51
|
Spiering AE, de Vries TJ. Why Females Do Better: The X Chromosomal TLR7 Gene-Dose Effect in COVID-19. Front Immunol 2021; 12:756262. [PMID: 34858409 PMCID: PMC8632002 DOI: 10.3389/fimmu.2021.756262] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022] Open
Abstract
A male sex bias has emerged in the COVID-19 pandemic, fitting to the sex-biased pattern in other viral infections. Males are 2.84 times more often admitted to the ICU and mortality is 1.39 times higher as a result of COVID-19. Various factors play a role in this, and novel studies suggest that the gene-dose of Toll-Like Receptor (TLR) 7 could contribute to the sex-skewed severity. TLR7 is one of the crucial pattern recognition receptors for SARS-CoV-2 ssRNA and the gene-dose effect is caused by X chromosome inactivation (XCI) escape. Female immune cells with TLR7 XCI escape have biallelic TLR7 expression and produce more type 1 interferon (IFN) upon TLR7 stimulation. In COVID-19, TLR7 in plasmacytoid dendritic cells is one of the pattern recognition receptors responsible for IFN production and a delayed IFN response has been associated with immunopathogenesis and mortality. Here, we provide a hypothesis that females may be protected to some extend against severe COVID-19, due to the biallelic TLR7 expression, allowing them to mount a stronger and more protective IFN response early after infection. Studies exploring COVID-19 treatment via the TLR7-mediated IFN pathway should consider this sex difference. Various factors such as age, sex hormones and escape modulation remain to be investigated concerning the TLR7 gene-dose effect.
Collapse
Affiliation(s)
- Anna E. Spiering
- Amsterdam University College, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Periodontology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Teun J. de Vries
- Amsterdam University College, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Periodontology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
52
|
Rappe JC, Finsterbusch K, Crotta S, Mack M, Priestnall SL, Wack A. A TLR7 antagonist restricts interferon-dependent and -independent immunopathology in a mouse model of severe influenza. J Exp Med 2021; 218:e20201631. [PMID: 34473195 PMCID: PMC8421264 DOI: 10.1084/jem.20201631] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 07/16/2021] [Accepted: 08/16/2021] [Indexed: 11/04/2022] Open
Abstract
Cytokine-mediated immune-cell recruitment and inflammation contribute to protection in respiratory virus infection. However, uncontrolled inflammation and the "cytokine storm" are hallmarks of immunopathology in severe infection. Cytokine storm is a broad term for a phenomenon with diverse characteristics and drivers, depending on host genetics, age, and other factors. Taking advantage of the differential use of virus-sensing systems by different cell types, we test the hypothesis that specifically blocking TLR7-dependent, immune cell-produced cytokines reduces influenza-related immunopathology. In a mouse model of severe influenza characterized by a type I interferon (IFN-I)-driven cytokine storm, TLR7 antagonist treatment leaves epithelial antiviral responses unaltered but acts through pDCs and monocytes to reduce IFN-I and other cytokines in the lung, thus ameliorating inflammation and severity. Moreover, even in the absence of IFN-I signaling, TLR7 antagonism reduces inflammation and mortality driven by monocyte-produced chemoattractants and neutrophil recruitment into the infected lung. Hence, TLR7 antagonism reduces diverse types of cytokine storm in severe influenza.
Collapse
Affiliation(s)
- Julie C.F. Rappe
- Immunoregulation Laboratory, Francis Crick Institute, London, UK
| | | | - Stefania Crotta
- Immunoregulation Laboratory, Francis Crick Institute, London, UK
| | - Matthias Mack
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Simon L. Priestnall
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hatfield, UK
- Experimental Histopathology Science Technology Platform, The Francis Crick Institute, London, UK
| | - Andreas Wack
- Immunoregulation Laboratory, Francis Crick Institute, London, UK
| |
Collapse
|
53
|
Siu L, Brody J, Gupta S, Marabelle A, Jimeno A, Munster P, Grilley-Olson J, Rook AH, Hollebecque A, Wong RKS, Welsh JW, Wu Y, Morehouse C, Hamid O, Walcott F, Cooper ZA, Kumar R, Ferté C, Hong DS. Safety and clinical activity of intratumoral MEDI9197 alone and in combination with durvalumab and/or palliative radiation therapy in patients with advanced solid tumors. J Immunother Cancer 2021; 8:jitc-2020-001095. [PMID: 33037117 PMCID: PMC7549442 DOI: 10.1136/jitc-2020-001095] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2020] [Indexed: 12/22/2022] Open
Abstract
Background MEDI9197 is an intratumorally administered toll-like receptor 7 and 8 agonist. In mice, MEDI9197 modulated antitumor immune responses, inhibited tumor growth and increased survival. This first-time-in-human, phase 1 study evaluated MEDI9197 with or without the programmed cell death ligand-1 (PD-L1) inhibitor durvalumab and/or palliative radiation therapy (RT) for advanced solid tumors. Patients and methods Eligible patients had at least one cutaneous, subcutaneous, or deep-seated lesion suitable for intratumoral (IT) injection. Dose escalation used a standard 3+3 design. Patients received IT MEDI9197 0.005–0.055 mg with or without RT (part 1), or IT MEDI9197 0.005 or 0.012 mg plus durvalumab 1500 mg intravenous with or without RT (part 3), in 4-week cycles. Primary endpoints were safety and tolerability. Secondary endpoints included pharmacokinetics, pharmacodynamics, and objective response based on Response Evaluation Criteria for Solid Tumors version 1.1. Exploratory endpoints included tumor and peripheral biomarkers that correlate with biological activity or predict response. Results From November 2015 to March 2018, part 1 enrolled 35 patients and part 3 enrolled 17 patients; five in part 1 and 2 in part 3 received RT. The maximum tolerated dose of MEDI9197 monotherapy was 0.037 mg, with dose-limiting toxicity (DLT) of cytokine release syndrome in two patients (one grade 3, one grade 4) and 0.012 mg in combination with durvalumab 1500 mg with DLT of MEDI9197-related hemorrhagic shock in one patient (grade 5) following liver metastasis rupture after two cycles of MEDI9197. Across parts 1 and 3, the most frequent MEDI9197-related adverse events (AEs) of any grade were fever (56%), fatigue (31%), and nausea (21%). The most frequent MEDI9197-related grade ≥3 events were decreased lymphocytes (15%), neutrophils (10%), and white cell counts (10%). MEDI9197 increased tumoral CD8+ and PD-L1+ cells, inducing type 1 and 2 interferons and Th1 response. There were no objective clinical responses; 10 patients in part 1 and 3 patients in part 3 had stable disease ≥8 weeks. Conclusion IT MEDI9197 was feasible for subcutaneous/cutaneous lesions but AEs precluded its use in deep-seated lesions. Although no patients responded, MEDI9197 induced systemic and intratumoral immune activation, indicating potential value in combination regimens in other patient populations. Trial registration number NCT02556463.
Collapse
Affiliation(s)
- Lillian Siu
- Division of Medical Oncology and Hematology, Department of Medicine, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Joshua Brody
- Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Shilpa Gupta
- Department of Hematology and Oncology, Cleveland Clinic, Cleveland, Ohio, United States
| | | | - Antonio Jimeno
- Division of Medical Oncology, Department of Medicine, University of Colorado Denver, Denver, Colorado, United States
| | - Pamela Munster
- Department of Medicine (Hematology/Oncology), University of California San Francisco, San Francisco, California, United States
| | - Juneko Grilley-Olson
- Division of Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Alain H Rook
- Department of Dematology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | | | - Rebecca K S Wong
- Radiation Medicine Program, Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada
| | - James W Welsh
- Division of Radiation Oncology, Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Yuling Wu
- AstraZeneca, Gaithersburg, Maryland, USA
| | | | - Oday Hamid
- AstraZeneca, Gaithersburg, Maryland, USA
| | | | | | | | | | - David S Hong
- Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
54
|
Lodhi N, Singh R, Rajput SP, Saquib Q. SARS-CoV-2: Understanding the Transcriptional Regulation of ACE2 and TMPRSS2 and the Role of Single Nucleotide Polymorphism (SNP) at Codon 72 of p53 in the Innate Immune Response against Virus Infection. Int J Mol Sci 2021; 22:8660. [PMID: 34445373 PMCID: PMC8395432 DOI: 10.3390/ijms22168660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 12/15/2022] Open
Abstract
Human ACE2 and the serine protease TMPRSS2 of novel SARS-CoV-2 are primary entry receptors in host cells. Expression of these genes at the transcriptional level has not been much discussed in detail. The ISRE elements of the ACE2 promoter are a binding site for the ISGF3 complex of the JAK/STAT signaling pathway. TMPRSS2, including IFNβ, STAT1, and STAT2, has the PARP1 binding site near to TSS either up or downstream promoter region. It is well documented that PARP1 regulates gene expression at the transcription level. Therefore, to curb virus infection, both promoting type I IFN signaling to boost innate immunity and prevention of virus entry by inhibiting PARP1, ACE2 or TMPRSS2 are safe options. Most importantly, our aim is to attract the attention of the global scientific community towards the codon 72 Single Nucleotide Polymorphism (SNP) of p53 and its underneath role in the innate immune response against SARS-CoV-2. Here, we discuss codon 72 SNP of human p53's role in the different innate immune response to restrict virus-mediated mortality rate only in specific parts of the world. In addition, we discuss potential targets and emerging therapies using bioengineered bacteriophage, anti-sense, or CRISPR strategies.
Collapse
Affiliation(s)
- Niraj Lodhi
- Clinical Research (Research and Development Division) miRNA Analytics LLC, Harlem Bio-Space, New York, NY 10027, USA
| | - Rubi Singh
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA;
| | | | - Quaiser Saquib
- Department of Zoology, College of Sciences, King Saud University, Riyadh 12372, Saudi Arabia;
| |
Collapse
|
55
|
Unterberger S, Davies KA, Rambhatla SB, Sacre S. Contribution of Toll-Like Receptors and the NLRP3 Inflammasome in Rheumatoid Arthritis Pathophysiology. Immunotargets Ther 2021; 10:285-298. [PMID: 34350135 PMCID: PMC8326786 DOI: 10.2147/itt.s288547] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/15/2021] [Indexed: 12/20/2022] Open
Abstract
Rheumatoid arthritis (RA) is a progressive autoimmune disease that is characterized by inflammation of the synovial joints leading to cartilage and bone damage. The pathogenesis is sustained by the production of pro-inflammatory cytokines including tumor necrosis factor (TNF), interleukin (IL)-1 and IL-6, which can be targeted therapeutically to alleviate disease severity. Several innate immune receptors are suggested to contribute to the chronic inflammation in RA, through the production of pro-inflammatory factors in response to endogenous danger signals. Much research has focused on toll-like receptors and more recently the nucleotide-binding domain and leucine-rich repeat pyrin containing protein-3 (NLRP3) inflammasome, which is required for the processing and release of IL-1β. This review summarizes the current understanding of the potential involvement of these receptors in the initiation and maintenance of inflammation and tissue damage in RA and experimental arthritis models.
Collapse
Affiliation(s)
- Sarah Unterberger
- Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton, BN1 9PS, UK
| | - Kevin A Davies
- Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton, BN1 9PS, UK
| | | | - Sandra Sacre
- Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton, BN1 9PS, UK
| |
Collapse
|
56
|
Lind NA, Rael VE, Pestal K, Liu B, Barton GM. Regulation of the nucleic acid-sensing Toll-like receptors. Nat Rev Immunol 2021; 22:224-235. [PMID: 34272507 PMCID: PMC8283745 DOI: 10.1038/s41577-021-00577-0] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2021] [Indexed: 02/08/2023]
Abstract
Many of the ligands for Toll-like receptors (TLRs) are unique to microorganisms, such that receptor activation unequivocally indicates the presence of something foreign. However, a subset of TLRs recognizes nucleic acids, which are present in both the host and foreign microorganisms. This specificity enables broad recognition by virtue of the ubiquity of nucleic acids but also introduces the possibility of self-recognition and autoinflammatory or autoimmune disease. Defining the regulatory mechanisms required to ensure proper discrimination between foreign and self-nucleic acids by TLRs is an area of intense research. Progress over the past decade has revealed a complex array of regulatory mechanisms that ensure maintenance of this delicate balance. These regulatory mechanisms can be divided into a conceptual framework with four categories: compartmentalization, ligand availability, receptor expression and signal transduction. In this Review, we discuss our current understanding of each of these layers of regulation. Activation of nucleic acid-sensing Toll-like receptors is finely tuned to limit self-reactivity while maintaining recognition of foreign microorganisms. The authors describe recent progress made in defining the regulatory mechanisms that facilitate this delicate balance.
Collapse
Affiliation(s)
- Nicholas A Lind
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Victoria E Rael
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Kathleen Pestal
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Bo Liu
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.,CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Gregory M Barton
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
57
|
Cukovic D, Bagla S, Ukasik D, Stemmer PM, Jena BP, Naik AR, Sood S, Asano E, Luat A, Chugani DC, Dombkowski AA. Exosomes in Epilepsy of Tuberous Sclerosis Complex: Carriers of Pro-Inflammatory MicroRNAs. Noncoding RNA 2021; 7:ncrna7030040. [PMID: 34287356 PMCID: PMC8293460 DOI: 10.3390/ncrna7030040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/30/2021] [Accepted: 07/03/2021] [Indexed: 01/14/2023] Open
Abstract
Exosomes are a class of small, secreted extracellular vesicles (EV) that have recently gained considerable attention for their role in normal cellular function, disease processes and potential as biomarkers. Exosomes serve as intercellular messengers and carry molecular cargo that can alter gene expression and the phenotype of recipient cells. Here, we investigated alterations of microRNA cargo in exosomes secreted by epileptogenic tissue in tuberous sclerosis complex (TSC), a multi-system genetic disorder that includes brain lesions known as tubers. Approximately 90% of TSC patients suffer from seizures that originate from tubers, and ~60% are resistant to antiseizure drugs. It is unknown why some tubers cause seizures while others do not, and the molecular basis of drug-resistant epilepsy is not well understood. It is believed that neuroinflammation is involved, and characterization of this mechanism may be key to disrupting the "vicious cycle" between seizures, neuroinflammation, and increased seizure susceptibility. We isolated exosomes from epileptogenic and non-epileptogenic TSC tubers, and we identified differences in their microRNA cargo using small RNA-seq. We identified 12 microRNAs (including miR-142-3p, miR-223-3p and miR-21-5p) that are significantly increased in epileptogenic tubers and contain nucleic acid motifs that activate toll-like receptors (TLR7/8), initiating a neuroinflammatory cascade. Exosomes from epileptogenic tissue caused induction of key pathways in cultured cells, including innate immune signaling (TLR), inflammatory response and key signaling nodes SQSTM1 (p62) and CDKN1A (p21). Genes induced in vitro were also significantly upregulated in epileptogenic tissue. These results provide new evidence on the role of exosomes and non-coding RNA cargo in the neuroinflammatory cascade of epilepsy and may help advance the development of novel biomarkers and therapeutic approaches for the treatment of drug-resistant epilepsy.
Collapse
Affiliation(s)
- Daniela Cukovic
- Department of Pediatrics, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (D.C.); (S.B.); (E.A.)
| | - Shruti Bagla
- Department of Pediatrics, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (D.C.); (S.B.); (E.A.)
| | - Dylan Ukasik
- Translational Neurosciences Program, Wayne State University, Detroit, MI 48201, USA;
| | - Paul M. Stemmer
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48201, USA;
| | - Bhanu P. Jena
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (B.P.J.); (A.R.N.)
| | - Akshata R. Naik
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (B.P.J.); (A.R.N.)
| | - Sandeep Sood
- Department of Neurosurgery, School of Medicine, Wayne State University, Detroit, MI 48201, USA;
| | - Eishi Asano
- Department of Pediatrics, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (D.C.); (S.B.); (E.A.)
- Translational Neurosciences Program, Wayne State University, Detroit, MI 48201, USA;
- Department of Neurology, School of Medicine, Wayne State University, Detroit, MI 48201, USA;
| | - Aimee Luat
- Department of Neurology, School of Medicine, Wayne State University, Detroit, MI 48201, USA;
- Department of Pediatrics, Central Michigan University, Mt Pleasant, MI 48858, USA
| | - Diane C. Chugani
- Departments of Communication Sciences and Disorders, and Chemistry and Biochemistry, University of Delaware, Newark, DE 19713, USA;
| | - Alan A. Dombkowski
- Department of Pediatrics, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (D.C.); (S.B.); (E.A.)
- Translational Neurosciences Program, Wayne State University, Detroit, MI 48201, USA;
- Correspondence: ; Tel.: +1-(313)-745-6381
| |
Collapse
|
58
|
Aluri J, Cooper MA, Schuettpelz LG. Toll-Like Receptor Signaling in the Establishment and Function of the Immune System. Cells 2021; 10:cells10061374. [PMID: 34199501 PMCID: PMC8228919 DOI: 10.3390/cells10061374] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 12/17/2022] Open
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors that play a central role in the development and function of the immune system. TLR signaling promotes the earliest emergence of hematopoietic cells during development, and thereafter influences the fate and function of both primitive and effector immune cell types. Aberrant TLR signaling is associated with hematopoietic and immune system dysfunction, and both loss- and gain-of- function variants in TLR signaling-associated genes have been linked to specific infection susceptibilities and immune defects. Herein, we will review the role of TLR signaling in immune system development and the growing number of heritable defects in TLR signaling that lead to inborn errors of immunity.
Collapse
|
59
|
Ghafouri-Fard S, Abak A, Shoorei H, Talebi SF, Mohaqiq M, Sarabi P, Taheri M, Mokhtari M. Interaction between non-coding RNAs and Toll-like receptors. Biomed Pharmacother 2021; 140:111784. [PMID: 34087695 DOI: 10.1016/j.biopha.2021.111784] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/11/2022] Open
Abstract
Toll-like receptors (TLRs) are a large group of pattern recognition receptors which are involved in the regulation of innate immune responses. Based on the interplay between TLRs and adapter molecules, two distinctive signaling cascades, namely the MyD88-dependent and TRIF-dependent pathways have been recognized. TLRs are involved in the development of a wide variety of diseases including cancer and autoimmune disorders. A large body of evidence has shown interaction between two classes of non-coding RNAs, namely microRNAs (miRNAs) and long noncoding RNAs (lncRNAs). These interactions have prominent roles in the pathogenesis of several disorders including infectious disorders, autoimmune conditions and neoplastic disorders. This review aims at description of the interaction between these non-coding RNAs and TLRs.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefe Abak
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Mahdi Mohaqiq
- School of Advancement, Centennial College, Ashtonbee Campus, Toronto, ON, Canada
| | - Parisa Sarabi
- Deputy for Research & Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Majid Mokhtari
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
60
|
Wang Y, Roussel-Queval A, Chasson L, Hanna Kazazian N, Marcadet L, Nezos A, Sieweke MH, Mavragani C, Alexopoulou L. TLR7 Signaling Drives the Development of Sjögren's Syndrome. Front Immunol 2021; 12:676010. [PMID: 34108972 PMCID: PMC8183380 DOI: 10.3389/fimmu.2021.676010] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/27/2021] [Indexed: 11/13/2022] Open
Abstract
Sjögren's syndrome (SS) is a chronic systemic autoimmune disease that affects predominately salivary and lacrimal glands. SS can occur alone or in combination with another autoimmune disease like systemic lupus erythematosus (SLE). Here we report that TLR7 signaling drives the development of SS since TLR8-deficient (TLR8ko) mice that develop lupus due to increased TLR7 signaling by dendritic cells, also develop an age-dependent secondary pathology similar to associated SS. The SS phenotype in TLR8ko mice is manifested by sialadenitis, increased anti-SSA and anti-SSB autoantibody production, immune complex deposition and increased cytokine production in salivary glands, as well as lung inflammation. Moreover, ectopic lymphoid structures characterized by B/T aggregates, formation of high endothelial venules and the presence of dendritic cells are formed in the salivary glands of TLR8ko mice. Interestingly, all these phenotypes are abrogated in double TLR7/8-deficient mice, suggesting that the SS phenotype in TLR8-deficient mice is TLR7-dependent. In addition, evaluation of TLR7 and inflammatory markers in the salivary glands of primary SS patients revealed significantly increased TLR7 expression levels compared to healthy individuals, that were positively correlated to TNF, LT-α, CXCL13 and CXCR5 expression. These findings establish an important role of TLR7 signaling for local and systemic SS disease manifestations, and inhibition of such will likely have therapeutic value.
Collapse
Affiliation(s)
- Yawen Wang
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | | | - Lionel Chasson
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | | | | | - Andrianos Nezos
- Departments of Physiology and Pathophysiology, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Michael H. Sieweke
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
- Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtzgemeinschaft (MDC), Berlin, Germany
| | - Clio Mavragani
- Departments of Physiology and Pathophysiology, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | | |
Collapse
|
61
|
Aluri J, Bach A, Kaviany S, Chiquetto Paracatu L, Kitcharoensakkul M, Walkiewicz MA, Putnam CD, Shinawi M, Saucier N, Rizzi EM, Harmon MT, Keppel MP, Ritter M, Similuk M, Kulm E, Joyce M, de Jesus AA, Goldbach-Mansky R, Lee YS, Cella M, Kendall PL, Dinauer MC, Bednarski JJ, Bemrich-Stolz C, Canna SW, Abraham SM, Demczko MM, Powell J, Jones SM, Scurlock AM, De Ravin SS, Bleesing JJ, Connelly JA, Rao VK, Schuettpelz LG, Cooper MA. Immunodeficiency and bone marrow failure with mosaic and germline TLR8 gain of function. Blood 2021; 137:2450-2462. [PMID: 33512449 PMCID: PMC8109013 DOI: 10.1182/blood.2020009620] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/10/2020] [Indexed: 12/17/2022] Open
Abstract
Inborn errors of immunity (IEI) are a genetically heterogeneous group of disorders with a broad clinical spectrum. Identification of molecular and functional bases of these disorders is important for diagnosis, treatment, and an understanding of the human immune response. We identified 6 unrelated males with neutropenia, infections, lymphoproliferation, humoral immune defects, and in some cases bone marrow failure associated with 3 different variants in the X-linked gene TLR8, encoding the endosomal Toll-like receptor 8 (TLR8). Interestingly, 5 patients had somatic variants in TLR8 with <30% mosaicism, suggesting a dominant mechanism responsible for the clinical phenotype. Mosaicism was also detected in skin-derived fibroblasts in 3 patients, demonstrating that mutations were not limited to the hematopoietic compartment. All patients had refractory chronic neutropenia, and 3 patients underwent allogeneic hematopoietic cell transplantation. All variants conferred gain of function to TLR8 protein, and immune phenotyping demonstrated a proinflammatory phenotype with activated T cells and elevated serum cytokines associated with impaired B-cell maturation. Differentiation of myeloid cells from patient-derived induced pluripotent stem cells demonstrated increased responsiveness to TLR8. Together, these findings demonstrate that gain-of-function variants in TLR8 lead to a novel childhood-onset IEI with lymphoproliferation, neutropenia, infectious susceptibility, B- and T-cell defects, and in some cases, bone marrow failure. Somatic mosaicism is a prominent molecular mechanism of this new disease.
Collapse
Affiliation(s)
| | - Alicia Bach
- Division of Hematology/Oncology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Saara Kaviany
- Pediatric Hematology Oncology, Vanderbilt University Medical Center, Nashville, TN
| | - Luana Chiquetto Paracatu
- Division of Hematology/Oncology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Maleewan Kitcharoensakkul
- Division of Rheumatology/Immunology and
- Division of Allergy and Pulmonary Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Magdalena A Walkiewicz
- Centralized Sequencing Initiative, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Christopher D Putnam
- Department of Medicine, University of California School of Medicine, San Diego, La Jolla, CA
- San Diego Branch, Ludwig Institute for Cancer Research, La Jolla, CA
| | - Marwan Shinawi
- Division of Genetics and Genomic Medicine, Department of Pediatrics and
| | | | - Elise M Rizzi
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | | | | | | | - Morgan Similuk
- Centralized Sequencing Initiative, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Elaine Kulm
- Clinical Research Directorate, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD
| | | | - Adriana A de Jesus
- Translational Autoinflammatory Diseases Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Raphaela Goldbach-Mansky
- Translational Autoinflammatory Diseases Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Yi-Shan Lee
- Division of Anatomic and Molecular Pathology and
| | - Marina Cella
- Division of Immunology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Peggy L Kendall
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Division of Immunology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Mary C Dinauer
- Division of Hematology/Oncology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Jeffrey J Bednarski
- Division of Hematology/Oncology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Christina Bemrich-Stolz
- Division of Hematology and Oncology, Department of Pediatrics, University of Alabama School of Medicine, Birmingham, AL
| | - Scott W Canna
- Division of Pediatric Rheumatology and RK Mellon Institute, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh and University of Pittsburgh, Pittsburgh, PA
| | - Shirley M Abraham
- Division of Hematology and Oncology, Department of Pediatrics, University of New Mexico, Albuquerque, NM
| | | | - Jonathan Powell
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Nemours Alfred I. DuPont Hospital for Children, Wilmington, DE
| | - Stacie M Jones
- Division of Allergy and Immunology, Department of Pediatrics, University of Arkansas for Medical Sciences and Arkansas Children's Hospital, Little Rock, AR
| | - Amy M Scurlock
- Division of Allergy and Immunology, Department of Pediatrics, University of Arkansas for Medical Sciences and Arkansas Children's Hospital, Little Rock, AR
| | - Suk See De Ravin
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD; and
| | - Jack J Bleesing
- Division of Bone Marrow Transplantation and Immunodeficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - James A Connelly
- Pediatric Hematology Oncology, Vanderbilt University Medical Center, Nashville, TN
| | - V Koneti Rao
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD; and
| | - Laura G Schuettpelz
- Division of Hematology/Oncology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | | |
Collapse
|
62
|
Ah Kioon MD, Pierides M, Pannellini T, Lin G, Nathan CF, Barrat FJ. Noncytotoxic Inhibition of the Immunoproteasome Regulates Human Immune Cells In Vitro and Suppresses Cutaneous Inflammation in the Mouse. THE JOURNAL OF IMMUNOLOGY 2021; 206:1631-1641. [PMID: 33674446 DOI: 10.4049/jimmunol.2000951] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/27/2021] [Indexed: 12/15/2022]
Abstract
Inhibitors of the immunoproteasome (i-20S) have shown promise in mouse models of autoimmune diseases and allograft rejection. In this study, we used a novel inhibitor of the immunoproteasome, PKS3053, that is reversible, noncovalent, tight-binding, and highly selective for the β5i subunit of the i-20S to evaluate the role that i-20S plays in regulating immune responses in vitro and in vivo. In contrast to irreversible, less-selective inhibitors, PKS3053 did not kill any of the primary human cell types tested, including plasmacytoid dendritic cells, conventional dendritic cells, macrophages, and T cells, all of which expressed genes encoding both the constitutive proteasome (c-20S) and i-20S. PKS3053 reduced TLR-dependent activation of plasmacytoid dendritic cells, decreasing their maturation and IFN-α response and reducing their ability to activate allogenic T cells. In addition, PKS3053 reduced T cell proliferation directly and inhibited TLR-mediated activation of conventional dendritic cells and macrophages. In a mouse model of skin injury that shares some features of cutaneous lupus erythematosus, blocking i-20S decreased inflammation, cellular infiltration, and tissue damage. We conclude that the immunoproteasome is involved in the activation of innate and adaptive immune cells, that their activation can be suppressed with an i-20S inhibitor without killing them, and that selective inhibition of β5i holds promise as a potential therapy for inflammatory skin diseases such as psoriasis, cutaneous lupus erythematosus, and systemic sclerosis.
Collapse
Affiliation(s)
- Marie Dominique Ah Kioon
- Autoimmunity and Inflammation Program, Research Institute, Hospital for Special Surgery, New York, NY 10021; and
| | - Michael Pierides
- Autoimmunity and Inflammation Program, Research Institute, Hospital for Special Surgery, New York, NY 10021; and
| | - Tania Pannellini
- Autoimmunity and Inflammation Program, Research Institute, Hospital for Special Surgery, New York, NY 10021; and
| | - Gang Lin
- Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, NY 10021
| | - Carl F Nathan
- Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, NY 10021
| | - Franck J Barrat
- Autoimmunity and Inflammation Program, Research Institute, Hospital for Special Surgery, New York, NY 10021; and .,Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, NY 10021
| |
Collapse
|
63
|
Vlach J, Bender AT, Przetak M, Pereira A, Deshpande A, Johnson TL, Reissig S, Tzvetkov E, Musil D, Morse NT, Haselmayer P, Zimmerli SC, Okitsu SL, Walsky RL, Sherer B. Discovery of M5049: A Novel Selective Toll-Like Receptor 7/8 Inhibitor for Treatment of Autoimmunity. J Pharmacol Exp Ther 2021; 376:397-409. [PMID: 33328334 DOI: 10.1124/jpet.120.000275] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022] Open
Abstract
Toll-like receptor (TLR) 7 and TLR8 are transmembrane receptors that recognize single-stranded RNA. Activation of these receptors results in immune cell stimulation and inflammatory cytokine production, which is normally a protective host response. However, aberrant activation of TLR7/8 is potentially pathogenic and linked to progression of certain autoimmune diseases such as lupus. Thus, we hypothesize that an inhibitor that blocks TLR7/8 would be an effective therapeutic treatment. Prior efforts to develop inhibitors of TLR7/8 have been largely unsuccessful as a result of the challenge of producing a small-molecule inhibitor for these difficult targets. Here, we report the characterization of M5049 and compound 2, molecules which were discovered in a medicinal chemistry campaign to produce dual TLR7/8 inhibitors with drug-like properties. Both compounds showed potent and selective activity in a range of cellular assays for inhibition of TLR7/8 and block synthetic ligands and natural endogenous RNA ligands such as microRNA and Alu RNA. M5049 was found to be potent in vivo as TLR7/8 inhibition efficaciously treated disease in several murine lupus models and, interestingly, was efficacious in a disease context in which TLR7/8 activity has not previously been considered a primary disease driver. Furthermore, M5049 had greater potency in disease models than expected based on its in vitro potency and pharmacokinetic/pharmacodynamic properties. Because of its preferential accumulation in tissues, and ability to block multiple TLR7/8 RNA ligands, M5049 may be efficacious in treating autoimmunity and has the potential to provide benefit to a variety of patients with varying disease pathogenesis. SIGNIFICANCE STATEMENT: This study reports discovery of a novel toll-like receptor (TLR) 7 and TLR8 inhibitor (M5049); characterizes its binding mode, potency/selectivity, and pharmacokinetic and pharmacodynamic properties; and demonstrates its potential for treating autoimmune diseases in two mouse lupus models. TLR7/8 inhibition is unique in that it may block both innate and adaptive autoimmunity; thus, this study suggests that M5049 has the potential to benefit patients with autoimmune diseases.
Collapse
Affiliation(s)
- Jaromir Vlach
- EMD Serono (a business of Merck KGaA, Darmstadt, Germany), Billerica, Massachusetts (J.V., A.T.B., M.P., A.P., A.D., T.J., E.T., N.T.M., S.F.Z., S.L.O., R.W., B.S.) and Merck KGaA, Darmstadt, Germany (S.R., D.M., P.H.)
| | - Andrew T Bender
- EMD Serono (a business of Merck KGaA, Darmstadt, Germany), Billerica, Massachusetts (J.V., A.T.B., M.P., A.P., A.D., T.J., E.T., N.T.M., S.F.Z., S.L.O., R.W., B.S.) and Merck KGaA, Darmstadt, Germany (S.R., D.M., P.H.)
| | - Melinda Przetak
- EMD Serono (a business of Merck KGaA, Darmstadt, Germany), Billerica, Massachusetts (J.V., A.T.B., M.P., A.P., A.D., T.J., E.T., N.T.M., S.F.Z., S.L.O., R.W., B.S.) and Merck KGaA, Darmstadt, Germany (S.R., D.M., P.H.)
| | - Albertina Pereira
- EMD Serono (a business of Merck KGaA, Darmstadt, Germany), Billerica, Massachusetts (J.V., A.T.B., M.P., A.P., A.D., T.J., E.T., N.T.M., S.F.Z., S.L.O., R.W., B.S.) and Merck KGaA, Darmstadt, Germany (S.R., D.M., P.H.)
| | - Aditee Deshpande
- EMD Serono (a business of Merck KGaA, Darmstadt, Germany), Billerica, Massachusetts (J.V., A.T.B., M.P., A.P., A.D., T.J., E.T., N.T.M., S.F.Z., S.L.O., R.W., B.S.) and Merck KGaA, Darmstadt, Germany (S.R., D.M., P.H.)
| | - Theresa L Johnson
- EMD Serono (a business of Merck KGaA, Darmstadt, Germany), Billerica, Massachusetts (J.V., A.T.B., M.P., A.P., A.D., T.J., E.T., N.T.M., S.F.Z., S.L.O., R.W., B.S.) and Merck KGaA, Darmstadt, Germany (S.R., D.M., P.H.)
| | - Sonja Reissig
- EMD Serono (a business of Merck KGaA, Darmstadt, Germany), Billerica, Massachusetts (J.V., A.T.B., M.P., A.P., A.D., T.J., E.T., N.T.M., S.F.Z., S.L.O., R.W., B.S.) and Merck KGaA, Darmstadt, Germany (S.R., D.M., P.H.)
| | - Evgeni Tzvetkov
- EMD Serono (a business of Merck KGaA, Darmstadt, Germany), Billerica, Massachusetts (J.V., A.T.B., M.P., A.P., A.D., T.J., E.T., N.T.M., S.F.Z., S.L.O., R.W., B.S.) and Merck KGaA, Darmstadt, Germany (S.R., D.M., P.H.)
| | - Djordje Musil
- EMD Serono (a business of Merck KGaA, Darmstadt, Germany), Billerica, Massachusetts (J.V., A.T.B., M.P., A.P., A.D., T.J., E.T., N.T.M., S.F.Z., S.L.O., R.W., B.S.) and Merck KGaA, Darmstadt, Germany (S.R., D.M., P.H.)
| | - Noune Tahmassian Morse
- EMD Serono (a business of Merck KGaA, Darmstadt, Germany), Billerica, Massachusetts (J.V., A.T.B., M.P., A.P., A.D., T.J., E.T., N.T.M., S.F.Z., S.L.O., R.W., B.S.) and Merck KGaA, Darmstadt, Germany (S.R., D.M., P.H.)
| | - Philipp Haselmayer
- EMD Serono (a business of Merck KGaA, Darmstadt, Germany), Billerica, Massachusetts (J.V., A.T.B., M.P., A.P., A.D., T.J., E.T., N.T.M., S.F.Z., S.L.O., R.W., B.S.) and Merck KGaA, Darmstadt, Germany (S.R., D.M., P.H.)
| | - Simone C Zimmerli
- EMD Serono (a business of Merck KGaA, Darmstadt, Germany), Billerica, Massachusetts (J.V., A.T.B., M.P., A.P., A.D., T.J., E.T., N.T.M., S.F.Z., S.L.O., R.W., B.S.) and Merck KGaA, Darmstadt, Germany (S.R., D.M., P.H.)
| | - Shinji L Okitsu
- EMD Serono (a business of Merck KGaA, Darmstadt, Germany), Billerica, Massachusetts (J.V., A.T.B., M.P., A.P., A.D., T.J., E.T., N.T.M., S.F.Z., S.L.O., R.W., B.S.) and Merck KGaA, Darmstadt, Germany (S.R., D.M., P.H.)
| | - Robert L Walsky
- EMD Serono (a business of Merck KGaA, Darmstadt, Germany), Billerica, Massachusetts (J.V., A.T.B., M.P., A.P., A.D., T.J., E.T., N.T.M., S.F.Z., S.L.O., R.W., B.S.) and Merck KGaA, Darmstadt, Germany (S.R., D.M., P.H.)
| | - Brian Sherer
- EMD Serono (a business of Merck KGaA, Darmstadt, Germany), Billerica, Massachusetts (J.V., A.T.B., M.P., A.P., A.D., T.J., E.T., N.T.M., S.F.Z., S.L.O., R.W., B.S.) and Merck KGaA, Darmstadt, Germany (S.R., D.M., P.H.)
| |
Collapse
|
64
|
Youness A, Miquel CH, Guéry JC. Escape from X Chromosome Inactivation and the Female Predominance in Autoimmune Diseases. Int J Mol Sci 2021; 22:ijms22031114. [PMID: 33498655 PMCID: PMC7865432 DOI: 10.3390/ijms22031114] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/19/2022] Open
Abstract
Women represent 80% of people affected by autoimmune diseases. Although, many studies have demonstrated a role for sex hormone receptor signaling, particularly estrogens, in the direct regulation of innate and adaptive components of the immune system, recent data suggest that female sex hormones are not the only cause of the female predisposition to autoimmunity. Besides sex steroid hormones, growing evidence points towards the role of X-linked genetic factors. In female mammals, one of the two X chromosomes is randomly inactivated during embryonic development, resulting in a cellular mosaicism, where about one-half of the cells in a given tissue express either the maternal X chromosome or the paternal one. X chromosome inactivation (XCI) is however not complete and 15 to 23% of genes from the inactive X chromosome (Xi) escape XCI, thereby contributing to the emergence of a female-specific heterogeneous population of cells with bi-allelic expression of some X-linked genes. Although the direct contribution of this genetic mechanism in the female susceptibility to autoimmunity still remains to be established, the cellular mosaicism resulting from XCI escape is likely to create a unique functional plasticity within female immune cells. Here, we review recent findings identifying key immune related genes that escape XCI and the relationship between gene dosage imbalance and functional responsiveness in female cells.
Collapse
Affiliation(s)
- Ali Youness
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, UPS, 31300 Toulouse, France; (A.Y.); (C.-H.M.)
| | - Charles-Henry Miquel
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, UPS, 31300 Toulouse, France; (A.Y.); (C.-H.M.)
- Arthritis R&D, 92200 Neuilly-Sur-Seine, France
| | - Jean-Charles Guéry
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, UPS, 31300 Toulouse, France; (A.Y.); (C.-H.M.)
- Correspondence: ; Tel.: +33-5-62-74-83-78; Fax: +33-5-62-74-45-58
| |
Collapse
|
65
|
Paradowska-Gorycka A, Wajda A, Stypinska B, Walczuk E, Rzeszotarska E, Walczyk M, Haladyj E, Romanowska-Prochnicka K, Felis-Giemza A, Lewandowska A, Olesińska M. Variety of endosomal TLRs and Interferons (IFN-α, IFN-β, IFN-γ) expression profiles in patients with SLE, SSc and MCTD. Clin Exp Immunol 2021; 204:49-63. [PMID: 33336388 DOI: 10.1111/cei.13566] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/21/2020] [Accepted: 11/13/2020] [Indexed: 12/13/2022] Open
Abstract
We investigated Toll-like receptor (TLR)-3/-7/-8/-9 and interferon (IFN)-α/β/γ mRNA expression in whole blood and serum IFN-α/β/γ levels in patients with mixed connective tissue disease (MCTD), systemic lupus erythematosus (SLE) and systemic sclerosis (SSc) and in healthy subjects to assess the association between the TLR-IFN expression and severity of and susceptibility to diseases, and identify potential biomarkers. Expression of the IFN-γ, TLR-3 and TLR-8 was detected only in SLE patients. TLR-7, IFN-α and IFN-β expression was highest in SLE, while TLR-9 expression was highest in SSc patients. In SLE and MCTD patients a strong correlation was observed between TLR-7 and IFN-α expression and IFN-β and IFN-α expression. In MCTD patients, negative correlation between IFN-α and TLR-9 and TLR-7 and TLR-9 was revealed. TLR-9 expression in anti-U1-70k-negative, anti-C negative and anti-SmB-negative MCTD patients was higher than in MCTD-positive patients. We observed negative correlations between serum IFN-α levels and TLR-7 expression and C3 and C4 levels in SLE patients. In SLE patients we observed that with increased IFN-γ, TLR-3 and TLR-8 expression increased the value of C3 and C4. Our results confirmed that the endosomal TLR-IFN pathway seems to be more important in SLE than in MCTD or SSc, and that IFN-α and IFN-β may be possible biomarkers for SLE.
Collapse
Affiliation(s)
- A Paradowska-Gorycka
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - A Wajda
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - B Stypinska
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - E Walczuk
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - E Rzeszotarska
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - M Walczyk
- Department of Connective Tissue Diseases, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - E Haladyj
- Eli Lilly and Company, Indianapolis, Indiana, USA
| | - K Romanowska-Prochnicka
- Department of Connective Tissue Diseases, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland.,Department of General and Experimental Pathology with Centre for Preclinical Research and Technology (CEPT), Medical University of Warsaw, Warsaw, Poland
| | - A Felis-Giemza
- Department of Connective Tissue Diseases, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - A Lewandowska
- Department of Connective Tissue Diseases, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - M Olesińska
- Department of Connective Tissue Diseases, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| |
Collapse
|
66
|
Abstract
ABSTRACT Host cells recognize molecules that signal danger using pattern recognition receptors (PRRs). Toll-like receptors (TLRs) are the most studied class of PRRs and detect pathogen-associated molecular patterns and danger-associated molecular patterns. Cellular TLR activation and signal transduction can therefore contain, combat, and clear danger by enabling appropriate gene transcription. Here, we review the expression, regulation, and function of different TLRs, with an emphasis on TLR-4, and how TLR adaptor protein binding directs intracellular signaling resulting in activation or termination of an innate immune response. Finally, we highlight the recent progress of research on the involvement of S100 proteins as ligands for TLR-4 in inflammatory disease.
Collapse
|
67
|
Mendez ME, Sebastian A, Murugesh DK, Hum NR, McCool JL, Hsia AW, Christiansen BA, Loots GG. LPS-Induced Inflammation Prior to Injury Exacerbates the Development of Post-Traumatic Osteoarthritis in Mice. J Bone Miner Res 2020; 35:2229-2241. [PMID: 32564401 PMCID: PMC7689775 DOI: 10.1002/jbmr.4117] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 06/08/2020] [Accepted: 06/17/2020] [Indexed: 12/11/2022]
Abstract
Osteoarthritis (OA) is a debilitating and painful disease characterized by the progressive loss of articular cartilage. Post-traumatic osteoarthritis (PTOA) is an injury-induced type of OA that persists in an asymptomatic phase for years before it becomes diagnosed in ~50% of injured individuals. Although PTOA is not classified as an inflammatory disease, it has been suggested that inflammation could be a major driver of PTOA development. Here we examined whether a state of systemic inflammation induced by lipopolysaccharide (LPS) administration 5-days before injury would modulate PTOA outcomes. RNA-seq analysis at 1-day post-injury followed by micro-computed tomography (μCT) and histology characterization at 6 weeks post-injury revealed that LPS administration causes more severe PTOA phenotypes. These phenotypes included significantly higher loss of cartilage and subchondral bone volume. Gene expression analysis showed that LPS alone induced a large cohort of inflammatory genes previously shown to be elevated in synovial M1 macrophages of rheumatoid arthritis (RA) patients, suggesting that systemic LPS produces synovitis. This synovitis was sufficient to promote PTOA in MRL/MpJ mice, a strain previously shown to be resistant to PTOA. The synovium of LPS-treated injured joints displayed an increase in cellularity, and immunohistological examination confirmed that this increase was in part attributable to an elevation in type 1 macrophages. LPS induced the expression of Tlr7 and Tlr8 in both injured and uninjured joints, genes known to be elevated in RA. We conclude that inflammation before injury is an important risk factor for the development of PTOA and that correlating patient serum endotoxin levels or their state of systemic inflammation with PTOA progression may help develop new, effective treatments to lower the rate of PTOA in injured individuals. © 2020 The Authors. Journal of Bone and Mineral Research published by American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Melanie E Mendez
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA.,School of Natural Sciences, University of California Merced, Merced, CA, USA
| | - Aimy Sebastian
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Deepa K Murugesh
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Nicholas R Hum
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA.,School of Natural Sciences, University of California Merced, Merced, CA, USA
| | - Jillian L McCool
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA.,School of Natural Sciences, University of California Merced, Merced, CA, USA
| | - Allison W Hsia
- Department of Orthopaedic Surgery, University of California Davis Health, Sacramento, CA, USA
| | - Blaine A Christiansen
- Department of Orthopaedic Surgery, University of California Davis Health, Sacramento, CA, USA
| | - Gabriela G Loots
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA.,School of Natural Sciences, University of California Merced, Merced, CA, USA
| |
Collapse
|
68
|
Knoepfel T, Nimsgern P, Jacquier S, Bourrel M, Vangrevelinghe E, Glatthar R, Behnke D, Alper PB, Michellys PY, Deane J, Junt T, Zipfel G, Limonta S, Hawtin S, Andre C, Boulay T, Loetscher P, Faller M, Blank J, Feifel R, Betschart C. Target-Based Identification and Optimization of 5-Indazol-5-yl Pyridones as Toll-like Receptor 7 and 8 Antagonists Using a Biochemical TLR8 Antagonist Competition Assay. J Med Chem 2020; 63:8276-8295. [PMID: 32786235 DOI: 10.1021/acs.jmedchem.0c00130] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inappropriate activation of endosomal TLR7 and TLR8 occurs in several autoimmune diseases, in particular systemic lupus erythematosus (SLE). Herein, the development of a TLR8 antagonist competition assay and its application for hit generation of dual TLR7/8 antagonists are reported. The structure-guided optimization of the pyridone hit 3 using this biochemical assay in combination with cellular and TLR8 cocrystal structural data resulted in the identification of a highly potent and selective TLR7/8 antagonist (27) with in vivo efficacy. The two key steps for optimization were (i) a core morph guided by a TLR7 sequence alignment to achieve a dual TLR7/8 antagonism profile and (ii) introduction of a fluorine in the piperidine ring to reduce its basicity, resulting in attractive oral pharmacokinetic (PK) properties and improved TLR8 binding affinity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Phil B Alper
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, United States
| | - Pierre-Yves Michellys
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, United States
| | - Jonathan Deane
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Harnessing the Complete Repertoire of Conventional Dendritic Cell Functions for Cancer Immunotherapy. Pharmaceutics 2020; 12:pharmaceutics12070663. [PMID: 32674488 PMCID: PMC7408110 DOI: 10.3390/pharmaceutics12070663] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/29/2020] [Accepted: 07/04/2020] [Indexed: 02/07/2023] Open
Abstract
The onset of checkpoint inhibition revolutionized the treatment of cancer. However, studies from the last decade suggested that the sole enhancement of T cell functionality might not suffice to fight malignancies in all individuals. Dendritic cells (DCs) are not only part of the innate immune system, but also generals of adaptive immunity and they orchestrate the de novo induction of tolerogenic and immunogenic T cell responses. Thus, combinatorial approaches addressing DCs and T cells in parallel represent an attractive strategy to achieve higher response rates across patients. However, this requires profound knowledge about the dynamic interplay of DCs, T cells, other immune and tumor cells. Here, we summarize the DC subsets present in mice and men and highlight conserved and divergent characteristics between different subsets and species. Thereby, we supply a resource of the molecular players involved in key functional features of DCs ranging from their sentinel function, the translation of the sensed environment at the DC:T cell interface to the resulting specialized T cell effector modules, as well as the influence of the tumor microenvironment on the DC function. As of today, mostly monocyte derived dendritic cells (moDCs) are used in autologous cell therapies after tumor antigen loading. While showing encouraging results in a fraction of patients, the overall clinical response rate is still not optimal. By disentangling the general aspects of DC biology, we provide rationales for the design of next generation DC vaccines enabling to exploit and manipulate the described pathways for the purpose of cancer immunotherapy in vivo. Finally, we discuss how DC-based vaccines might synergize with checkpoint inhibition in the treatment of malignant diseases.
Collapse
|
70
|
Patra MC, Achek A, Kim GY, Panneerselvam S, Shin HJ, Baek WY, Lee WH, Sung J, Jeong U, Cho EY, Kim W, Kim E, Suh CH, Choi S. A Novel Small-Molecule Inhibitor of Endosomal TLRs Reduces Inflammation and Alleviates Autoimmune Disease Symptoms in Murine Models. Cells 2020; 9:E1648. [PMID: 32660060 PMCID: PMC7407930 DOI: 10.3390/cells9071648] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 06/30/2020] [Accepted: 07/07/2020] [Indexed: 12/31/2022] Open
Abstract
Toll-like receptors (TLRs) play a fundamental role in the inflammatory response against invading pathogens. However, the dysregulation of TLR-signaling pathways is implicated in several autoimmune/inflammatory diseases. Here, we show that a novel small molecule TLR-inhibitor (TAC5) and its derivatives TAC5-a, TAC5-c, TAC5-d, and TAC5-e predominantly antagonized poly(I:C) (TLR3)-, imiquimod (TLR7)-, TL8-506 (TLR8)-, and CpG-oligodeoxynucleotide (TLR9)-induced signaling pathways. TAC5 and TAC5-a significantly hindered the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), reduced the phosphorylation of mitogen-activated protein kinases, and inhibited the secretion of tumor necrosis factor-α (TNF-α) and interleukin-6. Besides, TAC5-a prevented the progression of psoriasis and systemic lupus erythematosus (SLE) in mice. Interestingly, TAC5 and TAC5-a did not affect Pam3CSK4 (TLR1/2)-, FSL-1 (TLR2/6)-, or lipopolysaccharide (TLR4)-induced TNF-α secretion, indicating their specificity towards endosomal TLRs (TLR3/7/8/9). Collectively, our data suggest that the TAC5 series of compounds are potential candidates for treating autoimmune diseases such as psoriasis or SLE.
Collapse
Affiliation(s)
- Mahesh Chandra Patra
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; (M.C.P.); (A.A.); (G.-Y.K.); (S.P.); (H.-J.S.); (W.H.L.); (J.S.); (U.J.); (E.-Y.C.); (W.K.); (E.K.)
| | - Asma Achek
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; (M.C.P.); (A.A.); (G.-Y.K.); (S.P.); (H.-J.S.); (W.H.L.); (J.S.); (U.J.); (E.-Y.C.); (W.K.); (E.K.)
| | - Gi-Young Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; (M.C.P.); (A.A.); (G.-Y.K.); (S.P.); (H.-J.S.); (W.H.L.); (J.S.); (U.J.); (E.-Y.C.); (W.K.); (E.K.)
| | - Suresh Panneerselvam
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; (M.C.P.); (A.A.); (G.-Y.K.); (S.P.); (H.-J.S.); (W.H.L.); (J.S.); (U.J.); (E.-Y.C.); (W.K.); (E.K.)
| | - Hyeon-Jun Shin
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; (M.C.P.); (A.A.); (G.-Y.K.); (S.P.); (H.-J.S.); (W.H.L.); (J.S.); (U.J.); (E.-Y.C.); (W.K.); (E.K.)
| | - Wook-Yong Baek
- Department of Rheumatology, Ajou University School of Medicine, Suwon 16499, Korea; (W.-Y.B.); (C.-H.S.)
| | - Wang Hee Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; (M.C.P.); (A.A.); (G.-Y.K.); (S.P.); (H.-J.S.); (W.H.L.); (J.S.); (U.J.); (E.-Y.C.); (W.K.); (E.K.)
| | - June Sung
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; (M.C.P.); (A.A.); (G.-Y.K.); (S.P.); (H.-J.S.); (W.H.L.); (J.S.); (U.J.); (E.-Y.C.); (W.K.); (E.K.)
| | - Uisuk Jeong
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; (M.C.P.); (A.A.); (G.-Y.K.); (S.P.); (H.-J.S.); (W.H.L.); (J.S.); (U.J.); (E.-Y.C.); (W.K.); (E.K.)
| | - Eun-Young Cho
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; (M.C.P.); (A.A.); (G.-Y.K.); (S.P.); (H.-J.S.); (W.H.L.); (J.S.); (U.J.); (E.-Y.C.); (W.K.); (E.K.)
| | - Wook Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; (M.C.P.); (A.A.); (G.-Y.K.); (S.P.); (H.-J.S.); (W.H.L.); (J.S.); (U.J.); (E.-Y.C.); (W.K.); (E.K.)
| | - Eunha Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; (M.C.P.); (A.A.); (G.-Y.K.); (S.P.); (H.-J.S.); (W.H.L.); (J.S.); (U.J.); (E.-Y.C.); (W.K.); (E.K.)
| | - Chang-Hee Suh
- Department of Rheumatology, Ajou University School of Medicine, Suwon 16499, Korea; (W.-Y.B.); (C.-H.S.)
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; (M.C.P.); (A.A.); (G.-Y.K.); (S.P.); (H.-J.S.); (W.H.L.); (J.S.); (U.J.); (E.-Y.C.); (W.K.); (E.K.)
| |
Collapse
|
71
|
Grabowski M, Bermudez M, Rudolf T, Šribar D, Varga P, Murgueitio MS, Wolber G, Rademann J, Weindl G. Identification and validation of a novel dual small-molecule TLR2/8 antagonist. Biochem Pharmacol 2020; 177:113957. [PMID: 32268138 DOI: 10.1016/j.bcp.2020.113957] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/01/2020] [Indexed: 01/01/2023]
Abstract
Toll-like receptor 2 (TLR2) and TLR8 are involved in the recognition of bacterial and viral components and are linked not only to protective antimicrobial immunity but also to inflammatory diseases. Recently, increasing attention has been paid to the receptor crosstalk between TLR2 and TLR8 to fine-tune innate immune responses. In this study, we report a novel dual TLR2/TLR8 antagonist, compound 24 that was developed by a modeling-guided synthesis approach. The modulator was optimized from the previously reported 1,3-benzothiazole derivative, compound 8. Compound 24 was pharmacologically characterized for the ability to inhibit TLR2- and TLR8-mediated responses in TLR-overexpressing reporter cells and THP-1 macrophages. The modulator showed high efficacy with IC50 values in the low micromolar range for both TLRs, selectivity towards other TLRs and low cytotoxicity. At TLR2, a slight predominance for the TLR2/1 heterodimer was found in reporter cells selectively expressing TLR2/1 or TLR2/6 heterodimers. Concentration ratio analysis in the presence of Pam3CSK4 or Pam2CSK4 indicated non-competitive antagonist behavior at hTLR2. In computational docking studies, a plausible alternative binding mode of compound 24 was predicted for both TLR2 and TLR8. Our results provide evidence that it is feasible to simultaneously and selectively target endosomal- and surface-located TLRs. We identified a small-molecule dual TLR2/8 antagonist that may serve as a valuable pharmacological tool to decipher the role of TLR2/8 co-signaling in inflammation.
Collapse
Affiliation(s)
- Maria Grabowski
- Pharmacology and Toxicology, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Marcel Bermudez
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Thomas Rudolf
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Dora Šribar
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Péter Varga
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Manuela S Murgueitio
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Gerhard Wolber
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Jörg Rademann
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Günther Weindl
- Pharmacology and Toxicology, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany; Section Pharmacology and Toxicology, Pharmaceutical Institute, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany.
| |
Collapse
|
72
|
Osteoclastogenesis in periodontal diseases: Possible mediators and mechanisms. J Oral Biosci 2020; 62:123-130. [PMID: 32081710 DOI: 10.1016/j.job.2020.02.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 02/01/2020] [Accepted: 02/06/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Periodontitis is the inflammation of the tooth-supporting structures and is one of the most common diseases of the oral cavity. The outcome of periodontal infections is tooth loss due to a lack of alveolar bone support. Osteoclasts are giant, multi-nucleated, and bone-resorbing cells that are central for many osteolytic diseases, including periodontitis. Receptor activator of nuclear factor-kB ligand (RANKL) is the principal factor involved in osteoclast differentiation, activation, and survival. However, under pathological conditions, a variety of pro-inflammatory cytokines secreted by activated immune cells also contribute to osteoclast differentiation and activity. Lipopolysaccharide (LPS) is a vital component of the outer membrane of the Gram-negative bacteria. It binds to the Toll-like receptors (TLRs) expressed in many cells and elicits an immune response. HIGHLIGHTS The presence of bacterial LPS in the periodontal area stimulates the secretion of RANKL as well as other inflammatory mediators, activating the process of osteoclastogenesis. RANKL, either independently or synergistically with LPS, can regulate osteoclastogenesis, while LPS alone cannot. MicroRNA, IL-22, M1/M2 macrophages, and memory B cells have recently been shown to modulate osteoclastogenesis in periodontal diseases. CONCLUSION In this review, we summarize the mechanism of osteoclastogenesis accompanying periodontal diseases at the cellular level. We discuss a) the effects of LPS/TLR signaling and other cytokines on RANKL-dependent and -independent mechanisms involved in osteoclastogenesis; b) the recently identified role of several endogenous factors such as miRNA, IL-22, M1/M2 macrophages, and memory B cells in regulating osteoclastogenesis during periodontal pathogenesis.
Collapse
|
73
|
Dysregulation of TLR9 in neonates leads to fatal inflammatory disease driven by IFN-γ. Proc Natl Acad Sci U S A 2020; 117:3074-3082. [PMID: 31980536 DOI: 10.1073/pnas.1911579117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Recognition of self-nucleic acids by innate immune receptors can lead to the development of autoimmune and/or autoinflammatory diseases. Elucidating mechanisms associated with dysregulated activation of specific receptors may identify new disease correlates and enable more effective therapies. Here we describe an aggressive in vivo model of Toll-like receptor (TLR) 9 dysregulation, based on bypassing the compartmentalized activation of TLR9 in endosomes, and use it to uncover unique aspects of TLR9-driven disease. By inducing TLR9 dysregulation at different stages of life, we show that while dysregulation in adult mice causes a mild systemic autoinflammatory disease, dysregulation of TLR9 early in life drives a severe inflammatory disease resulting in neonatal fatality. The neonatal disease includes some hallmarks of macrophage activation syndrome but is much more severe than previously described models. Unlike TLR7-mediated disease, which requires type I interferon (IFN) receptor signaling, TLR9-driven fatality is dependent on IFN-γ receptor signaling. NK cells are likely key sources of IFN-γ in this model. We identify populations of macrophages and Ly6Chi monocytes in neonates that express high levels of TLR9 and low levels of TLR7, which may explain why TLR9 dysregulation is particularly consequential early in life, while symptoms of TLR7 dysregulation take longer to manifest. Overall, this study demonstrates that inappropriate TLR9 responses can drive a severe autoinflammatory disease under homeostatic conditions and highlights differences in the diseases resulting from inappropriate activation of TLR9 and TLR7.
Collapse
|
74
|
Nizyaeva NV, Amiraslanov EY, Lomova NA, Savel'eva NA, Pavlovich SV, Nagovitsyna МN, Shchegolev AI. Enhanced Expression of TLR8 in Placental Tissue in Preeclampsia. Bull Exp Biol Med 2020; 168:395-399. [PMID: 31938918 DOI: 10.1007/s10517-020-04717-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Indexed: 11/26/2022]
Abstract
The expression of TLR8 in the placental tissue was studied in specimens from women of reproductive age with early- and late-onset preeclampsia (12 and 8 patients, respectively). The reference groups included 15 women: 10 with uneventful full-term pregnancy and 5 with preterm operative delivery on gestation weeks 28-33. The expression of TLR8 in placental structures was maximum in early-onset preeclampsia (p<0.01) characterized by the gravest clinical course, while the expression of TLR8 in late-onset preeclampsia was comparable with that in full-term pregnancy. This significant increase of TLR8 expression in placental tissue seemed to reflect activation of the key proinflammatory factors of congenital immunity and induction of the systemic inflammatory response. Manifest differences in the expression of TLR8 in late- and early-onset preeclampsia confirmed the hypothesis on different variants of this condition.
Collapse
Affiliation(s)
- N V Nizyaeva
- V. I. Kulakov National Research Medical Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - E Yu Amiraslanov
- V. I. Kulakov National Research Medical Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - N A Lomova
- V. I. Kulakov National Research Medical Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - N A Savel'eva
- V. I. Kulakov National Research Medical Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - S V Pavlovich
- V. I. Kulakov National Research Medical Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - М N Nagovitsyna
- V. I. Kulakov National Research Medical Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A I Shchegolev
- V. I. Kulakov National Research Medical Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
75
|
Pluta L, Yousefi B, Damania B, Khan AA. Endosomal TLR-8 Senses microRNA-1294 Resulting in the Production of NFḱB Dependent Cytokines. Front Immunol 2019; 10:2860. [PMID: 31867014 PMCID: PMC6909240 DOI: 10.3389/fimmu.2019.02860] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/21/2019] [Indexed: 12/21/2022] Open
Abstract
The primary function of toll-like receptor 8 (TLR-8) is the detection of viruses and other microbial pathogens. Recent evidence suggests that TLR-8 also senses host microRNAs (miRNAs) and implicate TLR-8 in autoimmune disorders. This study examined the interaction between miR-1294 and TLR-8. We first performed a BLAST search to identify miRNAs with the same sequences as two core motifs of miR-1294. Next, we examined NFḱB activation induced by the binding of miR-1294 mimic to endosomal TLR-8. HEK-Blue™ hTLR-8 cells (Invivogen), a HEK293 cell line co-transfected with human TLR-8 gene, were incubated with miR-1294 mimic. A TLR-8 agonist ssRNA40, was used as a positive control. Using the same experimental set up, we also examined the effects of miR-1294 and its two core motifs (Integrated DNA Technologies) on IL-8, IL-1β, and TNFα. Data were analyzed using t-test or one-way ANOVA and Dunnets post-hoc test. Using miRCarta we identified 29 other mature human miRNAs or their precursors which contain the same core motifs as miR-1294. Our data show that miR-1294 activates NFḱB in cells expressing TLR-8 (p < 0.05). miR-1294, and its core motifs induce expression of IL-8, IL-1β, and TNFα via TLR8 activation (p < 0.05). This constitutes a novel mechanism by which endosomal TLR-8 senses host miRNAs resulting in the release of pro-inflammatory cytokines and thus potentially contributing to autoimmune disorders.
Collapse
Affiliation(s)
- Linda Pluta
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Babak Yousefi
- Department of Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Blossom Damania
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Asma A Khan
- Department of Endodontics, Dental School, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
76
|
Barrat FJ, Crow MK, Ivashkiv LB. Interferon target-gene expression and epigenomic signatures in health and disease. Nat Immunol 2019; 20:1574-1583. [PMID: 31745335 PMCID: PMC7024546 DOI: 10.1038/s41590-019-0466-2] [Citation(s) in RCA: 348] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 07/10/2019] [Indexed: 02/06/2023]
Abstract
Multiple type I interferons and interferon-γ (IFN-γ) are expressed under physiological conditions and are increased by stress and infections, and in autoinflammatory and autoimmune diseases. Interferons activate the Jak-STAT signaling pathway and induce overlapping patterns of expression, called 'interferon signatures', of canonical interferon-stimulated genes (ISGs) encoding molecules important for antiviral responses, antigen presentation, autoimmunity and inflammation. It has now become clear that interferons also induce an 'interferon epigenomic signature' by activating latent enhancers and 'bookmarking' chromatin, thus reprogramming cell responses to environmental cues. The interferon epigenomic signature affects ISGs and other gene sets, including canonical targets of the transcription factor NF-κB that encode inflammatory molecules, and is involved in the priming of immune cells, tolerance and the training of innate immune memory. Here we review the mechanisms through which interferon signatures and interferon epigenomic signatures are generated, as well as the expression and functional consequences of these signatures in homeostasis and autoimmune diseases, including systemic lupus erythematosus, rheumatoid arthritis and systemic sclerosis.
Collapse
Affiliation(s)
- Franck J Barrat
- Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY, USA
| | - Mary K Crow
- Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Lionel B Ivashkiv
- Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA.
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY, USA.
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
77
|
McKernan DP. Pattern recognition receptors as potential drug targets in inflammatory disorders. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 119:65-109. [PMID: 31997773 DOI: 10.1016/bs.apcsb.2019.09.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pattern recognition receptors (PRRs) are a key part of the innate immune system, the body's first line of defense against infection and tissue damage. This superfamily of receptors including Toll-like receptors (TLRs), NOD-like receptors (NLRs), C-type lectin-like receptors (CLRs) and RIG-like receptors (RLRs) are responsible for initiation of the inflammatory response by their recognition of molecular patterns present in invading microorganisms (such as bacteria, viruses or fungi) during infection or in molecules released following tissue damage during acute or chronic disease states (such as sepsis or arthritis). These receptors are widely expressed and located on the cell surface, in intracellular compartments or in the cytoplasm can detect a single or subset of molecules including lipoproteins, carbohydrates or nucleic acids. In response, they initiate an intracellular signaling cascade that culminates in the synthesis and release of cytokines, chemokines and vasoactive molecules. These steps are necessary to maintain tissue homeostasis and remove potentially dangerous pathogens. However, during extreme or acute responses or during chronic disease, this can be damaging and even lead to death. Therefore, it is thought that targeting such receptors may offer a therapeutic approach in chronic inflammatory diseases or in cases of acute infection leading to sepsis. Herein, the current knowledge on the molecular biology of PRRs is reviewed along with their association with inflammatory and infectious diseases. Finally, the testing of therapeutic compounds and their future merit as targets is discussed.
Collapse
|
78
|
Padilla-Salinas R, Anderson R, Sakaniwa K, Zhang S, Nordeen P, Lu C, Shimizu T, Yin H. Discovery of Novel Small Molecule Dual Inhibitors Targeting Toll-Like Receptors 7 and 8. J Med Chem 2019; 62:10221-10244. [DOI: 10.1021/acs.jmedchem.9b01201] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Rosaura Padilla-Salinas
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Rachel Anderson
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Kentaro Sakaniwa
- Graduate School of Pharmaceuticals Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Shuting Zhang
- School of Pharmaceutical Sciences, Tsinghua University-Peking University Joint Center of Life Science, Tsinghua University, Beijing 100082, China
| | - Patrick Nordeen
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Chuanjun Lu
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Toshiyuki Shimizu
- Graduate School of Pharmaceuticals Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hang Yin
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80309, United States
- School of Pharmaceutical Sciences, Tsinghua University-Peking University Joint Center of Life Science, Tsinghua University, Beijing 100082, China
| |
Collapse
|
79
|
Chen CY, Shih YC, Hung YF, Hsueh YP. Beyond defense: regulation of neuronal morphogenesis and brain functions via Toll-like receptors. J Biomed Sci 2019; 26:90. [PMID: 31684953 PMCID: PMC6827257 DOI: 10.1186/s12929-019-0584-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/23/2019] [Indexed: 12/16/2022] Open
Abstract
Toll-like receptors (TLRs) are well known as critical pattern recognition receptors that trigger innate immune responses. In addition, TLRs are expressed in neurons and may act as the gears in the neuronal detection/alarm system for making good connections. As neuronal differentiation and circuit formation take place along with programmed cell death, neurons face the challenge of connecting with appropriate targets while avoiding dying or dead neurons. Activation of neuronal TLR3, TLR7 and TLR8 with nucleic acids negatively modulates neurite outgrowth and alters synapse formation in a cell-autonomous manner. It consequently influences neural connectivity and brain function and leads to deficits related to neuropsychiatric disorders. Importantly, neuronal TLR activation does not simply duplicate the downstream signal pathways and effectors of classical innate immune responses. The differences in spatial and temporal expression of TLRs and their ligands likely account for the diverse signaling pathways of neuronal TLRs. In conclusion, the accumulated evidence strengthens the idea that the innate immune system of neurons serves as an alarm system that responds to exogenous pathogens as well as intrinsic danger signals and fine-tune developmental processes of neurons.
Collapse
Affiliation(s)
- Chiung-Ya Chen
- Institute of Molecular Biology, Academia Sinica, 128, Academia Rd., Sec. 2, Taipei, 11529, Taiwan, Republic of China.
| | - Yi-Chun Shih
- Institute of Molecular Biology, Academia Sinica, 128, Academia Rd., Sec. 2, Taipei, 11529, Taiwan, Republic of China
| | - Yun-Fen Hung
- Institute of Molecular Biology, Academia Sinica, 128, Academia Rd., Sec. 2, Taipei, 11529, Taiwan, Republic of China
| | - Yi-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, 128, Academia Rd., Sec. 2, Taipei, 11529, Taiwan, Republic of China.
| |
Collapse
|
80
|
Šribar D, Grabowski M, Murgueitio MS, Bermudez M, Weindl G, Wolber G. Identification and characterization of a novel chemotype for human TLR8 inhibitors. Eur J Med Chem 2019; 179:744-752. [DOI: 10.1016/j.ejmech.2019.06.084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 10/26/2022]
|
81
|
Dombkowski AA, Cukovic D, Bagla S, Jones M, Caruso JA, Chugani HT, Chugani DC. TLR7 activation in epilepsy of tuberous sclerosis complex. Inflamm Res 2019; 68:993-998. [PMID: 31511910 PMCID: PMC6823312 DOI: 10.1007/s00011-019-01283-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/30/2019] [Accepted: 09/05/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Neuroinflammation and toll-like receptors (TLR) of the innate immune system have been implicated in epilepsy. We previously reported high levels of microRNAs miR-142-3p and miR-223-3p in epileptogenic brain tissue resected for the treatment of intractable epilepsy in children with tuberous sclerosis complex (TSC). As miR-142-3p has recently been reported to be a ligand and activator of TLR7, a detector of exogenous and endogenous single-stranded RNA, we evaluated TLR7 expression and downstream IL23A activation in surgically resected TSC brain tissue. METHODS Gene expression analysis was performed on cortical tissue obtained from surgery of TSC children with pharmacoresistent epilepsy. Expression of TLRs 2, 4 and 7 was measured using NanoString nCounter assays. Real-time quantitative PCR was used to confirm TLR7 expression and compare TLR7 activation, indicated by IL-23A levels, to levels of miR-142-3p. Protein markers characteristic for TLR7 activation were assessed using data from our existing quantitative proteomics dataset of TSC tissue. Capillary electrophoresis Western blots were used to confirm TLR7 protein expression in a subset of samples. RESULTS TLR7 transcript expression was present in all TSC specimens. The signaling competent form of TLR7 protein was detected in the membrane fraction of each sample tested. Downstream activation of TLR7 was found in epileptogenic lesions having elevated neuroinflammation indicated by clinical neuroimaging. TLR7 activity was significantly associated with tissue levels of miR-142-3p. CONCLUSION TLR7 activation by microRNAs may contribute to the neuroinflammatory cascade in epilepsy in TSC. Further characterization of this mechanism may enable the combined of use of neuroimaging and TLR7 inhibitors in a personalized approach towards the treatment of intractable epilepsy.
Collapse
Affiliation(s)
- Alan A Dombkowski
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA.
- Children's Hospital of Michigan, Clinical Pharmacology Room 3L22, 3901 Beaubien Blvd., Detroit, MI, 48201, USA.
| | - Daniela Cukovic
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Shruti Bagla
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA
| | - McKenzie Jones
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Joseph A Caruso
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Harry T Chugani
- Katzin Diagnostic and Research PET/MR Center, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Diane C Chugani
- Katzin Diagnostic and Research PET/MR Center, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
- Departments of Communication Sciences and Disorders, and Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| |
Collapse
|
82
|
Barrat FJ, Su L. A pathogenic role of plasmacytoid dendritic cells in autoimmunity and chronic viral infection. J Exp Med 2019; 216:1974-1985. [PMID: 31420375 DOI: 10.1084/jem.20181359] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/19/2019] [Accepted: 07/31/2019] [Indexed: 12/14/2022] Open
Abstract
Following the discovery of plasmacytoid dendritic cells (pDCs) and of their extraordinary ability to produce type I IFNs (IFN-I) in response to TLR7 and TLR9 stimulation, it is assumed that their main function is to participate in the antiviral response. There is increasing evidence suggesting that pDCs and/or IFN-I can also have a detrimental role in a number of inflammatory and autoimmune diseases, in the context of chronic viral infections and in cancers. Whether these cells should be targeted in patients and how much of their biology is connected to IFN-I production remains unclear and is discussed here.
Collapse
Affiliation(s)
- Franck J Barrat
- Autoimmunity and Inflammation Program, HSS Research Institute, Hospital for Special Surgery, New York, NY .,Department of Microbiology and Immunology, Weill Cornell Medical College of Cornell University, New York, NY
| | - Lishan Su
- The Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, School of Medicine, The University of North Carolina, Chapel Hill, NC
| |
Collapse
|
83
|
Bou Karroum N, Moarbess G, Guichou JF, Bonnet PA, Patinote C, Bouharoun-Tayoun H, Chamat S, Cuq P, Diab-Assaf M, Kassab I, Deleuze-Masquefa C. Novel and Selective TLR7 Antagonists among the Imidazo[1,2- a]pyrazines, Imidazo[1,5- a]quinoxalines, and Pyrazolo[1,5- a]quinoxalines Series. J Med Chem 2019; 62:7015-7031. [PMID: 31283223 DOI: 10.1021/acs.jmedchem.9b00411] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The Toll-like receptors (TLRs) 7 and 8 play an important role in the immune system activation, and their agonists may therefore serve as promising candidate vaccine adjuvants. However, the chronic immune activation by excessive TLR stimulation is a hallmark of several clinically important infectious and autoimmune diseases, which warrants the search for TLR antagonists. In this study, we have synthesized and characterized a variety of compounds belonging to three heterocyclic chemical series: imidazo[1,2-a]pyrazine, imidazo[1,5-a]quinoxaline, and pyrazolo[1,5-a]quinoxaline. These compounds have been tested for their TLR7 or TLR8 agonistic and antagonistic activities. Several of them are shown to be selective TLR7 antagonists without any TLR7 or TLR8 agonistic activity. The selectivity was confirmed by a comparative ligand-docking study in TLR7 antagonist pocket. Two compounds of the pyrazolo[1,5-a]quinoxaline series (10a and 10b) are potent selective TLR7 antagonists and may be considered as promising starting points for the development of new therapeutic agents.
Collapse
Affiliation(s)
- Nour Bou Karroum
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 F16, CNRS, Université de Montpellier , Faculté de Pharmacie , 15 avenue Charles Flahault , BP 14491, Montpellier 34093 Cedex 5 , France.,Tumorigenèse et Pharmacologie Antitumorale , Lebanese University, EDST , BP 90656, Fanar Jdeideh 1202 , Lebanon
| | - Georges Moarbess
- Tumorigenèse et Pharmacologie Antitumorale , Lebanese University, EDST , BP 90656, Fanar Jdeideh 1202 , Lebanon
| | - Jean-François Guichou
- CNRS, UMR 5048, INSERM, U105, Université de Montpellier, Centre de Biochimie Structurale , Montpellier F-34090 , France
| | - Pierre-Antoine Bonnet
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 F16, CNRS, Université de Montpellier , Faculté de Pharmacie , 15 avenue Charles Flahault , BP 14491, Montpellier 34093 Cedex 5 , France
| | - Cindy Patinote
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 F16, CNRS, Université de Montpellier , Faculté de Pharmacie , 15 avenue Charles Flahault , BP 14491, Montpellier 34093 Cedex 5 , France
| | - Hasnaa Bouharoun-Tayoun
- Laboratory of Immunology and Vector-Borne Diseases, Faculty of Public Health , Lebanese University , Fanar Jdeideh 1202 , Lebanon
| | - Soulaima Chamat
- Laboratory of Immunology and Vector-Borne Diseases, Faculty of Public Health , Lebanese University , Fanar Jdeideh 1202 , Lebanon.,Faculty of Medical Sciences , Lebanese University , Hadath 1500 , Lebanon
| | - Pierre Cuq
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 F16, CNRS, Université de Montpellier , Faculté de Pharmacie , 15 avenue Charles Flahault , BP 14491, Montpellier 34093 Cedex 5 , France
| | - Mona Diab-Assaf
- Tumorigenèse et Pharmacologie Antitumorale , Lebanese University, EDST , BP 90656, Fanar Jdeideh 1202 , Lebanon
| | - Issam Kassab
- Tumorigenèse et Pharmacologie Antitumorale , Lebanese University, EDST , BP 90656, Fanar Jdeideh 1202 , Lebanon
| | - Carine Deleuze-Masquefa
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 F16, CNRS, Université de Montpellier , Faculté de Pharmacie , 15 avenue Charles Flahault , BP 14491, Montpellier 34093 Cedex 5 , France
| |
Collapse
|
84
|
Laffont S, Guéry JC. Deconstructing the sex bias in allergy and autoimmunity: From sex hormones and beyond. Adv Immunol 2019; 142:35-64. [PMID: 31296302 DOI: 10.1016/bs.ai.2019.04.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Men and women differ in their susceptibility to develop autoimmunity and allergy but also in their capacity to cope with infections. Mechanisms responsible for this sexual dimorphism are still poorly documented and probably multifactorial. This review discusses the recent development in our understanding of the cell-intrinsic actions of biological factors linked to sex, sex hormones and sex chromosome complement, on immune cells, which may account for the sex differences in the enhanced susceptibility of women to develop immunological disorders, such as allergic asthma or systemic lupus erythematosus (SLE). We choose to more specifically discuss the impact of sex hormones on the development and function of immune cell populations directly involved in type-2 immunity, and the role of the X-linked Toll like receptor 7 (TLR7) in anti-viral immunity and in SLE. We will also elaborate on the recent evidence demonstrating that TLR7 escapes from X chromosome inactivation in the immune cells of women, and how this may contribute to endow woman immune system with enhanced responsiveness to RNA-virus and susceptibility to SLE.
Collapse
Affiliation(s)
- Sophie Laffont
- Centre de Physiopathologie de Toulouse Purpan (CPTP), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France
| | - Jean-Charles Guéry
- Centre de Physiopathologie de Toulouse Purpan (CPTP), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France.
| |
Collapse
|
85
|
Progatzky F, Jha A, Wane M, Thwaites RS, Makris S, Shattock RJ, Johansson C, Openshaw PJ, Bugeon L, Hansel TT, Dallman MJ. Induction of innate cytokine responses by respiratory mucosal challenge with R848 in zebrafish, mice, and humans. J Allergy Clin Immunol 2019; 144:342-345.e7. [PMID: 31002833 PMCID: PMC6602583 DOI: 10.1016/j.jaci.2019.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 03/29/2019] [Accepted: 04/03/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Fränze Progatzky
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | - Akhilesh Jha
- National Heart and Lung Institute, Imperial Clinical Respiratory Research Unit (ICRRU) and Respiratory Infection, St Mary's Hospital, Imperial College London, London, United Kingdom
| | - Madina Wane
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | - Ryan S Thwaites
- National Heart and Lung Institute, Imperial Clinical Respiratory Research Unit (ICRRU) and Respiratory Infection, St Mary's Hospital, Imperial College London, London, United Kingdom
| | - Spyridon Makris
- National Heart and Lung Institute, Imperial Clinical Respiratory Research Unit (ICRRU) and Respiratory Infection, St Mary's Hospital, Imperial College London, London, United Kingdom
| | - Robin J Shattock
- Department of Infectious Diseases, Division of Medicine, Imperial College London, London, United Kingdom
| | - Cecilia Johansson
- National Heart and Lung Institute, Imperial Clinical Respiratory Research Unit (ICRRU) and Respiratory Infection, St Mary's Hospital, Imperial College London, London, United Kingdom
| | - Peter J Openshaw
- National Heart and Lung Institute, Imperial Clinical Respiratory Research Unit (ICRRU) and Respiratory Infection, St Mary's Hospital, Imperial College London, London, United Kingdom
| | - Laurence Bugeon
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | - Trevor T Hansel
- National Heart and Lung Institute, Imperial Clinical Respiratory Research Unit (ICRRU) and Respiratory Infection, St Mary's Hospital, Imperial College London, London, United Kingdom.
| | - Margaret J Dallman
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom.
| |
Collapse
|
86
|
Marongiu L, Gornati L, Artuso I, Zanoni I, Granucci F. Below the surface: The inner lives of TLR4 and TLR9. J Leukoc Biol 2019; 106:147-160. [PMID: 30900780 PMCID: PMC6597292 DOI: 10.1002/jlb.3mir1218-483rr] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/07/2019] [Accepted: 03/07/2019] [Indexed: 12/12/2022] Open
Abstract
TLRs are a class of pattern recognition receptors (PRRs) that detect invading microbes by recognizing pathogen-associated molecular patterns (PAMPs). Upon PAMP engagement, TLRs activate a signaling cascade that leads to the production of inflammatory mediators. The localization of TLRs, either on the plasma membrane or in the endolysosomal compartment, has been considered to be a fundamental aspect to determine to which ligands the receptors bind, and which transduction pathways are induced. However, new observations have challenged this view by identifying complex trafficking events that occur upon TLR-ligand binding. These findings have highlighted the central role that endocytosis and receptor trafficking play in the regulation of the innate immune response. Here, we review the TLR4 and TLR9 transduction pathways and the importance of their different subcellular localization during the inflammatory response. Finally, we discuss the implications of TLR9 subcellular localization in autoimmunity.
Collapse
Affiliation(s)
- Laura Marongiu
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Laura Gornati
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Irene Artuso
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Ivan Zanoni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.,Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Francesca Granucci
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
87
|
Vierbuchen T, Stein K, Heine H. RNA is taking its Toll: Impact of RNA-specific Toll-like receptors on health and disease. Allergy 2019; 74:223-235. [PMID: 30475385 DOI: 10.1111/all.13680] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/08/2018] [Accepted: 11/20/2018] [Indexed: 12/13/2022]
Abstract
RNA-sensing Toll-like receptors (TLRs) are often described as antiviral receptors of the innate immune system. However, the past decade has shown that the function and relevance of these receptors are far more complex. They were found to be essential for the detection of various bacterial, archaeal, and eukaryotic microorganisms and facilitate the discrimination between dead and living microbes. The cytokine and interferon response profile that is triggered has the potential to improve the efficacy of next-generation vaccines and may prevent the development of asthma and allergy. Nevertheless, the ability to recognize foreign RNA comes with a cost as also damaged host cells can release nucleic acids that might induce an inappropriate immune response. Thus, it is not surprising that RNA-sensing TLRs play a key role in various autoimmune diseases. However, promising new inhibitors and antagonists are on the horizon to improve their treatment.
Collapse
Affiliation(s)
- Tim Vierbuchen
- Division of Innate Immunity Research Center Borstel – Leibniz Lung Center Borstel Germany
| | - Karina Stein
- Division of Innate Immunity Research Center Borstel – Leibniz Lung Center Borstel Germany
- Airway Research Center North (ARCN) German Center for Lung Research (DZL) Borstel Germany
| | - Holger Heine
- Division of Innate Immunity Research Center Borstel – Leibniz Lung Center Borstel Germany
- Airway Research Center North (ARCN) German Center for Lung Research (DZL) Borstel Germany
| |
Collapse
|
88
|
RNA Modifications Modulate Activation of Innate Toll-Like Receptors. Genes (Basel) 2019; 10:genes10020092. [PMID: 30699960 PMCID: PMC6410116 DOI: 10.3390/genes10020092] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 01/23/2019] [Accepted: 01/25/2019] [Indexed: 12/13/2022] Open
Abstract
Self/foreign discrimination by the innate immune system depends on receptors that identify molecular patterns as associated to pathogens. Among others, this group includes endosomal Toll-like receptors, among which Toll-like receptors (TLR) 3, 7, 8, and 13 recognize and discriminate mammalian from microbial, potentially pathogen-associated, RNA. One of the discriminatory principles is the recognition of endogenous RNA modifications. Previous work has identified a couple of RNA modifications that impede activation of TLR signaling when incorporated in synthetic RNA molecules. Of note, work that is more recent has now shown that RNA modifications in their naturally occurring context can have immune-modulatory functions: Gm, a naturally occurring ribose-methylation within tRNA resulted in a lack of TLR7 stimulation and within a defined sequence context acted as antagonist. Additional RNA modifications with immune-modulatory functions have now been identified and recent work also indicates that RNA modifications within the context of whole prokaryotic or eukaryotic cells are indeed used for immune-modulation. This review will discuss new findings and developments in the field of immune-modulatory RNA modifications.
Collapse
|
89
|
Boozari M, Butler AE, Sahebkar A. Impact of curcumin on toll-like receptors. J Cell Physiol 2019; 234:12471-12482. [PMID: 30623441 DOI: 10.1002/jcp.28103] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/02/2018] [Indexed: 12/25/2022]
Abstract
Toll-like receptors (TLRs) have a pivotal role in the activation of innate immune response and inflammation. TLRs can be divided into two subgroups including extracellular TLRs that recognize microbial membrane components (TLR1, 2, 4, 5, 6, and 10), and intracellular TLRs that recognize microbial nucleic acids (TLR3, 7, 8, and 9). Curcumin is a dietary polyphenol from Curcuma longa L. that is reputed to have diverse biological and pharmacological effects. Extensive research has defined the molecular mechanisms through which curcumin mediates its therapeutic effects. One newly defined and important target of curcumin is the TLR, where it exerts an inhibitory effect. In the current study, we focus upon the TLR antagonistic effect of curcumin and curcumin's therapeutic effect as mediated via TLR inhibition. The available evidence indicates that curcumin inhibits the extracellular TLR 2 and 4 and intracellular TLR9 and thereby exerts a therapeutic effect in diseases such as cancer, inflammation, infection, autoimmune, and ischemic disease. Curcumin effectively modulates the TLR response and thereby exerts its potent therapeutic effects.
Collapse
Affiliation(s)
- Motahare Boozari
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alexandra E Butler
- Diabetes Research Center, Qatar Biomedical Research Institute, Doha, Qatar
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
90
|
Abstract
TLRs have been well characterized in the context of immunity, although TLR8 is understudied due to its controversial function in mice. In this issue of JEM, the new work by Zhang et al. (https://doi.org/10.1084/jem.20180800) demonstrates that TLR8 activated by miR-21 controls neuropathic pain using a non-MyD88-dependent pathway.
Collapse
Affiliation(s)
- Franck J Barrat
- Autoimmunity and Inflammation Program, HSS Research Institute, Hospital for Special Surgery, New York, NY
- Department of Microbiology and Immunology, Weill Cornell Medical College of Cornell University, New York, NY
| |
Collapse
|
91
|
Female predisposition to TLR7-driven autoimmunity: gene dosage and the escape from X chromosome inactivation. Semin Immunopathol 2018; 41:153-164. [PMID: 30276444 DOI: 10.1007/s00281-018-0712-y] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/17/2018] [Indexed: 12/13/2022]
Abstract
Women develop stronger immune responses than men, with positive effects on the resistance to viral or bacterial infections but magnifying also the susceptibility to autoimmune diseases like systemic lupus erythematosus (SLE). In SLE, the dosage of the endosomal Toll-like receptor 7 (TLR7) is crucial. Murine models have shown that TLR7 overexpression suffices to induce spontaneous lupus-like disease. Conversely, suppressing TLR7 in lupus-prone mice abolishes SLE development. TLR7 is encoded by a gene on the X chromosome gene, denoted TLR7 in humans and Tlr7 in the mouse, and expressed in plasmacytoid dendritic cells (pDC), monocytes/macrophages, and B cells. The receptor recognizes single-stranded RNA, and its engagement promotes B cell maturation and the production of pro-inflammatory cytokines and antibodies. In female mammals, each cell randomly inactivates one of its two X chromosomes to equalize gene dosage with XY males. However, 15 to 23% of X-linked human genes escape X chromosome inactivation so that both alleles can be expressed simultaneously. It has been hypothesized that biallelic expression of X-linked genes could occur in female immune cells, hence fostering harmful autoreactive and inflammatory responses. We review here the current knowledge of the role of TLR7 in SLE, and recent evidence demonstrating that TLR7 escapes from X chromosome inactivation in pDCs, monocytes, and B lymphocytes from women and Klinefelter syndrome men. Female B cells where TLR7 is thus biallelically expressed display higher TLR7-driven functional responses, connecting the presence of two X chromosomes with the enhanced immunity of women and their increased susceptibility to TLR7-dependent autoimmune syndromes.
Collapse
|
92
|
Emerging areas for therapeutic discovery in SLE. Curr Opin Immunol 2018; 55:1-8. [PMID: 30245241 DOI: 10.1016/j.coi.2018.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/07/2018] [Indexed: 12/16/2022]
Abstract
Recent advances in the field of autoimmunity have identified numerous dysfunctional pathways in Systemic Lupus Erythematosus (SLE), including aberrant clearance of nucleic-acid-containing debris and immune complexes, excessive innate immune activation leading to overactive type I IFN signalling, and abnormal B and T cell activation. On the background of genetic polymorphisms that reset thresholds for immune responses, multiple immune cells contribute to inflammatory amplification circuits. Neutrophils activated by immune complexes are a rich source of immunogenic nucleic acids. Identification of new B subsets suggests several mechanisms for induction of autoantibody producing effector cells. Disordered T cell regulation involves both CD4 and CD8 cells. An imbalance in immunometabolism in immune cells amplifies autoimmunity and inflammation. These new advances in understanding of disease pathogenesis provide fertile ground for therapeutic development.
Collapse
|
93
|
Hu Z, Tanji H, Jiang S, Zhang S, Koo K, Chan J, Sakaniwa K, Ohto U, Candia A, Shimizu T, Yin H. Small-Molecule TLR8 Antagonists via Structure-Based Rational Design. Cell Chem Biol 2018; 25:1286-1291.e3. [PMID: 30100350 DOI: 10.1016/j.chembiol.2018.07.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/16/2018] [Accepted: 07/03/2018] [Indexed: 01/17/2023]
Abstract
Rational design of drug-like small-molecule ligands based on structural information of proteins remains a significant challenge in chemical biology. In particular, designs targeting protein-protein interfaces have met little success given the dynamic nature of the protein surfaces. Herein, we utilized the structure of a small-molecule ligand in complex with Toll-like receptor 8 (TLR8) as a model system due to TLR8's clinical relevance. Overactivation of TLR8 has been suggested to play a prominent role in the pathogenesis of various autoimmune diseases; however, there are still few small-molecule antagonists available, and our rational designs led to the discovery of six exceptionally potent compounds with ∼picomolar IC50 values. Two X-ray crystallographic structures validated the contacts within the binding pocket. A variety of biological evaluations in cultured cell lines, human peripheral blood mononuclear cells, and splenocytes from human TLR8-transgenic mice further demonstrated these TLR8 inhibitors' high efficacy, suggesting strong therapeutic potential against autoimmune disorders.
Collapse
Affiliation(s)
- Zhenyi Hu
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80309, USA; School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100082, China
| | - Hiromi Tanji
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Shuangshuang Jiang
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100082, China
| | - Shuting Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100082, China
| | - Kyoin Koo
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Jean Chan
- Dynavax Technologies Corporation, Berkeley, CA 94710, USA
| | - Kentaro Sakaniwa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Umeharu Ohto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Albert Candia
- Dynavax Technologies Corporation, Berkeley, CA 94710, USA
| | - Toshiyuki Shimizu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hang Yin
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80309, USA; School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100082, China.
| |
Collapse
|
94
|
Fukui R, Murakami Y, Miyake K. New application of anti-TLR monoclonal antibodies: detection, inhibition and protection. Inflamm Regen 2018; 38:11. [PMID: 29988708 PMCID: PMC6029368 DOI: 10.1186/s41232-018-0068-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/19/2018] [Indexed: 12/15/2022] Open
Abstract
Monoclonal antibody (mAb) is an essential tool for the analysis in various fields of biology. In the field of innate immunology, mAbs have been established and used for the study of Toll-like receptors (TLRs), a family of pathogen sensors that induces cytokine production and activate immune responses. TLRs play the role as a frontline of protection against pathogens, whereas excessive activation of TLRs has been implicated in a variety of infectious diseases and inflammatory diseases. For example, TLR7 and TLR9 sense not only pathogen-derived nucleic acids, but also self-derived nucleic acids in noninfectious inflammatory diseases such as systemic lupus erythematosus (SLE) or hepatitis. Consequently, it is important to clarify the molecular mechanisms of TLRs for therapeutic intervention in these diseases. For analysis of the molecular mechanisms of TLRs, mAbs to nucleic acid-sensing TLRs were developed recently. These mAbs revealed that TLR7 and TLR9 are localized also in the plasma membrane, while TLR7 and TLR9 were thought to be localized in endosomes and lysosomes. Among these mAbs, antagonistic mAbs to TLR7 or TLR9 are able to inhibit in vitro responses to synthetic ligands. Furthermore, antagonistic mAbs mitigate inflammatory disorders caused by TLR7 or TLR9 in mice. These results suggest that antagonistic mAbs to nucleic acid-sensing TLRs are a promising tool for therapeutic intervention in inflammatory disorders caused by excessive activation of nucleic acid-sensing TLRs. Here, we summarize the molecular mechanisms of TLRs and recent progresses in the trials targeting TLRs with mAbs to control inflammatory diseases.
Collapse
Affiliation(s)
- Ryutaro Fukui
- 1Division of Innate Immunity, Department of Microbiology and Immunology, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 Japan
| | - Yusuke Murakami
- 1Division of Innate Immunity, Department of Microbiology and Immunology, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 Japan.,2Department of Pharmacotherapy, Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shin-machi, Nishitokyo-shi, Tokyo 202-8585 Japan
| | - Kensuke Miyake
- 1Division of Innate Immunity, Department of Microbiology and Immunology, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 Japan.,3Laboratory of Innate Immunity, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 Japan
| |
Collapse
|
95
|
Bösl K, Giambelluca M, Haug M, Bugge M, Espevik T, Kandasamy RK, Bergstrøm B. Coactivation of TLR2 and TLR8 in Primary Human Monocytes Triggers a Distinct Inflammatory Signaling Response. Front Physiol 2018; 9:618. [PMID: 29896111 PMCID: PMC5986927 DOI: 10.3389/fphys.2018.00618] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 05/07/2018] [Indexed: 01/04/2023] Open
Abstract
Innate immune signaling is essential to mount a fast and specific immune response to pathogens. Monocytes and macrophages are essential cells in the early response in their capacity as ubiquitous phagocytic cells. They phagocytose microorganisms or damaged cells and sense pathogen/damage-associated molecular patterns (PAMPs/DAMPs) through innate receptors such as Toll-like receptors (TLRs). We investigated a phenomenon where co-signaling from TLR2 and TLR8 in human primary monocytes provides a distinct immune activation profile compared to signaling from either TLR alone. We compare gene signatures induced by either stimulus alone or together and show that co-signaling results in downstream differences in regulation of signaling and gene transcription. We demonstrate that these differences result in altered cytokine profiles between single and multi-receptor signaling, and show how it can influence both T-cell and neutrophil responses. The end response is tailored to combat extracellular pathogens, possibly by modifying the regulation of IFNβ and IL12-family cytokines.
Collapse
Affiliation(s)
- Korbinian Bösl
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Miriam Giambelluca
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Markus Haug
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Infection, St. Olav's University Hospital, Trondheim, Norway
| | - Marit Bugge
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Terje Espevik
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Richard K Kandasamy
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Bjarte Bergstrøm
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Infection, St. Olav's University Hospital, Trondheim, Norway
| |
Collapse
|
96
|
Patra MC, Kwon HK, Batool M, Choi S. Computational Insight Into the Structural Organization of Full-Length Toll-Like Receptor 4 Dimer in a Model Phospholipid Bilayer. Front Immunol 2018; 9:489. [PMID: 29593733 PMCID: PMC5857566 DOI: 10.3389/fimmu.2018.00489] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 02/26/2018] [Indexed: 01/07/2023] Open
Abstract
Toll-like receptors (TLRs) are a unique category of pattern recognition receptors that recognize distinct pathogenic components, often utilizing the same set of downstream adaptors. Specific molecular features of extracellular, transmembrane (TM), and cytoplasmic domains of TLRs are crucial for coordinating the complex, innate immune signaling pathway. Here, we constructed a full-length structural model of TLR4-a widely studied member of the interleukin-1 receptor/TLR superfamily-using homology modeling, protein-protein docking, and molecular dynamics simulations to understand the differential domain organization of TLR4 in a membrane-aqueous environment. Results showed that each functional domain of the membrane-bound TLR4 displayed several structural transitions that are biophysically essential for plasma membrane integration. Specifically, the extracellular and cytoplasmic domains were partially immersed in the upper and lower leaflets of the membrane bilayer. Meanwhile, TM domains tilted considerably to overcome the hydrophobic mismatch with the bilayer core. Our analysis indicates an alternate dimerization or a potential oligomerization interface of TLR4-TM. Moreover, the helical properties of an isolated TM dimer partly agree with that of the full-length receptor. Furthermore, membrane-absorbed or solvent-exposed surfaces of the toll/interleukin-1 receptor domain are consistent with previous X-ray crystallography and biochemical studies. Collectively, we provided a complete structural model of membrane-bound TLR4 that strengthens our current understanding of the complex mechanism of receptor activation and adaptor recruitment in the innate immune signaling pathway.
Collapse
Affiliation(s)
- Mahesh Chandra Patra
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Hyuk-Kwon Kwon
- Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, CT, United States
| | - Maria Batool
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| |
Collapse
|
97
|
Miyake K, Shibata T, Ohto U, Shimizu T, Saitoh SI, Fukui R, Murakami Y. Mechanisms controlling nucleic acid-sensing Toll-like receptors. Int Immunol 2018; 30:43-51. [DOI: 10.1093/intimm/dxy016] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 02/13/2018] [Indexed: 12/23/2022] Open
Affiliation(s)
- Kensuke Miyake
- Division of Innate Immunity, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo, Japan
| | - Takuma Shibata
- Division of Innate Immunity, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo, Japan
| | - Umeharu Ohto
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Toshiyuki Shimizu
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Shin-Ichiroh Saitoh
- Division of Innate Immunity, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo, Japan
| | - Ryutaro Fukui
- Division of Innate Immunity, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo, Japan
| | - Yusuke Murakami
- Division of Innate Immunity, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo, Japan
| |
Collapse
|
98
|
Lee EY, Lee MW, Wong GCL. Modulation of toll-like receptor signaling by antimicrobial peptides. Semin Cell Dev Biol 2018; 88:173-184. [PMID: 29432957 DOI: 10.1016/j.semcdb.2018.02.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 02/06/2018] [Indexed: 01/05/2023]
Abstract
Antimicrobial peptides (AMPs) are typically thought of as molecular hole punchers that directly kill pathogens by membrane permeation. However, recent work has shown that AMPs are pleiotropic, multifunctional molecules that can strongly modulate immune responses. In this review, we provide a historical overview of the immunomodulatory properties of natural and synthetic antimicrobial peptides, with a special focus on human cathelicidin and defensins. We also summarize the various mechanisms of AMP immune modulation and outline key structural rules underlying the recently-discovered phenomenon of AMP-mediated Toll-like receptor (TLR) signaling. In particular, we describe several complementary studies demonstrating how AMPs self-assemble with nucleic acids to form nanocrystalline complexes that amplify TLR-mediated inflammation. In a broader scope, we discuss how this new conceptual framework allows for the prediction of immunomodulatory behavior in AMPs, how the discovery of hidden antimicrobial activity in known immune signaling proteins can inform these predictions, and how these findings reshape our understanding of AMPs in normal host defense and autoimmune disease.
Collapse
Affiliation(s)
- Ernest Y Lee
- Department of Bioengineering, University of California, Los Angeles, CA 90095, United States
| | - Michelle W Lee
- Department of Bioengineering, University of California, Los Angeles, CA 90095, United States
| | - Gerard C L Wong
- Department of Bioengineering, University of California, Los Angeles, CA 90095, United States.
| |
Collapse
|
99
|
Eng HL, Hsu YY, Lin TM. Differences in TLR7/8 activation between monocytes and macrophages. Biochem Biophys Res Commun 2018; 497:319-325. [PMID: 29448098 DOI: 10.1016/j.bbrc.2018.02.079] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 11/29/2022]
Abstract
The recognition of single-stranded RNA by TLR7/8 leads to the production of NF-κB-mediated cytokines and type I IFNs. However, the role of TLR7/8 activation in monocytes and macrophages is still unclear. The aim of this study was to investigate the differences in the activation of TLR7/8 between these two cell types. Microarray analysis, qRT-PCR and flow cytometry were used to analyse TLR7/8 signalling pathways in monocytes and macrophages after stimulation with agonists. Our data indicated that TLR8 agonists activated the NF-κB- and IRF-mediated pathways in THP-1 cells, whereas TLR7 agonists did not. However, silent TLR8 and enhanced TLR7 expression could increase TLR7-induced NF-κB activation in monocytes. TLR7 and TLR8 agonists induced NF-κB activation but no ISG response in PMA-differentiated THP-1 cells. The mRNA levels of pro-inflammatory cytokine were elevated upon CL075 stimulation in macrophages compared to monocytes. Thus, TLR7 and TLR8 might modulate different immune responses in monocytes and macrophages.
Collapse
Affiliation(s)
- Hock-Liew Eng
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 833, Taiwan.
| | - Yuan-Ying Hsu
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 833, Taiwan
| | - Tsun-Mei Lin
- Department of Medical Research, E-DA Hospital/I-Shou University, Kaohsiung, 824, Taiwan; Department of Medical Laboratory Science, I-Shou University, Kaohsiung, 824, Taiwan.
| |
Collapse
|
100
|
Alivernini S, Tolusso B, Ferraccioli G, Gremese E, Kurowska-Stolarska M, McInnes IB. Driving chronicity in rheumatoid arthritis: perpetuating role of myeloid cells. Clin Exp Immunol 2018; 193:13-23. [PMID: 29315512 PMCID: PMC6038003 DOI: 10.1111/cei.13098] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/19/2017] [Accepted: 12/28/2017] [Indexed: 12/11/2022] Open
Abstract
Acute inflammation is a complex and tightly regulated homeostatic process that includes leucocyte migration from the vasculature into tissues to eliminate the pathogen/injury, followed by a pro‐resolving response promoting tissue repair. However, if inflammation is uncontrolled as in chronic diseases such as rheumatoid arthritis (RA), it leads to tissue damage and disability. Synovial tissue inflammation in RA patients is maintained by sustained activation of multiple inflammatory positive‐feedback regulatory pathways in a variety of cells, including myeloid cells. In this review, we will highlight recent evidence uncovering biological mechanisms contributing to the aberrant activation of myeloid cells that contributes to perpetuation of inflammation in RA, and discuss emerging data on anti‐inflammatory mediators contributing to sustained remission that may inform a novel category of therapeutic targets.
Collapse
Affiliation(s)
- S Alivernini
- Institute of Rheumatology, Fondazione Policlinico Universitario A. Gemelli - Catholic University of the Sacred Heart, Rome, Italy
| | - B Tolusso
- Institute of Rheumatology, Fondazione Policlinico Universitario A. Gemelli - Catholic University of the Sacred Heart, Rome, Italy
| | - G Ferraccioli
- Institute of Rheumatology, Fondazione Policlinico Universitario A. Gemelli - Catholic University of the Sacred Heart, Rome, Italy
| | - E Gremese
- Institute of Rheumatology, Fondazione Policlinico Universitario A. Gemelli - Catholic University of the Sacred Heart, Rome, Italy
| | - M Kurowska-Stolarska
- Institute of Infection, Immunity and Inflammation, University of Glasgow.,Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), Glasgow, UK
| | - I B McInnes
- Institute of Infection, Immunity and Inflammation, University of Glasgow.,Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), Glasgow, UK
| |
Collapse
|