51
|
Holczer M, Besze B, Lehel A, Kapuy O. The Dual Role of Sulforaphane-Induced Cellular Stress-A Systems Biological Study. Int J Mol Sci 2024; 25:1220. [PMID: 38279216 PMCID: PMC11154497 DOI: 10.3390/ijms25021220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
The endoplasmic reticulum (ER) plays a crucial role in cellular homeostasis. When ER stress is generated, an autophagic self-digestive process is activated to promote cell survival; however, cell death is induced in the case of excessive levels of ER stress. The aim of the present study was to investigate the effect of a natural compound called sulforaphane (SFN) upon ER stress. Our goal was to investigate how SFN-dependent autophagy activation affects different stages of ER stress induction. We approached our scientific analysis from a systems biological perspective using both theoretical and molecular biological techniques. We found that SFN induced the various cell-death mechanisms in a concentration- and time-dependent manner. The short SFN treatment at low concentrations promoted autophagy, whereas the longer treatment at higher concentrations activated cell death. We proved that SFN activated autophagy in a mTORC1-dependent manner and that the presence of ULK1 was required for its function. A low concentration of SFN pre- or co-treatment combined with short and long ER stress was able to promote cell survival via autophagy induction in each treatment, suggesting the potential medical importance of SFN in ER stress-related diseases.
Collapse
Affiliation(s)
| | | | | | - Orsolya Kapuy
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, 1085 Budapest, Hungary; (M.H.); (B.B.); (A.L.)
| |
Collapse
|
52
|
Louka P, Orriss IR, Pitsillides AA. Stable Sulforaphane Targets the Early Stages of Osteoclast Formation to Engender a Lasting Functional Blockade of Osteoclastogenesis. Cells 2024; 13:165. [PMID: 38247857 PMCID: PMC10814088 DOI: 10.3390/cells13020165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Sulforaphane, the native but unstable form of SFX-01, is an antioxidant that activates the NRF2 and inhibits the NF-KB pathways to achieve its actions. Resolving the mechanism(s) by which SFX-01 serves to control the various osteoclastogenic stages may expose pathways that could be explored for therapeutic use. Here we seek to identify the stage of osteoclastogenesis targeted by SFX-01 and explore whether, like SFN, it exerts its actions via the NRF2 and NF-KB pathways. Osteoclasts generated from the bone marrow (BM) of mice were cultured with SFX-01 at different timepoints to examine each phase of osteoclastogenesis separately. This showed that SFX-01 exerted actions throughout the process of osteoclastogenesis, but had its largest effects in the early osteoclast precursor differentiation stage. Thus, treatment with SFX-01 for the duration of culture, for the initial 3 days differentiation or for as little as the first 24 h was sufficient for effective inhibition. This aligned with data suggesting that SFX-01 reduced DC-STAMP levels, osteoclast nuclear number and modified cytoskeletal architecture. Pharmacological regulation of the NRF2 pathways, via selective inhibitors/activators, supported the anti-osteoclastogenic roles of an SFX-01-mediated by NRF2 activation, as well as the need for tight NF-KB pathway regulation in osteoclast formation/function.
Collapse
Affiliation(s)
| | | | - Andrew A. Pitsillides
- Skeletal Biology Group, Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, UK; (P.L.); (I.R.O.)
| |
Collapse
|
53
|
Li X, Cai Z, Yang F, Wang Y, Pang X, Sun J, Li X, Lu Y. Broccoli Improves Lipid Metabolism and Intestinal Flora in Mice with Type 2 Diabetes Induced by HFD and STZ Diet. Foods 2024; 13:273. [PMID: 38254574 PMCID: PMC10814524 DOI: 10.3390/foods13020273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Globally, type 2 diabetes (T2DM) is on the rise. Maintaining a healthy diet is crucial for both treating and preventing T2DM.As a common vegetable in daily diet, broccoli has antioxidant, anti-inflammatory and anticarcoma physiological activities. We developed a mouse model of type 2 diabetes and carried out a systematic investigation to clarify the function of broccoli in reducing T2DM symptoms and controlling intestinal flora. The findings demonstrated that broccoli could successfully lower fasting blood glucose (FBG), lessen insulin resistance, regulate lipid metabolism, lower the levels of TC, TG, LDL-C, and MDA, stop the expression of IL-1β and IL-6, and decrease the harm that diabetes causes to the pancreas, liver, fat, and other organs and tissues. Furthermore, broccoli altered the intestinal flora's makeup in mice with T2DM. At the genus level, the relative abundance of Allobaculum decreased, and that of Odoribacter and Oscillospira increased; At the family level, the relative abundances of Odoribacteraceae, Rikenellaceae and S24-7 decreased, while the relative abundances of Erysipelotrichaceae and Rikenellaceae increased.
Collapse
Affiliation(s)
- Xin Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China; (X.L.); (Z.C.); (Y.W.); (X.P.); (J.S.); (Y.L.)
- Priority Academic Program, Development of Jiangsu Higher Education Institutions (PAPD), Nanjing 210023, China
| | - Zifan Cai
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China; (X.L.); (Z.C.); (Y.W.); (X.P.); (J.S.); (Y.L.)
| | - Feiyu Yang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China;
| | - Yunfan Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China; (X.L.); (Z.C.); (Y.W.); (X.P.); (J.S.); (Y.L.)
| | - Xinyi Pang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China; (X.L.); (Z.C.); (Y.W.); (X.P.); (J.S.); (Y.L.)
| | - Jing Sun
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China; (X.L.); (Z.C.); (Y.W.); (X.P.); (J.S.); (Y.L.)
| | - Xiangfei Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China; (X.L.); (Z.C.); (Y.W.); (X.P.); (J.S.); (Y.L.)
| | - Yingjian Lu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China; (X.L.); (Z.C.); (Y.W.); (X.P.); (J.S.); (Y.L.)
| |
Collapse
|
54
|
Yang J, He L, Dai S, Zheng H, Cui X, Ou J, Zhang X. Therapeutic efficacy of sulforaphane in autism spectrum disorders and its association with gut microbiota: animal model and human longitudinal studies. Front Nutr 2024; 10:1294057. [PMID: 38260076 PMCID: PMC10800504 DOI: 10.3389/fnut.2023.1294057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction Sulforaphane (SFN) has been found to alleviate complications linked with several diseases by regulating gut microbiota (GM), while the effect of GM on SFN for autism spectrum disorders (ASD) has not been studied. Therefore, this study aimed to investigate the relationship between the effects of SFN on childhood ASD and GM through animal model and human studies. Methods We evaluated the therapeutic effects of SFN on maternal immune activation (MIA) induced ASD-like rat model and pediatric autism patients using three-chamber social test and OSU Autism Rating Scale-DSM-IV (OARS-4), respectively, with parallel GM analysis using 16SrRNA sequencing. Results SFN significantly improved the sniffing times of ASD-like rats in the three-chamber test. For human participants, the average verbal or non-verbal communication (OSU-CO) scores of SFN group had changed significantly at the 12-wk endpoint. SFN was safe and no serious side effects after taking. GM changes were similar for both ASD-like rats and ASD patients, such as consistent changes in order Bacillales, family Staphylococcaceae and genus Staphylococcus. Although the gut microbiota composition was significantly altered in SFN-treated ASD-like rats, the alteration of GM was not evident in ASD patients after 12 weeks of SFN treatment. However, in the network analysis, we found 25 taxa correlated with rats' social behavior, 8 of which were associated with SFN treatment in ASD-like rats, For ASD patients, we found 35 GM abundance alterations correlated with improvements in ASD symptoms after SFN treatment. Moreover, family Pasteurellaceae and genus Haemophilus were found to be associated with SFN administration in the network analyses in both ASD-like rats and ASD patients. Discussion These findings suggest that SFN could provide a novel avenue for preventing and treating ASD, and its therapeutic effects might be related to gut microbiota.
Collapse
Affiliation(s)
| | | | | | | | | | - Jianjun Ou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaojie Zhang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
55
|
Alkan AH, Ensoy M, Cansaran-Duman D. Strategic and Innovative Roles of lncRNAs Regulated by Naturally-derived Small Molecules in Cancer Therapy. Curr Med Chem 2024; 31:6672-6691. [PMID: 37921177 DOI: 10.2174/0109298673264372230919102758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/22/2023] [Accepted: 08/17/2023] [Indexed: 11/04/2023]
Abstract
In the field of precision and personalized medicine, the next generation sequencing method has begun to take an active place as genome-wide screening applications in the diagnosis and treatment of diseases. Studies based on the determination of the therapeutic efficacy of personalized drug use in cancer treatment in the size of the transcriptome and its extension, lncRNA, have been increasing rapidly in recent years. Targeting and/or regulating noncoding RNAs (ncRNAs) consisting of long noncoding RNAs (lncRNAs) are promising strategies for cancer treatment. Within the scope of rapidly increasing studies in recent years, it has been shown that many natural agents obtained from biological organisms can potentially alter the expression of many lncRNAs associated with oncogenic functions. Natural agents include effective small molecules that provide anti-cancer effects and have been used as chemotherapy drugs or in combination with standard anti-cancer drugs used in routine treatment. In this review, it was aimed to provide detailed information about the potential of natural agents to regulate and/or target non-coding RNAs and their mechanisms of action to provide an approach for cancer therapy. The discovery of novel anti-cancer targets and subsequent development of effective drugs or combination strategies that are still needed for most cancers will be promising for cancer treatment.
Collapse
Affiliation(s)
- Ayşe Hale Alkan
- Biotechnology Institute, Ankara University, Keçiören, Ankara, Turkey
- Department of Molecular Biology and Genetics, Faculty of Science, Bartın University, Bartın, Turkey
| | - Mine Ensoy
- Biotechnology Institute, Ankara University, Keçiören, Ankara, Turkey
| | | |
Collapse
|
56
|
Ribeiro M, Cardozo LF, Paiva BR, Baptista BG, Fanton S, Alvarenga L, Lima LS, Britto I, Nakao LS, Fouque D, Ribeiro-Alves M, Mafra D. Sulforaphane Supplementation Did Not Modulate NRF2 and NF-kB mRNA Expressions in Hemodialysis Patients. J Ren Nutr 2024; 34:68-75. [PMID: 37619675 DOI: 10.1053/j.jrn.2023.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/01/2023] [Accepted: 08/13/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Patients with chronic kidney disease (CKD) have reduced expression of erythroid nuclear factor-related factor 2 (NRF2) and increased nuclear factor κB (NF-κB). "Food as medicine" has been proposed as an adjuvant therapeutic alternative in modulating these factors. No studies have investigated the effects of sulforaphane (SFN) in cruciferous vegetables on the expression of these genes in patients with CKD. OBJECTIVE The study aimed to evaluate the effects of SFN on the expression of NRF2 and NF-κB in patients on hemodialysis (HD). DESIGN AND METHODS A randomized, double-blind, crossover study was performed on 30 patients on regular HD. Fourteen patients were randomly allocated to the intervention group (1 sachet/day of 2.5 g containing 1% SFN extract with 0.5% myrosinase) and 16 patients to the placebo group (1 sachet/day of 2.5 g containing corn starch colored with chlorophyll) for 2 months. After a washout period of 2 months, the groups were switched. NRF2 and NF-κB mRNA expression was evaluated by real-time quantitative polymerase chain reaction, and tumor necrosis factor alpha and interleukin-6 levels were quantified by enzyme-linked immunosorbent assay. Malondialdehyde was evaluated as a marker of lipid peroxidation. RESULTS Twenty-five patients (17 women, 55 [interquartile range = 19] years and 55 [interquartile range = 74] months on HD) completed the study. There was no significant difference concerning the expression of mRNA NRF2 (P = .915) and mRNA NF-κB (P = .806) after supplementation with SFN. There was no difference in pro-inflammatory and oxidative stress biomarkers. CONCLUSION 150 μmol of SFN for 2 months had no antioxidant and anti-inflammatory effect in patients with CKD undergoing HD.
Collapse
Affiliation(s)
- Marcia Ribeiro
- Graduate Program in Biological Sciences, Department of Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Ludmila Fmf Cardozo
- Graduate Program in Cardiovascular Sciences, Federal University Fluminense (UFF), Niterói, RJ, Brazil
| | - Bruna R Paiva
- Graduate Program in Cardiovascular Sciences, Federal University Fluminense (UFF), Niterói, RJ, Brazil
| | - Beatriz Germer Baptista
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Susane Fanton
- Graduate Program in Cardiovascular Sciences, Federal University Fluminense (UFF), Niterói, RJ, Brazil
| | - Livia Alvarenga
- Graduate Program in Biological Sciences, Department of Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil; Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Ligia Soares Lima
- Graduate Program in Biological Sciences, Department of Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Isadora Britto
- Graduate Program in Biological Sciences, Department of Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Lia S Nakao
- Federal University of Parana (UFPR), Department of Basic Pathology, Curitiba, Brazil
| | - Denis Fouque
- Department of Nephrology, Centre Hopitalier Lyon Sud, INSERM 1060, CENS, Université de Lyon, France
| | - Marcelo Ribeiro-Alves
- HIV/AIDS Clinical Research Center, National Institute of Infectology Evandro Chagas (INI/Fiocruz), Rio de Janeiro, Brazil
| | - Denise Mafra
- Graduate Program in Biological Sciences, Department of Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil; Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil.
| |
Collapse
|
57
|
Rizwan D, Masoodi FA. Brassica-derived isothiocyanates as anticancer therapeutic agents and their nanodelivery. Phytother Res 2024; 38:331-348. [PMID: 37882581 DOI: 10.1002/ptr.8042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 09/09/2023] [Accepted: 10/01/2023] [Indexed: 10/27/2023]
Abstract
The isothiocyanates (ITCs) derived from the precursor glucosinolate molecules present in Brassica vegetables are bioactive organo-sulfur compounds with numerous pharmacologically important properties such as antioxidant, antiinflammatory, antimicrobial, and anticancer. Over the years, ITCs have been the focus of several research investigations associated with cancer treatment. Due to their potent chemo-preventive action, ITCs have been considered to be promising therapeutics for cancer therapy in place of the already existing conventional anticancer drugs. However, their wide spread use at the clinical stage is greatly restricted due to several factors such as low solubility in an aqueous medium, low bioavailability, low stability, and hormetic effect. To overcome these hindrances, nanotechnology can be exploited to develop nano-scale delivery systems that have the potential to enhance stability, and bioavailability and minimize the hermetic effect of ITCs.
Collapse
Affiliation(s)
- Danish Rizwan
- Department of Food Science and Technology, University of Kashmir, Jammu and Kashmir, India
| | - Farooq Ahmad Masoodi
- Department of Food Science and Technology, University of Kashmir, Jammu and Kashmir, India
| |
Collapse
|
58
|
Huang X, Zhou X, Wu C, Li W, Ma Y, He Q, Ya F. Sulforaphane attenuates platelet granule secretion through down-regulating glycoprotein VI-mediated p38 MAPK/cPLA 2 signaling pathway. CYTA - JOURNAL OF FOOD 2023. [DOI: 10.1080/19476337.2023.2173307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Xinhui Huang
- Department of Nutrition, School of Public Health, Dali University, Dali, Yunnan, China
| | - Xinyu Zhou
- Department of Nutrition, School of Public Health, Dali University, Dali, Yunnan, China
| | - Chunting Wu
- Department of Nutrition, School of Public Health, Dali University, Dali, Yunnan, China
| | - Weiqi Li
- Department of Nutrition, School of Public Health, Dali University, Dali, Yunnan, China
| | - Yongjie Ma
- Department of Nutrition, School of Public Health, Dali University, Dali, Yunnan, China
| | - Qilian He
- School of Nursing, Dali University, Dali, Yunnan, China
| | - Fuli Ya
- Department of Nutrition, School of Public Health, Dali University, Dali, Yunnan, China
- Institute of Translational Medicine for Metabolic Diseases, Dali University, Dali, Yunnan, China
| |
Collapse
|
59
|
Hanuš L, Naor T, Gloriozova T, Dembitsky VM. Natural isothiocyanates of the genus Capparis as potential agonists of apoptosis and antitumor drugs. World J Pharmacol 2023; 12:35-52. [DOI: 10.5497/wjp.v12.i4.35] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/12/2023] [Accepted: 11/24/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND Using gas chromatography-mass spectrometry (GC/MS) analysis, we examined the composition of volatile components present in the yellow and green fruits, seeds, and jam of the scrambling shrub Capparis cartilaginea (C. cartilaginea). These plant samples were collected from Kibbutz Yotvata in Israel. In all the tested samples, isothiocyanates were identified. Utilizing the PASS program, we ascertained the biological activity of these isothiocyanates present in the Capparis genus. The study results highlighted that all isothiocyanates could potentially act as apoptosis agonists, making them strong candidates for antitumor drugs. This information holds significant value for the fields of medicinal chemistry, pharmacology, and practical medicine.
AIM To investigate the volatile components present in the yellow and green fruits, seeds, and jam of the C. cartilaginea shrub using GC/MS analysis, to detect isothiocyanates in all the analyzed plant samples, and to assess the biological activity of these isothiocyanates utilizing the PASS program.
METHODS We utilized two primary methods to analyze the volatile compounds present in the yellow and green fruits, seeds, and jams of the C. cartilaginea, native to Israel. We identified biologically active isothiocyanates in these samples. Their anticipated biological activities were determined using the PASS program, with the most dominant activities being apoptosis agonist, anticarcinogenic, and antineoplastic specifically for genitourinary cancer.
RESULTS Fruits, seeds, and jams containing isothiocyanates, which exhibit antineoplastic and anticarcinogenic activities, could be suggested for cancer prevention and management. Specific isothiocyanates, with therapeutic potential in this realm, could be recommended as potent anticancer agents in practical medicine following clinical trials.
CONCLUSION The discovery that isothiocyanates exhibit potent antineoplastic and anticarcinogenic activities was unexpected. Additionally, certain isothiocyanates demonstrated antifungal, antiviral (specifically against arbovirus), and antiparasitic properties.
Collapse
Affiliation(s)
- Lumír Hanuš
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University, Ein Kerem Campus, Jerusalem 91120, Israel
| | - Tuvia Naor
- Food Chemistry, Kibbutz, Yotvata 8882000, Israel
| | - Tatyana Gloriozova
- Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow 119121, Russia
| | - Valery M Dembitsky
- Centre for Applied Research and Innovation, Lethbridge College, Lethbridge AB T1K 1L6, Canada
| |
Collapse
|
60
|
Corsetti V, Notari T, Montano L. Effects of the low-carb organic Mediterranean diet on testosterone levels and sperm DNA fragmentation. Curr Res Food Sci 2023; 7:100636. [PMID: 38045510 PMCID: PMC10689274 DOI: 10.1016/j.crfs.2023.100636] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 12/05/2023] Open
Abstract
The causes of male infertility can vary. Lifestyles, environmental factors, stressful conditions, and socio-economic conditions are significant factors. Diet plays a crucial role in improving a man's reproductive capacity. The appropriate diet should be diverse and ensure the intake of all the necessary nutrients to enhance sperm quality. The Mediterranean diet, which includes high amounts of vegetables and fruits rich in detoxifying and antioxidant substances, as well as polyphenols, flavonoids, carotenoids, and microelements, especially when consumed with organic foods and a lower carbohydrate regimen, are the key aspects addressed in this study. The objective of this research was to modify the diets of 50 subfertile men by providing them with a specific nutritional plan. This plan included consuming 80% organic foods, introducing whole grains and low glycemic load options, eliminating refined carbohydrates, consuming green leafy vegetables and red fruits daily, reducing or eliminating dairy products, consuming primarily grass-fed meat and wild caught seafood, eliminating saturated fats in favor of healthy fats like olive oil, avocado, and nuts. After three months of adhering to the low-carb food plan, testosterone levels significantly increased, while sperm DNA fragmentation decreased in a subgroup of individuals who reduced their carbohydrate intake by 35%.
Collapse
Affiliation(s)
- Veronica Corsetti
- Institute of Translational Pharmacology (IFT)-CNR, Via Fosso del Cavaliere 100, 00133, Rome, Italy
| | - Tiziana Notari
- Check Up -Polydiagnostic and Research Laboratory, Andrology Unit, Viale Andrea De Luca 5/c, 84131, Salerno, Italy
| | - Luigi Montano
- Andrology Unit and Service of Lifestyle Medicine in UroAndrology, Local Health Authority (ASL) Salerno, Coordination Unit of the Network for Environmental and Reproductive Health (Eco-Food Fertility Project), “S. Francesco di Assisi Hospital”, 84020, Oliveto Citra, SA, Italy
- PhD Program in Evolutionary Biology and Ecology, University of Rome “Tor Vergata”, 00133, Rome, Italy
| |
Collapse
|
61
|
Nagata A, Oishi S, Kirishita N, Onoda K, Kobayashi T, Terada Y, Minami A, Senoo N, Yoshioka Y, Uchida K, Ito K, Miura S, Miyoshi N. Allyl Isothiocyanate Maintains DHA-Containing Glycerophospholipids and Ameliorates the Cognitive Function Decline in OVX Mice. ACS OMEGA 2023; 8:43118-43129. [PMID: 38024702 PMCID: PMC10652735 DOI: 10.1021/acsomega.3c06622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023]
Abstract
Low-temperature-induced fatty acid desaturation is highly conserved in animals, plants, and bacteria. Allyl isothiocyanate (AITC) is an agonist of the transient receptor potential ankyrin 1 (TRPA1), which is activated by various chemophysiological stimuli, including low temperature. However, whether AITC induces fatty acid desaturation remains unknown. We showed here that AITC increased levels of glycerophospholipids (GP) esterified with unsaturated fatty acids, especially docosahexaenoic acid (DHA) in TRPA1-expressing HEK cells. Additionally, GP-DHA including phosphatidylcholine (18:0/22:6) and phosphatidylethanolamine (18:0/22:6) was increased in the brain and liver of AITC-administered mice. Moreover, intragastrical injection of AITC in ovariectomized (OVX) female C57BL/6J mice dose-dependently shortened the Δlatency time determined by the Morris water maze test, indicating AITC ameliorated the cognitive function decline in these mice. Thus, the oral administration of AITC maintains GP-DHA in the liver and brain, proving to be a potential strategy for preventing cognitive decline.
Collapse
Affiliation(s)
- Akika Nagata
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Shiori Oishi
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Nanako Kirishita
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Keita Onoda
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Takuma Kobayashi
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Yuko Terada
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Akira Minami
- Department
of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Nanami Senoo
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Yasukiyo Yoshioka
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Kunitoshi Uchida
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Keisuke Ito
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Shinji Miura
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Noriyuki Miyoshi
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| |
Collapse
|
62
|
Liu G, Tan L, Zhao X, Wang M, Zhang Z, Zhang J, Gao H, Liu M, Qin W. Anti-atherosclerosis mechanisms associated with regulation of non-coding RNAs by active monomers of traditional Chinese medicine. Front Pharmacol 2023; 14:1283494. [PMID: 38026969 PMCID: PMC10657887 DOI: 10.3389/fphar.2023.1283494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Atherosclerosis is the leading cause of numerous cardiovascular diseases with a high mortality rate. Non-coding RNAs (ncRNAs), RNA molecules that do not encode proteins in human genome transcripts, are known to play crucial roles in various physiological and pathological processes. Recently, researches on the regulation of atherosclerosis by ncRNAs, mainly including microRNAs, long non-coding RNAs, and circular RNAs, have gradually become a hot topic. Traditional Chinese medicine has been proved to be effective in treating cardiovascular diseases in China for a long time, and its active monomers have been found to target a variety of atherosclerosis-related ncRNAs. These active monomers of traditional Chinese medicine hold great potential as drugs for the treatment of atherosclerosis. Here, we summarized current advancement of the molecular pathways by which ncRNAs regulate atherosclerosis and mainly highlighted the mechanisms of traditional Chinese medicine monomers in regulating atherosclerosis through targeting ncRNAs.
Collapse
Affiliation(s)
- Guoqing Liu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Liqiang Tan
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xiaona Zhao
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| | - Minghui Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Zejin Zhang
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Jing Zhang
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Honggang Gao
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Meifang Liu
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Wei Qin
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| |
Collapse
|
63
|
Kasamatsu S, Owaki T, Komae S, Kinno A, Ida T, Akaike T, Ihara H. Untargeted polysulfide omics analysis of alternations in polysulfide production during the germination of broccoli sprouts. Redox Biol 2023; 67:102875. [PMID: 37699321 PMCID: PMC10500461 DOI: 10.1016/j.redox.2023.102875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/23/2023] [Accepted: 09/02/2023] [Indexed: 09/14/2023] Open
Abstract
Higher consumption of broccoli (Brassica oleracea var. italica) is associated with a reduced risk of cardiometabolic diseases, neurological disorders, diabetes, and cancer. Broccoli is rich in various phytochemicals, including glucosinolates, and isothiocyanates. Moreover, it has recently reported the endogenous production of polysulfides, such as cysteine hydropersulfide (CysS2H) and glutathione hydropersulfide (GS2H), in mammals including humans, and that these bioactive substances function as potent antioxidants and important regulators of redox signaling in vivo. However, few studies have focused on the endogenous polysulfide content of broccoli and the impact of germination on the polysulfide content and composition in broccoli. In this study, we investigated the alternations in polysulfide biosynthesis in broccoli during germination by performing untargeted polysulfide omics analysis and quantitative targeted polysulfide metabolomics through liquid chromatography-electrospray ionization-tandem mass spectrometry. We also performed 2,2-diphenyl-1-picrylhydrazyl radical-scavenging assay to determine the antioxidant properties of the polysulfides. The results revealed that the total polysulfide content of broccoli sprouts significantly increased during germination and growth; CysS2H and cysteine hydrotrisulfide were the predominant organic polysulfide metabolites. Furthermore, we determined that novel sulforaphane (SFN) derivatives conjugated with CysS2H and GS2H were endogenously produced in the broccoli sprouts, and the novel SFN conjugated with CysS2H exhibited a greater radical scavenging capacity than SFN and cysteine. These results suggest that the abundance of polysulfides in broccoli sprouts contribute to their health-promoting properties. Our findings have important biological implications for the development of novel pharmacological targets for the health-promoting effects of broccoli sprouts in humans.
Collapse
Affiliation(s)
- Shingo Kasamatsu
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, Sakai, 599-8531, Japan; Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, 599-8531, Japan
| | - Takuma Owaki
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, Sakai, 599-8531, Japan
| | - Somei Komae
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, 599-8531, Japan
| | - Ayaka Kinno
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, 599-8531, Japan
| | - Tomoaki Ida
- Organization for Research Promotion, Osaka Metropolitan University, Sakai, 599-8531, Japan
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Hideshi Ihara
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, Sakai, 599-8531, Japan; Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, 599-8531, Japan.
| |
Collapse
|
64
|
Wu S, Li L, Liang Q, Gao H, Tang T, Tang Y. A DFT study of sulforaphane adsorption on the group III nitrides (B12N12, Al12N12 and Ga12N12) nanocages. J Biomol Struct Dyn 2023; 42:12730-12741. [PMID: 37882329 DOI: 10.1080/07391102.2023.2272755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/04/2023] [Indexed: 10/27/2023]
Abstract
In this paper, the adsorption behavior of group III nitrides (B12N12, Al12N12, and Ga12N12) nanocages to sulforaphane (SF) anticancer medicine were studied by density functional theory (DFT). The adsorption energy, solvation energy, desorption time and related quantum molecular descriptors were calculated in neutral and acidic solutions. When the drugs were adsorbed to nanocages, the structure of nanocages and drugs changed after adsorption, indicating that the process was effective adsorption. The adsorption energy and solvation energy of the complexes created after adsorption were negative values, which indicated that the structure of complexes formed by adsorption were stable. According to charge decomposition analysis (CDA) and natural bonding orbitals (NBO), drugs act as charge donors and nanocages act as charge acceptors, so that the charge flows from drugs to nanocages. Thermodynamic calculations demonstrate that drugs adsorption on nanocages is a spontaneous exothermic process. The calculation of quantum molecular descriptors confirmed that drugs adsorption on nanocages increased the chemical reactivity and solubility of drugs, which facilitated its transfer in biological fluids. Both interaction region index (IRI) and topological analysis of atom in molecule (AIM) revealed Van Der Waals interaction between drugs and nanocages. Protonation studies demonstrated that acidic circumstances could improve the polarity of complexes, increase the solvation effect, and boost drugs release in target cancer cells. The results of this work indicate that X12N12(X = B, Al, Ga) nanocages can be used as the delivery vehicle of SF drug.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- ShiQuan Wu
- School of Physics, Guizhou University, Guiyang, China
| | - Li Li
- School of Physics, Guizhou University, Guiyang, China
| | - QiQi Liang
- School of Physics, Guizhou University, Guiyang, China
| | - HuaXu Gao
- School of Physics, Guizhou University, Guiyang, China
| | - TianYu Tang
- School of Physics, Guizhou University, Guiyang, China
| | - YanLin Tang
- School of Physics, Guizhou University, Guiyang, China
| |
Collapse
|
65
|
Somers DJ, Kushner DB, McKinnis AR, Mehmedovic D, Flame RS, Arnold TM. Epigenetic weapons in plant-herbivore interactions: Sulforaphane disrupts histone deacetylases, gene expression, and larval development in Spodoptera exigua while the specialist feeder Trichoplusia ni is largely resistant to these effects. PLoS One 2023; 18:e0293075. [PMID: 37856454 PMCID: PMC10586618 DOI: 10.1371/journal.pone.0293075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023] Open
Abstract
Cruciferous plants produce sulforaphane (SFN), an inhibitor of nuclear histone deacetylases (HDACs). In humans and other mammals, the consumption of SFN alters enzyme activities, DNA-histone binding, and gene expression within minutes. However, the ability of SFN to act as an HDAC inhibitor in nature, disrupting the epigenetic machinery of insects feeding on these plants, has not been explored. Here, we demonstrate that SFN consumed in the diet inhibits the activity of HDAC enzymes and slows the development of the generalist grazer Spodoptera exigua, in a dose-dependent fashion. After consuming SFN for seven days, the activities of HDAC enzymes in S. exigua were reduced by 50%. Similarly, larval mass was reduced by 50% and pupation was delayed by 2-5 days, with no additional mortality. Similar results were obtained when SFN was applied topically to eggs. RNA-seq analyses confirm that SFN altered the expression of thousands of genes in S. exigua. Genes associated with energy conversion pathways were significantly downregulated while those encoding for ribosomal proteins were dramatically upregulated in response to the consumption of SFN. In contrast, the co-evolved specialist feeder Trichoplusia ni was not negatively impacted by SFN, whether it was consumed in their diet at natural concentrations or applied topically to eggs. The activities of HDAC enzymes were not inhibited and development was not disrupted. In fact, SFN exposure sometimes accelerated T. ni development. RNA-seq analyses revealed that the consumption of SFN alters gene expression in T. ni in similar ways, but to a lesser degree, compared to S. exigua. This apparent resistance of T. ni can be overwhelmed by unnaturally high levels of SFN or by exposure to more powerful pharmaceutical HDAC inhibitors. These results demonstrate that dietary SFN interferes with the epigenetic machinery of insects, supporting the hypothesis that plant-derived HDAC inhibitors serve as "epigenetic weapons" against herbivores.
Collapse
Affiliation(s)
- Dana J. Somers
- Department of Biology, Program in Biochemistry and Molecular Biology, Dickinson College, Carlisle, PA United States of America
| | - David B. Kushner
- Department of Biology, Program in Biochemistry and Molecular Biology, Dickinson College, Carlisle, PA United States of America
| | - Alexandria R. McKinnis
- Department of Biology, Program in Biochemistry and Molecular Biology, Dickinson College, Carlisle, PA United States of America
| | - Dzejlana Mehmedovic
- Department of Biology, Program in Biochemistry and Molecular Biology, Dickinson College, Carlisle, PA United States of America
| | - Rachel S. Flame
- Department of Biology, Program in Biochemistry and Molecular Biology, Dickinson College, Carlisle, PA United States of America
| | - Thomas M. Arnold
- Department of Biology, Program in Biochemistry and Molecular Biology, Dickinson College, Carlisle, PA United States of America
| |
Collapse
|
66
|
Pérez P, Hashemi S, Cano-Lamadrid M, Martínez-Zamora L, Gómez PA, Artés-Hernández F. Effect of Ultrasound and High Hydrostatic Pressure Processing on Quality and Bioactive Compounds during the Shelf Life of a Broccoli and Carrot By-Products Beverage. Foods 2023; 12:3808. [PMID: 37893701 PMCID: PMC10606312 DOI: 10.3390/foods12203808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Vegetable beverages are a convenient strategy to enhance the consumption of horticultural commodities, with the possibility of being fortified with plant by-products to increase functional quality. The main objective was to develop a new veggie beverage from broccoli stalks and carrot by-products seasoned with natural antioxidants and antimicrobial ingredients. Pasteurization, Ultrasound (US), and High Hydrostatic Pressure (HHP) and their combinations were used as processing treatments, while no treatment was used as a control (CTRL). A shelf-life study of 28 days at 4 °C was assayed. Microbial load, antioxidant capacity, and bioactive compounds were periodically measured. Non-thermal treatments have successfully preserved antioxidants (~6 mg/L ΣCarotenoids) and sulfur compounds (~1.25 g/L ΣGlucosinolates and ~5.5 mg/L sulforaphane) throughout the refrigerated storage, with a longer shelf life compared to a pasteurized beverage. Total vial count was reduced by 1.5-2 log CFU/mL at day 0 and by 6 log CFU/mL at the end of the storage in HHP treatments. Thus, the product developed in this study could help increase the daily intake of glucosinolates and carotenoids. These beverages can be a good strategy to revitalize broccoli and carrot by-products with high nutritional potential while maintaining a pleasant sensory perception for the final consumer.
Collapse
Affiliation(s)
- Pablo Pérez
- Postharvest and Refrigeration Group, Department of Agricultural Engineering, Universidad Politécnica de Cartagena, 30203 Cartagena, Region of Murcia, Spain; (P.P.); (S.H.); (M.C.-L.)
- Laboratorio de Investigación en Tecnología de Alimentos, Instituto de Tecnologías y Ciencias de la Ingeniería (INTECIN), Facultad de Ingeniería, Departamento de Ingeniería Química, Consejo Nacional de Investigaciones Científica y Técnicas (CONICET), Universidad de Buenos Aires, C.A.B.A, Buenos Aires C1428EGA, Argentina
| | - Seyedehzeinab Hashemi
- Postharvest and Refrigeration Group, Department of Agricultural Engineering, Universidad Politécnica de Cartagena, 30203 Cartagena, Region of Murcia, Spain; (P.P.); (S.H.); (M.C.-L.)
- Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30202 Cartagena, Region of Murcia, Spain;
| | - Marina Cano-Lamadrid
- Postharvest and Refrigeration Group, Department of Agricultural Engineering, Universidad Politécnica de Cartagena, 30203 Cartagena, Region of Murcia, Spain; (P.P.); (S.H.); (M.C.-L.)
- Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30202 Cartagena, Region of Murcia, Spain;
| | - Lorena Martínez-Zamora
- Postharvest and Refrigeration Group, Department of Agricultural Engineering, Universidad Politécnica de Cartagena, 30203 Cartagena, Region of Murcia, Spain; (P.P.); (S.H.); (M.C.-L.)
- Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30202 Cartagena, Region of Murcia, Spain;
- Department of Food Technology, Nutrition, and Food Science, Faculty of Veterinary Sciences, University of Murcia, 30071 Espinardo, Region of Murcia, Spain
| | - Perla A. Gómez
- Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30202 Cartagena, Region of Murcia, Spain;
| | - Francisco Artés-Hernández
- Postharvest and Refrigeration Group, Department of Agricultural Engineering, Universidad Politécnica de Cartagena, 30203 Cartagena, Region of Murcia, Spain; (P.P.); (S.H.); (M.C.-L.)
- Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30202 Cartagena, Region of Murcia, Spain;
| |
Collapse
|
67
|
da Silva FC, Brandão DC, Ferreira EA, Siqueira RP, Ferreira HSV, Da Silva Filho AA, Araújo TG. Tailoring Potential Natural Compounds for the Treatment of Luminal Breast Cancer. Pharmaceuticals (Basel) 2023; 16:1466. [PMID: 37895937 PMCID: PMC10610388 DOI: 10.3390/ph16101466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/24/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Breast cancer (BC) is the most diagnosed cancer worldwide, mainly affecting the epithelial cells from the mammary glands. When it expresses the estrogen receptor (ER), the tumor is called luminal BC, which is eligible for endocrine therapy with hormone signaling blockade. Hormone therapy is essential for the survival of patients, but therapeutic resistance has been shown to be worrying, significantly compromising the prognosis. In this context, the need to explore new compounds emerges, especially compounds of plant origin, since they are biologically active and particularly promising. Natural products are being continuously screened for treating cancer due to their chemical diversity, reduced toxicity, lower side effects, and low price. This review summarizes natural compounds for the treatment of luminal BC, emphasizing the activities of these compounds in ER-positive cells. Moreover, their potential as an alternative to endocrine resistance is explored, opening new opportunities for the design of optimized therapies.
Collapse
Affiliation(s)
- Fernanda Cardoso da Silva
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil; (F.C.d.S.); (D.C.B.); (R.P.S.); (H.S.V.F.)
| | - Douglas Cardoso Brandão
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil; (F.C.d.S.); (D.C.B.); (R.P.S.); (H.S.V.F.)
| | - Everton Allan Ferreira
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil; (E.A.F.); (A.A.D.S.F.)
| | - Raoni Pais Siqueira
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil; (F.C.d.S.); (D.C.B.); (R.P.S.); (H.S.V.F.)
| | - Helen Soares Valença Ferreira
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil; (F.C.d.S.); (D.C.B.); (R.P.S.); (H.S.V.F.)
| | - Ademar Alves Da Silva Filho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil; (E.A.F.); (A.A.D.S.F.)
| | - Thaise Gonçalves Araújo
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil; (F.C.d.S.); (D.C.B.); (R.P.S.); (H.S.V.F.)
- Laboratory of Nanobiotechnology Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlandia 38405-302, MG, Brazil
| |
Collapse
|
68
|
Bouranis JA, Wong CP, Beaver LM, Uesugi SL, Papenhausen EM, Choi J, Davis EW, Da Silva AN, Kalengamaliro N, Chaudhary R, Kharofa J, Takiar V, Herzog TJ, Barrett W, Ho E. Sulforaphane Bioavailability in Healthy Subjects Fed a Single Serving of Fresh Broccoli Microgreens. Foods 2023; 12:3784. [PMID: 37893677 PMCID: PMC10606698 DOI: 10.3390/foods12203784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/26/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Cruciferous vegetable consumption is associated with numerous health benefits attributed to the phytochemical sulforaphane (SFN) that exerts antioxidant and chemopreventive properties, among other bioactive compounds. Broccoli sprouts, rich in SFN precursor glucoraphanin (GRN), have been investigated in numerous clinical trials. Broccoli microgreens are similarly rich in GRN but have remained largely unexplored. The goal of this study was to examine SFN bioavailability and the microbiome profile in subjects fed a single serving of fresh broccoli microgreens. Eleven subjects participated in a broccoli microgreens feeding study. Broccoli microgreens GRN and SFN contents and stability were measured. Urine and stool SFN metabolite profiles and microbiome composition were examined. Broccoli microgreens had similar GRN content to values previously reported for broccoli sprouts, which was stable over time. Urine SFN metabolite profiles in broccoli microgreens-fed subjects were similar to those reported previously in broccoli sprouts-fed subjects, including the detection of SFN-nitriles. We also reported the detection of SFN metabolites in stool samples for the first time. A single serving of broccoli microgreens did not significantly alter microbiome composition. We showed in this study that broccoli microgreens are a significant source of SFN. Our work provides the foundation for future studies to establish the health benefits of broccoli microgreens consumption.
Collapse
Affiliation(s)
- John A. Bouranis
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; (J.A.B.); (C.P.W.); (L.M.B.); (S.L.U.); (E.M.P.); (J.C.)
- School of Public Health and Nutrition, Oregon State University, Corvallis, OR 97331, USA
| | - Carmen P. Wong
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; (J.A.B.); (C.P.W.); (L.M.B.); (S.L.U.); (E.M.P.); (J.C.)
- School of Public Health and Nutrition, Oregon State University, Corvallis, OR 97331, USA
| | - Laura M. Beaver
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; (J.A.B.); (C.P.W.); (L.M.B.); (S.L.U.); (E.M.P.); (J.C.)
- School of Public Health and Nutrition, Oregon State University, Corvallis, OR 97331, USA
| | - Sandra L. Uesugi
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; (J.A.B.); (C.P.W.); (L.M.B.); (S.L.U.); (E.M.P.); (J.C.)
| | - Ethan M. Papenhausen
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; (J.A.B.); (C.P.W.); (L.M.B.); (S.L.U.); (E.M.P.); (J.C.)
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; (J.A.B.); (C.P.W.); (L.M.B.); (S.L.U.); (E.M.P.); (J.C.)
| | - Edward W. Davis
- Center for Quantitative Life Sciences, Oregon State University, Corvallis, OR 97331, USA;
| | | | | | - Rekha Chaudhary
- Department of Medical Oncology, University of Cincinnati, Cincinnati, OH 45221, USA;
| | - Jordan Kharofa
- Department of Radiation Oncology, University of Cincinnati, Cincinnati, OH 45221, USA; (J.K.); (V.T.); (W.B.)
| | - Vinita Takiar
- Department of Radiation Oncology, University of Cincinnati, Cincinnati, OH 45221, USA; (J.K.); (V.T.); (W.B.)
| | - Thomas J. Herzog
- Department of OB/GYN, Division of Gynecologic Oncology, University of Cincinnati, Cincinnati, OH 45221, USA;
| | - William Barrett
- Department of Radiation Oncology, University of Cincinnati, Cincinnati, OH 45221, USA; (J.K.); (V.T.); (W.B.)
| | - Emily Ho
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; (J.A.B.); (C.P.W.); (L.M.B.); (S.L.U.); (E.M.P.); (J.C.)
- School of Public Health and Nutrition, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
69
|
Lin TS, Huang WN, Yang JL, Peng SF, Liu KC, Chen JC, Hsia TC, Huang AC. Allyl isothiocyanate inhibits cell migration and invasion in human gastric cancer AGS cells via affecting PI3K/AKT and MAPK signaling pathway in vitro. ENVIRONMENTAL TOXICOLOGY 2023; 38:2287-2297. [PMID: 37318315 DOI: 10.1002/tox.23864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/16/2023]
Abstract
Metastasis is commonly occurred in gastric cancer, and it is caused and responsible for one of the major cancer-related mortality in gastric cancer patients. Allyl isothiocyanate (AITC), a natural product, exhibits anticancer activities in human many cancer cells, including gastric cancer. However, no available report shows AITC inhibits gastric cancer cell metastasis. Herein, we evaluated the impact of AITC on cell migration and invasion of human gastric cancer AGS cells in vitro. AITC at 5-20 μM did not induce significant cell morphological damages observed by contrast-phase microscopy but decreased cell viability assayed by flow cytometry. After AGS cells were further examined by atomic force microscopy (AFM), which indicated AITC affected cell membrane and morphology in AGS cells. AITC significantly suppressed cell motility examined by scratch wound healing assay. The results of the gelatin zymography assay revealed that AITC significantly suppressed the MMP-2 and MMP-9 activities. In addition, AITC suppressed cell migration and invasion were performed by transwell chamber assays at 24 h in AGS cells. Furthermore, AITC inhibited cell migration and invasion by affecting PI3K/AKT and MAPK signaling pathways in AGS cells. The decreased expressions of p-AKTThr308 , GRB2, and Vimentin in AGS cells also were confirmed by confocal laser microscopy. Our findings suggest that AITC may be an anti-metastasis candidate for human gastric cancer treatment.
Collapse
Affiliation(s)
- Tzu-Shun Lin
- Department of Pharmacy, Saint Mary's Hospital Luodong, Luodong, Yilan, Taiwan
- Department of Nursing, Saint Mary's Junior College of Medicine, Nursing and Management, Sanxing, Yilan, Taiwan
| | - Wan-Nei Huang
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Jiun-Long Yang
- Department of Nursing, Saint Mary's Junior College of Medicine, Nursing and Management, Sanxing, Yilan, Taiwan
| | - Shu-Fen Peng
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Kuo-Ching Liu
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Jaw-Chyun Chen
- Department of Medicinal Botanicals and Foods on Health Applications, Da-Yeh University, Changhua, Taiwan
| | - Te-Chun Hsia
- Department of Respiratory Therapy, China Medical University, Taichung, Taiwan
- Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - An-Cheng Huang
- Department of Nursing, Saint Mary's Junior College of Medicine, Nursing and Management, Sanxing, Yilan, Taiwan
| |
Collapse
|
70
|
Mthembu SXH, Mazibuko-Mbeje SE, Moetlediwa MT, Muvhulawa N, Silvestri S, Orlando P, Nkambule BB, Muller CJF, Ndwandwe D, Basson AK, Tiano L, Dludla PV. Sulforaphane: A nutraceutical against diabetes-related complications. Pharmacol Res 2023; 196:106918. [PMID: 37703962 DOI: 10.1016/j.phrs.2023.106918] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023]
Abstract
There is an increasing interest in the use of nutraceuticals and plant-derived bioactive compounds from foods for their potential health benefits. For example, as a major active ingredient found from cruciferous vegetables like broccoli, there has been growing interest in understanding the therapeutic effects of sulforaphane against diverse metabolic complications. The past decade has seen an extensive growth in literature reporting on the potential health benefits of sulforaphane to neutralize pathological consequences of oxidative stress and inflammation, which may be essential in protecting against diabetes-related complications. In fact, preclinical evidence summarized within this review supports an active role of sulforaphane in activating nuclear factor erythroid 2-related factor 2 or effectively modulating AMP-activated protein kinase to protect against diabetic complications, including diabetic cardiomyopathy, diabetic neuropathy, diabetic nephropathy, as well as other metabolic complications involving non-alcoholic fatty liver disease and skeletal muscle insulin resistance. With clinical evidence suggesting that foods rich in sulforaphane like broccoli can improve the metabolic status and lower cardiovascular disease risk by reducing biomarkers of oxidative stress and inflammation in patients with type 2 diabetes. This information remains essential in determining the therapeutic value of sulforaphane or its potential use as a nutraceutical to manage diabetes and its related complications. Finally, this review discusses essential information on the bioavailability profile of sulforaphane, while also covering information on the pathological consequences of oxidative stress and inflammation that drive the development and progression of diabetes.
Collapse
Affiliation(s)
- Sinenhlanhla X H Mthembu
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho 2735, South Africa
| | | | - Marakiya T Moetlediwa
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho 2735, South Africa
| | - Ndivhuwo Muvhulawa
- Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho 2735, South Africa; Cochrane South Africa, South African Medical Research Council, Tygerberg 7505, South Africa
| | - Sonia Silvestri
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - Patrick Orlando
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - Bongani B Nkambule
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Christo J F Muller
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; Centre for Cardiometabolic Research Africa (CARMA), Division of Medical Physiology, Stellenbosch University, Tygerberg 7505, South Africa; Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Duduzile Ndwandwe
- Cochrane South Africa, South African Medical Research Council, Tygerberg 7505, South Africa
| | - Albertus K Basson
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - Phiwayinkosi V Dludla
- Cochrane South Africa, South African Medical Research Council, Tygerberg 7505, South Africa; Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa.
| |
Collapse
|
71
|
Zuo M, Chen H, Liao Y, He P, Xu T, Tang J, Zhang N. Sulforaphane and bladder cancer: a potential novel antitumor compound. Front Pharmacol 2023; 14:1254236. [PMID: 37781700 PMCID: PMC10540234 DOI: 10.3389/fphar.2023.1254236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/07/2023] [Indexed: 10/03/2023] Open
Abstract
Bladder cancer (BC) is a common form of urinary tract tumor, and its incidence is increasing annually. Unfortunately, an increasing number of newly diagnosed BC patients are found to have advanced or metastatic BC. Although current treatment options for BC are diverse and standardized, it is still challenging to achieve ideal curative results. However, Sulforaphane, an isothiocyanate present in cruciferous plants, has emerged as a promising anticancer agent that has shown significant efficacy against various cancers, including bladder cancer. Recent studies have demonstrated that Sulforaphane not only induces apoptosis and cell cycle arrest in BC cells, but also inhibits the growth, invasion, and metastasis of BC cells. Additionally, it can inhibit BC gluconeogenesis and demonstrate definite effects when combined with chemotherapeutic drugs/carcinogens. Sulforaphane has also been found to exert anticancer activity and inhibit bladder cancer stem cells by mediating multiple pathways in BC, including phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR), mitogen-activated protein kinase (MAPK), nuclear factor kappa-B (NF-κB), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), zonula occludens-1 (ZO-1)/beta-catenin (β-Catenin), miR-124/cytokines interleukin-6 receptor (IL-6R)/transcription 3 (STAT3). This article provides a comprehensive review of the current evidence and molecular mechanisms of Sulforaphane against BC. Furthermore, we explore the effects of Sulforaphane on potential risk factors for BC, such as bladder outlet obstruction, and investigate the possible targets of Sulforaphane against BC using network pharmacological analysis. This review is expected to provide a new theoretical basis for future research and the development of new drugs to treat BC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Neng Zhang
- Department of Urology, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
72
|
Mago A, Yang YS, Shim JH, John AA. Wearable Device for Cumulative Chlorobenzene Detection and Accessible Mitigation Strategies. SENSORS (BASEL, SWITZERLAND) 2023; 23:7904. [PMID: 37765961 PMCID: PMC10536231 DOI: 10.3390/s23187904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
Chronic exposure to low concentrations of volatile organic compounds (VOCs), such as chlorobenzene, is not being monitored in industrializing countries, although VOC exposure is associated with carcinogenic, organ-toxic, and endocrine-disrupting effects. Current VOC-sensing technologies are inaccessible due to high cost, size, and maintenance or are ineffective due to poor sensitivity or reliability. In particular, marginalized individuals face barriers to traditional prescription VOC treatments due to cost, lack of transportation, and limited access to physicians; thus, alternative treatments are needed. Here, we created a novel cumulative wearable color-changing VOC sensor with a paper-based polydiacetylene sensor array for chlorobenzene. With a single smartphone picture, the sensor displays 14 days of logged chlorobenzene exposure data, interpreted by machine-learning (ML) techniques, including principal component analysis. Further, we explored the efficacy of affordable and accessible treatment options to mitigate a VOC's toxic effects. Vitamin D and sulforaphane are naturally found in cruciferous vegetables, like broccoli, and can be used to treat chlorobenzene-mediated bone degradation. Our platform combines these components into a smartphone app that photographs the sensor's colorimetric data, analyzes the data via ML techniques, and offers accessible treatments based on exposure data.
Collapse
Affiliation(s)
- Aryan Mago
- Department of Medicine, Division of Rheumatology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Yeon-Suk Yang
- Department of Medicine, Division of Rheumatology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Jae-Hyuck Shim
- Department of Medicine, Division of Rheumatology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Aijaz Ahmad John
- Department of Medicine, Division of Rheumatology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| |
Collapse
|
73
|
Kwa FAA, Bui BV, Thompson BR, Ayton LN. Preclinical investigations on broccoli-derived sulforaphane for the treatment of ophthalmic disease. Drug Discov Today 2023; 28:103718. [PMID: 37467881 DOI: 10.1016/j.drudis.2023.103718] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Vision loss causes a significant burden on individuals and communities on a financial, emotional and social level. Common causes include age-related macular degeneration (AMD), diabetic retinopathy (DR), glaucoma and retinitis pigmentosa (RP; also known as 'rod-cone dystrophy'). As the population continues to grow and age globally, an increasing number of people will experience vision loss. Hence, there is an urgent need to develop therapies that can curb early pathological events. The broccoli-derived compound, sulforaphane (SFN), is reported to have multiple health benefits and modes of action. In this review, we outline the preclinical findings on SFN in ocular diseases and discuss the future clinical testing of this compound.
Collapse
Affiliation(s)
- Faith A A Kwa
- Department of Health Sciences and Biostatistics, School of Health Sciences, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.
| | - Bang V Bui
- Department of Optometry & Vision Sciences, Faculty Medicine, Dentistry & Health Sciences, The University of Melbourne, VIC 3010, Australia
| | - Bruce R Thompson
- School of Health Sciences, Faculty Medicine, Dentistry & Health Sciences, The University of Melbourne, VIC 3010, Australia
| | - Lauren N Ayton
- Department of Optometry & Vision Sciences, Faculty Medicine, Dentistry & Health Sciences, The University of Melbourne, VIC 3010, Australia; Department of Surgery (Ophthalmology), Faculty Medicine, Dentistry & Health Sciences, The University of Melbourne, VIC 3010, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
| |
Collapse
|
74
|
Marini HR, Facchini BA, di Francia R, Freni J, Puzzolo D, Montella L, Facchini G, Ottaiano A, Berretta M, Minutoli L. Glutathione: Lights and Shadows in Cancer Patients. Biomedicines 2023; 11:2226. [PMID: 37626722 PMCID: PMC10452337 DOI: 10.3390/biomedicines11082226] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
In cases of cellular injury, there is an observed increase in the production of reactive oxygen species (ROS). When this production becomes excessive, it can result in various conditions, including cancerogenesis. Glutathione (GSH), the most abundant thiol-containing antioxidant, is fundamental to re-establishing redox homeostasis. In order to evaluate the role of GSH and its antioxi-dant effects in patients affected by cancer, we performed a thorough search on Medline and EMBASE databases for relevant clinical and/or preclinical studies, with particular regard to diet, toxicities, and pharmacological processes. The conjugation of GSH with xenobiotics, including anti-cancer drugs, can result in either of two effects: xenobiotics may lose their harmful effects, or GSH conjugation may enhance their toxicity by inducing bioactivation. While being an interesting weapon against chemotherapy-induced toxicities, GSH may also have a potential protective role for cancer cells. New studies are necessary to better explain the relationship between GSH and cancer. Although self-prescribed glutathione (GSH) implementation is prevalent among cancer patients with the intention of reducing the toxic effects of anticancer treatments and potentially preventing damage to normal tissues, this belief lacks substantial scientific evidence for its efficacy in reducing toxicity, except in the case of cisplatin-related neurotoxicity. Therefore, the use of GSH should only be considered under medical supervision, taking into account the appropriate timing and setting.
Collapse
Affiliation(s)
- Herbert Ryan Marini
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (H.R.M.); (L.M.)
| | - Bianca Arianna Facchini
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80133 Napoli, Italy;
| | - Raffaele di Francia
- Gruppo Oncologico Ricercatori Italiani (GORI-ONLUS), 33170 Pordenone, Italy;
| | - José Freni
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (J.F.); (D.P.)
| | - Domenico Puzzolo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (J.F.); (D.P.)
| | - Liliana Montella
- Division of Medical Oncology, “Santa Maria delle Grazie” Hospital, ASL Napoli 2 Nord, 80078 Pozzuoli, Italy; (L.M.); (G.F.)
| | - Gaetano Facchini
- Division of Medical Oncology, “Santa Maria delle Grazie” Hospital, ASL Napoli 2 Nord, 80078 Pozzuoli, Italy; (L.M.); (G.F.)
| | - Alessandro Ottaiano
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, 80131 Napoli, Italy;
| | - Massimiliano Berretta
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (H.R.M.); (L.M.)
| | - Letteria Minutoli
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (H.R.M.); (L.M.)
| |
Collapse
|
75
|
Chen F, Zhan J, Al Mamun A, Tao Y, Huang S, Zhao J, Zhang Y, Xu Y, Du S, Lu W, Li X, Chen Z, Xiao J. Sulforaphane protects microvascular endothelial cells in lower limb ischemia/reperfusion injury mice. Food Funct 2023; 14:7176-7194. [PMID: 37462424 DOI: 10.1039/d3fo01801f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Background: Microvascular damage is a key pathological factor in acute lower limb ischemia/reperfusion (I/R) injury. Current evidence suggests that sulforaphane (SFN) protects tissue from I/R injury. However, the role of SFN in acute lower limb I/R injury remains elusive. This study aimed to investigate the role and potential mechanism of SFN in I/R-related microvascular damage in the limb. Methods: Limb viability was evaluated by laser Doppler imaging, tissue edema analysis and histological analysis. Western blotting and immunofluorescence were applied to analyze the levels of apoptosis, oxidative stress, autophagy, transcription factor EB (TFEB) activity and mucolipin 1 (MCOLN1)-calcineurin signaling pathway. Results: SFN administration significantly ameliorated I/R-induced hypoperfusion, tissue edema, skeletal muscle fiber injury and endothelial cell (EC) damage in the limb. Pharmacological inhibition of NFE2L2 (nuclear factor, erythroid 2 like 2) reversed the anti-oxidation and anti-apoptosis effects of SFN on ECs. Additionally, silencing of TFEB by interfering RNA abolished the SFN-induced autophagy restoration, anti-oxidant response and anti-apoptosis effects on ECs. Furthermore, silencing of MCOLN1 by interfering RNA and pharmacological inhibition of calcineurin inhibited the activity of TFEB induced by SFN, demonstrating that SFN regulates the activity of TFEB through the MCOLN1-calcineurin signaling pathway. Conclusion: SFN protects microvascular ECs against I/R injury by TFEB-mediated autophagy restoration and anti-oxidant response.
Collapse
Affiliation(s)
- Fanfeng Chen
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China.
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Jiayu Zhan
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Abdullah Al Mamun
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Yibing Tao
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Shanshan Huang
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Jiaxin Zhao
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Yu Zhang
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Yitie Xu
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Shenghu Du
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China.
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Wei Lu
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Xiaokun Li
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China.
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Zimiao Chen
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China.
| | - Jian Xiao
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China.
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
76
|
Di Giacomo C, Malfa GA, Tomasello B, Bianchi S, Acquaviva R. Natural Compounds and Glutathione: Beyond Mere Antioxidants. Antioxidants (Basel) 2023; 12:1445. [PMID: 37507985 PMCID: PMC10376414 DOI: 10.3390/antiox12071445] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The tripeptide glutathione plays important roles in many cell processes, including differentiation, proliferation, and apoptosis; in fact, disorders in glutathione homeostasis are involved both in the etiology and in the progression of several human diseases, including cancer. Natural compounds have been found to modulate glutathione levels and function beyond their role as mere antioxidants. For example, certain compounds can upregulate the expression of glutathione-related enzymes, increase the availability of cysteine, the limiting amino acid for glutathione synthesis, or directly interact with glutathione and modulate its function. These compounds may have therapeutic potential in a variety of disease states where glutathione dysregulation is a contributing factor. On the other hand, flavonoids' potential to deplete glutathione levels could be significant for cancer treatment. Overall, while natural compounds may have potential therapeutic and/or preventive properties and may be able to increase glutathione levels, more research is needed to fully understand their mechanisms of action and their potential benefits for the prevention and treatment of several diseases. In this review, particular emphasis will be placed on phytochemical compounds belonging to the class of polyphenols, terpenoids, and glucosinolates that have an impact on glutathione-related processes, both in physiological and pathological conditions. These classes of secondary metabolites represent the most food-derived bioactive compounds that have been intensively explored and studied in the last few decades.
Collapse
Affiliation(s)
- Claudia Di Giacomo
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Giuseppe Antonio Malfa
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Barbara Tomasello
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Simone Bianchi
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Rosaria Acquaviva
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| |
Collapse
|
77
|
Yin Y, Quan X, Cheng Y, Yang Z, Zhu J, Fang W. Proteome reveals the mechanism of selenium-sulfur interaction in regulating isothiocyanate biosynthesis and the physiological metabolism of broccoli sprouts. Food Chem 2023; 426:136603. [PMID: 37329791 DOI: 10.1016/j.foodchem.2023.136603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/19/2023] [Accepted: 06/09/2023] [Indexed: 06/19/2023]
Abstract
Broccoli sprouts have a strong ability to accumulate isothiocyanate and selenium. In this study, the isothiocyanate content increased significantly as a result of ZnSO4 stress. Particularly, based on the isothiocyanate content is not affected, the combined ZnSO4 and Na2SeO3 treatment alleviated the inhibition of ZnSO4 and induced selenium content. Gene transcription and protein expression analyses revealed the changes in isothiocyanate and selenium metabolite levels in broccoli sprouts. ZnSO4 combined with Na2SeO3 was proven to activate a series of isothiocyanate metabolite genes (UGT74B1, OX1, and ST5b) and selenium metabolite genes (BoSultr1;1, BoCOQ5-2, and BoHMT1). The relative abundance of the total 317 and 203 proteins, respectively, in 4-day-old broccoli sprouts varied, and the metabolic and biosynthetic pathways for secondary metabolites were significantly enriched in ZnSO4/control and ZnSO4 combined Na2SeO3/ZnSO4 comparisons. The findings demonstrated how ZnSO4 combined with Na2SeO3 treatment reduced stress inhibition and the accumulation of encouraged selenium and isothiocyanates during the growth of broccoli sprouts.
Collapse
Affiliation(s)
- Yongqi Yin
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Xiaolan Quan
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Yuwei Cheng
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Zhengfei Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Jiangyu Zhu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Weiming Fang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China.
| |
Collapse
|
78
|
Zhang L, Wang S, Zhang Y, Li F, Yu C. Sulforaphane alleviates lung ischemia‑reperfusion injury through activating Nrf‑2/HO‑1 signaling. Exp Ther Med 2023; 25:265. [PMID: 37206558 PMCID: PMC10189751 DOI: 10.3892/etm.2023.11964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 03/10/2023] [Indexed: 05/21/2023] Open
Abstract
Oxidative stress and inflammation are both involved in the pathogenesis of lung ischemia-reperfusion (I/R) injury. Sulforaphane (SFN) is a natural product with cytoprotective, anti-inflammatory, and antioxidant properties. The present study hypothesized that SFN may protect against lung I/R injury via the regulation of antioxidant and anti-inflammatory-related pathways. A rat model of lung I/R injury was established, and rats were randomly divided into 3 groups: Sham group, I/R group, and SFN group. It was shown that SFN protected against a pathological inflammatory response via inhibition of neutrophil accumulation and in the reduction of the serum levels of the pro-inflammatory cytokines, IL-6, IL-1β, and TNF-α. SFN treatment also significantly inhibited lung reactive oxygen species production, decreased the levels of 8-OH-dG and malondialdehyde, and reversed the decrease in the antioxidant activities of the enzymes catalase, superoxide dismutase, and glutathione peroxidase in the lungs of the I/R treated rats. In addition, SFN ameliorated I/R-induced lung apoptosis in rats by suppressing Bax and cleaved caspase-3 levels and increased Bcl-2 expression. Furthermore, SFN treatment activated an Nrf2-related antioxidant pathway, as indicated by the increased nuclear transfer of Nrf2 and the downstream HO-1 and NADPH quinone oxidoreductase-1. In conclusion, these findings suggested that SFN protected against I/R-induced lung lesions in rats via activation of the Nrf2/HO-1 pathway and the accompanied anti-inflammatory and anti-apoptotic effects.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Respiratory and Critical Care Medicine, Yantaishan Hospital, Yantai, Shandong 264001, P.R. China
| | - Shuxian Wang
- Department of Respiratory, Yantai Beihai Hospital, Yantai, Shandong 265701, P.R. China
| | - Ying Zhang
- Department of Emergency, Tai'an Central Hospital, Tai'an, Shandong 271000, P.R. China
| | - Fenghuan Li
- Department of Respiratory and Critical Care Medicine, Yantaishan Hospital, Yantai, Shandong 264001, P.R. China
| | - Chaoxiao Yu
- Department of Respiratory and Critical Care Medicine, Yantaishan Hospital, Yantai, Shandong 264001, P.R. China
- Correspondence to: Dr Chaoxiao Yu, Department of Respiratory and Critical Care Medicine, Yantaishan Hospital, 10,087 Keji Road, Laishan, Yantai, Shandong 264001, P.R. China
| |
Collapse
|
79
|
Wakasugi-Onogi S, Ma S, Ruhee RT, Tong Y, Seki Y, Suzuki K. Sulforaphane Attenuates Neutrophil ROS Production, MPO Degranulation and Phagocytosis, but Does Not Affect NET Formation Ex Vivo and In Vitro. Int J Mol Sci 2023; 24:ijms24108479. [PMID: 37239829 DOI: 10.3390/ijms24108479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/01/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Sulforaphane has several effects on the human body, including anti-inflammation, antioxidation, antimicrobial and anti-obesity effects. In this study, we examined the effect of sulforaphane on several neutrophil functions: reactive oxygen species (ROS) production, degranulation, phagocytosis, and neutrophil extracellular trap (NET) formation. We also examined the direct antioxidant effect of sulforaphane. First, we measured neutrophil ROS production induced by zymosan in whole blood in the presence of 0 to 560 µM sulforaphane. Second, we examined the direct antioxidant activity of sulforaphane using a HOCl removal test. In addition, inflammation-related proteins, including an azurophilic granule component, were measured by collecting supernatants following ROS measurements. Finally, neutrophils were isolated from blood, and phagocytosis and NET formation were measured. Sulforaphane reduced neutrophil ROS production in a concentration-dependent manner. The ability of sulforaphane to remove HOCl is stronger than that of ascorbic acid. Sulforaphane at 280 µM significantly reduced the release of myeloperoxidase from azurophilic granules, as well as that of the inflammatory cytokines TNF-α and IL-6. Sulforaphane also suppressed phagocytosis but did not affect NET formation. These results suggest that sulforaphane attenuates neutrophil ROS production, degranulation, and phagocytosis, but does not affect NET formation. Moreover, sulforaphane directly removes ROS, including HOCl.
Collapse
Affiliation(s)
| | - Sihui Ma
- Health Nutrition, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Ruheea Taskin Ruhee
- Research Fellow of Japan Society for the Promotion of Sciences, Tokyo 102-0083, Japan
| | - Yishan Tong
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| | - Yasuhiro Seki
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| |
Collapse
|
80
|
Gasmi A, Gasmi Benahmed A, Shanaida M, Chirumbolo S, Menzel A, Anzar W, Arshad M, Cruz-Martins N, Lysiuk R, Beley N, Oliinyk P, Shanaida V, Denys A, Peana M, Bjørklund G. Anticancer activity of broccoli, its organosulfur and polyphenolic compounds. Crit Rev Food Sci Nutr 2023; 64:8054-8072. [PMID: 37129118 DOI: 10.1080/10408398.2023.2195493] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The use of natural bioactive constituents from various food sources for anticancer purposes has become increasingly popular worldwide. Broccoli (Brassica oleracea var. italica) is on the top of the consumed vegetables by the masses. Its raw matrix contains a plethora of phytochemicals, such as glucosinolates and phenolic compounds, along with rich amounts of vitamins, and minerals. Consumption of broccoli-derived phytochemicals provides strong antioxidant effects, particularly due to its sulforaphane content, while modulating numerous molecules involved in cell cycle regulation, control of apoptosis, and tuning enzyme activity. Thus, the inclusion of broccoli in the daily diet lowers the susceptibility to developing cancers. Numerous studies have underlined the undisputable role of broccoli in the diet as a chemopreventive raw food, owing to the content in sulforaphane, an isothiocyanate produced as a result of hydrolysis of precursor glucosinolates called glucoraphanin. This review will provide evidence supporting the specific role of fresh florets and sprouts of broccoli and its key bioactive constituents in the prevention and treatment of different cancers; a number of studies carried out in the in vitro and in vivo conditions as well as clinical trials were analyzed.
Collapse
Affiliation(s)
- Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
- International Congress of Nutritional Sciences, Casablanca, Morocco
- Société Marocaine de Micronutrition et de Nutrigénétique Appliquée, Casablanca, Morocco
| | | | - Mariia Shanaida
- I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- CONEM Scientific Secretary, Verona, Italy
| | | | - Wajiha Anzar
- Dow University of Health Sciences, Karachi, Pakistan
| | - Mehreen Arshad
- National University of Sciences and Technology, Islamabad, Pakistan
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, Gandra PRD, Portugal
- TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
| | - Roman Lysiuk
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Nataliya Beley
- I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Petro Oliinyk
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Volodymyr Shanaida
- Design of Machine Tools, Instruments and Machines Department, Ternopil Ivan Puluj National Technical University, Ternopil, Ukraine
| | | | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Sassari, Italy
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| |
Collapse
|
81
|
Xing N, Du Q, Guo S, Xiang G, Zhang Y, Meng X, Xiang L, Wang S. Ferroptosis in lung cancer: a novel pathway regulating cell death and a promising target for drug therapy. Cell Death Discov 2023; 9:110. [PMID: 37005430 PMCID: PMC10067943 DOI: 10.1038/s41420-023-01407-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/04/2023] Open
Abstract
Lung cancer is a common malignant tumor that occurs in the human body and poses a serious threat to human health and quality of life. The existing treatment methods mainly include surgical treatment, chemotherapy, and radiotherapy. However, due to the strong metastatic characteristics of lung cancer and the emergence of related drug resistance and radiation resistance, the overall survival rate of lung cancer patients is not ideal. There is an urgent need to develop new treatment strategies or new effective drugs to treat lung cancer. Ferroptosis, a novel type of programmed cell death, is different from the traditional cell death pathways such as apoptosis, necrosis, pyroptosis and so on. It is caused by the increase of iron-dependent reactive oxygen species due to intracellular iron overload, which leads to the accumulation of lipid peroxides, thus inducing cell membrane oxidative damage, affecting the normal life process of cells, and finally promoting the process of ferroptosis. The regulation of ferroptosis is closely related to the normal physiological process of cells, and it involves iron metabolism, lipid metabolism, and the balance between oxygen-free radical reaction and lipid peroxidation. A large number of studies have confirmed that ferroptosis is a result of the combined action of the cellular oxidation/antioxidant system and cell membrane damage/repair, which has great potential application in tumor therapy. Therefore, this review aims to explore potential therapeutic targets for ferroptosis in lung cancer by clarifying the regulatory pathway of ferroptosis. Based on the study of ferroptosis, the regulation mechanism of ferroptosis in lung cancer was understood and the existing chemical drugs and natural compounds targeting ferroptosis in lung cancer were summarized, with the aim of providing new ideas for the treatment of lung cancer. In addition, it also provides the basis for the discovery and clinical application of chemical drugs and natural compounds targeting ferroptosis to effectively treat lung cancer.
Collapse
Affiliation(s)
- Nan Xing
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qinyun Du
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Sa Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Gelin Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, 620010, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Li Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- State Key Laboratory of Southwestern Chinese Medicine Resources, Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, 620010, China.
| |
Collapse
|
82
|
Feng Z, Wang T, Sun Y, Chen S, Hao H, Du W, Zou H, Yu D, Zhu H, Pang Y. Sulforaphane suppresses paraquat-induced oxidative damage in bovine in vitro-matured oocytes through Nrf2 transduction pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114747. [PMID: 36907095 DOI: 10.1016/j.ecoenv.2023.114747] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Sulforaphane (SFN), a bioactive phytocompound extracted from cruciferous plants, has received increasing attention due to its vital cytoprotective role in eliminating oxidative free radical through activation of nuclear factor erythroid 2-related factor (Nrf2)-mediated signal transduction pathway. This study aims at a better insight into the protective benefit of SFN in attenuating paraquat (PQ)-caused impairment in bovine in vitro-matured oocytes and the possible mechanisms involved therein. Results showed that addition of 1 μM SFN during oocyte maturation obtained higher proportions of matured oocytes and in vitro-fertilized embryos. SFN application attenuated the toxicological effects of PQ on bovine oocytes, as manifested by enhanced extending capability of cumulus cell and increased extrusion proportion of first polar body. Following incubation with SFN, oocytes exposed to PQ exhibited reduced intracellular ROS and lipid accumulation levels, and elevated T-SOD and GSH contents. SFN also effectively inhibited PQ-mediated increase in BAX and CASPASE-3 protein expressions. Besides, SFN promoted the transcription of NRF2 and its downstream antioxidative-related genes GCLC, GCLM, HO-1, NQO-1, and TXN1 in a PQ-exposed environment, indicating that SFN prevents PQ-caused cytotoxicity through activation of Nrf2 signal transduction pathway. The mechanisms underlying the role of SFN against PQ-induced injury included the inhibition of TXNIP protein and restoration of the global O-GlcNAc level. Collectively, these findings provide novel evidence for the protective role of SFN in alleviating PQ-caused injury, and suggest that SFN application may be an efficacious intervention strategy against PQ cytotoxicity.
Collapse
Affiliation(s)
- Zhiqiang Feng
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tengfei Wang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Reproductive Medicine Center, Huzhou Maternity & Child Health Care Hospital, Huzhou, Zhejiang Province 313000, China
| | - Yawen Sun
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Siying Chen
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Haisheng Hao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Weihua Du
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huiying Zou
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dawei Yu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huabin Zhu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yunwei Pang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
83
|
Quan X, Cheng Y, Yang Z, Yang J, Fang W, Yin Y. iTRAQ-Based Proteomic Analyses of Regulation of Isothiocyanate and Endogenous Selenium Metabolism in Broccoli Sprouts by Exogenous Sodium Selenite. Foods 2023; 12:foods12071397. [PMID: 37048216 PMCID: PMC10093868 DOI: 10.3390/foods12071397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Broccoli sprouts have high isothiocyanate and selenium accumulation capacity. This study used a combination of methods, including physiological and biochemical, gene transcription and proteomic, to investigate the isothiocyanate and endogenous selenium accumulation mechanisms in broccoli sprouts under exogenous sodium selenite treatment during germination. Compared with the control, the sprouts length of broccoli sprouts under exogenous selenium treatment was significantly lower, and the contents of total phenol and malondialdehyde in 6-day-old broccoli sprouts were substantially higher. The contents of isothiocyanate and sulforaphane in 4-day-old were increased by up-regulating the relative expression of genes of UGT74B1, OX-1, and ST5b. The relative expression of BoSultr1;1, BoSMT, BoHMT1, and BoCOQ5-2 genes regulating selenium metabolism was significantly up-regulated. In addition, 354 proteins in 4-day-old broccoli sprouts showed different relative abundance compared to the control under selenium treatment. These proteins were classified into 14 functional categories. It was discovered that metabolic pathways and biosynthetic pathways of secondary metabolites were significantly enriched. The above results showed that exogenous selenium was beneficial in inducing the accumulation of isothiocyanate and selenium during the growth of broccoli sprouts.
Collapse
|
84
|
Control of Redox Homeostasis by Short-Chain Fatty Acids: Implications for the Prevention and Treatment of Breast Cancer. Pathogens 2023; 12:pathogens12030486. [PMID: 36986408 PMCID: PMC10058806 DOI: 10.3390/pathogens12030486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023] Open
Abstract
Breast cancer is the leading cause of death among women worldwide, and certain subtypes are highly aggressive and drug resistant. As oxidative stress is linked to the onset and progression of cancer, new alternative therapies, based on plant-derived compounds that activate signaling pathways involved in the maintenance of cellular redox homeostasis, have received increasing interest. Among the bioactive dietary compounds considered for cancer prevention and treatment are flavonoids, such as quercetin, carotenoids, such as lycopene, polyphenols, such as resveratrol and stilbenes, and isothiocyanates, such as sulforaphane. In healthy cells, these bioactive phytochemicals exhibit antioxidant, anti-apoptotic and anti-inflammatory properties through intracellular signaling pathways and epigenetic regulation. Short-chain fatty acids (SCFAs), produced by intestinal microbiota and obtained from the diet, also exhibit anti-inflammatory and anti-proliferative properties related to their redox signaling activity—and are thus key for cell homeostasis. There is evidence supporting an antioxidant role for SCFAs, mainly butyrate, as modulators of Nrf2-Keap1 signaling involving the inhibition of histone deacetylases (HDACs) and/or Nrf2 nuclear translocation. Incorporation of SCFAs in nutritional and pharmacological interventions changes the composition of the the intestinal microbiota, which has been shown to be relevant for cancer prevention and treatment. In this review, we focused on the antioxidant properties of SCFAs and their impact on cancer development and treatment, with special emphasis on breast cancer.
Collapse
|
85
|
Adelakun SA, Akintunde OW, Ogunlade B, Adeyeluwa BE. Histochemical and histomorphological evidence of the modulating role of 1-isothiocyanate-4-methyl sulfonyl butane on cisplatin-induced testicular-pituitary axis degeneration and cholesterol homeostasis in male Sprague-Dawley rats. Morphologie 2023; 107:80-98. [PMID: 35659716 DOI: 10.1016/j.morpho.2022.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND This study examine the histochemical and histomorphological effect of 1-isothiocyanato-4-methyl sulfonyl butane (SFN) on cisplatin (CP) induced testicular alteration and cholesterol homeostasis. MATERIALS AND METHODS Ninety adult-male Sprague-Dawley rats were randomized into nine groups of ten (n=10) rats each. Group A (control) received normal saline, group B received a single dose of 10mg/Kg body weight (bwt) CP (i.p.), group C received 50mg/Kg bwt of SFN, group D received 100mg/Kg bwt of SFN, group E received 10mg/Kg bwt CP and 50mg/Kg bwt of SFN, group F received 10mg/Kg bwt CP and 100mg/Kg bwt of SFN, group G received 10mg/Kg bwt CP and 50mg/Kg bwt vitamin C, group H received 50mg/Kg bwt of SFN and 10mg/Kg bwt CP, group I received 100mg/Kg bwt of SFN and 10mg/Kg bwt CP. The procedure lasted for 56 days. Testicular histomorphology and histochemistry, testicular testosterone, sperm parameters, total antioxidant status (TSA), total oxidant status (TOS), oxidative stress index (OSI), and serum lipid profile were examined. RESULTS Cisplatin decrease intra-testicular testosterone, sperm quality, and expression of glycogen and increases testicular TOS and OSI, serum lipid profile, collagen, and disruption of germinal epithelium. However, the intervention of SFN reversed the effect of CP on testes' weight and volume, DSP, ESP, testosterone production, TAS, TOS, and OSI. Histoarchitectecture showing normal seminiferous tubules and even distribution of glycogen and collagen fibers. CONCLUSION Treatment with SFN ameliorate CP-induced testicular toxicity by reversing the cytotoxic mechanisms of CP.
Collapse
Affiliation(s)
- S A Adelakun
- Department of Human Anatomy, College of Health Sciences, Federal University of Technology, Akure, Nigeria; Department of Anatomy, College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - O W Akintunde
- Department of Anatomy, College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria.
| | - B Ogunlade
- Department of Human Anatomy, College of Health Sciences, Federal University of Technology, Akure, Nigeria
| | - B E Adeyeluwa
- Department of Human Anatomy, College of Health Sciences, Federal University of Technology, Akure, Nigeria
| |
Collapse
|
86
|
Bioactive Compounds (BACs): A Novel Approach to Treat and Prevent Cardiovascular Diseases. Curr Probl Cardiol 2023; 48:101664. [PMID: 36841315 DOI: 10.1016/j.cpcardiol.2023.101664] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 02/17/2023] [Indexed: 02/26/2023]
Abstract
Cardiovascular diseases (CVDs) are one of the leading disorders of serious death and cause huge economic loss to patients and society. It is estimated that about 18 million people have a high death ratio due to the incidence of CVDs such as (stroke, coronary heart disease, and non-ischemic heart failure). Bioactive compounds (BACs) are healthy nutritional ingredients providing beneficial effects and nutritional value to the human body. Epidemiological studies strongly shed light on several bioactive compounds that are favorable candidates for CVDs treatment. Globally, the high risk of CVDs and related results on human body parts made them a serious scenario in all communities. In this present review, we intend to collect previously published data concerned over the years concerning green-colored foods and their BACs that aim to work in the prevention, diagnosis, and/or systematic treating CVDs. We also comprehensively discussed the oral delivery of several bioactive compounds derived from fruits and vegetables and their bioavailability and physiological effects on human health. Moreover, their important characteristics, such as anti-inflammatory, lowering blood pressure, anti-obesity, antioxidant, anti-diabetics, lipid-lowering responses, improving atherosclerosis, and cardioprotective properties, will be elaborated further. More precisely, medicinal plants' advantages and multifaceted applications have been reported in this literature to treat CVDs. To the best of our knowledge, this is our first attempt that will open a new window in the area of CVDs with the opportunity to achieve a better prognosis and effective treatment for CVDs.
Collapse
|
87
|
Zhang Y, Ai P, Chen SZ, Lei SY. Sulforaphane suppresses skin squamous cell carcinoma cells proliferation through miR-199a-5p/Sirt1/CD44ICD signaling pathway. Immunopharmacol Immunotoxicol 2023; 45:52-60. [PMID: 35947042 DOI: 10.1080/08923973.2022.2112221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND The present study aimed to explore the impact of sulforaphane on the growth of sSCC cells, and the activation of miR-199a-5p/Sirt1 and CD44ICD signaling pathways. METHODS Cell viability, count, apoptosis, and invasion assays were performed in the sSCC cell line (SCC-13) in which miR-199a-5p was over-expressed or under-expressed. The expression levels of miR-199a-5p, Sirt1 and CD44ICD mRNA were measured by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS Sulforaphane significantly inhibited the cell growth and invasion of SCC-13 cells, and dramatically induced cell apoptosis. Additionally, sulforaphane also greatly increased miR-199a-5p expression and suppressed Sirt1 and CD44ICD mRNA levels. Moreover, miR-199a-5p overexpression considerably down-regulated the expressions of Sirt1 and CD44ICD mRNA, and promoted the ability of sulforaphane to represses cell growth and invasion, and to induce cell apoptosis. However, miR-199a-5p underexpression has the opposite effects. CONCLUSIONS Sulforaphane appears to inhibit sCC progression by impacting its growth and invasion ability, and regulates miR-199a-5p/Sirt1 and CD44ICD signaling pathways, and may be utilized to develop a curative approach for sSCC.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Dermatology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, PR China
| | - Ping Ai
- Department of Dermatology, Minda Hospital of Hubei Minzu University, Enshi, PR China
| | - Shang-Zhou Chen
- Department of Dermatology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, PR China
| | - Shu-Ying Lei
- Department of Dermatology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, PR China
| |
Collapse
|
88
|
Artés-Hernández F, Martínez-Zamora L, Cano-Lamadrid M, Hashemi S, Castillejo N. Genus Brassica By-Products Revalorization with Green Technologies to Fortify Innovative Foods: A Scoping Review. Foods 2023; 12:561. [PMID: 36766089 PMCID: PMC9914545 DOI: 10.3390/foods12030561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 02/01/2023] Open
Abstract
Food losses and waste reduction are a worldwide challenge involving governments, researchers, and food industries. Therefore, by-product revalorization and the use of key extracted biocompounds to fortify innovative foods seems an interesting challenge to afford. The aim of this review is to evaluate and elucidate the scientific evidence on the use of green technologies to extract bioactive compounds from Brassica by-products with potential application in developing new foods. Scopus was used to search for indexed studies in JCR-ISI journals, while books, reviews, and non-indexed JCR journals were excluded. Broccoli, kale, cauliflower, cabbage, mustard, and radish, among others, have been deeply reviewed. Ultrasound and microwave-assisted extraction have been mostly used, but there are relevant studies using enzymes, supercritical fluids, ultrafiltration, or pressurized liquids that report a great extraction effectiveness and efficiency. However, predictive models must be developed to optimize the extraction procedures. Extracted biocompounds can be used, free or encapsulated, to develop, reformulate, and/or fortify new foods as a good tool to enhance healthiness while preserving their quality (nutritional, functional, and sensory) and safety. In the age of recycling and energy saving, more studies must evaluate the efficiency of the processes, the cost, and the environmental impact leading to the production of new foods and the sustainable extraction of phytochemicals.
Collapse
Affiliation(s)
- Francisco Artés-Hernández
- Postharvest and Refrigeration Group, Department of Agronomical Engineering and Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Murcia, Spain
| | - Lorena Martínez-Zamora
- Postharvest and Refrigeration Group, Department of Agronomical Engineering and Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Murcia, Spain
- Department of Food Technology, Nutrition, and Food Science, Faculty of Veterinary Sciences, University of Murcia, 30071 Espinardo, Murcia, Spain
| | - Marina Cano-Lamadrid
- Postharvest and Refrigeration Group, Department of Agronomical Engineering and Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Murcia, Spain
| | - Seyedehzeinab Hashemi
- Postharvest and Refrigeration Group, Department of Agronomical Engineering and Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Murcia, Spain
| | - Noelia Castillejo
- Postharvest and Refrigeration Group, Department of Agronomical Engineering and Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Murcia, Spain
| |
Collapse
|
89
|
Coutinho LDL, Junior TCT, Rangel MC. Sulforaphane: An emergent anti-cancer stem cell agent. Front Oncol 2023; 13:1089115. [PMID: 36776295 PMCID: PMC9909961 DOI: 10.3389/fonc.2023.1089115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/09/2023] [Indexed: 01/28/2023] Open
Abstract
Cancer is a major public health concern worldwide responsible for high morbidity and mortality rates. Alternative therapies have been extensively investigated, and plant-derived compounds have caught the attention of the scientific community due to their chemopreventive and anticancer effects. Sulforaphane (SFN) is one of these naturally occurring agents, and studies have shown that it is able to target a specific cancer cell population displaying stem-like properties, known as cancer stem cells (CSCs). These cells can self-renewal and differentiate to form highly heterogeneous tumor masses. Notably, most of the conventional chemotherapeutic agents cannot target CSCs once they usually exist in a quiescent state and overall, the available cytotoxic drugs focus on highly dividing cells. This is, at least in part, one of the reasons why some oncologic patients relapse after standard therapy. In this review we bring together studies supporting not only the chemopreventive and anticancer properties of SFN, but especially the emerging anti-CSCs effects of this natural product and its potential to be used with conventional antineoplastic drugs in the clinical setting.
Collapse
|
90
|
Alba G, Dakhaoui H, Santa-Maria C, Palomares F, Cejudo-Guillen M, Geniz I, Sobrino F, Montserrat-de la Paz S, Lopez-Enriquez S. Nutraceuticals as Potential Therapeutic Modulators in Immunometabolism. Nutrients 2023; 15:411. [PMID: 36678282 PMCID: PMC9865834 DOI: 10.3390/nu15020411] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/14/2023] Open
Abstract
Nutraceuticals act as cellular and functional modulators, contributing to the homeostasis of physiological processes. In an inflammatory microenvironment, these functional foods can interact with the immune system by modulating or balancing the exacerbated proinflammatory response. In this process, immune cells, such as antigen-presenting cells (APCs), identify danger signals and, after interacting with T lymphocytes, induce a specific effector response. Moreover, this conditions their change of state with phenotypical and functional modifications from the resting state to the activated and effector state, supposing an increase in their energy requirements that affect their intracellular metabolism, with each immune cell showing a unique metabolic signature. Thus, nutraceuticals, such as polyphenols, vitamins, fatty acids, and sulforaphane, represent an active option to use therapeutically for health or the prevention of different pathologies, including obesity, metabolic syndrome, and diabetes. To regulate the inflammation associated with these pathologies, intervention in metabolic pathways through the modulation of metabolic energy with nutraceuticals is an attractive strategy that allows inducing important changes in cellular properties. Thus, we provide an overview of the link between metabolism, immune function, and nutraceuticals in chronic inflammatory processes associated with obesity and diabetes, paying particular attention to nutritional effects on APC and T cell immunometabolism, as well as the mechanisms required in the change in energetic pathways involved after their activation.
Collapse
Affiliation(s)
- Gonzalo Alba
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville. Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Hala Dakhaoui
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville. Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Consuelo Santa-Maria
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Seville, 41012 Seville, Spain
| | - Francisca Palomares
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville. Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Marta Cejudo-Guillen
- Department of Pharmacology, Pediatry, and Radiology, School of Medicine, University of Seville. Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Isabel Geniz
- Distrito Sanitario Seville Norte y Aljarafe, Servicio Andaluz de Salud, 41008 Seville, Spain
| | - Francisco Sobrino
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville. Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville. Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Soledad Lopez-Enriquez
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville. Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| |
Collapse
|
91
|
Marzioni D, Mazzucchelli R, Fantone S, Tossetta G. NRF2 modulation in TRAMP mice: an in vivo model of prostate cancer. Mol Biol Rep 2023; 50:873-881. [PMID: 36335520 DOI: 10.1007/s11033-022-08052-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Prostate cancer (PCa) is one of the most common cancers worldwide and oxidative stress is involved in its occurrence, development and progression. In fact, in transgenic adenocarcinoma of mouse prostate (TRAMP) mice, prostate cancer onset is associated with the methylation of the first five CpG in the nuclear factor erythroid 2-related factor 2 (NRF2) promoter, a key regulator of oxidative stress response, leading to its downregulation and accumulation of reactive oxygen species (ROS). It has been demonstrated that both natural and synthetic compounds can reactivate NRF2 expression inhibiting the methylation status of its promoter by downregulation of DNA methyltransferases (DNMTs) and histone deacetylases (HDACs). Interestingly, NRF2 re-expression significantly reduced prostate cancer onset in TRAMP mice highlighting an important role of NRF2 in prostate tumorigenesis. METHODS AND RESULTS We analysed the current literature regarding the role of natural and synthetic compounds in modulating NRF2 pathway in TRAMP mice, an in vivo model of prostate cancer, to give an overview on prostate carcinogenesis and its possible prevention. CONCLUSION We can conclude that specific natural and synthetic compounds can downregulate DNMTs and/or HDACs inhibiting the methylation status of NRF2 promoter, then reactivating the expression of NRF2 protecting normal prostatic cells from ROS damage and tumorigenesis.
Collapse
Affiliation(s)
- Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica Delle Marche, 60126, Ancona, Italy
| | - Roberta Mazzucchelli
- Department of Biomedical Sciences and Public Health, Section of Pathological Anatomy, School of Medicine, United Hospitals, Università Politecnica Delle Marche, Ancona, Italy
| | - Sonia Fantone
- Department of Experimental and Clinical Medicine, Università Politecnica Delle Marche, 60126, Ancona, Italy
| | - Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica Delle Marche, 60126, Ancona, Italy. .,Clinic of Obstetrics and Gynaecology, Department of Clinical Sciences, Università Politecnica Delle Marche, Salesi Hospital, Azienda Ospedaliero Universitaria, Ancona, Italy.
| |
Collapse
|
92
|
Sun Y, Tang Z, Hao T, Qiu Z, Zhang B. Simulated Digestion and Fermentation In Vitro by Obese Human Gut Microbiota of Sulforaphane from Broccoli Seeds. Foods 2022; 11:foods11244016. [PMID: 36553758 PMCID: PMC9778330 DOI: 10.3390/foods11244016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND sulforaphane is a kind of isothiocyanate, which is obtained by hydrolysis of glucosinolate by the unique myrosinase in plants. It has been proved to prevent the occurrence of many chronic diseases, such as obesity, diabetes and cancer. OBJECTIVE The impact of SFN on obese human gut flora, however, has not been established. METHODS In this research, SFN was isolated from broccoli seeds and then refined to achieve 95% purity. Next, an investigation was conducted into the digestion and fermentation processes of SFN. RESULTS The stability of the SFN in simulated saliva, gastric fluid, and intestinal juice provides evidence that it can reach the gut and be available for utilization by gut microflora. In vitro fermentation of SFN by gut microbes in obese patients results in alteration in constitution of microbiota and production of short chain fatty acids. As the result of SFN ingestion by human gut bacteria, the content of butyric and valeric acids increased 1.21- and 1.46-fold, respectively. In obese human guts, the relative abundances of the beneficial genera including Lactobacillus, Weissella, Leuconosto, Algiphilus and Faecalibacterium significantly increased, whilst the detrimental genera, such as Escherichia-Shigella, Klebsiella, Clostridium_sensu_stricto_1, Sutterella, Megamonas and Proteus drastically declined. CONCLUSION Taken together, these findings demonstrate that SFN can be used as a nutraceutical ingredient for obese patients and for improving human health.
Collapse
Affiliation(s)
- Yifei Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Provincial Key Laboratory of Agrobiology and Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhaocheng Tang
- Provincial Key Laboratory of Agrobiology and Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Tingting Hao
- Provincial Key Laboratory of Agrobiology and Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zeyu Qiu
- Provincial Key Laboratory of Agrobiology and Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Baolong Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Provincial Key Laboratory of Agrobiology and Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Correspondence: ; Tel.: +86-25-8439-0292
| |
Collapse
|
93
|
Bankole T, Winn H, Li Y. Dietary Impacts on Gestational Diabetes: Connection between Gut Microbiome and Epigenetic Mechanisms. Nutrients 2022; 14:nu14245269. [PMID: 36558427 PMCID: PMC9786016 DOI: 10.3390/nu14245269] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is one of the most common obstetric complications due to an increased level of glucose intolerance during pregnancy. The prevalence of GDM increases due to the obesity epidemic. GDM is also associated with an increased risk of gestational hypertension and preeclampsia resulting in elevated maternal and perinatal morbidity and mortality. Diet is one of the most important environmental factors associated with etiology of GDM. Studies have shown that the consumption of certain bioactive diets and nutrients before and during pregnancy might have preventive effects against GDM leading to a healthy pregnancy outcome as well as beneficial metabolic outcomes later in the offspring's life. Gut microbiome as a biological ecosystem bridges the gap between human health and diseases through diets. Maternal diets affect maternal and fetal gut microbiome and metabolomics profiles, which consequently regulate the host epigenome, thus contributing to later-life metabolic health in both mother and offspring. This review discusses the current knowledge regarding how epigenetic mechanisms mediate the interaction between maternal bioactive diets, the gut microbiome and the metabolome leading to improved metabolic health in both mother and offspring.
Collapse
Affiliation(s)
- Taiwo Bankole
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
| | - Hung Winn
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri, Columbia, MO 65212, USA
| | - Yuanyuan Li
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
- Correspondence:
| |
Collapse
|
94
|
Song H, Wang YH, Zhou HY, Cui KM. Sulforaphane alleviates LPS-induced inflammatory injury in ARPE-19 cells by repressing the PWRN2/NF-kB pathway. Immunopharmacol Immunotoxicol 2022; 44:868-876. [PMID: 35766158 DOI: 10.1080/08923973.2022.2090954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly population and its pathogenesis has been associated with inflammatory damage to retinal pigment epithelial (RPE) cells. Here, we explored the ability of sulforaphane to protect ARPE-19 cells from lipopolysaccharide (LPS)-induced inflammatory injury and elucidated the underlying molecular mechanism. METHODS Cell viability, apoptosis, inflammation, PWRN2 expression, nuclear transcription factor-kappa B (NF-kB) activity, and the interaction between PWRN2 and the IkBa protein were assessed in RPE cells under- or over-expressing PWRN2 that had been treated with LPS and sulforaphane. RESULTS Overexpression of PWRN2 in LPS-treated cells promoted NF-kB activation by interacting with IkBa, thus reducing cell viability. In contrast, PWRN2 downregulation repressed LPS-induced NF-kB activation and apoptosis in RPE cells. Similarly, sulforaphane downregulated PWRN2 and inhibited NF-kB activation in a concentration-dependent manner. Conversely, PWRN2 overexpression or NF-kB upregulation weakened the anti-inflammatory effects of sulforaphane. CONCLUSION Our results suggest that sulforaphane protects RPE cells from LPS-induced inflammatory injury by suppressing the PWRN2/NF-kB pathway.
Collapse
Affiliation(s)
- Hui Song
- Eye Center, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, P.R. China
| | - Ying-Hao Wang
- Eye Center, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, P.R. China
| | - Hai-Yan Zhou
- Eye Center, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, P.R. China
| | - Kun-Ming Cui
- Eye Center, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, P.R. China
| |
Collapse
|
95
|
Affiliation(s)
- Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Livia Basile
- Department of Chemical Sciences, University of Catania, Catania, Italy
| |
Collapse
|
96
|
Microorganisms-An Effective Tool to Intensify the Utilization of Sulforaphane. Foods 2022; 11:foods11233775. [PMID: 36496582 PMCID: PMC9737538 DOI: 10.3390/foods11233775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Sulforaphane (SFN) was generated by the hydrolysis of glucoraphanin under the action of myrosinase. However, due to the instability of SFN, the bioavailability of SFN was limited. Meanwhile, the gut flora obtained the ability to synthesize myrosinase and glucoraphanin, which could be converted into SFN in the intestine. However, the ability of microorganisms to synthesize myrosinase in the gut was limited. Therefore, microorganisms with myrosinase synthesis ability need to be supplemented. With the development of research, microorganisms with high levels of myrosinase synthesis could be obtained by artificial selection and gene modification. Researchers found the SFN production rate of the transformed microorganisms could be significantly improved. However, despite applying transformation technology and regulating nutrients to microorganisms, it still could not provide the best efficiency during generating SFN and could not accomplish colonization in the intestine. Due to the great effect of microencapsulation on improving the colonization ability of microorganisms, microencapsulation is currently an important way to deliver microorganisms into the gut. This article mainly analyzed the possibility of obtaining SFN-producing microorganisms through gene modification and delivering them to the gut via microencapsulation to improve the utilization rate of SFN. It could provide a theoretical basis for expanding the application scope of SFN.
Collapse
|
97
|
Are South African Wild Foods the Answer to Rising Rates of Cardiovascular Disease? DIVERSITY 2022. [DOI: 10.3390/d14121014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The rising burden of cardiovascular disease in South Africa gives impetus to managerial changes, particularly to the available foods in the market. Since there are many economically disadvantaged groups in urban societies who are at the forefront of the CVD burden, initiatives to make healthier foods available should focus on affordability in conjunction with improved phytochemical diversity to incentivize change. The modern obesogenic diet is deficient in phytochemicals that are protective against the metabolic products of sugar metabolism, i.e., inflammation, reactive oxygen species and mitochondrial fatigue, whereas traditional southern African food species have high phytochemical diversity and are also higher in soluble dietary fibres that modulate the release of sugars from starches, nurture the microbiome and produce digestive artefacts that are prophylactic against cardiovascular disease. The examples of indigenous southern African food species with high horticultural potential that can be harvested sustainably to feed a large market of consumers include: Aloe marlothii, Acanthosicyos horridus, Adansonia digitata, Aloe ferox, Amaranthus hybridus, Annesorhiza nuda, Aponogeton distachyos, Bulbine frutescens, Carpobrotus edulis, Citrullus lanatus, Dioscorea bulbifera, Dovyalis caffra, Eleusine coracana, Lagenaria siceraria, Mentha longifolia, Momordica balsamina, Pelargonium crispum, Pelargonium sidoides, Pennisetum glaucum, Plectranthus esculentus, Schinziophyton rautanenii, Sclerocarya birrea, Solenostemon rotundifolius, Talinum caffrum, Tylosema esculentum, Vigna unguiculata and Vigna subterranea. The current review explains the importance of phytochemical diversity in the human diet, it gives a lucid explanation of phytochemical groups and links the phytochemical profiles of these indigenous southern African foods to their protective effects against cardiovascular disease.
Collapse
|
98
|
Cuellar-Nuñez ML, Luzardo-Ocampo I, Lee-Martínez S, Larrauri-Rodríguez M, Zaldívar-Lelo de Larrea G, Pérez-Serrano RM, Camacho-Calderón N. Isothiocyanate-Rich Extracts from Cauliflower ( Brassica oleracea Var. Botrytis) and Radish ( Raphanus sativus) Inhibited Metabolic Activity and Induced ROS in Selected Human HCT116 and HT-29 Colorectal Cancer Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192214919. [PMID: 36429638 PMCID: PMC9691161 DOI: 10.3390/ijerph192214919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/31/2022] [Accepted: 11/11/2022] [Indexed: 05/31/2023]
Abstract
Cruciferous vegetables such as cauliflower and radish contain isothiocyanates exhibiting chemoprotective effects in vitro and in vivo. This research aimed to assess the impact of cauliflower (CIE) and radish (RIE) isothiocyanate extracts on the metabolic activity, intracellular reactive oxygen species (ROS), and LDH production of selected human colorectal adenocarcinoma cells (HCT116 and HT-29 for early and late colon cancer development, respectively). Non-cancerous colon cells (CCD-33Co) were used as a cytotoxicity control. The CIE samples displayed the highest allyl isothiocyanate (AITC: 12.55 µg/g) contents, whereas RIE was the most abundant in benzyl isothiocyanate (BITC: 15.35 µg/g). Both extracts effectively inhibited HCT116 and HT-29 metabolic activity, but the CIE impact was higher than that of RIE on HCT116 (IC50: 0.56 mg/mL). Assays using the half-inhibitory concentrations (IC50) of all treatments, including AITC and BITC, displayed increased (p < 0.05) LDH (absorbance: 0.25-0.40 nm) and ROS release (1190-1697 relative fluorescence units) in both cell lines. BITC showed the highest in silico binding affinity with all the tested colorectal cancer molecular markers (NF-kB, β-catenin, and NRF2-NFE2). The theoretical evaluation of AITC and BITC bioavailability showed high values for both compounds. The results indicate that CIE and RIE extracts display chemopreventive effects in vitro, but additional experiments are needed to validate their effects.
Collapse
Affiliation(s)
- Mardey Liceth Cuellar-Nuñez
- Advanced Biomedical Research Center, School of Medicine, Universidad Autónoma de Querétaro, Queretaro 76140, Mexico
| | - Ivan Luzardo-Ocampo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Queretaro 76230, Mexico
| | - Sarah Lee-Martínez
- Advanced Biomedical Research Center, School of Medicine, Universidad Autónoma de Querétaro, Queretaro 76140, Mexico
| | - Michelle Larrauri-Rodríguez
- Licenciatura en Medicina General, Facultad de Medicina, Universidad Autónoma de Querétaro, Queretaro 76176, Mexico
| | | | - Rosa Martha Pérez-Serrano
- Advanced Biomedical Research Center, School of Medicine, Universidad Autónoma de Querétaro, Queretaro 76140, Mexico
| | - Nicolás Camacho-Calderón
- Advanced Biomedical Research Center, School of Medicine, Universidad Autónoma de Querétaro, Queretaro 76140, Mexico
| |
Collapse
|
99
|
Anticarcinogenic Effects of Isothiocyanates on Hepatocellular Carcinoma. Int J Mol Sci 2022; 23:ijms232213834. [PMID: 36430307 PMCID: PMC9693344 DOI: 10.3390/ijms232213834] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, accounting for about 90% of cases. Sorafenib, lenvatinib, and the combination of atezolizumab and bevacizumab are considered first-line treatments for advanced HCC. However, clinical application of these drugs has also caused some adverse reactions such as hypertension, elevated aspartate aminotransferases, and proteinuria. At present, natural products and their derivatives have drawn more and more attention due to less side effects as cancer treatments. Isothiocyanates (ITCs) are one type of hydrolysis products from glucosinolates (GLSs), secondary plant metabolites found exclusively in cruciferous vegetables. Accumulating evidence from encouraging in vitro and in vivo animal models has demonstrated that ITCs have multiple biological activities, especially their potentially health-promoting activities (antibacterial, antioxidant, and anticarcinogenic effects). In this review, we aim to comprehensively summarize the chemopreventive, anticancer, and chemosensitizative effects of ITCs on HCC, and explain the underlying molecular mechanisms.
Collapse
|
100
|
Wang M, Chen M, Guo R, Ding Y, Zhang H, He Y. The improvement of sulforaphane in type 2 diabetes mellitus (T2DM) and related complications: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|