51
|
Johansson-Percival A, Ganss R. Therapeutic Induction of Tertiary Lymphoid Structures in Cancer Through Stromal Remodeling. Front Immunol 2021; 12:674375. [PMID: 34122434 PMCID: PMC8191417 DOI: 10.3389/fimmu.2021.674375] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/04/2021] [Indexed: 01/01/2023] Open
Abstract
Improving the effectiveness of anti-cancer immunotherapy remains a major clinical challenge. Cytotoxic T cell infiltration is crucial for immune-mediated tumor rejection, however, the suppressive tumor microenvironment impedes their recruitment, activation, maturation and function. Nevertheless, solid tumors can harbor specialized lymph node vasculature and immune cell clusters that are organized into tertiary lymphoid structures (TLS). These TLS support naïve T cell infiltration and intratumoral priming. In many human cancers, their presence is a positive prognostic factor, and importantly, predictive for responsiveness to immune checkpoint blockade. Thus, therapeutic induction of TLS is an attractive concept to boost anti-cancer immunotherapy. However, our understanding of how cancer-associated TLS could be initiated is rudimentary. Exciting new reagents which induce TLS in preclinical cancer models provide mechanistic insights into the exquisite stromal orchestration of TLS formation, a process often associated with a more functional or "normalized" tumor vasculature and fueled by LIGHT/LTα/LTβ, TNFα and CC/CXC chemokine signaling. These emerging insights provide innovative opportunities to induce and shape TLS in the tumor microenvironment to improve immunotherapies.
Collapse
Affiliation(s)
- Anna Johansson-Percival
- Cancer Microenvironment Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia
- Centre for Medical Research, The University of Western Australia, Crawley, WA, Australia
| | - Ruth Ganss
- Cancer Microenvironment Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia
- Centre for Medical Research, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
52
|
Filderman JN, Appleman M, Chelvanambi M, Taylor JL, Storkus WJ. STINGing the Tumor Microenvironment to Promote Therapeutic Tertiary Lymphoid Structure Development. Front Immunol 2021; 12:690105. [PMID: 34054879 PMCID: PMC8155498 DOI: 10.3389/fimmu.2021.690105] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022] Open
Abstract
Tertiary lymphoid structures (TLS), also known as ectopic lymphoid structures (ELS) or tertiary lymphoid organs (TLO), represent a unique subset of lymphoid tissues noted for their architectural similarity to lymph nodes, but which conditionally form in peripheral tissues in a milieu of sustained inflammation. TLS serve as regional sites for induction and expansion of the host B and T cell repertoires via an operational paradigm involving mature dendritic cells (DC) and specialized endothelial cells (i.e. high endothelial venules; HEV) in a process directed by TLS-associated cytokines and chemokines. Recent clinical correlations have been reported for the presence of TLS within tumor biopsies with overall patient survival and responsiveness to interventional immunotherapy. Hence, therapeutic strategies to conditionally reinforce TLS formation within the tumor microenvironment (TME) via the targeting of DC, vascular endothelial cells (VEC) and local cytokine/chemokine profiles are actively being developed and tested in translational tumor models and early phase clinical trials. In this regard, a subset of agents that promote tumor vascular normalization (VN) have been observed to coordinately support the development of a pro-inflammatory TME, maturation of DC and VEC, local production of TLS-inducing cytokines and chemokines, and therapeutic TLS formation. This mini-review will focus on STING agonists, which were originally developed as anti-angiogenic agents, but which have recently been shown to be effective in promoting VN and TLS formation within the therapeutic TME. Future application of these drugs in combination immunotherapy approaches for greater therapeutic efficacy is further discussed.
Collapse
Affiliation(s)
- Jessica N Filderman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Mark Appleman
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Manoj Chelvanambi
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Jennifer L Taylor
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Walter J Storkus
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
53
|
Gago da Graça C, van Baarsen LGM, Mebius RE. Tertiary Lymphoid Structures: Diversity in Their Development, Composition, and Role. THE JOURNAL OF IMMUNOLOGY 2021; 206:273-281. [PMID: 33397741 DOI: 10.4049/jimmunol.2000873] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
Lymph node stromal cells coordinate the adaptive immune response in secondary lymphoid organs, providing both a structural matrix and soluble factors that regulate survival and migration of immune cells, ultimately promoting Ag encounter. In several inflamed tissues, resident fibroblasts can acquire lymphoid-stroma properties and drive the formation of ectopic aggregates of immune cells, named tertiary lymphoid structures (TLSs). Mature TLSs are functional sites for the development of adaptive responses and, consequently, when present, can have an impact in both autoimmunity and cancer conditions. In this review, we go over recent findings concerning both lymph node stromal cells and TLSs function and formation and further describe what is currently known about their role in disease, particularly their potential in tolerance.
Collapse
Affiliation(s)
- Catarina Gago da Graça
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, Vrije Universiteit, 1081HZ Amsterdam, the Netherlands
| | - Lisa G M van Baarsen
- Department of Rheumatology and Clinical Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.,Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, the Netherlands; and.,Amsterdam Rheumatology and Immunology Center, Academic Medical Center, 1105 AZ Amsterdam, the Netherlands
| | - Reina E Mebius
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, Vrije Universiteit, 1081HZ Amsterdam, the Netherlands;
| |
Collapse
|
54
|
Involvement of Dendritic Cells and Th17 Cells in Induced Tertiary Lymphoid Structures in a Chronic Beryllium Disease Mouse Model. Mediators Inflamm 2021; 2021:8845966. [PMID: 34054347 PMCID: PMC8123089 DOI: 10.1155/2021/8845966] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 03/27/2021] [Accepted: 04/20/2021] [Indexed: 11/18/2022] Open
Abstract
Objective To study airway pathophysiology and the role of dendritic cells (DCs) and IL-17 receptor (IL-17R) signals in a mouse model for CBD. Methods Here, we present a CBD mouse model in which mice were exposed to beryllium during three weeks. We also exposed IL-17R-deficient mice and mice in which DCs were depleted. Results Eight weeks after the initial beryllium exposure, an inflammatory response was detected in the lungs. Mice displayed inflammation of the lower airways that included focal dense infiltrates, granuloma-like foci, and tertiary lymphoid structure (TLS) containing T cells, B cells, and germinal centers. Alveolar cell analysis showed significantly increased numbers of CD4+ T cells expressing IFNγ, IL-17, or both cytokines. The pathogenic role of IL-17R signals was demonstrated in IL-17R-deficient mice, which had strongly reduced lung inflammation and TLS development following beryllium exposure. In CBD mice, pulmonary DC subsets including CD103+ conventional DCs (cDCs), CD11b+ cDCs, and monocyte-derived DCs (moDCs) were also prominently increased. We used diphtheria toxin receptor-mediated targeted cell ablation to conditionally deplete DCs and found that DCs are essential for the maintenance of TLS in CBD. Furthermore, the presence of antinuclear autoantibodies in the serum of CBD mice showed that CBD had characteristics of autoimmune disease. Conclusions We generated a translational model of sarcoidosis driven by beryllium and show that DCs and IL-17R signals play a pathophysiological role in CBD development as well as in established CBD in vivo.
Collapse
|
55
|
Curtis JL. Wouldn't you like to know: are tertiary lymphoid structures necessary for lung defence? Eur Respir J 2021; 57:57/4/2004352. [PMID: 33858851 DOI: 10.1183/13993003.04352-2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 12/08/2020] [Indexed: 11/05/2022]
Affiliation(s)
- Jeffrey L Curtis
- Medical Service, VA Ann Arbor Healthcare System, Ann Arbor, MI, USA .,Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, USA.,Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
56
|
Liu R, Americo JL, Cotter CA, Earl PL, Erez N, Peng C, Moss B. One or two injections of MVA-vectored vaccine shields hACE2 transgenic mice from SARS-CoV-2 upper and lower respiratory tract infection. Proc Natl Acad Sci U S A 2021; 118:e2026785118. [PMID: 33688035 PMCID: PMC8000198 DOI: 10.1073/pnas.2026785118] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Modified vaccinia virus Ankara (MVA) is a replication-restricted smallpox vaccine, and numerous clinical studies of recombinant MVAs (rMVAs) as vectors for prevention of other infectious diseases, including COVID-19, are in progress. Here, we characterize rMVAs expressing the S protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Modifications of full-length S individually or in combination included two proline substitutions, mutations of the furin recognition site, and deletion of the endoplasmic retrieval signal. Another rMVA in which the receptor binding domain (RBD) is flanked by the signal peptide and transmembrane domains of S was also constructed. Each modified S protein was displayed on the surface of rMVA-infected cells and was recognized by anti-RBD antibody and soluble hACE2 receptor. Intramuscular injection of mice with the rMVAs induced antibodies, which neutralized a pseudovirus in vitro and, upon passive transfer, protected hACE2 transgenic mice from lethal infection with SARS-CoV-2, as well as S-specific CD3+CD8+IFNγ+ T cells. Antibody boosting occurred following a second rMVA or adjuvanted purified RBD protein. Immunity conferred by a single vaccination of hACE2 mice prevented morbidity and weight loss upon intranasal infection with SARS-CoV-2 3 wk or 7 wk later. One or two rMVA vaccinations also prevented detection of infectious SARS-CoV-2 and subgenomic viral mRNAs in the lungs and greatly reduced induction of cytokine and chemokine mRNAs. A low amount of virus was found in the nasal turbinates of only one of eight rMVA-vaccinated mice on day 2 and none later. Detection of low levels of subgenomic mRNAs in turbinates indicated that replication was aborted in immunized animals.
Collapse
Affiliation(s)
- Ruikang Liu
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Jeffrey L Americo
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Catherine A Cotter
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Patricia L Earl
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Noam Erez
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Chen Peng
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| |
Collapse
|
57
|
Kurihara C, Lecuona E, Wu Q, Yang W, Núñez-Santana FL, Akbarpour M, Liu X, Ren Z, Li W, Querrey M, Ravi S, Anderson ML, Cerier E, Sun H, Kelly ME, Abdala-Valencia H, Shilatifard A, Mohanakumar T, Budinger GRS, Kreisel D, Bharat A. Crosstalk between nonclassical monocytes and alveolar macrophages mediates transplant ischemia-reperfusion injury through classical monocyte recruitment. JCI Insight 2021; 6:147282. [PMID: 33621212 PMCID: PMC8026186 DOI: 10.1172/jci.insight.147282] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/17/2021] [Indexed: 12/24/2022] Open
Abstract
Primary graft dysfunction (PGD) is the predominant cause of early graft loss following lung transplantation. We recently demonstrated that donor pulmonary intravascular nonclassical monocytes (NCM) initiate neutrophil recruitment. Simultaneously, host-origin classical monocytes (CM) permeabilize the vascular endothelium to allow neutrophil extravasation necessary for PGD. Here, we show that a CCL2-CCR2 axis is necessary for CM recruitment. Surprisingly, although intravital imaging and multichannel flow cytometry revealed that depletion of donor NCM abrogated CM recruitment, single cell RNA sequencing identified donor alveolar macrophages (AM) as predominant CCL2 secretors. Unbiased transcriptomic analysis of murine tissues combined with murine KOs and chimeras indicated that IL-1β production by donor NCM was responsible for the early activation of AM and CCL2 release. IL-1β production by NCM was NLRP3 inflammasome dependent and inhibited by treatment with a clinically approved sulphonylurea. Production of CCL2 in the donor AM occurred through IL-1R-dependent activation of the PKC and NF-κB pathway. Accordingly, we show that IL-1β-dependent paracrine interaction between donor NCM and AM leads to recruitment of recipient CM necessary for PGD. Since depletion of donor NCM, IL-1β, or IL-1R antagonism and inflammasome inhibition abrogated recruitment of CM and PGD and are feasible using FDA-approved compounds, our findings may have potential for clinical translation.
Collapse
Affiliation(s)
| | | | - Qiang Wu
- Division of Thoracic Surgery and
| | | | | | | | | | - Ziyou Ren
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Wenjun Li
- Department of Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | | | | | | | | | | | | | - Hiam Abdala-Valencia
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | - G R Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Daniel Kreisel
- Department of Surgery, Washington University in St. Louis, St. Louis, Missouri, USA.,Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Ankit Bharat
- Division of Thoracic Surgery and.,Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
58
|
van Uden D, Koudstaal T, van Hulst JAC, Bergen IM, Gootjes C, Morrell NW, van Loo G, von der Thüsen JH, van den Bosch TPP, Ghigna MR, Perros F, Montani D, Kool M, Boomars KA, Hendriks RW. Central Role of Dendritic Cells in Pulmonary Arterial Hypertension in Human and Mice. Int J Mol Sci 2021; 22:ijms22041756. [PMID: 33578743 PMCID: PMC7916474 DOI: 10.3390/ijms22041756] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 12/12/2022] Open
Abstract
The pathogenesis of idiopathic pulmonary arterial hypertension (IPAH) is not fully understood, but evidence is accumulating that immune dysfunction plays a significant role. We previously reported that 31-week-old Tnfaip3DNGR1-KO mice develop pulmonary hypertension (PH) symptoms. These mice harbor a targeted deletion of the TNFα-induced protein-3 (Tnfaip3) gene, encoding the NF-κB regulatory protein A20, specifically in type I conventional dendritic cells (cDC1s). Here, we studied the involvement of dendritic cells (DCs) in PH in more detail. We found various immune cells, including DCs, in the hearts of Tnfaip3DNGR1-KO mice, particularly in the right ventricle (RV). Secondly, in young Tnfaip3DNGR1-KO mice, innate immune activation through airway exposure to toll-like receptor ligands essentially did not result in elevated RV pressures, although we did observe significant RV hypertrophy. Thirdly, PH symptoms in Tnfaip3DNGR1-KO mice were not enhanced by concomitant mutation of bone morphogenetic protein receptor type 2 (Bmpr2), which is the most affected gene in PAH patients. Finally, in human IPAH lung tissue we found co-localization of DCs and CD8+ T cells, representing the main cell type activated by cDC1s. Taken together, these findings support a unique role of cDC1s in PAH pathogenesis, independent of general immune activation or a mutation in the Bmpr2 gene.
Collapse
Affiliation(s)
- Denise van Uden
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (D.v.U.); (T.K.); (J.A.C.v.H.); (I.M.B.); (C.G.); (M.K.)
| | - Thomas Koudstaal
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (D.v.U.); (T.K.); (J.A.C.v.H.); (I.M.B.); (C.G.); (M.K.)
| | - Jennifer A. C. van Hulst
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (D.v.U.); (T.K.); (J.A.C.v.H.); (I.M.B.); (C.G.); (M.K.)
| | - Ingrid M. Bergen
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (D.v.U.); (T.K.); (J.A.C.v.H.); (I.M.B.); (C.G.); (M.K.)
| | - Chelsea Gootjes
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (D.v.U.); (T.K.); (J.A.C.v.H.); (I.M.B.); (C.G.); (M.K.)
| | - Nicholas W. Morrell
- Department of Medicine, University of Cambridge & NIHR BioResource for Translational Research & Addenbrooke’s Hospital NHS Foundation Trust & Royal Papworth Hospital NHS Foundation Trust, Cambridge CB2 0QQ, UK;
| | - Geert van Loo
- VIB Center for Inflammation Research, 9052 Ghent, Belgium;
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Jan H. von der Thüsen
- Department of Pathology, Erasmus MC, University Medical Center Rotterdam, 3015 GE Rotterdam, The Netherlands; (J.H.v.d.T.); (T.P.P.v.d.B.)
| | - Thierry P. P. van den Bosch
- Department of Pathology, Erasmus MC, University Medical Center Rotterdam, 3015 GE Rotterdam, The Netherlands; (J.H.v.d.T.); (T.P.P.v.d.B.)
| | - Maria-Rosa Ghigna
- School of Medicine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; (M.-R.G.); (F.P.); (D.M.)
- INSERM UMR_S 999, Pulmonary Hypertension: Pathology and Novel Therapies, Hôpital Marie Lannelongue, 92350 Le Plessis Robinson, France
- Division of Pathology, Marie Lannelongue Hospital, 92350 Le Plessis Robinson, France
| | - Frédéric Perros
- School of Medicine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; (M.-R.G.); (F.P.); (D.M.)
- INSERM UMR_S 999, Pulmonary Hypertension: Pathology and Novel Therapies, Hôpital Marie Lannelongue, 92350 Le Plessis Robinson, France
| | - David Montani
- School of Medicine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; (M.-R.G.); (F.P.); (D.M.)
- INSERM UMR_S 999, Pulmonary Hypertension: Pathology and Novel Therapies, Hôpital Marie Lannelongue, 92350 Le Plessis Robinson, France
- Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Assistance Publique—Hôpitaux de Paris (AP-HP), Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Mirjam Kool
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (D.v.U.); (T.K.); (J.A.C.v.H.); (I.M.B.); (C.G.); (M.K.)
| | - Karin A. Boomars
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (D.v.U.); (T.K.); (J.A.C.v.H.); (I.M.B.); (C.G.); (M.K.)
- Correspondence: (K.A.B.); (R.W.H.); Tel.: +316-50031911 (K.A.B.); +31-10-7043700 (R.W.H.)
| | - Rudi W. Hendriks
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (D.v.U.); (T.K.); (J.A.C.v.H.); (I.M.B.); (C.G.); (M.K.)
- Correspondence: (K.A.B.); (R.W.H.); Tel.: +316-50031911 (K.A.B.); +31-10-7043700 (R.W.H.)
| |
Collapse
|
59
|
Akbarpour M, Lecuona E, Chiu SF, Wu Q, Querrey M, Fernandez R, Núñez-Santana FL, Sun H, Ravi S, Kurihara C, Walter JM, Joshi N, Ren Z, Roberts SC, Hauser A, Kreisel D, Li W, Chandel NS, Misharin AV, Mohanakumar T, Budinger GRS, Bharat A. Residual endotoxin induces primary graft dysfunction through ischemia/reperfusion-primed alveolar macrophages. J Clin Invest 2021; 130:4456-4469. [PMID: 32692317 DOI: 10.1172/jci135838] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/13/2020] [Indexed: 12/12/2022] Open
Abstract
Despite the widespread use of antibiotics, bacterial pneumonias in donors strongly predispose to the fatal syndrome of primary graft dysfunction (PGD) following lung transplantation. We report that bacterial endotoxin persists in human donor lungs after pathogen is cleared with antibiotics and is associated with neutrophil infiltration and PGD. In mouse models, depletion of tissue-resident alveolar macrophages (TRAMs) attenuated neutrophil recruitment in response to endotoxin as shown by compartmental staining and intravital imaging. Bone marrow chimeric mice revealed that neutrophils were recruited by TRAM through activation of TLR4 in a MyD88-dependent manner. Intriguingly, low levels of endotoxin, insufficient to cause donor lung injury, promoted TRAM-dependent production of CXCL2, increased neutrophil recruitment, and led to PGD, which was independent of donor NCMs. Reactive oxygen species (ROS) increased in human donor lungs starting from the warm-ischemia phase and were associated with increased transcription and translocation to the plasma membrane of TLR4 in donor TRAMs. Consistently, scavenging ROS or inhibiting their production to prevent TLR4 transcription/translocation or blockade of TLR4 or coreceptor CD14 on donor TRAMs prevented neutrophil recruitment in response to endotoxin and ameliorated PGD. Our studies demonstrate that residual endotoxin after successful treatment of donor bacterial pneumonia promotes PGD through ischemia/reperfusion-primed donor TRAMs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Nikita Joshi
- Division of Pulmonary and Critical Care Medicine, and
| | - Ziyou Ren
- Division of Pulmonary and Critical Care Medicine, and
| | - Scott C Roberts
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Alan Hauser
- Division of Pulmonary and Critical Care Medicine, and.,Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Daniel Kreisel
- Department of Surgery and.,Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| | | | | | | | | | | | - Ankit Bharat
- Division of Thoracic Surgery.,Division of Pulmonary and Critical Care Medicine, and
| |
Collapse
|
60
|
Eslamizar L, Petrovas C, Leggat DJ, Furr K, Lifton ML, Levine G, Ma S, Fletez-Brant C, Hoyland W, Prabhakaran M, Narpala S, Boswell K, Yamamoto T, Liao HX, Pickup D, Ramsburg E, Sutherland L, McDermott A, Roederer M, Montefiori D, Koup RA, Haynes BF, Letvin NL, Santra S. Recombinant MVA-prime elicits neutralizing antibody responses by inducing antigen-specific B cells in the germinal center. NPJ Vaccines 2021; 6:15. [PMID: 33495459 PMCID: PMC7835239 DOI: 10.1038/s41541-020-00277-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/07/2020] [Indexed: 01/23/2023] Open
Abstract
The RV144 HIV-1 vaccine trial has been the only clinical trial to date that has shown any degree of efficacy and associated with the presence of vaccine-elicited HIV-1 envelope-specific binding antibody and CD4+ T-cell responses. This trial also showed that a vector-prime protein boost combined vaccine strategy was better than when used alone. Here we have studied three different priming vectors-plasmid DNA, recombinant MVA, and recombinant VSV, all encoding clade C transmitted/founder Env 1086 C gp140, for priming three groups of six non-human primates each, followed by a protein boost with adjuvanted 1086 C gp120 protein. Our data showed that MVA-priming favors the development of higher antibody binding titers and neutralizing activity compared with other vectors. Analyses of the draining lymph nodes revealed that MVA-prime induced increased germinal center reactivity characterized by higher frequencies of germinal center (PNAhi) B cells, higher frequencies of antigen-specific B-cell responses as well as an increased frequency of the highly differentiated (ICOShiCD150lo) Tfh-cell subset.
Collapse
Affiliation(s)
- Leila Eslamizar
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Integrative Toxicology, Nonclinical Drug Safety, Boehringer Ingelheim Pharmaceuticals, Inc., 175 Briar Ridge Road, Ridgefield, CT, 06877, USA
| | - Constantinos Petrovas
- Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA.
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland.
| | | | - Kathryn Furr
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Michelle L Lifton
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Gail Levine
- Foundation for the National Institutes of Health, Bethesda, MD, USA
| | - Steven Ma
- Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | | | | | | | | | | | | | - Hua-Xin Liao
- Foundation for the National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | - Norman L Letvin
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sampa Santra
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
61
|
Sanguedolce F, Zanelli M, Zizzo M, Bisagni A, Soriano A, Cocco G, Palicelli A, Santandrea G, Caprera C, Corsi M, Cerrone G, Sciaccotta R, Martino G, Ricci L, Sollitto F, Loizzi D, Ascani S. Primary Pulmonary B-Cell Lymphoma: A Review and Update. Cancers (Basel) 2021; 13:cancers13030415. [PMID: 33499258 PMCID: PMC7865219 DOI: 10.3390/cancers13030415] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/10/2021] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The group of B-cell lymphomas primarily involving the lung encompasses different histological entities with distinct biological aspects, while sharing some clinical and radiological features related to their common anatomic site of occurrence. Recent molecular advances in the molecular genetics of these lesions have substantially improved of our understanding of the mechanisms of lymphomagenesis, adding novel information to histology in order to better characterize and manage these diseases. This review summarizes the available clinical, radiological, pathological, and molecular data on primary pulmonary B-cell lymphomas, discusses the mechanisms of lymphomagenesis, and highlights the role of a multi-disciplinary management in overcoming the diagnostic and therapeutic challenges in this setting. Abstract Primary pulmonary B-cell lymphomas (PP-BCLs) comprise a group of extranodal non-Hodgkin lymphomas of B-cell origin, which primarily affect the lung without evidence of extrapulmonary disease at the time of diagnosis and up to 3 months afterwards. Primary lymphoid proliferations of the lung are most often of B-cell lineage, and include three major entities with different clinical, morphological, and molecular features: primary pulmonary marginal zone lymphoma of mucosa-associated lymphoid tissue (PP-MZL, or MALT lymphoma), primary pulmonary diffuse large B cell lymphoma (PP-DLBCL), and lymphomatoid granulomatosis (LYG). Less common entities include primary effusion B-cell lymphoma (PEL) and intravascular large B cell lymphoma (IVLBCL). A proper workup requires a multidisciplinary approach, including radiologists, pneumologists, thoracic surgeons, pathologists, hemato-oncologists, and radiation oncologists, in order to achieve a correct diagnosis and risk assessment. Aim of this review is to analyze and outline the clinical and pathological features of the most frequent PP-BCLs, and to critically analyze the major issues in their diagnosis and management.
Collapse
Affiliation(s)
- Francesca Sanguedolce
- Pathology Unit, Azienda Ospedaliero-Universitaria, Ospedali Riuniti di Foggia, 71122 Foggia, Italy
- Correspondence: ; Tel.: +39-0881-736315
| | - Magda Zanelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (M.Z.); (A.B.); (A.P.); (G.S.)
| | - Maurizio Zizzo
- Surgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy;
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Alessandra Bisagni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (M.Z.); (A.B.); (A.P.); (G.S.)
| | - Alessandra Soriano
- Gastroenterology, Division and Inflammatory Bowel Disease Center, Department of Internal Medicine, Azienda USL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy;
| | - Giorgia Cocco
- Radiotherapy Unit, Azienda Ospedaliero-Universitaria, Ospedali Riuniti di Foggia, 71122 Foggia, Italy;
| | - Andrea Palicelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (M.Z.); (A.B.); (A.P.); (G.S.)
| | - Giacomo Santandrea
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (M.Z.); (A.B.); (A.P.); (G.S.)
| | - Cecilia Caprera
- Pathology Unit, Azienda Ospedaliera S. Maria di Terni, University of Perugia, 05100 Terni, Italy; (C.C.); (M.C.); (G.C.); (R.S.); (G.M.); (L.R.); (S.A.)
| | - Matteo Corsi
- Pathology Unit, Azienda Ospedaliera S. Maria di Terni, University of Perugia, 05100 Terni, Italy; (C.C.); (M.C.); (G.C.); (R.S.); (G.M.); (L.R.); (S.A.)
| | - Giulia Cerrone
- Pathology Unit, Azienda Ospedaliera S. Maria di Terni, University of Perugia, 05100 Terni, Italy; (C.C.); (M.C.); (G.C.); (R.S.); (G.M.); (L.R.); (S.A.)
| | - Raffaele Sciaccotta
- Pathology Unit, Azienda Ospedaliera S. Maria di Terni, University of Perugia, 05100 Terni, Italy; (C.C.); (M.C.); (G.C.); (R.S.); (G.M.); (L.R.); (S.A.)
| | - Giovanni Martino
- Pathology Unit, Azienda Ospedaliera S. Maria di Terni, University of Perugia, 05100 Terni, Italy; (C.C.); (M.C.); (G.C.); (R.S.); (G.M.); (L.R.); (S.A.)
| | - Linda Ricci
- Pathology Unit, Azienda Ospedaliera S. Maria di Terni, University of Perugia, 05100 Terni, Italy; (C.C.); (M.C.); (G.C.); (R.S.); (G.M.); (L.R.); (S.A.)
| | - Francesco Sollitto
- Institute of Thoracic Surgery, University of Foggia, 71122 Foggia, Italy; (F.S.); (D.L.)
| | - Domenico Loizzi
- Institute of Thoracic Surgery, University of Foggia, 71122 Foggia, Italy; (F.S.); (D.L.)
| | - Stefano Ascani
- Pathology Unit, Azienda Ospedaliera S. Maria di Terni, University of Perugia, 05100 Terni, Italy; (C.C.); (M.C.); (G.C.); (R.S.); (G.M.); (L.R.); (S.A.)
| |
Collapse
|
62
|
Tschernig T, Pabst R. Macrophage activating lipopeptide 2 is effective in mycobacterial lung infection. Ann Anat 2021; 233:151605. [DOI: 10.1016/j.aanat.2020.151605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 10/23/2022]
|
63
|
Haworth R, Boyle M, Edwards P, Gupta R, Fagg R, Karantabias G, Price M. Preclinical Safety Assessment of 2 Inhaled Single-Domain Antibodies in the Cynomolgus Monkey. Toxicol Pathol 2020; 49:296-314. [PMID: 33272097 DOI: 10.1177/0192623320972387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The safety of 2 single domain antibodies (dAbs) was evaluated by inhalation toxicology studies in the cynomolgus monkey. In the first case study, a 14-day repeat-dose study evaluating an anti-thymic stromal lymphopoietin (anti-TSLP) dAb resulted in minimal mononuclear inflammatory cell infiltrates in the lungs, increases in lymphocytes in bronchoalveolar lavage fluid, and development of antidrug antibodies (ADAs). In a 6-week inhalation study, there was an increase in incidence and/or severity of mononuclear cell infiltrates in the lung, increased cellularity in the tracheobronchial lymph node (TBLN), and development of ADA. The second case study evaluated a change in duration of inhalation dosing, a different route of exposure (intravenous or IV), and recovery following an off-dose period with an anti-tumor necrosis factor receptor 1 dAb. A 7-day repeat-dose inhalation study and a 14-day IV study produced no microscopic effects in the lung, whereas a 14-day inhalation study resulted in moderate increases in pulmonary perivascular/peribronchiolar/alveolar lymphocytic infiltrates and increased cellularity in the TBLN, with partial and full recovery, respectively, after 14 days. The lung and lymph node findings seen after inhalation of either dAb were considered secondary to the immunogenic response to a human protein and were considered nonadverse.
Collapse
Affiliation(s)
| | | | - Paul Edwards
- Covance, Woolley Road, Huntingdon, United Kingdom
| | - Reenu Gupta
- Covance, Woolley Road, Huntingdon, United Kingdom
| | - Rajni Fagg
- 114154GSK R&D, Park Road, Ware, United Kingdom
| | | | - Mark Price
- 114154GSK R&D, Park Road, Ware, United Kingdom
| |
Collapse
|
64
|
Basile JI, Liu R, Mou W, Gao Y, Carow B, Rottenberg ME. Mycobacteria-Specific T Cells Are Generated in the Lung During Mucosal BCG Immunization or Infection With Mycobacterium tuberculosis. Front Immunol 2020; 11:566319. [PMID: 33193338 PMCID: PMC7643023 DOI: 10.3389/fimmu.2020.566319] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/11/2020] [Indexed: 01/21/2023] Open
Abstract
Specific T cell responses are central for protection against infection with M. tuberculosis. Here we show that mycobacteria-specific CD4 and CD8 T cells accumulated in the lung but not in the mediastinal lymph node (MLN) at different time points after M. tuberculosis infection or BCG immunization. Proliferating specific T cells were found in the lung after infection and immunization. Pulmonary, but not MLN-derived CD4 and CD8 T cells, from M. tuberculosis-infected mice secreted IFN-γ after stimulation with different mycobacterial peptides. Mycobacteria-specific resident memory CD4 and CD8 T cells (TRM) expressing PD-1 accumulated in the lung after aerosol infection and intratracheal (i.t.) -but not subcutaneous (s.c.)- BCG immunization. Chemical inhibition of recirculation indicated that TRM were generated in the lung after BCG i.t. immunization. In summary, mycobacteria specific-TRM accumulate in the lung during i.t. but not s.c. immunization or M. tuberculosis infection. Collectively our data suggests that priming, accumulation and/or expansion of specific T cells during BCG immunization and M. tuberculosis infection occurs in the lung.
Collapse
Affiliation(s)
- Juan I Basile
- Department of Microbiology, Tumor and Cell Biology and Center for Tuberculosis Research, Karolinska Institutet, Stockholm, Sweden
| | - Ruining Liu
- Department of Microbiology, Tumor and Cell Biology and Center for Tuberculosis Research, Karolinska Institutet, Stockholm, Sweden
| | - Wenjun Mou
- Department of Microbiology, Tumor and Cell Biology and Center for Tuberculosis Research, Karolinska Institutet, Stockholm, Sweden
| | - Yu Gao
- Department of Microbiology, Tumor and Cell Biology and Center for Tuberculosis Research, Karolinska Institutet, Stockholm, Sweden
| | - Berit Carow
- Department of Microbiology, Tumor and Cell Biology and Center for Tuberculosis Research, Karolinska Institutet, Stockholm, Sweden
| | - Martin E Rottenberg
- Department of Microbiology, Tumor and Cell Biology and Center for Tuberculosis Research, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
65
|
Hwang JY, Silva-Sanchez A, Carragher DM, Garcia-Hernandez MDLL, Rangel-Moreno J, Randall TD. Inducible Bronchus-Associated Lymphoid Tissue (iBALT) Attenuates Pulmonary Pathology in a Mouse Model of Allergic Airway Disease. Front Immunol 2020; 11:570661. [PMID: 33101290 PMCID: PMC7545112 DOI: 10.3389/fimmu.2020.570661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/24/2020] [Indexed: 01/09/2023] Open
Abstract
Inducible Bronchus Associated Lymphoid Tissue (iBALT) is an ectopic lymphoid tissue associated with severe forms of chronic lung diseases, including chronic obstructive pulmonary disease, rheumatoid lung disease, hypersensitivity pneumonitis and asthma, suggesting that iBALT may exacerbate these clinical conditions. However, despite the link between pulmonary pathology and iBALT formation, the role of iBALT in pathogenesis remains unknown. Here we tested whether the presence of iBALT in the lung prior to sensitization and challenge with a pulmonary allergen altered the biological outcome of disease. We found that the presence of iBALT did not exacerbate Th2 responses to pulmonary sensitization with ovalbumin. Instead, we found that mice with iBALT exhibited delayed Th2 accumulation in the lung, reduced eosinophil recruitment, reduced goblet cell hyperplasia and reduced mucus production. The presence of iBALT did not alter Th2 priming, but instead delayed the accumulation of Th2 cells in the lung following challenge and altered the spatial distribution of T cells in the lung. These results suggest that the formation of iBALT and sequestration of effector T cells in the context of chronic pulmonary inflammation may be a mechanism by which the immune system attenuates pulmonary inflammation and prevents excessive pathology.
Collapse
Affiliation(s)
- Ji Young Hwang
- Division of Clinical Immunology and Rheumatology, The Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Microbiology and Immunology, University of Rochester, Rochester, NY, United States
| | - Aaron Silva-Sanchez
- Division of Clinical Immunology and Rheumatology, The Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | | | - Maria de la Luz Garcia-Hernandez
- Division of Allergy Immunology and Rheumatology, The Department of Medicine, University of Rochester, Rochester, NY, United States
| | - Javier Rangel-Moreno
- Division of Allergy Immunology and Rheumatology, The Department of Medicine, University of Rochester, Rochester, NY, United States
| | - Troy D Randall
- Division of Clinical Immunology and Rheumatology, The Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
66
|
Zhang QF, Li J, Jiang K, Wang R, Ge JL, Yang H, Liu SJ, Jia LT, Wang L, Chen BL. CDK4/6 inhibition promotes immune infiltration in ovarian cancer and synergizes with PD-1 blockade in a B cell-dependent manner. Theranostics 2020; 10:10619-10633. [PMID: 32929370 PMCID: PMC7482823 DOI: 10.7150/thno.44871] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 08/07/2020] [Indexed: 12/21/2022] Open
Abstract
Great progress has been made in the field of tumor immunotherapy in the past decade. However, the therapeutic effects of immune checkpoint blockade (ICB) against ovarian cancer are still limited. Recently, an inhibitor of cyclin-dependent kinases 4 and 6 (CDK4/6i) has been reported to enhance antitumor immunity in preclinical models. The combined use of CDK4/6i and ICB may be beneficial, but the effects of CDK4/6is on the tumor immune microenvironment and whether they can synergize with ICB in treating ovarian cancer remain unknown. Methods: In this study, we first assessed the antitumor efficacy of abemaciclib, an FDA-approved CDK4/6i, in a syngeneic murine ovarian cancer model. Then, immunohistochemistry, immunofluorescence and flow cytometry were performed to evaluate the number, proportion, and activity of tumor-infiltrating lymphocytes. Cytokine and chemokine production was detected both in vivo and in vitro by PCR array analysis and cytokine antibody arrays. The treatment efficacy of combined abemaciclib and anti-PD-1 therapy was evaluated in vivo, and CD8+ and CD4+ T cell activities were analyzed using flow cytometry. Lastly, the requirement for both CD8+ T cells and B cells in combination treatment was evaluated in vivo, and potential cellular mechanisms were further analyzed by flow cytometry. Results: We observed that abemaciclib monotherapy could enhance immune infiltration, especially CD8+ T cell and B cell infiltration, in the ID8 murine ovarian cancer model. Immunophenotyping analysis showed that abemaciclib induced a proinflammatory immune response in the tumor microenvironment. PCR array analysis suggested the presence of a Th1-polarized cytokine profile in abemaciclib-treated ID8 tumors. In vitro studies showed that abemaciclib-treated ID8 cells secreted more CXCL10 and CXCL13, thus recruiting more lymphocytes than control groups. Combination treatment achieved better tumor control than monotherapy, and the activities of CD8+ and CD4+ T cells were further enhanced when compared with monotherapy. The synergistic antitumor effects of combined abemaciclib and anti-PD-1 therapy depended on both CD8+ T cells and B cells. Conclusion: These findings suggest that combined treatment with CDK4/6i and anti-PD-1 antibody could improve the efficacy of anti-PD-1 therapy and hold great promise for the treatment of poorly immune-infiltrated ovarian cancer.
Collapse
Affiliation(s)
- Qian-Feng Zhang
- Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jia Li
- Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Kuo Jiang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Rui Wang
- School of Public Health, College of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Jun-li Ge
- Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Hong Yang
- Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Shu-Juan Liu
- Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Lin-Tao Jia
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, China
| | - Lei Wang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, China
| | - Bi-Liang Chen
- Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
67
|
Naessens T, Morias Y, Hamrud E, Gehrmann U, Budida R, Mattsson J, Baker T, Skogberg G, Israelsson E, Thorn K, Schuijs MJ, Angermann B, Melville F, Staples KJ, Cunoosamy DM, Lambrecht BN. Human Lung Conventional Dendritic Cells Orchestrate Lymphoid Neogenesis during Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2020; 202:535-548. [PMID: 32255375 PMCID: PMC7616955 DOI: 10.1164/rccm.201906-1123oc] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 04/06/2020] [Indexed: 11/16/2022] Open
Abstract
Rationale: Emerging evidence supports a crucial role for tertiary lymphoid organs (TLOs) in chronic obstructive pulmonary disease (COPD) progression. However, mechanisms of immune cell activation leading to TLOs in COPD remain to be defined.Objectives: To examine the role of lung dendritic cells (DCs) in T follicular helper (Tfh)-cell induction, a T-cell subset critically implicated in lymphoid organ formation, in COPD.Methods: Myeloid cell heterogeneity and phenotype were studied in an unbiased manner via single-cell RNA sequencing on HLA-DR+ cells sorted from human lungs. We measured the in vitro capability of control and COPD lung DC subsets, sorted using a fluorescence-activated cell sorter, to polarize IL-21+CXCL13+ (IL-21-positive and C-X-C chemokine ligand type 13-positive) Tfh-like cells. In situ imaging analysis was performed on Global Initiative for Chronic Obstructive Lung Disease stage IV COPD lungs with TLOs.Measurements and Main Results: Single-cell RNA-sequencing analysis revealed a high degree of heterogeneity among human lung myeloid cells. Among these, conventional dendritic type 2 cells (cDC2s) showed increased induction of IL-21+CXCL13+ Tfh-like cells. Importantly, the capacity to induce IL-21+ Tfh-like cells was higher in cDC2s from patients with COPD than in those from control patients. Increased Tfh-cell induction by COPD cDC2s correlated with increased presence of Tfh-like cells in COPD lungs as compared with those in control lungs, and cDC2s colocalized with Tfh-like cells in TLOs of COPD lungs. Mechanistically, cDC2s exhibited a unique migratory signature and (transcriptional) expression of several pathways and genes related to DC-induced Tfh-cell priming. Importantly, blocking the costimulatory OX40L (OX40 ligand)-OX40 axis reduced Tfh-cell induction by control lung cDC2s.Conclusions: In COPD lungs, we found lung EBI2+ (Epstein-Barr virus-induced gene 2-positive) OX-40L-expressing cDC2s that induced IL-21+ Tfh-like cells, suggesting an involvement of these cells in TLO formation.
Collapse
Affiliation(s)
- Thomas Naessens
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory, Inflammation, Autoimmunity, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Yannick Morias
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Eva Hamrud
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory, Inflammation, Autoimmunity, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ulf Gehrmann
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory, Inflammation, Autoimmunity, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ramachandramouli Budida
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory, Inflammation, Autoimmunity, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Johan Mattsson
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory, Inflammation, Autoimmunity, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Tina Baker
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory, Inflammation, Autoimmunity, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Gabriel Skogberg
- Bioscience COPD/IPF, Research and Early Development, Respiratory, Inflammation, Autoimmunity, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Elisabeth Israelsson
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory, Inflammation, Autoimmunity, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Kristofer Thorn
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory, Inflammation, Autoimmunity, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Martijn J. Schuijs
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Bastian Angermann
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory, Inflammation, Autoimmunity, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Faye Melville
- University of Southampton, Faculty of medicine, Clinical and Experimental Sciences, Southampton, United Kingdom of Great Britain and Northern Ireland
| | - Karl J Staples
- University of Southampton, Faculty of medicine, Clinical and Experimental Sciences, Southampton, United Kingdom of Great Britain and Northern Ireland
| | - Danen M Cunoosamy
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory, Inflammation, Autoimmunity, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Bart N Lambrecht
- Laboratory of Immunoregulation, VIB-UGhent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
68
|
Förster R, Fleige H, Sutter G. Combating COVID-19: MVA Vector Vaccines Applied to the Respiratory Tract as Promising Approach Toward Protective Immunity in the Lung. Front Immunol 2020; 11:1959. [PMID: 32849655 PMCID: PMC7426738 DOI: 10.3389/fimmu.2020.01959] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/21/2020] [Indexed: 02/02/2023] Open
Abstract
The lung is the vital target organ of coronavirus disease 2019 (COVID-19) caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In the majority of patients the most active virus replication seems to be found in the upper respiratory tract, severe cases however suffer from SARS-like disease associated with virus replication in lung tissues. Due to the current lack of suitable anti-viral drugs the induction of protective immunity such as neutralizing antibodies in the lung is the key aim of the only alternative approach—the development and application of SARS-CoV-2 vaccines. However, past experience from experimental animals, livestock, and humans showed that induction of immunity in the lung is limited following application of vaccines at peripheral sides such as skin or muscles. Based on several considerations we therefore propose here to consider the application of a Modified Vaccinia virus Ankara (MVA)-based vaccine to mucosal surfaces of the respiratory tract as a favorable approach to combat COVID-19.
Collapse
Affiliation(s)
- Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hanover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hanover, Germany
| | - Henrike Fleige
- Institute of Immunology, Hannover Medical School, Hanover, Germany
| | - Gerd Sutter
- Division of Virology, Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Infection Research, Partner Site Munich, Munich, Germany
| |
Collapse
|
69
|
Silva-Cayetano A, Linterman MA. Stromal cell control of conventional and ectopic germinal centre reactions. Curr Opin Immunol 2020; 64:26-33. [PMID: 32325390 DOI: 10.1016/j.coi.2020.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/21/2020] [Accepted: 03/10/2020] [Indexed: 12/21/2022]
Abstract
The germinal centre (GC) is a specialized cellular structure that forms in response to antigenic stimulation. It generates long-term humoral immunity through the production of memory B cells and long-lived antibody-secreting plasma cells. Conventional GCs form within secondary lymphoid organs, where networks of specialised stromal cells that form during embryogenesis act as the stage upon which the various GC immune cell players are brought together, nurtured and co-ordinated to generate a productive response. In non-lymphoid organs, ectopic GCs can form in response to persistent antigenic and inflammatory stimuli. Unlike secondary lymphoid tissues, non-lymphoid organs do not have a developmentally programmed stromal cell network capable of supporting the germinal centre reaction; therefore, the local tissue stroma must be remodelled by inflammatory stimuli in order to host a GC reaction. These ectopic GCs produce memory B cells and plasma cells that form a critical component of the humoral immune response.
Collapse
|
70
|
Malo CS, Hickman HD. Tracing Antiviral CD8 + T Cell Responses Using In Vivo Imaging. THE JOURNAL OF IMMUNOLOGY 2020; 203:775-781. [PMID: 31383748 DOI: 10.4049/jimmunol.1900232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/29/2019] [Indexed: 12/25/2022]
Abstract
Scientists have long valued the power of in vivo observation to answer fundamental biological questions. Over the last 20 years, the application and evolution of intravital microscopy (IVM) has vastly increased our ability to directly visualize immune responses as they are occurring in vivo after infection or immunization. Many IVM strategies employ a strong multiphoton laser that penetrates deeply into the tissues of living, anesthetized mice, allowing the precise tracking of the movement of cells as they navigate complex tissue environments. In the realm of viral infections, IVM has been applied to better understand many critical phases of effector T cell responses, from activation in the draining lymph node, to the execution of effector functions, and finally to the development of tissue-resident memory. In this review, we discuss seminal studies incorporating IVM that have advanced our understanding of the biology of antiviral CD8+ T cells.
Collapse
Affiliation(s)
- Courtney S Malo
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Heather D Hickman
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
71
|
Twentyman J, Morffy Smith C, Nims JS, Dahler AA, Rosen DA. A murine model demonstrates capsule-independent adaptive immune protection in survivors of Klebsiella pneumoniae respiratory tract infection. Dis Model Mech 2020; 13:13/3/dmm043240. [PMID: 32298236 PMCID: PMC7104859 DOI: 10.1242/dmm.043240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/20/2020] [Indexed: 01/09/2023] Open
Abstract
Klebsiella pneumoniae represents a growing clinical threat, given its rapid development of antibiotic resistance, necessitating new therapeutic strategies. Existing live-infection models feature high mortality rates, limiting their utility in the study of natural adaptive immune response to this pathogen. We developed a preclinical model of pneumonia with low overall mortality, in which previously exposed mice are protected from subsequent respiratory tract challenge with K. pneumoniae Histologic analyses of infected murine lungs demonstrate lymphocytic aggregates surrounding vasculature and larger airways. Initial exposure in RAG1 knockout mice (lacking functional B and T cells) failed to confer protection against subsequent K. pneumoniae challenge. While administration of isolated K. pneumoniae capsule was sufficient to provide protection, we also found that initial inoculation with K. pneumoniae mutants lacking capsule (Δcps), O-antigen (ΔwecA) or both conferred protection from subsequent wild-type infection and elicited K. pneumoniae-specific antibody responses, indicating that non-capsular antigens may also elicit protective immunity. Experiments in this model will inform future development of multivalent vaccines to prevent invasive K. pneumoniae infections.
Collapse
Affiliation(s)
- Joy Twentyman
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Catherine Morffy Smith
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Julia S Nims
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Aubree A Dahler
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Washington University School of Medicine, St Louis, MO 63110, USA
| | - David A Rosen
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Washington University School of Medicine, St Louis, MO 63110, USA .,Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
72
|
Lymph node stromal cells: cartographers of the immune system. Nat Immunol 2020; 21:369-380. [PMID: 32205888 DOI: 10.1038/s41590-020-0635-3] [Citation(s) in RCA: 208] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/17/2020] [Indexed: 01/03/2023]
Abstract
Lymph nodes (LNs) are strategically positioned at dedicated sites throughout the body to facilitate rapid and efficient immunity. Central to the structural integrity and framework of LNs, and the recruitment and positioning of leukocytes therein, are mesenchymal and endothelial lymph node stromal cells (LNSCs). Advances in the last decade have expanded our understanding and appreciation of LNSC heterogeneity, and the role they play in coordinating immunity has grown rapidly. In this review, we will highlight the functional contributions of distinct stromal cell populations during LN development in maintaining immune homeostasis and tolerance and in the activation and control of immune responses.
Collapse
|
73
|
Martens R, Permanyer M, Werth K, Yu K, Braun A, Halle O, Halle S, Patzer GE, Bošnjak B, Kiefer F, Janssen A, Friedrichsen M, Poetzsch J, Kohli K, Lueder Y, Gutierrez Jauregui R, Eckert N, Worbs T, Galla M, Förster R. Efficient homing of T cells via afferent lymphatics requires mechanical arrest and integrin-supported chemokine guidance. Nat Commun 2020; 11:1114. [PMID: 32111837 PMCID: PMC7048855 DOI: 10.1038/s41467-020-14921-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 02/09/2020] [Indexed: 01/12/2023] Open
Abstract
Little is known regarding lymph node (LN)-homing of immune cells via afferent lymphatics. Here, we show, using a photo-convertible Dendra-2 reporter, that recently activated CD4 T cells enter downstream LNs via afferent lymphatics at high frequencies. Intra-lymphatic immune cell transfer and live imaging data further show that activated T cells come to an instantaneous arrest mediated passively by the mechanical 3D-sieve barrier of the LN subcapsular sinus (SCS). Arrested T cells subsequently migrate randomly on the sinus floor independent of both chemokines and integrins. However, chemokine receptors are imperative for guiding cells out of the SCS, and for their subsequent directional translocation towards the T cell zone. By contrast, integrins are dispensable for LN homing, yet still contribute by increasing the dwell time within the SCS and by potentially enhancing T cell sensing of chemokine gradients. Together, these findings provide fundamental insights into mechanisms that control homing of lymph-derived immune cells. Immune cells mostly enter lymph nodes (LN) from blood circulation, but whether afferent lymphatics contributes to LN entry is unclear. Here, the authors show, using a photo-convertible reporter, that T cells in afferent lymphatics frequently enter LN and become arrested in the subcapsular sinus, with chemokines and integrins further guiding their migration in the LN.
Collapse
Affiliation(s)
- Rieke Martens
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Marc Permanyer
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Kathrin Werth
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Kai Yu
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Asolina Braun
- Institute of Immunology, Hannover Medical School, Hannover, Germany.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Olga Halle
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Stephan Halle
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Berislav Bošnjak
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Friedemann Kiefer
- Mammalian Cell Signaling Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Anika Janssen
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Jenny Poetzsch
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Karan Kohli
- Institute of Immunology, Hannover Medical School, Hannover, Germany.,Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Yvonne Lueder
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Nadine Eckert
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Tim Worbs
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Melanie Galla
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany. .,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany.
| |
Collapse
|
74
|
Anatomical Uniqueness of the Mucosal Immune System (GALT, NALT, iBALT) for the Induction and Regulation of Mucosal Immunity and Tolerance. MUCOSAL VACCINES 2020. [PMCID: PMC7149644 DOI: 10.1016/b978-0-12-811924-2.00002-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
75
|
Marin ND, Dunlap MD, Kaushal D, Khader SA. Friend or Foe: The Protective and Pathological Roles of Inducible Bronchus-Associated Lymphoid Tissue in Pulmonary Diseases. THE JOURNAL OF IMMUNOLOGY 2019; 202:2519-2526. [PMID: 31010841 DOI: 10.4049/jimmunol.1801135] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/26/2018] [Indexed: 02/06/2023]
Abstract
Inducible bronchus-associated lymphoid tissue (iBALT) is a tertiary lymphoid structure that resembles secondary lymphoid organs. iBALT is induced in the lung in response to Ag exposure. In some cases, such as infection with Mycobacterium tuberculosis, the formation of iBALT structure is indicative of an effective protective immune response. However, with persistent exposure to Ags during chronic inflammation, allergy, or autoimmune diseases, iBALT may be associated with exacerbation of inflammation. iBALT is characterized by well-organized T and B areas enmeshed with conventional dendritic cells, follicular dendritic cells, and stromal cells, usually located surrounding airways or blood vessels. Several of the molecular signals and cellular contributors that mediate formation of iBALT structures have been recently identified. This review will outline the recent findings associated with the formation and maintenance of iBALT and their contributions toward a protective or pathogenic function in pulmonary disease outcome.
Collapse
Affiliation(s)
- Nancy D Marin
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Micah D Dunlap
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110.,Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110; and
| | - Deepak Kaushal
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Covington, LA 70118
| | - Shabaana A Khader
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110;
| |
Collapse
|
76
|
Stylianou E, Paul MJ, Reljic R, McShane H. Mucosal delivery of tuberculosis vaccines: a review of current approaches and challenges. Expert Rev Vaccines 2019; 18:1271-1284. [PMID: 31876199 PMCID: PMC6961305 DOI: 10.1080/14760584.2019.1692657] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: Tuberculosis (TB) remains a major health threat and it is now clear that the current vaccine, BCG, is unable to arrest the global TB epidemic. A new vaccine is needed to either replace or boost BCG so that a better level of protection could be achieved. The route of entry of Mycobacterium tuberculosis, the causative organism, is via inhalation making TB primarily a respiratory disease. There is therefore good reason to hypothesize that a mucosally delivered vaccine against TB could be more effective than one delivered via the systemic route. Areas covered: This review summarizes the progress that has been made in the area of TB mucosal vaccines in the last few years. It highlights some of the strengths and shortcomings of the published evidence and aims to discuss immunological and practical considerations in the development of mucosal vaccines. Expert opinion: There is a growing body of evidence that the mucosal approach to vaccination against TB is feasible and should be pursued. However, further key studies are necessary to both improve our understanding of the protective immune mechanisms operating in the mucosa and the technical aspects of aerosolized delivery, before such a vaccine could become a feasible, deployable strategy.
Collapse
Affiliation(s)
- Elena Stylianou
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Matthew J Paul
- Institute for Infection and Immunity, St George's University of London, Tooting, London, UK
| | - Rajko Reljic
- Institute for Infection and Immunity, St George's University of London, Tooting, London, UK
| | - Helen McShane
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
77
|
Galeas-Pena M, McLaughlin N, Pociask D. The role of the innate immune system on pulmonary infections. Biol Chem 2019; 400:443-456. [PMID: 29604208 DOI: 10.1515/hsz-2018-0304] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/19/2018] [Indexed: 12/15/2022]
Abstract
Inhalation is required for respiration and life in all vertebrates. This process is not without risk, as it potentially exposes the host to environmental pathogens with every breath. This makes the upper respiratory tract one of the most common routes of infection and one of the leading causes of morbidity and mortality in the world. To combat this, the lung relies on the innate immune defenses. In contrast to the adaptive immune system, the innate immune system does not require sensitization, previous exposure or priming to attack foreign particles. In the lung, the innate immune response starts with the epithelial barrier and mucus production and is reinforced by phagocytic cells and T cells. These cells are vital for the production of cytokines, chemokines and anti-microbial peptides that are critical for clearance of infectious agents. In this review, we discuss all aspects of the innate immune response, with a special emphasis on ways to target aspects of the immune response to combat antibiotic resistant bacteria.
Collapse
Affiliation(s)
- Michelle Galeas-Pena
- Department of Pulmonary Critical Care and Environmental Medicine, Tulane University School of Medicine, 333 S. Liberty St., New Orleans, LA 70112, USA
| | - Nathaniel McLaughlin
- Department of Pulmonary Critical Care and Environmental Medicine, Tulane University School of Medicine, 333 S. Liberty St., New Orleans, LA 70112, USA
| | - Derek Pociask
- Department of Pulmonary Critical Care and Environmental Medicine, Tulane University School of Medicine, 333 S. Liberty St., New Orleans, LA 70112, USA
| |
Collapse
|
78
|
Manifold Roles of CCR7 and Its Ligands in the Induction and Maintenance of Bronchus-Associated Lymphoid Tissue. Cell Rep 2019; 23:783-795. [PMID: 29669284 DOI: 10.1016/j.celrep.2018.03.072] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 01/10/2018] [Accepted: 03/15/2018] [Indexed: 01/08/2023] Open
Abstract
The processes underlying the development and maintenance of tertiary lymphoid organs are incompletely understood. Using a Ccr7 knockout/knockin approach, we show that spontaneous bronchus-associated lymphoid tissue (BALT) formation can be caused by CCR7-mediated migration defects of dendritic cells (DCs) in the lung. Plt/plt mice that lack the CCR7 ligands CCL19 and CCL21-serine do not form BALT spontaneously because lung-expressed CCL21-leucine presumably suffices to maintain steady-state DC egress. However, plt/plt mice are highly susceptible to modified vaccinia virus infection, showing enhanced recruitment of immune cells as well as alterations in CCR7-ligand-mediated lymphocyte egress from the lungs, leading to dramatically enhanced BALT. Furthermore, we identify two independent BALT homing routes for blood-derived lymphocytes. One is HEV mediated and depends on CCR7 and L-selectin, while the second route is via the lung parenchyma and is independent of these molecules. Together, these data provide insights into CCR7/CCR7-ligand-orchestrated aspects in BALT formation.
Collapse
|
79
|
Maoz A, Dennis M, Greenson JK. The Crohn's-Like Lymphoid Reaction to Colorectal Cancer-Tertiary Lymphoid Structures With Immunologic and Potentially Therapeutic Relevance in Colorectal Cancer. Front Immunol 2019; 10:1884. [PMID: 31507584 PMCID: PMC6714555 DOI: 10.3389/fimmu.2019.01884] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 07/25/2019] [Indexed: 12/17/2022] Open
Abstract
The Crohn's-like lymphoid reaction (CLR) to colorectal cancer (CRC), a CRC-specific ectopic lymphoid reaction, is thought to play an important role in the host response to CRC. CLR is characterized by peritumoral lymphocytic aggregates that are found at the advancing edge of the tumor. Spatial and molecular characterization of CLR within the tumor microenvironment (TME) have uncovered a spectrum of peritumoral lymphoid aggregates with varying levels of organization and maturation. In early stages of CLR development, CD4+ T-cells cluster predominantly with mature antigen presenting dendritic cells. As CLR matures, increasing numbers of B-cells, as well as follicular dendritic cells are recruited to create lymphoid follicles. When highly organized, CLR resembles functional tertiary lymphoid structures (TLS), allowing for lymphocyte recruitment to the TME and promoting a tumor-specific adaptive immune response. CLR has been consistently associated with favorable prognostic factors and improved survival among CRC patients, often providing more prognostic information than current clinical staging systems. However, consensus is lacking regarding CLR scoring and it is not clinically assessed or reported. Differences between CLR and other cancer-associated lymphoid structures exist both in primary and metastatic disease, underscoring the need to characterize organ-specific TLS. Further research is needed to explore the role of CLR in predicting response to immunotherapy and to leverage CLR to promote immunotherapeutic strategies in CRC.
Collapse
Affiliation(s)
- Asaf Maoz
- Boston University School of Medicine and Boston Medical Center, Boston, MA, United States
| | - Michael Dennis
- Boston University School of Medicine and Boston Medical Center, Boston, MA, United States
| | - Joel K Greenson
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
80
|
Nagatake T, Suzuki H, Hirata SI, Matsumoto N, Wada Y, Morimoto S, Nasu A, Shimojou M, Kawano M, Ogami K, Tsujimura Y, Kuroda E, Iijima N, Hosomi K, Ishii KJ, Nosaka T, Yasutomi Y, Kunisawa J. Immunological association of inducible bronchus-associated lymphoid tissue organogenesis in Ag85B-rHPIV2 vaccine-induced anti-tuberculosis mucosal immune responses in mice. Int Immunol 2019; 30:471-481. [PMID: 30011025 PMCID: PMC6153728 DOI: 10.1093/intimm/dxy046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 07/12/2018] [Indexed: 12/30/2022] Open
Abstract
We previously reported that Ag85B-expressing human parainfluenza type 2 virus (Ag85B-rHPIV2) was effective as a nasal vaccine against tuberculosis in mice; however, the mechanism by which it induces an immune response remains to be investigated. In the present study, we found that organogenesis of inducible bronchus-associated lymphoid tissue (iBALT) played a role in the induction of antigen-specific T cells and IgA antibody responses in the lung of mice intra-nasally administered Ag85B-rHPIV2. We found that expression of Ag85B was dispensable for the development of iBALT, suggesting that HPIV2 acted as an iBALT-inducing vector. When iBALT organogenesis was disrupted in Ag85B-rHPIV2-immunized mice, either by neutralization of the lymphotoxin pathway or depletion of CD11b+ cells, Ag85B-specific immune responses (i.e. IFN γ-producing T cells and IgA antibody) were diminished in the lung. Furthermore, we found that immunization with Ag85B-rHPIV2 induced neutrophil and eosinophil infiltration temporally after the immunization in the lung. Thus, our results show that iBALT organogenesis contributes to the induction of antigen-specific immune responses by Ag85B-rHPIV2 and that Ag85B-rHPIV2 provokes its immune responses without inducing long-lasting inflammation.
Collapse
Affiliation(s)
- Takahiro Nagatake
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka, Japan
| | - Hidehiko Suzuki
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka, Japan
| | - So-Ichiro Hirata
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka, Japan.,Department of Microbiology and Immunology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Hyogo, Japan
| | - Naomi Matsumoto
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka, Japan
| | - Yasuko Wada
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Sakiko Morimoto
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka, Japan
| | - Ayaka Nasu
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka, Japan
| | - Michiko Shimojou
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka, Japan
| | - Mitsuo Kawano
- Department of Microbiology and Molecular Genetics, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Kentaro Ogami
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, NIBIOHN, Hachimandai, Tsukuba, Ibaraki, Japan
| | - Yusuke Tsujimura
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, NIBIOHN, Hachimandai, Tsukuba, Ibaraki, Japan
| | - Etsushi Kuroda
- Laboratory of Vaccine Science, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research, NIBIOHN, Ibaraki, Osaka, Japan
| | - Norifumi Iijima
- Laboratory of Vaccine Science, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research, NIBIOHN, Ibaraki, Osaka, Japan
| | - Koji Hosomi
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka, Japan
| | - Ken J Ishii
- Laboratory of Vaccine Science, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research, NIBIOHN, Ibaraki, Osaka, Japan
| | - Tetsuya Nosaka
- Department of Microbiology and Molecular Genetics, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Yasuhiro Yasutomi
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, NIBIOHN, Hachimandai, Tsukuba, Ibaraki, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka, Japan.,Department of Microbiology and Immunology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Hyogo, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan.,Division of Mucosal Immunology, Department of Microbiology and Immunology and International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan.,Graduate School of Medicine, Graduate School of Dentistry, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
81
|
Tan HX, Esterbauer R, Vanderven HA, Juno JA, Kent SJ, Wheatley AK. Inducible Bronchus-Associated Lymphoid Tissues (iBALT) Serve as Sites of B Cell Selection and Maturation Following Influenza Infection in Mice. Front Immunol 2019; 10:611. [PMID: 30984186 PMCID: PMC6450362 DOI: 10.3389/fimmu.2019.00611] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/07/2019] [Indexed: 12/14/2022] Open
Abstract
Seasonally recurrent influenza virus infections are a significant cause of global morbidity and mortality. In murine models, primary influenza infection in the respiratory tract elicits potent humoral responses concentrated in the draining mediastinal lymph node and the spleen. In addition to immunity within secondary lymphoid organs (SLO), pulmonary infection is also associated with formation of ectopic inducible bronchus-associated tissues (iBALT) in the lung. These structures display a lymphoid organization, but their function and protective benefits remain unclear. Here we examined the phenotype, transcriptional profile and antigen specificity of B cell populations forming iBALT in influenza infected mice. We show that the cellular composition of iBALT was comparable to SLO, containing populations of follicular dendritic cells (FDC), T-follicular helper (Tfh) cells, and germinal center (GC)-like B cells with classical dark- and light-zone polarization. Transcriptional profiles of GC B cells in iBALT and SLO were conserved regardless of anatomical localization. The architecture of iBALT was pleiomorphic and less structurally defined than SLO. Nevertheless, we show that GC-like structures within iBALT serve as a distinct niche that independently support the maturation and selection of B cells primarily targeted against the influenza virus nucleoprotein. Our findings suggest that iBALT, which are positioned at the frontline of the lung mucosa, drive long-lived, and unique GC reactions that contribute to the diversity of the humoral response targeting influenza.
Collapse
Affiliation(s)
- Hyon-Xhi Tan
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Robyn Esterbauer
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Hillary A Vanderven
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.,Biomedicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD, Australia
| | - Jennifer A Juno
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.,Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC, Australia.,ARC Centre for Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Parkville, VIC, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
82
|
Hirahara K, Shinoda K, Morimoto Y, Kiuchi M, Aoki A, Kumagai J, Kokubo K, Nakayama T. Immune Cell-Epithelial/Mesenchymal Interaction Contributing to Allergic Airway Inflammation Associated Pathology. Front Immunol 2019; 10:570. [PMID: 30972065 PMCID: PMC6443630 DOI: 10.3389/fimmu.2019.00570] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/04/2019] [Indexed: 11/13/2022] Open
Abstract
The primary function of the lung is efficient gas exchange between alveolar air and alveolar capillary blood. At the same time, the lung protects the host from continuous invasion of harmful viruses and bacteria by developing unique epithelial barrier systems. Thus, the lung has a complex architecture comprising a mixture of various types of cells including epithelial cells, mesenchymal cells, and immune cells. Recent studies have revealed that Interleukin (IL-)33, a member of the IL-1 family of cytokines, is a key environmental cytokine that is derived from epithelial cells and induces type 2 inflammation in the barrier organs, including the lung. IL-33 induces allergic diseases, such as asthma, through the activation of various immune cells that express an IL-33 receptor, ST2, including ST2+ memory (CD62LlowCD44hi) CD4+ T cells. ST2+ memory CD4+ T cells have the capacity to produce high levels of IL-5 and Amphiregulin and are involved in the pathology of asthma. ST2+ memory CD4+ T cells are maintained by IL-7- and IL-33-produced lymphatic endothelial cells within inducible bronchus-associated lymphoid tissue (iBALT) around the bronchioles during chronic lung inflammation. In this review, we will discuss the impact of these immune cells-epithelial/mesenchymal interaction on shaping the pathology of chronic allergic inflammation. A better understanding of pathogenic roles of the cellular and molecular interaction between immune cells and non-immune cells is crucial for the development of new therapeutic strategies for intractable allergic diseases.
Collapse
Affiliation(s)
- Kiyoshi Hirahara
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan.,AMED-PRIME, AMED, Chiba, Japan
| | - Kenta Shinoda
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Laboratory of Genome Integrity, National Institutes of Health, Bethesda, MD, United States
| | - Yuki Morimoto
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masahiro Kiuchi
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ami Aoki
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Jin Kumagai
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kota Kokubo
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan.,AMED-CREST, AMED, Chiba, Japan
| |
Collapse
|
83
|
He W, Zhang W, Cheng C, Li J, Wu X, Li M, Chen Z, Wang W. The distributive and structural characteristics of bronchus-associated lymphoid tissue (BALT) in Bactrian camels ( Camelus bactrianus). PeerJ 2019; 7:e6571. [PMID: 30881767 PMCID: PMC6417404 DOI: 10.7717/peerj.6571] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/04/2019] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Bronchus-associated lymphoid tissue (BALT), distributed in the bronchial mucosa, plays a critical role in maintaining the mucosal immune homeostasis of the lower respiratory tract. The bronchial tree is a functional structure for gas exchange with the outside environment and maintains basic lung morphology. METHODS To explore the structural and distributive characteristics of BALT in Bactrian camels, twelve healthy adult Bactrian camels were divided into two groups (six in each group). The lungs, bronchial tree and BALT were observed and analysed systematically through anatomical and histological methods. RESULTS The results showed that Bactrian camel lungs were constituted by the left cranial lobe, left caudal lobe, right cranial lobe, right caudal lobe and accessory lobe, but lacked the middle lobe. The cranial lobe was narrow and small, the caudal lobe was extremely developed (almost four times the cranial lobe in size), and the accessory lobe was smaller than the cranial lobe; the bronchial tree, an unequal dichotomy with a tracheobronchial branch, was composed of dorsal, ventral, lateral and medial bronchiole systems. Isolated lymphoid follicles (the chief type) and aggregates of lymphoid follicles revealed two types of BALT, and germinal centres, follicle-associated epithelium and high endothelial venules could be observed in some well-developed BALT. Additionally, BALT was scattered along the bronchial tree in the entire lung, and the density increased from the trachea to the lower graded branches (densest in the bronchioles) and then decreased, with the occasional location around respiratory bronchioles or among the pulmonary mesenchyme. In the conducting portion, BALT was primarily located in the mucosa lamina propria but was also found in the submucosa, under the muscular layer, and around the submucosal glands and cartilage. CONCLUSION The results demonstrated that the lung morphology of Bactrian camels was similar to that of horses, but the bronchial branches were more closely related to those of ruminants. These characteristics were in accordance with the morphological and structural variation regularity of lungs with species evolution. BALT was mainly scattered in the conducting portion, and bronchioles, as the final "checkpoint" in the surveillance, capture and recognition of antigens before pulmonary exchange, were the pivotal locational position of BALT. However, BALT at different depths of the bronchial wall of the conducting portion might be at different developmental stages. Our study provided evidence for further insight into the mucosal immunomodulatory mechanism of BALT in the respiratory system of Bactrian camels.
Collapse
Affiliation(s)
- Wanhong He
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Wangdong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Cuicui Cheng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Jianfei Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xiuping Wu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Min Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Zhihua Chen
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Wenhui Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| |
Collapse
|
84
|
van Uden D, Boomars K, Kool M. Dendritic Cell Subsets and Effector Function in Idiopathic and Connective Tissue Disease-Associated Pulmonary Arterial Hypertension. Front Immunol 2019; 10:11. [PMID: 30723471 PMCID: PMC6349774 DOI: 10.3389/fimmu.2019.00011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/04/2019] [Indexed: 01/11/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a cardiopulmonary disease characterized by an incurable condition of the pulmonary vasculature, leading to increased pulmonary vascular resistance, elevated pulmonary arterial pressure resulting in progressive right ventricular failure and ultimately death. PAH has different underlying causes. In approximately 30–40% of the patients no underlying risk factor or cause can be found, so-called idiopathic PAH (IPAH). Patients with an autoimmune connective tissue disease (CTD) can develop PAH [CTD-associated PAH (CTD-PAH)], suggesting a prominent role of immune cell activation in PAH pathophysiology. This is further supported by the presence of tertiary lymphoid organs (TLOs) near pulmonary blood vessels in IPAH and CTD-PAH. TLOs consist of myeloid cells, like monocytes and dendritic cells (DCs), T-cells, and B-cells. Next to their T-cell activating function, DCs are crucial for the preservation of TLOs. Multiple DC subsets can be found in steady state, such as conventional DCs (cDCs), including type 1 cDCs (cDC1s), and type 2 cDCs (cDC2s), AXL+Siglec6+ DCs (AS-DCs), and plasmacytoid DCs (pDCs). Under inflammatory conditions monocytes can differentiate into monocyte-derived-DCs (mo-DCs). DC subset distribution and activation status play an important role in the pathobiology of autoimmune diseases and most likely in the development of IPAH and CTD-PAH. DCs can contribute to pathology by activating T-cells (production of pro-inflammatory cytokines) and B-cells (pathogenic antibody secretion). In this review we therefore describe the latest knowledge about DC subset distribution, activation status, and effector functions, and polymorphisms involved in DC function in IPAH and CTD-PAH to gain a better understanding of PAH pathology.
Collapse
Affiliation(s)
- Denise van Uden
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Karin Boomars
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Mirjam Kool
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
85
|
Macdougall CE, Longhi MP. Adipose tissue dendritic cells in steady-state. Immunology 2019; 156:228-234. [PMID: 30552824 DOI: 10.1111/imm.13034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/21/2018] [Accepted: 11/28/2018] [Indexed: 12/17/2022] Open
Abstract
Healthy white adipose tissue (WAT) participates in regulating systemic metabolism, whereas dysfunctional WAT plays a prominent role in the development of obesity-associated co-morbidities. Tissue-resident immune cells are important for maintaining WAT homeostasis, including conventional dendritic cells (cDCs) which are critical in the initiation and regulation of adaptive immune responses. Due to phenotypic overlap with other myeloid cells, the distinct contribution of WAT cDCs has been poorly understood. This review will discuss the contribution of cDCs in the maintenance of WAT homeostasis. In particular, the review will focus on the metabolic cross-talk between cDCs and adipocytes that regulates local immune responses during physiological conditions.
Collapse
Affiliation(s)
- Claire E Macdougall
- William Harvey Research Institute, Barts and the London, Queen Mary University of London, London, UK
| | - M Paula Longhi
- William Harvey Research Institute, Barts and the London, Queen Mary University of London, London, UK
| |
Collapse
|
86
|
Abstract
Pulmonary respiration inevitably exposes the mucosal surface of the lung to potentially noxious stimuli, including pathogens, allergens, and particulates, each of which can trigger pulmonary damage and inflammation. As inflammation resolves, B and T lymphocytes often aggregate around large bronchi to form inducible Bronchus-Associated Lymphoid Tissue (iBALT). iBALT formation can be initiated by a diverse array of molecular pathways that converge on the activation and differentiation of chemokine-expressing stromal cells that serve as the scaffolding for iBALT and facilitate the recruitment, retention, and organization of leukocytes. Like conventional lymphoid organs, iBALT recruits naïve lymphocytes from the blood, exposes them to local antigens, in this case from the airways, and supports their activation and differentiation into effector cells. The activity of iBALT is demonstrably beneficial for the clearance of respiratory pathogens; however, it is less clear whether it dampens or exacerbates inflammatory responses to non-infectious agents. Here, we review the evidence regarding the role of iBALT in pulmonary immunity and propose that the final outcome depends on the context of the disease.
Collapse
|
87
|
Mansouri S, Patel S, Katikaneni DS, Blaauboer SM, Wang W, Schattgen S, Fitzgerald K, Jin L. Immature lung TNFR2 - conventional DC 2 subpopulation activates moDCs to promote cyclic di-GMP mucosal adjuvant responses in vivo. Mucosal Immunol 2019; 12:277-289. [PMID: 30327534 PMCID: PMC6301145 DOI: 10.1038/s41385-018-0098-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/19/2018] [Accepted: 09/25/2018] [Indexed: 02/04/2023]
Abstract
Cyclic dinucleotides (CDNs), including cyclic di-GMP (CDG), are promising vaccine adjuvants in preclinical/clinical trials. The in vivo mechanisms of CDNs are not clear. Here we investigated the roles of lung DC subsets in promoting CDG mucosal adjuvant responses in vivo. Using genetically modified mice and adoptive cell transfer, we identified lung conventional DC 2 (cDC2) as the central player in CDG mucosal responses. We further identified two functionally distinct lung cDC2 subpopulations: TNFR2+pRelB+ and TNFR2-pRelB- cDC2. The TNFR2+ cDC2 were mature and migratory upon intranasal CDG administration while the TNFR2- cDC2 were activated but not mature. Adoptive cell transfer showed that TNFR2- cDC2 mediate the antibody responses of CDG, while the TNFR2+ cDC2 generate Th1/17 responses. Mechanistically, immature TNFR2- cDC2 activate monocyte-derived DCs (moDCs), which do not take up intranasally administered CDG. moDCs promote CDG-induced generation of T follicular helper- and germinal center B cells in the lungs. Our data revealed a previously undescribed in vivo mode of DCs action, whereby an immature lung TNFR2- cDC2 subpopulation directs the non-migratory moDCs to generate CDG mucosal responses in the lung.
Collapse
Affiliation(s)
- Samira Mansouri
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, 12208, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Seema Patel
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Divya S Katikaneni
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Steven M Blaauboer
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, 12208, USA
| | - Wei Wang
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Stefan Schattgen
- Program in Innate Immunity, Division of Infectious Disease and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Katherine Fitzgerald
- Program in Innate Immunity, Division of Infectious Disease and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Lei Jin
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
88
|
Jansen CS, Prokhnevska N, Kissick HT. The requirement for immune infiltration and organization in the tumor microenvironment for successful immunotherapy in prostate cancer. Urol Oncol 2018; 37:543-555. [PMID: 30446449 DOI: 10.1016/j.urolonc.2018.10.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/01/2018] [Accepted: 10/03/2018] [Indexed: 12/14/2022]
Abstract
Immunotherapy-particularly immune checkpoint blockade-has seen great success in many tumor types. However, checkpoint-based therapies have not demonstrated high levels of success in prostate cancer, and there is much to be learned from both the successes and failures of these treatments. Here we review the evidence that composition of infiltrating immune cells in the tumor microenvironment is fundamental to the response to immunotherapy. Additionally, we discuss the emerging idea that the organization of these immune cells may also be crucial to this response. In prostate cancer, the composition and organization of the tumor immune microenvironment are preeminent topics of discussion and areas of important future investigation.
Collapse
Affiliation(s)
| | | | - Haydn T Kissick
- Department of Urology, Emory University, Atlanta, GA; Department of Microbiology and Immunology, Emory University, Atlanta, GA.
| |
Collapse
|
89
|
Dyatlov AV, Apt AS, Linge IA. B lymphocytes in anti-mycobacterial immune responses: Pathogenesis or protection? Tuberculosis (Edinb) 2018; 114:1-8. [PMID: 30711147 DOI: 10.1016/j.tube.2018.10.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/12/2018] [Accepted: 10/23/2018] [Indexed: 12/12/2022]
Abstract
The role of B cells and antibodies in tuberculosis (TB) immunity, protection and pathogenesis remain contradictory. The presence of organized B cell follicles close to active TB lesions in the lung tissue raises the question about the role of these cells in local host-pathogen interactions. In this short review, we summarize the state of our knowledge concerning phenotypes of B cells populating tuberculous lungs, their secretory activity, interactions with other immune cells and possible involvement in protective vs. pathogenic TB immunity.
Collapse
Affiliation(s)
- Alexander V Dyatlov
- Laboratory for Immunogenetics, Central Institute for Tuberculosis, Moscow, Russia
| | - Alexander S Apt
- Laboratory for Immunogenetics, Central Institute for Tuberculosis, Moscow, Russia; Department of Immunology, School of Biology, M. V. Lomonosov Moscow State University, Russia.
| | - Irina A Linge
- Laboratory for Immunogenetics, Central Institute for Tuberculosis, Moscow, Russia
| |
Collapse
|
90
|
Sutton K, Costa T, Alber A, Bryson K, Borowska D, Balic A, Kaiser P, Stevens M, Vervelde L. Visualisation and characterisation of mononuclear phagocytes in the chicken respiratory tract using CSF1R-transgenic chickens. Vet Res 2018; 49:104. [PMID: 30305141 PMCID: PMC6389226 DOI: 10.1186/s13567-018-0598-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022] Open
Abstract
The respiratory tract is a key organ for many avian pathogens as well as a major route for vaccination in the poultry industry. To improve immune responses after vaccination of chickens through increased uptake of vaccines and targeting to antigen presenting cells, a better understanding of the avian respiratory immune system is required. Transgenic MacReporter birds were used expressing a reporter gene (eGFP or mApple) under the control of the CSF1R promoter and enhancer in cells of the mononuclear phagocyte (MNP) lineage to visualize the ontogeny of the lymphoid tissue, macrophages and dendritic cells, in the trachea, lung and air sac of birds from embryonic day 18-63 weeks of age. Small aggregates of CSF1R-transgene+ cells start to form at the openings of the secondary bronchi at 1 week of age, indicative of the early development of the organised bronchus-associated lymphoid tissue. Immunohistochemical staining revealed subpopulations of MNPs in the lung, based on expression of CSF1R-transgene, CD11, TIM4, LAMP1, and MHC II. Specialised epithelial cells or M cells covering the bronchus-associated lymphoid tissue expressed CSF1R-transgene and type II pneumocytes expressed LAMP1 suggesting that these epithelial cells are phagocytic and transcytose antigen. Highly organised lymphoid tissue was seen in trachea from 4 weeks onwards. Throughout the air sacs at all ages, CSF1R-transgene+ cells were scattered and at later stages, CSF1R-transgene+ cells lined capillaries. These results will serve as a base for further functional characterization of macrophages and dendritic cells and their role in respiratory diseases and vaccine responses.
Collapse
Affiliation(s)
- Kate Sutton
- Division of Infection and Immunity, The Roslin Institute and Royal (Dick), School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG UK
| | - Taiana Costa
- Division of Infection and Immunity, The Roslin Institute and Royal (Dick), School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG UK
| | - Andreas Alber
- Division of Infection and Immunity, The Roslin Institute and Royal (Dick), School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG UK
| | - Karen Bryson
- Division of Infection and Immunity, The Roslin Institute and Royal (Dick), School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG UK
| | - Dominika Borowska
- Division of Infection and Immunity, The Roslin Institute and Royal (Dick), School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG UK
| | - Adam Balic
- Division of Infection and Immunity, The Roslin Institute and Royal (Dick), School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG UK
| | - Pete Kaiser
- Division of Infection and Immunity, The Roslin Institute and Royal (Dick), School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG UK
| | - Mark Stevens
- Division of Infection and Immunity, The Roslin Institute and Royal (Dick), School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG UK
| | - Lonneke Vervelde
- Division of Infection and Immunity, The Roslin Institute and Royal (Dick), School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG UK
| |
Collapse
|
91
|
Pipi E, Nayar S, Gardner DH, Colafrancesco S, Smith C, Barone F. Tertiary Lymphoid Structures: Autoimmunity Goes Local. Front Immunol 2018; 9:1952. [PMID: 30258435 PMCID: PMC6143705 DOI: 10.3389/fimmu.2018.01952] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 08/07/2018] [Indexed: 12/18/2022] Open
Abstract
Tertiary lymphoid structures (TLS) are frequently observed in target organs of autoimmune diseases. TLS present features of secondary lymphoid organs such as segregated T and B cell zones, presence of follicular dendritic cell networks, high endothelial venules and specialized lymphoid fibroblasts and display the mechanisms to support local adaptive immune responses toward locally displayed antigens. TLS detection in the tissue is often associated with poor prognosis of disease, auto-antibody production and malignancy development. This review focuses on the contribution of TLS toward the persistence of the inflammatory drive, the survival of autoreactive lymphocyte clones and post-translational modifications, responsible for the pathogenicity of locally formed autoantibodies, during autoimmune disease development.
Collapse
Affiliation(s)
- Elena Pipi
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom.,Experimental Medicine Unit, Immuno-Inflammation Therapeutic Area, GSK Medicines Research Centre, Stevenage, United Kingdom
| | - Saba Nayar
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - David H Gardner
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | | | - Charlotte Smith
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Francesca Barone
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
92
|
Hammerschmidt SI, Werth K, Rothe M, Galla M, Permanyer M, Patzer GE, Bubke A, Frenk DN, Selich A, Lange L, Schambach A, Bošnjak B, Förster R. CRISPR/Cas9 Immunoengineering of Hoxb8-Immortalized Progenitor Cells for Revealing CCR7-Mediated Dendritic Cell Signaling and Migration Mechanisms in vivo. Front Immunol 2018; 9:1949. [PMID: 30210501 PMCID: PMC6120996 DOI: 10.3389/fimmu.2018.01949] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/07/2018] [Indexed: 12/30/2022] Open
Abstract
To present antigens to cognate T cells, dendritic cells (DCs) exploit the chemokine receptor CCR7 to travel from peripheral tissue via afferent lymphatic vessels to directly enter draining lymph nodes through the floor of the subcapsular sinus. Here, we combined unlimited proliferative capacity of conditionally Hoxb8-immortalized hematopoietic progenitor cells with CRISPR/Cas9 technology to create a powerful experimental system to investigate DC migration and function. Hematopoietic progenitor cells from the bone marrow of Cas9-transgenic mice were conditionally immortalized by lentiviral transduction introducing a doxycycline-regulated form of the transcription factor Hoxb8 (Cas9-Hoxb8 cells). These cells could be stably cultured for weeks in the presence of doxycycline and puromycin, allowing us to introduce additional genetic modifications applying CRISPR/Cas9 technology. Importantly, modified Cas9-Hoxb8 cells retained their potential to differentiate in vitro into myeloid cells, and GM-CSF-differentiated Cas9-Hoxb8 cells showed the classical phenotype of GM-CSF-differentiated bone marrow-derived dendritic cells. Following intralymphatic delivery Cas9-Hoxb8 DCs entered the lymph node in a CCR7-dependent manner. Finally, we used two-photon microscopy and imaged Cas9-Hoxb8 DCs that expressed the genetic Ca2+ sensor GCaMP6S to visualize in real-time chemokine-induced Ca2+ signaling of lymph-derived DCs entering the LN parenchyma. Altogether, our study not only allows mechanistic insights in DC migration in vivo, but also provides a platform for the immunoengineering of DCs that, in combination with two-photon imaging, can be exploited to further dissect DC dynamics in vivo.
Collapse
Affiliation(s)
| | - Kathrin Werth
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Michael Rothe
- Institute of Experimental Hematology, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Melanie Galla
- Institute of Experimental Hematology, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Marc Permanyer
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Anja Bubke
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - David N. Frenk
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Anton Selich
- Institute of Experimental Hematology, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Lucas Lange
- Institute of Experimental Hematology, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Berislav Bošnjak
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
93
|
Gallotta M, Assi H, Degagné É, Kannan SK, Coffman RL, Guiducci C. Inhaled TLR9 Agonist Renders Lung Tumors Permissive to PD-1 Blockade by Promoting Optimal CD4 + and CD8 + T-cell Interplay. Cancer Res 2018; 78:4943-4956. [PMID: 29945961 DOI: 10.1158/0008-5472.can-18-0729] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/04/2018] [Accepted: 06/22/2018] [Indexed: 11/16/2022]
Abstract
Currently approved inhibitors of the PD-1/PD-L1 pathway represent a major advance for the treatment of lung cancers, yet they are ineffective in a majority of patients due to lack of preexisting T-cell reactivity. Here, we show that a TLR9 agonist delivered by inhalation is able to prime T-cell responses against poorly immunogenic lung tumors and to complement the effects of PD-1 blockade. Inhaled TLR9 agonist causes profound remodeling in tumor-bearing lungs, leading to the formation of tertiary lymphoid structures adjacent to the tumors, CD8+ T-cell infiltration into the tumors, dendritic cell expansion, and antibody production. Inhalation of TLR9 agonist also increased the pool of functional PD-1lowT-bethigh effector CD8+ T cells in tumor-bearing lungs. Effector CD8+ T cells generated by inhaled TLR9 agonist treatment were licensed by PD-1 blockade to become highly functional CTLs, leading to a durable rejection of both lung tumors and tumor lesions outside the lungs. CD4+ T cells activated in response to inhaled TLR9 play a critical role in this process by controlling the proliferation, preventing exhaustion, and guiding the differentiation of optimally functional CTLs. This study characterizes a strategy to apply localized TLR9 stimulation to a tumor type not accessible for direct injection, a strategy that may expand the therapeutic potential of PD-1 blockade in non-small cell lung cancer.Significance: These findings demonstrate that local delivery of a toll-like receptor 9 agonist can change the immune content of an entire organ and enhance the efficacy of immune checkpoint inhibition.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/17/4943/F1.large.jpg Cancer Res; 78(17); 4943-56. ©2018 AACR.
Collapse
Affiliation(s)
| | - Hikmat Assi
- Dynavax Technologies Corporation, Berkeley, California
| | | | | | | | | |
Collapse
|
94
|
Milo I, Blecher-Gonen R, Barnett-Itzhaki Z, Bar-Ziv R, Tal O, Gurevich I, Feferman T, Drexler I, Amit I, Bousso P, Shakhar G. The bone marrow is patrolled by NK cells that are primed and expand in response to systemic viral activation. Eur J Immunol 2018; 48:1137-1152. [PMID: 29624673 DOI: 10.1002/eji.201747378] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/30/2018] [Accepted: 03/27/2018] [Indexed: 12/11/2022]
Abstract
The bone marrow hosts NK cells whose distribution, motility and response to systemic immune challenge are poorly understood. At steady state, two-photon microscopy of the bone marrow in Ncr1gfp/+ mice captured motile NK cells interacting with dendritic cells. NK cells expressed markers and effector molecules of mature cells. Following poly (I:C) injection, RNA-Seq of NK cells revealed three phases of transcription featuring immune response genes followed by posttranscriptional processes and proliferation. Functionally, poly (I:C) promoted upregulation of granzyme B, enhanced cytotoxicity in vitro and in vivo, and, in the same individual cells, triggered proliferation. Two-photon imaging revealed that the proportion of sinusoidal NK cells decreased, while at the same time parenchymal NK cells accelerated, swelled and divided within the bone marrow. MVA viremia induced similar responses. Our findings demonstrate that the bone marrow is patrolled by mature NK cells that rapidly proliferate in response to systemic viral challenge while maintaining their effector functions.
Collapse
Affiliation(s)
- Idan Milo
- Department of Immunology, the Weizmann Institute of Science, Rehovot, Israel.,Institut Pasteur, Dynamics of Immune Responses Unit, Equipe Labéllisée Ligue Contre le Cancer, Institut Pasteur, Paris, France
| | | | | | - Raz Bar-Ziv
- Department of Immunology, the Weizmann Institute of Science, Rehovot, Israel
| | - Orna Tal
- Department of Immunology, the Weizmann Institute of Science, Rehovot, Israel
| | - Irina Gurevich
- Department of Immunology, the Weizmann Institute of Science, Rehovot, Israel
| | - Tali Feferman
- Department of Immunology, the Weizmann Institute of Science, Rehovot, Israel
| | - Ingo Drexler
- Institute for Virology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Ido Amit
- Department of Immunology, the Weizmann Institute of Science, Rehovot, Israel
| | - Philippe Bousso
- Institut Pasteur, Dynamics of Immune Responses Unit, Equipe Labéllisée Ligue Contre le Cancer, Institut Pasteur, Paris, France
| | - Guy Shakhar
- Department of Immunology, the Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
95
|
Suzuki H, Nagatake T, Nasu A, Lan H, Ikegami K, Setou M, Hamazaki Y, Kiyono H, Yagi K, Kondoh M, Kunisawa J. Impaired airway mucociliary function reduces antigen-specific IgA immune response to immunization with a claudin-4-targeting nasal vaccine in mice. Sci Rep 2018; 8:2904. [PMID: 29440671 PMCID: PMC5811541 DOI: 10.1038/s41598-018-21120-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 01/30/2018] [Indexed: 01/18/2023] Open
Abstract
Vaccine delivery is an essential element for the development of mucosal vaccine, but it remains to be investigated how physical barriers such as mucus and cilia affect vaccine delivery efficacy. Previously, we reported that C-terminal fragment of Clostridium perfringens enterotoxin (C-CPE) targeted claudin-4, which is expressed by the epithelium associated with nasopharynx-associated lymphoid tissue (NALT), and could be effective as a nasal vaccine delivery. Mice lacking tubulin tyrosine ligase-like family, member 1 (Ttll1-KO mice) showed mucus accumulation in nasal cavity due to the impaired motility of respiratory cilia. Ttll1-KO mice nasally immunized with C-CPE fused to pneumococcal surface protein A (PspA-C-CPE) showed reduced PspA-specific nasal IgA responses, impaired germinal center formation, and decreased germinal center B-cells and follicular helper T cells in the NALT. Although there was no change in the expression of claudin-4 in the NALT epithelium in Ttll1-KO mice, the epithelium was covered by a dense mucus that prevented the binding of PspA-C-CPE to NALT. However, administration of expectorant N-acetylcysteine removed the mucus and rescued the PspA-specific nasal IgA response. These results show that the accumulation of mucus caused by impaired respiratory cilia function is an interfering factor in the C-CPE-based claudin-4-targeting nasal vaccine.
Collapse
Affiliation(s)
- Hidehiko Suzuki
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka, 567-0085, Japan.,Laboratory of Bio-Functional Molecular Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Takahiro Nagatake
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka, 567-0085, Japan
| | - Ayaka Nasu
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka, 567-0085, Japan
| | - Huangwenxian Lan
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka, 567-0085, Japan
| | - Koji Ikegami
- International Mass Imaging Center and Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Mitsutoshi Setou
- International Mass Imaging Center and Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, 431-3192, Japan.,Preeminent Medical Photonics Education & Research Center, Shizuoka, 431-3192, Japan.,Department of Anatomy, The university of Hong Kong, Hong Kong SAR, China
| | - Yoko Hamazaki
- Center for iPS Cell Research and Application (CiRA), Laboratory of Immunobiology, Graduate school of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Hiroshi Kiyono
- Division of Mucosal Immunology, Department of Microbiology and Immunology and International Research and Development Center for Mucosal Vaccines, The Institute of Medical Sciences, The University of Tokyo, Tokyo, 108-8639, Japan.,Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, 263-0022, Japan
| | - Kiyohito Yagi
- Laboratory of Bio-Functional Molecular Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Masuo Kondoh
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka, 567-0085, Japan. .,Division of Mucosal Immunology, Department of Microbiology and Immunology and International Research and Development Center for Mucosal Vaccines, The Institute of Medical Sciences, The University of Tokyo, Tokyo, 108-8639, Japan. .,Department of Microbiology and Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan. .,Graduate School of Medicine, Graduate School of Pharmaceutical Sciences, and Graduate School of Dentistry, Osaka University, Osaka, 565-0871, Japan.
| |
Collapse
|
96
|
Mzinza DT, Fleige H, Laarmann K, Willenzon S, Ristenpart J, Spanier J, Sutter G, Kalinke U, Valentin-Weigand P, Förster R. Application of light sheet microscopy for qualitative and quantitative analysis of bronchus-associated lymphoid tissue in mice. Cell Mol Immunol 2018; 15:875-887. [PMID: 29429996 PMCID: PMC6207560 DOI: 10.1038/cmi.2017.150] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/27/2017] [Accepted: 10/28/2017] [Indexed: 01/09/2023] Open
Abstract
Bronchus-associated lymphoid tissue (BALT) develops at unpredictable locations around lung bronchi following pulmonary inflammation. The formation and composition of BALT have primarily been investigated by immunohistology that, due to the size of the invested organ, is usually restricted to a limited number of histological sections. To assess the entire BALT of the lung, other approaches are urgently needed. Here, we introduce a novel light sheet microscopy-based approach for assessing lymphoid tissue in the lung. Using antibody staining of whole lung lobes and optical clearing by organic solvents, we present a method that allows in-depth visualization of the entire bronchial tree, the lymphatic vasculature and the immune cell composition of the induced BALT. Furthermore, three-dimensional analysis of the entire lung allows the qualitative and quantitative enumeration of the induced BALT. Using this approach, we show that a single intranasal application of the replication-deficient poxvirus MVA induces BALT that constitutes up to 8% of the entire lung volume in mice deficient in CCR7, in contrast to wild type mice (WT). Furthermore, BALT induced by heat-inactivated E. coli is dominated by a pronounced T cell infiltration in Cxcr5-deficient mice, in contrast to WT mice.
Collapse
Affiliation(s)
| | - Henrike Fleige
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Kristin Laarmann
- Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | | | - Julia Spanier
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz-Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Gerd Sutter
- Institute for Infectious Diseases and Zoonoses, University of Munich LMU, Munich, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz-Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Peter Valentin-Weigand
- Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
97
|
von Moltke J, Pepper M. Sentinels of the Type 2 Immune Response. Trends Immunol 2018; 39:99-111. [PMID: 29122456 PMCID: PMC6181126 DOI: 10.1016/j.it.2017.10.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 12/25/2022]
Abstract
Type 2 immune responses have evolved to sense and respond to large, non-replicating infections or non-microbial noxious compounds in tissues. The development of these responses therefore depends upon highly coordinated and tightly regulated tissue-residing cellular sensors and responders. Multiple exposure to type 2 helper T cell (Th2)-inducing stimuli further enhances both the diversity and potency of the response. This review discusses advances in our understanding of the interacting cellular subsets that comprise both primary and secondary type 2 responses. Current knowledge regarding type 2 immune responses in the lung are initially presented and are then contrasted with what is known about the small intestine. The studies described portray an immune response that depends upon well-organized tissue structures, and suggest their modulation as a therapeutic strategy.
Collapse
Affiliation(s)
- Jakob von Moltke
- Department of Immunology, University of Washington School of Medicine, 750 Republican Street, Seattle, WA 98109, USA
| | - Marion Pepper
- Department of Immunology, University of Washington School of Medicine, 750 Republican Street, Seattle, WA 98109, USA.
| |
Collapse
|
98
|
Abstract
Bronchus-associated lymphoid tissue (BALT) forms spontaneously in the lung after pulmonary infection and has been identified as a highly organized lymphoid structure supporting the efficient priming of T cells in the lung. To explore the mechanisms and instructive signals controlling BALT neogenesis we used both, a single dose of vaccinia virus MVA and repeated inhalations of heat-inactivated Pseudomonas aeruginosa (P. aeruginosa). Intranasal administration of both pathogens induces highly organized BALT but distinct pathways and molecules are used to promote the development of BALT. Here, we describe the induction and phenotype of the distinct types of BALT as well as the immunofluorescence microscopy-based analysis of the induced lymphoid tissue in the lung.
Collapse
Affiliation(s)
- Henrike Fleige
- Institute of Immunology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
99
|
Engelhard VH, Rodriguez AB, Mauldin IS, Woods AN, Peske JD, Slingluff CL. Immune Cell Infiltration and Tertiary Lymphoid Structures as Determinants of Antitumor Immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 200:432-442. [PMID: 29311385 PMCID: PMC5777336 DOI: 10.4049/jimmunol.1701269] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/19/2017] [Indexed: 12/22/2022]
Abstract
Limited representation of intratumoral immune cells is a major barrier to tumor control. However, simply enhancing immune responses in tumor-draining lymph nodes or through adoptive transfer may not overcome the limited ability of tumor vasculature to support effector infiltration. An alternative is to promote a sustained immune response intratumorally. This idea has gained traction with the observation that many tumors are associated with tertiary lymphoid structures (TLS), which organizationally resemble lymph nodes. These peri- and intratumoral structures are usually, but not always, associated with positive prognoses in patients. Preclinical and clinical data support a role for TLS in modulating immunity in the tumor microenvironment. However, there appear to be varied functions of TLS, potentially based on their structure or location in relation to the tumor or the origin or location of the tumor itself. Understanding more about TLS development, composition, and function may offer new therapeutic opportunities to modulate antitumor immunity.
Collapse
Affiliation(s)
- Victor H Engelhard
- Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA 22908;
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908; and
| | - Anthony B Rodriguez
- Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA 22908
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908; and
| | - Ileana S Mauldin
- Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA 22908
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Amber N Woods
- Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA 22908
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908; and
| | - J David Peske
- Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA 22908
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908; and
| | - Craig L Slingluff
- Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA 22908
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, VA 22908
| |
Collapse
|
100
|
Huppé CA, Blais Lecours P, Lechasseur A, Gendron DR, Lemay AM, Bissonnette EY, Blanchet MR, Duchaine C, Morissette MC, Rosen H, Marsolais D. A sphingosine-1-phosphate receptor 1 agonist inhibits tertiary lymphoid tissue reactivation and hypersensitivity in the lung. Mucosal Immunol 2018; 11:112-119. [PMID: 28422187 DOI: 10.1038/mi.2017.37] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/22/2017] [Indexed: 02/04/2023]
Abstract
Hypersensitivity pneumonitis is characterized by pulmonary accumulation of B-cell-rich tertiary lymphoid tissues (TLTs), which are alleged sites of amplification for antigen-specific responses. The sphingosine-1-phosphate receptor 1 (S1P1) regulates key mechanisms underlying lymphoid tissue biology and its chemical modulation causes lymphocyte retention in lymph nodes. Given the putative immunopathogenic impact of lymphocyte accumulation in TLTs, we investigated whether or not chemical modulation of S1P1 caused lymphocyte retention within TLTs in a model of hypersensitivity pneumonitis. Mice were exposed subchronically to Methanosphaera stadtmanae (MSS) in order to induce an hypersensitivity pneumonitis-like disease. MSS exposure induced B-cell-rich TLTs surrounded by S1P1-positive microvessels. Upon MSS rechallenge, the S1P1 agonist RP001 prevented the pulmonary increase of CXCL13, a chief regulator of B-cell recruitment in lymphoid tissues. This was associated with a complete inhibition of MSS rechallenge-induced TLT enlargement and with a 2.3-fold reduction of MSS-specific antibody titers in the lung. Interference with TLT reactivation was associated with a 77% reduction of neutrophil accumulation and with full inhibition of protein-rich leakage in the airways. Thus, an S1P1 agonist hinders TLT enlargement upon antigenic rechallenge and inhibits key pathognomonic features of experimental hypersensitivity pneumonitis.
Collapse
Affiliation(s)
- C A Huppé
- Centre de recherche de l'Institut Universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada
| | - P Blais Lecours
- Centre de recherche de l'Institut Universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada
| | - A Lechasseur
- Centre de recherche de l'Institut Universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada
| | - D R Gendron
- Centre de recherche de l'Institut Universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada
| | - A M Lemay
- Centre de recherche de l'Institut Universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada
| | - E Y Bissonnette
- Centre de recherche de l'Institut Universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada.,Faculty of Medecine, Department of Medecine, Université Laval, Quebec City, Quebec, Canada
| | - M R Blanchet
- Centre de recherche de l'Institut Universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada.,Faculty of Medecine, Department of Medecine, Université Laval, Quebec City, Quebec, Canada
| | - C Duchaine
- Centre de recherche de l'Institut Universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada.,Faculty of Science and Engineering, Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Quebec City, Quebec, Canada
| | - M C Morissette
- Centre de recherche de l'Institut Universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada.,Faculty of Medecine, Department of Medecine, Université Laval, Quebec City, Quebec, Canada
| | - H Rosen
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA
| | - D Marsolais
- Centre de recherche de l'Institut Universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada.,Faculty of Medecine, Department of Medecine, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|