51
|
Selenius E, Sigurdarson AE, Schmerwitz YLA, Levi G. Orbital-Optimized Versus Time-Dependent Density Functional Calculations of Intramolecular Charge Transfer Excited States. J Chem Theory Comput 2024; 20:3809-3822. [PMID: 38695313 DOI: 10.1021/acs.jctc.3c01319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
The performance of time-independent, orbital-optimized calculations of excited states is assessed with respect to charge transfer excitations in organic molecules in comparison to the linear-response time-dependent density functional theory (TD-DFT) approach. A direct optimization method to converge on saddle points of the electronic energy surface is used to carry out calculations with the local density approximation (LDA) and the generalized gradient approximation (GGA) functionals PBE and BLYP for a set of 27 excitations in 15 molecules. The time-independent approach is fully variational and provides a relaxed excited state electron density from which the extent of charge transfer is quantified. The TD-DFT calculations are generally found to provide larger charge transfer distances compared to the orbital-optimized calculations, even when including orbital relaxation effects with the Z-vector method. While the error on the excitation energy relative to theoretical best estimates is found to increase with the extent of charge transfer up to ca. -2 eV for TD-DFT, no correlation is observed for the orbital-optimized approach. The orbital-optimized calculations with the LDA and the GGA functionals provide a mean absolute error of ∼0.7 eV, outperforming TD-DFT with both local and global hybrid functionals for excitations with a long-range charge transfer character. Orbital-optimized calculations with the global hybrid functional B3LYP and the range-separated hybrid functional CAM-B3LYP on a selection of states with short- and long-range charge transfer indicate that inclusion of exact exchange has a small effect on the charge transfer distance, while it significantly improves the excitation energy, with the best-performing functional CAM-B3LYP providing an absolute error typically around 0.15 eV.
Collapse
Affiliation(s)
- Elli Selenius
- Science Institute of the University of Iceland, Reykjavík 107, Iceland
| | | | | | - Gianluca Levi
- Science Institute of the University of Iceland, Reykjavík 107, Iceland
| |
Collapse
|
52
|
Büchner C, Kubitza N, Malik AM, Jamboretz J, Riaz AA, Zhu Y, Schlueter C, McCartney MR, Smith DJ, Regoutz A, Rohrer J, Birkel CS. Chemical Conversions within the Mo-Ga-C System: Layered Solids with Variable Ga Content. Inorg Chem 2024; 63:7725-7734. [PMID: 38623051 DOI: 10.1021/acs.inorgchem.4c00107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Layered carbides are fascinating compounds due to their enormous structural and chemical diversity, as well as their potential to possess useful and tunable functional properties. Their preparation, however, is challenging and forces synthesis scientists to develop creative and innovative strategies to access high-quality materials. One unique compound among carbides is Mo2Ga2C. Its structure is related to the large and steadily growing family of 211 MAX phases that crystallize in a hexagonal structure (space group P63/mmc) with alternating layers of edge-sharing M6X octahedra and layers of the A-element. Mo2Ga2C also crystallizes in the same space group, with the difference that the A-element layer is occupied by two A-elements, here Ga, that sit right on top of each other (hence named "221" compound). Here, we propose that the Ga content in this compound is variable between 2:2, 2:1, and 2: ≤1 (and 2:0) Mo/Ga ratios. We demonstrate that one Ga layer can be selectively removed from Mo2Ga2C without jeopardizing the hexagonal P63/mmc structure. This is realized by chemical treatment of the 221 phase Mo2Ga2C with a Lewis acid, leading to the "conventional" 211 MAX phase Mo2GaC. Upon further reaction with CuCl2, more Ga is removed and replaced with Cu (instead of fully exfoliating into the Ga-free Mo2CTx MXene), leading to Mo2Ga1-xCuxC still crystallizing with space group P63/mmc, however, with a significantly larger c-lattice parameter. Furthermore, 211 Mo2GaC can be reacted with Ga to recover the initial 221 Mo2Ga2C. All three reaction pathways have not been reported previously and are supported by powder X-ray diffraction (PXRD), electron microscopy, X-ray spectroscopy, and density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Carina Büchner
- Department of Chemistry and Biochemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Niels Kubitza
- Department of Chemistry and Biochemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Ali M Malik
- Institute of Materials Science, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - John Jamboretz
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85281, United States
| | - Aysha A Riaz
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Yujiang Zhu
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | | | - Martha R McCartney
- Department of Physics, Arizona State University, Tempe, Arizona 85281, United States
| | - David J Smith
- Department of Physics, Arizona State University, Tempe, Arizona 85281, United States
| | - Anna Regoutz
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Jochen Rohrer
- Institute of Materials Science, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Christina S Birkel
- Department of Chemistry and Biochemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85281, United States
| |
Collapse
|
53
|
Nguyen M, Duong T, Neuhauser D. Time-dependent density functional theory with the orthogonal projector augmented wave method. J Chem Phys 2024; 160:144101. [PMID: 38587220 DOI: 10.1063/5.0193343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/21/2024] [Indexed: 04/09/2024] Open
Abstract
The projector augmented wave (PAW) method of Blöchl linearly maps smooth pseudo wavefunctions to the highly oscillatory all-electron DFT orbitals. Compared to norm-conserving pseudopotentials (NCPP), PAW has the advantage of lower kinetic energy cutoffs and larger grid spacing at the cost of having to solve for non-orthogonal wavefunctions. We earlier developed orthogonal PAW (OPAW) to allow the use of PAW when orthogonal wavefunctions are required. In OPAW, the pseudo wavefunctions are transformed through the efficient application of powers of the PAW overlap operator with essentially no extra cost compared to NCPP methods. Previously, we applied OPAW to DFT. Here, we take the first step to make OPAW viable for post-DFT methods by implementing it in real-time time-dependent (TD) DFT. Using fourth-order Runge-Kutta for the time-propagation, we compare calculations of absorption spectra for various organic and biological molecules and show that very large grid spacings are sufficient, 0.6-0.7 bohr in OPAW-TDDFT rather than the 0.4-0.5 bohr used in traditional NCPP-TDDFT calculations. This reduces the memory and propagation costs by around a factor of 3. Our method would be directly applicable to any post-DFT methods that require time-dependent propagations such as the GW approximation and the Bethe-Salpeter equation.
Collapse
Affiliation(s)
- Minh Nguyen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | - Tim Duong
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | - Daniel Neuhauser
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
54
|
Van den Bossche M. Three-Center Tight-Binding Together with Multipolar Auxiliary Functions. J Chem Theory Comput 2024; 20:2538-2550. [PMID: 38483273 DOI: 10.1021/acs.jctc.4c00018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
We present an ab initio tight-binding method that allows to improve on the effective potential and minimal basis approximations employed in semiempirical calculations. Three-center expansions are used to evaluate the zeroth-order Hamiltonian matrix elements and repulsive energy terms in the spirit of the Horsfield method. Self-consistency is handled by expanding atomic orbital products in an auxiliary basis following the work of Giese and York, combined with a two-center expansion of the exchange-correlation kernels. Together with nonminimal main basis sets (double-ζ plus polarization), we show that the resulting method trades a modest amount of accuracy for a significant gain in speed, compared to that of numerical atomic orbital density functional theory, in calculations on small molecules, bulk compounds, and metal nanoclusters.
Collapse
|
55
|
Mortensen JJ, Larsen AH, Kuisma M, Ivanov AV, Taghizadeh A, Peterson A, Haldar A, Dohn AO, Schäfer C, Jónsson EÖ, Hermes ED, Nilsson FA, Kastlunger G, Levi G, Jónsson H, Häkkinen H, Fojt J, Kangsabanik J, Sødequist J, Lehtomäki J, Heske J, Enkovaara J, Winther KT, Dulak M, Melander MM, Ovesen M, Louhivuori M, Walter M, Gjerding M, Lopez-Acevedo O, Erhart P, Warmbier R, Würdemann R, Kaappa S, Latini S, Boland TM, Bligaard T, Skovhus T, Susi T, Maxson T, Rossi T, Chen X, Schmerwitz YLA, Schiøtz J, Olsen T, Jacobsen KW, Thygesen KS. GPAW: An open Python package for electronic structure calculations. J Chem Phys 2024; 160:092503. [PMID: 38450733 DOI: 10.1063/5.0182685] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/15/2024] [Indexed: 03/08/2024] Open
Abstract
We review the GPAW open-source Python package for electronic structure calculations. GPAW is based on the projector-augmented wave method and can solve the self-consistent density functional theory (DFT) equations using three different wave-function representations, namely real-space grids, plane waves, and numerical atomic orbitals. The three representations are complementary and mutually independent and can be connected by transformations via the real-space grid. This multi-basis feature renders GPAW highly versatile and unique among similar codes. By virtue of its modular structure, the GPAW code constitutes an ideal platform for the implementation of new features and methodologies. Moreover, it is well integrated with the Atomic Simulation Environment (ASE), providing a flexible and dynamic user interface. In addition to ground-state DFT calculations, GPAW supports many-body GW band structures, optical excitations from the Bethe-Salpeter Equation, variational calculations of excited states in molecules and solids via direct optimization, and real-time propagation of the Kohn-Sham equations within time-dependent DFT. A range of more advanced methods to describe magnetic excitations and non-collinear magnetism in solids are also now available. In addition, GPAW can calculate non-linear optical tensors of solids, charged crystal point defects, and much more. Recently, support for graphics processing unit (GPU) acceleration has been achieved with minor modifications to the GPAW code thanks to the CuPy library. We end the review with an outlook, describing some future plans for GPAW.
Collapse
Affiliation(s)
- Jens Jørgen Mortensen
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Ask Hjorth Larsen
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Mikael Kuisma
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Aleksei V Ivanov
- Riverlane Ltd., St Andrews House, 59 St Andrews Street, Cambridge CB2 3BZ, United Kingdom
| | - Alireza Taghizadeh
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Andrew Peterson
- School of Engineering, Brown University, Providence, Rhode Island 02912, USA
| | - Anubhab Haldar
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, USA
| | - Asmus Ougaard Dohn
- Department of Physics, Technical University of Denmark, 2800 Lyngby, Denmark and Science Institute and Faculty of Physical Sciences, VR-III, University of Iceland, Reykjavík 107, Iceland
| | - Christian Schäfer
- Department of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Elvar Örn Jónsson
- Science Institute and Faculty of Physical Sciences, University of Iceland, VR-III, 107 Reykjavík, Iceland
| | - Eric D Hermes
- Quantum-Si, 29 Business Park Drive, Branford, Connecticut 06405, USA
| | | | - Georg Kastlunger
- CatTheory, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Gianluca Levi
- Science Institute and Faculty of Physical Sciences, University of Iceland, VR-III, 107 Reykjavík, Iceland
| | - Hannes Jónsson
- Science Institute and Faculty of Physical Sciences, University of Iceland, VR-III, 107 Reykjavík, Iceland
| | - Hannu Häkkinen
- Departments of Physics and Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Jakub Fojt
- Department of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Jiban Kangsabanik
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Joachim Sødequist
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Jouko Lehtomäki
- Department of Applied Physics, Aalto University, P.O. Box 11100, 00076 Aalto, Finland
| | - Julian Heske
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Jussi Enkovaara
- CSC-IT Center for Science Ltd., P.O. Box 405, FI-02101 Espoo, Finland
| | - Kirsten Trøstrup Winther
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Marcin Dulak
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Marko M Melander
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Martin Ovesen
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Martti Louhivuori
- CSC-IT Center for Science Ltd., P.O. Box 405, FI-02101 Espoo, Finland
| | - Michael Walter
- FIT Freiburg Centre for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Morten Gjerding
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Olga Lopez-Acevedo
- Biophysics of Tropical Diseases, Max Planck Tandem Group, University of Antioquia UdeA, 050010 Medellin, Colombia
| | - Paul Erhart
- Department of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Robert Warmbier
- School of Physics and Mandelstam Institute for Theoretical Physics, University of the Witwatersrand, 1 Jan Smuts Avenue, 2001 Johannesburg, South Africa
| | - Rolf Würdemann
- Freiburger Materialforschungszentrum, Universität Freiburg, Stefan-Meier-Straße 21, D-79104 Freiburg, Germany
| | - Sami Kaappa
- Computational Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Simone Latini
- Nanomade, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Tara Maria Boland
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Thomas Bligaard
- Department of Energy Conversion and Storage, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Thorbjørn Skovhus
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Toma Susi
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Tristan Maxson
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, USA
| | - Tuomas Rossi
- CSC-IT Center for Science Ltd., P.O. Box 405, FI-02101 Espoo, Finland
| | - Xi Chen
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu 730000, China
| | | | - Jakob Schiøtz
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Thomas Olsen
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | | | | |
Collapse
|
56
|
Anoshkin SS, Sapozhnikova EV, Feng Y, Ju Y, Pavlov A, Polozkov RG, Yulin A, Zhong H, Pushkarev AP. Blue-Emitting Cs(Pb,Cd)Br 3 Nanocrystals Resistant to Electric Field-Induced Ion Segregation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11656-11664. [PMID: 38407031 DOI: 10.1021/acsami.3c18122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
High-performance solution-processed perovskite light-emitting diodes (PeLEDs) have emerged as a good alternative to the well-established technology of epitaxially grown AIIIBV semiconductor alloys. Colloidal cesium lead halide perovskite nanocrystals (CsPbX3 NCs) exhibit room-temperature excitonic emission that can be spectrally tuned across the entire visible range by varying the content of different halogens at the X-site. Therefore, they present a promising platform for full color display manufacturing. Engineering of highly efficient PeLEDs based on bromide and iodide perovskite NCs emitting green and red light, respectively, does not face major challenges except low operational stability of the devices. Meanwhile, mixed-halide counterparts demonstrating blue luminescence suffer from the electric field-induced phase separation (ion segregation) phenomenon described by the rearrangement (demixing) of mobile halide ions in the crystal lattice. This phenomenon results in an undesirable temporal redshift of the electroluminescence spectrum. However, to realize spectral tuning and, at the same time, address the issue of ion segregation less mobile Cd2+ ion could be introduced in the lattice at Pb2+-site that leads to the band gap opening. Herein, we report an original synthesis of CsPb0.88Cd0.12Br3 perovskite NCs and study their structural and optical properties, in particular electroluminescence. Multilayer PeLEDs based on the obtained NCs exhibit single-peak emission centered at 485 nm along with no noticeable change in the spectral line shape for 30 min which is a significant improvement of the device performance.
Collapse
Affiliation(s)
- Sergey S Anoshkin
- School of Physics and Engineering, ITMO University, Kronverksky Pr. 49, St. Petersburg 197101, Russia
| | - Elizaveta V Sapozhnikova
- School of Physics and Engineering, ITMO University, Kronverksky Pr. 49, St. Petersburg 197101, Russia
| | - Yibo Feng
- Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Materials Science and Engineering, Beijing Institute of Technology, 5 Zhongguancun South Street, Beijing 100081, China
| | - Yangyang Ju
- Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing 100081, China
| | - Alexander Pavlov
- St. Petersburg Academic University, St. Petersburg 194021, Russia
- Peter the Great St.Petersburg Polytechnic University, St.Petersburg 195251, Russia
| | - Roman G Polozkov
- St. Petersburg Academic University, St. Petersburg 194021, Russia
| | - Alexey Yulin
- School of Physics and Engineering, ITMO University, Kronverksky Pr. 49, St. Petersburg 197101, Russia
| | - Haizheng Zhong
- Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Materials Science and Engineering, Beijing Institute of Technology, 5 Zhongguancun South Street, Beijing 100081, China
| | - Anatoly P Pushkarev
- School of Physics and Engineering, ITMO University, Kronverksky Pr. 49, St. Petersburg 197101, Russia
| |
Collapse
|
57
|
Zhang H, Liu S, You J, Liu C, Zheng S, Lu Z, Wang T, Zheng N, Shao B. Overcoming the barrier of orbital-free density functional theory for molecular systems using deep learning. NATURE COMPUTATIONAL SCIENCE 2024; 4:210-223. [PMID: 38467870 DOI: 10.1038/s43588-024-00605-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/07/2024] [Indexed: 03/13/2024]
Abstract
Orbital-free density functional theory (OFDFT) is a quantum chemistry formulation that has a lower cost scaling than the prevailing Kohn-Sham DFT, which is increasingly desired for contemporary molecular research. However, its accuracy is limited by the kinetic energy density functional, which is notoriously hard to approximate for non-periodic molecular systems. Here we propose M-OFDFT, an OFDFT approach capable of solving molecular systems using a deep learning functional model. We build the essential non-locality into the model, which is made affordable by the concise density representation as expansion coefficients under an atomic basis. With techniques to address unconventional learning challenges therein, M-OFDFT achieves a comparable accuracy to Kohn-Sham DFT on a wide range of molecules untouched by OFDFT before. More attractively, M-OFDFT extrapolates well to molecules much larger than those seen in training, which unleashes the appealing scaling of OFDFT for studying large molecules including proteins, representing an advancement of the accuracy-efficiency trade-off frontier in quantum chemistry.
Collapse
Affiliation(s)
- He Zhang
- National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, National Engineering Research Center for Visual Information and Applications, and Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an, China
- Microsoft Research AI4Science, Beijing, China
| | - Siyuan Liu
- Microsoft Research AI4Science, Beijing, China
| | | | - Chang Liu
- Microsoft Research AI4Science, Beijing, China.
| | | | - Ziheng Lu
- Microsoft Research AI4Science, Beijing, China
| | - Tong Wang
- Microsoft Research AI4Science, Beijing, China
| | - Nanning Zheng
- National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, National Engineering Research Center for Visual Information and Applications, and Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an, China
| | - Bin Shao
- Microsoft Research AI4Science, Beijing, China.
| |
Collapse
|
58
|
Mokkath JH. Plasmon induced hot carrier distribution in Ag 20 -CO composite. Chemphyschem 2024; 25:e202300602. [PMID: 38185742 DOI: 10.1002/cphc.202300602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/14/2023] [Accepted: 01/05/2024] [Indexed: 01/09/2024]
Abstract
The interaction between plasmons and the molecules leads to the transfer of plasmon-induced hot carriers, presenting innovative opportunities for controlling chemical reactions on sub-femtosecond timescales. Through real-time time-dependent density functional theory simulations, we have investigated the enhancement of the electric field due to plasmon excitation and the subsequent generation and transfer of plasmon-induced hot carriers in a linear atomic chain of Ag20 and an Ag20 -CO composite system. By applying a Gaussian laser pulse tuned to align with the plasmon frequency, we observe a plasmon-induced transfer of hot electrons from the occupied states of Ag to the unoccupied molecular orbitals of CO. Remarkably, there is a pronounced accumulation of hot electrons and hot holes on the C and O atoms. This phenomenon arises from the electron migration from the inter-nuclear regions of the C-O bond towards the individual C and O atoms. The insights garnered from our study hold the potential to drive advancements in the development of more efficient systems for catalytic processes empowered by plasmonic interactions.
Collapse
Affiliation(s)
- Junais Habeeb Mokkath
- Quantum Nanophotonics Simulations Lab, Department of Physics, Kuwait College of Science And Technology, Doha Area, 7th Ring Road, P.O. Box, 27235, Kuwait
| |
Collapse
|
59
|
Fojt J, Rossi TP, Kumar PV, Erhart P. Tailoring Hot-Carrier Distributions of Plasmonic Nanostructures through Surface Alloying. ACS NANO 2024; 18:6398-6405. [PMID: 38363179 PMCID: PMC10906084 DOI: 10.1021/acsnano.3c11418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/17/2024]
Abstract
Alloyed metal nanoparticles are a promising platform for plasmonically enabled hot-carrier generation, which can be used to drive photochemical reactions. Although the non-plasmonic component in these systems has been investigated for its potential to enhance catalytic activity, its capacity to affect the photochemical process favorably has been underexplored by comparison. Here, we study the impact of surface alloy species and concentration on hot-carrier generation in Ag nanoparticles. By first-principles simulations, we photoexcite the localized surface plasmon, allow it to dephase, and calculate spatially and energetically resolved hot-carrier distributions. We show that the presence of non-noble species in the topmost surface layer drastically enhances hot-hole generation at the surface at the expense of hot-hole generation in the bulk, due to the additional d-type states that are introduced to the surface. The energy of the generated holes can be tuned by choice of the alloyant, with systematic trends across the d-band block. Already low surface alloy concentrations have a large impact, with a saturation of the enhancement effect typically close to 75% of a monolayer. Hot-electron generation at the surface is hindered slightly by alloying, but here a judicious choice of the alloy composition allows one to strike a balance between hot electrons and holes. Our work underscores the promise of utilizing multicomponent nanoparticles to achieve enhanced control over plasmonic catalysis and provides guidelines for how hot-carrier distributions can be tailored by designing the electronic structure of the surface through alloying.
Collapse
Affiliation(s)
- Jakub Fojt
- Department
of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Tuomas P. Rossi
- Department
of Applied Physics, Aalto University, FI-00076 Aalto, Finland
| | - Priyank V. Kumar
- School
of Chemical Engineering, The University
of New South Wales, 2052 Sydney, NSW, Australia
| | - Paul Erhart
- Department
of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| |
Collapse
|
60
|
Kato T, Tanaka T, Uchida K. Detection of PPB-Level H 2S Concentrations in Exhaled Breath Using Au Nanosheet Sensors with Small Variability, High Selectivity, and Long-Term Stability. ACS Sens 2024; 9:708-716. [PMID: 38336360 PMCID: PMC10898455 DOI: 10.1021/acssensors.3c01944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 02/12/2024]
Abstract
The continuous monitoring of hydrogen sulfide (H2S) in exhaled breath enables the detection of health issues such as halitosis and gastrointestinal problems. However, H2S sensors with high selectivity and parts per billion-level detection capability, which are essential for breath analysis, and facile fabrication processes for their integration with other devices are lacking. In this study, we demonstrated Au nanosheet H2S sensors with high selectivity, ppb-level detection capability, and high uniformity by optimizing their fabrication processes: (1) insertion of titanium nitride (TiN) as an adhesion layer to prevent Au agglomeration on the oxide substrate and (2) N2 annealing to improve nanosheet crystallinity. The fabricated Au nanosheets successfully detected H2S at concentrations as low as 5.6 ppb, and the estimated limit of detection was 0.5 ppb, which is superior to that of the human nose (8-13 ppb). In addition, the sensors detected H2S in the exhaled breath of simulated patients at concentrations as low as 175 ppb while showing high selectivity against interfering molecules, such as H2, alcohols, and humidity. Since Au nanosheets with uniform sensor characteristics enable easy device integration, the proposed sensor will be useful for facile health checkups based on breath analysis upon its integration into mobile devices.
Collapse
Affiliation(s)
- Taro Kato
- Department of Materials Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Takahisa Tanaka
- Department of Materials Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Ken Uchida
- Department of Materials Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
61
|
Qu M, Zhang FQ, Zhang GL, Qiao MM, Zhao LX, Li SL, Walter M, Zhang XM. Cocrystallization-driven Formation of fcc-based Ag 110 Nanocluster with Chinese Triple Luban Lock Shape. Angew Chem Int Ed Engl 2024; 63:e202318390. [PMID: 38117040 DOI: 10.1002/anie.202318390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Luban locks with mortise and tenon structure have structural diversity and architectural stability, and it is extremely challenging to synthesize Luban lock-like structures at the molecular level. In this work, we report the cocrystallization of two structurally related atom-precise fcc silver nanoclusters Ag110 (SPhF)48 (PPh3 )12 (Ag110 ) and Ag14 (μ6 -S)(SPhF)12 (PPh3 )8 (Ag14 ). It is worth noting that the Ag110 cluster is the first compound to simulate the complex Luban lock structure at the molecular level. Meanwhile, Ag110 is the largest known fcc-based silver nanocluster, so far, there is no precedent for fcc silver nanocluster with more than 100 silver atoms. DFT calculations show that Ag110 is a 58-electron superatom with an electronically closed shell1S2 1P6 1D10 2S2 1F14 2P6 1G18 . Ag110 ⋅Ag14 can rapidly catalyze the reduction of 4-nitrophenol within 4 minutes. In addition, Ag110 presents clear structural evidence to reveal the critical size and mechanism of the transformation of metal core from fcc stacking to quasi-spherical superatom. This research work provides an important structural model for studying the nucleation mechanism and structural assembly of silver nanoclusters.
Collapse
Affiliation(s)
- Mei Qu
- Key Laboratory of Magnetic Molecules and Magnetic Information of Ministry of Education, School of Chemistry and Material Science, Shanxi Normal University, Taiyuan, Shanxi, 030031, P. R. China
| | - Fu-Qiang Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information of Ministry of Education, School of Chemistry and Material Science, Shanxi Normal University, Taiyuan, Shanxi, 030031, P. R. China
| | - Gai-Li Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information of Ministry of Education, School of Chemistry and Material Science, Shanxi Normal University, Taiyuan, Shanxi, 030031, P. R. China
| | - Miao-Miao Qiao
- Key Laboratory of Magnetic Molecules and Magnetic Information of Ministry of Education, School of Chemistry and Material Science, Shanxi Normal University, Taiyuan, Shanxi, 030031, P. R. China
| | - Li-Xiang Zhao
- Key Laboratory of Magnetic Molecules and Magnetic Information of Ministry of Education, School of Chemistry and Material Science, Shanxi Normal University, Taiyuan, Shanxi, 030031, P. R. China
| | - Shi-Li Li
- Key Laboratory of Magnetic Molecules and Magnetic Information of Ministry of Education, School of Chemistry and Material Science, Shanxi Normal University, Taiyuan, Shanxi, 030031, P. R. China
| | - Michael Walter
- FIT Freiburg Centre for Interactive Materials and Bioinspired Technologies, University of Freiburg, 79110, Freiburg, Germany
- Cluster of Excellence livMatS @ FIT, 79110, Freiburg, Germany
- Fraunhofer IWM, MikroTribologie Centrum μTC, 79108, Freiburg, Germany
| | - Xian-Ming Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information of Ministry of Education, School of Chemistry and Material Science, Shanxi Normal University, Taiyuan, Shanxi, 030031, P. R. China
- College of Chemistry, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, P. R. China
| |
Collapse
|
62
|
Zhao X, Cheng H, Chen X, Zhang Q, Li C, Xie J, Marinkovic N, Ma L, Zheng JC, Sasaki K. Multiple Metal-Nitrogen Bonds Synergistically Boosting the Activity and Durability of High-Entropy Alloy Electrocatalysts. J Am Chem Soc 2024; 146:3010-3022. [PMID: 38278519 PMCID: PMC10859931 DOI: 10.1021/jacs.3c08177] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 01/28/2024]
Abstract
The development of Pt-based catalysts for use in fuel cells that meet performance targets of high activity, maximized stability, and low cost remains a huge challenge. Herein, we report a nitrogen (N)-doped high-entropy alloy (HEA) electrocatalyst that consists of a Pt-rich shell and a N-doped PtCoFeNiCu core on a carbon support (denoted as N-Pt/HEA/C). The N-Pt/HEA/C catalyst showed a high mass activity of 1.34 A mgPt-1 at 0.9 V for the oxygen reduction reaction (ORR) in rotating disk electrode (RDE) testing, which substantially outperformed commercial Pt/C and most of the other binary/ternary Pt-based catalysts. The N-Pt/HEA/C catalyst also demonstrated excellent stability in both RDE and membrane electrode assembly (MEA) testing. Using operando X-ray absorption spectroscopy (XAS) measurements and theoretical calculations, we revealed that the enhanced ORR activity of N-Pt/HEA/C originated from the optimized adsorption energy of intermediates, resulting in the tailored electronic structure formed upon N-doping. Furthermore, we showed that the multiple metal-nitrogen bonds formed synergistically improved the corrosion resistance of the 3d transition metals and enhanced the ORR durability.
Collapse
Affiliation(s)
- Xueru Zhao
- Chemistry
Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Hao Cheng
- Department
of Applied Physics, The Hong Kong Polytechnic
University, Hung Hom, Kowloon, Hong Kong, China
| | - Xiaobo Chen
- Department
of Mechanical Engineering & Materials Science and Engineering
Program, State University of New York at
Binghamton, Binghamton, New York 13902, United States
| | - Qi Zhang
- Department
of Mechanical and Energy Engineering, Purdue School of Engineering
and Technology, Indiana University-Purdue
University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Chenzhao Li
- Department
of Mechanical and Energy Engineering, Purdue School of Engineering
and Technology, Indiana University-Purdue
University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Jian Xie
- Department
of Mechanical and Energy Engineering, Purdue School of Engineering
and Technology, Indiana University-Purdue
University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Nebojsa Marinkovic
- Department
of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Lu Ma
- National
Synchrotron Light Source II, Brookhaven
National Laboratory, Upton, New York 11973, United States
| | - Jin-Cheng Zheng
- Department
of Physics and Fujian Provincial Key Laboratory of Theoretical and
Computational Chemistry, Xiamen University, Xiamen 361005, China
- Department
of Physics and Department of New Energy Science and Engineering, Xiamen University Malaysia, Sepang, Selangor 43900, Malaysia
| | - Kotaro Sasaki
- Chemistry
Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
63
|
Patrick CE, Huang Y, Lewis LH, Staunton JB. Theory of Defect-Induced Crystal Field Perturbations in Rare-Earth Magnets. PHYSICAL REVIEW LETTERS 2024; 132:056703. [PMID: 38364145 DOI: 10.1103/physrevlett.132.056703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/20/2023] [Indexed: 02/18/2024]
Abstract
We present a theory describing the single-ion anisotropy of rare-earth (RE) magnets in the presence of point defects. Taking the RE-lean 1∶12 magnet class as a prototype, we use first-principles calculations to show how the introduction of Ti substitutions into SmFe_{12} perturbs the crystal field, generating new coefficients due to the lower symmetry of the RE environment. We then demonstrate that these perturbations can be described extremely efficiently using a screened point charge model. We provide analytical expressions for the anisotropy energy that can be straightforwardly implemented in atomistic spin dynamics simulations, meaning that such simulations can be carried out for an arbitrary arrangement of point defects. The significant crystal field perturbations calculated here demonstrate that a sample that is single phase from a structural point of view can nonetheless have a dramatically varying anisotropy profile at the atomistic level if there is compositional disorder, which may influence localized magnetic objects like domain walls or skyrmions.
Collapse
Affiliation(s)
- Christopher E Patrick
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - Yixuan Huang
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - Laura H Lewis
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, USA
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, USA
| | - Julie B Staunton
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
64
|
Abdellah AM, Ismail F, Siig OW, Yang J, Andrei CM, DiCecco LA, Rakhsha A, Salem KE, Grandfield K, Bassim N, Black R, Kastlunger G, Soleymani L, Higgins D. Impact of palladium/palladium hydride conversion on electrochemical CO 2 reduction via in-situ transmission electron microscopy and diffraction. Nat Commun 2024; 15:938. [PMID: 38296966 PMCID: PMC10831057 DOI: 10.1038/s41467-024-45096-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/15/2024] [Indexed: 02/02/2024] Open
Abstract
Electrochemical conversion of CO2 offers a sustainable route for producing fuels and chemicals. Pd-based catalysts are effective for converting CO2 into formate at low overpotentials and CO/H2 at high overpotentials, while undergoing poorly understood morphology and phase structure transformations under reaction conditions that impact performance. Herein, in-situ liquid-phase transmission electron microscopy and select area diffraction measurements are applied to track the morphology and Pd/PdHx phase interconversion under reaction conditions as a function of electrode potential. These studies identify the degradation mechanisms, including poisoning and physical structure changes, occurring in PdHx/Pd electrodes. Constant potential density functional theory calculations are used to probe the reaction mechanisms occurring on the PdHx structures observed under reaction conditions. Microkinetic modeling reveals that the intercalation of *H into Pd is essential for formate production. However, the change in electrochemical CO2 conversion selectivity away from formate and towards CO/H2 at increasing overpotentials is due to electrode potential dependent changes in the reaction energetics and not a consequence of morphology or phase structure changes.
Collapse
Affiliation(s)
- Ahmed M Abdellah
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
| | - Fatma Ismail
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
| | - Oliver W Siig
- CatTheory, Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jie Yang
- Department of Materials Science and Engineering, McMaster University, Hamilton, ON, Canada
| | - Carmen M Andrei
- Canadian Centre for Electron Microscopy, McMaster University, Hamilton, Canada
| | | | - Amirhossein Rakhsha
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
| | - Kholoud E Salem
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
| | - Kathryn Grandfield
- Department of Materials Science and Engineering, McMaster University, Hamilton, ON, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, Canada
| | - Nabil Bassim
- Department of Materials Science and Engineering, McMaster University, Hamilton, ON, Canada
- Canadian Centre for Electron Microscopy, McMaster University, Hamilton, Canada
| | - Robert Black
- National Research Council of Canada, Energy, Mining, and Environment Research Centre, Mississauga, ON, Canada
| | - Georg Kastlunger
- CatTheory, Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Leyla Soleymani
- School of Biomedical Engineering, McMaster University, Hamilton, Canada
- Department of Engineering Physics, McMaster University, Hamilton, Canada
| | - Drew Higgins
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada.
- Canadian Centre for Electron Microscopy, McMaster University, Hamilton, Canada.
| |
Collapse
|
65
|
Couce PM, Madsen TK, Plaza-Mayoral E, Kristoffersen HH, Chorkendorff I, Dalby KN, van der Stam W, Rossmeisl J, Escudero-Escribano M, Sebastián-Pascual P. Tailoring the facet distribution on copper with chloride. Chem Sci 2024; 15:1714-1725. [PMID: 38303937 PMCID: PMC10829013 DOI: 10.1039/d3sc05988j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/20/2023] [Indexed: 02/03/2024] Open
Abstract
Electrocatalytic reactions are sensitive to the catalyst surface structure. Therefore, finding methods to determine active surface sites with different geometry is essential to address the structure-electrocatalytic performance relationships. In this work, we propose a simple methodology to tune and quantify the surface structure on copper catalysts. We tailor the distribution and ratio of facets on copper by electrochemically oxidizing and reducing the surface in chloride-rich aqueous solutions. We then address the formation of new facets with voltammetric lead (Pb) underpotential deposition (UPD). We first record the voltammetric lead UPD on different single facets, which have intense peaks at different potential values. We use this data to decouple each facet peak-contribution in the lead (Pb) UPD curves of the tailored and multifaceted copper surfaces and determine the geometry of the active sites. We combine experiments with density functional theory (DFT) calculations to assess the ligand effect of chloride anions on the copper facet distribution during the surface oxidation/electrodeposition treatment. Our experiments and Wulff constructions suggest that chloride preferentially adsorbs on the (310) facet, reducing the number of (111) sites and inducing the growth of (310) or n(100) × (110) domains. Our work provides a tool to correlate active sites with copper geometries, which is needed to assess the structure-performance relationships in electrocatalysis. We also demonstrate an easy method for selectively tailoring the facet distribution of copper, which is essential to design a well-defined nanostructured catalyst.
Collapse
Affiliation(s)
- Pedro Mazaira Couce
- Department of Chemistry, Center for High Entropy Catalysis (CHEAC), University of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| | - Thor Kongstad Madsen
- Department of Chemistry, Center for High Entropy Catalysis (CHEAC), University of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| | - Elena Plaza-Mayoral
- Department of Chemistry, Center for High Entropy Catalysis (CHEAC), University of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| | - Henrik H Kristoffersen
- Department of Chemistry, Center for High Entropy Catalysis (CHEAC), University of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| | - Ib Chorkendorff
- Department of Physics, Surface Physics and Catalysis, Technical University of Denmark Fysikvej DK-2800 Lyngby Denmark
| | | | - Ward van der Stam
- Utrecht University, Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science Netherlands
| | - Jan Rossmeisl
- Department of Chemistry, Center for High Entropy Catalysis (CHEAC), University of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| | - María Escudero-Escribano
- Department of Chemistry, Center for High Entropy Catalysis (CHEAC), University of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, Barcelona Institute of Science and Technology UAB Campus, 08193 Bellaterra Barcelona Spain
- ICREA Pg. Lluís Companys 23 08010 Barcelona Spain
| | - Paula Sebastián-Pascual
- Department of Chemistry, Center for High Entropy Catalysis (CHEAC), University of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| |
Collapse
|
66
|
Pakdel S, Rasmussen A, Taghizadeh A, Kruse M, Olsen T, Thygesen KS. High-throughput computational stacking reveals emergent properties in natural van der Waals bilayers. Nat Commun 2024; 15:932. [PMID: 38296946 PMCID: PMC10831070 DOI: 10.1038/s41467-024-45003-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/12/2024] [Indexed: 02/02/2024] Open
Abstract
Stacking of two-dimensional (2D) materials has emerged as a facile strategy for realising exotic quantum states of matter and engineering electronic properties. Yet, developments beyond the proof-of-principle level are impeded by the vast size of the configuration space defined by layer combinations and stacking orders. Here we employ a density functional theory (DFT) workflow to calculate interlayer binding energies of 8451 homobilayers created by stacking 1052 different monolayers in various configurations. Analysis of the stacking orders in 247 experimentally known van der Waals crystals is used to validate the workflow and determine the criteria for realisable bilayers. For the 2586 most stable bilayer systems, we calculate a range of electronic, magnetic, and vibrational properties, and explore general trends and anomalies. We identify an abundance of bistable bilayers with stacking order-dependent magnetic or electrical polarisation states making them candidates for slidetronics applications.
Collapse
Affiliation(s)
- Sahar Pakdel
- CAMD, Computational Atomic-Scale Materials Design, Department of Physics, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
| | - Asbjørn Rasmussen
- CAMD, Computational Atomic-Scale Materials Design, Department of Physics, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Alireza Taghizadeh
- CAMD, Computational Atomic-Scale Materials Design, Department of Physics, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Mads Kruse
- CAMD, Computational Atomic-Scale Materials Design, Department of Physics, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Thomas Olsen
- CAMD, Computational Atomic-Scale Materials Design, Department of Physics, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Kristian S Thygesen
- CAMD, Computational Atomic-Scale Materials Design, Department of Physics, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
67
|
Americo S, Pakdel S, Thygesen KS. Enhancing Metallicity and Basal Plane Reactivity of 2D Materials via Self-Intercalation. ACS NANO 2024. [PMID: 38290223 DOI: 10.1021/acsnano.3c08117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Intercalation (ic) of metal atoms into the van der Waals (vdW) gap of layered materials constitutes a facile strategy to create materials whose properties can be tuned via the concentration of the intercalated atoms. Here we perform systematic density functional theory calculations to explore various properties of an emergent class of crystalline 2D materials (ic-2D materials) comprising vdW homobilayers with native metal atoms on a sublattice of intercalation sites. From an initial set of 1348 ic-2D materials, generated from 77 vdW homobilayers, we find 95 structures with good thermodynamic stability (formation energy within 200 meV/atom of the convex hull). A significant fraction of the semiconducting host materials are found to undergo an insulator to metal transition upon self-intercalation, with only PdS2, PdSe2, and GeS2 maintaining a finite electronic gap. In five cases, self-intercalation introduces magnetism. In general, self-intercalation is found to promote metallicity and enhance the chemical reactivity on the basal plane. Based on the calculated H binding energy, we find that self-intercalated SnS2 and Hf3Te2 are promising candidates for hydrogen evolution catalysis. All the stable ic-2D structures and their calculated properties can be explored in the open C2DB database.
Collapse
Affiliation(s)
- Stefano Americo
- Computational Atomic-scale Materials Design (CAMD), Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Sahar Pakdel
- Computational Atomic-scale Materials Design (CAMD), Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Kristian Sommer Thygesen
- Computational Atomic-scale Materials Design (CAMD), Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
68
|
Coviello V, Badocco D, Pastore P, Fracchia M, Ghigna P, Martucci A, Forrer D, Amendola V. Accurate prediction of the optical properties of nanoalloys with both plasmonic and magnetic elements. Nat Commun 2024; 15:834. [PMID: 38280888 PMCID: PMC10821890 DOI: 10.1038/s41467-024-45137-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 01/15/2024] [Indexed: 01/29/2024] Open
Abstract
The alloying process plays a pivotal role in the development of advanced multifunctional plasmonic materials within the realm of modern nanotechnology. However, accurate in silico predictions are only available for metal clusters of just a few nanometers, while the support of modelling is required to navigate the broad landscape of components, structures and stoichiometry of plasmonic nanoalloys regardless of their size. Here we report on the accurate calculation and conceptual understanding of the optical properties of metastable alloys of both plasmonic (Au) and magnetic (Co) elements obtained through a tailored laser synthesis procedure. The model is based on the density functional theory calculation of the dielectric function with the Hubbard-corrected local density approximation, the correction for intrinsic size effects and use of classical electrodynamics. This approach is built to manage critical aspects in modelling of real samples, as spin polarization effects due to magnetic elements, short-range order variability, and size heterogeneity. The method provides accurate results also for other magnetic-plasmonic (Au-Fe) and typical plasmonic (Au-Ag) nanoalloys, thus being available for the investigation of several other nanomaterials waiting for assessment and exploitation in fundamental sectors such as quantum optics, magneto-optics, magneto-plasmonics, metamaterials, chiral catalysis and plasmon-enhanced catalysis.
Collapse
Affiliation(s)
- Vito Coviello
- Department of Chemical Sciences, Università di Padova, via Marzolo 1, 35131, Padova, Italy
| | - Denis Badocco
- Department of Chemical Sciences, Università di Padova, via Marzolo 1, 35131, Padova, Italy
| | - Paolo Pastore
- Department of Chemical Sciences, Università di Padova, via Marzolo 1, 35131, Padova, Italy
| | - Martina Fracchia
- University of Pavia, Department of Chemistry, viale Taramelli 16, 27100, Pavia, Italy
- INSTM, National Inter-University Consortium for Materials Science and Technology, Via G. Giusti 9, 50121, Florence, Italy
| | - Paolo Ghigna
- University of Pavia, Department of Chemistry, viale Taramelli 16, 27100, Pavia, Italy
- INSTM, National Inter-University Consortium for Materials Science and Technology, Via G. Giusti 9, 50121, Florence, Italy
| | - Alessandro Martucci
- INSTM, National Inter-University Consortium for Materials Science and Technology, Via G. Giusti 9, 50121, Florence, Italy
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131, Padova, Italy
| | - Daniel Forrer
- Department of Chemical Sciences, Università di Padova, via Marzolo 1, 35131, Padova, Italy.
- CNR - ICMATE, via Marzolo 1, 35131, Padova, Italy.
| | - Vincenzo Amendola
- Department of Chemical Sciences, Università di Padova, via Marzolo 1, 35131, Padova, Italy.
- INSTM, National Inter-University Consortium for Materials Science and Technology, Via G. Giusti 9, 50121, Florence, Italy.
| |
Collapse
|
69
|
Cui Y, Wang J, Li Y, Wu Y, Been E, Zhang Z, Zhou J, Zhang W, Hwang HY, Sinclair R, Cui Y. Twisted epitaxy of gold nanodisks grown between twisted substrate layers of molybdenum disulfide. Science 2024; 383:212-219. [PMID: 38207038 DOI: 10.1126/science.adk5947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/27/2023] [Indexed: 01/13/2024]
Abstract
We expand the concept of epitaxy to a regime of "twisted epitaxy" with the epilayer crystal orientation between two substrates influenced by their relative orientation. We annealed nanometer-thick gold (Au) nanoparticles between two substrates of exfoliated hexagonal molybdenum disulfide (MoS2) with varying orientation of their basal planes with a mutual twist angle ranging from 0° to 60°. Transmission electron microscopy studies show that Au aligns midway between the top and bottom MoS2 when the twist angle of the bilayer is small (<~7°). For larger twist angles, Au has only a small misorientation with the bottom MoS2 that varies approximately sinusoidally with twist angle of the bilayer MoS2. Four-dimensional scanning transmission electron microscopy analysis further reveals a periodic strain variation (<|±0.5%|) in the Au nanodisks associated with the twisted epitaxy, consistent with the Moiré registry of the two MoS2 twisted layers.
Collapse
Affiliation(s)
- Yi Cui
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Jingyang Wang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94305, USA
| | - Yanbin Li
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Yecun Wu
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Emily Been
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Zewen Zhang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Jiawei Zhou
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Wenbo Zhang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Harold Y Hwang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Robert Sinclair
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Yi Cui
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
- Department of Energy Science and Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
70
|
Lu H, Long R. Nonadiabatic Molecular Dynamics with Non-Condon Effect of Charge Carrier Dynamics. J Am Chem Soc 2024; 146:1167-1173. [PMID: 38127733 DOI: 10.1021/jacs.3c12687] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Nonradiative multiphonon transitions play a crucial role in understanding charge carrier dynamics. To capture the non-Condon effect in nonadiabatic molecular dynamics (NA-MD), we develop a simple and accurate method to calculate noncrossing and crossing k-point NA coupling in momentum space on an equal footing and implement it with a trajectory surface hopping algorithm. Multiple k-point MD trajectories can provide sufficient nonzero momentum multiphonons coupled to electrons, and the momentum conservation is maintained during nonvertical electron transition. The simulations of indirect bandgap transition in silicon and intra- and intervalley transitions in graphene show that incorporation of the non-Condon effect is needed to correctly depict these types of charge dynamics. In particular, a hidden process is responsible for the delayed nonradiative electron-hole recombination in silicon: the thermal-assisted rapid trapping of an excited electron at the conduction band minimum by a long-lived higher energy state through a nonvertical transition extends charge carrier lifetime, approaching 1 ns, which is about 1.5 times slower than the direct bandgap recombination. For graphene, intervalley scattering takes place within about 225 fs, which can occur only when the intravalley relaxation proceeds to about 50 fs to gain enough phonon momentum. The intra- and intervalley scattering constitute energy relaxation, which completes within sub-500 fs. All the simulated time scales are in excellent agreement with experiments. The study establishes the underlying mechanisms for a long-lived charge carrier in silicon and valley scattering in graphene and underscores the robustness of the non-Condon approximation NA-MD method, which is suitable for rigid, soft, and large defective systems.
Collapse
Affiliation(s)
- Haoran Lu
- College of Chemistry and Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Run Long
- College of Chemistry and Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
71
|
Moldabekov Z, Schwalbe S, Böhme MP, Vorberger J, Shao X, Pavanello M, Graziani FR, Dornheim T. Bound-State Breaking and the Importance of Thermal Exchange-Correlation Effects in Warm Dense Hydrogen. J Chem Theory Comput 2024; 20:68-78. [PMID: 38133546 PMCID: PMC10782774 DOI: 10.1021/acs.jctc.3c00934] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
Hydrogen at extreme temperatures and pressures is of key relevance for cutting-edge technological applications, with inertial confinement fusion research being a prime example. In addition, it is ubiquitous throughout our universe and naturally occurs in a variety of astrophysical objects. In the present work, we present exact ab initio path integral Monte Carlo (PIMC) results for the electronic density of warm dense hydrogen along a line of constant degeneracy across a broad range of densities. Using the well-known concept of reduced density gradients, we develop a new framework to identify the breaking of bound states due to pressure ionization in bulk hydrogen. Moreover, we use our PIMC results as a reference to rigorously assess the accuracy of a variety of exchange-correlation (XC) functionals in density functional theory calculations for different density regions. Here, a key finding is the importance of thermal XC effects for the accurate description of density gradients in high-energy-density systems. Our exact PIMC test set is freely available online and can be used to guide the development of new methodologies for the simulation of warm dense matter and beyond.
Collapse
Affiliation(s)
- Zhandos Moldabekov
- Center
for Advanced Systems Understanding (CASUS), Görlitz D-02826, Germany
- Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), Dresden D-01328, Germany
| | - Sebastian Schwalbe
- Center
for Advanced Systems Understanding (CASUS), Görlitz D-02826, Germany
- Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), Dresden D-01328, Germany
| | | | - Jan Vorberger
- Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), Dresden D-01328, Germany
| | - Xuecheng Shao
- Department
of Chemistry, Rutgers University, Newark, New Jersey 07102, United States
- Department
of Physics, Rutgers University, Newark, New Jersey 07102, United States
| | - Michele Pavanello
- Department
of Chemistry, Rutgers University, Newark, New Jersey 07102, United States
- Department
of Physics, Rutgers University, Newark, New Jersey 07102, United States
| | - Frank R. Graziani
- Lawrence
Livermore National Laboratory (LLNL), Livermore 94550, California, United States
| | - Tobias Dornheim
- Center
for Advanced Systems Understanding (CASUS), Görlitz D-02826, Germany
- Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), Dresden D-01328, Germany
| |
Collapse
|
72
|
Wessling R, Delgado Andrés R, Morhenn I, Acker P, Maftuhin W, Walter M, Würfel U, Esser B. Phenothiazine-Based Donor-Acceptor Polymers as Multifunctional Materials for Charge Storage and Solar Energy Conversion. Macromol Rapid Commun 2024; 45:e2200699. [PMID: 36333908 DOI: 10.1002/marc.202200699] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/14/2022] [Indexed: 11/06/2022]
Abstract
The increasing energy demand for diverse applications requires new types of devices and materials. Multifunctional materials that can fulfill different roles are of high interest as they can allow fabricating devices that can both convert and store energy. Herein, organic donor-acceptor redox polymers that can function as charge storage materials in batteries and as donor materials in bulk heterojunction (BHJ) photovoltaic devices are investigated. Based on its reversible redox chemistry, phenothiazine is used as the main building block in the conjugated copolymer design and combined with diketopyrrolopyrrol and benzothiadiazole as electron-poor comonomers to shift the optical absorption into the visible region. The resulting polymers show excellent cycling stability as positive electrode materials in lithium-organic batteries at discharge potentials of 3.6-3.7 V versus Li/Li+ as well as good performances in BHJ solar cells with up to 1.9% power conversion efficiency. This study shows that the design of such multifunctional materials is possible, however, that it also faces challenges, as essential properties for good device function can lead to diametrically opposite requirements in materials design.
Collapse
Affiliation(s)
- Robin Wessling
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, 79104, Freiburg, Germany
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
- Institute for Organic Chemistry, University of Freiburg, Albertstraße 21, 79104, Freiburg, Germany
| | - Rodrigo Delgado Andrés
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, 79104, Freiburg, Germany
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
| | - Isabel Morhenn
- Institute for Organic Chemistry, University of Freiburg, Albertstraße 21, 79104, Freiburg, Germany
| | - Pascal Acker
- Institute for Organic Chemistry, University of Freiburg, Albertstraße 21, 79104, Freiburg, Germany
| | - Wafa Maftuhin
- Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
| | - Michael Walter
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
- Fraunhofer IWM, MikroTribologie Centrum µTC, Wöhlerstr. 11, 79108, Freiburg, Germany
| | - Uli Würfel
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, 79104, Freiburg, Germany
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
- Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110, Freiburg, Germany
| | - Birgit Esser
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, 79104, Freiburg, Germany
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
- Institute for Organic Chemistry, University of Freiburg, Albertstraße 21, 79104, Freiburg, Germany
| |
Collapse
|
73
|
Stanton R, Trivedi DJ. Charge Carrier Dynamics at the Interface of 2D Metal-Organic Frameworks and Hybrid Perovskites for Solar Energy Harvesting. NANO LETTERS 2023; 23:11932-11939. [PMID: 38100376 DOI: 10.1021/acs.nanolett.3c04054] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Interfacing perovskites with two-dimensional materials such as metal-organic frameworks (MOFs) for improved stability and electron or hole extraction has emerged as a promising path forward for the generation of highly efficient and stable solar cells. In this work, we examine the structural properties and excitation dynamics of two MOF-perovskite systems: UMCM309-a@MAPbI3 and ZrL3@MAPbI3. We find that precise band alignment and electronegativity of the MOF-linkers are necessary to facilitate the capture of excited charge carriers. Furthermore, we demonstrate that intraband relaxation of hot electrons to the MOF subsystem results in optically disallowed transitions across the band gap, suppressing radiative recombination. Furthermore, we elucidate the key mechanisms associated with improved structural stability afforded to the perovskites by the two-dimensional MOFs, highlighting the necessity of broad surface coverage and strong MOF-perovskite interaction.
Collapse
Affiliation(s)
- Robert Stanton
- Department of Physics, Clarkson University, Potsdam, New York 13699, United States
| | - Dhara J Trivedi
- Department of Physics, Clarkson University, Potsdam, New York 13699, United States
| |
Collapse
|
74
|
Lu M, Wu H, Liu D, Wang F, Wang Y, Wang M, Cui Q, Zhang H, Zang F, Ma M, Ma J, Shi F, Zhang Y. Camouflaged Nanoreactors Mediated Radiotherapy-Adjuvant Chemodynamic Synergistic Therapy. ACS NANO 2023; 17:24170-24186. [PMID: 37991484 DOI: 10.1021/acsnano.3c09424] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Chemodynamic therapy based on the Fenton-like catalysis ability of Fe3O4 has the advantages of no involvement of chemical drugs and minimal adverse effects as well as the limitation of depletable efficacy. Radiotherapy based on high-energy radiation offers the convenience of treatment and cost-effectiveness but lacks precision and cellular adaptation of tumor cells. Approaching such dilemmas from a nanoscale materials perspective, we aim to bridge the weaknesses of both treatment methods by combining the principles of two therapeutics reciprocally. We have designed a camouflaged Fe3O4@HfO2 composite nanoreactor (FHCM), which combines a chemodynamic therapeutic agent Fe3O4 and a radiosensitizer HfO2 that both has passed clinical trials and was inspired by a cell membrane biomimetic technique. FHCM is employed as conceived radiotherapy-adjuvant chemodynamic synergistic therapy of malignant tumors, which has undergone dual scrutiny from both the physical and biological aspects. Experimental results obtained at different levels, including theory, material characterizations, and in vitro and in vivo verifications, suggest that FHCM effectively impaired tumor cells through physical and molecular biological mechanisms involving a HfO2-Fe3O4 photoelectron-electron transfer chain and DNA damage-ferroptosis-immunity chain. It is worth noting that compared to single therapies such as only chemodynamic therapy or radiotherapy, FHCM-mediated radiotherapy-adjuvant chemodynamic synergistic therapy exhibits stronger tumor inhibition efficacy. It significantly addresses the inherent limitations of chemodynamic therapy and radiotherapy and underscores the feasibility and importance of using existing clinical weapons, such as radiotherapy, as auxiliary strategies to overcome certain flaws of emerging antitumor therapeutics like chemodynamic therapy.
Collapse
Affiliation(s)
- Mingze Lu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing 211189, P. R. China
| | - Haoan Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing 211189, P. R. China
| | - Di Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing 211189, P. R. China
| | - Fei Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing 211189, P. R. China
| | - Yan Wang
- Institute of Hematology, School of Medicine, Southeast University, Nanjing 210096, P. R. China
| | - Mengjun Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing 211189, P. R. China
| | - Qiannan Cui
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - He Zhang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Fengchao Zang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Medical School, Southeast University, Nanjing 210096, P. R. China
| | - Ming Ma
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing 211189, P. R. China
| | - Jun Ma
- Radiotherapy Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, P. R. China
| | - Fangfang Shi
- Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210096, P. R. China
| | - Yu Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing 211189, P. R. China
| |
Collapse
|
75
|
Chen X, Kastlunger G, Peterson AA. Fundamental Drivers of Electrochemical Barriers. PHYSICAL REVIEW LETTERS 2023; 131:238003. [PMID: 38134804 DOI: 10.1103/physrevlett.131.238003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/08/2023] [Indexed: 12/24/2023]
Abstract
We find that ion creation and destruction dominate the behavior of electrochemical reaction barriers, through grand-canonical electronic structure calculations of proton deposition on transition metal surfaces. We show that barriers respond to potential in a nonlinear manner and trace this to the continuous degree of electron transfer as an ion is created or destroyed. This explains both Marcus-like curvature and Hammond-like shifts. Across materials, we find the barrier energy to be driven primarily by the charge presented on the surface, which, in turn, is dictated by the native work function, a fundamentally different driving force than in nonelectrochemical systems.
Collapse
Affiliation(s)
- Xi Chen
- School of Engineering, Brown University, Providence, Rhode Island 02912, USA
| | - Georg Kastlunger
- Department of Physics, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Andrew A Peterson
- School of Engineering, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
76
|
Sigurdarson AE, Schmerwitz YLA, Tveiten DKV, Levi G, Jónsson H. Orbital-optimized density functional calculations of molecular Rydberg excited states with real space grid representation and self-interaction correction. J Chem Phys 2023; 159:214109. [PMID: 38047508 DOI: 10.1063/5.0179271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023] Open
Abstract
Density functional calculations of Rydberg excited states up to high energy are carried out for several molecules using an approach where the orbitals are variationally optimized by converging on saddle points on the electronic energy surface within a real space grid representation. Remarkably good agreement with experimental estimates of the excitation energy is obtained using the generalized gradient approximation (GGA) functional of Perdew, Burke, and Ernzerhof (PBE) when Perdew-Zunger self-interaction correction is applied in combination with complex-valued orbitals. Even without the correction, the PBE functional gives quite good results despite the fact that corresponding Rydberg virtual orbitals have positive energy in the ground state calculation. Results obtained using the Tao, Perdew, Staroverov, and Scuseria (TPSS) and r2SCAN meta-GGA functionals are also presented, but they do not provide a systematic improvement over the results from the uncorrected PBE functional. The grid representation combined with the projector augmented-wave approach gives a simpler and better representation of diffuse Rydberg orbitals than a linear combination of atomic orbitals with commonly used basis sets, the latter leading to an overestimation of the excitation energy due to confinement of the excited states.
Collapse
Affiliation(s)
- Alec E Sigurdarson
- Science Institute and Faculty of Physical Sciences, University of Iceland, Reykjavík, Iceland
| | - Yorick L A Schmerwitz
- Science Institute and Faculty of Physical Sciences, University of Iceland, Reykjavík, Iceland
| | - Dagrún K V Tveiten
- Science Institute and Faculty of Physical Sciences, University of Iceland, Reykjavík, Iceland
| | - Gianluca Levi
- Science Institute and Faculty of Physical Sciences, University of Iceland, Reykjavík, Iceland
| | - Hannes Jónsson
- Science Institute and Faculty of Physical Sciences, University of Iceland, Reykjavík, Iceland
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
77
|
Conrad L, Alcón I, Tremblay JC, Paulus B. Mechanistic Insights into Electronic Current Flow through Quinone Devices. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3085. [PMID: 38132983 PMCID: PMC10745510 DOI: 10.3390/nano13243085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Molecular switches based on functionalized graphene nanoribbons (GNRs) are of great interest in the development of nanoelectronics. In experiment, it was found that a significant difference in the conductance of an anthraquinone derivative can be achieved by altering the pH value of the environment. Building on this, in this work we investigate the underlying mechanism behind this effect and propose a general design principle for a pH based GNR-based switch. The electronic structure of the investigated systems is calculated using density functional theory and the transport properties at the quasi-stationary limit are described using nonequilibrium Green's function and the Landauer formalism. This approach enables the examination of the local and the global transport through the system. The electrons are shown to flow along the edges of the GNRs. The central carbonyl groups allow for tunable transport through control of the oxidation state via the pH environment. Finally, we also test different types of GNRs (zigzag vs. armchair) to determine which platform provides the best transport switchability.
Collapse
Affiliation(s)
- Lawrence Conrad
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| | - Isaac Alcón
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), Consejo Superior de Investigaciones Científicas (CSIC) and Barcelona Institute of Science and Technology (BIST), Campus Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain;
| | - Jean Christophe Tremblay
- Laboratoire de Physique et Chimie Théoriques, Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine, 1 Bd Arago, 57070 Metz, France;
| | - Beate Paulus
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
78
|
Yang G, Fan J, Gao SP. Momentum and thickness dependent excitonic and plasmonic properties of 2D h-BN and MoS 2 restored from supercell calculations. NANOSCALE ADVANCES 2023; 5:6990-6998. [PMID: 38059031 PMCID: PMC10697014 DOI: 10.1039/d3na00670k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/25/2023] [Indexed: 12/08/2023]
Abstract
The comprehension and manipulation of the propagation characteristics of elementary excitations, such as excitons and plasmons, play a crucial role in tailoring the optical properties of low-dimensional materials. To this end, investigations into the momentum (q) dispersions of excitons and plasmons in confined geometry are required fundamentally. Due to advancements in momentum-resolved spectroscopy techniques, research on the q-dependent excitons or plasmons in low-dimensional materials is beginning to emerge. However, previous simulations of low-dimensional systems are adversely affected by the artificial vacuum spacing employed in the supercell approximation. Furthermore, the significance of layer thickness in determining the excitonic and plasmonic characteristics of two-dimensional (2D) materials remains largely unexplored in the context of finite q. Therefore, an extensive investigation into the momentum and thickness dependent behaviours of both excitons and plasmons in 2D materials, which are free of the influence of vacuum spacing, is lacking at present. In this article, we develop a restoration procedure to eliminate the influence of vacuum spacing, and obtain a comprehensive picture of momentum and layer thickness dependent excitonic and plasmonic properties of 2D hexagonal boron nitride (h-BN) and molybdenum disulphide (MoS2). Our restored simulations are not only found to be in excellent agreement with available experiments, but also elucidate the roles of momentum and layer thickness in the excitonic and plasmonic properties of 2D h-BN and MoS2. We further unveil the dimensionality effect on the dispersion characteristics of excitons and plasmons in h-BN and MoS2. Our contribution will hopefully promote the understanding of the elementary excitations propagating in low-dimensional materials and pave the way for next-generation nanophotonic and optoelectronic devices.
Collapse
Affiliation(s)
- Guang Yang
- Department of Materials Science, Fudan University Shanghai 200433 P. R. China
| | - Jiachen Fan
- Department of Materials Science, Fudan University Shanghai 200433 P. R. China
| | - Shang-Peng Gao
- Department of Materials Science, Fudan University Shanghai 200433 P. R. China
- Yiwu Research Institute of Fudan University Yiwu Zhejiang 322000 P. R. China
| |
Collapse
|
79
|
Beinlich SD, Kastlunger G, Reuter K, Hörmann NG. Controlled Electrochemical Barrier Calculations without Potential Control. J Chem Theory Comput 2023; 19:8323-8331. [PMID: 37933878 PMCID: PMC10688182 DOI: 10.1021/acs.jctc.3c00836] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/08/2023]
Abstract
The knowledge of electrochemical activation energies under applied potential conditions is a prerequisite for understanding catalytic activity at electrochemical interfaces. Here, we present a new set of methods that can compute electrochemical barriers with accuracy comparable to that of constant potential grand canonical approaches, without the explicit need for a potentiostat. Instead, we Legendre transform a set of constant charge, canonical reaction paths. Additional straightforward approximations offer the possibility to compute electrochemical barriers at a fraction of computational cost and complexity, and the analytical inclusion of geometric response highlights the importance of incorporating electronic as well as the geometric degrees of freedom when evaluating electrochemical barriers.
Collapse
Affiliation(s)
- Simeon D. Beinlich
- Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
- Technical
University of Munich, Lichtenbergstraße 4, 85747 Garching, Germany
| | - Georg Kastlunger
- Technical
University of Denmark, Fysikvej 311, 2800 Kongens Lyngby, Denmark
| | - Karsten Reuter
- Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Nicolas G. Hörmann
- Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| |
Collapse
|
80
|
Jia JF, Hao TT, Chen PH, Wu FY, Zhu W, Hung SF, Suen NT. Direct Electrosynthesis of Metal Nanoparticles on Ti 3C 2T x-Mxene during Hydrogen Evolution. Inorg Chem 2023; 62:19230-19237. [PMID: 37874974 DOI: 10.1021/acs.inorgchem.3c02423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Herein, we propose a simple yet effective method to deposit metal nanoparticles on Ti3C2Tx-MXene via direct electrosynthesis. Without using any reducing reagent or annealing under reducing atmosphere, it allows the conversion of metal salts (e.g., PtCl4, RuCl3·yH2O, IrCl3·zH2O, AgNO3, and CuCl2·2H2O) to metal nanoparticles with a small particle size (ca. 2 nm). Under these circumstances, it was realized that the support effect from Ti3C2Tx-MXene (electron pushing) is quite profound, in which the Ti3C2Tx-MXene support will act as an electron donor to push the electron to Pt nanoparticles and increase the electron density of Pt nanoparticles. It populates the antibonding state of Pt-Pt bonds as well as the adsorbate level that leads to a "weakening" of the ΔGH* in the optimal position. This rationalizes the outstanding activity of Pt/Ti3C2Tx-MXene (5 wt %, η10 = 16 mV) for the hydrogen evolution reaction (HER). In addition, this direct electrosynthesis method grants the growth of two or multiple types of metal nanoparticles on the Ti3C2Tx-MXene substrate that can perform dual or multiple functions as desired. For instance, one can prepare an electrocatalyst with Pt (2.5 wt %) and Ru nanoparticles (2.5 wt %) on the Ti3C2Tx-MXene support from the same synthetic method. This electrocatalyst (Pt_Ru/Ti3C2Tx-MXene) can display good electrocatalytic HER performance in both acid (0.5 M H2SO4) and alkaline electrolytes (1.0 M KOH).
Collapse
Affiliation(s)
- Jin-Feng Jia
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Tong Tong Hao
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Pei-Hsuan Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Feng-Yi Wu
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Wei Zhu
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
- Yangzhou High School, Yangzhou 225009, China
| | - Sung-Fu Hung
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Nian-Tzu Suen
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
81
|
Li Z, Rigor J, Ehtesabi S, Gojare S, Kupfer S, Gräfe S, Large N, Kurouski D. Role of Plasmonic Antenna in Hot Carrier-Driven Reactions on Bimetallic Nanostructures. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:22635-22645. [PMID: 38357685 PMCID: PMC10863061 DOI: 10.1021/acs.jpcc.3c06520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/20/2023] [Accepted: 10/20/2023] [Indexed: 02/16/2024]
Abstract
Noble metal nanostructures can efficiently harvest electromagnetic radiation, which, in turn, is used to generate localized surface plasmon resonances. Surface plasmons decay, producing hot carriers, that is, short-lived species that can trigger chemical reactions on metallic surfaces. However, noble metal nanostructures catalyze only a very small number of chemical reactions. This limitation can be overcome by coupling such nanostructures with catalytic-active metals. Although the role of such catalytically active metals in plasmon-driven catalysis is well-understood, the mechanistics of a noble metal antenna in such chemistry remains unclear. In this study, we utilize tip-enhanced Raman spectroscopy, an innovative nanoscale imaging technique, to investigate the rates and yields of plasmon-driven reactions on mono- and bimetallic gold- and silver-based nanostructures. We found that silver nanoplates (AgNPs) demonstrate a significantly higher yield of 4-nitrobenzenehtiol to p,p'-dimercaptoazobisbenzene (DMAB) reduction than gold nanoplates (AuNPs). We also observed substantially greater yields of DMAB on silver-platinum and silver-palladium nanoplates (Ag@PtNPs and Ag@PdNPs) compared to their gold analogues, Au@PtNPs and Au@PdNPs. Furthermore, Ag@PtNPs exhibited enhanced reactivity in 4-mercatophenylmethanol to 4-mercaptobenzoic acid oxidation compared to Au@PtNPs. These results showed that silver-based bimetallic nanostructures feature much greater reactivity compared to their gold-based analogues.
Collapse
Affiliation(s)
- Zhandong Li
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Joel Rigor
- Department
of Physics and Astronomy, The University
of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Sadaf Ehtesabi
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Siddhi Gojare
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Stephan Kupfer
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Stefanie Gräfe
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Nicolas Large
- Department
of Physics and Astronomy, The University
of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Dmitry Kurouski
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
- The
Institute for Quantum Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
82
|
Ali S, Nilsson FA, Manti S, Bertoldo F, Mortensen JJ, Thygesen KS. High-Throughput Search for Triplet Point Defects with Narrow Emission Lines in 2D Materials. ACS NANO 2023; 17:21105-21115. [PMID: 37889165 DOI: 10.1021/acsnano.3c04774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
We employ a first-principles computational workflow to screen for optically accessible, high-spin point defects in wide band gap, two-dimensional (2D) crystals. Starting from an initial set of 5388 point defects, comprising both native and extrinsic, single and double defects in ten previously synthesized 2D host materials, we identify 596 defects with a triplet ground state. For these defects, we calculate the defect formation energy, hyperfine (HF) coupling, and zero-field splitting (ZFS) tensors. For 39 triplet transitions exhibiting particularly low Huang-Rhys factors, we calculate the full photoluminescence (PL) spectrum. Our approach reveals many spin defects with narrow PL line shapes and emission frequencies covering a broad spectral range. Most of the defects are hosted in hexagonal BN (hBN), which we ascribe to its high stiffness, but some are also found in MgI2, MoS2, MgBr2 and CaI2. As specific examples, we propose the defects vSMoS0 and NiSMoS0 in MoS2 as interesting candidates with potential applications to magnetic field sensors and quantum information technology.
Collapse
Affiliation(s)
- Sajid Ali
- CAMD, Computational Atomic-Scale Materials Design, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
- School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia
| | - Fredrik Andreas Nilsson
- CAMD, Computational Atomic-Scale Materials Design, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Simone Manti
- CAMD, Computational Atomic-Scale Materials Design, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
- INFN, Laboratori Nazionali di Frascati, Via E. Fermi 54, I-00044 Roma, Italy
| | - Fabian Bertoldo
- CAMD, Computational Atomic-Scale Materials Design, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Jens Jørgen Mortensen
- CAMD, Computational Atomic-Scale Materials Design, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Kristian Sommer Thygesen
- CAMD, Computational Atomic-Scale Materials Design, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
83
|
Pedersen A, Bagger A, Barrio J, Maillard F, Stephens IEL, Titirici MM. Atomic metal coordinated to nitrogen-doped carbon electrocatalysts for proton exchange membrane fuel cells: a perspective on progress, pitfalls and prospectives. JOURNAL OF MATERIALS CHEMISTRY. A 2023; 11:23211-23222. [PMID: 38013915 PMCID: PMC10629202 DOI: 10.1039/d3ta04711c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/05/2023] [Indexed: 11/29/2023]
Abstract
Proton exchange membrane fuel cells require reduced construction costs to improve commercial viability, which can be fueled by elimination of platinum as the O2 reduction electrocatalyst. The past 10 years has seen significant developments in synthesis, characterisation, and electrocatalytic performance of the most promising alternative electrocatalyst; single metal atoms coordinated to nitrogen-doped carbon (M-N-C). In this Perspective we recap some of the important achievements of M-N-Cs in the last decade, as well as discussing current knowledge gaps and future research directions for the community. We provide a new outlook on M-N-C stability and atomistic understanding with a set of original density functional theory simulations.
Collapse
Affiliation(s)
- Angus Pedersen
- Department of Materials, Royal School of Mines, Imperial College London London SW7 2AZ England UK
- Department of Chemical Engineering, Imperial College London London SW7 2AZ England UK
| | - Alexander Bagger
- Department of Materials, Royal School of Mines, Imperial College London London SW7 2AZ England UK
- Department of Physics, Technical University of Denmark Kongens Lyngby 2800 Denmark
| | - Jesús Barrio
- Department of Chemical Engineering, Imperial College London London SW7 2AZ England UK
| | - Frédéric Maillard
- University Grenoble Alpes, University Savoie-Mont-Blanc, CNRS, Grenoble-INP, LEPMI 38000 Grenoble France
| | - Ifan E L Stephens
- Department of Materials, Royal School of Mines, Imperial College London London SW7 2AZ England UK
| | - Maria-Magdalena Titirici
- Department of Chemical Engineering, Imperial College London London SW7 2AZ England UK
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University 2-1-1 Katahira, Aobaku Sendai Miyagi 980-8577 Japan
| |
Collapse
|
84
|
Pittkowski RK, Clausen CM, Chen Q, Stoian D, van Beek W, Bucher J, Welten RL, Schlegel N, Mathiesen JK, Nielsen TM, Du J, Rosenkranz AW, Bøjesen ED, Rossmeisl J, Jensen KMØ, Arenz M. The more the better: on the formation of single-phase high entropy alloy nanoparticles as catalysts for the oxygen reduction reaction. EES CATALYSIS 2023; 1:950-960. [PMID: 38013789 PMCID: PMC10621632 DOI: 10.1039/d3ey00201b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 11/29/2023]
Abstract
High entropy alloys (HEAs) are an important new material class with significant application potential in catalysis and electrocatalysis. The entropy-driven formation of HEA materials requires high temperatures and controlled cooling rates. However, catalysts in general also require highly dispersed materials, i.e., nanoparticles. Only then a favorable utilization of the expensive raw materials can be achieved. Several recently reported HEA nanoparticle synthesis strategies, therefore, avoid the high-temperature regime to prevent particle growth. In our work, we investigate a system of five noble metal single-source precursors with superior catalytic activity for the oxygen reduction reaction. Combining in situ X-ray powder diffraction with multi-edge X-ray absorption spectroscopy, we address the fundamental question of how single-phase HEA nanoparticles can form at low temperatures. It is demonstrated that the formation of HEA nanoparticles is governed by stochastic principles and the inhibition of precursor mobility during the formation process favors the formation of a single phase. The proposed formation principle is supported by simulations of the nanoparticle formation in a randomized process, rationalizing the experimentally found differences between two-element and multi-element metal precursor mixtures.
Collapse
Affiliation(s)
- Rebecca K Pittkowski
- Center for High Entropy Alloy Catalysis (CHEAC), Department of Chemistry, University of Copenhagen Copenhagen Denmark
| | - Christian M Clausen
- Center for High Entropy Alloy Catalysis (CHEAC), Department of Chemistry, University of Copenhagen Copenhagen Denmark
| | - Qinyi Chen
- Center for High Entropy Alloy Catalysis (CHEAC), Department of Chemistry, University of Copenhagen Copenhagen Denmark
| | - Dragos Stoian
- Swiss Norwegian Beamline, European Synchrotron Radiation Facility (ESRF) Grenoble France
| | - Wouter van Beek
- Swiss Norwegian Beamline, European Synchrotron Radiation Facility (ESRF) Grenoble France
| | - Jan Bucher
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Bern Switzerland
| | - Rahel L Welten
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Bern Switzerland
| | - Nicolas Schlegel
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Bern Switzerland
| | - Jette K Mathiesen
- Center for High Entropy Alloy Catalysis (CHEAC), Department of Chemistry, University of Copenhagen Copenhagen Denmark
- Department of Physics, Technical University of Denmark Kgs. Lyngby Denmark
| | - Tobias M Nielsen
- Center for High Entropy Alloy Catalysis (CHEAC), Department of Chemistry, University of Copenhagen Copenhagen Denmark
| | - Jia Du
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Bern Switzerland
| | | | - Espen D Bøjesen
- Aarhus University, Interdisciplinary Nanoscience Center Aarhus Denmark
| | - Jan Rossmeisl
- Center for High Entropy Alloy Catalysis (CHEAC), Department of Chemistry, University of Copenhagen Copenhagen Denmark
| | - Kirsten M Ø Jensen
- Center for High Entropy Alloy Catalysis (CHEAC), Department of Chemistry, University of Copenhagen Copenhagen Denmark
| | - Matthias Arenz
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Bern Switzerland
| |
Collapse
|
85
|
Mokkath JH. Plasmon induced hot carrier generation in a pyridine@Au20 composite. Phys Chem Chem Phys 2023; 25:28750-28760. [PMID: 37850351 DOI: 10.1039/d3cp02907g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Using time-dependent density functional theory calculations, we have investigated the generation of hot carriers (HCs) in a system comprising a pyridine molecule and a tetrahedral Au20 plasmonic cluster. Our findings indicate that the decay of the localized surface plasmon resonance (LSPR) induced in the pyridine@Au20 system by a laser pulse facilitates the direct transfer of hot electrons from the occupied states of the Au20 cluster to the unoccupied molecular orbitals of pyridine. Notably, we have identified that the interparticle gap distance between the Au20 cluster and the pyridine molecule plays a critical role in controlling the generation of HCs. By precisely controlling the interaction between the plasmonic cluster and the molecule, we can effectively manipulate the energy distribution of the generated HCs. These insights have the potential to drive advancements in the development of more efficient systems for plasmonic catalysis.
Collapse
Affiliation(s)
- Junais Habeeb Mokkath
- Quantum Nanophotonics Simulations Lab, Department of Physics, Kuwait College of Science and Technology, Doha Area, 7th Ring Road, P.O. Box 27235, Kuwait.
| |
Collapse
|
86
|
Ruderman A, Oviedo MB, Paz SA, Leiva EPM. Diversity of Behavior after Collisions of Sn and Si Nanoparticles Found Using a New Density Functional Tight-Binding Method. J Phys Chem A 2023; 127:8955-8965. [PMID: 37831543 DOI: 10.1021/acs.jpca.3c05534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
We present a new approach to studying nanoparticle collisions using density functional based tight binding (DFTB). A novel DFTB parametrization has been developed to study the collision process of Sn and Si clusters (NPs) using molecular dynamics (MD). While bulk structures were used as training sets, we show that our model is able to accurately reproduce the cohesive energy of the nanoparticles using density functional theory (DFT) as a reference. A surprising variety of phenomena are revealed for the Si/Sn nanoparticle collisions, depending on the size and velocity of the collision: from core-shell structure formation to bounce-off phenomena.
Collapse
Affiliation(s)
- Andrés Ruderman
- Facultad de Matemática, Astronomía Física y Computación, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
- Consejo Nacional de Investigaciones Cientıficas y Técnicas (CONICET), Instituto de Física Enrique Gaviola (IFEG), Córdoba X5000HUA, Argentina
| | - María Belén Oviedo
- Facultad de Ciencias Quımicas, Departamento de Quımica Teórica y Computacional, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
- Consejo Nacional de Investigaciones Cientıficas y Técnicas (CONICET), Instituto de Fisicoquımica de Córdoba (INFIQC), Córdoba X5000HUA, Argentina
| | - Sergio Alexis Paz
- Facultad de Ciencias Quımicas, Departamento de Quımica Teórica y Computacional, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
- Consejo Nacional de Investigaciones Cientıficas y Técnicas (CONICET), Instituto de Fisicoquımica de Córdoba (INFIQC), Córdoba X5000HUA, Argentina
| | - Ezequiel P M Leiva
- Facultad de Ciencias Quımicas, Departamento de Quımica Teórica y Computacional, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
- Consejo Nacional de Investigaciones Cientıficas y Técnicas (CONICET), Instituto de Fisicoquımica de Córdoba (INFIQC), Córdoba X5000HUA, Argentina
| |
Collapse
|
87
|
Truttmann V, Loxha A, Banu R, Pittenauer E, Malola S, Matus MF, Wang Y, Ploetz EA, Rupprechter G, Bürgi T, Häkkinen H, Aikens C, Barrabés N. Directing Intrinsic Chirality in Gold Nanoclusters: Preferential Formation of Stable Enantiopure Clusters in High Yield and Experimentally Unveiling the "Super" Chirality of Au 144. ACS NANO 2023; 17:20376-20386. [PMID: 37805942 PMCID: PMC10604085 DOI: 10.1021/acsnano.3c06568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/28/2023] [Indexed: 10/10/2023]
Abstract
Chiral gold nanoclusters offer significant potential for exploring chirality at a fundamental level and for exploiting their applications in sensing and catalysis. However, their widespread use is impeded by low yields in synthesis, tedious separation procedures of their enantiomeric forms, and limited thermal stability. In this study, we investigated the direct synthesis of enantiopure chiral nanoclusters using the chiral ligand 2-MeBuSH in the fabrication of Au25, Au38, and Au144 nanoclusters. Notably, this approach leads to the unexpected formation of intrinsically chiral clusters with high yields for chiral Au38 and Au144 nanoclusters. Experimental evaluation of chiral activity by circular dichroism (CD) spectroscopy corroborates previous theoretical calculations, highlighting the stronger CD signal exhibited by Au144 compared to Au38 or Au25. Furthermore, the formation of a single enantiomeric form is experimentally confirmed by comparing it with intrinsically chiral Au38(2-PET)24 (2-PET: 2-phenylethanethiol) and is supported theoretically for both Au38 and Au144. Moreover, the prepared chiral clusters show stability against diastereoisomerization, up to temperatures of 80 °C. Thus, our findings not only demonstrate the selective preparation of enantiopure, intrinsically chiral, and highly stable thiolate-protected Au nanoclusters through careful ligand design but also support the predicted "super" chirality in the Au144 cluster, encompassing hierarchical chirality in ligands, staple configuration, and core structure.
Collapse
Affiliation(s)
- Vera Truttmann
- Institute
of Materials Chemistry, TU Wien, Getreidemarkt 9/E165, 1060 Vienna, Austria
| | - Adea Loxha
- Institute
of Materials Chemistry, TU Wien, Getreidemarkt 9/E165, 1060 Vienna, Austria
| | - Rareş Banu
- Institute
of Materials Chemistry, TU Wien, Getreidemarkt 9/E165, 1060 Vienna, Austria
| | - Ernst Pittenauer
- Institute
of Chemical Technologies and Analytics, TU Wien, Getreidemarkt
9/E164, 1060 Vienna, Austria
| | - Sami Malola
- Departments
of Physics and Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - María Francisca Matus
- Departments
of Physics and Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Yuchen Wang
- Department
of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
of America
| | - Elizabeth A. Ploetz
- Department
of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
of America
| | - Günther Rupprechter
- Institute
of Materials Chemistry, TU Wien, Getreidemarkt 9/E165, 1060 Vienna, Austria
| | - Thomas Bürgi
- Department
of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Hannu Häkkinen
- Departments
of Physics and Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Christine Aikens
- Department
of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
of America
| | - Noelia Barrabés
- Institute
of Materials Chemistry, TU Wien, Getreidemarkt 9/E165, 1060 Vienna, Austria
| |
Collapse
|
88
|
Jelver L, Cox JD. Nonlinear Plasmonics in Nanostructured Phosphorene. ACS NANO 2023; 17:20043-20052. [PMID: 37791979 DOI: 10.1021/acsnano.3c05363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Phosphorene has emerged as an atomically thin platform for optoelectronics and nanophotonics due to its excellent optical properties and the possibility of actively tuning light-matter interactions through electrical doping. While phosphorene is a two-dimensional semiconductor, plasmon resonances characterized by pronounced anisotropy and strong optical confinement are anticipated to emerge in highly doped samples. Here we show that the localized plasmons supported by phosphorene nanoribbons (PNRs) exhibit high tunability in relation to both edge termination and doping charge polarity and can trigger an intense nonlinear optical response at moderate doping levels. Our explorations are based on a second-principles theoretical framework, employing maximally localized Wannier functions constructed from ab initio electronic structure calculations, which we introduce here to describe the linear and nonlinear optical response of PNRs on mesoscopic length scales. Atomistic simulations reveal the high tunability of plasmons in doped PNRs at near-infrared frequencies, which can facilitate the synergy between the electronic band structure and plasmonic field confinement to drive efficient high-harmonic generation. Our findings establish nanostructured phosphorene as a versatile atomically thin material candidate for nonlinear plasmonics.
Collapse
Affiliation(s)
- Line Jelver
- POLIMA─Center for Polariton-driven Light-Matter Interactions, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Joel D Cox
- POLIMA─Center for Polariton-driven Light-Matter Interactions, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
- Danish Institute for Advanced Study, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| |
Collapse
|
89
|
Le T, Wang B. Solvent-induced local environment effect in plasmonic catalysis. NANOSCALE ADVANCES 2023; 5:5774-5779. [PMID: 37881713 PMCID: PMC10597543 DOI: 10.1039/d3na00835e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/27/2023]
Abstract
Solvents are known to affect the local surface plasmon resonance of metal nanoparticles; however, how solvents can be used to manipulate the interfacial charge and energy transfer in plasmonic catalysis remains to be explored. Here, using NH3 decomposition on a Ru-doped Cu surface as an example, we report density functional theory (DFT) and delta self-consistent field (SCF) calculations, through which we investigate the effect of different protic solvent molecules on interfacial charge transfer by calculating excitation energy of an electronic transition between the metal and the molecular reactant. We find that the H-bonds between water and NH3 can alter the direct interfacial charge transfer due to the shift of the molecular frontier orbitals with respect to the metal Fermi level. These effects are also observed when the H-bonds are formed between methanol (or phenol) and ammonia. We show that the solvent possessing stronger basicity induces a more pronounced effect on the excitation energy. This work thus provides valuable insights for tuning the excitation energy and controlling different routes to channel the photon energy into plasmonic catalysis.
Collapse
Affiliation(s)
- Tien Le
- School of Sustainable Chemical, Biological and Materials Engineering, University of Oklahoma Norman OK 73019 USA
| | - Bin Wang
- School of Sustainable Chemical, Biological and Materials Engineering, University of Oklahoma Norman OK 73019 USA
| |
Collapse
|
90
|
Xiong S, Tang M, Jiang W, Ding J, Qiu J, Lu S, Yan J. PCDD/F adsorption enhancement over nitrogen-doped biochar: A DFT-D study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118611. [PMID: 37453301 DOI: 10.1016/j.jenvman.2023.118611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/28/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Polychlorinated dibenzo-p-dioxin/furans (PCDD/F) have a great threat to the environment and human health, resulting in controlling PCDD/F emissions to regulation far important for emission source. Considering 2,3,4,7,8-pentachlorodibenzo-p-furan (PeCDF) identified as the most contributor to international toxic equivalent, 2,3,4,7,8-PeCDF can be considered as the target molecule for the adsorption of PCDD/F emission from industries. With the aim to in-depth elucidate how different types of nitrogen (N) species enhance 2,3,4,7,8-PeCDF on the biochar and guide the specific carbon materials design for industries, systematic computational investigations by density functional theory calculations were conducted. The results indicate pristine biochar intrinsically interacts with 2,3,4,7,8-PeCDF by π-π electron donor and acceptor (EDA) interaction, six-membered carbon rings of PeCDF parallel to the biochar surface as the strongest adsorption configuration. Moreover, by comparison of adsorption energy (-150.16 kJ mol-1) and interaction distance (3.593 Å) of pristine biochar, environment friendly N doping can enhance the adsorption of 2,3,4,7,8-PeCDF on biochar. Compared with graphitic N doping and pyridinic N doping, pyrrolic N doping biochar presents the strongest interaction toward 2,3,4,7,8-PeCDF molecule due to the highest adsorption energy (-155.56 kJ mol-1) and shortest interaction distance (3.532 Å). Specially, the enhancing adsorption of PeCDF over N doped biochar attributes to the enhancing π-π electron EDA interaction and electrostatic interaction. In addition, the effect of N doping species on PeCDF adsorbed on the biochar is more than that of N doping content. Specially, the adsorption capacity of N doping biochar for PCDD/F can be improved by adding pyrrolic N group most efficiently. Furthermore, pyrrolic N and pyridinic N doping result in the entropy increase, and electrons transform from pyrrolic N and pyridinic N doped biochar to 2,3,4,7,8-PeCDF molecule. A complete understanding of the research would supply crucial information for applying N-doped biochar to effectively remove PCDD/F for industries.
Collapse
Affiliation(s)
- Shijian Xiong
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, PR China
| | - Minghui Tang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, PR China.
| | - Wenqian Jiang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, PR China
| | - Jiamin Ding
- Research Institute of Zhejiang University-Taizhou, Taizhou, 318012, Zhejiang, China
| | - Juan Qiu
- Research Institute of Zhejiang University-Taizhou, Taizhou, 318012, Zhejiang, China
| | - Shengyong Lu
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, PR China; Research Institute of Zhejiang University-Taizhou, Taizhou, 318012, Zhejiang, China
| | - Jianhua Yan
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, PR China
| |
Collapse
|
91
|
Ruth PN, Graw N, Ernemann T, Herbst-Irmer R, Stalke D. Indium Kα radiation from a MetalJet X-ray source: comparison of the Eiger2 CdTe and Photon III detectors. J Appl Crystallogr 2023; 56:1322-1329. [PMID: 37791362 PMCID: PMC10543668 DOI: 10.1107/s1600576723007215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/16/2023] [Indexed: 10/05/2023] Open
Abstract
The MetalJet source makes available new Kα radiation wavelengths for use in X-ray diffraction experiments. The purpose of this paper is to demonstrate the application of indium Kα radiation in independent-atom model refinement, as well as approaches using aspherical atomic form factors. The results vary greatly depending on the detector employed, as the energy cut-off of the Eiger2 CdTe provides a solution to a unique energy contamination problem of the MetalJet In radiation, which the Photon III detector cannot provide.
Collapse
Affiliation(s)
- Paul Niklas Ruth
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, Göttingen, Lower Saxony 37077, Germany
| | - Nico Graw
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, Göttingen, Lower Saxony 37077, Germany
| | - Tobias Ernemann
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, Göttingen, Lower Saxony 37077, Germany
| | - Regine Herbst-Irmer
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, Göttingen, Lower Saxony 37077, Germany
| | - Dietmar Stalke
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, Göttingen, Lower Saxony 37077, Germany
| |
Collapse
|
92
|
Ju W, Bagger A, Saharie NR, Möhle S, Wang J, Jaouen F, Rossmeisl J, Strasser P. Electrochemical carbonyl reduction on single-site M-N-C catalysts. Commun Chem 2023; 6:212. [PMID: 37777576 PMCID: PMC10542751 DOI: 10.1038/s42004-023-01008-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023] Open
Abstract
Electrochemical conversion of organic compounds holds promise for advancing sustainable synthesis and catalysis. This study explored electrochemical carbonyl hydrogenation on single-site M-N-C (Metal Nitrogen-doped Carbon) catalysts using formaldehyde, acetaldehyde, and acetone as model reactants. We strive to correlate and understand the selectivity dependence on the nature of the metal centers. Density Functional Theory calculations revealed similar binding energetics for carbonyl groups through oxygen-down or carbon-down adsorption due to oxygen and carbon scaling. Fe-N-C exhibited specific oxyphilicity and could selectively reduce aldehydes to hydrocarbons. By contrast, the carbophilic Co-N-C selectively converted acetaldehyde and acetone to ethanol and 2-propanol, respectively. We claim that the oxyphilicity of the active sites and consequent adsorption geometry (oxygen-down vs. carbon-down) are crucial in controlling product selectivity. These findings offer mechanistic insights into electrochemical carbonyl hydrogenation and can guide the development of efficient and sustainable electrocatalytic valorization of biomass-derived compounds.
Collapse
Affiliation(s)
- Wen Ju
- Chemical Engineering Division, Department of Chemistry, Technical University Berlin, Berlin, Germany
| | - Alexander Bagger
- Department of Physics, Technical University of Denmark, Lyngby, Denmark
| | | | - Sebastian Möhle
- Chemical Engineering Division, Department of Chemistry, Technical University Berlin, Berlin, Germany
| | - Jingyi Wang
- Chemical Engineering Division, Department of Chemistry, Technical University Berlin, Berlin, Germany
| | - Frederic Jaouen
- Institute Charles Gerhardt Montpellier, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
| | - Jan Rossmeisl
- Department of Chemistry, University Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Peter Strasser
- Chemical Engineering Division, Department of Chemistry, Technical University Berlin, Berlin, Germany.
| |
Collapse
|
93
|
Bai Y, Taarning E, Luthra M, Lundegaard LF, Katerinopoulou A, Falsig H, Nova A, Martinez-Espin JS. Tracking Lattice Distortion Induced by Defects and Framework Tin in Beta Zeotypes. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:19278-19289. [PMID: 39092204 PMCID: PMC11290454 DOI: 10.1021/acs.jpcc.3c04751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/08/2023] [Indexed: 08/04/2024]
Abstract
The use of powder X-ray diffraction (PXRD) coupled with lattice parameter refinement is used to investigate the crystal structure of Sn-Beta materials. A newly developed semiempirical PXRD model with a reduced tetragonal unit cell is applied to obtain the characteristic crystallographic features. There is a robust correlation between lattice parameters and the concentration of tin and defects for materials prepared via hydrothermal (HT) and postsynthetic (PT) methods. With tin incorporation, PT Sn-Beta samples, which possess a more defective structure, exhibit an extended interlayer distance in the stacking sequence and expansion of the translation symmetry within the layers, leading to larger unit cell dimensions. In contrast, HT Sn-Beta samples, having fewer defects, show a minimal effect of tin site density on the unit cell volume, whereas lattice distortion is directly correlated to the framework tin density. Furthermore, density functional theory (DFT) studies support an identical trend of lattice distortion following the monoisomorphous substitution of T sites from silicon to tin. These findings highlight that PXRD can serve as a rapid and straightforward characterization method to evaluate both framework defects and heteroatom density, offering a novel approach to monitor structural changes and the possibility to evaluate the catalytic properties of heteroatom-incorporated zeotypes.
Collapse
Affiliation(s)
- Yunfei Bai
- Topsoe
A/S, Haldor Topso̷es Allé 1, 2800 Kongens Lyngby, Denmark
- Aarhus
University, Nordre Ringgade
1, 8000 Aarhus C, Denmark
| | - Esben Taarning
- Topsoe
A/S, Haldor Topso̷es Allé 1, 2800 Kongens Lyngby, Denmark
| | - Mahika Luthra
- Hylleraas
Centre for Quantum Molecular Sciences, Centre for Materials Science
and Nanotechnology, Department of Chemistry, University of Oslo, Blindern, 0315 Oslo, Norway
| | | | | | - Hanne Falsig
- Topsoe
A/S, Haldor Topso̷es Allé 1, 2800 Kongens Lyngby, Denmark
| | - Ainara Nova
- Hylleraas
Centre for Quantum Molecular Sciences, Centre for Materials Science
and Nanotechnology, Department of Chemistry, University of Oslo, Blindern, 0315 Oslo, Norway
| | | |
Collapse
|
94
|
Roberts JL, Zetterholm SG, Gurtowski L, Fernando PAI, Evans A, Puhnaty J, Wyss KM, Tour JM, Fernando B, Jenness G, Thompson A, Griggs C. Graphene as a rational interface for enhanced adsorption of microcystin-LR from water. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131737. [PMID: 37453354 DOI: 10.1016/j.jhazmat.2023.131737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/27/2023] [Accepted: 05/28/2023] [Indexed: 07/18/2023]
Abstract
Cyanotoxins such as microcystin-LR (MC-LR) represent a global environmental threat to ecosystems and drinking water supplies. The study investigated the direct use of graphene as a rational interface for removal of MC-LR via interactions with the aromatic ring of the ADDA1 chain of MC-LR and the sp2 hybridized carbon network of graphene. Intra-particle diffusion model fit indicated the high mesoporosity of graphene provided significant enhancements to both adsorption capacities and kinetics when benchmarked against microporous granular activated carbon (GAC). Graphene showed superior MC-LR adsorption capacity of 75.4 mg/g (Freundlich model) compared to 0.982 mg/g (Langmuir model) for GAC. Sorption kinetic studies showed graphene adsorbs 99% of MC-LR in 30 min, compared to zero removal for GAC after 24 hr using the same MC-LR concentration. Density functional theory (DFT), calculations showed that postulated π-based interactions align well with the NMR-based experimental work used to probe primary interactions between graphene and MC-LR adduct. This study proved that π-interactions between the aromatic ring on MC-LR and graphene sp2 orbitals are a dominant interaction. With rapid kinetics and adsorption capacities much higher than GAC, it is anticipated that graphene will offer a novel molecular approach for removal of toxins and emerging contaminants with aromatic systems.
Collapse
Affiliation(s)
- Jesse L Roberts
- US Army Engineer Research and Development Center (ERDC) Environmental Laboratory, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA.
| | - Sarah Grace Zetterholm
- US Army Engineer Research and Development Center (ERDC) Environmental Laboratory, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA
| | - Luke Gurtowski
- US Army Engineer Research and Development Center (ERDC) Environmental Laboratory, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA
| | - Pu Ashvin I Fernando
- US Army Engineer Research and Development Center (ERDC) Environmental Laboratory, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA; Bennett Aerospace, 1 Glenwood Avenue, Raleigh, NC 27603, USA; SIMETRI, Inc. 937 S Semoran Blvd Suite 100, Winter Park, FL 32792
| | - Angela Evans
- US Army Engineer Research and Development Center (ERDC) Environmental Laboratory, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA
| | - Justin Puhnaty
- US Army Engineer Research and Development Center (ERDC) Environmental Laboratory, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA
| | - Kevin M Wyss
- Department of Chemistry, NanoCarbon Center, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - James M Tour
- Department of Chemistry, NanoCarbon Center, Rice University, 6100 Main Street, Houston, TX 77005, USA; Rice Advanced Materials Institute, NanoCarbon Center, Rice University, 6100 Main Street, Houston, TX 77005, USA; Welch Institute for Advanced Materials, NanoCarbon Center, Rice University, 6100 Main Street, Houston, TX 77005, USA; Smalley-Curl Institute, NanoCarbon Center, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Brianna Fernando
- US Army Engineer Research and Development Center (ERDC) Environmental Laboratory, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA
| | - Glen Jenness
- US Army Engineer Research and Development Center (ERDC) Environmental Laboratory, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA
| | - Audie Thompson
- US Army Engineer Research and Development Center (ERDC) Environmental Laboratory, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA
| | - Chris Griggs
- US Army Engineer Research and Development Center (ERDC) Environmental Laboratory, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA
| |
Collapse
|
95
|
Gammelgaard JJ, Sun Z, Vestergaard AK, Zhao S, Li Z, Lock N, Daasbjerg K, Bagger A, Rossmeisl J, Lauritsen JV. A Monolayer Carbon Nitride on Au(111) with a High Density of Single Co Sites. ACS NANO 2023; 17:17489-17498. [PMID: 37643209 DOI: 10.1021/acsnano.3c05996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Carbon nitrides that expose atomically dispersed single-atom metals in the form of M-N-C (M = metal) sites are attractive earth-abundant catalyst materials that have been demonstrated in electrocatalytic conversion reactions. The catalytic performance is determined by the abundance of N-doped sites and the type of metal coordination to N, but challenges remain to synthesize pristine carbon nitrides with a high concentration of the most active sites and prepare homogeneously doped materials that allow for in-depth characterization of the M-N-C sites and quantitative evaluation of their catalytic performance. Herein, we have synthesized and characterized a well-defined monolayer carbon nitride phase on a Au(111) surface that exposes an exceedingly high concentration of Co-N4 sites. The crystalline monolayer carbon nitride, whose formation is controlled by an on-surface reaction between Co atoms and melamine on Au(111), is characterized by a dense array of 4- and 6-fold N-terminated pockets, whereof only the 4-fold pocket is found to be holding Co atoms. Through detailed characterization using scanning tunneling microscopy, X-ray photoelectron spectroscopy, and density functional theory modeling, we determine the atomic structure and chemical state of the carbon nitride network. Furthermore, we show that the monolayer carbon nitride structure is stable and reactive toward the electrocatalytic oxygen reduction reaction in alkaline electrolyte, with a quantitative performance metric that significantly exceeds comparable M-N-C-based catalyst types. The work demonstrates that high-density active catalytic sites can be created using common precursor materials, and the formed networks themselves offer an excellent platform for onward studies addressing the characteristics of M-N-C sites.
Collapse
Affiliation(s)
| | - Zhaozong Sun
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark
| | - Anders K Vestergaard
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark
| | - Siqi Zhao
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
- Novo Nordisk Foundation (NNF) CO2 Research Center, Aarhus University, 8000 Aarhus C, Denmark
| | - Zheshen Li
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| | - Nina Lock
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark
- Novo Nordisk Foundation (NNF) CO2 Research Center, Aarhus University, 8000 Aarhus C, Denmark
- Department of Biological and Chemical Engineering, Aarhus University, 8200 Aarhus N, Denmark
| | - Kim Daasbjerg
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
- Novo Nordisk Foundation (NNF) CO2 Research Center, Aarhus University, 8000 Aarhus C, Denmark
| | - Alexander Bagger
- Department of Chemistry, University of Copenhagen, 2100 Copenhagen, Denmark
- Department of Physics, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Jan Rossmeisl
- Department of Chemistry, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Jeppe V Lauritsen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
96
|
Zhang Y. Surface-Induced Electronic and Vibrational Level Shifting of [Fe(py) 2bpym(NCS) 2] on Al(100). MATERIALS (BASEL, SWITZERLAND) 2023; 16:6150. [PMID: 37763428 PMCID: PMC10532516 DOI: 10.3390/ma16186150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023]
Abstract
It is essential that one understands how the surface degrees of freedom influence molecular spin switching to successfully integrate spin crossover (SCO) molecules into devices. This study uses density functional theory calculations to investigate how spin state energetics and molecular vibrations change in a Fe(II) SCO compound named [Fe(py)2bpym(NCS)2] when deposited on an Al(100) surface. The calculations consider an environment-dependent U to assess the local Coulomb correlation of 3d electrons. The results show that the adsorption configurations heavily affect the spin state splitting, which increases by 10-40 kJmol-1 on the surface, and this is detrimental to spin conversion. This effect is due to the surface binding energy variation across the spin transition. The preference for the low-spin state originates partly from the strong correlation effect. Furthermore, the surface environment constrains the vibrational entropy difference, which decreases by 8-17 Jmol-1K-1 (at 300 K) and leads to higher critical temperatures. These results suggest that the electronic energy splitting and vibrational level shifting are suitable features for characterizing the spin transition process on surfaces, and they can provide access to high-throughput screening of spin crossover devices.
Collapse
Affiliation(s)
- Yachao Zhang
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018, China
| |
Collapse
|
97
|
Bui TA, Leuthner GT, Madsen J, Monazam MRA, Chirita AI, Postl A, Mangler C, Kotakoski J, Susi T. Creation of Single Vacancies in hBN with Electron Irradiation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301926. [PMID: 37259696 DOI: 10.1002/smll.202301926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/16/2023] [Indexed: 06/02/2023]
Abstract
Understanding electron irradiation effects is vital not only for reliable transmission electron microscopy characterization, but increasingly also for the controlled manipulation of 2D materials. The displacement cross sections of monolayer hexagonal boron nitride (hBN) are measured using aberration-corrected scanning transmission electron microscopy in near ultra-high vacuum at primary beam energies between 50 and 90 keV. Damage rates below 80 keV are up to three orders of magnitude lower than previously measured at edges under poorer residual vacuum conditions, where chemical etching appears to dominate. Notably, it is possible to create single vacancies in hBN using electron irradiation, with boron almost twice as likely as nitrogen to be ejected below 80 keV. Moreover, any damage at such low energies cannot be explained by elastic knock-on, even when accounting for the vibrations of the atoms. A theoretical description is developed to account for the lowering of the displacement threshold due to valence ionization resulting from inelastic scattering of probe electrons, modeled using charge-constrained density functional theory molecular dynamics. Although significant reductions are found depending on the constrained charge, quantitative predictions for realistic ionization states are currently not possible. Nonetheless, there is potential for defect-engineering of hBN at the level of single vacancies using electron irradiation.
Collapse
Affiliation(s)
- Thuy An Bui
- University of Vienna, Faculty of Physics, Boltzmanngasse 5, Vienna, 1090, Austria
| | - Gregor T Leuthner
- University of Vienna, Faculty of Physics, Boltzmanngasse 5, Vienna, 1090, Austria
| | - Jacob Madsen
- University of Vienna, Faculty of Physics, Boltzmanngasse 5, Vienna, 1090, Austria
| | - Mohammad R A Monazam
- University of Vienna, Faculty of Physics, Boltzmanngasse 5, Vienna, 1090, Austria
| | - Alexandru I Chirita
- University of Vienna, Faculty of Physics, Boltzmanngasse 5, Vienna, 1090, Austria
| | - Andreas Postl
- University of Vienna, Faculty of Physics, Boltzmanngasse 5, Vienna, 1090, Austria
| | - Clemens Mangler
- University of Vienna, Faculty of Physics, Boltzmanngasse 5, Vienna, 1090, Austria
| | - Jani Kotakoski
- University of Vienna, Faculty of Physics, Boltzmanngasse 5, Vienna, 1090, Austria
| | - Toma Susi
- University of Vienna, Faculty of Physics, Boltzmanngasse 5, Vienna, 1090, Austria
| |
Collapse
|
98
|
Stanton R, Trivedi DJ. Pyrovskite: A software package for the high-throughput construction, analysis, and featurization of two- and three-dimensional perovskite systems. J Chem Phys 2023; 159:064803. [PMID: 37555613 DOI: 10.1063/5.0159407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/24/2023] [Indexed: 08/10/2023] Open
Abstract
The increased computational and experimental interest in perovskite systems comprising novel phases and reduced dimensionality has greatly expanded the search space for this class of materials. In similar fields, unified frameworks exist for the procedural generation and subsequent analysis of these complex condensed matter systems. Given the relatively recent rise in popularity of these novel perovskite phases, such a framework is yet to be created. In this work, we introduce Pyrovskite, an open source software package, to aid in both the high-throughput and fine-grained generation, simulation, and subsequent analysis of this expanded family of perovskite systems. Additionally, we introduce a new descriptor for octahedral distortions in systems, including, but not limited to, perovskites. This descriptor quantifies diagonal displacements of the B-site cation in a BX6 octahedral coordination environment, which has been shown to contribute to increased Rashba-Dresselhaus splitting in perovskite systems.
Collapse
Affiliation(s)
- Robert Stanton
- Department of Physics, Clarkson University, Potsdam, New York 13699, USA
| | - Dhara J Trivedi
- Department of Physics, Clarkson University, Potsdam, New York 13699, USA
| |
Collapse
|
99
|
Pauls M, Schnieders D, Dronskowski R. Embedded Localized Molecular-Orbital Representations for Periodic Wave Functions. J Phys Chem A 2023; 127:6541-6551. [PMID: 37523466 DOI: 10.1021/acs.jpca.3c02283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
To more straightforwardly provide local chemical-bonding reasoning in crystalline matter, we introduce a new approach to generate a real-space analogue of periodic electronic structures using "exact" top-down frozen-density embedding calculations. Based on the obtained real-space electronic structure, we then construct localized molecular orbitals and evidence that our technique compares favorably against the commonly used Wannier method, both in terms of numerical efficiency and details of chemical bonding. The new method has been implemented into the LOBSTER software package and designed as a black-box approach, digesting any periodic electronic structure from the currently supported codes, i.e., VASP, Quantum ESPRESSO, and ABINIT.
Collapse
Affiliation(s)
- Mike Pauls
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, D-52056 Aachen, Germany
| | - David Schnieders
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, D-52056 Aachen, Germany
| | - Richard Dronskowski
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, D-52056 Aachen, Germany
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, 518055 Shenzhen, China
| |
Collapse
|
100
|
Li HN, Li D, Hao TT, Sun YY, Suen NT. Balance between Activity and Stability of Single Metal and Intermetallic Compounds for Electrocatalytic Hydrogen Evolution Reaction. Inorg Chem 2023. [PMID: 37490593 DOI: 10.1021/acs.inorgchem.3c01572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
The higher population of the antibonding state around the Fermi level will result in better activity yet lower stability of HER (Re vs Ru metal). There seems to be a limitation or balance for using a single metal since the bonding scheme of a single metal is relatively simple. Combining Re (strong bonding), Ru (HER active), and Zr metal (corrosion-resistant) grants ternary intermetallic compound ZrRe1.75Ru025, exhibiting excellent HER activity and stability in acidic and alkaline electrolytes. The overpotential at a current density of 10 mA/cm2 (η10) for ZrRe1.75Ru025 is much lower compared to that of ZrRe2. Although the HER activity of ZrRe1.75Ru025 is not comparable to that of ZrRu2, it demonstrates outstanding HER stability, while the current density of ZrRu2 is over ca. 16% after 6 h. This suggests that intermetallic compounds can break the constraint between activity and stability in a single metal for HER, which may be applied in other fields as well.
Collapse
Affiliation(s)
- Hao-Nan Li
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Dan Li
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Tong-Tong Hao
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Yuan Yuan Sun
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Nian-Tzu Suen
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|