51
|
Furukawa R, Fechheimer M. The structure, function, and assembly of actin filament bundles. INTERNATIONAL REVIEW OF CYTOLOGY 1997; 175:29-90. [PMID: 9203356 DOI: 10.1016/s0074-7696(08)62125-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The cellular organization, function, and molecular composition of selected biological systems with prominent actin filament bundles are reviewed. An overall picture of the great variety of functions served by actin bundles emerges from this overview. A unifying theme is that the actin cross-linking proteins are conserved throughout the eukaryotic kingdom and yet assembled in a variety of combinations to produce actin bundles of differing functions. Mechanisms of actin bundle formation in vitro are considered illustrating the variety of physical and chemical driving forces in this exceedingly complex process. Our limited knowledge regarding the formation of actin filament bundles in vivo is contrasted with the elegant biophysical studies performed in vitro but nonetheless reveals that interactions with membranes, nucleation sites, and other organizational components must contribute to formation of actin bundles in vivo.
Collapse
Affiliation(s)
- R Furukawa
- Department of Cellular Biology, University of Georgia, Athens 30602, USA
| | | |
Collapse
|
52
|
Doering DS, Matsudaira P. Cysteine scanning mutagenesis at 40 of 76 positions in villin headpiece maps the F-actin binding site and structural features of the domain. Biochemistry 1996; 35:12677-85. [PMID: 8841111 DOI: 10.1021/bi9615699] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Villin headpiece, the 76 amino acid, C-terminal domain of villin, is one of the two F-actin binding sites in villin necessary for F-actin bundling activity. Expression and study of recombinant headpiece revealed the domain to be remarkably thermostable (Tm = 74 degrees C) for a non-disulfide-bonded domain. Forty independent point mutations to cysteine of headpiece have been purified and tested for their actin binding activity, cysteine reactivity, and thermal stability. These assays identify two segments of headpiece, near amino acids 38 and 70 of headpiece, in which mutations to cysteine significantly disrupt cosedimentation of headpiece with F-actin. Assay of the thermal stability of these mutants and assay of the reactivity of the introduced cysteine show that these amino acids are mutations at the protein surface that do not perturb the overall structure of the domain. The actin binding mutants are replacements to cysteine of Lys38, Glu39, Lys65, Lys70, Lys71, Leu75, and Phe76 of headpiece. We propose that these discontinuous segments of charged amino acids define the F-actin binding contacts of the headpiece domain. The assay of mutants for effects on the thermal stability of helical structure as well as the assay of reactivity of the introduced sulfhydryl group identify candidate positions that are involved in the stabilizing core and internal structure of the domain. The cysteine scanning mutagenesis also identifies an amino-terminal subdomain (Val1-Leu35) and a predominantly helical carboxy-terminal subdomain (Pro36-Phe76).
Collapse
Affiliation(s)
- D S Doering
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge 02142, USA.
| | | |
Collapse
|
53
|
Prat AG, Holtzman EJ, Brown D, Cunningham CC, Reisin IL, Kleyman TR, McLaughlin M, Jackson GR, Lydon J, Cantiello HF. Renal epithelial protein (Apx) is an actin cytoskeleton-regulated Na+ channel. J Biol Chem 1996; 271:18045-53. [PMID: 8663566 DOI: 10.1074/jbc.271.30.18045] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Apx, the amphibian protein associated with renal amiloride-sensitive Na+ channel activity and with properties consistent with the pore-forming 150-kDa subunit of an epithelial Na+ channel complex initially purified by Benos et al. (Benos, D. J., Saccomani, G., and Sariban-Sohraby, S.(1987) J. Biol. Chem. 262, 10613-10618), has previously failed to generate amiloride-sensitive Na+ currents (Staub, O., Verrey, F., Kleyman, T. R., Benos, D. J., Rossier, B. C., and Kraehenbuhl, J.-P.(1992) J. Cell Biol. 119, 1497-1506). Renal epithelial Na+ channel activity is tonically inhibited by endogenous actin filaments (Cantiello, H. F., Stow, J., Prat, A. G., and Ausiello, D. A.(1991) Am. J. Physiol. 261, C882-C888). Thus, Apx was expressed and its function examined in human melanoma cells with a defective actin-based cytoskeleton. Apx-transfection was associated with a 60-900% increase in amiloride-sensitive (Ki = 3 microM) Na+ currents. Single channel Na+ currents had a similar functional fingerprint to the vasopressin-sensitive, and actin-regulated epithelial Na+ channel of A6 cells, including a 6-7 pS single channel conductance and a perm-selectivity of Na+:K+ of 4:1. Na+ channel activity was either spontaneous, or induced by addition of actin or protein kinase A plus ATP to the bathing solution of excised inside-out patches. Therefore, Apx may be responsible for the ionic conductance involved in the vasopressin-activated Na+ reabsorption in the amphibian kidney.
Collapse
Affiliation(s)
- A G Prat
- Renal Unit, Massachusetts General Hospital East, Charlestown, Massachusetts 02129, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Sanderson IR, Ezzell RM, Kedinger M, Erlanger M, Xu ZX, Pringault E, Leon-Robine S, Louvard D, Walker WA. Human fetal enterocytes in vitro: modulation of the phenotype by extracellular matrix. Proc Natl Acad Sci U S A 1996; 93:7717-22. [PMID: 8755542 PMCID: PMC38813 DOI: 10.1073/pnas.93.15.7717] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The differentiation of small intestinal epithelial cells may require stimulation by microenvironmental factors in vivo. In this study, the effects of mesenchymal and luminal elements in nonmalignant epithelia] cells isolated from the human fetus were studied in vitro. Enterocytes from the human fetus were cultured and microenvironmental factors were added in stages, each stage more closely approximating the microenvironment in vivo. Four stages were examined: epithelial cells derived on plastic from intestinal culture and grown as a cell clone, the same cells grown on connective tissue support, primary epithelial explants grown on fibroblasts with a laminin base, and primary epithelial explants grown on fibroblasts and laminin with n-butyrate added to the incubation medium. The epithelial cell clone dedifferentiated when grown on plastic; however, the cells expressed cytokeratins and villin as evidence of their epithelial cell origin. Human connective tissue matrix from Engelbreth-Holm-Swarm sarcoma cells (Matrigel) modulated their phenotype: alkaline phosphatase activity increased, microvilli developed on their apical surface, and the profile of insulin-like growth factor binding proteins resembled that secreted by differentiated enterocytes. Epithelial cells taken directly from the human fetus as primary cultures and grown as explants on fibroblasts and laminin expressed greater specific enzyme activities in brush border membrane fractions than the cell clone. These activities were enhanced by the luminal molecule sodium butyrate. Thus the sequential addition of connective tissue and luminal molecules to nonmalignant epithelia] cells in vitro induces a spectrum of changes in the epithelial cell phenotype toward full differentiation.
Collapse
Affiliation(s)
- I R Sanderson
- Developmental Gastroenterology Laboratory, Harvard Clinical Nutrition Research Center, Massachusetts General Hospital, Boston 02129-2060, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Van Troys M, Dewitte D, Goethals M, Carlier MF, Vandekerckhove J, Ampe C. The actin binding site of thymosin beta 4 mapped by mutational analysis. EMBO J 1996; 15:201-10. [PMID: 8617195 PMCID: PMC449934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We characterized in detail the actin binding site of the small actin-sequestering protein thymosin beta 4 (T beta 4) using chemically synthesized full-length T beta 4 variants. The N-terminal part (residues 1-16) and a hexapeptide motif (residues 17-22) form separate structural entities. In both, we identified charged and hydrophobic residues that participate in the actin interaction using chemical cross-linking, complex formation in native gels and actin-sequestering experiments. Quantitative data on the activity of the variants and circular dichroism experiments allow to present a model in which the N-terminal part needs to adopt an alpha-helix for actin binding and interacts through a patch of hydrophobic residues (6M-I-F12) on one side of this helix. Also, electrostatic contacts between actin and lysine residues 18, in the motif, and 14, in the N-terminal alpha-helix, appear important for binding. The residues critical for contacting actin are conserved throughout the beta-thymosin family and in addition to this we identify a similar pattern in the C-terminal headpiece of villin and dematin.
Collapse
Affiliation(s)
- M Van Troys
- Department of Biochemistry, University of Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
56
|
The cytoskeleton of the intestinal epithelium. CYTOSKELETON IN SPECIALIZED TISSUES AND IN PATHOLOGICAL STATES 1996. [DOI: 10.1016/s1874-6020(96)80015-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
57
|
Barron-Casella EA, Torres MA, Scherer SW, Heng HH, Tsui LC, Casella JF. Sequence analysis and chromosomal localization of human Cap Z. Conserved residues within the actin-binding domain may link Cap Z to gelsolin/severin and profilin protein families. J Biol Chem 1995; 270:21472-9. [PMID: 7665558 DOI: 10.1074/jbc.270.37.21472] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
From a human retinal cDNA library, we have isolated cDNAs that are homologs for the alpha 2 and beta subunits of chicken Cap Z. The derived human alpha subunit shares 95% amino acid identity with the chicken alpha 2 subunit; the beta subunit is 99% identical to the chicken subunit residues 1-243. The remaining portion of the human beta subunit (244-272) diverges significantly with only 8 out of 29 C-terminal amino acids conserved between the two species. This lack of conservation is of particular interest because the chicken C terminus contains an actin-binding domain. Cosedimentation assays with F-actin show that human Cap Z binds actin with an affinity equal that of chicken Cap Z. These results point to the eight shared amino acids as critical for actin binding, three of which are regularly spaced leucines. These apolar residues and one outside the region of divergence align well with those residues of the actin-binding alpha-helix proposed for gelsolin segment 1. The apolar residues as well as three polar amino acids are also conserved in other capping, capping and severing, and monomer-binding proteins. Amino acid substitutions in the chicken beta subunit of the two most highly conserved leucines result in significant decreases in F-actin binding activity. The human alpha 2 gene (CAPZA2) has been mapped to chromosome 7 position q31.2-q31.3 and the beta gene (CAPZB) to chromosome 1 region p36.1.
Collapse
Affiliation(s)
- E A Barron-Casella
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | |
Collapse
|
58
|
Azim AC, Knoll JH, Beggs AH, Chishti AH. Isoform cloning, actin binding, and chromosomal localization of human erythroid dematin, a member of the villin superfamily. J Biol Chem 1995; 270:17407-13. [PMID: 7615546 DOI: 10.1074/jbc.270.29.17407] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Dematin is an actin-bundling protein of the erythroid membrane skeleton and is abundantly expressed in human brain, heart, skeletal, muscle, kidney, and lung. The 48-kDa subunit of dematin contains a headpiece domain which was originally identified in villin, and actin-binding protein of the brush-border cytoskeleton. The head-piece domain of villin is essential for its morphogenic function in vivo. Here we report the primary structure of 52-kDa subunit of dematin which differs from the 48-kDa subunit by a 22-amino-acid insertion within its headpiece domain. A unique feature of the insertion sequence of the 52-kDa subunit is its homology to erythrocyte protein 4.2. The insertion sequence also includes a cysteine residue which may explain the formation of sulfhydryl-linked trimers of dematin. Actin binding measurements using recombinant fusion proteins revealed that each monomer of dematin contains two F-actin binding sites: one in the headpiece domain and the other in the undefined N-terminal domain. Although the actin bundling activity of intact dematin was abolished by phosphorylation, no effect of phosphorylation was observed on the actin binding activity of fusion proteins. Using somatic cell hybrid panels and fluorescence in situ hybridization, the dematin gene was localized on the short arm of chromosome 8. The dematin locus, 8p21.1, is distal to the known locus of human erythroid ankyrin (8p11.2) and may contribute to the etiology of hemolytic anemia in a subset of patients with severe hereditary spherocytosis.
Collapse
Affiliation(s)
- A C Azim
- Department of Biomedical Research, St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, Massachusetts 02135, USA
| | | | | | | |
Collapse
|
59
|
Simenel C, Rose T, Goethals M, Vandekerckhove J, Friederich E, Louvard D, Delepierre M. Conformational behaviour of a synthetic peptide of the C-terminus of villin that interacts with actin: an NMR, CD and stimulated annealing study. INTERNATIONAL JOURNAL OF PEPTIDE AND PROTEIN RESEARCH 1995; 45:574-86. [PMID: 7558589 DOI: 10.1111/j.1399-3011.1995.tb01322.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The solution structure of a synthetic 22-amino acid peptide (P1) corresponding to the extreme C-terminal end and one of the F-actin binding sites of villin has been determined by 1H NMR and CD spectroscopy. The structure of this peptide was compared to that of a peptide in which lysine to glutamic acid substitutions were introduced at positions 17 and 19 (P11), abolishing F-actin binding. Both peptides are largely unstructured in aqueous solution. Changes observed in the NMR and CD spectra of both peptides are consistent with alpha-helix formation in trifluoroethanol/water mixtures. A set of 189 interproton distances derived from nuclear Overhauser enhancement (NOE) measurements, 17 phi-angle constraints obtained from 3JNH alpha coupling constants, as well as about 10 N ... O distance restraints deduced from amide proton exchange kinetics with deuterium, were used for the structure determination. The three-dimensional structure of P1 and P11 is characterized by two helical regions, one extending from residues 2 to 5 and a second covering residues 7 to 17. The central fragment, ranging from Leu-7 to Leu-15, is more stable. The C-terminal residues are less structured, particularly within peptide P11. The significance of these structural results is discussed in relation to the biological activity of villin.
Collapse
Affiliation(s)
- C Simenel
- NMR Laboratory, Pasteur Institute, CNRS URA 1129, Paris, France
| | | | | | | | | | | | | |
Collapse
|
60
|
Gettemans J, De Ville Y, Waelkens E, Vandekerckhove J. The actin-binding properties of the Physarum actin-fragmin complex. Regulation by calcium, phospholipids, and phosphorylation. J Biol Chem 1995; 270:2644-51. [PMID: 7852332 DOI: 10.1074/jbc.270.6.2644] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The actin-binding properties of the actin-fragmin complex from Physarum polycephalum microplasmodia were investigated with respect to regulation by Ca2+, phospholipids, and phosphorylation of the actin subunit by the endogenous actin-fragmin kinase. Fragmin possesses two high affinity actin-binding sites and probably also a third, low affinity site. Its nucleating and F-actin severing activities are inhibited by phosphatidylinositol 4,5-bisphosphate (PIP2). Actin-fragmin specifically binds PIP2 which competes with actin for the Ca(2+)-sensitive site. However, PIP2 cannot dissociate the actin-fragmin complex nor the actin2-fragmin trimer. Efficient F-actin nucleating activity by actin-fragmin is only observed with unphosphorylated actin-fragmin, in the absence of PIP2 and at high Ca2+ (> microM) concentrations. In the presence of PIP2, actin-fragmin only caps actin filaments when unphosphorylated. The results suggest that in the cell, hydrolysis of PIP2, concomitant with the increase of cytosolic Ca2+, could promote subcortical actin polymerization.
Collapse
Affiliation(s)
- J Gettemans
- Department of Biochemistry, Universiteit Gent, Belgium
| | | | | | | |
Collapse
|
61
|
Rimm DL, Holland TE, Morrow JS, Anderson JM. Autoantibodies specific for villin found in patients with colon cancer and other colitides. Dig Dis Sci 1995; 40:389-95. [PMID: 7851204 DOI: 10.1007/bf02065426] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have sought evidence for blood-borne autoantigens from the apical regions of the intestinal epithelial cell that are associated with specific gastrointestinal diseases. While a wide range of brush border-specific proteins are antigenic in various disease states, significantly increased levels of autoantibody to villin, a 95-kDa protein microvillar actin-binding protein, were identified by western blot in colon cancer patients' sera. Examination of a population with a range of colonic diseases showed that anti-villin antibody is most prevalent in patients with colon cancer at significantly higher (P < 0.005) levels than normal controls. We conclude that cryptic antigens within the brush border, specifically including villin, incite an active autoimmune response. The pathological significance of these antibodies remains to be determined. These anti-villin antibodies also may provide a unique noninvasive approach for the detection of gastrointestinal pathology.
Collapse
Affiliation(s)
- D L Rimm
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06510
| | | | | | | |
Collapse
|
62
|
Lück A, D'Haese J, Hinssen H. A gelsolin-related protein from lobster muscle: cloning, sequence analysis and expression. Biochem J 1995; 305 ( Pt 3):767-75. [PMID: 7848275 PMCID: PMC1136325 DOI: 10.1042/bj3050767] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The tail muscle of the lobster Homarus americanus contains an actin-binding protein with an apparent molecular mass of 105 kDa determined by SDS/PAGE and gelsolin-like properties. We isolated this protein and peptide sequences were obtained after limited proteolysis with chymotrypsin. A tail-muscle-specific cDNA library was constructed in a lambda expression vector and a full-length clone was obtained by screening with a polyclonal anti-(crustacean gelsolin) antibody. The cDNA insert of approx. 3.2 kb length was sequenced. The cDNA contained an open reading frame of 2.265 kb, and the deduced amino acid sequence of 754 residues (83,469 Da) identified the protein as a cytoplasmic member of the gelsolin/villin protein family. Comparison of the lobster gelsolin amino acid sequence with other members of this protein family revealed the characteristic 6-fold repeated segmental structure as well as the three conserved sequence motifs typical of each segment [Way and Weeds (1988) J. Mol. Biol. 203, 1127-1133]. Strong homologies were found with Drosophila gelsolin, human gelsolin, villin core, Dictyostelium severin and Physarum fragmin. In addition, the gelsolin-like protein from lobster muscle revealed motifs that were clearly similar to the actin-bundling region of human villin headpiece although it did not itself contain a distinct headpiece domain. The recombinant lobster gelsolin-like protein, expressed in Escherichia coli as a fusion protein, was purified from inclusion bodies and renatured as a functional protein. There were no significant differences in the biological activity tested between the recombinant and the native protein isolated from lobster muscle.
Collapse
Affiliation(s)
- A Lück
- Biochemical Cell Biology Group, University of Bielefeld, Federal Republic of Germany
| | | | | |
Collapse
|
63
|
Mahajan-Miklos S, Cooley L. The villin-like protein encoded by the Drosophila quail gene is required for actin bundle assembly during oogenesis. Cell 1994; 78:291-301. [PMID: 8044841 DOI: 10.1016/0092-8674(94)90298-4] [Citation(s) in RCA: 115] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Mutations in the Drosophila quail gene result in female sterility due to the disruption of cytoplasmic transport from the nurse cells into the oocyte late in oogenesis. Nurse cells from quail mutant egg chambers fail to assemble cytoplasmic actin filament bundles correctly. We have cloned the quail gene and found that it encodes a protein with homology to the vertebrate actin-regulating protein villin. Unlike vertebrate villin, which is restricted to specialized absorptive epithelial cells, the villin-like protein encoded by quail is germline specific in adult flies. Antibodies directed against the quail protein show a striking colocalization with filamentous actin in the nurse cells and the oocyte. Our results demonstrate that the villin-like product of quail is required for the formation of cytoplasmic actin filament bundles in nurse cells, possibly by regulating both the polymerization and organization of actin filaments as demonstrated for vertebrate villin in vitro.
Collapse
Affiliation(s)
- S Mahajan-Miklos
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510
| | | |
Collapse
|
64
|
Stella MC, Schauerte H, Straub KL, Leptin M. Identification of secreted and cytosolic gelsolin in Drosophila. J Cell Biol 1994; 125:607-16. [PMID: 8175883 PMCID: PMC2119988 DOI: 10.1083/jcb.125.3.607] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We have cloned the gene for Drosophila gelsolin. Two mRNAs are produced from this gene by differential splicing. The protein encoded by the longer mRNA has a signal peptide and its electrophoretic mobility when translated in vitro in the presence of microsomes is higher than when it is translated without microsomes. The protein translated from the shorter mRNA does not show this difference. This indicates that Drosophila like vertebrates has two forms of gelsolin, one secreted, the other cytoplasmic. The mRNA for both is present ubiquitously in the early embryo. Later, the cytoplasmic form is expressed in parts of the gut. The RNA for the secreted form is expressed in the fat body, and the secreted protein is abundant in extracellular fluid (hemolymph). The cytoplasmic form of gelsolin co-localizes with F-actin in the cortex of the cells in the embryo and in larval epithelia. However, during cellularization of the blastoderm it is reduced at the base of the cleavage furrow, a structure similar to the contractile ring in dividing cells.
Collapse
Affiliation(s)
- M C Stella
- Max-Planck-Institut für Entwicklungsbiologie, Tübingen, Federal Republic of Germany
| | | | | | | |
Collapse
|
65
|
Characterization of a novel cofilin isoform that is predominantly expressed in mammalian skeletal muscle. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36603-6] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
66
|
Nakamura S, Sakurai T, Nonomura Y. Differential expression of bovine adseverin in adrenal gland revealed by in situ hybridization. Cloning of a cDNA for adseverin. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37545-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
67
|
Pope B, Way M, Matsudaira PT, Weeds A. Characterisation of the F-actin binding domains of villin: classification of F-actin binding proteins into two groups according to their binding sites on actin. FEBS Lett 1994; 338:58-62. [PMID: 8307157 DOI: 10.1016/0014-5793(94)80116-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The F-actin binding properties of chicken villin, its headpiece and domains 2-3 (V2-3) have been analysed to identify sites involved in bundle formation. Headpiece and V2-3 bind actin with Kd values of approximately 7 microM and approximately 0.3 microM, respectively, at low ionic strength. V2-3 binding, like that of villin, is weakened with increasing salt concentration; headpiece binding is not. Competition experiments show that headpiece and V2-3 bind to different sites on actin, forming the two cross-linking sites of villin. Headpiece does not compete with the F-actin binding domains of gelsolin or alpha-actinin, but it dissociates actin depolymerizing factor. We suggest that the F-actin binding domains of actin severing, crosslinking and capping proteins can be organized into two classes.
Collapse
Affiliation(s)
- B Pope
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | | | |
Collapse
|
68
|
Affiliation(s)
- S Hatano
- Department of Molecular Biology, School of Science, Nagoya University, Japan
| |
Collapse
|
69
|
Bryan J, Edwards R, Matsudaira P, Otto J, Wulfkuhle J. Fascin, an echinoid actin-bundling protein, is a homolog of the Drosophila singed gene product. Proc Natl Acad Sci U S A 1993; 90:9115-9. [PMID: 8415664 PMCID: PMC47512 DOI: 10.1073/pnas.90.19.9115] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A cDNA for fascin, an actin-bundling protein in echinoderms, has been cloned, sequenced, and expressed. The predicted mass of the protein is approximately 55 kDa, similar to that observed for fascin purified from sea urchin eggs. Bacterially expressed fascin reacts with antibodies prepared against sea urchin egg fascin. Fascin has a strong sequence similarity to the singed gene (sn) product in Drosophila and has similarities with a 55-kDa human actin-bundling protein. No extensive similarities were found with other known actin-binding/bundling proteins, indicating that this is a separate gene family.
Collapse
Affiliation(s)
- J Bryan
- Department of Cell Biology, Baylor College of Medicine, Houston, TX 77030-3498
| | | | | | | | | |
Collapse
|
70
|
Hellweg T, Hinssen H, Eimer W. The Ca(2+)-induced conformational change of gelsolin is located in the carboxyl-terminal half of the molecule. Biophys J 1993; 65:799-805. [PMID: 8218904 PMCID: PMC1225780 DOI: 10.1016/s0006-3495(93)81121-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We have purified the two functionally distinct domains of gelsolin, a Ca(2+)-dependent actin binding protein, by proteolytic cleavage and characterized their size and shape in solution by dynamic light scattering. In the absence of calcium we obtained the same translational diffusion coefficient for both fragments which are of approximately equal molecular mass. The frictional ratio fo/fexp (1.33-1.39) is similar to the value as obtained for intact gelsolin (1.37) in aqueous solution (Patkowski, A., J. Seils, H. Hinssen, and T. Dorfmüller. 1990. Biopolymers. 30:427-435), indicating a similar molecular shape for the native protein as well as for the two subdomains. Upon addition of Ca2+ the translational diffusion coefficient of the carboxyl-terminal half decreased by almost 10%, while there was no change observed for the amino terminus. This result indicates that the ligand-induced conformational change as seen for intact gelsolin is probably located on the carboxyl-terminal domain of the protein. Since gelsolin has binding sites in both domains, and the isolated amino terminus binds and severs actin in a calcium-independent manner, our results suggests that the structural transition in the carboxyl-terminal part of intact gelsolin also affects the actin binding properties of the amino-terminal half.
Collapse
Affiliation(s)
- T Hellweg
- Department of Chemistry, University of Bielefeld, Germany
| | | | | |
Collapse
|
71
|
Rana AP, Ruff P, Maalouf GJ, Speicher DW, Chishti AH. Cloning of human erythroid dematin reveals another member of the villin family. Proc Natl Acad Sci U S A 1993; 90:6651-5. [PMID: 8341682 PMCID: PMC46990 DOI: 10.1073/pnas.90.14.6651] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Dematin is an actin-bundling protein originally identified in the human erythroid membrane skeleton. Its actin-bundling activity is abolished upon phosphorylation by the cAMP-dependent protein kinase and is restored after dephosphorylation. Here we report the complete primary structure of human erythroid dematin, whose sequence includes a homologue of the "headpiece" sequence found at the C terminus of villin. This headpiece is essential for villin function in inducing microvillar development and actin redistribution. The widespread expression of dematin transcripts in human tissues suggests that dematin and its homologues may substitute for villin in villin-negative tissues to regulate actin reorganization by a phosphorylation-regulated mechanism.
Collapse
Affiliation(s)
- A P Rana
- Department of Biomedical Research, St. Elizabeth's Hospital, Tufts University School of Medicine, Boston, MA 02135
| | | | | | | | | |
Collapse
|
72
|
Koopmans M, Monroe SS, Coffield LM, Zaki SR. Optimization of extraction and PCR amplification of RNA extracts from paraffin-embedded tissue in different fixatives. J Virol Methods 1993; 43:189-204. [PMID: 8396155 PMCID: PMC7119522 DOI: 10.1016/0166-0934(93)90076-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A method was developed for fast and efficient isolation of RNA from paraffin-embedded tissue sections for subsequent PCR analysis. This method is based on the binding of RNA to acid-treated glass beads in the presence of a high molarity of guanidinium salt. It can be completed within an hour, and obviates the need for dewaxing and phenol/chloroform extractions. The effect of various fixatives and fixation times was tested and the amplification of actin mRNA fragments ranging in length from 82 to 507 bp was used to demonstrate the presence of RNA in the extracts. The method was compared to existing extraction techniques by studying the quality of the templates for reverse-transcriptase polymerase chain reaction amplification (RT-PCR), using virus-infected and mock-infected paraffin-embedded cell pellets as a model. PCR amplification of cellular and viral RNA was successful for RNA isolated by use of all extraction techniques, although the glass bead method was preferred for its simplicity and rapidity. Specimens fixed with formalin were found to be suitable for PCR, but the best results were obtained with acetone-fixed paraffin-embedded material. Dewaxing of tissue sections had no effect on the yield and quality of RNA extractions, and further purification of the extracts using gel filtration did not improve the results. After the protocols were optimized, rotavirus-infected cell pellets were used to demonstrate that extraction and amplification of dsRNA was possible. The information obtained from the studies with the model system was used for extraction of toroviral and rotaviral RNA from archival intestinal material. These data indicate that paraffin-embedded archival tissue can be used for RT-PCR analysis, adding an important technique to diagnostic pathology and retrospective studies.
Collapse
Affiliation(s)
- M Koopmans
- Viral Gastroenteritis Section, Centers for Disease Control and Prevention, Atlanta, GA 30333
| | | | | | | |
Collapse
|
73
|
Vidal SM, Malo D, Vogan K, Skamene E, Gros P. Natural resistance to infection with intracellular parasites: isolation of a candidate for Bcg. Cell 1993; 73:469-85. [PMID: 8490962 DOI: 10.1016/0092-8674(93)90135-d] [Citation(s) in RCA: 823] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Natural resistance to infection with intracellular parasites is controlled by a dominant gene on mouse chromosome 1, called Bcg, Lsh, or Ity. Bcg affects the capacity of macrophages to destroy ingested intracellular parasites early during infection. We have assembled a 400 kb bacteriophage and cosmid contig within the genomic interval containing Bcg. A search for transcription units by exon amplification identified six novel genes in this contig. RNA expression studies showed that one of them, designated Nramp, was expressed exclusively in macrophage populations from reticuloendothelial organs and in the macrophage line J774A. Nramp encodes an integral membrane protein that has structural homology with known prokaryotic and eukaryotic transport systems, suggesting a macrophage-specific membrane transport function. Susceptibility to infection (Bcgs) in 13 Bcgr and Bcgs strains tested is associated with a nonconservative Gly-105 to Asp-105 substitution within predicted transmembrane domain 2 of Nramp.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Carrier Proteins/chemistry
- Carrier Proteins/genetics
- Carrier Proteins/immunology
- Cation Transport Proteins
- Chromosome Mapping
- DNA/genetics
- Exons
- Gene Library
- Genes, Dominant
- Immunity, Innate/genetics
- Iron-Binding Proteins
- Macrophages/immunology
- Macrophages/physiology
- Membrane Proteins/chemistry
- Membrane Proteins/genetics
- Membrane Proteins/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Inbred Strains
- Models, Structural
- Molecular Sequence Data
- Oligodeoxyribonucleotides
- Organ Specificity
- Parasitic Diseases/immunology
- Polymerase Chain Reaction/methods
- Protein Structure, Secondary
- Restriction Mapping
- Sequence Homology, Amino Acid
- Transcription, Genetic
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- S M Vidal
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
74
|
Heusser S, Colin S, Figiel A, Huet C, Keller JM, Pornet P, Robine S, Vandamme J, Vandekerckhove J, Dauça M. Amphibian intestinal villin: isolation and expression during embryonic and larval development. J Cell Sci 1992; 103 ( Pt 3):699-708. [PMID: 1478966 DOI: 10.1242/jcs.103.3.699] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An actin-binding protein of M(r) 105,000 has been isolated from anuran amphibian intestinal mucosa. Polyclonal antibodies directed against chicken and pig intestinal villins and anti-porcine villin headpiece monoclonal antibody crossreact with the amphibian M(r) 105,000 protein. Furthermore, the latter possesses an NH2-terminal sequence that is very homologous to those of avian and mammalian villins. In addition, polyclonal antibodies directed against amphibian intestinal M(r) 105,000 protein crossreact with chicken and mouse intestinal epithelial cell villins. These data indicate that the amphibian intestinal M(r) 105,000 protein is immunologically and structurally related to villin, an actin-binding protein expressed in specific epithelial tissues in vertebrates. Morphological, immunocytochemical and immunoblotting techniques were then used to investigate the expression of villin during embryonic and larval intestinal development of Xenopus laevis. Villin is not found in the egg or the endoderm of the early embryo. It is first detected just before hatching in the apical domain of endodermal cells at a time when few surface microvilli are visible by transmission electron microscopy. In the newly hatched larva, villin accumulates as these cells differentiate. These results provide a detailed developmental profile of Xenopus intestinal villin expression and demonstrate that this protein is a useful marker for the presumptive intestinal endoderm.
Collapse
Affiliation(s)
- S Heusser
- Laboratoire de Biologie Cellulaire du Développement, Faculté des Sciences, Université de Nancy I, Vandoeuvre-les-Nancy, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Dabiri G, Young C, Rosenbloom J, Southwick F. Molecular cloning of human macrophage capping protein cDNA. A unique member of the gelsolin/villin family expressed primarily in macrophages. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42037-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
76
|
Friederich E, Vancompernolle K, Huet C, Goethals M, Finidori J, Vandekerckhove J, Louvard D. An actin-binding site containing a conserved motif of charged amino acid residues is essential for the morphogenic effect of villin. Cell 1992; 70:81-92. [PMID: 1623524 DOI: 10.1016/0092-8674(92)90535-k] [Citation(s) in RCA: 140] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The actin-binding protein villin induces microvillus growth and reorganization of the cytoskeleton in cells that do not normally produce this protein. Transfection of mutagenized villin cDNAs into CV-1 cells was used to show that a conserved, COOH-terminally located cluster of charged amino acid residues (KKEK) is crucial for the morphogenic activity of villin in vivo. In vitro experiments with a 22 amino acid synthetic peptide corresponding to this region of villin provide evidence that this motif is part of an F-actin-binding site that induces G-actin to polymerize. Chemical cross-linking of actin to this peptide, the effects of amino acid substitutions in peptides, and the behavior of villin variants further corroborate the participation of the KKEK sequence in actin contacts.
Collapse
Affiliation(s)
- E Friederich
- Institut Pasteur URA 1149 CNRS, Département de Biologie Moléculaire, Paris, France
| | | | | | | | | | | | | |
Collapse
|
77
|
Maunoury R, Robine S, Pringault E, Léonard N, Gaillard JA, Louvard D. Developmental regulation of villin gene expression in the epithelial cell lineages of mouse digestive and urogenital tracts. Development 1992; 115:717-28. [PMID: 1425351 DOI: 10.1242/dev.115.3.717] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The expression of villin, an actin-binding protein and major structural component of the brush border of specialized absorptive cells, was studied during mouse embryogenesis. We show that the ontogeny of villin expression is limited to the epithelial cell lineages of the digestive and uro-genital tracts and accounts for the tissue-specific expression observed in adult mice. This spatiotemporal pattern of villin expression is distinctive in sequence, intensity, regional distribution and polarization. During the development of the primitive gut, villin is faintly and discontinuously expressed in the invaginating foregut but it is expressed in every cell bordering the hindgut pocket. Later, villin expression increases along the developing intestine and concentrates in the brush border of the epithelium bordering the villi. In gut derivatives, villin is present in liver and pancreas primordia but only biliary and pancreatic cells maintain a faint villin expression as observed in adults. In the urogenital tract, mesonephric tubules are the first mesodermal derived structures to express villin. This expression is maintained in the ductuli efferents, paradidymis and epoophoron. Villin then appears in the proximal metanephric tubules and later increases and concentrates in the brush border of the renal proximal tubular epithelial cells. Thus villin expression can be considered as an early marker of the endodermal cell lineage during the development of the digestive system. Conversely, during the development of the excretory and genital system, villin is only expressed after the mesenchyme/epithelium conversion following the appearance of tubular structures. These observations emphasize the multiple levels of regulation of villin gene activity that occur during mouse embryogenesis and account for the strict pattern of tissue-specific expression observed in adults. In the future, regulatory elements of the villin gene may be used to target the early expression of oncogenes to the digestive and urogenital tracts of transgenic mice.
Collapse
Affiliation(s)
- R Maunoury
- Institut Cochin de Génetique Moléculaire, Paris, France
| | | | | | | | | | | |
Collapse
|
78
|
Ezzell RM, Leung J, Collins K, Chafel MM, Cardozo TJ, Matsudaira PT. Expression and localization of villin, fimbrin, and myosin I in differentiating mouse F9 teratocarcinoma cells. Dev Biol 1992; 151:575-85. [PMID: 1601186 DOI: 10.1016/0012-1606(92)90195-m] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
F9 embryonic carcinoma cells are a multipotent cell line which can be induced to differentiate into cells resembling the visceral endoderm, an extraembryonic absorptive epithelium characterized by apical microvilli. We have examined the role of villin, fimbrin, and myosin I, the major actin-binding proteins in the intestinal and visceral yolk sac microvilli, in the development of epithelial polarity and the assembly of the microvillus cytoskeleton in differentiating F9 cells. By immunoblot analysis villin was first detected at 4 days of differentiation. Confocal microscopy localized villin at Day 4 to the apical surface and by Day 6 to the basolateral surfaces as well. In comparison, fimbrin and myosin I were both present in undifferentiated F9 cells and became associated with the apical surface after villin during differentiation to visceral endoderm. The accumulation of villin, fimbrin, and myosin I at the apical surface in differentiating F9 cells correlated with the appearance of microvilli containing organized actin filament bundles. Two mouse villin cDNAs were isolated and characterized to examine villin expression during F9 differentiation. Mouse villin was encoded by two transcripts (3.8 and 3.4 kb) which differ in their 3'-noncoding region. Both villin mRNAs were first detected by Day 4 of differentiation and their appearance coincided with expression of the visceral endoderm marker alpha-fetoprotein. The pattern of expression and order of accumulation of villin, fimbrin, and myosin I in differentiating F9 cells are common to developing gut and yolk sac epithelium. This suggests that microvillus assembly is directed by a sequence of temporally and spatially regulated localizations of these actin-binding proteins.
Collapse
Affiliation(s)
- R M Ezzell
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge 02142
| | | | | | | | | | | |
Collapse
|
79
|
Eichinger L, Schleicher M. Characterization of actin- and lipid-binding domains in severin, a Ca(2+)-dependent F-actin fragmenting protein. Biochemistry 1992; 31:4779-87. [PMID: 1591239 DOI: 10.1021/bi00135a006] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Severin is a Ca(2+)-activated actin-binding protein that nucleates actin assembly and severs and caps the fast growing ends of actin filaments. It consists of three highly conserved domains. To investigate the domain structure of severin, we constructed genetically the N-terminal domain 1, the middle domain 2, and the tandem domains 2 + 3. Their interaction with actin, Ca2+, and lipids was characterized. Domain 1 contains the F-actin capping and a Ca(2+)-binding site [Eichinger, L., Noegel, A. A., & Schleicher, M. (1991) J. Cell Biol. 112, 665-676]. Binding of domain 2 to actin filaments was Ca(2+)-dependent and saturated at a 1:1 molar ratio. In the presence of Ca2+, about 1.5 mol of domains 2 + 3 bound per mole of F-actin subunit. Scatchard analysis gave a Kd of 18 microM for the interaction of domain 2 with F-actin subunits and a Kd of 1.6 microM for domains 2 + 3. Low-shear viscometry, electron microscopy, and low-speed sedimentation assays showed that domains 2 + 3 induced bundling of actin filaments. The influence of PIP2 micelles on the different activities of severin was assayed using native severin and N- and C-terminally truncated fragments. Severin contains at least two PIP2-binding sites since the activities of the two nonoverlapping severin fragments domain 1 and domains 2 + 3 were inhibited by PIP2. The specificity of severin-phospholipid interaction was investigated by studying the regulation of native severin by PIP2 and other pure or mixed phospholipids.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- L Eichinger
- Max-Planck-Institut für Biochemie, Martinsried, Federal Republic of Germany
| | | |
Collapse
|
80
|
Finidori J, Friederich E, Kwiatkowski DJ, Louvard D. In vivo analysis of functional domains from villin and gelsolin. J Cell Biol 1992; 116:1145-55. [PMID: 1310994 PMCID: PMC2289362 DOI: 10.1083/jcb.116.5.1145] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Transfected CV1 cells were used to compare the in vivo effects of various domains of villin and gelsolin. These two homologous actin modulating proteins both contain a duplicated severin-like sequence. Villin has in addition a carboxy-terminal domain, the headpiece, which accounts for its bundling activity. The effects of the villin-deleted mutants were compared with those of native villin. Our results show that essential domains of villin required to induce the growth of microvilli and F-actin redistribution are present in the first half of the core and in the headpiece. We also show that the second half of the villin core cannot be exchanged by its homolog in gelsolin. When expressed at high levels of CV1 cells, full length gelsolin completely disrupted stress fibers without change of the cell shape. Addition of the villin headpiece to gelsolin had no effect on the phenotype induced by gelsolin alone. Expression of the first half of gelsolin induced similar modifications as capping proteins and rapid cell mortality; this deleterious effect on the cell structure was also observed when the headpiece was linked to the first half of gelsolin. In cells expressing the second half of gelsolin, a dotted F-actin staining was often seen. Moreover elongated dorsal F-actin structures were observed when the headpiece was linked to the second gelsolin domain. These studies illustrate the patent in vivo severing activity of gelsolin as well as the distinct functional properties of villin core in contrast to gelsolin.
Collapse
Affiliation(s)
- J Finidori
- Unité de Recherche Associé 1149 Centre National de la Recherche Scientifique, Institut Pasteur, Département de Biologie Moléculaire, Paris, France
| | | | | | | |
Collapse
|
81
|
Way M, Pope B, Weeds AG. Are the conserved sequences in segment 1 of gelsolin important for binding actin? J Biophys Biochem Cytol 1992; 116:1135-43. [PMID: 1310993 PMCID: PMC2289352 DOI: 10.1083/jcb.116.5.1135] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The minimal region required for actin binding in the smallest of the three domains of gelsolin (termed Segment 1 or S1) was previously defined by deletion mutagenesis as residues 37-126. Further analysis of NH2-terminal deletions here redefines the minimal functional core as residues 41-126. Amino acid substitutions within this core further elucidate the nature of the interaction of segment 1 with actin. Of 26 point mutants analyzed, 14 reduced the affinity for actin. The charged residues His 119, Arg 120, Glu 121, and Gln 123 appear to be involved in direct interaction with actin. Substitutions of Leu 108, Leu 112, and Val 117 by polar groups all affect the structural stability of segment 1 and thereby reduce binding affinity. In addition replacement of Glu 126 by aspartic acid modifies the physical properties of segment 1 and weakens binding. We have further shown that changing charged residues within the highly conserved pentapeptide sequence LDDYL (residues 108-112) has no effect on actin binding. This sequence, found in a number of different actin binding proteins, does not therefore constitute part of the interaction site. Similarly, substitution of the two acidic residues by basic ones within the DESG motif of segment 1 (residues 96-99, but also found near the COOH terminus of actin) does not impair binding. These results show the dangers of predicting functional sites on the basis of conserved sequences.
Collapse
Affiliation(s)
- M Way
- Medical Research Council Laboratory of Molecular Biology, Cambridge, England
| | | | | |
Collapse
|
82
|
Hofmann A, Eichinger L, André E, Rieger D, Schleicher M. Cap100, a novel phosphatidylinositol 4,5-bisphosphate-regulated protein that caps actin filaments but does not nucleate actin assembly. CELL MOTILITY AND THE CYTOSKELETON 1992; 23:133-44. [PMID: 1333365 DOI: 10.1002/cm.970230206] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The fast and transient polymerization of actin in nonmuscle cells after stimulation with chemoattractants requires strong nucleation activities but also components that inhibit this process in resting cells. In this paper, we describe the purification and characterization of a new actin-binding protein from Dictyostelium discoideum that exhibited strong F-actin capping activity but did not nucleate actin assembly independently of the Ca2+ concentration. These properties led at physiological salt conditions to an inhibition of actin polymerization at a molar ratio of capping protein to actin below 1:1,000. The protein is a monomer, with a molecular mass of approximately 100 kDa, and is present in growing and in developing amoebae. Based on its F-actin capping function and its apparent molecular weight, we designated this monomeric protein cap100. As shown by dilution-induced depolymerization and by elongation assays, cap100 capped the barbed ends of actin filaments and did not sever F-actin. In agreement with its capping activity, cap100 increased the critical concentration for actin polymerization. In excitation or emission scans of pyrene-labeled G-actin, the fluorescence was increased in the presence of cap100. This suggests a G-actin binding activity for cap100. The capping activity could be completely inhibited by phosphatidylinositol 4,5-bisphosphate (PIP2), and bound cap100 could be removed by PIP2. The inhibition by phosphatidylinositol and the Ca(2+)-independent down-regulation of spontaneous actin polymerization indicate that cap100 plays a role in balancing the G- and F-actin pools of a resting cell. In the cytoplasm, the equilibrium would be shifted towards G-actin, but, below the membrane where F-actin is required, this activity would be inhibited by PIP2.
Collapse
Affiliation(s)
- A Hofmann
- Max-Planck-Institute for Biochemistry, Martinsried, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
83
|
Abstract
We have isolated and characterized the complete human villin gene. The villin gene is located on chromosome 2q35-36 in humans and on chromosome 1 in mice. Villin belongs to a family of calcium-regulated actin-binding proteins that share structural and functional homologies. The villin gene is expressed mainly in cells that develop a brush border, such as mucosal cells of the small and large intestine and epithelial cells of the kidney proximal tubules. Villin gene expression is strictly regulated during adult life and embryonic development in the digestive and urogenital tracts and, thus, may be used as a marker of the digestive and renal cell lineages. The human villin gene has one copy per haploid genome, encompasses about 25 kilobases, and contains 19 exons. Analysis of the structural organization of this gene shows that the two mRNAs that encode villin in humans arise by alternative choice of one of the two polyadenylylation signals located within the last exon. The overall organization of the exons reflects the gene duplication event from which this family of actin-binding proteins originated.
Collapse
Affiliation(s)
- E Pringault
- Département de Biologie Moléculaire, Institut Pasteur, Paris, France
| | | | | |
Collapse
|
84
|
Zimmerhackl LB, Leuk B, Hoschützky H. The cytoskeletal protein villin as a parameter for early detection of tubular damage in the human kidney. J Chromatogr A 1991; 587:81-4. [PMID: 1783663 DOI: 10.1016/0021-9673(91)85200-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Villin is a cytoskeletal protein of brush borders in the kidney and gut. After renal tubular cell injury the brushborder fragments are shedded into the tubular lumen and excreted with urine indicating renal tubular damage (so called "renal antigen" shedding). In urine villin appears as intact molecule (95,000 dalton) and as fragment with 70,000, 45,000 and 22,000 dalton. The major villin fragment (70,000 dalton) was purified after ammonium sulphate precipitation from urine of human renal transplant recipients. Final purification of the villin 70,000 dalton fragment was achieved by gel filtration with TSK 3000 SWG preparative grade. Purification was varified by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and western blotting.
Collapse
|
85
|
Yu F, Zhou D, Yin H. Chimeric and truncated gCap39 elucidate the requirements for actin filament severing and end capping by the gelsolin family of proteins. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54993-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
86
|
Malo D, Schurr E, Epstein DJ, Vekemans M, Skamene E, Gros P. The host resistance locus Bcg is tightly linked to a group of cytoskeleton-associated protein genes that include villin and desmin. Genomics 1991; 10:356-64. [PMID: 1676979 DOI: 10.1016/0888-7543(91)90320-e] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In the mouse, innate resistance or susceptibility to infection with a group of unrelated intracellular parasites which includes, Mycobacteria, Salmonella, and Leishmania is determined by the expression of a single dominant autosomal gene designated Bcg located on the proximal portion of chromosome 1. The gene is expressed at the level of the mature tissue macrophage and influences its capacity to restrict intracellular proliferation of the parasites. We have used restriction fragment length polymorphism analysis in segregating populations of inter- and intraspecific backcross mice and in recombinant inbred strains to position four new marker genes, transition protein 1 (Tp-1), desmin (Des), the alpha subunit of inhibin (Inha), and retinal S-antigen (Sag), in the vicinity of the host resistance locus, Bcg. The gene order for Tp-1, Des, Inha, and Sag was established in an eight-point testcross with respect to anchor loci previously assigned to that portion of mouse chromosome 1 and was found to be centromere-Fn-1-Tp-1-(Vil,Bcg)-Des-Inha-Akp-3-Acrg+ ++-Sag. Two of these new marker genes were found very tightly linked to Bcg: Des was located 0.3 +/- 0.3 cM distal from (Vil,Bcg) and 0.3 +/- 0.3 cM proximal to Inha. Tp-1 mapped 0.8 +/- 0.8 cM proximal and Sag 12.8 +/- 1.7 cM distal to (Vil,Bcg). Tp-1, Des, Inha, and Sag all fall within a large mouse chromosome 1 segment homologous with the telomeric region of the long arm of human chromosome 2 (2q). Our findings indicate that the two closest markers to the host resistance locus, Bcg, encode cytoskeleton-associated proteins which are capable of interaction with actin filaments.
Collapse
Affiliation(s)
- D Malo
- Department of Biochemistry, McGill University, Montreal, Canada
| | | | | | | | | | | |
Collapse
|
87
|
Maury CP. Gelsolin-related amyloidosis. Identification of the amyloid protein in Finnish hereditary amyloidosis as a fragment of variant gelsolin. J Clin Invest 1991; 87:1195-9. [PMID: 1849145 PMCID: PMC295133 DOI: 10.1172/jci115118] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The Finnish type of familial amyloidosis is a systemic disease characterized by progressive cranial neuropathy, corneal lattice dystrophy, and distal sensimotor neuropathy. Amyloid fibrils were isolated from the kidney and heart of a patient with Finnish amyloidosis. After solubilization, the amyloid proteins were fractionated by gel filtration and purified by reverse-phase HPLC. Complete amino acid sequence analyses show that the two amyloid components obtained are fragments of gelsolin, an actin-modulating protein occurring in plasma and the cytoskeleton. The larger component represents residues 173-243 and the minor component residues 173-225, respectively, of mature gelsolin. When compared with the predicted primary structure of human gelsolin a single amino acid substitution is present in amyloid: at position 15 of the amyloid proteins an asparagine is found instead of an aspartic acid residue at the corresponding position (187) in gelsolin. Antibodies to a dodecapeptide of the amyloidogenic region of gelsolin specifically stain the tissue amyloid deposits in Finnish hereditary amyloidosis. The results show that the amyloid subunit protein in Finnish hereditary amyloidosis represents a new type of amyloid that is derived from an actin filament-binding region of a variant gelsolin molecule by limited proteolysis.
Collapse
Affiliation(s)
- C P Maury
- Fourth Department of Medicine, University of Helsinki, Finland
| |
Collapse
|
88
|
Eichinger L, Noegel AA, Schleicher M. Domain structure in actin-binding proteins: expression and functional characterization of truncated severin. J Biophys Biochem Cytol 1991; 112:665-76. [PMID: 1847147 PMCID: PMC2288858 DOI: 10.1083/jcb.112.4.665] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Severin from Dictyostelium discoideum is a Ca2(+)-activated actin-binding protein that severs actin filaments, nucleates actin assembly, and caps the fast growing ends of actin filaments. Sequence comparison with functionally related proteins, such as gelsolin, villin, or fragmin revealed highly conserved domains which are thought to be of functional significance. To attribute the different activities of the severin molecule to defined regions, progressively truncated severin polypeptides were constructed. The complete cDNA coding for 362 (DS362) amino acids and five 3' deletions coding for 277 (DS277), 177 (DS177), 151 (DS151), 117 (DS117), or 111 (DS111) amino acids were expressed in Escherichia coli. The proteins were purified to homogeneity and then characterized with respect to their effects on the polymerization or depolymerization kinetics of G- or F-actin solutions and their binding to G-actin. Furthermore, the Ca2+ binding of these proteins was investigated with a 45Ca-overlay assay and by monitoring Ca2(+)-dependent changes in tryptophan fluorescence. Bacterially expressed DS362 showed the same Ca2(+)-dependent activities as native severin. DS277, missing the 85 COOH-terminal amino acids of severin, had lost its strict Ca2+ regulation and displayed a Ca2(+)-independent capping activity, but was still Ca2+ dependent in its severing and nucleating activities. DS151 which corresponded to the first domain of gelsolin or villin had completely lost severing and nucleating properties. However, a residual severing activity of approximately 2% was detectable if 26 amino acids more were present at the COOH-terminal end (DS177). This locates similar to gelsolin the second actin-binding site to the border region between the first and second domain. Measuring the fluorescence enhancement of pyrene-labeled G-actin in the presence of DS111 showed that the first actin-binding site was present in the NH2-terminal 111 amino acids. Extension by six or more amino acids stabilized this actin-binding site in such a way that DS117 and even more pronounced DS151 became Ca2(+)-independent capping proteins. In comparison to many reports on gelsolin we draw the following conclusions. Among the three active actin-binding sites in gelsolin the closely neighboured sites one and two share the F-actin fragmenting function, whereas the actin-binding sites two and three, which are located in far distant domains, collaborate for nucleation. In contrast, severin contains two active actin-binding sites which are next to each other and are responsible for the severing as well as the nucleating function. The single actin-binding site near the NH2-terminus is sufficient for capping of actin filaments.
Collapse
Affiliation(s)
- L Eichinger
- Max-Planck-Institute for Biochemistry, Martinsried, Federal Republic of Germany
| | | | | |
Collapse
|
89
|
Abstract
Much new information on the sequence, structure, and function of filament crosslinking, capping, and severing proteins is now known. Other significant findings include identification of a new abundant monomer-sequestering protein in platelets, and evidence that many actin-binding proteins interact with phosphoinositides and that this interaction may have metabolic consequences.
Collapse
Affiliation(s)
- J H Hartwig
- Massachusetts General Hospital, Hematology-Oncology Unit, Charlestown 02129
| | | |
Collapse
|
90
|
Shoeman RL, Kesselmier C, Mothes E, Höner B, Traub P. Non-viral cellular substrates for human immunodeficiency virus type 1 protease. FEBS Lett 1991; 278:199-203. [PMID: 1991513 DOI: 10.1016/0014-5793(91)80116-k] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A computer search revealed 10 proteins with homology to the sequence we originally identified in vimentin as the site of cleavage by human immunodeficiency virus type 1 (HIV-1) protease. Of these 10 proteins (actin, alpha-actinin, spectrin, tropomyosins, vinculin, dystrophin, MAP-2, villin, TRK-1 and Ig mu-chain), we show that 4 of the first 5 were cleaved in vitro by this protease, as are MAP-1 and -2 [(1990) J. Gen. Virol. 71, 1985-1991]. In these proteins, cleavage is not restricted to a single motif, but occurs at many sites. However, cleavage is not random, since 9 other proteins including the cytoskeletal proteins filamin and band 4.1 are not cleaved in the in vitro assay. Thus, the ability of HIV-1 protease to cleave specific components of the cytoskeleton may be an important, although as yet unevaluated aspect of the life cycle of this retrovirus and/or may directly contribute to the pathogenesis observed during infection.
Collapse
Affiliation(s)
- R L Shoeman
- Max-Planck-Institut für Zellbiologie, Ladenburg/Heidelberg, Germany
| | | | | | | | | |
Collapse
|
91
|
Yu FX, Johnston PA, Südhof TC, Yin HL. gCap39, a calcium ion- and polyphosphoinositide-regulated actin capping protein. Science 1990; 250:1413-5. [PMID: 2255912 DOI: 10.1126/science.2255912] [Citation(s) in RCA: 164] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The polymerization of actin filaments is involved in growth, movement, and cell division. It has been shown that actin polymerization is controlled by gelsolin, whose interactions with actin are activated by calcium ion (Ca2+) and inhibited by membrane polyphosphoinositides (PPI). A smaller Ca2(+)- and PPI-regulated protein, gCap39, which has 49% sequence identity with gelsolin, has been identified by cDNA cloning and protein purification. Like gelsolin, gCap39 binds to the fast-growing (+) end of actin filaments. However, gCap39 does not sever actin filaments and can respond to Ca2+ and PPI transients independently, under conditions in which gelsolin is ineffective. The coexistence of gCap39 with gelsolin should allow precise regulation of actin assembly at the leading edge of the cell.
Collapse
Affiliation(s)
- F X Yu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas 75235-9040
| | | | | | | |
Collapse
|
92
|
Franck Z, Footer M, Bretscher A. Microinjection of villin into cultured cells induces rapid and long-lasting changes in cell morphology but does not inhibit cytokinesis, cell motility, or membrane ruffling. J Cell Biol 1990; 111:2475-85. [PMID: 2277069 PMCID: PMC2116391 DOI: 10.1083/jcb.111.6.2475] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Villin, a Ca2(+)-regulated F-actin bundling, severing, capping, and nucleating protein, is a major component of the core of microvilli of the intestinal brush border. Its actin binding properties, tissue specificity, and expression during cell differentiation suggest that it might be involved in the organization of the microfilaments in intestinal epithelial cells to form a brush border. Recently, Friederich et al., (Friederich, E., C. Huet, M. Arpin, and D. Louvard. 1989. Cell. 59:461-475) showed that villin expression in transiently transfected fibroblasts resulted in the loss of stress fibers and the appearance of large cell surface microvilli on some cells. Here, we describe the effect of villin microinjection into cells that normally lack this protein, which has allowed us to examine the immediate and long-term effects of introducing different concentrations of villin on microfilament organization and function. Microinjected cells rapidly lost their stress fibers and the actin was reorganized into abundant villin containing cortical structures, including microspikes and, in about half the cells, large surface microvilli. This change in actin organization persisted in cells for at least 24 h, during which time they had gone through two or three cell divisions. Microinjection of villin core, that lacks the bundling activity of villin but retains all the Ca2(+)-dependent properties, disrupted the stress fiber system and had no effect on cell surface morphology. Thus, the Ca2(+)-dependent activities of villin are responsible for stress fiber disruption, and the generation of cell surface structures is a consequence of its bundling activity. Microinjection of villin led to the reorganization of myosin, tropomyosin, and alpha-actinin, proteins normally associated with stress fibers, whereas both fimbrin and ezrin, which are also components of microvillar core filaments, were readily recruited into the induced surface structures. Vinculin was also redistributed from its normal location in focal adhesions. Despite these changes in the actin cytoskeleton, cells were able to divide and undergo cytokinesis, move, spread on a substratum, and ruffle. Thus, we show that a single microfilament-associated protein can reorganize the entire microfilament structure of a cell, without interfering with general microfilament-based functions like cytokinesis, cell locomotion, and membrane ruffling.
Collapse
Affiliation(s)
- Z Franck
- Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853
| | | | | |
Collapse
|
93
|
Friederich E, Pringault E, Arpin M, Louvard D. From the structure to the function of villin, an actin-binding protein of the brush border. Bioessays 1990; 12:403-8. [PMID: 2256904 DOI: 10.1002/bies.950120902] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Villin, a calcium-regulated actin-binding protein, modulates the structure and assembly of actin filaments in vitro. It is organized into three domains, the first two of which are homologous. Villin is mainly produced in epithelial cells that develop a brush border and which are responsible for nutrient uptake. Expression of the villin structural gene is precisely regulated during mouse embryogenesis and is restricted in adults, to certain epithelia of the gastrointestinal and urogenital tracts. The function of villin has been assessed by transfecting CV1 cells with a human cDNA encoding wild-type villin or mutant villin. Synthesis of large amounts of villin in cells which do not normally produce this protein induces the growth of microvilli on the cell surface and the redistribution of F-actin, concomitant with the disappearance of stress fibers. The complete villin sequence is required for the morphogenic effect. These results suggest that villin plays a key role in the morphogenesis of microvilli.
Collapse
Affiliation(s)
- E Friederich
- Département de Biologie Moléculaire, Institut Pasteur, Paris
| | | | | | | |
Collapse
|
94
|
Spiegel E, Howard L, Spiegel M. The contractility of elongated microvilli in early sea urchin embryos. ACTA ACUST UNITED AC 1990; 199:228-236. [PMID: 28306108 DOI: 10.1007/bf01682082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/1990] [Accepted: 08/20/1990] [Indexed: 11/26/2022]
Abstract
Elongated microvilli attach the early sea urchin embryo to the fertilization envelope and support it in a concentric position within the perivitelline space. The contractility of the elongated microvilli was demonstrated in several ways. (1) During normal cleavage, these microvilli change their length to adapt to the change in shape and numbers of blastomeres. (2) When treated with calcium-free sea water, embryos become eccentrically located and the microvilli extend further than normal on one side; when returned to normal sea water, the embryos become centered again. (3) Several agents cause the fertilization envelope to become higher and thinner than normal and the elongated microvilli to extend correspondingly if treated within ten min after fertilization. In some cases, both elongated microvilli and fertilization envelope return to normal size when returned to normal sea water. (4) Fertilization in a papain solution causes the elongated microvilli and the fertilization envelope to contract to the surface of the embryo. (5) Refertilization after the papain-induced contraction can bring about the elongation of these microvilli and the elevation of the fertilization envelope a second time. It was also shown that elongated microvilli are extended immediately upon fertilization, at the same time as the short microvilli. The firm adherence of the tips of elongated microvilli to the fertilization envelope by means of extracellular matrix fibers is shown in a high voltage electron microscope stereoimage. This allows us to understand why it is that when the elongated microvilli extend or contract, the fertilization envelope also extends and contracts accordingly.
Collapse
Affiliation(s)
- Evelyn Spiegel
- Department of Biological Sciences, Dartmouth College, 03755, Hanover, NH, USA
- Marine Biological Laboratory, Woods Hole, 02543, MA, USA
| | - Louisa Howard
- Department of Biological Sciences, Dartmouth College, 03755, Hanover, NH, USA
- Marine Biological Laboratory, Woods Hole, 02543, MA, USA
| | - Melvin Spiegel
- Department of Biological Sciences, Dartmouth College, 03755, Hanover, NH, USA
- Marine Biological Laboratory, Woods Hole, 02543, MA, USA
| |
Collapse
|
95
|
|
96
|
Garcia A, Coudrier E, Carboni J, Anderson J, Vandekerkhove J, Mooseker M, Louvard D, Arpin M. Partial deduced sequence of the 110-kD-calmodulin complex of the avian intestinal microvillus shows that this mechanoenzyme is a member of the myosin I family. J Cell Biol 1989; 109:2895-903. [PMID: 2687288 PMCID: PMC2115973 DOI: 10.1083/jcb.109.6.2895] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The actin bundle within each microvillus of the intestinal brush border is laterally tethered to the membrane by bridges composed of the protein complex, 110-kD-calmodulin. Previous studies have shown that avian 110-kD-calmodulin shares many properties with myosins including mechanochemical activity. In the present study, a cDNA molecule encoding 1,000 amino acids of the 110-kD protein has been sequenced, providing direct evidence that this protein is a vertebrate homologue of the tail-less, single-headed myosin I first described in amoeboid cells. The primary structure of the 110-kD protein (or brush border myosin I heavy chain) consists of two domains, an amino-terminal "head" domain and a 35-kD carboxy-terminal "tail" domain. The head domain is homologous to the S1 domain of other known myosins, with highest homology observed between that of Acanthamoeba myosin IB and the S1 domain of the protein encoded by bovine myosin I heavy chain gene (MIHC; Hoshimaru, M., and S. Nakanishi. 1987. J. Biol. Chem. 262:14625-14632). The carboxy-terminal domain shows no significant homology with any other known myosins except that of the bovine MIHC. This demonstrates that the bovine MIHC gene most probably encodes the heavy chain of bovine brush border myosin I (BBMI). A bacterially expressed fusion protein encoded by the brush border 110-kD cDNA binds calmodulin. Proteolytic removal of the carboxy-terminal domain of the fusion protein results in loss of calmodulin binding activity, a result consistent with previous studies on the domain structure of the 110-kD protein. No hydrophobic sequence is present in the molecule indicating that chicken BBMI heavy chain is probably not an integral membrane protein. Northern blot analysis of various chicken tissue indicates that BBMI heavy chain is preferentially expressed in the intestine.
Collapse
Affiliation(s)
- A Garcia
- Institut Pasteur, Département de Biologie Moléculaire, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Friederich E, Huet C, Arpin M, Louvard D. Villin induces microvilli growth and actin redistribution in transfected fibroblasts. Cell 1989; 59:461-75. [PMID: 2680107 DOI: 10.1016/0092-8674(89)90030-5] [Citation(s) in RCA: 141] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The function of villin, an actin-binding protein, has been investigated by transfecting fibroblasts with cloned human cDNAs encoding wild-type villin or functional villin domains. Synthesis of large amounts of villin induced the growth of numerous long microvilli on cell surfaces together with the redistribution of F-actin. These microvilli contained a cytoskeleton of F-actin, and their appearance was frequently accompanied by the disappearance of stress fibers. The complete villin gene sequence was required to exert its morphogenic effect. Villin lacking one actin-binding domain (113 amino acids), located at its carboxyterminal end, did not induce growth if microvilli or stress fiber disruption. Our results indicate that villin plays a key role in vivo in the morphogenesis of microvilli.
Collapse
Affiliation(s)
- E Friederich
- Institut Pasteur, Département de Biologie Moléculaire, Paris, France
| | | | | | | |
Collapse
|
98
|
Way M, Gooch J, Pope B, Weeds AG. Expression of human plasma gelsolin in Escherichia coli and dissection of actin binding sites by segmental deletion mutagenesis. J Biophys Biochem Cytol 1989; 109:593-605. [PMID: 2547804 PMCID: PMC2115723 DOI: 10.1083/jcb.109.2.593] [Citation(s) in RCA: 171] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Human plasma gelsolin has been expressed in high yield and soluble form in Escherichia coli. The protein has nucleating and severing activities identical to those of plasma gelsolin and is fully calcium sensitive in its interactions with monomeric actin. A number of deletion mutants have been expressed to explore the function of the three actin binding sites. Their design is based on the sixfold segmental repeat in the protein sequence. (These sites are located in segment 1, segments 2-3, and segments 4-6). Two mutants, S1-3 and S4-6, are equivalent to the NH2- and COOH-terminal halves of the molecule obtained by limited proteolysis. S1-3 binds two actin monomers in the presence or absence of calcium, it severs and caps filaments but does not nucleate polymerization. S4-6 binds a single actin monomer but only in calcium. These observations confirm and extend current knowledge on the properties of the two halves of gelsolin. Two novel constructs have also been studied that provide a different pairwise juxtaposition of the three sites. S2-6, which lacks the high affinity site of segment 1 (equivalent to the 14,000-Mr proteolytic fragment) and S1,4-6, which lacks segments 2-3 (the actin filament binding domain previously identified using the 28,000-Mr proteolytic fragment). S2-6 binds two actin monomers in calcium and nucleates polymerization; it associates laterally with filaments in the presence or absence of calcium and has a weak calcium-dependent fragmenting activity. S1,4-6 also binds two actin monomers in calcium and one in EGTA, has weak severing activity but does not nucleate polymerization. A model is presented for the involvement of the three binding sites in the various activities of gelsolin.
Collapse
Affiliation(s)
- M Way
- Medical Research Council Laboratory of Molecular Biology, Cambridge, England
| | | | | | | |
Collapse
|
99
|
|
100
|
Kwiatkowski DJ, Janmey PA, Yin HL. Identification of critical functional and regulatory domains in gelsolin. J Cell Biol 1989; 108:1717-26. [PMID: 2541138 PMCID: PMC2115573 DOI: 10.1083/jcb.108.5.1717] [Citation(s) in RCA: 167] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Gelsolin can sever actin filaments, nucleate actin filament assembly, and cap the fast-growing end of actin filaments. These functions are activated by Ca2+ and inhibited by polyphosphoinositides (PPI). We report here studies designed to delineate critical domains within gelsolin by deletional mutagenesis, using COS cells to secrete truncated plasma gelsolin after DNA transfection. Deletion of 11% of gelsolin from the COOH terminus resulted in a major loss of its ability to promote the nucleation step in actin filament assembly, suggesting that a COOH-terminal domain is important in this function. In contrast, derivatives with deletion of 79% of the gelsolin sequence exhibited normal PPI-regulated actin filament-severing activity. Combined with previous results using proteolytic fragments, we deduce that an 11-amino acid sequence in the COOH terminus of the smallest severing gelsolin derivative identified here mediates PPI-regulated binding of gelsolin to the sides of actin filaments before severing. Deletion of only 3% of gelsolin at the COOH terminus, including a dicarboxylic acid sequence similar to that found on the NH2 terminus of actin, resulted in a loss of Ca2+-requirement for filament severing and monomer binding. Since these residues in actin have been implicated as potential binding sites for gelsolin, our results raise the possibility that the analogous sequence at the COOH terminus of gelsolin may act as a Ca2+-regulated pseudosubstrate. However, derivatives with deletion of 69-79% of the COOH-terminal residues of gelsolin exhibited normal Ca2+ regulation of severing activity, establishing the intrinsic Ca2+ regulation of the NH2-terminal region. One or both mechanisms of Ca2+ regulation may occur in members of the gelsolin family of actin-severing proteins.
Collapse
Affiliation(s)
- D J Kwiatkowski
- Hematology-Oncology Unit, Massachusetts General Hospital, Boston
| | | | | |
Collapse
|