdong, China
| | - Zhenzhen Li
- Department of Neurosurgery, Dongguan People's Hospital (Affiliated Dongguan Hospital, Southern Medical University), Dongguan, Guangdong, China
| | - Bin Liu
- Department of Neurosurgery, Dongguan People's Hospital (Affiliated Dongguan Hospital, Southern Medical University), Dongguan, Guangdong, China
| | - Minxuan Tan
- Department of Neurosurgery, Dongguan People's Hospital (Affiliated Dongguan Hospital, Southern Medical University), Dongguan, Guangdong, China
| | - Shaopeng Li
- Department of Neurosurgery, Dongguan People's Hospital (Affiliated Dongguan Hospital, Southern Medical University), Dongguan, Guangdong, China
| | - Yanxia Ma
- Department of Neurosurgery, The National Key Clinical Specialty, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Department of Neurosurgery, The Engineering Technology Research Center of Education Ministry of China, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Department of Neurosurgery, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
54
|
Gitto S, Vizzutti F, Baldi S, Campani C, Navari N, Falcini M, Venturi G, Montanari S, Roccarina D, Arena U, Pallecchi M, Di Bonaventura C, Bartolucci G, Ramazzotti M, Citone M, Fanelli F, Amedei A, Marra F. Transjugular intrahepatic Porto-systemic shunt positively influences the composition and metabolic functions of the gut microbiota in cirrhotic patients. Dig Liver Dis 2023; 55:622-628. [PMID: 36529635 DOI: 10.1016/j.dld.2022.11.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/17/2022] [Accepted: 11/21/2022] [Indexed: 04/29/2023]
Abstract
BACKGROUND & AIMS Cirrhosis and its complications may affect gut microbiota (GM) composition. Transjugular intrahepatic portosystemic shunt (TIPS) represents the most effective treatment for portal hypertension (PH). We aimed to evaluate whether TIPS placement modifies GM composition and metabolic function. METHODS A compositional and functional GM analysis was prospectively performed in 13 cirrhotic patients receiving TIPS. Patients receiving systemic or non-absorbable antibiotics for any indications were excluded. Fecal samples were collected before and three months after TIPS. GM was analyzed by 16S ribosomal RNA sequencing. Small- and medium-chain fatty acids (SCFAs and MCFAs, respectively) were measured by gas chromatography/mass spectrometry. RESULTS TIPS placement resulted in a mean 48% reduction in portal-caval pressure gradient. No recurrence of PH related complications was observed. After TIPS, increased levels of Flavonifractor spp. (p = 0.049), and decreased levels of Clostridiaceae (p = 0.024), these latter linked to abdominal infections in cirrhotic patients, were observed. No differences were found in the SCFAs signature while analysis of MCFA profiles showed a decreased abundance of pro-inflammatory isohexanoic (p<0.01), 2-ethylhexanoic (p<0.01) and octanoic acids (p<0.01) after TIPS. CONCLUSION Correction of PH following TIPS results in modifications of GM composition which could be potentially beneficial and reduces the levels of fecal pro-inflammatory MCFAs.
Collapse
Affiliation(s)
- Stefano Gitto
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Francesco Vizzutti
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Simone Baldi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Claudia Campani
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Nadia Navari
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Margherita Falcini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Giulia Venturi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Stanislao Montanari
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Davide Roccarina
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Umberto Arena
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Marco Pallecchi
- Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Italy
| | - Chiara Di Bonaventura
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Gianluca Bartolucci
- Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Italy
| | - Matteo Ramazzotti
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Michele Citone
- Interventional Radiology Unit, Careggi Hospital, Florence, Italy
| | - Fabrizio Fanelli
- Interventional Radiology Unit, Careggi Hospital, Florence, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Fabio Marra
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Center for Research, High Education and Transfer DENOThe, University of Florence, Florence, Italy.
| |
Collapse
|
55
|
Kwon J, Bae M, Szamosvári D, Cassilly CD, Bolze AS, Jackson DR, Xavier RJ, Clardy J. Collinsella aerofaciens Produces a pH-Responsive Lipid Immunogen. J Am Chem Soc 2023; 145:7071-7074. [PMID: 36952265 PMCID: PMC10080676 DOI: 10.1021/jacs.3c00250] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Indexed: 03/24/2023]
Abstract
Some members of the human gut microbiota profoundly influence their host's physiology, health, and therapeutic responses, but the responsible molecules and mechanisms are largely unknown. As part of a project to identify immunomodulators produced by gut microbes, we analyzed the metabolome of Collinsella aerofaciens, an actinomycete that figures prominently in numerous association studies. The associations are typically positive correlations of C. aerofaciens with pro-inflammatory responses and undesirable outcomes, but an association with favorable responses to PD-1/PD-L1 cancer immunotherapy is a notable exception. A phenotypic assay-guided screen using dendritic cells (mBMDCs) and cytokine readouts identified the active compound, which was structurally characterized as a lysoglycoglycerolipid with an acetal-bearing β-galactofuranose head group (CaLGL-1, 1). The structural assignment was confirmed through total synthesis. Assays with tlr2-/-, tlr4-/-, and wt mBMDCs revealed TLR2-dependent signaling. CaLGL-1 is produced by a conversion of a bacterially biosynthesized plasmalogen (CaPlsM, 3) to CaLGL-1 (1) in a low-pH environment.
Collapse
Affiliation(s)
- Jaeyoung Kwon
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Blavatnik Institute, Boston, Massachusetts 02115, United States
- Natural
Product Informatics Research Center, Korea
Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea
| | - Munhyung Bae
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Blavatnik Institute, Boston, Massachusetts 02115, United States
- College of
Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Dávid Szamosvári
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Blavatnik Institute, Boston, Massachusetts 02115, United States
| | - Chelsi D. Cassilly
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Blavatnik Institute, Boston, Massachusetts 02115, United States
| | - Andrew S. Bolze
- Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - David R. Jackson
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Blavatnik Institute, Boston, Massachusetts 02115, United States
| | - Ramnik J. Xavier
- Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Department
of Molecular Biology, Massachusetts General
Hospital, Boston, Massachusetts 02114, United States
- Center
for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Jon Clardy
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Blavatnik Institute, Boston, Massachusetts 02115, United States
| |
Collapse
|
56
|
Zhang M, Zheng Y, Sun Z, Cao C, Zhao W, Liu Y, Zhang W, Zhang H. Change in the Gut Microbiome and Immunity by Lacticaseibacillus rhamnosus Probio-M9. Microbiol Spectr 2023; 11:e0360922. [PMID: 36912650 PMCID: PMC10100958 DOI: 10.1128/spectrum.03609-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/09/2023] [Indexed: 03/14/2023] Open
Abstract
With the exploding growth of the global market for probiotics and the rapid awakening of public awareness to manage health by probiotic intervention, there is still an active debate about whether the consumption of probiotics is beneficial for nonpatients, which is due to the lack of systematic analysis based on time series multiomics data sets. In this study, we recruited 100 adults from a college in China and performed a random case-control study by using a probiotic (Lacticaseibacillus rhamnosus Probio-M9) as an intervention for 6 weeks, aiming to achieve a comprehensive evaluation and understanding of the beneficial effect of Probio-M9 consumption. By testing advanced blood immunity indicators, sequencing the gut microbiome, and profiling the gut metabolome at baseline and the end of the study, we found that although the probiotic intervention has a limited impact on the human immunity and the gut microbiome and metabolome, the associations between the immunity indicators and multiomics data were strengthened, and further analysis of the gut microbiome's genetic variations revealed inhibited generation of single nucleotide variants (SNVs) by probiotic consumption. Taken together, our findings indicated an underestimated influence of the probiotic, not on altering the microbial composition but on strengthening the association between human immunity and commensal microbes and stabilizing the genetic variations of the gut microbiome. IMPORTANCE Although the global market for probiotics is growing explosively, there is still an active debate about whether the consumption of probiotics is beneficial for nonpatients. In this study, we recruited 100 adults from a college in China and performed 6 weeks of intervention for half of the volunteers. By analyzing the time series multiomics data in this study, we found that the probiotic intervention (i) has a limited effect on human immunity or the global structure of the gut microbiome and metabolome, (ii) can largely influence the correlation of the development between multiomics data and immunity, which was not able to be discovered by conventional differential abundance analysis, and (iii) can inhibit the generation of SNVs in the gut microbiome instead of promoting it.
Collapse
Affiliation(s)
- Meng Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Yan Zheng
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Zheng Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Chenxia Cao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Wei Zhao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Yangshuo Liu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Wenyi Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| |
Collapse
|
57
|
Li W, Fan G, Sun K, Liu J, Liu J, Wang Y, Li E, Wu X, Shen L, Pan T. Microbial community structure dynamics of invasive bullfrog with meningitis-like infectious disease. Front Microbiol 2023; 14:1126195. [PMID: 36992930 PMCID: PMC10040567 DOI: 10.3389/fmicb.2023.1126195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/23/2023] [Indexed: 03/14/2023] Open
Abstract
Meningitis-like infectious disease (MID) (also known as frog cataract and torticollis) is a disease prone to occur in amphibians and reptiles. It is highly contagious and has a high mortality rate. In this study, we sampled and sequenced microbiomes from oral and intestinal samples of five normal and five diseased bullfrogs. The analysis found that the richness, uniformity, and abundance of the microbial community of the diseased bullfrogs were significantly higher than those of the normal bullfrogs in both the oral cavity and the gut. In the diseased group, the abundance of Elizabethkingia significantly increased and that of Lactococcus significantly decreased. It showed that the structure of the microbial community had changed a lot in diseased frogs. After the pathogenic bacteria infected the body, it might be make the decline in the immune function of the body declined, and resulting in some conditional pathogenic bacteria in the water body further infecting the body. As a result, the richness and composition of the microbial community significantly changed. This study can provide a theoretical basis for the control of MID of bullfrogs.
Collapse
Affiliation(s)
- Wengang Li
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
- Anhui Provincial Key Laboratory of Conservation and Exploitation of Biological Resources, Wuhu, China
| | - Guangwei Fan
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
- Anhui Provincial Key Laboratory of Conservation and Exploitation of Biological Resources, Wuhu, China
| | - Ke Sun
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
- Anhui Provincial Key Laboratory of Conservation and Exploitation of Biological Resources, Wuhu, China
| | - Jingru Liu
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Jinyan Liu
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Yu Wang
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - En Li
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
- Anhui Provincial Key Laboratory of Conservation and Exploitation of Biological Resources, Wuhu, China
| | - Xiaobing Wu
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
- Anhui Provincial Key Laboratory of Conservation and Exploitation of Biological Resources, Wuhu, China
| | - Liang Shen
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
- *Correspondence: Liang Shen,
| | - Tao Pan
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
- Anhui Provincial Key Laboratory of Conservation and Exploitation of Biological Resources, Wuhu, China
- Tao Pan,
| |
Collapse
|
58
|
Identification of Gut Microbial Lysine and Histidine Degradation and CYP-Dependent Metabolites as Biomarkers of Fatty Liver Disease. mBio 2023; 14:e0266322. [PMID: 36715540 PMCID: PMC9973343 DOI: 10.1128/mbio.02663-22] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Numerous studies have described specific metabolites as biomarkers of severe liver diseases, but very few have measured gut microbiota (GM)-produced metabolites in fatty liver disease. We aimed at finding GM signatures and metabolite markers in plasma and feces related to high liver fat content. Based on imaging, we divided study participants into low (<5%, LF, n = 25) and high (>5%, HF, n = 39) liver fat groups. Fecal (LF n = 14, HF n = 25) and plasma (LF n = 11, HF n = 7) metabolomes of subsets of participants were studied using liquid chromatography/high resolution mass spectrometry. The GM were analyzed using 16S rRNA gene sequencing. Additionally, blood clinical variables and diet were studied. Dyslipidemia, higher liver enzymes and insulin resistance characterized the HF group. No major differences in diet were found between the groups. In the GM, the HF group had lower abundance of Bacteroides and Prevotellaceae NK3B31 group than the LF group after adjusting for metformin use or obesity. In feces, the HF group had higher levels of lysine and histidine degradation products, while 6-hydroxybetatestosterone (metabolized by CYP3A4) was low. Higher plasma levels of caffeine and its metabolites in the HF group indicate that the activity of hepatic CYP1A2 was lower than in the LF group. Our results suggest, that low fecal Prevotellaceae NK3B31 and Bacteroides abundance, and increased lysine and histidine degradation may serve as GM biomarkers of high liver fat. Altered plasma caffeine metabolites and lowered testosterone metabolism may specify decreased CYP activities, and their potential utility, as biomarkers of fatty liver disease. IMPORTANCE Because the high prevalence of nonalcoholic fatty liver disease sets diagnostic challenges to health care, identification of new biomarkers of the disease that in the future could have potential utility as diagnostic biomarkers of high liver fat content is important. Our results show that increased amino acid degradation products in the feces may be such biomarkers. In the blood, molecules that indicate defective hepatic metabolic enzyme activities were identified in individuals with high liver fat content.
Collapse
|
59
|
Amin N, Schwarzkopf S, Tröscher-Mußotter J, Camarinha-Silva A, Dänicke S, Huber K, Frahm J, Seifert J. Host metabolome and faecal microbiome shows potential interactions impacted by age and weaning times in calves. Anim Microbiome 2023; 5:12. [PMID: 36788596 PMCID: PMC9926800 DOI: 10.1186/s42523-023-00233-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Calves undergo nutritional, metabolic, and behavioural changes from birth to the entire weaning period. An appropriate selection of weaning age is essential to reduce the negative effects caused by weaning-related dietary transitions. This study monitored the faecal microbiome and plasma metabolome of 59 female Holstein calves during different developmental stages and weaning times (early vs. late) and identified the potential associations of the measured parameters over an experimental period of 140 days. RESULTS A progressive development of the microbiome and metabolome was observed with significant differences according to the weaning groups (weaned at 7 or 17 weeks of age). Faecal samples of young calves were dominated by bifidobacterial and lactobacilli species, while their respective plasma samples showed high concentrations of amino acids (AAs) and biogenic amines (BAs). However, as the calves matured, the abundances of potential fiber-degrading bacteria and the plasma concentrations of sphingomyelins (SMs), few BAs and acylcarnitines (ACs) were increased. Early-weaning at 7 weeks significantly restructured the microbiome towards potential fiber-degrading bacteria and decreased plasma concentrations of most of the AAs and SMs, few BAs and ACs compared to the late-weaning event. Strong associations between faecal microbes, plasma metabolites and calf growth parameters were observed during days 42-98, where the abundances of Bacteroides, Parabacteroides, and Blautia were positively correlated with the plasma concentrations of AAs, BAs and SMs as well as the live weight gain or average daily gain in calves. CONCLUSION The present study reported that weaning at 17 weeks of age was beneficial due to higher growth rate of late-weaned calves during days 42-98 and a quick adaptability of microbiota to weaning-related dietary changes during day 112, suggesting an age-dependent maturation of the gastrointestinal tract. However, the respective plasma samples of late-weaned calves contained several metabolites with differential concentrations to the early-weaned group, suggesting a less abrupt but more-persistent effect of dietary changes on host metabolome compared to the microbiome.
Collapse
Affiliation(s)
- Nida Amin
- grid.9464.f0000 0001 2290 1502HoLMiR - Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany ,grid.9464.f0000 0001 2290 1502Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, 70593 Stuttgart, Germany
| | - Sarah Schwarzkopf
- grid.9464.f0000 0001 2290 1502HoLMiR - Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany ,grid.9464.f0000 0001 2290 1502Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, 70593 Stuttgart, Germany
| | - Johanna Tröscher-Mußotter
- grid.9464.f0000 0001 2290 1502HoLMiR - Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany ,grid.9464.f0000 0001 2290 1502Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, 70593 Stuttgart, Germany
| | - Amélia Camarinha-Silva
- grid.9464.f0000 0001 2290 1502HoLMiR - Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany ,grid.9464.f0000 0001 2290 1502Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, 70593 Stuttgart, Germany
| | - Sven Dänicke
- grid.417834.dInstitute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Brunswick, Germany
| | - Korinna Huber
- grid.9464.f0000 0001 2290 1502HoLMiR - Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany ,grid.9464.f0000 0001 2290 1502Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, 70593 Stuttgart, Germany
| | - Jana Frahm
- grid.417834.dInstitute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Brunswick, Germany
| | - Jana Seifert
- HoLMiR - Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany. .,Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, 70593, Stuttgart, Germany.
| |
Collapse
|
60
|
Zha H, Lv J, Lou Y, Wo W, Xia J, Li S, Zhuge A, Tang R, Si N, Hu Z, Lu H, Chang K, Wang C, Si G, Li L. Alterations of gut and oral microbiota in the individuals consuming take-away food in disposable plastic containers. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129903. [PMID: 36087528 DOI: 10.1016/j.jhazmat.2022.129903] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/11/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MP) and nanoplastics (NP) exist in the disposable plastic take-away containers. This study aims to determine the gut and oral microbiota alterations in the individuals frequently and occasionally consuming take-away food in disposable plastic containers (TFDPC), and explore the effect of micro/nanoplastics (MNP) reduction on gut microbiota in mice. TFDPC consumption are associated with greater presences of gastrointestinal dysfunction and cough. Both occasional and frequent consumers have altered gut and oral microbiota, and their gut diversity and evenness are greater than those of non-TFDPC consuming cohort. Multiple gut and oral bacteria are associated with TFDPC consumers, among which intestinal Collinsella and oral Thiobacillus are most associated with the frequent consumers, while intestinal Faecalibacterium is most associated with the occasional consumers. Although some gut bacteria associated with the mice treated with 500 µg NP and 500 µg MP are decreased in the mice treated with 200 µg NP, the gut microbiota of the three MNP groups are all different from the control group. This study demonstrates that TFDPC induces gut and oral microbiota alterations in the consumers, and partial reduction of the size and amount of MNP cannot rectify the MNP-induced gut microbial dysbiosis.
Collapse
Affiliation(s)
- Hua Zha
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiawen Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiqing Lou
- Department of Rehabilitation, Shulan (Hangzhou) Hospital, Zhejiang Shuren University School of Medicine, Hangzhou, China
| | - Wanlong Wo
- The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiafeng Xia
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shengjie Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Aoxiang Zhuge
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruiqi Tang
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Nian Si
- Department of Rehabilitation, Shulan (Hangzhou) Hospital, Zhejiang Shuren University School of Medicine, Hangzhou, China
| | - Zhihao Hu
- Department of Rehabilitation, Shulan (Hangzhou) Hospital, Zhejiang Shuren University School of Medicine, Hangzhou, China
| | - Haifeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kevin Chang
- Department of Statistics, The University of Auckland, Auckland, New Zealand
| | - Chenyu Wang
- Department of Rehabilitation, Shulan (Hangzhou) Hospital, Zhejiang Shuren University School of Medicine, Hangzhou, China
| | - Guinian Si
- Department of Rehabilitation, Shulan (Hangzhou) Hospital, Zhejiang Shuren University School of Medicine, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
61
|
The Periparturient Gut Microbiota's Modifications in Shaziling Sows concerning Bile Acids. Metabolites 2023; 13:metabo13010068. [PMID: 36676993 PMCID: PMC9863110 DOI: 10.3390/metabo13010068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Shaziling pigs, as a native Chinese breed, have been classified as a fatty liver model. As the core of the whole pig farm, the sow’s organism health is especially important, especially in the perinatal period; however, there are few reports on the perinatal intestinal microbiology and bile acid metabolism of Shaziling pig sows. The purpose of this research was to investigate the alterations in bile acids and gut microbiota of sows that occur throughout the perinatal period. Forty-two sows were selected for their uniformity of body conditions and were given the same diet. Fecal samples were collected for 16srDNA sequencing and bile acid targeted metabolome detection in four stages (3 days before delivery, 3 days after delivery, 7 days after delivery and 21 days after delivery). As revealed by the results, there were statistically significant variations in bile acids among the four stages, with the concentration of bile acids identified by SZL-4 being substantially greater than that of the other three groups (p < 0.05). When compared to the other three groups (p < 0.05), SZL-2 had considerably lower Shannon, Simpson and Chao 1 indices, and exhibited a statistically significant difference in β-diversity. SZL-2 samples included a greater proportion of Proteobacteria than SZL-3 and SZL-4 samples; however, SZL-2 samples contained a smaller proportion of spirochetes than SZL-3 and SZL-4 samples. To a large extent, lactic acid bacteria predominated in the SZL-2 samples. The LEfSe analysis showed that the relative abundances of Lachnospiraceae_XPB1014_group, Christensenellaceae_R_7_group, Clostridium, Collinsella, Turicibacter, and Mollicutes_RF39_unclassified were the main differential bacteria in the SZL-1 swine fecal samples and the Eubacterium__coprostanoligenes_group in sow fecal samples from SZL-2. The relative abundance of Bacteroides, UBA1819, Enterococcus, Erysipelatoclostridium, and Butyricimonas in SZL-3 and SZL-4 Streptococcus, Coriobacteriaceae_unclassified, Prevotellaceae_UCG_001, Streptomyces, and Ochrobactrum in SZL-3. g_Collinsella was significantly and positively correlated with vast majority bile acids, and the g_Lachnospiraceae_XPB1014_group with GCDCA and GHDCA into positive correlations. Simultaneously, g_Streptococcus, g_Bacteroides, and g_UBA1819 inversely correlated with bile acid, accounting for the great bulk of the difference. In conclusion, there is an evident correlation between bile acids and gut microbiota in the perinatal period of Shaziling sows. Additionally, the discovery of distinct bacteria associated to lipid metabolism gives a reference for ameliorating perinatal body lipid metabolism disorder of sows through gut microbiota.
Collapse
|
62
|
Lv Y, Liu R, Jia H, Sun X, Gong Y, Ma L, Qiu W, Wang X. Alterations of the gut microbiota in type 2 diabetics with or without subclinical hypothyroidism. PeerJ 2023; 11:e15193. [PMID: 37073275 PMCID: PMC10106085 DOI: 10.7717/peerj.15193] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/15/2023] [Indexed: 04/20/2023] Open
Abstract
Background Diabetes and thyroid dysfunction are two closely related endocrine diseases. Increasing evidences show that gut microbiota plays an important role in both glucose metabolism and thyroid homeostasis. Meanwhile, copy number variation (CNV) of host salivary α-amylase gene (AMY1) has been shown to correlate with glucose homeostasis. Hence, we aim to characterize the gut microbiota and CNV of AMY1 in type 2 diabetes (T2D) patients with or without subclinical hypothyroidism (SCH). Methods High-throughput sequencing was used to analyze the gut microbiota of euthyroid T2D patients, T2D patients with SCH and healthy controls. Highly sensitive droplet digital PCR was used to measure AMY1 CN. Results Our results revealed that T2D patients have lower gut microbial diversity, no matter with or without SCH. The characteristic taxa of T2D patients were Coriobacteriales, Coriobacteriaceae, Peptostreptococcaceae, Pseudomonadaceae, Collinsella, Pseudomonas and Romboutsia. Meanwhile, Escherichia/Shigella, Lactobacillus_Oris, Parabacteroides Distasonis_ATCC_8503, Acetanaerobacterium, Lactonifactor, uncultured bacterium of Acetanaerobacterium were enriched in T2D patients with SCH. Moreover, serum levels of free triiodothyronine (FT3) and free thyroxine (FT4) in T2D patients were both negatively correlated with richness of gut microbiota. A number of specific taxa were also associated with clinical parameters at the phylum and genus level. In contrast, no correlation was found between AMY1 CN and T2D or T2D_SCH. Conclusion This study identified characteristic bacterial taxa in gut microbiota of T2D patients with or without SCH, as well as the taxa associated with clinical indices in T2D patients. These results might be exploited in the prevention, diagnosis and treatment of endocrine disorders in the future.
Collapse
Affiliation(s)
- Yanrong Lv
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Rong Liu
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Huaijie Jia
- State Key Laboratory of Veterinary of Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaolan Sun
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Yuhan Gong
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Li Ma
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Wei Qiu
- Department of Endocrinology, Xinxiang First People’s Hospital, The Affiliated People’s Hospital of Xinxiang Medical University, Xinxiang, China
| | - Xiaoxia Wang
- School of Public Health, Lanzhou University, Lanzhou, China
| |
Collapse
|
63
|
Kang BE, Park A, Yang H, Jo Y, Oh TG, Jeong SM, Ji Y, Kim H, Kim H, Auwerx J, Nam S, Park CY, Ryu D. Machine learning-derived gut microbiome signature predicts fatty liver disease in the presence of insulin resistance. Sci Rep 2022; 12:21842. [PMID: 36528695 PMCID: PMC9759583 DOI: 10.1038/s41598-022-26102-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
A simple predictive biomarker for fatty liver disease is required for individuals with insulin resistance. Here, we developed a supervised machine learning-based classifier for fatty liver disease using fecal 16S rDNA sequencing data. Based on the Kangbuk Samsung Hospital cohort (n = 777), we generated a random forest classifier to predict fatty liver diseases in individuals with or without insulin resistance (n = 166 and n = 611, respectively). The model performance was evaluated based on metrics, including accuracy, area under receiver operating curve (AUROC), kappa, and F1-score. The developed classifier for fatty liver diseases performed better in individuals with insulin resistance (AUROC = 0.77). We further optimized the classifiers using genetic algorithm. The improved classifier for insulin resistance, consisting of ten microbial genera, presented an advanced classification (AUROC = 0.93), whereas the improved classifier for insulin-sensitive individuals failed to distinguish participants with fatty liver diseases from the healthy. The classifier for individuals with insulin resistance was comparable or superior to previous methods predicting fatty liver diseases (accuracy = 0.83, kappa = 0.50, F1-score = 0.89), such as the fatty liver index. We identified the ten genera as a core set from the human gut microbiome, which could be a diagnostic biomarker of fatty liver diseases for insulin resistant individuals. Collectively, these findings indicate that the machine learning classifier for fatty liver diseases in the presence of insulin resistance is comparable or superior to commonly used methods.
Collapse
Affiliation(s)
- Baeki E. Kang
- grid.264381.a0000 0001 2181 989XDepartment of Molecular Cell Biology, Sungkyunkwan University School of Medicine, 2066, Seobu-Ro, Suwon, 16419 Republic of Korea
| | - Aron Park
- grid.256155.00000 0004 0647 2973Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology, Gachon University, Incheon, 21999 Republic of Korea
| | - Hyekyung Yang
- grid.415735.10000 0004 0621 4536Medical Research Institute, School of Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University, Seoul, 03181 Republic of Korea
| | - Yunju Jo
- grid.264381.a0000 0001 2181 989XDepartment of Molecular Cell Biology, Sungkyunkwan University School of Medicine, 2066, Seobu-Ro, Suwon, 16419 Republic of Korea
| | - Tae Gyu Oh
- grid.250671.70000 0001 0662 7144Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037 USA
| | - Seung Min Jeong
- grid.264381.a0000 0001 2181 989XDepartment of Molecular Cell Biology, Sungkyunkwan University School of Medicine, 2066, Seobu-Ro, Suwon, 16419 Republic of Korea ,HEM Inc., 404, Ace Gwanggyo Tower 3, Suwon, 16229 Republic of Korea
| | - Yosep Ji
- HEM Inc., 404, Ace Gwanggyo Tower 3, Suwon, 16229 Republic of Korea
| | - Hyung‐Lae Kim
- grid.255649.90000 0001 2171 7754Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, 07985 Republic of Korea
| | - Han‐Na Kim
- grid.415735.10000 0004 0621 4536Medical Research Institute, School of Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University, Seoul, 03181 Republic of Korea ,grid.264381.a0000 0001 2181 989XDepartment of Clinical Research Design and Evaluation, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, 06355 Republic of Korea
| | - Johan Auwerx
- grid.5333.60000000121839049Institute of Bioengineering, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Seungyoon Nam
- grid.256155.00000 0004 0647 2973Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology, Gachon University, Incheon, 21999 Republic of Korea ,grid.256155.00000 0004 0647 2973Department of Genome Medicine and Science, AI Convergence, Center for Medical Science, Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Centre, Gachon University College of Medicine, 38-13, Dokjeom-Ro 3Beon-Gil, Incheon, 21999 Republic of Korea
| | - Cheol-Young Park
- grid.415735.10000 0004 0621 4536Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29, Saemunan-Ro, Jongno-Gu, Seoul, 03181 Republic of Korea ,grid.264381.a0000 0001 2181 989XBiomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419 Republic of Korea
| | - Dongryeol Ryu
- grid.264381.a0000 0001 2181 989XDepartment of Molecular Cell Biology, Sungkyunkwan University School of Medicine, 2066, Seobu-Ro, Suwon, 16419 Republic of Korea ,grid.264381.a0000 0001 2181 989XBiomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419 Republic of Korea
| |
Collapse
|
64
|
Wang S, Li XY, Ji HF, Shen L. Modulation of gut microbiota by glycyrrhizic acid may contribute to its anti-NAFLD effect in rats fed a high-fat diet. Life Sci 2022; 310:121110. [DOI: 10.1016/j.lfs.2022.121110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/08/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022]
|
65
|
The Hypolipidemic Effect of Hawthorn Leaf Flavonoids through Modulating Lipid Metabolism and Gut Microbiota in Hyperlipidemic Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3033311. [PMID: 36425260 PMCID: PMC9681556 DOI: 10.1155/2022/3033311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 11/16/2022]
Abstract
Objective. The purpose of this study was to explore the potential mechanisms of the lipid-regulating effects and the effect on modulating the gut microbiota of hawthorn leaf flavonoids (HLF) in the high-fat diet-induced hyperlipidemic rats. Methods. The hypolipidemic effect of HLF was investigated in the high-fat diet-induced hyperlipidemic rats. The action targets of HLF in the treatment of hyperlipidemia were predicted by network pharmacology and KEGG enrichment bubble diagram, which were verified by the test of western blotting. Meanwhile, we used 16S rRNA sequencing to evaluate the effects of HLF on the microbes. Results. The results of animal experiments showed that HLF could reduce the body weight and regulate the levels of serum lipid in high-fat diet (HFD) rats. Meanwhile, for the related targets of cholesterol metabolism, HLF could significantly upregulate the expression of LDLR, NR1H3, and ABCG5/ABCG8; reduce the expression of PCSK9; and increase the level of CYP7A1 in the intestinal tissue, whereas cholesterol biosynthetic protein expressions including HMGCR and SCAP were lowered by HLF. In addition, HLF increased the activities of plasma SOD, CAT, and GSH-Px and decreased the levels of Casp 1, NLRP3, IL-1β, IL-18, and TNF-α, improving the degree of hepatocyte steatosis and inflammatory infiltration of rats. Notably, HLF significantly regulated the relative abundance of major bacteria such as g_Lactobacillus, g_Anaerostipes, g_[Eubacterium]_hallii_group, g_Fusicatenibacter, g_Akkermansia, and g_Collinsella. Synchronously, we found that HLF could regulate the disorder of plasma HEPC and TFR levels caused by HFD. Conclusion. This study demonstrates that HLF can regulate metabolic hyperlipidemia syndromes and modulate the relative abundance of major bacteria, which illustrated that it might be associated with the modulation of gut microbiota composition and metabolites.
Collapse
|
66
|
Pezzino S, Sofia M, Faletra G, Mazzone C, Litrico G, La Greca G, Latteri S. Gut-Liver Axis and Non-Alcoholic Fatty Liver Disease: A Vicious Circle of Dysfunctions Orchestrated by the Gut Microbiome. BIOLOGY 2022; 11:1622. [PMID: 36358323 PMCID: PMC9687983 DOI: 10.3390/biology11111622] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 09/24/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a prevalent, multifactorial, and poorly understood liver disease with an increasing incidence worldwide. NAFLD is typically asymptomatic and coupled with other symptoms of metabolic syndrome. The prevalence of NAFLD is rising in tandem with the prevalence of obesity. In the Western hemisphere, NAFLD is one of the most prevalent causes of liver disease and liver transplantation. Recent research suggests that gut microbiome dysbiosis may play a significant role in the pathogenesis of NAFLD by dysregulating the gut-liver axis. The so-called "gut-liver axis" refers to the communication and feedback loop between the digestive system and the liver. Several pathological mechanisms characterized the alteration of the gut-liver axis, such as the impairment of the gut barrier and the increase of the intestinal permeability which result in endotoxemia and inflammation, and changes in bile acid profiles and metabolite levels produced by the gut microbiome. This review will explore the role of gut-liver axis disruption, mediated by gut microbiome dysbiosis, on NAFLD development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Saverio Latteri
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95126 Catania, Italy
| |
Collapse
|
67
|
Gao Y, Hou L, Hu M, Li D, Tian Z, Wen W, Fan B, Li S, Wang F. Effects of Bacillus subtilis BSNK-5-Fermented Soymilk on the Gut Microbiota by In Vitro Fecal Fermentation. Foods 2022; 11:3501. [PMID: 36360112 PMCID: PMC9654106 DOI: 10.3390/foods11213501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/21/2022] [Accepted: 10/28/2022] [Indexed: 06/13/2024] Open
Abstract
The gut microbiota of soymilk intervention is beneficial to maintaining human health. Bacillus subtilis fermented soymilk has brought much interest, due to its richness of thrombolytic nattokinase and the strain of potential probiotic properties. In this study, soymilk was fermented by B. subtilis BSNK-5, and the BSNK-5-fermented soymilk (SMF) on the production of short chain fatty acids (SCFAs) and the regulation of fecal microbiota was initially evaluated by in vitro fecal fermentation. SMF supplementation obviously increased the levels of SCFAs from 32.23 mM to 49.10 mM, especially acetic acid, propionic acid, and isobutyric acid. Additionally, SMF changed the composition and microbial diversity of gut microbiota. After 24 h of anaerobic incubation in vitro, SMF decreased the Firmicutes/Bacteroidota ratio favoring weight loss, increased Lachnospiraceae_UCG-004 and the other beneficial bacteria producing SCFAs, as well as suppressing pathogenic Streptococcus genus. These results revealed the potential use of BSNK-5-fermented soymilk as a potential candidate to promote gut health.
Collapse
Affiliation(s)
- Yaxin Gao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Lizhen Hou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Miao Hu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Danfeng Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Zhiliang Tian
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Wei Wen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shuying Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Fengzhong Wang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
68
|
Sawicka-Gutaj N, Gruszczyński D, Zawalna N, Nijakowski K, Muller I, Karpiński T, Salvi M, Ruchała M. Microbiota Alterations in Patients with Autoimmune Thyroid Diseases: A Systematic Review. Int J Mol Sci 2022; 23:13450. [PMID: 36362236 PMCID: PMC9654225 DOI: 10.3390/ijms232113450] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/23/2022] [Accepted: 11/01/2022] [Indexed: 08/18/2023] Open
Abstract
Autoimmune thyroid diseases (AITDs) are chronic autoimmune disorders that cause impaired immunoregulation, leading to specific immune responses against thyroid antigens. Graves' disease (GD) and Hashimoto's thyroiditis (HT) are the major forms of AITDs. Increasing evidence suggests a possible role of microbiota alterations in the pathogenesis and progression of AITDs. This systematic review was designed to address the following question: "Is microbiota altered in patients with AITDs?" After screening the selected studies using the inclusion and exclusion criteria, 16 studies were included in this review (in accordance with PRISMA statement guidelines). A meta-analysis revealed that patients with HT showed significantly higher values of diversity indices (except for the Simpson index) and that patients with GD showed significant tendencies toward lower values of all assessed indices compared with healthy subjects. However, the latter demonstrated a higher relative abundance of Bacteroidetes and Actinobacteria at the phylum level and thus Prevotella and Bifidobacterium at the genus level, respectively. Thyroid peroxidase antibodies showed the most significant positive and negative correlations between bacterial levels and thyroid functional parameters. In conclusion, significant alterations in the diversity and composition of the intestinal microbiota were observed in both GD and HT patients.
Collapse
Affiliation(s)
- Nadia Sawicka-Gutaj
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Dawid Gruszczyński
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Natalia Zawalna
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Kacper Nijakowski
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Ilaria Muller
- Department of Endocrinology, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Graves’ Orbitopathy Center, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Tomasz Karpiński
- Department of Medical Microbiology, Poznan University of Medical Sciences, 61-712 Poznan, Poland
| | - Mario Salvi
- Department of Endocrinology, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Graves’ Orbitopathy Center, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Marek Ruchała
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| |
Collapse
|
69
|
Li H, Wang S, Wang S, Yu H, Yu W, Ma X, He X. Atorvastatin Inhibits High-Fat Diet-Induced Lipid Metabolism Disorders in Rats by Inhibiting Bacteroides Reduction and Improving Metabolism. Drug Des Devel Ther 2022; 16:3805-3816. [PMID: 36349306 PMCID: PMC9637332 DOI: 10.2147/dddt.s379335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/19/2022] [Indexed: 11/25/2022] Open
Abstract
PURPOSE The prevalence of hyperlipidemia and related illnesses is on its rise, and atorvastatin is the frequently used hypolipidemic agent. However, there is still uncertainty about the mechanisms, especially the relationship between the lipid-lowering effect, intestinal microbiome, and metabolic profiles. We aim to intensively explain the mechanism of the hypolipidemic effect of atorvastatin through multi-omics perspective of intestinal microbiome and metabolomics. METHODS Multi-omics methods play an increasingly important role in the analysis of intestinal triggers and evaluation of metabolic disorders such as obesity, hyperlipidemia, and diabetes. Therefore, we were prompted to explore intestinal triggers, underlying biomarkers, and potential intervention targets of atorvastatin in the treatment of dyslipidemia through multi-omics. To achieve this, SPF Wistar rats were fed a high-fat diet or normal diet for 8 weeks. Atorvastatin was then administered to high-fat diet-fed rats. RESULTS By altering intestinal microbiome, a high-fat diet can affect feces and plasma metabolic profiles. Treatment with atorvastatin possibly increases the abundance of Bacteroides, thereby improving "propanoate metabolism" and "glycine, serine and threonine metabolism" in feces and plasma, and contributing to blood lipid reduction. CONCLUSION Our study elucidated the intestinal triggers and metabolites of high-fat diet-induced dyslipidemia from the perspective of intestinal microbiome and metabolomics. It equally identified potential intervention targets of atorvastatin. This further explains the mechanism of the hypolipidemic effect of atorvastatin from a multi-omics perspective.
Collapse
Affiliation(s)
- Huimin Li
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China,National Human Genetic Resources Center; National Research Institute for Health and Family Planning; Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Shue Wang
- Preventive Medicine Experimental Teaching Center, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Shuai Wang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Hai Yu
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Wenhao Yu
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China,Institute for Medical Dataology, Shandong University, National Institute of Health Data Science of China, Jinan, Shandong, 250012, People's Republic of China
| | - Xiaomin Ma
- Preventive Medicine Experimental Teaching Center, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Xiaodong He
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China,Institute for Medical Dataology, Shandong University, National Institute of Health Data Science of China, Jinan, Shandong, 250012, People's Republic of China,Correspondence: Xiaodong He, Tel/Fax +86 531 88382554, Email
| |
Collapse
|
70
|
Wang X, Xu M, Xu D, Ma K, Zhang C, Wang G, Dong M, Li W. Structural and prebiotic activity analysis of the polysaccharide produced by Lactobacillus helveticus SNA12. Carbohydr Polym 2022; 296:119971. [DOI: 10.1016/j.carbpol.2022.119971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022]
|
71
|
Intraintestinal Analysis of the Functional Activity of Microbiomes and Its Application to the Common Marmoset Intestine. mSystems 2022; 7:e0052022. [PMID: 36005400 PMCID: PMC9601136 DOI: 10.1128/msystems.00520-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The intestinal microbiome is closely related to host health, and metatranscriptomic analysis can be used to assess the functional activity of microbiomes by quantifying microbial gene expression levels, helping elucidate the interactions between the microbiome and the environment. However, the functional changes in the microbiome along the host intestinal tract remain unknown, and previous analytical methods have limitations, such as potentially overlooking unknown genes due to dependence on existing databases. The objective of this study is to develop a computational pipeline combined with next-generation sequencing for spatial covariation analysis of the functional activity of microbiomes at multiple intestinal sites (biogeographic locations) within the same individual. This method reconstructs a reference metagenomic sequence across multiple intestinal sites and integrates the metagenome and metatranscriptome, allowing the gene expression levels of the microbiome, including unknown bacterial genes, to be compared among multiple sites. When this method was applied to metatranscriptomic analysis in the intestinal tract of common marmosets, a New World monkey, the reconstructed metagenome covered most of the expressed genes and revealed that the differences in microbial gene expression among the cecum, transverse colon, and feces were more dynamic and sensitive to environmental shifts than the abundances of the genes. In addition, metatranscriptomic profiling at three intestinal sites of the same individual enabled covariation analysis incorporating spatial relevance, accurately predicting the function of a total of 10,856 unknown genes. Our findings demonstrate that our proposed analytical method captures functional changes in microbiomes at the gene resolution level. IMPORTANCE We developed an analysis method that integrates metagenomes and metatranscriptomes from multiple intestinal sites to elucidate how microbial function varies along the intestinal tract. This method enables spatial covariation analysis of the functional activity of microbiomes and accurate identification of gene expression changes among intestinal sites, including changes in the expression of unknown bacterial genes. Moreover, we applied this method to the investigation of the common marmoset intestine, which is anatomically and pharmacologically similar to that of humans. Our findings indicate the expression pattern of the microbiome varies in response to changes in the internal environment along the intestinal tract, and this microbial change may affect the intestinal environment.
Collapse
|
72
|
Thomann AK, Wüstenberg T, Wirbel J, Knoedler LL, Thomann PA, Zeller G, Ebert MP, Lis S, Reindl W. Depression and fatigue in active IBD from a microbiome perspective-a Bayesian approach to faecal metagenomics. BMC Med 2022; 20:366. [PMID: 36244970 PMCID: PMC9575298 DOI: 10.1186/s12916-022-02550-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 09/01/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Extraintestinal symptoms are common in inflammatory bowel diseases (IBD) and include depression and fatigue. These are highly prevalent especially in active disease, potentially due to inflammation-mediated changes in the microbiota-gut-brain axis. The aim of this study was to investigate the associations between structural and functional microbiota characteristics and severity of fatigue and depressive symptoms in patients with active IBD. METHODS We included clinical data of 62 prospectively enrolled patients with IBD in an active disease state. Patients supplied stool samples and completed the questionnaires regarding depression and fatigue symptoms. Based on taxonomic and functional metagenomic profiles of faecal gut microbiota, we used Bayesian statistics to investigate the associative networks and triangle motifs between bacterial genera, functional modules and symptom severity of self-reported fatigue and depression. RESULTS Associations with moderate to strong evidence were found for 3 genera (Odoribacter, Anaerotruncus and Alistipes) and 3 functional modules (pectin, glycosaminoglycan and central carbohydrate metabolism) with regard to depression and for 4 genera (Intestinimonas, Anaerotruncus, Eubacterium and Clostridiales g.i.s) and 2 functional modules implicating amino acid and central carbohydrate metabolism with regard to fatigue. CONCLUSIONS This study provides the first evidence of association triplets between microbiota composition, function and extraintestinal symptoms in active IBD. Depression and fatigue were associated with lower abundances of short-chain fatty acid producers and distinct pathways implicating glycan, carbohydrate and amino acid metabolism. Our results suggest that microbiota-directed therapeutic approaches may reduce fatigue and depression in IBD and should be investigated in future research.
Collapse
Affiliation(s)
- Anne Kerstin Thomann
- Department of Medicine II, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Torsten Wüstenberg
- Department of Medicine II, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Core Facility for Neuroscience of Self-Regulation (CNSR), Field of Focus 4 (FoF4), Heidelberg University, Heidelberg, Germany
| | - Jakob Wirbel
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Laura-Louise Knoedler
- Department of Medicine II, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Georg Zeller
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Matthias Philip Ebert
- Department of Medicine II, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Clinical Cooperation Unit Healthy Metabolism, Centre of Preventive Medicine and Digital Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stefanie Lis
- Department of Clinical Psychology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Wolfgang Reindl
- Department of Medicine II, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
73
|
Stunted children display ectopic small intestinal colonization by oral bacteria, which cause lipid malabsorption in experimental models. Proc Natl Acad Sci U S A 2022; 119:e2209589119. [PMID: 36197997 PMCID: PMC9573096 DOI: 10.1073/pnas.2209589119] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Environmental enteric dysfunction (EED) is an inflammatory syndrome postulated to contribute to stunted child growth and to be associated with intestinal dysbiosis and nutrient malabsorption. However, the small intestinal contributions to EED remain poorly understood. This study aimed to assess changes in the proximal and distal intestinal microbiota in the context of stunting and EED and to test for a causal role of these bacterial isolates in the underlying pathophysiology. We performed a cross-sectional study in two African countries recruiting roughly 1,000 children aged 2 to 5 years and assessed the microbiota in the stomach, duodenum, and feces. Upper gastrointestinal samples were obtained from stunted children and stratified according to stunting severity. Fecal samples were collected. We then investigated the role of clinical isolates in EED pathophysiology using tissue culture and animal models. We find that small intestinal bacterial overgrowth (SIBO) is extremely common (>80%) in stunted children. SIBO is frequently characterized by an overgrowth of oral bacteria, leading to increased permeability and inflammation and to replacement of classical small intestinal strains. These duodenal bacterial isolates decrease lipid absorption in both cultured enterocytes and mice, providing a mechanism by which they may exacerbate EED and stunting. Further, we find a specific fecal signature associated with the EED markers fecal calprotectin and alpha-antitrypsin. Our study shows a causal implication of ectopic colonization of oral bacterial isolated from the small intestine in nutrient malabsorption and gut leakiness in vitro. These findings have important therapeutic implications for modulating the microbiota through microbiota-targeted interventions.
Collapse
|
74
|
Ni Q, Dong S, Xing B, Zeng B, Kong F, Xu H, Yao Y, Li D, Zhang M, Fan X, Yang D, Yang M, Xie M. Oral and fecal microbiome of confiscated Bengal slow lorises in response to confinement duration. Front Microbiol 2022; 13:941261. [PMID: 36238588 PMCID: PMC9553000 DOI: 10.3389/fmicb.2022.941261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Slow lorises are small arboreal and nocturnal primates. Due to the illegal trade, a large number of slow lorises were confiscated into wildlife sanctuaries or rescue centers. The re-release has been considered a preferable approach for alleviating the captive pressure, but inappropriate and long-term confinement make it difficult to achieve this goal. In this study, we investigated and compared the fecal and oral microbiome of Bengal slow lorises (Nycticebus bengalensis) under long-term captivity (LC) and short-term captivity (SC) groups based on 16s rRNA high-throughput gene sequencing. The oral microbiome displayed higher Chao1 richness but lower Shannon and Simpson indices than the fecal microbiome. The Bengal slow lorises under long-term captivity had abundant pathogenic genera in both gut and oral microbiomes, such as Desulfovibrio, Actinomyces, Capnocytophaga, Neisseria, and Fusobacterium, while some specific bacterial taxa associated with intestinal balance were more enriched in the SC group. Due to the plant gum scarcity in the diet, both groups had a low abundance of Bifidobacterium. Function profile prediction indicated that the LC group was enriched with genetic information processing and metabolism pathways due to the stable food intake. The increased membrane transport and xenobiotic metabolism and degradation functions in the SC group could be explained by the function of the host microbiome in facilitating adaptation to changing environments and diets. The results demonstrated that the oral microbiome had the potential to be used as a regular surveillance tool. Also, current captive management should be improved to ensure reintroduction success.
Collapse
Affiliation(s)
- Qingyong Ni
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Qingyong Ni,
| | - Shasha Dong
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Bolin Xing
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Bo Zeng
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Fanli Kong
- College of Life Science, Sichuan Agricultural University, Yaan, China
| | - Huailiang Xu
- College of Life Science, Sichuan Agricultural University, Yaan, China
| | - Yongfang Yao
- College of Life Science, Sichuan Agricultural University, Yaan, China
| | - Diyan Li
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mingwang Zhang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiaolan Fan
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Deying Yang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mingyao Yang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Meng Xie
- College of Life Science, Sichuan Agricultural University, Yaan, China
- Meng Xie,
| |
Collapse
|
75
|
Roussel C, Anunciação Braga Guebara S, Plante PL, Desjardins Y, Di Marzo V, Silvestri C. Short-term supplementation with ω-3 polyunsaturated fatty acids modulates primarily mucolytic species from the gut luminal mucin niche in a human fermentation system. Gut Microbes 2022; 14:2120344. [PMID: 36109831 PMCID: PMC9481098 DOI: 10.1080/19490976.2022.2120344] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Consumption of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) provides multifaceted health benefits. Recent studies suggest that ω-3 PUFAs modulate the gut microbiota by enhancing health-promoting bacteria, such as the mucin specialist Akkermansia muciniphila. However, these prebiotic properties have been poorly investigated and direct effects on the gut microbiome have never been explored dynamically across gut regions and niches (lumen vs. mucus-associated microbiota). Thus, we studied the effects of 1 week EPA- and DHA-enriched ω-3 fish-oil supplementation on the composition and functionality of the human microbiome in a Mucosal Simulator of the Human Intestinal Microbial Ecosystem (M-SHIME®). Gut microbial communities derived from one individual harvested in two different seasons were tested in duplicate. Luminal and outer mucus-associated microbiota of the ileum, ascending, transverse and descending colons were cultivated over 28 d from fecal inoculates and supplemented with ω-3 PUFAs for the last 7 d. We show that ω-3 PUFA supplementation modulates the microbiota in a gut region- and niche-dependent fashion. The outer mucus-associated microbiota displayed a higher resilience than the luminal mucin habitat to ω-3 PUFAs, with a remarkable blooming of Akkermansia muciniphila in opposition to a decrease of Firmicutes-mucolytic bacteria. The ω-3 PUFAs also induced a gradual and significant depletion of non-mucolytic Clostridia members in luminal habitats. Finally, increased concentrations of the short chain fatty acids (SCFA) propionate in colon regions at the end of the supplementation was associated positively with the bloom of Akkermansia muciniphila and members of the Desulfovibrionia class.
Collapse
Affiliation(s)
- Charlène Roussel
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Quebec, QC, Canada,Centre Nutrition, Santé et Société (NUTRISS), INAF Laval University, Quebec, QC, Canada,Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, CRIUCPQ Laval University, Quebec, QC, Canada
| | - Sara Anunciação Braga Guebara
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Quebec, QC, Canada,Centre Nutrition, Santé et Société (NUTRISS), INAF Laval University, Quebec, QC, Canada,Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, CRIUCPQ Laval University, Quebec, QC, Canada
| | - Pier-Luc Plante
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Quebec, QC, Canada,Centre Nutrition, Santé et Société (NUTRISS), INAF Laval University, Quebec, QC, Canada,Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, CRIUCPQ Laval University, Quebec, QC, Canada
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Quebec, QC, Canada,Centre Nutrition, Santé et Société (NUTRISS), INAF Laval University, Quebec, QC, Canada
| | - Vincenzo Di Marzo
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Quebec, QC, Canada,Centre Nutrition, Santé et Société (NUTRISS), INAF Laval University, Quebec, QC, Canada,Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, CRIUCPQ Laval University, Quebec, QC, Canada,Faculty of Medicine, Department of Medicine, Laval University, Quebec, QC, Canada,CONTACT Vincenzo Di Marzo Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Quebec, QC, Canada
| | - Cristoforo Silvestri
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Quebec, QC, Canada,Centre Nutrition, Santé et Société (NUTRISS), INAF Laval University, Quebec, QC, Canada,Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, CRIUCPQ Laval University, Quebec, QC, Canada,Faculty of Medicine, Department of Medicine, Laval University, Quebec, QC, Canada,Cristoforo Silvestri Faculty of Medicine, Department of Medicine Laval University, Quebec, QC, Canada
| |
Collapse
|
76
|
Okuma K, Kono K, Otaka M, Ebara A, Odachi A, Tokuno H, Masuyama H. Characteristics of the Gut Microbiota in Japanese Patients with Premenstrual Syndrome. Int J Womens Health 2022; 14:1435-1445. [PMID: 36199913 PMCID: PMC9529230 DOI: 10.2147/ijwh.s377066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/08/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose The present study aimed to characterize the gut microbiota of individuals with premenstrual syndrome. Patients and Methods The gut microbiota of 24 Japanese women with PMS (PMS group) and 144 healthy Japanese women (control group) were compared. Analysis of the α- and β-diversities and the gut microbial composition at the genus level were performed using 16S rRNA gene sequence data obtained from stool samples. Results A significant difference in age was observed between the PMS and control groups; however, no significant difference was observed in BMI. The α-diversity measured using the Simpson index was significantly higher in the PMS group than the control group. Visualization of the β-diversity using non-metric multidimensional scaling and permutational multivariate analysis of variance (PERMANOVA) showed that the distance of the gut microbiota between the PMS and control groups is significantly different. Furthermore, a significant difference in the composition of the gut microbiota was observed between the PMS and control groups. At the genus level, the abundances of Collinsella, Bifidobacterium, and Blautia were significantly higher in the PMS group than in the control group. In particular, the abundance of Collinsella in the PMS group was approximately 4.5 times higher than that in the control group. To rule out the confounding effect of age in the abundances of Bifidobacterium, Blautia, and Collinsella, the gut microbiota of the PMS and control groups were compared by age group. Results showed that Collinsella had the highest effect size in participants of 30–40 years of age (mean age: 36.39 ± 4.68 years). Conclusion These results suggest that the PMS group possesses a characteristic gut microbiota. In particular, Collinsella was strongly associated with PMS. Since Collinsella has been reported to be associated with diet, dietary interventions such as prebiotics targeting Collinsella may be effective in preventing, improving, and alleviating PMS.
Collapse
Affiliation(s)
- Kana Okuma
- Research and Development Division, Symbiosis Solutions Inc, Chiyoda-ku, Tokyo, 101-0064, Japan
| | - Kanako Kono
- Research and Development Division, Symbiosis Solutions Inc, Chiyoda-ku, Tokyo, 101-0064, Japan
| | - Machiko Otaka
- Research and Development Division, Symbiosis Solutions Inc, Chiyoda-ku, Tokyo, 101-0064, Japan
| | - Aya Ebara
- Research and Development Division, Symbiosis Solutions Inc, Chiyoda-ku, Tokyo, 101-0064, Japan
| | - Ayano Odachi
- Research and Development Division, Symbiosis Solutions Inc, Chiyoda-ku, Tokyo, 101-0064, Japan
| | - Hidetaka Tokuno
- Research and Development Division, Symbiosis Solutions Inc, Chiyoda-ku, Tokyo, 101-0064, Japan
| | - Hiroaki Masuyama
- Research and Development Division, Symbiosis Solutions Inc, Chiyoda-ku, Tokyo, 101-0064, Japan
- Correspondence: Hiroaki Masuyama, Research and Development Division, Symbiosis Solutions Inc, 3F, VORT Suidobashi III Bldg, 2-8-11 Kandasarugakucho, Chiyoda-ku, Tokyo, 101-0064, Japan, Tel +81-3-6275-0878, Fax +81-3-6275-0879, Email
| |
Collapse
|
77
|
Jee JJ, Lim J, Park S, Koh H, Lee HW. Gut microbial community differentially characterizes patients with nonalcoholic fatty liver disease. J Gastroenterol Hepatol 2022; 37:1822-1832. [PMID: 35624084 DOI: 10.1111/jgh.15903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/08/2022] [Accepted: 05/22/2022] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIM Discordant reports of the signature gut microbes involved in nonalcoholic fatty liver disease (NAFLD) have hampered understanding of the pathogenesis of the disease, and thus its diagnosis. Thus, we investigated diagnostic factors and the potential mechanisms for heterogenous NAFLD based on the gut environment, including microbes and functional pathways. METHODS Stools from 16 biopsy-proven NAFLD patients were analyzed for bacterial taxonomy and functional pathways based on 16s rRNA gene sequencing. Data from the physical examination, serum biochemistry, and the gut environment were subjected to a decision tree classifier to identify diagnostic markers. RESULTS We identified two NAFLD subpopulations: those with and without a gut microbiota similar to health controls (HCs), defined as PHC-like and P patients, respectively. Stools of PHC-like patients were significantly populated with Enterobacteriaceae and were inferred to be rich in metabolites degraded from dicarboxylic acid sugars. Significant colonization of Prevotella was observed in the stools of P patients, in parallel with enrichment of metabolites from heme b biosynthesis and sulfate reduction. As a potential mechanism, we suggest that protoporphyrin IX and/or protoheme from Prevotella participates in hepatic injury, and that endogenous hydrogen sulfide increases serum IL-6 level in P patients. However, endotoxin-producing Enterobacteriaceae are thought to produce glycerate, triggering a peroxisome proliferator- activated receptor-alpha-mediated decrease in IL-6 level and fat accumulation in PHC-like patients. CONCLUSIONS Heterogenous NAFLD subpopulations were identified, defined according to gut microbial composition and their potential underlying pathogenic mechanisms; our results raise the possibility of personalized treatment for NALFD patients.
Collapse
Affiliation(s)
- Jai J Jee
- Department of Pediatrics, Yonsei University College of Medicine, Severance Fecal Microbiota Transplantation Center, Severance Hospital, Severance Fecal Microbiota Transplantation Center, Severance Hospital, Seoul, Republic of Korea
| | - Jiyeon Lim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sowon Park
- Department of Pediatrics, Yonsei University College of Medicine, Severance Fecal Microbiota Transplantation Center, Severance Hospital, Severance Fecal Microbiota Transplantation Center, Severance Hospital, Seoul, Republic of Korea
| | - Hong Koh
- Department of Pediatrics, Yonsei University College of Medicine, Severance Fecal Microbiota Transplantation Center, Severance Hospital, Severance Fecal Microbiota Transplantation Center, Severance Hospital, Seoul, Republic of Korea
| | - Hye Won Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.,Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea.,Yonsei Liver Center, Severance Hospital, Seoul, Republic of Korea
| |
Collapse
|
78
|
Liu C, Guo Y, Cheng Y, Qian H. A colon-targeted delivery system of torularhodin encapsulated in electrospinning microspheres, and its co-metabolic regulation mechanism of gut microbiota. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
79
|
Lanthier N, Delzenne N. Targeting the Gut Microbiome to Treat Metabolic Dysfunction-Associated Fatty Liver Disease: Ready for Prime Time? Cells 2022; 11:2718. [PMID: 36078124 PMCID: PMC9454620 DOI: 10.3390/cells11172718] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
Numerous studies show a modification of the gut microbiota in patients with obesity or diabetes. Animal studies have also shown a causal role of gut microbiota in liver metabolic disorders including steatosis whereas the human situation is less clear. Patients with metabolic dysfunction associated fatty liver disease (MAFLD) also have a modification in their gut microbiota composition but the changes are not fully characterized. The absence of consensus on a precise signature is probably due to disease heterogeneity, possible concomitant medications and different selection or evaluation criteria. The most consistent changes were increased relative abundance of Proteobacteria, Enterobacteriaceae and Escherichia species and decreased abundance of Coprococcus and Eubacterium. Possible mechanisms linking the microbiota and MAFLD are increased intestinal permeability with translocation of microbial products into the portal circulation, but also changes in the bile acids and production of microbial metabolites such as ethanol, short chain fatty acids and amino acid derivatives able to modulate liver metabolism and inflammation. Several interventional studies exist that attempt to modulate liver disease by administering antibiotics, probiotics, prebiotics, synbiotics, postbiotics or fecal transplantation. In conclusion, there are both gaps and hopes concerning the interest of gut microbiome evaluation for diagnosis purposes of MAFLD and for new therapeutic developments that are often tested on small size cohorts.
Collapse
Affiliation(s)
- Nicolas Lanthier
- Service d’Hépato-Gastroentérologie, Cliniques Universitaires Saint-Luc, UCLouvain, 1200 Brussels, Belgium
- Laboratory of Gastroenterology and Hepatology, Institut de Recherche Expérimentale et Clinique, UCLouvain, 1200 Brussels, Belgium
| | - Nathalie Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, 1200 Brussels, Belgium
| |
Collapse
|
80
|
Han H, Wang M, Zhong R, Yi B, Schroyen M, Zhang H. Depletion of Gut Microbiota Inhibits Hepatic Lipid Accumulation in High-Fat Diet-Fed Mice. Int J Mol Sci 2022; 23:ijms23169350. [PMID: 36012616 PMCID: PMC9408850 DOI: 10.3390/ijms23169350] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/09/2022] [Accepted: 08/14/2022] [Indexed: 02/07/2023] Open
Abstract
Dysregulated lipid metabolism is a key pathology in metabolic diseases and the liver is a critical organ for lipid metabolism. The gut microbiota has been shown to regulate hepatic lipid metabolism in the host. However, the underlying mechanism by which the gut microbiota influences hepatic lipid metabolism has not been elucidated. Here, a gut microbiota depletion mouse model was constructed with an antibiotics cocktail (Abx) to study the mechanism through which intestinal microbiota regulates hepatic lipid metabolism in high-fat diet (HFD)-fed mice. Our results showed that the Abx treatment effectively eradicated the gut microbiota in these mice. Microbiota depletion reduced the body weight and fat deposition both in white adipose tissue and liver. In addition, microbiota depletion reduced serum levels of glucose, total cholesterol (TC), low-density lipoproteins (LDL), insulin, and leptin in HFD-fed mice. Importantly, the depletion of gut microbiota in HFD-fed mice inhibited excessive hepatic lipid accumulation. Mechanistically, RNA-seq results revealed that gut microbiota depletion changed the expression of hepatic genes involved in cholesterol and fatty acid metabolism, such as Cd36, Mogat1, Cyp39a1, Abcc3, and Gpat3. Moreover, gut microbiota depletion reduced the abundance of bacteria associated with abnormal metabolism and inflammation, including Lachnospiraceae, Coriobacteriaceae_UCG-002, Enterorhabdus, Faecalibaculum, and Desulfovibrio. Correlation analysis showed that there was strong association between the altered gut microbiota abundance and the serum cholesterol level. This study indicates that gut microbiota ameliorates HFD-induced hepatic lipid metabolic dysfunction, which might be associated with genes participating in cholesterol and fatty acid metabolism in the liver.
Collapse
Affiliation(s)
- Hui Han
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, 4000 Gembloux, Belgium
| | - Mengyu Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bao Yi
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence:
| | - Martine Schroyen
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, 4000 Gembloux, Belgium
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
81
|
Li JKM, Wang LL, Lau BSY, Tse RTH, Cheng CKL, Leung SCH, Wong CYP, Tsui SKW, Teoh JYC, Chiu PKF, Ng CF. Oral antibiotics perturbation on gut microbiota after prostate biopsy. Front Cell Infect Microbiol 2022; 12:959903. [PMID: 36051239 PMCID: PMC9425026 DOI: 10.3389/fcimb.2022.959903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionThe use of antibiotics may induce the changes in gut microbiota. Previous studies have shown conflicting results on whether the changed gut microbiota by antibiotics can be recovered. Our study aims to investigate whether the gut microbiota could be recovered after a single dose of oral co-amoxiclav before transrectal ultrasound-guided transperineal prostate biopsy (TPPBx) in 5 weeks’ time.MethodsFifteen patients with elevated serum prostate-specific antigen (PSA) were recruited to provide pre-antibiotic and post-antibiotic fecal samples. The V4 region of 16S rRNA was sequenced. Analysis was performed by QIIME2. Alpha- and beta-diversities were analyzed, as well as the differential enrichment by Linear discriminant analysis Effect Size (LEfSe) analysis.ResultsBoth the alpha- and beta-diversities of the pre- and post-antibiotic fecal samples were significantly different. Genera that are associated with alleviation of inflammation were enriched in the pre-antibiotic fecal samples, while the inflammation-associated genera were more enriched in the post-antibiotic fecal samples.ConclusionA single dose of oral co-amoxiclav before TPPBx could have led to a change of gut microbiota that cannot be recovered in 5 weeks' time. Microbiome studies on prostate cancer patients should be cautioned on the use of post-prostate biopsy fecal sampling. Further studies should be conducted for the impact on gut microbiome for TPPBx alone.
Collapse
Affiliation(s)
- Joseph Kai Man Li
- S.H. Ho Urology Centre, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Lynn Lin Wang
- Metabolic Disease Research Centre, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Becky Su Yan Lau
- S.H. Ho Urology Centre, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Ryan Tsz Hei Tse
- S.H. Ho Urology Centre, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Carol Ka Lo Cheng
- S.H. Ho Urology Centre, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Steven Chi Ho Leung
- S.H. Ho Urology Centre, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Christine Yim Ping Wong
- S.H. Ho Urology Centre, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Stephen Kwok Wing Tsui
- School of Biomedical Science, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jeremy Yuen Chun Teoh
- S.H. Ho Urology Centre, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Peter Ka Fung Chiu
- S.H. Ho Urology Centre, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Chi Fai Ng
- S.H. Ho Urology Centre, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- *Correspondence: Chi Fai Ng,
| |
Collapse
|
82
|
Liao Q, Wu T, Fu Q, Wang P, Zhao Y, Li Y, Xiao H, Zhou L, Song Z. Effects of Dietary Inclusion of β-Hydroxy-β-Methylbutyrate on Growth Performance, Fat Deposition, Bile Acid Metabolism, and Gut Microbiota Function in High-Fat and High-Cholesterol Diet-Challenged Layer Chickens. Curr Issues Mol Biol 2022; 44:3413-3427. [PMID: 36005131 PMCID: PMC9406763 DOI: 10.3390/cimb44080235] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 11/29/2022] Open
Abstract
Excessive lipid deposition in layer chickens due to inappropriate feeding adversely affects egg production; however, nutritional manipulation methods to deal with this issue are still limited. β-hydroxy-β-methylbutyrate (HMB), a metabolite of L-leucine, was recently reported as a lipid-lowering nutrient in mice and pigs, although its role in layers had not been investigated. Here, we employed high-fat and high-cholesterol diet (HFHCD)-challenged growing layers as an obese model to explore HMB function in the regulation of lipid metabolism and the potential mechanisms involved. We found that dietary supplementation with (0.05% or 0.10%) HMB significantly reduced HFHCD-induced bodyweight growth in layers, mainly due to reduction in abdominal fat deposition. Mechanistically, HMB supplementation enhanced hepatic bile acid synthesis from cholesterol through elevating expression of Cyp7a1, a gene coding a key enzyme in bile acid synthesis. Furthermore, 16S rRNA gene sequencing revealed that HMB supplementation remodeled the diversity and composition of the layers' cecal microbiota, and the abundance of Bacteroidetes at the phylum level were especially affected. Correlation analysis further indicated a strong negative association between Bacteroidetes abundance and lipid metabolism-related parameters. Taken together, these data suggest that dietary HMB supplementation could improve abdominal fat deposition in layers, probably through modulating hepatic bile acid synthesis and gut microbiota function.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ziyi Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Q.L.); (T.W.); (Q.F.); (P.W.); (Y.Z.); (Y.L.); (H.X.); (L.Z.)
| |
Collapse
|
83
|
Xiong J, Chen X, Zhao Z, Liao Y, Zhou T, Xiang Q. A potential link between plasma short‑chain fatty acids, TNF‑α level and disease progression in non‑alcoholic fatty liver disease: A retrospective study. Exp Ther Med 2022; 24:598. [PMID: 35949337 PMCID: PMC9353543 DOI: 10.3892/etm.2022.11536] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/30/2022] [Indexed: 12/03/2022] Open
Abstract
The onset and progression of non-alcoholic fatty liver disease (NAFLD) remains unclear, but short-chain fatty acids (SCFAs) in circulation may participate in its pathogenesis by acting as inflammation inhibitors. The aim of this retrospective study was to investigate plasma concentrations of general SCFAs in healthy individuals and in patients with distinct stages of NAFLD. Three main SCFAs (including acetate, propionate and butyrate) were analyzed by gas chromatography. The plasma TNF-α concentration was measured by ELISA. One-way ANOVA, Spearman's correlation and Pearson's correlation analysis were performed to estimate the associations between SCFAs, TNF-α and disease progression. Multiple linear stepwise regression was computed to explore the predictor variables of TNF-α in circulation. A total of 71 patients with NAFLD [including 27 patients with NAFL, 20 patients with non-alcoholic steatohepatitis (NASH) and 24 patients with NAFLD-related cirrhosis (NAFLD-cirrhosis)] and 9 healthy control (HC) subjects were enrolled for analysis. Although not statistically significant, plasma SCFAs were elevated in patients with NAFL compared with HC subjects, whereas the vast majority of SCFAs were statistically reduced in patients with NASH or NAFLD-cirrhosis compared with patients with NAFL. Plasma SCFAs had no significant differences in NASH or NAFLD-cirrhosis patients compared with HC subjects. In addition, significant negative correlations were observed between TNF-α and SCFAs. The progression of NAFLD (β=0.849; P<0.001) and the decline of the total three SCFA concentrations (β=-0.189; P<0.001) were recognized as independent risk variables related to the elevated peripheral TNF-α in the multiple linear stepwise regression model. Plasma SCFA concentrations may alter with the development of NAFLD and may have a potential link to TNF-α and the progression of NAFLD, which may serve a protective role toward disease advancement. Further mechanistic studies, such as analysis of gastrointestinal microecology, signaling pathways and functions involved in TNF-α, need to be performed. Also, therapeutic supplementation of SCFAs for NASH and NAFLD-cirrhosis needs further research and verification.
Collapse
Affiliation(s)
- Jing Xiong
- Department of Gastroenterology, The Sixth People's Hospital of Chengdu, Chengdu, Sichuan 610051, P.R. China
| | - Xia Chen
- Department of Gastroenterology, The Sixth People's Hospital of Chengdu, Chengdu, Sichuan 610051, P.R. China
| | - Zhijing Zhao
- Department of Gastroenterology, The Sixth People's Hospital of Chengdu, Chengdu, Sichuan 610051, P.R. China
| | - Ying Liao
- Department of Gastroenterology, The Sixth People's Hospital of Chengdu, Chengdu, Sichuan 610051, P.R. China
| | - Ting Zhou
- Department of Gastroenterology, The Sixth People's Hospital of Chengdu, Chengdu, Sichuan 610051, P.R. China
| | - Qian Xiang
- Department of Gastroenterology, The Sixth People's Hospital of Chengdu, Chengdu, Sichuan 610051, P.R. China
| |
Collapse
|
84
|
Forlano R, Sivakumar M, Mullish BH, Manousou P. Gut Microbiota—A Future Therapeutic Target for People with Non-Alcoholic Fatty Liver Disease: A Systematic Review. Int J Mol Sci 2022; 23:ijms23158307. [PMID: 35955434 PMCID: PMC9368436 DOI: 10.3390/ijms23158307] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 12/03/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents an increasing cause of liver disease, affecting one-third of the population worldwide. Despite many medications being in the pipeline to treat the condition, there is still no pharmaceutical agent licensed to treat the disease. As intestinal bacteria play a crucial role in the pathogenesis and progression of liver damage in patients with NAFLD, it has been suggested that manipulating the microbiome may represent a therapeutical option. In this review, we summarise the latest evidence supporting the manipulation of the intestinal microbiome as a potential therapy for treating liver disease in patients with NAFLD.
Collapse
Affiliation(s)
- Roberta Forlano
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W2 1NY, UK; (R.F.); (B.H.M.)
| | - Mathuri Sivakumar
- Faculty of Medicine, University of Birmingham, Birmingham B15 2TT, UK;
| | - Benjamin H. Mullish
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W2 1NY, UK; (R.F.); (B.H.M.)
| | - Pinelopi Manousou
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W2 1NY, UK; (R.F.); (B.H.M.)
- Correspondence:
| |
Collapse
|
85
|
Zhao H, Kong L, Shao M, Liu J, Sun C, Li C, Wang Y, Chai X, Wang Y, Zhang Y, Li X. Protective effect of flavonoids extract of Hippophae rhamnoides L. on alcoholic fatty liver disease through regulating intestinal flora and inhibiting TAK1/p38MAPK/p65NF-κB pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115225. [PMID: 35341932 DOI: 10.1016/j.jep.2022.115225] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The therapeutic properties of Hippophae rhamnoides L. were already known in ancient Greece as well as in Tibetan and Mongolian medicine. Modern studies have indicated that Hippophae rhamnoides L. fermentation liquid protected against alcoholic fatty liver disease (AFLD). However, the underlying mechanism of Hippophae rhamnoides L. flavonoids extract (HLF) treating AFLD remains elusive. AIM OF THE STUDY This study aimed to investigate the hepatoprotective effect of HLF in mice with AFLD and the interaction between AFLD and gut microbiota. MATERIALS AND METHODS Chemical constituents of HLF were analyzed by Liquid Chromatography-Ion Trap-ESI-Mass Spectrometry. The Hepatoprotective effect of HLF was evaluated in mice with AFLD induced by alcohol (six groups, n = 10) daily at doses of 0.1, 0.2, and 0.4 g/kg for 30 consecutive days. At the end of experiment, mice were sacrificed and the liver, serum and feces were harvested for analysis. The liver histological changes were observed by H&E staining and oil red O staining. Moreover, the alterations of fecal microflora were detected by 16S rRNA gene sequencing. The inflammatory related genes were determined by qRT-PCR and western blotting respectively. RESULTS The results showed that the oral administration of HLF remarkably alleviated hepatic lipid accumulation by decreasing the levels of ALT, AST, TG and TC. The levels of TNF-α, TGF-β, and IL-6 were also reduced after treatment with HLF. Meanwhile, the protein and mRNA expression of NF-kB p65, MAPK p38 and TAK-1 in the liver of mice with AFLD were all reduced by HLF compared with model group. Furthermore, the 16S rRNA gene sequencing analysis demonstrated that HLF treatment can help restore the imbalance of intestinal microbial ecosystem and reverse the changes in Fimicutes/Bacterodietes, Clostridiales, Lachnospiraceae, S24-7, and Prevotella in mice with AFLD. CONCLUSION HLF can effectively ameliorate liver injury in mice with AFLD, and regulate the composition of gut microbiota. Its regulatory mechanism may be related to TAK1/p38MAPK/p65NF-κB pathway. This study may provide novel insights into the mechanism of HLF on AFLD and a basis for promising clinical usage.
Collapse
Affiliation(s)
- Hong Zhao
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, Heilongjiang, PR China
| | - Lingzhou Kong
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, Heilongjiang, PR China
| | - Mengting Shao
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, Heilongjiang, PR China
| | - Jiayue Liu
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, Heilongjiang, PR China
| | - Changhai Sun
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, Heilongjiang, PR China
| | - Changxu Li
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, Heilongjiang, PR China
| | - Yanyan Wang
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, Heilongjiang, PR China
| | - Xue Chai
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, Heilongjiang, PR China
| | - Yuliang Wang
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, Heilongjiang, PR China
| | - Yu Zhang
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, Heilongjiang, PR China
| | - Xiaoliang Li
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, Heilongjiang, PR China; Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, 571199, PR China.
| |
Collapse
|
86
|
Gravina AG, Romeo M, Pellegrino R, Tuccillo C, Federico A, Loguercio C. Just Drink a Glass of Water? Effects of Bicarbonate-Sulfate-Calcium-Magnesium Water on the Gut-Liver Axis. Front Pharmacol 2022; 13:869446. [PMID: 35837275 PMCID: PMC9274271 DOI: 10.3389/fphar.2022.869446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/16/2022] [Indexed: 12/18/2022] Open
Abstract
Background and Aim: Fonte Essenziale® water is a bicarbonate-sulfate-calcium-magnesium water, low in sodium, recognized by the Italian health care system in hydropinotherapy and hepatobiliary dyspepsia therapy. We wanted to explore its effects on the gut-liver axis and microbiota in non-alcoholic fatty liver disease patients. Patients and Methods: We considered enrollment for 70 patients, of which four were excluded. We finally enrolled 55 patients with ultrasound-documented steatosis (SPs+) and 11 patients without it (SPs-). They then drank 400 ml of water for 6 months in the morning on an empty stomach. Routine hematochemical and metabolic parameters, oxidative stress parameters, gastrointestinal hormone levels, and fecal parameters of the gut microbiota were evaluated at three different assessment times, at baseline (T0), after 6 months (T6), and after a further 6 months of water washout (T12). We lost, in follow-up, 4 (T6) and 22 (T12) patients. Results: Between T0-T6, we observed a significant Futuin A and Selenoprotein A decrease and a GLP-1 and PYY increase in SPs+ and the same for Futuin A and GLP-1 in SPs-. Effects were lost at T12. In SPs+, between T0-T12 and T6-12, a significant reduction in Blautia was observed; between T0-T12, a reduction of Collinsella unc. was observed; and between T0-T12 and T6-12, an increase in Subdoligranulum and Dorea was observed. None of the bacterial strains we analyzed varied significantly in the SPs- population. Conclusion: These results indicate beneficial effects of water on gastrointestinal hormones and hence on the gut-liver axis in the period in which subjects drank water both in SPs- and in SPs+.
Collapse
|
87
|
Ivashkin VT, Kudryavtseva AV, Krasnov GS, Poluektov YM, Morozova MA, Shifrin OS, Beniashvili AG, Mamieva ZA, Kovaleva AL, Ulyanin AI, Trush EA, Erlykin AG, Poluektova EA. Efficacy and safety of a food supplement with standardized menthol, limonene, and gingerol content in patients with irritable bowel syndrome: A double-blind, randomized, placebo-controlled trial. PLoS One 2022; 17:e0263880. [PMID: 35704960 PMCID: PMC9200470 DOI: 10.1371/journal.pone.0263880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Background
Irritable bowel syndrome (IBS) affects 9,2% of the global population and places a considerable burden on healthcare systems. Most medications for treating IBS, including spasmolytics, laxatives, and antidiarrheals, have low efficacy. Effective and safe therapeutic treatments have yet to be developed for IBS.
Purpose
This study assessed the efficacy and safety of a food supplement containing standardized menthol, limonene, and gingerol in human participants with IBS or IBS/functional dyspepsia (FD).
Design
A double-blind, randomized, placebo-controlled trial.
Methods
We randomly assigned 56 patients with IBS or IBS/FD to an intervention group (Group 1) or control group (Group 2) that were given supplement or placebo, respectively, in addition to the standard treatment regimen for 30 d. Three outpatient visits were conducted during the study. Symptom severity was measured at each visit using a 7×7 questionnaire. Qualitative and quantitative composition of the intestinal microbiota were assessed at visits 1 and 3 based on 16S rRNA gene sequencing.
Results
At visit 1 (before treatment), the median total 7×7 questionnaire score was in the moderately ill range for both groups, with no difference between the groups (p = 0.1). At visit 2, the total 7×7 score decreased to mildly ill, with no difference between the groups (p = 0.4). At visit 3, the total score for group 1 indicated borderline illness and for group 2 remained indicated mild illness (p = 0.009). Even though we observed some variations in gut microbiota between the groups, we did not find any statistically significant changes.
Conclusion
The food supplement with standardized menthol, limonene, and gingerol content increased the efficacy of standard therapy in IBS and FD patients. The use of the supplement did not cause any obvious side effects.
Registration
ClinicalTrials.gov Identifier: NCT04484467
Collapse
Affiliation(s)
- Vladimir T. Ivashkin
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Anna V. Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - George S. Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Yuri M. Poluektov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
- * E-mail:
| | | | - Oleg S. Shifrin
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Allan G. Beniashvili
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Zarina A. Mamieva
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Alexandra L. Kovaleva
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Anatoly I. Ulyanin
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Elizaveta A. Trush
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | | | - Elena A. Poluektova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| |
Collapse
|
88
|
Kang H, You HJ, Lee G, Lee SH, Yoo T, Choi M, Joo SK, Park JH, Chang MS, Lee DH, Kim W, Ko G. Interaction effect between NAFLD severity and high carbohydrate diet on gut microbiome alteration and hepatic de novo lipogenesis. Gut Microbes 2022; 14:2078612. [PMID: 35634707 PMCID: PMC9154801 DOI: 10.1080/19490976.2022.2078612] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is associated with high carbohydrate (HC) intake. We investigated whether the relationship between carbohydrate intake and NAFLD is mediated by interactions between gut microbial modulation, impaired insulin response, and hepatic de novo lipogenesis (DNL). Stool samples were collected from 204 Korean subjects with biopsy-proven NAFLD (n = 129) and without NAFLD (n = 75). The gut microbiome profiles were analyzed using 16S rRNA amplicon sequencing. Study subjects were grouped by the NAFLD activity score (NAS) and percentage energy intake from dietary carbohydrate. Hepatic DNL-related transcripts were also analyzed (n = 90). Data from the Korean healthy twin cohort (n = 682), a large sample of individuals without NAFLD, were used for comparison and validation. A HC diet rather than a low carbohydrate diet was associated with the altered gut microbiome diversity according to the NAS. Unlike individuals from the twin cohort without NAFLD, the abundances of Enterobacteriaceae and Ruminococcaceae were significantly different among the NAS subgroups in NAFLD subjects who consumed an HC diet. The addition of these two microbial families, along with Veillonellaceae, significantly improved the diagnostic performance of the predictive model, which was based on the body mass index, age, and sex to predict nonalcoholic steatohepatitis in the HC group. In the HC group, two crucial regulators of DNL (SIRT1 and SREBF2) were differentially expressed among the NAS subgroups. In particular, kernel causality analysis revealed a causal effect of the abundance of Enterobacteriaceae on SREBF2 upregulation and of the surrogate markers of insulin resistance on NAFLD activity in the HC group. Consuming an HC diet is associated with alteration in the gut microbiome, impaired glucose homeostasis, and upregulation of hepatic DNL genes, altogether contributing to NAFLD pathogenesis.
Collapse
Affiliation(s)
- Hyena Kang
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Republic of Korea
| | - Hyun Ju You
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Republic of Korea,Center for Human and Environmental Microbiome, Institute of Health and Environment, Seoul National University, Republic of Korea,Bio-MAX/N-Bio, Seoul National University, Seoul, Republic of Korea
| | - Giljae Lee
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Republic of Korea
| | - Seung Hyun Lee
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Republic of Korea
| | - Taekyung Yoo
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Murim Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sae Kyung Joo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul, Republic of Korea
| | - Jeong Hwan Park
- Department of Pathology, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul, Republic of Korea
| | - Mee Soo Chang
- Department of Pathology, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul, Republic of Korea
| | - Dong Hyeon Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul, Republic of Korea
| | - Won Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul, Republic of Korea,CONTACT Won Kim Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul07061, Republic of Korea
| | - GwangPyo Ko
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Republic of Korea,Center for Human and Environmental Microbiome, Institute of Health and Environment, Seoul National University, Republic of Korea,Bio-MAX/N-Bio, Seoul National University, Seoul, Republic of Korea,KoBioLabs Inc, Seoul, Republic of Korea,GwangPyo Ko Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | | |
Collapse
|
89
|
Shin J, Li T, Zhu L, Wang Q, Liang X, Li Y, Wang X, Zhao S, Li L, Li Y. Obese Individuals With and Without Phlegm-Dampness Constitution Show Different Gut Microbial Composition Associated With Risk of Metabolic Disorders. Front Cell Infect Microbiol 2022; 12:859708. [PMID: 35719350 PMCID: PMC9199894 DOI: 10.3389/fcimb.2022.859708] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundObesity is conventionally considered a risk factor for multiple metabolic diseases, such as dyslipidemia, type 2 diabetes, hypertension, and cardiovascular disease (CVD). However, not every obese patient will progress to metabolic disease. Phlegm-dampness constitution (PDC), one of the nine TCM constitutions, is considered a high-risk factor for obesity and its complications. Alterations in the gut microbiota have been shown to drive the development and progression of obesity and metabolic disease, however, key microbial changes in obese patients with PDC have a higher risk for metabolic disorders remain elusive.MethodsWe carried out fecal 16S rRNA gene sequencing in the present study, including 30 obese subjects with PDC (PDC), 30 individuals without PDC (non-PDC), and 30 healthy controls with balanced constitution (BC). Metagenomic functional prediction of bacterial taxa was achieved using PICRUSt.ResultsObese individuals with PDC had higher BMI, waist circumference, hip circumference, and altered composition of their gut microbiota compared to non-PDC obese individuals. At the phylum level, the gut microbiota was characterized by increased abundance of Bacteroidetes and decreased levels of Firmicutes and Firmicutes/Bacteroidetes ratio. At the genus level, Faecalibacterium, producing short-chain fatty acid, achieving anti-inflammatory effects and strengthening intestinal barrier functions, was depleted in the PDC group, instead, Prevotella was enriched. Most PDC-associated bacteria had a stronger correlation with clinical indicators of metabolic disorders rather than more severe obesity. The PICRUSt analysis demonstrated 70 significantly different microbiome community functions between the two groups, which were mainly involved in carbohydrate and amino acid metabolism, such as promoting Arachidonic acid metabolism, mineral absorption, and Lipopolysaccharide biosynthesis, reducing Arginine and proline metabolism, flavone and flavonol biosynthesis, Glycolysis/Gluconeogenesis, and primary bile acid biosynthesis. Furthermore, a disease classifier based on microbiota was constructed to accurately discriminate PDC individuals from all obese people.ConclusionOur study shows that obese individuals with PDC can be distinguished from non-PDC obese individuals based on gut microbial characteristics. The composition of the gut microbiome altered in obese with PDC may be responsible for their high risk of metabolic diseases.
Collapse
Affiliation(s)
- Juho Shin
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tianxing Li
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Linghui Zhu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qi Wang
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Diseases, Beijing University of Chinese Medicine, Beijing, China
| | - Xue Liang
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Diseases, Beijing University of Chinese Medicine, Beijing, China
| | - Yanan Li
- People’s Medical Publishing House Co., Ltd., Chinese Medicine Center, Beijing, China
| | - Xin Wang
- Sanbo Brain Hospital of Capital Medical University, Beijing, China
| | - Shipeng Zhao
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lingru Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Diseases, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Lingru Li, ; Yingshuai Li,
| | - Yingshuai Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Diseases, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Lingru Li, ; Yingshuai Li,
| |
Collapse
|
90
|
Zhang X, Xu B, Hou Z, Xie C, Niu Y, Dai Q, Yan X, Wu D. Dietary ε-Polylysine Affects on Gut Microbiota and Plasma Metabolites Profiling in Mice. Front Nutr 2022; 9:842686. [PMID: 35571901 PMCID: PMC9097516 DOI: 10.3389/fnut.2022.842686] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/08/2022] [Indexed: 12/14/2022] Open
Abstract
Given the antibacterial effects of ε-polylysine acting on cell membranes, and that glycerol phospholipids are important components of the cell membrane, we hypothesized that ε-polylysine may regulate glycerophospholipid metabolism by modifying the gut microbiota. To test this hypothesis, we treated post-weaning C57 mice with different levels of ε-polylysine (0, 300, 600, and 1,200 ppm) in their basic diet. The growth performance and morphology of intestine were then determined. Modification of the gut microbiota and their function were analyzed using 16S rDNA sequencing. Metabolite identification was performed using the LC-MS method. The results showed that body weight decreased with an increasing supplemental level of ε-polylysine from 5 to 7 weeks (P < 0.05), but no significant difference was observed after 8 weeks (P > 0.05). Supplementation with 1,200 ppm ε-polylysine changed the morphology of the jejunum and ileum, increased the villus length, decreased the crypt depth of the jejunum, and decreased the villus length and crypt depth of the ileum (P < 0.05). ε-Polylysine shifted the intestine microbiota by changing alpha diversity (Chao 1, observed species, Shannon, and Simpson indices) and varied at different times. ε-polylysine decreased Firmicutes and increased Bacteroidetes at 4 week, but increased Firmicutes and decreased Bacteroidetes at 10 week. ε-Polylysine regulated genera associated with lipid metabolism such as Parabacteroides, Odoribacter, Akkermansia, Alistipes, Lachnospiraceae UCG-001, Collinsella, Ruminococcaceae, and Intestinimonas. During the adult period, the genera Alistipes, Lachnospiraceae UCG-001, and Streptomyces were positively associated with PC, PE, LysoPC, LysoPE, 1-Arachidonoylglycerophosphoinositol and OHOHA-PS (R > 0.6, P < 0.001), but changes in Blautia, Christensenellaceae R-7 group, Odoribacter, Allobaculum, Ruminococcaceae UCG-004, Ruminococcaceae UCG-005, and Lachnospiraceae UCG-010 were negatively correlated with glycerophospholipid metabolites (R < −0.6, P < 0.001). The abundance of glycerophospholipid metabolites, including PC, PE, lysoPC, and lysoPE, were decreased by ε-polylysine. Furthermore, ε-polylysine reduced the incidence of the genera including Ruminococcus, Prevotella, Prevotellaceae, Butyricimonas, and Escherichia-Shigella and reduced the abundance of Faecalibaculum, Christensenellaceae R-7 group, Coriobacteriaceae UCG-002. In conclusion, ε-polylysine modified gut microbiota composition and function while also restraining pathogenic bacteria. The glycerophospholipid metabolism pathway and associated metabolites may be regulated by intestinal bacteria.
Collapse
Affiliation(s)
- Xuelei Zhang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China.,Department of Animal Nutrition and Feed Science, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Baoyang Xu
- Department of Animal Nutrition and Feed Science, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhenping Hou
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Chunlin Xie
- Department of Animal Nutrition and Feed Science, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yaorong Niu
- Department of Animal Nutrition and Feed Science, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qiuzhong Dai
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Xianghua Yan
- Department of Animal Nutrition and Feed Science, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Duanqin Wu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
91
|
Zhong L, Peng X, Wu C, Li Q, Chen Y, Wang M, Li Y, He K, Shi Y, Bie C, Tang S. Polysaccharides and flavonoids from cyclocarya paliurus modulate gut microbiota and attenuate hepatic steatosis, hyperglycemia, and hyperlipidemia in nonalcoholic fatty liver disease rats with type 2 diabetes mellitus. Int J Diabetes Dev Ctries 2022. [DOI: 10.1007/s13410-022-01080-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
92
|
Wang T, Yan X, Zhou Q. Effect of acupuncture on gut microbiota in participants with subjective cognitive decline. Medicine (Baltimore) 2022; 101:e27743. [PMID: 35550457 PMCID: PMC9276146 DOI: 10.1097/md.0000000000027743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 10/24/2021] [Indexed: 12/18/2022] Open
Abstract
A close relationship has recently been described between subjective cognitive decline (SCD) and gut microbiota disorders. Herein, we aim to investigate the effect of electroacupuncture (EA) on gut microbiota in participants with SCD.We conducted a study of 60 participants with SCD. Sixty participants were allocated to either EA group (n = 30) or sham acupuncture group (n = 30). Both groups received 24 sessions of real acupuncture treatment or identical treatment sessions using the placebo needle. Global cognitive change based on a comprehensive neuropsychological test battery was evaluated to detect the clinical efficacy of acupuncture treatment at the baseline and the end of treatment. Faecal microbial analyses were carried out after collecting stools at T0 and T12 weeks. Microbiomes were analyzed by 16S ribosomal RNA gene sequencing. Correlation analyses were performed to investigate the relationships between the changes in gut microbiota and symptom improvement.Age is a particularly important factor leading to the severity of dementia. Compared with sham acupuncture group, the number of Escherichia-Shigella in EA group decreased after treatment. The number of Escherichia-Shigella in EA group decreased after treatment compared with EA group before treatment. Bifidobacterium is positively correlated with clinical efficacy Z-score and Montreal Cognitive Assessment Scale (both P < .005).Acupuncture could improve global cognitive change among SCD participants by regulating the intestinal flora. Dysbiosis was found in the gut microbiome in SCD and partially relieved by acupuncture. Our study suggests that gut microbiota could be a potential therapeutic target and diagnostic biomarker for SCD.
Collapse
Affiliation(s)
- Tianqi Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaoying Yan
- Department of Obstetrics and Gynecology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Qi Zhou
- Department of Obstetrics and Gynecology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
93
|
A Low Glycemic Index Mediterranean Diet Combined with Aerobic Physical Activity Rearranges the Gut Microbiota Signature in NAFLD Patients. Nutrients 2022; 14:nu14091773. [PMID: 35565740 PMCID: PMC9101735 DOI: 10.3390/nu14091773] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease, and its prevalence worldwide is increasing. Several studies support the pathophysiological role of the gut–liver axis, where specific signal pathways are finely tuned by intestinal microbiota both in the onset and progression of NAFLD. In the present study, we investigate the impact of different lifestyle interventions on the gut microbiota composition in 109 NAFLD patients randomly allocated to six lifestyle intervention groups: Low Glycemic Index Mediterranean Diet (LGIMD), aerobic activity program (ATFIS_1), combined activity program (ATFIS_2), LGIMD plus ATFIS_1 or ATFIS2 and Control Diet based on CREA-AN (INRAN). The relative abundances of microbial taxa at all taxonomic levels were explored in all the intervention groups and used to cluster samples based on a statistical approach, relying both on the discriminant analysis of principal components (DAPCs) and on a linear regression model. Our analyses reveal important differences when physical activity and the Mediterranean diet are merged as treatment and allow us to identify the most statistically significant taxa linked with liver protection. These findings agree with the decreased ‘controlled attenuation parameter’ (CAP) detected in the LGIMD-ATFIS_1 group, measured using FibroScan®. In conclusion, our study demonstrates the synergistic effect of lifestyle interventions (diet and/or physical activity programs) on the gut microbiota composition in NAFLD patients.
Collapse
|
94
|
Yan J, Nie Y, Liu Y, Li J, Wu L, Chen Z, He B. Yiqi-Bushen-Tiaozhi Recipe Attenuated High-Fat and High-Fructose Diet Induced Nonalcoholic Steatohepatitis in Mice via Gut Microbiota. Front Cell Infect Microbiol 2022; 12:824597. [PMID: 35531334 PMCID: PMC9072834 DOI: 10.3389/fcimb.2022.824597] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/21/2022] [Indexed: 12/19/2022] Open
Abstract
Aim To investigate the treating effect of Yiqi-Bushen-Tiaozhi (YBT) recipe on nonalcoholic steatohepatitis (NASH) mice, determine whether the outcome was associated with gut microbiota, and clarify the regulating mechanism. Methods NASH mice were induced by high-fat and high-fructose diets (HFFD). In the fifth week, mice in the YBT group were orally administrated YBT (22.12g·kg-1·d-1) daily for 12 weeks. Fresh stool of mice was collected at the 16th week for fecal 16S rDNA analysis. Hepatic pathology and biochemical indicators were used to reflect the improvement of YBT on hepatic inflammation and lipid metabolism in NASH mice. Quantitative real-time PCR (qRT-PCR) was used to verify the results of PICRUSt analysis. Results Results of the pathological and biochemical index showed that YBT could improve NASH mice. Compared with improving inflammation and hepatocyte damage, YBT may be more focused on enhancing metabolic disorders in mice, such as increasing HDL-c level. The diversity and richness of the gut microbiota of NASH mice induced by HFFD are significantly different from the normal control (NC) group. After YBT treatment, the diversity and richness of the mice microbiota will be increased to similar NC mice. Intestinimonas, Acetatifactor, Alistipes, Intestinimonas, Acetatifactor, and Alistipes have the most significant changes in the class level. PICRUSt analysis was performed to predict genomic functions based on the 16S rDNA results and reference sequencing. The efficacy of YBT in the treatment of NASH can be achieved by regulating the diversity and richness of gut microbiota. PICRUSt analysis results showed that the most relevant function of the microbiota construction variations is α- Linolenic acid (ALA) metabolism. Results of qRT-PCR showed significant differences between groups in the expression of Fatty acid desaturase 1 (FADS1), Fatty acid desaturase 2 (FADS2), Acyl-CoA Oxidase 1 (ACOX1), and Acyl-CoA Oxidase 2 (ACOX2) related to ALA metabolism. The expression of the above genes will be inhibited in the liver and small intestine of the HFFD group mice, and the expression can be restored after YBT treatment. Conclusion YBT could treat NASH mice by improving the diversity and richness of gut microbiota and further the improvement of ALA metabolism.
Collapse
Affiliation(s)
- Junbin Yan
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- The Second Central Laboratory, Key Lab of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yunmeng Nie
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuan Liu
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- The Second Central Laboratory, Key Lab of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jingya Li
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- The Second Central Laboratory, Key Lab of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Liyan Wu
- Department of Gastroenterology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Zhiyun Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- The Second Central Laboratory, Key Lab of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Beihui He
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- The Second Central Laboratory, Key Lab of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
95
|
Zhang WH, Jin ZY, Yang ZH, Zhang JY, Ma XH, Guan J, Sun BL, Chen X. Fecal Microbiota Transplantation Ameliorates Active Ulcerative Colitis by Downregulating Pro-inflammatory Cytokines in Mucosa and Serum. Front Microbiol 2022; 13:818111. [PMID: 35444617 PMCID: PMC9014222 DOI: 10.3389/fmicb.2022.818111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/14/2022] [Indexed: 12/26/2022] Open
Abstract
Background Ulcerative colitis (UC) is a multi-factor disease characterized by alternating remission periods and repeated occurrence. It has been shown that fecal microbiota transplantation (FMT) is an emerging and effective approach for UC treatment. Since most existing studies chose adults as donors for fecal microbiota, we conducted this study to determine the long-term efficacy and safety of the microbiota from young UC patient donors and illustrate its specific physiological effects. Methods Thirty active UC patients were enrolled and FMT were administered with the first colonoscopy and two subsequent enema/transendoscopic enteral tubing (TET) practical regimens in The First Affiliated Hospital of Anhui Medical University in China. Disease activity and inflammatory biomarkers were assessed 6 weeks/over 1 year after treatment. The occurrence of adverse events was also recorded. The samples from blood and mucosa were collected to detect the changes of inflammatory biomarkers and cytokines. The composition of gut and oral microbiota were also sampled and sequenced to confirm the alteration of microbial composition. Results Twenty-seven patients completed the treatment, among which 16 (59.3%) achieved efficacious clinical response and 11 (40.7%) clinical remission. Full Mayo score and calprotectin dropped significantly and remained stable over 1 year. FMT also significantly reduced the levels of C-reactive protein (CRP), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6). The gut microbiota altered significantly with increased bacterial diversity and decreased metabolic diversity in responsive patients. The pro-inflammatory enterobacteria decreased after FMT and the abundance of Collinsella increased. Accordingly, the altered metabolic functions, including antigen synthesis, amino acids metabolism, short chain fatty acid production, and vitamin K synthesis of microbiota, were also corrected by FMT. Conclusion Fecal microbiota transplantation seems to be safe and effective for active UC patients who are nonresponsive to mesalazine or prednisone in the long-term. FMT could efficiently downregulate pro-inflammatory cytokines to ameliorate the inflammation.
Collapse
Affiliation(s)
- Wen-Hui Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ze-Yu Jin
- USTC-IAT and Chorain Health Joint Laboratory for Human Microbiome, Institute of Advanced Technology, University of Science and Technology of China, Hefei, China
| | - Zhong-Hua Yang
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jia-Yi Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiao-Han Ma
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jing Guan
- Anhui Provincial Key Laboratory of Digestive Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Bao-Lin Sun
- USTC-IAT and Chorain Health Joint Laboratory for Human Microbiome, Institute of Advanced Technology, University of Science and Technology of China, Hefei, China
| | - Xi Chen
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
96
|
Lu Y, Wan H, Wu Y, Yang J, Yu L, He Y, Wan H, Li C. Naoxintong Capsule Alternates Gut Microbiota and Prevents Hyperlipidemia in High-Fat-Diet Fed Rats. Front Pharmacol 2022; 13:843409. [PMID: 35387330 PMCID: PMC8978017 DOI: 10.3389/fphar.2022.843409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 02/18/2022] [Indexed: 12/19/2022] Open
Abstract
Background: Naoxintong Capsule (NXT) is a formulated Traditional Chinese Medicine (TCM) widely applied in the treatment of cardiovascular and metabolic diseases, most of which are closely related to hyperlipidemia as a major risk factor. Given the current limited understandings to the role of gut microbiota in the lipid-lowering effect of NXT and other TCM products, this study investigated the regulation of gut microbiota and lipid metabolism by NXT, and their potential relationship. Methods: The chemical components of NXT were firstly analyzed with HPLC-MS method. In high fat diet (HFD)-fed rat models, as well as normal rats as control, the histopathological and biochemical changes of serum and liver were examined, including total cholesterol (TC), triglyceride (TG), low density lipoprotein cholesterol (LDL-C) and high density lipoprotein cholesterol (HDL-C). In addition, the gut microbiota community was analyzed using 16S rRNA sequencing technique, the fecal levels of gut microbiota related metabolites, including bile acids (BAs) and short chain fatty acids (SCFAs) were determined with HPLC-MS. The correlations of the clinical indicators and gut microbiota related indicators were then investigated statistically. Results: The results showed that NXT exerted potential preventive effect on hyperlipidemia. Specifically, NXT significantly reduced the body weight, TC, TG and LDL-C in serum, increased HDL-C in serum, reduced the TC and TG in liver, as well as protected liver. The body weight, serum lipid levels and liver function were all significantly alleviated. The gut microbiota of the HFD-fed rats was reconstituted with supplementation of NXT. The fecal levels of gut microbiota related metabolites, including BAs and SCFAs were also altered. The correlation between the gut microbiota and clinical/metabolomic parameters was then studied. As the result, the amount of propionic aicd, Firmicutes/Bacteroidetes ratio (F/B) and the relative abundance of Collinsella in feces are the most possibly potential therapeutic biomarkers of NXT. Conclusion: NXT was effective in regulation of gut microbiota and prevention of hyperlipidemia in HFD fed rats. The present work might provide novel insights into the anti-hyperlipidemia effect of TCM and afford new scientific evidence for clinical application of TCM.
Collapse
Affiliation(s)
- Yihang Lu
- Key Laboratory of TCM Encephalopathy of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haofang Wan
- Key Laboratory of TCM Encephalopathy of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yujia Wu
- Key Laboratory of TCM Encephalopathy of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiehong Yang
- Key Laboratory of TCM Encephalopathy of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Yu
- Key Laboratory of TCM Encephalopathy of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu He
- Key Laboratory of TCM Encephalopathy of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haitong Wan
- Key Laboratory of TCM Encephalopathy of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chang Li
- Key Laboratory of TCM Encephalopathy of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
97
|
Milton-Laskibar I, Marcos-Zambrano LJ, Gómez-Zorita S, Carrillo de Santa Pau E, Fernández-Quintela A, Martínez JA, Portillo MP. Involvement of microbiota and short-chain fatty acids on non-alcoholic steatohepatitis when induced by feeding a hypercaloric diet rich in saturated fat and fructose. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2022; 3:e5. [PMID: 39295781 PMCID: PMC11406367 DOI: 10.1017/gmb.2022.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 03/08/2022] [Accepted: 04/05/2022] [Indexed: 09/21/2024]
Abstract
Consumption of high-energy-yielding diets, rich in fructose and lipids, is a factor contributing to the current increase in non-alcoholic fatty liver disease prevalence. Gut microbiota composition and short-chain fatty acids (SCFAs) production alterations derived from unhealthy diets are considered putative underlying mechanisms. This study aimed to determine relationships between changes in gut microbiota composition and SCFA levels by comparing rats featuring diet-induced steatohepatitis with control counterparts fed a standard diet. A high-fat high-fructose (HFHF) feeding induced higher body, liver and mesenteric adipose tissue weights, increased liver triglyceride content and serum transaminase, glucose, non-HDL-c and MCP-1 levels. Greater liver malondialdehyde levels and glutathione peroxidase activity were also observed after feeding the hypercaloric diet. Regarding gut microbiota composition, a lowered diversity and increased abundances of bacteria from the Clostridium sensu stricto 1, Blautia, Eubacterium coprostanoligenes group, Flavonifractor, and UBA1819 genera were found in rats featuring diet-induced steatohepatitis, as well as higher isobutyric, valeric and isovaleric acids concentrations. These results suggest that hepatic alterations produced by a hypercaloric HFHF diet may be related to changes in overall gut microbiota composition and abundance of specific bacteria. The shift in SCFA levels produced by this unbalanced diet cannot be discarded as potential mediators of the reported hepatic and metabolic alterations.
Collapse
Affiliation(s)
- Iñaki Milton-Laskibar
- Precision Nutrition and Cardiometabolic Health Program, IMDEA Food Institute (Madrid Institute for Advanced Studies), Campus of International Excellence (CEI) UAM+CSIC, Spanish National Research Council, Madrid, Spain
- CIBEROBN Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Laura Judith Marcos-Zambrano
- Computational Biology Group, Precision Nutrition and Cancer Research Program, IMDEA Food Institute, Madrid, Spain
| | - Saioa Gómez-Zorita
- CIBEROBN Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), Madrid, Spain
- Nutrition and Obesity group, Department of Pharmacy and Food Science, Faculty of Pharmacy, Lucio Lascaray Research Center, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- BIOARABA Health Research Institute, Vitoria-Gasteiz, Spain
| | | | - Alfredo Fernández-Quintela
- CIBEROBN Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), Madrid, Spain
- Nutrition and Obesity group, Department of Pharmacy and Food Science, Faculty of Pharmacy, Lucio Lascaray Research Center, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- BIOARABA Health Research Institute, Vitoria-Gasteiz, Spain
| | - Jose Alfredo Martínez
- CIBEROBN Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - María Puy Portillo
- CIBEROBN Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), Madrid, Spain
- Nutrition and Obesity group, Department of Pharmacy and Food Science, Faculty of Pharmacy, Lucio Lascaray Research Center, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- BIOARABA Health Research Institute, Vitoria-Gasteiz, Spain
| |
Collapse
|
98
|
Oliveira CB, Marques C, Abreu R, Figueiredo P, Calhau C, Brito J, Sousa M. Gut microbiota of elite female football players is not altered during an official international tournament. Scand J Med Sci Sports 2022; 32 Suppl 1:62-72. [PMID: 34779042 DOI: 10.1111/sms.14096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/08/2021] [Indexed: 12/23/2022]
Abstract
The current study aimed to investigate if the gut microbiota composition of elite female football players changes during an official international tournament. The study was conducted throughout ten consecutive days, encompassing seven training sessions, and three official matches. The matches were separated by 48-72 h. Seventeen elite female football players from the Portuguese women's national football team participated in the study. Fecal samples were collected at two time points: at the beginning and end of the tournament. Fecal microbiota was analyzed by sequencing the 16S rRNA gene. Throughout the study, the duration and rating of perceived exertion (RPE) were recorded after training sessions and matches. The internal load was determined by the session RPE. The gut microbiota of players was predominantly composed of bacteria from the phyla Firmicutes (50% of relative abundance) and Bacteroidetes (20%); the genera Faecalibacterium (29%) and Collinsella (16%); the species Faecalibacterium prausnitzii (30%) and Collinsella aerofaciens (17%). Overall, no significant changes were observed between time points (p ≥ 0.05). Also, no relationship was found between any exercise parameter and the gut microbiota composition (p ≥ 0.05). These findings demonstrate that the physical and physiological demands of training and matches of an official international tournament did not change the gut microbiota composition of elite female football players. Furthermore, it supports that the gut microbiota of athletes appears resilient to the physical and physiological demands of training and match play.
Collapse
Affiliation(s)
- Catarina B Oliveira
- Nutrition and Metabolism, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Cláudia Marques
- Nutrition and Metabolism, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
- CINTESIS, NOVA Medical School, NMS, Universidade Nova de Lisboa, Lisboa, 1169-056, Portugal
| | - Rodrigo Abreu
- Portugal Football School, Portuguese Football Federation, Oeiras, Portugal
- Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| | - Pedro Figueiredo
- Portugal Football School, Portuguese Football Federation, Oeiras, Portugal
- Research Center in Sports Science, Health Sciences and Human Development, CIDESD, Vila Real, Portugal
- CIDEFES, Universidade Lusófona, Lisboa, Portugal
| | - Conceição Calhau
- Nutrition and Metabolism, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
- CINTESIS, NOVA Medical School, NMS, Universidade Nova de Lisboa, Lisboa, 1169-056, Portugal
| | - João Brito
- Portugal Football School, Portuguese Football Federation, Oeiras, Portugal
| | - Mónica Sousa
- Nutrition and Metabolism, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
- CINTESIS, NOVA Medical School, NMS, Universidade Nova de Lisboa, Lisboa, 1169-056, Portugal
| |
Collapse
|
99
|
Vijay A, Valdes AM. Role of the gut microbiome in chronic diseases: a narrative review. Eur J Clin Nutr 2022; 76:489-501. [PMID: 34584224 PMCID: PMC8477631 DOI: 10.1038/s41430-021-00991-6] [Citation(s) in RCA: 219] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/29/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023]
Affiliation(s)
- Amrita Vijay
- Division of Rheumatology, Orthopaedics and Dermatology, School of Medicine, The University of Nottingham, Nottingham, UK.
| | - Ana M Valdes
- Division of Rheumatology, Orthopaedics and Dermatology, School of Medicine, The University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK
| |
Collapse
|
100
|
Sun Y, Meng Y, Ou Z, Li Y, Zhang M, Chen Y, Zhang Z, Chen X, Mu P, Norbäck D, Zhao Z, Zhang X, Fu X. Indoor microbiome, air pollutants and asthma, rhinitis and eczema in preschool children - A repeated cross-sectional study. ENVIRONMENT INTERNATIONAL 2022; 161:107137. [PMID: 35168186 DOI: 10.1016/j.envint.2022.107137] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Indoor microbiome exposure is associated with asthma, rhinitis and eczema. However, no studies report the interactions between environmental characteristics, indoor microbiome and health effects in a repeated cross-sectional framework. METHODS 1,279 and 1,121 preschool children in an industrial city (Taiyuan) of China were assessed for asthma, rhinitis and eczema symptoms in 2012 and 2019 by self-administered questionnaires, respectively. Bacteria and fungi in classroom vacuum dust were characterized by culture-independent amplicon sequencing. Multi-level logistic/linear regression was performed in two cross-sectional and two combined models to assess the associations. RESULTS The number of observed species in bacterial and fungal communities in classrooms increased significantly from 2012 to 2019, and the compositions of the microbial communities were drastically changed (p < 0.001). The temporal microbiome variation was significantly larger than the spatial variation within the city (p < 0.001). Annual average outdoor SO2 concentration decreased by 60.7%, whereas NO2 and PM10 concentrations increased by 63.3% and 40.0% from 2012 to 2019, which were both associated with indoor microbiome variation (PERMANOVA p < 0.001). The prevalence of asthma (2.0% to 3.3%, p = 0.06) and rhinitis (28.0% to 25.3%, p = 0.13) were not significantly changed, but the prevalence of eczema was increased (3.6% to 7.0%; p < 0.001). Aspergillus subversicolor, Collinsella and Cutibacterium were positively associated with asthma, rhinitis and eczema, respectively (p < 0.01). Prevotella, Lactobacillus iners and Dolosigranulum were protectively (negatively) associated with rhinitis (p < 0.01), consistent with previous studies in the human respiratory tract. NO2 and PM10 concentrations were negatively associated with rhinitis in a bivariate model, but a multivariate mediation analysis revealed that Prevotella fully mediated the health effects. CONCLUSIONS This is the first study to report the interactions between environmental characteristics, indoor microbiome and health in a repeated cross-sectional framework. The mediating effects of indoor microorganisms suggest incorporating biological with chemical exposure for a comprehensive exposure assessment.
Collapse
Affiliation(s)
- Yu Sun
- Institute of Environmental Science, Shanxi University, Taiyuan, PR China; Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, PR China; Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Yi Meng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, PR China; Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Zheyuan Ou
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, PR China; Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Yanling Li
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, PR China; Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Mei Zhang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, PR China; Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Yang Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, PR China; Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Zefei Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan, PR China
| | - Xingyi Chen
- Institute of Environmental Science, Shanxi University, Taiyuan, PR China
| | - Peiqiang Mu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, PR China; Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Dan Norbäck
- Occupational and Environmental Medicine, Dept. of Medical Science, University Hospital, Uppsala University, 75237 Uppsala, Sweden
| | - Zhuohui Zhao
- Department of Environmental Health, School of Public Health, Fudan University, Key Laboratory of Public Health Safety of the Ministry of Education, NHC Key Laboratory of Health Technology Assessment (Fudan University), Shanghai Typhoon Institute/CMA, Shanghai Key Laboratory of Meteorology and Health, Shanghai 200030, China
| | - Xin Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan, PR China.
| | - Xi Fu
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, Guangdong Pharmaceutical University, Guangzhou, PR China.
| |
Collapse
|