51
|
|
52
|
Bianchi SM, Dockrell DH, Renshaw SA, Sabroe I, Whyte MKB. Granulocyte apoptosis in the pathogenesis and resolution of lung disease. Clin Sci (Lond) 2006; 110:293-304. [PMID: 16464171 DOI: 10.1042/cs20050178] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Apoptosis, programmed cell death, of neutrophil and eosinophil granulocytes is a potential control point in the physiological resolution of innate immune responses. There is also increasing evidence that cellular processes of apoptosis can be dysregulated by pathogens as a mechanism of immune evasion and that delayed apoptosis, resulting in prolonged inflammatory cell survival, is important in persistence of tissue inflammation. The identification of cell-type specific pathways to apoptosis may allow the design of novel anti-inflammatory therapies or agents to augment the innate immune responses to infection. This review will explore the physiological roles of granulocyte apoptosis and their importance in infectious and non-infectious lung disease.
Collapse
Affiliation(s)
- Stephen M Bianchi
- Academic Unit of Respiratory Medicine, Division of Genomic Medicine, University of Sheffield, M Floor, Royal Hallamshire Hospital, Sheffield S10 2JF, U.K
| | | | | | | | | |
Collapse
|
53
|
Adcock IM, Chung KF, Caramori G, Ito K. Kinase inhibitors and airway inflammation. Eur J Pharmacol 2006; 533:118-32. [PMID: 16469308 DOI: 10.1016/j.ejphar.2005.12.054] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2005] [Indexed: 11/21/2022]
Abstract
Kinases are believed to play a crucial role in the expression and activation of inflammatory mediators in the airway, in T-cell function and airway remodelling. Important kinases such as Inhibitor of kappaB kinase (IKK)2, mitogen activated protein (MAP) kinases and phsopho-inositol (PI)3 kinase regulate inflammation either through activation of pro-inflammatory transcription factors such as activating protein-1 (AP-1) and nuclear factor kappaB (NF-kappaB), which are activated in airway disease, or through regulation of mRNA half-life. Selective kinase inhibitors have been developed which reduce inflammation and some characteristics of disease in animal models. Targeting specific kinases that are overexpressed or over active in disease should allow for selective treatment of respiratory diseases. Interest in this area has intensified due to the success of the specific Abelson murine leukaemia viral oncogene (Abl) kinase inhibitor imatinib mesylate (Gleevec) in the treatment of chronic myelogenous leukaemia. Encouraging data from animal models and primary cells and early Phase I and II studies in other diseases suggest that inhibitors of p38 MAP kinase and IKK2 may prove to be useful novel therapies in the treatment of severe asthma, chronic obstructive pulmonary disease (COPD), cystic fibrosis and other inflammatory airway diseases.
Collapse
Affiliation(s)
- Ian M Adcock
- Cell and Molecular Biology Group, Airways Disease Section, National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, SW3, 6LY, United Kingdom.
| | | | | | | |
Collapse
|
54
|
Barnes PJ. Novel signal transduction modulators for the treatment of airway diseases. Pharmacol Ther 2005; 109:238-45. [PMID: 16171872 DOI: 10.1016/j.pharmthera.2005.08.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Accepted: 08/02/2005] [Indexed: 11/29/2022]
Abstract
Multiple signal transduction pathways are involved in the inflammatory process in the airways of patients with asthma and chronic obstructive pulmonary disease (COPD), hence modulators of these pathways may result in novel anti-inflammatory treatments. The advantage of this approach is that these pathways are activated in many inflammatory and structural cells of the airways, hence a broad spectrum of anti-inflammatory effects may be possible. However, this also makes it more likely that side effects may be limiting, but this may not be a problem if the signal transduction pathway is selectively activated in disease and the therapeutic index may be increased by inhaled delivery. Phosphodiesterase-4 (PDE4) inhibitors are the most advanced treatment in this category as anti-inflammatory treatment for asthma and COPD, although side effects are dose limiting. Other promising approaches are inhibitors of p38 mitogen-activated protein (MAP) kinase, inhibitor of nuclear factor-kappaB kinase-2 (IKK2), and Syk kinase, all of which are in clinical development. Several other kinases and transcription factors are also targets for novel drug development. It is likely that modulators of signal transduction pathways may lead to the development of several novel anti-inflammatory treatments for asthma and COPD in the future.
Collapse
Affiliation(s)
- Peter J Barnes
- National Heart and Lung Institute, Imperial College School of Medicine, Dovehouse Street, London SW3 6LY, UK.
| |
Collapse
|
55
|
Wang W, Masu K, Tamura G, Suzuki K, Ohwada K, Okuyama K, Shirato K, Takayanagi M, Ohno I. Inhibition of eosinophil survival by a selective inhibitor of phosphodiesterase 4 via the induction of apoptosis. Biol Pharm Bull 2005; 28:515-9. [PMID: 15744080 DOI: 10.1248/bpb.28.515] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Selective inhibitors of phosphodiesterases (PDEs) have been suggested to have anti-inflammatory effects on bronchial asthma through the inhibition of chemotaxis, adhesion, degranulation, the respiratory burst, and survival prolongation of eosinophils. However, the mechanisms by which these agents inhibit eosinophil survival remain unclear. We therefore investigated the possible mechanisms of inhibitory effects of selective inhibitors of PDE 3 (cilostazol) and PDE 4 (rolipram) on granulocyte-macrophage colony-stimulating factor (GM-CSF)-mediated eosinophil survival. Purified blood eosinophils were cultured with medium alone or GM-CSF (0.01 ng/ml) in the presence or absence of the agents for up to 6 d. DNA was extracted from freshly isolated eosinophils and eosinophils cultured for 2 d with medium alone, GM-CSF, or GM-CSF in the presence of the agents, and analyzed using agarose gel electrophoresis. The presence of rolipram (10(-4), 10(-5), 10(-6) M), but not cilostazol, significantly inhibited eosinophil survival at days 2, 4, and 6. A laddering pattern was observed in the DNA of eosinophils cultured with medium alone and with GM-CSF in the presence of rolipram. The results reveal that selective PDE 4 inhibitors inhibit GM-CSF-mediated eosinophil survival through the induction of apoptosis.
Collapse
Affiliation(s)
- Way Wang
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Seiryo-machi, Sendai, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
von Gunten S, Yousefi S, Seitz M, Jakob SM, Schaffner T, Seger R, Takala J, Villiger PM, Simon HU. Siglec-9 transduces apoptotic and nonapoptotic death signals into neutrophils depending on the proinflammatory cytokine environment. Blood 2005; 106:1423-31. [PMID: 15827126 DOI: 10.1182/blood-2004-10-4112] [Citation(s) in RCA: 174] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report about new apoptotic and non-apoptotic death pathways in neutrophils that are initiated via the surface molecule sialic acid-binding immunoglobulin-like lectin (Siglec)-9. In normal neutrophils, Siglec-9 ligation induced apoptosis. Inflammatory neutrophils obtained from patients with acute septic shock or rheumatoid arthritis demonstrated increased Siglec-9, but normal Fas receptor-mediated cytotoxic responses when compared with normal blood neutrophils. The increased Siglec-9-mediated death was mimicked in vitro by short-term preincubation of normal neutrophils with proinflammatory cytokines, such as granulocyte/macrophage colony-stimulating factor (GM-CSF), interferon-alpha (IFN-alpha), and IFN-gamma, and was demonstrated to be caspase independent. Experiments using scavengers of reactive oxygen species (ROS) or neutrophils unable to generate ROS indicated that both Siglec-9-mediated caspase-dependent and caspase-independent forms of neutrophil death depend on ROS. Interestingly, the caspase-independent form of neutrophil death was characterized by cytoplasmic vacuolization and several other nonapoptotic morphologic features, which were also seen in neutrophils present in joint fluids from rheumatoid arthritis patients. Taken together, these data suggest that apoptotic (ROS- and caspase-dependent) and nonapoptotic (ROS-dependent) death pathways are initiated in neutrophils via Siglec-9. The new insights have important implications for the pathogenesis, diagnosis, and treatment of inflammatory diseases such as sepsis and rheumatoid arthritis.
Collapse
Affiliation(s)
- Stephan von Gunten
- Department of Pharmacology, University of Bern, Friedbühlstrasse 49, CH-3010 Bern, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Contri A, Brunati AM, Trentin L, Cabrelle A, Miorin M, Cesaro L, Pinna LA, Zambello R, Semenzato G, Donella-Deana A. Chronic lymphocytic leukemia B cells contain anomalous Lyn tyrosine kinase, a putative contribution to defective apoptosis. J Clin Invest 2005; 115:369-78. [PMID: 15650771 PMCID: PMC544036 DOI: 10.1172/jci22094] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Accepted: 11/09/2004] [Indexed: 12/20/2022] Open
Abstract
B cell chronic lymphocytic leukemia (B-CLL) is a neoplastic disorder characterized by accumulation of B lymphocytes due to uncontrolled growth and resistance to apoptosis. Analysis of B cells freshly isolated from 40 patients with chronic lymphocytic leukemia demonstrated that the Src kinase Lyn, the switch molecule that couples the B cell receptor to downstream signaling, displays anomalous properties. Lyn is remarkably overexpressed at the protein level in leukemic cells as compared with normal B lymphocytes, with a substantial aliquot of the kinase anomalously present in the cytosol. Whereas in normal B lymphocytes Lyn activation is dependent on B cell-receptor stimulation, in resting malignant cells, the constitutive activity of the kinase accounts for high basal protein tyrosine phosphorylation and low responsiveness to IgM ligation. Addition of the Lyn inhibitors PP2 and SU6656 to leukemic cell cultures restores cell apoptosis, and treatment of malignant cells with drugs that induce cell apoptosis decreases both activity and amount of the tyrosine kinase. These findings suggest a direct correlation between high basal Lyn activity and defects in the induction of apoptosis in leukemic cells. They also support a critical role for Lyn in B-CLL pathogenesis and identify this tyrosine kinase as a potential therapeutic target.
Collapse
MESH Headings
- Apoptosis
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Gene Expression Regulation, Leukemic/drug effects
- Humans
- Immunoglobulin M/metabolism
- Indoles/pharmacology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphocyte Activation/drug effects
- Phosphorylation/drug effects
- Pyrimidines/pharmacology
- Receptors, Antigen, B-Cell/metabolism
- Signal Transduction/drug effects
- Sulfonamides/pharmacology
- Tumor Cells, Cultured
- src-Family Kinases/antagonists & inhibitors
- src-Family Kinases/metabolism
Collapse
Affiliation(s)
- Antonella Contri
- Department of Clinical and Experimental Medicine, Clinical Immunology Branch, Padua University School of Medicine, Padua, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Contri A, Brunati AM, Trentin L, Cabrelle A, Miorin M, Cesaro L, Pinna LA, Zambello R, Semenzato G, Donella-Deana A. Chronic lymphocytic leukemia B cells contain anomalous Lyn tyrosine kinase, a putative contribution to defective apoptosis. J Clin Invest 2005. [DOI: 10.1172/jci200522094] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
59
|
Moroni M, Soldatenkov V, Zhang L, Zhang Y, Stoica G, Gehan E, Rashidi B, Singh B, Ozdemirli M, Mueller SC. Progressive loss of Syk and abnormal proliferation in breast cancer cells. Cancer Res 2004; 64:7346-54. [PMID: 15492255 DOI: 10.1158/0008-5472.can-03-3520] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The tumor suppressor gene Syk tyrosine kinase is absent or reduced in invasive breast cancer tissues and cell lines; its loss in breast tissues is linked to poor prognosis and metastasis. Also, evidence shows that in vitro Syk is involved in regulating proliferation. Here, we show by in situ hybridization on breast tissue sections that the loss of Syk expression is progressive during tumor development. Strikingly, Syk is already partially lost in normal epithelial tissue adjacent to the cancer lesion. In vivo, cell proliferation (as measured by the proliferative index Ki67) increased from normal to ductal carcinoma in situ to invasive, whereas Syk in situ staining in the same tissues decreased. In vitro, the presence of Syk was associated with reduced cell proliferation in an epidermal growth factor receptor-overexpressing breast cancer cell line, BT549, whereas changes in apoptosis were undetected. Concomitantly, the kinase activity of the proto-oncogene Src was reduced by approximately 30%. A 5-fold increase in abnormal mitoses was observed in the Syk-transfected cells compared with vector control. We propose that Syk is involved in the regulation of cell proliferation, possibly by controlling mechanisms of mitosis and cytokinesis via Src signal transduction pathway(s). Because of its progressive and early loss during tumor onset and development, monitoring of Syk loss in breast epithelial cells by noninvasive techniques such as ductal lavage may be a powerful tool for screening purposes.
Collapse
Affiliation(s)
- Maria Moroni
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical School, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Abstract
Asthma is a major and increasing global health problem and, despite major advances in therapy, many patients' symptoms are not adequately controlled. Treatment with combination inhalers, which contain a corticosteroid and long-acting beta(2) adrenoceptor agonist, is the most effective current therapy. There is therefore a search for new therapies, particularly safe and effective oral treatments and those that are more efficacious in severe asthma. New therapies in development include mediator antagonists and inhibitors of cytokines, although these therapies might be too specific to be very effective. New anti-inflammatory therapies include corticosteroids and inhibitors of phosphodiesterase-4, p38 mitogen-activated protein kinase and nuclear factor-kappaB. The prospects for a curative treatment are on the horizon.
Collapse
Affiliation(s)
- Peter J Barnes
- National Heart and Lung Institute, Imperial College Faculty of Medicine, Dovehouse Street, London SW3 6LY, UK.
| |
Collapse
|
61
|
Berro AI, Perry GA, Agrawal DK. Increased expression and activation of CD30 induce apoptosis in human blood eosinophils. THE JOURNAL OF IMMUNOLOGY 2004; 173:2174-83. [PMID: 15265955 DOI: 10.4049/jimmunol.173.3.2174] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Eosinophils are one of the major effector cells in asthma, and controlling the number and survival of eosinophils might attenuate the severity of asthma. This result could be achieved by inducing eosinophil apoptosis. Apoptosis allows the removal of cells without inducing an inflammatory response. Our knowledge of the factors involved in regulating eosinophil apoptosis remains limited. CD30 molecule has been associated with T cell-negative selection and in TCR-mediated apoptosis. In this study we examined the expression and role of CD30 in apoptosis of human blood eosinophils. Percentage of apoptotic eosinophils was determined by annexin V-propidium iodide labeling, and CD30 expression was examined by flow cytometry. Spontaneous apoptosis was induced by serum deprivation, and survival was conferred by incubating cells with 10% FBS and IL-5. CD30 surface expression was up-regulated in eosinophils incubated for 24 h as compared with freshly isolated eosinophils, and both CD30 expression and eosinophil apoptosis increased in a time-dependent manner. We also measured CD30 mRNA expression by quantitative real-time RT-PCR and determined that CD30 transcripts increased in eosinophils undergoing apoptosis only under serum deprivation conditions. The agonistic CD30 Abs, Ber-H8 and HeFi-1, significantly enhanced eosinophil apoptosis. FBS and IL-5 failed to inhibit or suppress the CD30 agonistic-induced apoptosis. These data support the role of CD30 activation in eosinophil apoptosis. This research will help in furthering our understanding of eosinophil apoptosis and therefore might contribute to the development of better therapeutic modalities in the treatment and/or cure of allergic inflammation in bronchial asthma.
Collapse
Affiliation(s)
- Abdo I Berro
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE 68178, USA
| | | | | |
Collapse
|
62
|
Wong CK, Ip WK, Lam CWK. Biochemical assessment of intracellular signal transduction pathways in eosinophils: implications for pharmacotherapy. Crit Rev Clin Lab Sci 2004; 41:79-113. [PMID: 15077724 DOI: 10.1080/10408360490427624] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Allergic asthma and allergic rhinitis are inflammatory diseases of the airway. Cytokines and chemokines produced by T helper (Th) type 2 cells (GM-CSF, IL-4, IL-5, IL-6, IL-9, IL-10 and IL-13), eotaxin, transforming growth factor-beta, and IL-11 orchestrate most pathophysiological processes of the late-phase allergic reaction, including the recruitment, activation, and delayed apoptosis of eosinophils, as well as eosinophilic degranulation to release eosinophilic cationic protein, major basic protein, and eosinophil-derived neurotoxin. These processes are regulated through an extensive network of interactive intracellular signal transduction pathways that have been intensively investigated recently. Our present review updates the cytokine and chemokine-mediated signal transduction mechanisms including the RAS-RAF-mitogen-activated protein kinases, Janus kinases (signal transducers and activators of transcription), phosphatidylinositol 3-kinase, nuclear factor-kappa B, activator protein-1, GATA, and cyclic AMP-dependent pathways, and describes the roles of different signaling pathways in the regulation of eosinophil differentiation, recruitment, degranulation, and expression of adhesion molecules. We shall also discuss different biochemical methods for the assessment of various intracellular signal transduction molecules, and various antagonists of receptors, modulators, and inhibitors of intracellular signaling molecules, many of which are potential therapeutic agents for treating allergic diseases.
Collapse
Affiliation(s)
- Chun Kwok Wong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong
| | | | | |
Collapse
|
63
|
Dai Y, Rahmani M, Corey SJ, Dent P, Grant S. A Bcr/Abl-independent, Lyn-dependent form of imatinib mesylate (STI-571) resistance is associated with altered expression of Bcl-2. J Biol Chem 2004; 279:34227-34239. [PMID: 15175350 DOI: 10.1074/jbc.m402290200] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The relationship between the Src kinase Lyn and Bcl-2 expression was examined in chronic myelogenous leukemia cells (K562 and LAMA84) displaying a Bcr/Abl-independent form of imatinib mesylate resistance. K562-R and LAMA-R cells that were markedly resistant to induction of mitochondrial dysfunction (e.g. loss of mitochondrial membrane potential, Bax translocation, cytochrome c, and apoptosis-inducing factor release) and apoptosis by imatinib mesylate exhibited a pronounced reduction in expression of Bcr/Abl, Bcl-x(L), and STAT5 but a striking increase in levels of activated Lyn. Whereas basal expression of Bcl-2 protein was very low in parental cells, imatinib-resistant cells displayed a marked increase in Bcl-2 mRNA and/or protein levels. Treatment of LAMA-R cells with the Src kinase inhibitor PP2 significantly reduced Lyn activation as well as Bcl-2 mRNA and protein levels. Transient or stable transfection of LAMA84 or K562 cells with a constitutively active Lyn (Y508F), but not with a kinase-dead mutant (K275D), significantly increased Bcl-2 protein expression and protected cells from lethality of imatinib mesylate. Ectopic expression of Bcl-2 protected K562 and LAMA84 cells from imatinib mesylate- and PP2-mediated lethality. Conversely, interference with Bcl-2 function by co-administration of the small molecule Bcl-2 inhibitor HA14-1 or down-regulation of Bcl-2 expression by small interfering RNA or antisense strategies significantly increased mitochondrial dysfunction and apoptosis induced by imatinib mesylate and the topoisomerase inhibitor VP-16 in LAMA-R cells. In marked contrast, these interventions had little effect in parental LAMA84 cells that display low basal levels of Bcl-2. Together, these findings indicate that activation of Lyn in leukemia cells displaying a Bcr/Abl-independent form of imatinib mesylate resistance plays a functional role in Bcl-2 up-regulation and provide a theoretical basis for the development of therapeutic strategies targeting Bcl-2 in such a setting.
Collapse
Affiliation(s)
- Yun Dai
- Department of Medicine, Virginia Commonwealth University/Medical College of Virginia, Richmond, VA 23298, USA
| | | | | | | | | |
Collapse
|
64
|
Adcock IM, Caramori G. Kinase targets and inhibitors for the treatment of airway inflammatory diseases: the next generation of drugs for severe asthma and COPD? BioDrugs 2004; 18:167-80. [PMID: 15161334 DOI: 10.2165/00063030-200418030-00003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Kinases are believed to play a crucial role in the expression and activation of inflammatory mediators in the airway, in T-cell function, and in airway remodeling. Important pro-inflammatory transcription factors such as activating protein-1 and nuclear factor kappaB, which are activated in airway disease, require kinase activation to switch on inflammatory genes, while other kinases can regulate mRNA half-life. Selective kinase inhibitors have been developed that reduce inflammatory gene expression and some characteristics of disease in animal models. Targeting specific kinases that are overexpressed or overactive in disease should allow for selective treatment of airway inflammatory diseases. Interest in this area has intensified due to the success of the specific Abelson murine leukemia viral oncogene homolog tyrosine kinase inhibitor, imatinib mesylate, in the treatment of chronic myelogenous leukemia. Encouraging data from animal models and primary cells and early phase I and II studies in other diseases suggest that inhibitors of p38 mitogen-activated protein kinase and inhibitor of kappaB kinase-2 may prove to be useful novel therapies in the treatment of severe asthma and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Ian M Adcock
- Department of Thoracic Medicine, National Heart and Lung Institute, Imperial College School of Medicine, London, UK.
| | | |
Collapse
|
65
|
Lampinen M, Carlson M, Håkansson LD, Venge P. Cytokine-regulated accumulation of eosinophils in inflammatory disease. Allergy 2004; 59:793-805. [PMID: 15230810 DOI: 10.1111/j.1398-9995.2004.00469.x] [Citation(s) in RCA: 250] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The role of cytokines in the accumulation of eosinophil granulocytes in inflamed tissue has been studied extensively during recent years, and these molecules have been found to participate throughout the whole process of eosinophil recruitment. Haematopoietic cytokines such as IL-3, IL-5 and GM-CSF stimulate the proliferation and differentiation of eosinophils in the bone marrow, and the release of mature eosinophils from the bone marrow into the blood is probably promoted by IL-5. Priming of eosinophils in the blood following, for example, allergen challenge is performed mainly by IL-3, IL-5 and GM-CSF. An important step in the extravasation of eosinophils is their adhesion to the vascular endothelium. Adhesion molecules are upregulated by, e.g. IL-1, IL-4, TNF-alpha and IFN-gamma and the same cytokines may also increase the affinity of adhesion molecules both on eosinophils and endothelial cells. Finally, a number of cytokines have been shown to act as eosinophil chemotactic factors, attracting the cells to the inflammatory focus in the tissue. Some of the most important eosinophil chemoattractant cytokines are IL-5, IL-8, RANTES, eotaxin, eotaxin-2, eotaxin-3, MCP-3, MCP-4 and TNF-alpha. Th2 cells, mast cells and epithelial cells are important sources of proinflammatory cytokines, but in recent years, the eosinophils have also been recognized as cytokine-producing and thereby immunoregulatory cells. The aim of this paper is to review the role of cytokines in the process of eosinophil recruitment in asthma, allergy and ulcerative colitis.
Collapse
Affiliation(s)
- M Lampinen
- Asthma Research Centre, Department of Medical Sciences, Clinical Chemistry, University Hospital, S-751 85 Uppsala, Sweden
| | | | | | | |
Collapse
|
66
|
Abstract
The Src homology domain 2 (SH2)-containing tyrosine phosphatase-1 (SHP-1) has been implicated in the regulation of differentiation, proliferation, and activation of hematopoietic cells. In this review, we discuss the potential role of SHP-1 in modulating apoptosis pathways in neutrophils. Low enzymatic SHP-1 was associated with increased neutrophil survival in vitro and SHP-1-deficient mice were reported to develop severe neutrophilic inflammatory responses. In contrast, high expression of this phosphatase was observed in neutropenic patients. Moreover, when neutrophils were exposed to Fas ligand, TNF-alpha, or TRAIL, the anti-apoptotic effects of granulocyte-macrophage colony-stimulating factor (GM-CSF), granulocyte colony-stimulating factor (G-CSF), or IFN-gamma were blocked, most likely by SHP-1-mediated inactivation of anti-apoptotic signaling molecules. In summary, the current available data point to an important role of SHP-1 in the regulation of neutrophil apoptosis.
Collapse
Affiliation(s)
- Shida Yousefi
- Department of Pharmacology, University of Bern, Friedbühlstrasse 49, CH-3010 Bern, Switzerland
| | | |
Collapse
|
67
|
Baumann R, Casaulta C, Simon D, Conus S, Yousefi S, Simon HU. Macrophage migration inhibitory factor delays apoptosis in neutrophils by inhibiting the mitochondria-dependent death pathway. FASEB J 2004; 17:2221-30. [PMID: 14656984 DOI: 10.1096/fj.03-0110com] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine known to activate macrophages and T cells. In this study, we demonstrate that recombinant MIF delays apoptosis of neutrophils in vitro. MIF action is dose and time dependent as well as specific since it was abolished with a neutralizing anti-MIF antibody. MIF, like G-CSF, delayed cleavage of the proapoptotic members of the Bcl-2 family Bid and Bax in neutrophils, suggesting that MIF inhibits apoptosis pathways proximal to mitochondria activation. Indeed, MIF also prevented release of cytochrome c and Smac from the mitochondria and subsequent activation of the critical effector caspase-3 in these cells. Moreover, we observed increased MIF plasma levels in patients with cystic fibrosis, a heterogeneous recessive genetic disorder associated with bacterial infections and delayed neutrophil apoptosis. In conclusion, MIF is a survival cytokine for human neutrophils, a finding with potential pathologic relevance in infectious diseases.
Collapse
Affiliation(s)
- Ralf Baumann
- Department of Pharmacology, University of Bern, Switzerland
| | | | | | | | | | | |
Collapse
|
68
|
Altznauer F, Conus S, Cavalli A, Folkers G, Simon HU. Calpain-1 regulates Bax and subsequent Smac-dependent caspase-3 activation in neutrophil apoptosis. J Biol Chem 2003; 279:5947-57. [PMID: 14612448 DOI: 10.1074/jbc.m308576200] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the absence and in the resolution of inflammatory responses, neutrophils rapidly undergo spontaneous apoptosis. Here we report about a new apoptosis pathway in these cells that requires calpain-1 activation and is essential for the enzymatic activation of the critical effector caspase-3. Decreased levels of calpastatin, a highly specific intrinsic inhibitor of calpain, resulted in activation of calpain-1, but not calpain-2, in neutrophils undergoing apoptosis, a process that was blocked by a specific calpain-1 inhibitor or by intracellular delivery of a calpastatin peptide. Further support for the importance of the calpastatin-calpain system was obtained by analyzing neutrophils from patients with cystic fibrosis that exhibited delayed apoptosis, associated with markedly increased calpastatin and decreased calpain-1 protein levels compared with neutrophils from control individuals. Additional studies were designed to place calpain-1 into the hierarchy of biochemical events leading to neutrophil apoptosis. Pharmacological calpain inhibition during spontaneous and Fas receptor-induced neutrophil apoptosis prevented cleavage of Bax into an 18-kDa fragment unable to interact with Bcl-xL. Moreover, calpain blocking prevented the mitochondrial release of cytochrome c and Smac, which was indispensable for caspase-3 processing and enzymatic activation, both in the presence and absence of agonistic anti-Fas receptor antibodies. Taken together, calpastatin and calpain-1 represent critical proximal elements in a cascade of pro-apoptotic events leading to Bax, mitochondria, and caspase-3 activation, and their altered expression appears to influence the life span of neutrophils under pathologic conditions.
Collapse
Affiliation(s)
- Frank Altznauer
- Department of Pharmacology, University of Bern, CH-3010 Bern, Switzerland
| | | | | | | | | |
Collapse
|
69
|
Shivakrupa R, Radha V, Sudhakar C, Swarup G. Physical and functional interaction between Hck tyrosine kinase and guanine nucleotide exchange factor C3G results in apoptosis, which is independent of C3G catalytic domain. J Biol Chem 2003; 278:52188-94. [PMID: 14551197 DOI: 10.1074/jbc.m310656200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The hematopoietic cell kinase Hck is a Src family tyrosine kinase expressed in cells of myelomonocytic lineage, B lymphocytes, and embryonic stem cells. To study its role in signaling pathways we used the Hck-SH3 domain in protein interaction cloning and identified C3G, the guanine nucleotide exchange factor for Rap1 and R-Ras, as a protein that associated with Hck. This interaction was direct and was mediated partly through the proline-rich region of C3G. C3G could be co-immunoprecipitated with Hck from Cos-1 cells transfected with Hck and C3G. C3G was phosphorylated on tyrosine 504 in cells when coexpressed with Hck but not with a catalytically inactive mutant of Hck. Phosphorylation of endogenous C3G at Tyr-504 was increased by treatment of human myelomonocytic THP-1 cells with mercuric chloride, which is known to activate Hck tyrosine kinase specifically. Coexpression of Hck with C3G induced a high level of apoptosis in many cell lines by 30-42 h of transfection. Induction of apoptosis was not dependent on Tyr-504 phosphorylation or the catalytic domain of C3G but required the catalytic activity of Hck. Using dominant negative constructs of caspases we found that caspase-1, -8, and -9 are involved in this apoptotic pathway. These results suggest that C3G and Hck interact physically and functionally in vivo to activate kinase-dependent and caspase-mediated apoptosis, which is independent of catalytic domain of C3G.
Collapse
Affiliation(s)
- R Shivakrupa
- Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
| | | | | | | |
Collapse
|
70
|
Lai JYQ, Cox PJ, Patel R, Sadiq S, Aldous DJ, Thurairatnam S, Smith K, Wheeler D, Jagpal S, Parveen S, Fenton G, Harrison TKP, McCarthy C, Bamborough P. Potent small molecule inhibitors of spleen tyrosine kinase (Syk). Bioorg Med Chem Lett 2003; 13:3111-4. [PMID: 12941345 DOI: 10.1016/s0960-894x(03)00658-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A series of oxindoles demonstrating inhibition of the phosphorylation of biotinylated substrates of Syk and IgE/Fc epsilon RI triggered basophil cell degranulation has been identified. A study of the SAR around sulfonamide 31 (IC(50)=5 nM, EC(50)=1400 nM) is discussed. The modest cellular activity representative of the sulfonamide series was overcome when the Polar Surface Area was lowered to <110 A(2), leading to the identification of amide 32 (IC(50)=145 nM, EC(50)=100 nM).
Collapse
Affiliation(s)
- Justine Y Q Lai
- Aventis Pharmaceuticals, Route 202/206, Brigdewater, NJ 08807, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Abstract
Neutrophils are constantly produced in large numbers in the bone marrow, and the same numbers of cells need to die within a defined time period in order to keep cellular homeostasis under physiologic conditions. Changing the rate of apoptosis rapidly changes cell numbers in such systems. For instance, in many bacterial and autoimmune inflammatory diseases, delayed apoptosis is one important mechanism for neutrophil accumulation. Excessive production of granulocyte/macrophage colony-stimulating factor (GM-CSF) and granulocyte colony-stimulating factor (G-CSF), two important neutrophil survival factors, is often observed in such inflammatory responses. Cytokine withdrawal, as it occurs in the resolution phase of inflammation, leads to the induction of apoptosis. Moreover, neutrophil apoptosis can be accelerated both in the presence and in the absence of survival factors by activation of distinct members of the tumor necrosis factor/nerve growth factor receptor family. This review focuses on recently published work regarding signaling pathways that regulate neutrophil apoptosis.
Collapse
Affiliation(s)
- Hans-Uwe Simon
- Department of Pharmacology, University of Bern, Bern, Switzerland.
| |
Collapse
|
72
|
Balaian L, Zhong RK, Ball ED. The inhibitory effect of anti-CD33 monoclonal antibodies on AML cell growth correlates with Syk and/or ZAP-70 expression. Exp Hematol 2003; 31:363-71. [PMID: 12763134 DOI: 10.1016/s0301-472x(03)00044-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVES Acute myeloid leukemia (AML) cells express the cell surface antigen CD33 that can function as a downregulator of cell growth, mediating growth arrest and apoptosis. The protein kinase Syk is an essential element in several cascades coupling certain antigen receptors to cell responses. Recently we reported that CD33 recruits Syk for its signaling in AML cell lines. In this study, we further investigated the mechanism(s) of Syk engagement in CD33 signaling in primary AML samples. METHODS We investigated 25 primary AML samples for their proliferative response (3H-thymidine incorporation) and biochemical changes (Western blot analysis) to anti-CD33 mAb treatment. RESULTS Proliferation studies demonstrated that 14 (56%) of AML samples were responsive (R) while 11 (44%) were nonresponsive (n-R) to inhibitory antibody activity. Seven of 25 AML samples (28%) expressed undetectable levels of Syk. However, cells from two of these patients expressed the ZAP-70 protein kinase. In Syk/ZAP-70(+) samples, CD33 ligation inhibited proliferation in 70% of cases, while none of the Syk/ZAP-70(-) samples was responsive. There were significant biochemical differences between responder and nonresponder AML populations. In responder samples, CD33 ligation induced phosphorylation of CD33 andSyk and formation of the CD33/Syk complex. In nonresponder samples, CD33 was not phosphorylated, and Syk was in complex with the SHP-1 protein phosphatase constitutively. CONCLUSIONS Syk is an important component in the regulation of proliferation in AML cells. The differential response of AML cells to CD33 ligation is associated with the level of the Syk expression.
Collapse
Affiliation(s)
- Larisa Balaian
- Department of Medicine and Cancer Center, University of California, San Diego School of Medicine, La Jolla, Calif., USA
| | | | | |
Collapse
|
73
|
Cen O, Gorska MM, Stafford SJ, Sur S, Alam R. Identification of UNC119 as a novel activator of SRC-type tyrosine kinases. J Biol Chem 2003; 278:8837-45. [PMID: 12496276 DOI: 10.1074/jbc.m208261200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lyn, an Src-type tyrosine kinase, is associated with the interleukin (IL)-5 receptor in eosinophils. The mechanism of its activation is unknown. Through yeast two-hybrid screening we have cloned and characterized a new signaling molecule, Unc119, that associates with IL-5Ralpha and Src family tyrosine kinases. Unc119 induces the catalytic activity of these kinases through interaction with Src homology 2 and 3 domains. IL-5 stimulation of eosinophils increases Unc119 association with Lyn and induces its catalytic activity. Lyn is important for eosinophil survival. Eosinophils that are transduced with Unc119 have increased Lyn activity and demonstrate prolonged survival in the absence of IL-5. Inhibition of Unc119 down-regulates eosinophil survival. To our knowledge Unc119 is the first receptor-associated activator of Src family tyrosine kinases.
Collapse
Affiliation(s)
- Osman Cen
- Division of Allergy and Immunology, NIAID, National Institutes of Health Asthma and Allergic Diseases Research Center, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
74
|
Chauhan S, Leach CH, Kunz S, Bloom JW, Miesfeld RL. Glucocorticoid regulation of human eosinophil gene expression. J Steroid Biochem Mol Biol 2003; 84:441-52. [PMID: 12732289 DOI: 10.1016/s0960-0760(03)00065-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Molecular analysis of steroid-regulated gene expression in freshly isolated human eosinophils is difficult due to the inherent high rate of spontaneous apoptosis and elevated levels of endogenous ribonucleases. To circumvent these limitations, we determined if the human eosinophilic cell line EoL-1 could serve as an in vitro model of glucocorticoid signaling. We found by optimizing growth conditions in low serum-containing media that dexamethasone (Dex) treatment of EoL-1 cells induced an apoptotic pathway that was inhibited by interleukin-5 (IL-5). Moreover, gene expression profiling using RNA from untreated EoL-1 cells and from freshly isolated human eosinophils identified 380 commonly expressed genes, including the eosinophil markers granule major basic protein, prostaglandin-endoperoxide synthase 1 and arachidonate 15-lipoxygenase. Expression profiling was performed using EoL-1 cells that had been treated with dexamethasone for 0, 4, 12, 24 and 48h identifying 162 genes as differentially expressed. Two of the most highly upregulated genes based on expression profiling were the transcription factor Ets-2 and the MHC Class II genes (Q, R, and P). Expression of these genes in EoL-1 cells was shown to be dexamethasone-induced at the RNA and protein levels which is consistent with the known function of Ets-2 in controlling cell cycle progression and the role of MHC Class II antigens in mediating eosinophil functions.
Collapse
Affiliation(s)
- Sanjay Chauhan
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | | | |
Collapse
|
75
|
Choi EN, Choi MK, Park CS, Chung IY. A parallel signal-transduction pathway for eotaxin- and interleukin-5-induced eosinophil shape change. Immunology 2003; 108:245-56. [PMID: 12562334 PMCID: PMC1782875 DOI: 10.1046/j.1365-2567.2003.01565.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interleukin-5 (IL-5) and eotaxin are the most important cytokines/chemokines responsible for regulating eosinophil locomotion and are known to play a co-operative role in the selective recruitment of eosinophils to inflamed tissues. Following exposure to chemoattractants, eosinophils undergo a series of events, including reorganization of actin filaments and subsequent rapid shape changes, culminating in chemotaxis. In this study we examined the signalling pathways for eosinophil shape change regulated by eotaxin and IL-5, primarily using a gated autofluorescence/forward-scatter assay. Eotaxin and IL-5 were able to elicit shape change with peaks at 10 and 60 min, respectively, and IL-5 triggered the shape change more efficiently than eotaxin. The pharmacological inhibitors of mitogen-activated protein kinase (MAP kinase) and p38 blocked both eotaxin- and IL-5-induced eosinophil shape change in a dose-dependent manner. In addition, depletion of intracellular Ca2+ and inhibition of protein kinase A (PKA) strongly reduced eosinophil shape change. In contrast, even when used at high concentrations, protein tyrosine kinase (PTK) inhibitors caused only a slight reduction in the ability to change shape. However, treatment with protein kinase C (PKC) inhibitors, such as GF109203X and staurosporine, resulted in a striking inhibition of eosinophil shape change by IL-5, but not eotaxin. Data from the inhibition of activation and chemotaxis of the extracellular signal-regulated kinases (ERK1/2) by the PKC inhibitors were also consistent with findings from the experiments on shape change. Collectively, two eosinophil-selective cytokines/chemokines probably regulate eosinophil shape change via a largely overlapping signalling pathway, with involvement of PKC restricted to the IL-5 signal alone.
Collapse
Affiliation(s)
- Eun Nam Choi
- Department of Biochemistry and Molecular Biology, Hanyang UniversityAnsan, South Korea
| | - Moon Kyung Choi
- Department of Biochemistry and Molecular Biology, Hanyang UniversityAnsan, South Korea
| | - Choon-Sik Park
- Division of Allergy and Respiratory Medicine, Soonchunhyang University HospitalBucheon, South Korea
| | - Il Yup Chung
- Department of Biochemistry and Molecular Biology, Hanyang UniversityAnsan, South Korea
- Department of Internal Medicine, Soonchunhyang University HospitalBucheon, South Korea
| |
Collapse
|
76
|
Härter L, Keel M, Steckholzer U, Ungethuem U, Trentz O, Ertel W. Activation of mitogen-activated protein kinases during granulocyte apoptosis in patients with severe sepsis. Shock 2002; 18:401-6. [PMID: 12412617 DOI: 10.1097/00024382-200211000-00003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Reduction of neutrophil apoptosis represents a major cause for granulocytosis and increases the destructive potential of theses cells during systemic inflammatory response syndrome (SIRS) and sepsis. In this light, the role of protein kinases for the regulation of altered neutrophil apoptosis under infectious conditions was investigated. Neutrophils, obtained from patients with severe sepsis (n = 18), were incubated ex vivowith either LPS (1 microg/mL) or interferon-gamma (IFN-gamma; 10 ng/mL) for 16 h. Apoptosis was determined by propidium iodine (PI) staining of DNA fragments and was compared with the rate of spontaneous apoptosis. Tyrosine kinases were inhibited by herbimycin (1 microM), the mitogen-activated protein (MAP) kinase ERK was inhibited with PD98059 (50 microM), and p38 MAP kinase was inhibited with SB203580 (5 microM). Herbimycin reconstituted LPS-reduced apoptosis in neutrophils from controls (39.9 +/- 3.8%) and patients (20.8 +/- 2.8%) to levels seen in spontaneous apoptosis (70.9 +/- 2.8% and 40.7 +/- 3.7%, respectively). Inhibition of the ERK kinase yielded similar results, whereas SB203580 had no effect on LPS-reduced apoptosis. However, inhibition of p38 partially reconstituted IFN-gamma-reduced apoptosis (51.3 +/- 7.7% and 25.6 +/- 5.8%) and increased spontaneous apoptosis (82.4 +/- 3.3% and 42.0 +/- 5.8%) in controls and patients, respectively. Western blot analysis revealed phosphorylation of both MAP kinases by LPS, but not by IFN-gamma. Inhibition of MAP kinases did not augment neutrophil apoptosis in patients to the level seen in controls, indicating that other mechanisms must be involved in the regulation of neutrophil apoptosis. Although the ERK kinase regulates LPS-induced reduction of apoptosis, the p38 MAP kinase might be involved in IFN-gamma signaling and the feedback regulation of neutrophil apoptosis.
Collapse
Affiliation(s)
- Luc Härter
- Division of Trauma Surgery, University Hospital Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
77
|
Stenton GR, Ulanova M, Déry RE, Merani S, Kim MK, Gilchrist M, Puttagunta L, Musat-Marcu S, James D, Schreiber AD, Befus AD. Inhibition of allergic inflammation in the airways using aerosolized antisense to Syk kinase. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:1028-36. [PMID: 12097411 DOI: 10.4049/jimmunol.169.2.1028] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Activation of the protein tyrosine kinase Syk is an early event that follows cross-linking of Fc gamma R and Fc epsilon R, leading to the release of biologically active molecules in inflammation. We reported previously that aerosolized Syk antisense oligodeoxynucleotides (ASO) depresses Syk expression in inflammatory cells, the release of mediators from alveolar macrophages, and pulmonary inflammation. To study the effect of Syk ASO in allergic inflammation and airway hyperresponsiveness, we used the Brown Norway rat model of OVA-induced allergic asthma. Syk ASO, delivered in a liposome, carrier/lipid complex by aerosol to rats, significantly inhibited the Ag-induced inflammatory cell infiltrate in the bronchoalveolar space, decreasing both neutrophilia and eosinophilia. The number of eosinophils in the lung parenchyma was also diminished. Syk ASO also depressed up-regulation of the expression of beta(2) integrins, alpha(4) integrin, and ICAM-1 in bronchoalveolar lavage leukocytes and reversed the Ag-induced decrease in CD62L expression on neutrophils. Furthermore, the increase in TNF levels in bronchoalveolar lavage following Ag challenge was significantly inhibited. Syk ASO also suppressed Ag-mediated contraction of the trachea in a complementary model. Thus, aerosolized Syk ASO suppresses many of the central components of allergic asthma and inflammation and may provide a new therapeutic approach.
Collapse
Affiliation(s)
- Grant R Stenton
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Wong CK, Zhang J, Ip WK, Lam CWK. Intracellular signal transduction in eosinophils and its clinical significance. Immunopharmacol Immunotoxicol 2002; 24:165-86. [PMID: 12066845 DOI: 10.1081/iph-120003748] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The incidence and prevalence of allergic diseases such as asthma and allergic rhinitis have recently been increasing worldwide. Eosinophils are the principal effector cells for the pathogenesis of allergic inflammation via the secretion of highly cytotoxic granular proteins including eosinophil cationic protein, major basic protein and eosinophil protein X. Blood and tissue eosinophilia is a common manifestation of late-phase allergic inflammation causing tissue damage. The development of eosinophilia correlates with the production of haematopoietic cytokines including interleukin (IL)-3. IL-5 and granulocyte macrophage colony stimulating factor (GM-CSF), and eosinophil-specific chemoattractant, eotaxin, from T-lymphocytes and the epithelium respectively. Elucidation of intracellular mechanisms that control the activation, apoptosis and recruitment of eosinophils to tissues is therefore fundamental in understanding these disease processes and provides targets for novel drug therapy. Over the past decade, there has been intensive investigation for the intracellular signal transduction regulating various biological functions of eosinophils and their roles in the pathogenesis of eosinophil-related diseases. This review will emphasize on the cytokine and chemokine-mediated signal transductions including the RAS-RAF-mitogen-activated protein kinases (MAPK), Janus kinases (JAK)-signal transducers and activators of transcription (STAT), phosphatidylinositol 3-kinase (PI3K) and nuclear factor-kappa B (NF-kappaB), and various antagonists of receptors and inhibitors of intracellular signaling molecules as potential therapeutic agents of allergic diseases.
Collapse
Affiliation(s)
- Chun Kwok Wong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT
| | | | | | | |
Collapse
|
79
|
Affiliation(s)
- James G Zangrilli
- Division of Critical Care, Pulmonary, and Allergic and Immunologic Diseases, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania 19107, USA.
| |
Collapse
|
80
|
Ishikawa H, Tsuyama N, Abroun S, Liu S, Li FJ, Taniguchi O, Kawano MM. Requirements of src family kinase activity associated with CD45 for myeloma cell proliferation by interleukin-6. Blood 2002; 99:2172-8. [PMID: 11877294 DOI: 10.1182/blood.v99.6.2172] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Specific intracellular signals mediated by interleukin-6 (IL-6) receptor complexes, such as signal transducer and activator of transcription 3 (STAT 3) and extracellular signal-regulated kinase (ERK) 1/2, are considered to be responsible for inducing a variety of cellular responses. In multiple myeloma, IL-6 only enhanced the proliferation of CD45+ tumor cells that harbored the IL-6-independent activation of src family kinases even though STAT3 and ERK1/2 could be activated in response to IL-6 in both CD45+ and CD45(minus sign) cells. Furthermore, the IL-6-induced proliferation of CD45+ U266 myeloma cells was significantly suppressed by Lyn-specific antisense oligodeoxynucleotides or a selective src kinase inhibitor. These results indicate that the activation of both STAT3 and ERK1/2 is not enough for IL-6-induced proliferation of myeloma cell lines that require src family kinase activation independent of IL-6 stimulation. Thus, the activation of the src family kinases associated with CD45 expression is a prerequisite for the proliferation of myeloma cell lines by IL-6. We propose a mechanism for IL-6-induced cell proliferation that is strictly dependent upon the cellular context in myelomas.
Collapse
Affiliation(s)
- Hideaki Ishikawa
- Department of Bio-Signal Analysis, Applied Medical Engineering Science, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-kogushi, Ube, Yamaguchi 755-8505, Japan
| | | | | | | | | | | | | |
Collapse
|
81
|
Stafford S, Lowell C, Sur S, Alam R. Lyn tyrosine kinase is important for IL-5-stimulated eosinophil differentiation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:1978-83. [PMID: 11823534 DOI: 10.4049/jimmunol.168.4.1978] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-5 plays a pivotal role in growth and differentiation of eosinophils. The signal transduction mechanism of IL-5Ralpha is largely unknown. We have demonstrated that IL-5 induces tyrosine phosphorylation of IL-5Ralpha in eosinophils. To identify IL-5Ralpha-associated tyrosine kinases, we have examined the expression of Src family tyrosine kinases in eosinophils. Among the Src family members, Lyn, Hck, Fgr, and Lck are present in eosinophils, and, among these four kinases, only Lyn is associated with the IL-5Ralpha under basal conditions. We also confirm the association of Janus kinase (Jak)2 with IL-5Ralpha. Lyn kinase phosphorylates both IL-5Ralpha and betacR in vitro. The importance of Lyn kinase for eosinophil differentiation was studied using antisense oligodeoxynucleotides. Lyn antisense oligodeoxynucleotide blocks eosinophil differentiation from stem cells in a dose-dependent manner. The Jak2 inhibitor tyrphostin AG490 also inhibits eosinophil differentiation. The importance of Lyn for eosinophil differentiation was further studied using Lyn knockout mice. The IL-5-stimulated eosinophil differentiation from bone marrow cells is significantly inhibited in Lyn(-/-) mice as compared with that in control mice. We conclude that both Lyn and Jak2 play an essential role in IL-5Ralpha signaling, leading to eosinophil differentiation. The effect of Lyn appears to be relatively specific for the eosinophilic lineage.
Collapse
Affiliation(s)
- Susan Stafford
- Department of Internal Medicine, Division of Allergy and Immunology, University of Texas Medical Branch, Galveston, TX 77555. Department of Laboratory Medicine, University of California, San Francisco, CA 94143
| | | | | | | |
Collapse
|
82
|
Daigle I, Yousefi S, Colonna M, Green DR, Simon HU. Death receptors bind SHP-1 and block cytokine-induced anti-apoptotic signaling in neutrophils. Nat Med 2002; 8:61-7. [PMID: 11786908 DOI: 10.1038/nm0102-61] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Death domain-containing receptors of the tumor necrosis factor (TNF)/nerve growth factor (NGF) family can induce apoptosis upon activation in many cellular systems. We show here that a conserved phosphotyrosine-containing motif within the death domain of these receptors can mediate inhibitory functions. The Src homology domain 2 (SH2)-containing tyrosine phosphatase-1 (SHP-1), SHP-2 and SH2-containing inositol phosphatase (SHIP) bound to this motif in a caspase-independent but cell-dependent manner. We also found that stimulation of death receptors disrupted anti-apoptosis pathways initiated (at least under certain conditions) by survival factors in neutrophils. In these cells, activation of the tyrosine kinase Lyn, an important anti-apoptotic event, was prevented as a consequence of death-receptor stimulation, most likely through association of the receptor with activated SHP-1. Thus, we provide molecular and functional evidence for negative signaling by death receptors.
Collapse
Affiliation(s)
- Isabelle Daigle
- Swiss Institute of Allergy and Asthma Research (SIAF), Davos, Switzerland
| | | | | | | | | |
Collapse
|
83
|
Bulanova E, Budagian V, Pohl T, Krause H, Dürkop H, Paus R, Bulfone-Paus S. The IL-15R alpha chain signals through association with Syk in human B cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:6292-302. [PMID: 11714793 DOI: 10.4049/jimmunol.167.11.6292] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The alpha-chain of the IL-15R (IL-15Ralpha) serves as the specific, high-affinity receptor for IL-15. It is expressed by lymphoid and nonlymphoid cells, including B cell lymphoma lines. In this study, we have further explored IL-15Ralpha-mediated signaling in activated primary B cells and in Raji cells, a human B-lymphoblastoid cell line which expresses the IL-15Ralpha and IL-2Rgamma chains, but lacks the IL-2Rbeta chain. Stimulation of Raji cells with IL-15 induces their proliferation and rescues them from C2-ceramide-induced apoptosis. By immunoprecipitation and Western blotting, we show that treatment of Raji cells and activated primary B cells with IL-15 induces coprecipitation of Syk kinase with the IL-15Ralpha chain. Upon association, the activated Syk kinase phosphorylates the IL-15Ralpha chain as well as phospholipase Cgamma, which coprecipitates with Syk. Furthermore, transfection of Raji cells with stem-loop Syk antisense oligonucleotides prevents IL-15Ralpha and phospholipase Cgamma phosphorylation as well as the inhibition of apoptosis by IL-15. Mutation of a defined region of the intracellular signaling portion of IL-15Ralpha (Tyr227) abrogates both the IL-15Ralpha/Syk association and IL-15Ralpha phosphorylation. Taken together, this suggests that Syk kinase physically and functionally associates with the IL-15Ralpha chain in B cells and that Syk plays a key role in mediating IL-15-induced signal transduction, thus accounting for the distinct functional consequences of IL-15 vs IL-2 binding to B cells.
Collapse
Affiliation(s)
- E Bulanova
- Department of Immunology and Cell Biology, Research Center Borstel, Borstel, Germany
| | | | | | | | | | | | | |
Collapse
|
84
|
Horikawa K, Kaku H, Nakajima H, Davey HW, Hennighausen L, Iwamoto I, Yasue T, Kariyone A, Takatsu K. Essential role of Stat5 for IL-5-dependent IgH switch recombination in mouse B cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:5018-26. [PMID: 11673510 DOI: 10.4049/jimmunol.167.9.5018] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-5 stimulation of CD38-activated murine splenic B cells induces mu-gamma1 CSR at the DNA level leading to a high level of IgG1 production. Further addition of IL-4 in the system enhances IL-5-dependent mu-gamma1 CSR. Although some of the postreceptor signaling events initiated by IL-5 in activated B cells have been characterized, the involvement of Stat in IL-5 signaling has not been thoroughly evaluated. In this study, we examined the activation of Stat5 and activation-induced cytidine deaminase (AID) in CD38-activated murine splenic B cells by IL-5. The role of Stat5a and Stat5b in IL-5-induced mu-gamma1 CSR and also IgG1 and IgM production was documented, as IL-5 does not act on CD38-stimulated splenic B cells from Stat5a(-/-) and Stat5b(-/-) mice. Expression levels of CD38-induced germline gamma1 transcripts and AID in Stat5a(-/-) and Stat5b(-/-) B cells upon IL-5 stimulation were comparable to those of wild-type B cells. The impaired mu-gamma1 CSR by Stat5b(-/-) B cells, but not by Stat5a(-/-) B cells, was rescued in part by IL-4, as the addition of IL-4 to the culture of CD38- and IL-5-stimulated B cells induced mu-gamma1 CSR leading to IgG1 production. Analysis of cell division cycle number of wild-type B cells revealed that mu-gamma1 CSR was observed after five or six cell divisions. Stat5a(-/-) and Stat5b(-/-) B cells showed similar cell division cycles, but they did not undergo mu-gamma1 CSR. Our data support the notion that both Stat5a and Stat5b are essential for IL-5-dependent mu;-gamma1 CSR and Ig secretion; however, their major target may not be AID. Stat5a and Stat5b are not redundant, but rather are at least partially distinctive in their function.
Collapse
Affiliation(s)
- K Horikawa
- Department of Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Hall DJ, Cui J, Bates ME, Stout BA, Koenderman L, Coffer PJ, Bertics PJ. Transduction of a dominant-negative H-Ras into human eosinophils attenuates extracellular signal-regulated kinase activation and interleukin-5-mediated cell viability. Blood 2001; 98:2014-21. [PMID: 11567984 DOI: 10.1182/blood.v98.7.2014] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Inhibition of eosinophil apoptosis by exposure to interleukin-5 (IL-5) is associated with the development of tissue eosinophilia and may contribute to the inflammation characteristic of asthma. Analysis of the signaling events associated with this process has been hampered by the inability to efficiently manipulate eosinophils by the introduction of active or inhibitory effector molecules. Evidence is provided, using a dominant-negative N17 H-Ras protein (dn-H-Ras) and MEK inhibitor U0126, that activation of the Ras-Raf-MEK-ERK pathway plays a determining role in the prolongation of eosinophil survival by IL-5. For these studies, a small region of the human immunodeficiency virus Tat protein, a protein transduction domain known to enter mammalian cells efficiently, was fused to the N-terminus of dn-H-Ras. The Tat-dn-H-Ras protein generated from this construct transduced isolated human blood eosinophils at more than 95% efficiency. When Tat-dn-H-Ras-transduced eosinophils were treated with IL-5, they exhibited a time- and dosage-dependent reduction in extracellular regulated kinase 1 and 2 activation and an inhibition of p90 Rsk1 phosphorylation and IL-5-mediated eosinophil survival in vitro. In contrast, Tat-dn-H-Ras did not inhibit CD11b up-regulation or STAT5 tyrosine phosphorylation. These data demonstrate that Tat dominant-negative protein transduction can serve as an important and novel tool in studying primary myeloid cell signal transduction in primary leukocytes and can implicate the Ras-Raf-MEK-ERK pathway in IL-5-initiated eosinophil survival.
Collapse
Affiliation(s)
- D J Hall
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | | | | | |
Collapse
|
86
|
Hashimoto SI, Komuro I, Yamada M, Akagawa KS. IL-10 inhibits granulocyte-macrophage colony-stimulating factor-dependent human monocyte survival at the early stage of the culture and inhibits the generation of macrophages. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:3619-25. [PMID: 11564774 DOI: 10.4049/jimmunol.167.7.3619] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We previously demonstrated that IL-10 alone does not stimulate growth and differentiation of human monocytes, but enhances those of monocytes stimulated with M-CSF. We studied here the effect of IL-10 on human monocytes stimulated with GM-CSF. Monocytes stimulated with GM-CSF alone survived and developed into macrophages. Monocytes cultured with GM-CSF plus IL-10, however, died through apoptosis. IL-10 decreased expression of bcl-2, bcl-x(L), and mcl-1- but not bax mRNA in monocytes stimulated with GM-CSF. IL-10 did not change the expression of mRNA of both GM-CSFR alpha-chain and beta-chain, but inhibited tyrosine phosphorylation of STAT5 and extracellular signal-regulated kinases 1 and 2 in the monocytes. The inhibitory effect of IL-10 was restricted to treatment 48 h after stimulation with GM-CSF. Addition of IL-10 after that time induced neither apoptosis nor a decrease in expression of bcl-2, bcl-x(L), and mcl-1 mRNA. IL-10, however, inhibited LPS-induced TNF-alpha production even in these cells, indicating that the cells still possessed responsiveness to IL-10. Monocytes pretreated for >48 h with GM-CSF became resistant to GM-CSF withdrawal, and the cells could survive without GM-CSF. These results indicate that IL-10 selectively inhibits GM-CSF-dependent monocyte survival by inhibiting the signaling events induced by GM-CSF, but the timing of addition of IL-10 is critical, and IL-10 had to be added within 48 h after stimulation with GM-CSF to achieve the inhibitory effect. These results taken together with our previous results indicate that IL-10 plays a pivotal role in monocyte survival and development into macrophages in concert with M-CSF and GM-CSF.
Collapse
Affiliation(s)
- S I Hashimoto
- Department of Immunology, National Institutes of Health, Tokyo, Japan
| | | | | | | |
Collapse
|
87
|
Dewson G, Cohen GM, Wardlaw AJ. Interleukin-5 inhibits translocation of Bax to the mitochondria, cytochrome c release, and activation of caspases in human eosinophils. Blood 2001; 98:2239-47. [PMID: 11568012 DOI: 10.1182/blood.v98.7.2239] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The apoptosis and subsequent clearance of eosinophils without histotoxic mediator release is thought to be crucial in the resolution of airway inflammation in asthma. Interleukin-5 (IL-5) is a potent suppressor of eosinophil apoptosis. The mechanism by which IL-5 inhibits spontaneous eosinophil apoptosis was investigated. Freshly isolated eosinophils constitutively expressed the conformationally active form of Bax in the cytosol and nucleus. During spontaneous and staurosporine-induced apoptosis, Bax underwent a caspase-independent translocation to the mitochondria, which was inhibited by IL-5. Eosinophil apoptosis was associated with the release of cytochrome c from the mitochondria, which was also inhibited by IL-5. IL-5 and the cell-permeable caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp-(OMe) fluoromethyl ketone (z-VAD.fmk), prevented phosphatidylserine (PS) externalization, although only IL-5 inhibited loss of mitochondrial membrane potential (DeltaPsim). Peripheral blood eosinophils endogenously expressed "initiator" caspase-8 and -9, and "effector" caspase-3, -6, and -7. Spontaneous eosinophil apoptosis was associated with processing of caspase-3, -6, -7, -8, and -9. IL-5 and z-VAD.fmk prevented caspase activation in spontaneous apoptosis. The results suggest that spontaneous eosinophil apoptosis involves Bax translocation to the mitochondria, cytochrome c release, caspase-independent perturbation of the mitochondrial membrane, and subsequent activation of caspases. IL-5 inhibits spontaneous eosinophil apoptosis at a site upstream of Bax translocation.
Collapse
Affiliation(s)
- G Dewson
- Institute for Lung Health, University of Leicester, Glenfield Hospital, Leicester, United Kingdom
| | | | | |
Collapse
|
88
|
Alam R, Gorska M. Genomic microarrays: arraying order in biological chaos? Am J Respir Cell Mol Biol 2001; 25:405-8. [PMID: 11694444 DOI: 10.1165/ajrcmb.25.4.f217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- R Alam
- Department of Internal Medicine, Division of Allergy & Immunology, University of Texas Medical Branch, Galveston, TX 77555-1083, USA.
| | | |
Collapse
|
89
|
Temple R, Allen E, Fordham J, Phipps S, Schneider HC, Lindauer K, Hayes I, Lockey J, Pollock K, Jupp R. Microarray analysis of eosinophils reveals a number of candidate survival and apoptosis genes. Am J Respir Cell Mol Biol 2001; 25:425-33. [PMID: 11694447 DOI: 10.1165/ajrcmb.25.4.4456] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The increase in eosinophils at the site of antigen challenge has been used as evidence to suggest that this cell type plays a role in the pathophysiology of asthma. Aberrant production of several different cytokines, particularly interleukin (IL)-5, has been shown to result in eosinophilia. IL-5 influences the development and maturation of eosinophils in a number of different ways. Of note is the ability of IL-5 to act as a survival factor for eosinophils specifically inhibiting apoptosis. The precise mechanism by which IL-5 exerts its effect remains obscure. We used microarray technologies to investigate the changes in the messenger RNA expression profile of eosinophils after treatment with IL-5. Using the Affymetrix Hu6800 chip, a total of 80 genes were observed to be regulated by 2-fold or greater. Many of the genes previously identified as regulated by IL-5 were regulated in our microarray experiments. Of the 73 genes found to be upregulated, many were shown to play a role in adhesion, migration, activation, or survival of eosinophils or hematopoietic cells, whereas the function of others was unknown. To facilitate the identification of genes that govern the apoptosis and survivability of eosinophils, we used an alternative cellular model, TF1.8 cells, whose survival was also dependent on IL-5. Comparison of these models identified four genes, Pim-1, DSP-5 (hVH3, B23), CD24, and SLP-76, whose regulation was similarly coordinated in both systems. Identification of Pim-1 and SLP-76 as regulated by IL-5 led us to suggest a direct role for these proteins in the IL-5 signaling pathway in eosinophils. The tissue distribution of these genes demonstrated that Pim-1 and SLP-76 were relatively restricted to the eosinophil compared with their expression in brain, bone marrow, kidney, liver, and lung. By contrast, DSP-5 and CD24 were confirmed as ubiquitous in their expression by microarray.
Collapse
Affiliation(s)
- R Temple
- Aventis Pharmaceuticals, Inc., Route 202-206, Bridgewater, NJ 08807, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Grishin AV, Azhipa O, Semenov I, Corey SJ. Interaction between growth arrest-DNA damage protein 34 and Src kinase Lyn negatively regulates genotoxic apoptosis. Proc Natl Acad Sci U S A 2001; 98:10172-7. [PMID: 11517336 PMCID: PMC56934 DOI: 10.1073/pnas.191130798] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genotoxic stresses activate intracellular signaling molecules, which lead to growth arrest, DNA repair, and/or apoptosis. Among these molecules are the growth arrest and DNA damage protein 34 (GADD34) and the Src-related protein tyrosine kinase Lyn. Here, we report that these two proteins physically and functionally interact to regulate DNA damage-induced apoptosis. Multiple isolates of GADD34 and the related murine protein MyD116 were identified as binding partners of Lyn in a yeast two-hybrid screen. The specific interaction was confirmed by in vitro association of GADD34 with glutathione S-transferase fusion proteins containing the Src Homology 3 (SH3) domain of Lyn, as well as coimmunoprecipitation of GADD34 and Lyn from mammalian cells. GADD34 was tyrosine-phosphorylated in vivo in a Lyn-dependent manner. Lyn efficiently phosphorylated affinity-purified GADD34 in vitro. Lyn negatively regulated the proapoptotic function of GADD34 in a kinase-dependent manner. Expression of wild-type, but not kinase-inactive, Lyn weakened promotion of apoptosis by GADD34 following treatment with methyl-methanesulfonate or ionizing radiation in HEK293 and HeLa cells. In contrast, pretreatment of cells with the Src-specific tyrosine kinase inhibitor PP1 strengthened promotion of apoptosis by GADD34. We propose that Lyn regulates the proapoptotic function of GADD34 by binding and phosphorylating it.
Collapse
Affiliation(s)
- A V Grishin
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | | | | | | |
Collapse
|
91
|
Muto A, Kizaki M, Kawamura C, Matsushita H, Fukuchi Y, Umezawa A, Yamada T, Hata J, Hozumi N, Yamato K, Ito M, Ueyama Y, Ikeda Y. A novel differentiation-inducing therapy for acute promyelocytic leukemia with a combination of arsenic trioxide and GM-CSF. Leukemia 2001; 15:1176-84. [PMID: 11480559 DOI: 10.1038/sj.leu.2402162] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Arsenic trioxide (As2O3) effectively induces clinical remission via apoptosis in relapsed acute promyelocytic leukemia (APL). However, because this new anti-leukemic drug is also considered to be a poison, its possible adverse effects are a highly important issue related to its clinical use. We here investigated, both in vitro and in vivo, the effects of a combination of As2O3 and GM-CSF as a novel therapeutic approach for the treatment of APL. Treatment of both retinoic acid (RA)-sensitive and -resistant APL cell lines (NB4 and UF-1 cells, respectively), as well as primary APL cells with a combination of As2O3 and GM-CSF for 4 days resulted in inducing differentiation, but not apoptosis, to mature granulocytes. In addition, a combination of both agents induced degradation of the PML/RARalpha protein. GM-CSF was found to be associated with increased tyrosine phosphorylation of Jak2 kinase in both NB4 and UF-1 cells, and a specific inhibitor of Jak2, AG490, completely blocked the ability of GM-CSF to prevent apoptosis and induce differentiation of As2O3-treated UF-1 cells. In in vivo analysis, As2O3 induced differentiation of APL cells in a RA-resistant APL model of human GM-CSF-producing transgenic SCID mice that had a high level of human GM-CSF in their sera. In contrast, As2O3 alone diminished tumors in UF-1 cells transplanted into NOD/SCID mice via induction of apoptosis. In conclusion, a combination of As2O3 and GM-CSF appears to be a novel differentiation-inducing therapy in patients with APL, including relapsed or RA-resistant cases.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Arsenic Trioxide
- Arsenicals/pharmacology
- Arsenicals/therapeutic use
- Drug Resistance, Neoplasm
- Drug Therapy, Combination
- Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology
- Granulocyte-Macrophage Colony-Stimulating Factor/therapeutic use
- Humans
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/metabolism
- Leukemia, Promyelocytic, Acute/pathology
- Mice
- Mice, SCID
- Neoplasm Proteins/metabolism
- Oncogene Proteins, Fusion/metabolism
- Oxides/pharmacology
- Oxides/therapeutic use
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- A Muto
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Yamada T, Fujieda S, Yanagi S, Yamamura H, Inatome R, Yamamoto H, Igawa H, Saito H. IL-1 induced chemokine production through the association of Syk with TNF receptor-associated factor-6 in nasal fibroblast lines. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:283-8. [PMID: 11418661 DOI: 10.4049/jimmunol.167.1.283] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The fibroblasts stimulated by cytokines released the chemokine and recruited the infiltrating cells, including eosinophils, that play a key role in the pathogenesis of airway disease. We established the human fibroblast lines showing high Syk expression and the lines showing low Syk expression from pieces of nasal polyp. IL-1 induces the interaction of TNFR-associated factor (TRAF) 6 with IL-1R-associated kinase, which is rapidly recruited to the IL-1R after IL-1 induction, whereas TRAF2 participates in TNF-alpha-signaling. In the present study, we found that Syk played a different role in IL-1- and TNF-alpha-induced chemokine production through a signaling complex involving Syk and TRAF6. Overexpression of wild-type Syk by gene transfer enhanced RANTES production from nasal fibroblasts stimulated with IL-1. The decrease of Syk expression by the administration of Syk antisense inhibited RANTES production in response to IL-1. However, the change of Syk expression did not affect RANTES production by TNF-alpha stimulation. We concluded that Syk is required for the IL-1-induced chemokine production through the association with TRAF-6 in fibroblasts of nasal polyps.
Collapse
Affiliation(s)
- T Yamada
- Department of Otorhinolaryngology, Fukui Medical University, Fukui, Japan
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Lopez I, Duprez V, Melle J, Dreyfus F, Lévy-Tolédano S, Fontenay-Roupie M. Thrombopoietin stimulates cortactin translocation to the cytoskeleton independently of tyrosine phosphorylation. Biochem J 2001; 356:875-81. [PMID: 11389697 PMCID: PMC1221916 DOI: 10.1042/0264-6021:3560875] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cortactin is an F-actin-binding protein expressed in platelets. During aggregation by thrombin, cortactin associates with Src, is tyrosine phosphorylated, and then translocates to the cytoskeleton. It is also found to associate with Syk during platelet shape change. Since cortactin undergoes tyrosine phosphorylation in platelets activated by thrombopoietin (TPO) that exhibit neither shape change nor aggregation, we investigated whether it could also relocalize to the detergent-insoluble fraction. We demonstrate that cortactin was present as a tyrosine-phosphorylated protein and co-localized with Syk in the Triton X-100-insoluble fraction of TPO-activated platelets. TPO stimulated Syk activation and association with cortactin. Conversely, cortactin associated with the kinases, Syk and Src. Cortactin tyrosine phosphorylation was blocked by Syk kinase inhibitor, piceatannol or Src family kinase inhibitor, PP2, suggesting that it depends on these two kinases. However, piceatannol or PP2 did not prevent cortactin translocation to the detergent-insoluble fraction. These data suggest that tyrosine phosphorylation is not required for cortactin translocation to the detergent-insoluble compartment. Furthermore, TPO activates, through its receptor c-Mpl, a signalling pathway to the cytoskeleton.
Collapse
Affiliation(s)
- I Lopez
- Département d'Hématologie, AP-HP, Hôpital Cochin, 27 rue du Faubourg Saint-Jacques, F75679 Paris, Cedex 14, France
| | | | | | | | | | | |
Collapse
|
94
|
Yousefi S, Cooper PR, Potter SL, Mueck B, Jarai G. Cloning and expression analysis of a novel G‐protein‐coupled receptor selectively expressed on granulocytes. J Leukoc Biol 2001. [DOI: 10.1189/jlb.69.6.1045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Shida Yousefi
- Novartis Horsham Research Centre, Horsham, West Sussex RH12 5AB, United Kingdom
| | - Paul R Cooper
- Novartis Horsham Research Centre, Horsham, West Sussex RH12 5AB, United Kingdom
| | - Suzanne L Potter
- Novartis Horsham Research Centre, Horsham, West Sussex RH12 5AB, United Kingdom
| | - Beatrice Mueck
- Novartis Horsham Research Centre, Horsham, West Sussex RH12 5AB, United Kingdom
| | - Gabor Jarai
- Novartis Horsham Research Centre, Horsham, West Sussex RH12 5AB, United Kingdom
| |
Collapse
|
95
|
Sinha S, Jancarik J, Roginskaya V, Rothermund K, Boxer LM, Corey SJ. Suppression of apoptosis and granulocyte colony-stimulating factor-induced differentiation by an oncogenic form of Cbl. Exp Hematol 2001; 29:746-55. [PMID: 11378270 DOI: 10.1016/s0301-472x(01)00647-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE The retroviral oncogene v-Cbl causes pre-B cell lymphomas and myeloid leukemias in mice, and its Drosophila homologue is oncogenic, causing enhanced receptor tyrosine kinase signaling. The human Cbl gene resides at 11q23. The aim of this study is to determine the effect of oncogenic Cbl on growth-regulating responses. MATERIALS AND METHODS The oncogenic mutant of Cbl (CblDelta1-357) was transfected into factor-dependent 32Dcl3 myeloid cells. Consequently, cell survival and differentiation were measured. Lyn, Syk, MAP kinase, and phosphatidylinositol 3'(PI3')-kinase activities, protein phosphorylation, Bcl-2 promoter activity, ubiquitination, and levels of Bcl-2, Bax, Bad, and Bcl-x(L) were determined. In addition, the effect of v-Cbl on TF-1 cell survival upon granulocyte-macrophage colony-stimulating factor withdrawal was studied. RESULTS 32Dcl3 and TF-1 cells expressing v-Cbl showed resistance to apoptosis upon growth factor withdrawal, and 32Dcl3 cells completely failed to respond to granulocyte colony-stimulating factor's induction of differentiation. Basal activities of Lyn, Syk, and PI3'-kinase were elevated in the v-Cbl line. There was neither enhanced tyrosine phosphorylation of cellular protein content, Cbl, or Jak2, nor serine phosphorylation of MAP kinase or Akt. After factor withdrawal, the level of Bcl-2 was greater in v-Cbl cells than in control cells. CONCLUSIONS Neither increased Bcl-2 promoter activity nor decreased ubiquitination of Bcl-2 could account for increased Bcl-2 levels. v-Cbl-expressing 32Dcl3 cells were resistant to differentiation. v-Cbl suppresses apoptosis and differentiation, possibly through enhancement of Lyn, Syk, and PI3'-kinase activities and Bcl-2.
Collapse
Affiliation(s)
- S Sinha
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | | | | | | | |
Collapse
|
96
|
Abstract
Eosinophilic airway inflammation is the main histologic correlate of airway hyper-responsiveness (AHR) and tissue injury in the pathogenesis of bronchial asthma. There is strong evidence for a central role of CD4+ T-cells secreting pro-allergic Th2-cytokines, such as IL-4 and IL-5, in the induction of airway eosinophilia and AHR. IL-5 appears to be one of the main pro-inflammatory mediators among a growing number of cytokines and chemokines that induce, regulate and sustain eosinophilic airway inflammation. Animal studies provide confirmatory evidence for the important role of IL-5 in the induction and maintenance of eosinophilic airway infiltration leading to altered airway function. Interfering with the action of IL-5 represents one of the new immunomodulatory therapeutic strategies in the treatment of bronchial asthma. Compared to established immunosuppressive agents like steroids, a major advantage of this strategy is the specificity of reducing eosinophilic inflammation, thus possibly acting nearly without side effects. There are several possible ways to inhibit the effects of IL-5 including alteration of the signalling pathway in the IL-5 producing cell by inhibition or modification of transcription factors or the use of antisense oligonucleotides and blocking of the IL-5 protein itself by monoclonal antibodies, soluble IL-5 receptor or antagonists of the IL-5 receptor expressed on the surface of eosinophils. Although preliminary data from the first clinical trials gave rise to skepticism about the efficacy of anti-IL-5 treatment regarding the improvement of lung function of asthmatic patients, further studies with a better defined profile of the target population may provide encouraging results, allowing the introduction of this truly new therapeutic concept.
Collapse
Affiliation(s)
- K Blümchen
- Department of Paediatrics, Pulmonology and Immunology, Charite'-Campus-Virchow-Klinikum, Berlin, Germany
| | | | | |
Collapse
|
97
|
Affiliation(s)
- L Koenderman
- Department of Pulmonary Diseases, University Medical Center, Utrecht, The Netherlands
| | | |
Collapse
|
98
|
Abstract
The health burden of asthma is increasing globally at an alarming rate, providing a strong impetus for the development of new therapeutics, particularly drugs that may prevent development of the disease. Currently available inhaled bronchodilators and anti-inflammatory drugs are effective in most asthmatic patients, but this palliative therapy requires long-term daily administration. Despite considerable efforts by the pharmaceutical industry, it has been difficult to develop novel therapeutic agents, the leukotriene antagonists being the only new class of asthma treatments to be licensed in the past 30 years. It is clearly important to understand more about the underlying mechanisms of asthma and about how currently used drugs work before rational improvements in therapy can be expected. There are numerous therapies in clinical development that combat the inflammation found in asthma, specifically targeting eosinophils, IgE, adhesion molecules, cytokines (interleukin-4, -5, -13) and chemokines, inflammatory mediators, and cell signaling (kinase inhibitors). In particular, there is the obvious need for new therapy for severe asthma that is poorly controlled by high-dose corticosteroids as well as agents to counter acute emergency asthma. A long-term goal is to develop disease-modifying immunotherapy that could be introduced in childhood to alter the natural history of asthma. Thanks to the extensive efforts of the pharmaceutical industry, we can expect the introduction of a range of novel therapies for asthma in the near future.
Collapse
Affiliation(s)
- T T Hansel
- National Heart and Lung Institute (NHLI) Clinical Studies Unit, Royal Brompton Hospital, Fulham Road, London SW3 6HP, UK.
| | | |
Collapse
|
99
|
Saita N, Yamanaka T, Kohrogi H, Ando M, Hirashima M. Apoptotic response of eosinophils in chronic eosinophilic pneumonia. Eur Respir J 2001; 17:190-4. [PMID: 11334118 DOI: 10.1183/09031936.01.17201900] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
To clarify the pathogenesis of chronic eosinophilic pneumonia (CEP), the apoptosis of eosinophils from bronchoalveolar lavage (BAL-Eos) was compared with that of eosinophils from peripheral blood (PB-Eos) in six cases of CEP. The survival rate of eosinophils and the percentage of apoptotic cells of both types of eosinophils were examined, and the effects of interleukin 5 (IL-5) were evaluated. The role of Fas expression in apoptosis of these eosinophils was also studied. The survival rate of BAL-Eos on the third day of culture was significantly higher than that of PB-Eos (p < 0.01). This was associated with a lower proportion of apoptotic cells in BAL-Eos than in PB-Eos; the percentages of apoptotic cells in PB-Eos and BAL-Eos after 24 h of incubation were 21.7 +/- 3.4% and 10.6 +/- 1.7% respectively. IL-5 suppressed apoptosis and increased the survival rate of both PB-Eos and BAL-Eos. It was found that the apoptotic character of BAL-Eos differed from that of PB-Eos in at least three ways. Firstly, the positive rate of Fas expression on PB-Eos was increased after 24 h of incubation, whereas that on BAL-Eos did not change. Secondly, the expression of Fas on PB-Eos was suppressed by IL-5 (18.5 +/- 4.2% - 8.3 +/- 3.2%, p < 0.05), whereas IL-5 failed to suppress Fas expression on BAL-Eos (3.3 +/- 1.6% - 3.6 +/- 1.0%). Lastly, binding of antibody to Fas antigen induced apoptosis of PB-Eos, but not of BAL-Eos. These data suggested that Fas seemed to be involved in the apoptosis of PB-Eos, whereas BAL-Eos were Fas-resistant in chronic eosinophilic pneumonia. In conclusion, apoptosis of eosinophils might be suppressed by proinflammatory cytokines such as IL-5 leading to their accumulation in the lung. Chronic stimulation of eosinophils in the alveolar space with IL-5 may play a crucial role chronic eosinophilic disorders.
Collapse
Affiliation(s)
- N Saita
- First Dept of Internal Medicine, Kumamoto University, School of Medicine, Japan
| | | | | | | | | |
Collapse
|
100
|
Yamada T, Fujieda S, Yanagi S, Yamamura H, Inatome R, Sunaga H, Saito H. Protein-tyrosine kinase Syk expressed in human nasal fibroblasts and its effect on RANTES production. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:538-43. [PMID: 11123334 DOI: 10.4049/jimmunol.166.1.538] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Fibroblasts, a rich source of chemokines, interact with eosinophils and play a key role in the pathogenesis of airway disease. RANTES is produced by fibroblasts to attract and activate eosinophils. LPS is known to induce RANTES and cause protein tyrosine phosphorylation. Nonreceptor protein tyrosine kinase Syk is widely expressed and an important role in intracellular signal transduction in hemopoietic cells. In the present study, we examined whether Syk was expressed in a number of primary human nasal polyp tissue-derived fibroblast lines and whether it played some role in cellular function. Syk proteins were expressed in human nasal fibroblasts, but the expression level varied. There were positive correlations between the level of Syk expression and RANTES production induced by LPS. Overexpression of wild-type Syk by gene transfer enhanced RANTES production from nasal fibroblasts stimulated with LPS. The decrease of Syk expression by the administration of Syk antisense inhibited RANTES production. These results suggest that Syk expression affects RANTES production in fibroblasts of nasal polyps.
Collapse
Affiliation(s)
- T Yamada
- Department of Otorhinolaryngology, Fukui Medical University, Fukui, Japan
| | | | | | | | | | | | | |
Collapse
|