51
|
Pigino G, Bui KH, Maheshwari A, Lupetti P, Diener D, Ishikawa T. Cryoelectron tomography of radial spokes in cilia and flagella. ACTA ACUST UNITED AC 2011; 195:673-87. [PMID: 22065640 PMCID: PMC3257535 DOI: 10.1083/jcb.201106125] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cryo-EM tomography of wild-type and mutant cilia and flagella from Tetrahymena and Chlamydomonas reveals new information on the substructure of radial spokes. Radial spokes (RSs) are ubiquitous components in the 9 + 2 axoneme thought to be mechanochemical transducers involved in local control of dynein-driven microtubule sliding. They are composed of >23 polypeptides, whose interactions and placement must be deciphered to understand RS function. In this paper, we show the detailed three-dimensional (3D) structure of RS in situ in Chlamydomonas reinhardtii flagella and Tetrahymena thermophila cilia that we obtained using cryoelectron tomography (cryo-ET). We clarify similarities and differences between the three spoke species, RS1, RS2, and RS3, in T. thermophila and in C. reinhardtii and show that part of RS3 is conserved in C. reinhardtii, which only has two species of complete RSs. By analyzing C. reinhardtii mutants, we identified the specific location of subsets of RS proteins (RSPs). Our 3D reconstructions show a twofold symmetry, suggesting that fully assembled RSs are produced by dimerization. Based on our cryo-ET data, we propose models of subdomain organization within the RS as well as interactions between RSPs and with other axonemal components.
Collapse
Affiliation(s)
- Gaia Pigino
- Biomolecular Research Laboratory, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | | | | | | | | | | |
Collapse
|
52
|
DiPetrillo CG, Smith EF. The Pcdp1 complex coordinates the activity of dynein isoforms to produce wild-type ciliary motility. Mol Biol Cell 2011; 22:4527-38. [PMID: 21998195 PMCID: PMC3226472 DOI: 10.1091/mbc.e11-08-0739] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Generating the complex waveforms characteristic of beating cilia requires the coordinated activity of multiple dynein isoforms anchored to the axoneme. We previously identified a complex associated with the C1d projection of the central apparatus that includes primary ciliary dyskinesia protein 1 (Pcdp1). Reduced expression of complex members results in severe motility defects, indicating that C1d is essential for wild-type ciliary beating. To define a mechanism for Pcdp1/C1d regulation of motility, we took a functional and structural approach combined with mutants lacking C1d and distinct subsets of dynein arms. Unlike mutants completely lacking the central apparatus, dynein-driven microtubule sliding velocities are wild type in C1d- defective mutants. However, coordination of dynein activity among microtubule doublets is severely disrupted. Remarkably, mutations in either outer or inner dynein arm restore motility to mutants lacking C1d, although waveforms and beat frequency differ depending on which isoform is mutated. These results define a unique role for C1d in coordinating the activity of specific dynein isoforms to control ciliary motility.
Collapse
|
53
|
Petroutsos D, Busch A, Janßen I, Trompelt K, Bergner SV, Weinl S, Holtkamp M, Karst U, Kudla J, Hippler M. The chloroplast calcium sensor CAS is required for photoacclimation in Chlamydomonas reinhardtii. THE PLANT CELL 2011; 23:2950-63. [PMID: 21856795 PMCID: PMC3180803 DOI: 10.1105/tpc.111.087973] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Revised: 07/12/2011] [Accepted: 08/01/2011] [Indexed: 05/19/2023]
Abstract
The plant-specific calcium binding protein CAS (calcium sensor) has been localized in chloroplast thylakoid membranes of vascular plants and green algae. To elucidate the function of CAS in Chlamydomonas reinhardtii, we generated and analyzed eight independent CAS knockdown C. reinhardtii lines (cas-kd). Upon transfer to high-light (HL) growth conditions, cas-kd lines were unable to properly induce the expression of LHCSR3 protein that is crucial for nonphotochemical quenching. Prolonged exposure to HL revealed a severe light sensitivity of cas-kd lines and caused diminished activity and recovery of photosystem II (PSII). Remarkably, the induction of LHCSR3, the growth of cas-kd lines under HL, and the performance of PSII were fully rescued by increasing the calcium concentration in the growth media. Moreover, perturbing cellular Ca(2+) homeostasis by application of the calmodulin antagonist W7 or the G-protein activator mastoparan impaired the induction of LHCSR3 expression in a concentration-dependent manner. Our findings demonstrate that CAS and Ca(2+) are critically involved in the regulation of the HL response and particularly in the control of LHCSR3 expression.
Collapse
Affiliation(s)
- Dimitris Petroutsos
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Muenster, Germany
| | - Andreas Busch
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Muenster, Germany
| | - Ingrid Janßen
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Muenster, Germany
| | - Kerstin Trompelt
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Muenster, Germany
| | - Sonja Verena Bergner
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Muenster, Germany
| | - Stefan Weinl
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Muenster, Germany
| | - Michael Holtkamp
- Institute of Inorganic and Analytical Chemistry, University of Münster, 48149 Muenster, Germany
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, 48149 Muenster, Germany
| | - Jörg Kudla
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Muenster, Germany
| | - Michael Hippler
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Muenster, Germany
- Address correspondence to
| |
Collapse
|
54
|
Abstract
Motile cilia in the airway epithelium are the engine for mucociliary clearance, the mechanism responsible for cleaning the airways from inhaled particles. Human airway epithelial cilia appear to have a slow constitutive rate of beating, driven by inherent and spontaneous dynein ATPase activity. Additionally, cilia can increase their beating frequency by activation of several different control mechanisms. One of these controllers is calcium. Its intracellular concentration is regulated by purinergic and acetylcholine receptors. Besides the rate regulatory effect of calcium on ciliary beat, calcium is also involved in synchronizing the beat among cilia of one single cell as well as between cilia on different cells. This article gives an overview of the complex effects of calcium on the beating of motile cilia in the airways.
Collapse
|
55
|
Dymek EE, Heuser T, Nicastro D, Smith EF. The CSC is required for complete radial spoke assembly and wild-type ciliary motility. Mol Biol Cell 2011; 22:2520-31. [PMID: 21613541 PMCID: PMC3135477 DOI: 10.1091/mbc.e11-03-0271] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Structural and functional analyses of artificial micro RNA (amiRNA) mutants reveal that the CSC plays a role not only in generating wild-type motility, but also in assembly of at least a subset of radial spokes. This study also produced the unexpected finding that, contrary to current belief, the radial spokes may not be homogeneous. The ubiquitous calcium binding protein, calmodulin (CaM), plays a major role in regulating the motility of all eukaryotic cilia and flagella. We previously identified a CaM and Spoke associated Complex (CSC) and provided evidence that this complex mediates regulatory signals between the radial spokes and dynein arms. We have now used an artificial microRNA (amiRNA) approach to reduce expression of two CSC subunits in Chlamydomonas. For all amiRNA mutants, the entire CSC is lacking or severely reduced in flagella. Structural studies of mutant axonemes revealed that assembly of radial spoke 2 is defective. Furthermore, analysis of both flagellar beating and microtubule sliding in vitro demonstrates that the CSC plays a critical role in modulating dynein activity. Our results not only indicate that the CSC is required for spoke assembly and wild-type motility, but also provide evidence for heterogeneity among the radial spokes.
Collapse
Affiliation(s)
- Erin E Dymek
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | | | | | | |
Collapse
|
56
|
Yang Y, Cochran DA, Gargano MD, King I, Samhat NK, Burger BP, Sabourin KR, Hou Y, Awata J, Parry DAD, Marshall WF, Witman GB, Lu X. Regulation of flagellar motility by the conserved flagellar protein CG34110/Ccdc135/FAP50. Mol Biol Cell 2011; 22:976-87. [PMID: 21289096 PMCID: PMC3069022 DOI: 10.1091/mbc.e10-04-0331] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Eukaryotic cilia and flagella are vital sensory and motile organelles. The calcium channel PKD2 mediates sensory perception on cilia and flagella, and defects in this can contribute to ciliopathic diseases. Signaling from Pkd2-dependent Ca²+ rise in the cilium to downstream effectors may require intermediary proteins that are largely unknown. To identify these proteins, we carried out genetic screens for mutations affecting Drosophila melanogaster sperm storage, a process mediated by Drosophila Pkd2. Here we show that a new mutation lost boys (lobo) encodes a conserved flagellar protein CG34110, which corresponds to vertebrate Ccdc135 (E = 6e-78) highly expressed in ciliated respiratory epithelia and sperm, and to FAP50 (E = 1e-28) in the Chlamydomonas reinhardtii flagellar proteome. CG34110 localizes along the fly sperm flagellum. FAP50 is tightly associated with the outer doublet microtubules of the axoneme and appears not to be a component of the central pair, radial spokes, dynein arms, or structures defined by the mbo waveform mutants. Phenotypic analyses indicate that both Pkd2 and lobo specifically affect sperm movement into the female storage receptacle. We hypothesize that the CG34110/Ccdc135/FAP50 family of conserved flagellar proteins functions within the axoneme to mediate Pkd2-dependent processes in the sperm flagellum and other motile cilia.
Collapse
Affiliation(s)
- Yong Yang
- Institute of Environmental Health Sciences and Department of Biochemistry and Molecular Biology, Wayne State University, Detroit, MI 48201, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Lee L. Mechanisms of mammalian ciliary motility: Insights from primary ciliary dyskinesia genetics. Gene 2010; 473:57-66. [PMID: 21111794 DOI: 10.1016/j.gene.2010.11.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 11/10/2010] [Accepted: 11/12/2010] [Indexed: 01/01/2023]
Abstract
Motile cilia and flagella are organelles that, historically, have been poorly understood and inadequately investigated. However, cilia play critical roles in fluid clearance in the respiratory system and the brain, and flagella are required for sperm motility. Genetic studies involving human patients and mouse models of primary ciliary dyskinesia over the last decade have uncovered a number of important ciliary proteins and have begun to elucidate the mechanisms underlying ciliary motility. When combined with genetic, biochemical, and cell biological studies in Chlamydomonas reinhardtii, these mammalian genetic analyses begin to reveal the mechanisms by which ciliary motility is regulated.
Collapse
Affiliation(s)
- Lance Lee
- Sanford Children's Health Research Center, Sanford Research USD, 2301 East 60th Street, Sioux Falls, SD 57104, USA.
| |
Collapse
|
58
|
Chiu PCN, Liao S, Lam KKW, Tang F, Ho JCM, Ho PC, O WS, Yao YQ, Yeung WSB. Adrenomedullin regulates sperm motility and oviductal ciliary beat via cyclic adenosine 5'-monophosphate/protein kinase A and nitric oxide. Endocrinology 2010; 151:3336-47. [PMID: 20444935 DOI: 10.1210/en.2010-0077] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cilium and flagellum beating are important in reproduction and defects in their motion are associated with ectopic pregnancy and infertility. Adrenomedullin (ADM) is a polypeptide present in the reproductive system. This report demonstrates a novel action of ADM in enhancing the flagellar/ciliary beating of human spermatozoa and rat oviductal ciliated cells. At the concentration found in the seminal plasma, it increases the progressive motility of spermatozoa. ADM binds to its classical receptor, calcitonin receptor-like receptor/receptor activity-modifying protein complex on spermatozoa. ADM treatment increases the protein kinase A activities, the cyclic adenosine monophosphate, and nitric oxide levels of spermatozoa and oviductal cells. Pharmacological activators and inhibitors confirmed that the ADM-induced flagella/ciliary beating was protein kinase A dependent. Whereas nitric oxide donors had no effect on sperm motility, they potentiated the motility-inducing action of protein kinase A activators, demonstrating for the first time the synergistic action of nitric oxide and protein kinase A signaling in flagellar/ciliary beating. The ADM-induced motility enhancement effect in spermatozoa also depended on the up-regulation of intracellular calcium, a known key regulator of sperm motility and ciliary beating. In conclusion, ADM is a common activator of flagellar/ciliary beating. The study provides a physiological basis on possible use of ADM as a fertility regulation drug.
Collapse
Affiliation(s)
- Philip C N Chiu
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
59
|
DiPetrillo CG, Smith EF. Pcdp1 is a central apparatus protein that binds Ca(2+)-calmodulin and regulates ciliary motility. ACTA ACUST UNITED AC 2010; 189:601-12. [PMID: 20421426 PMCID: PMC2867295 DOI: 10.1083/jcb.200912009] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A complex that localizes to the C1d central pair projection of cilia controls flagellar waveform and beat frequency in response to calcium. For all motile eukaryotic cilia and flagella, beating is regulated by changes in intraciliary calcium concentration. Although the mechanism for calcium regulation is not understood, numerous studies have shown that calmodulin (CaM) is a key axonemal calcium sensor. Using anti-CaM antibodies and Chlamydomonas reinhardtii axonemal extracts, we precipitated a complex that includes four polypeptides and that specifically interacts with CaM in high [Ca2+]. One of the complex members, FAP221, is an orthologue of mammalian Pcdp1 (primary ciliary dyskinesia protein 1). Both FAP221 and mammalian Pcdp1 specifically bind CaM in high [Ca2+]. Reduced expression of Pcdp1 complex members in C. reinhardtii results in failure of the C1d central pair projection to assemble and significant impairment of motility including uncoordinated bends, severely reduced beat frequency, and altered waveforms. These combined results reveal that the central pair Pcdp1 (FAP221) complex is essential for control of ciliary motility.
Collapse
|
60
|
Olson SD, Suarez SS, Fauci LJ. A model of CatSper channel mediated calcium dynamics in mammalian spermatozoa. Bull Math Biol 2010; 72:1925-46. [PMID: 20169416 DOI: 10.1007/s11538-010-9516-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 01/29/2010] [Indexed: 11/30/2022]
Abstract
CatSpers are calcium (Ca(2+)) channels that are located along the principal piece of mammalian sperm flagella and are directly linked to sperm motility and hyperactivation. It has been observed that Ca(2+) entry through CatSper channels triggers a tail to head Ca(2+) propagation in mouse sperm, as well as a sustained increase of Ca(2+) in the head. Here, we develop a mathematical model to investigate this propagation and sustained increase in the head. A 1-d reaction-diffusion model tracking intracellular Ca(2+) with flux terms for the CatSper channels, a leak flux, and plasma membrane Ca(2+) clearance mechanism is studied. Results of this simple model exhibit tail to head Ca(2+) propagation, but no sustained increase in the head. Therefore, in this model, a simple plasma membrane pump-leak system with diffusion in the cytosol cannot account for these experimentally observed results. It has been proposed that Ca(2+) influx from the CatSper channels induce additional Ca(2+) release from an internal store. We test this hypothesis by examining the possible role of Ca(2+) release from the redundant nuclear envelope (RNE), an inositol 1,4,5-trisphosphate (IP(3)) gated Ca(2+) store in the neck. The simple model is extended to include an equation for IP(3) synthesis, degradation, and diffusion, as well as flux terms for Ca(2+) in the RNE. When IP(3) and the RNE are accounted for, the results of the model exhibit a tail to head Ca(2+) propagation as well as a sustained increase of Ca(2+) in the head.
Collapse
Affiliation(s)
- Sarah D Olson
- Mathematics Department, Tulane University, 6823 St. Charles Ave., New Orleans, LA 70118, USA.
| | | | | |
Collapse
|
61
|
Wei M, Sivadas P, Owen HA, Mitchell DR, Yang P. Chlamydomonas mutants display reversible deficiencies in flagellar beating and axonemal assembly. Cytoskeleton (Hoboken) 2010; 67:71-80. [PMID: 20169531 PMCID: PMC2835312 DOI: 10.1002/cm.20422] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 10/14/2009] [Indexed: 11/12/2022]
Abstract
Axonemal complexes in flagella are largely prepackaged in the cell body. As such, one mutation often results in the absence of the co-assembled components and permanent motility deficiencies. For example, a Chlamydomonas mutant defective in RSP4 in the radial spoke (RS), which is critical for bend propagation, has paralyzed flagella that also lack the paralogue RSP6 and three additional RS proteins. Intriguingly, recent studies showed that several mutant strains contain a mixed population of swimmers and paralyzed cells despite their identical genetic background. Here we report a cause underlying these variations. Two new mutants lacking RSP6 swim processively and other components appear normally assembled in early log phase indicating that, unlike RSP4, this paralogue is dispensable. However, swimmers cannot maintain the typical helical trajectory and reactivated cell models tend to spin. Interestingly the motile fraction and the spokehead content dwindle during stationary phase. These results suggest that (1) intact RS is critical for maintaining the rhythm of oscillatory beating and thus the helical trajectory; (2) assembly of the axonemal complex with subtle defects is less efficient and the inefficiency is accentuated in compromised conditions, leading to reversible dyskinesia. Consistently, several organisms only possess one RSP4/6 gene. Gene duplication in Chlamydomonas enhances RS assembly to maintain optimal motility in various environments.
Collapse
Affiliation(s)
- Mei Wei
- Department of Biological Sciences, Marquette University, 530 N. 15 St. Milwaukee, WI 53233
| | - Priyanka Sivadas
- Department of Biological Sciences, Marquette University, 530 N. 15 St. Milwaukee, WI 53233
| | - Heather A. Owen
- Department of Biological Sciences, University of Wisconsin-Milwaukee, 3209 N. Maryland Ave, Milwaukee, WI 53211
| | - David R. Mitchell
- Department of Cell and Developmental Biology, Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210
| | - Pinfen Yang
- Department of Biological Sciences, Marquette University, 530 N. 15 St. Milwaukee, WI 53233
| |
Collapse
|
62
|
Effects of sodium fluoride on hyperactivation and Ca2+ signaling pathway in sperm from mice: an in vivo study. Arch Toxicol 2010; 84:353-61. [DOI: 10.1007/s00204-009-0508-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 12/22/2009] [Indexed: 02/02/2023]
|
63
|
Elam CA, Sale WS, Wirschell M. The regulation of dynein-driven microtubule sliding in Chlamydomonas flagella by axonemal kinases and phosphatases. Methods Cell Biol 2009; 92:133-51. [PMID: 20409803 DOI: 10.1016/s0091-679x(08)92009-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The purpose of this chapter is to review the methodology and advances that have revealed conserved signaling proteins that are localized in the 9+2 ciliary axoneme for regulating motility. Diverse experimental systems have revealed that ciliary and eukaryotic flagellar motility is regulated by second messengers including calcium, pH, and cyclic nucleotides. In addition, recent advances in in vitro functional studies, taking advantage of isolated axonemes, pharmacological approaches, and biochemical analysis of axonemes have demonstrated that otherwise ubiquitous, conserved protein kinases and phosphatases are transported to and anchored in the axoneme. Here, we focus on the functional/pharmacological, genetic, and biochemical approaches in the model genetic system Chlamydomonas that have revealed highly conserved kinases, anchoring proteins (e.g., A-kinase anchoring proteins), and phosphatases that are physically located in the axoneme where they play a direct role in control of motility.
Collapse
Affiliation(s)
- Candice A Elam
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
64
|
DiPetrillo C, Smith E. Calcium regulation of ciliary motility analysis of axonemal calcium-binding proteins. Methods Cell Biol 2009; 92:163-80. [PMID: 20409805 DOI: 10.1016/s0091-679x(08)92011-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Substantial data have contributed to a model in which the axonemal microtubules act as a scaffold for the assembly of molecules that form a signal transduction pathway that ultimately regulates dynein. We have also known for some time that for virtually all motile cilia and flagella, the second messenger, calcium, impacts upon these signaling pathways to modulate beating in response to extracellular cues. Yet we are only beginning to identify the axonemal proteins that bind this second messenger and determine their role in regulating dynein-driven microtubule sliding to alter the size and shape of ciliary bends. Here, we review our current understanding of calcium regulation of motility, emphasizing recent advances in the detection and characterization of calcium-binding proteins anchored to the axoneme.
Collapse
Affiliation(s)
- Christen DiPetrillo
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | | |
Collapse
|
65
|
Li P, Hulak M, Linhart O. Sperm proteins in teleostean and chondrostean (sturgeon) fishes. FISH PHYSIOLOGY AND BIOCHEMISTRY 2009; 35:567-581. [PMID: 18810648 DOI: 10.1007/s10695-008-9261-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2008] [Accepted: 08/20/2008] [Indexed: 05/26/2023]
Abstract
Sperm proteins in the seminal plasma and spermatozoa of teleostean and chondrostean have evolved adaptations due to the changes in the reproductive environment. Analysis of the composition and functions of these proteins provides new insights into sperm motility and fertilising abilities, thereby creating possibilities for improving artificial reproduction and germplasm resource conservation technologies (e.g. cryopreservation). Seminal plasma proteins are involved in the protection of spermatozoa during storage in the reproductive system, whereas all spermatozoa proteins contribute to the swimming and fertilising abilities of sperm. Compared to mammalian species, little data are available on fish sperm proteins and their functions. We review here the current state of the art in this field and focus on relevant subjects that require attention. Future research should concentrate on protein functions and their mode of action in fish species, especially on the role of spermatozoa surface proteins during fertilisation and on a description of sturgeon sperm proteins.
Collapse
Affiliation(s)
- Ping Li
- Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in Ceske Budejovice, Zatisi 728, 38925 Vodnany, Czech Republic
| | | | | |
Collapse
|
66
|
Gokhale A, Wirschell M, Sale WS. Regulation of dynein-driven microtubule sliding by the axonemal protein kinase CK1 in Chlamydomonas flagella. ACTA ACUST UNITED AC 2009; 186:817-24. [PMID: 19752022 PMCID: PMC2753152 DOI: 10.1083/jcb.200906168] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
CK1 puts the brakes on dynein activity when added to purified axonemes in vitro, presumably to regulate how flagella bend. Experimental analysis of isolated ciliary/flagellar axonemes has implicated the protein kinase casein kinase I (CK1) in regulation of dynein. To test this hypothesis, we developed a novel in vitro reconstitution approach using purified recombinant Chlamydomonas reinhardtii CK1, together with CK1-depleted axonemes from the paralyzed flagellar mutant pf17, which is defective in radial spokes and impaired in dynein-driven microtubule sliding. The CK1 inhibitors (DRB and CK1-7) and solubilization of CK1 restored microtubule sliding in pf17 axonemes, which is consistent with an inhibitory role for CK1. The phosphatase inhibitor microcystin-LR blocked rescue of microtubule sliding, indicating that the axonemal phosphatases, required for rescue, were retained in the CK1-depleted axonemes. Reconstitution of depleted axonemes with purified, recombinant CK1 restored inhibition of microtubule sliding in a DRB– and CK1-7–sensitive manner. In contrast, a purified “kinase-dead” CK1 failed to restore inhibition. These results firmly establish that an axonemal CK1 regulates dynein activity and flagellar motility.
Collapse
Affiliation(s)
- Avanti Gokhale
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
67
|
Morita M, Kitamura M, Nakajima A, Sri Susilo E, Takemura A, Okuno M. Regulation of sperm flagellar motility activation and chemotaxis caused by egg-derived substance(s) in sea cucumber. ACTA ACUST UNITED AC 2009; 66:202-14. [PMID: 19235200 DOI: 10.1002/cm.20343] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The sea cucumber Holothuria atra is a broadcast spawner. Among broadcast spawners, fertilization occurs by means of an egg-derived substance(s) that induces sperm flagellar motility activation and chemotaxis. Holothuria atra sperm were quiescent in seawater, but exhibited flagellar motility activation near eggs with chorion (intact eggs). In addition, they moved in a helical motion toward intact eggs as well as a capillary filled with the water layer of the egg extracts, suggesting that an egg-derived compound(s) causes motility activation and chemotaxis. Furthermore, demembranated sperm flagella were reactivated in high pH (> 7.8) solution without cAMP, and a phosphorylation assay using (gamma-32P)ATP showed that axonemal protein phosphorylation and dephosphorylation also occurred in a pH-dependent manner. These results suggest that the activation of sperm motility in holothurians is controlled by pH-sensitive changes in axonemal protein phosphorylation. Ca2+ concentration affected the swimming trajectory of demembranated sperm, indicating that Ca2+-binding proteins present at the flagella may be associated with regulation of flagellar waveform. Moreover, the phosphorylation states of several axonemal proteins were Ca2+-sensitive, indicating that Ca2+ impacts both kinase and phosphatase activities. In addition, in vivo sperm protein phosphorylation occurred after treatment with a water-soluble egg extract. Our results suggest that one or more egg-derived compounds activate motility and subsequent chemotactic behavior via Ca2+-sensitive flagellar protein phosphorylation.
Collapse
Affiliation(s)
- Masaya Morita
- Tropical Biosphere Research Center, Sesoko Station, University of the Ryukyus, Sesoko, Motobu, Okinawa, Japan.
| | | | | | | | | | | |
Collapse
|
68
|
Portman N, Lacomble S, Thomas B, McKean PG, Gull K. Combining RNA interference mutants and comparative proteomics to identify protein components and dependences in a eukaryotic flagellum. J Biol Chem 2009; 284:5610-9. [PMID: 19074134 PMCID: PMC2645819 DOI: 10.1074/jbc.m808859200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Indexed: 01/23/2023] Open
Abstract
Eukaryotic flagella from organisms such as Trypanosoma brucei can be isolated and their protein components identified by mass spectrometry. Here we used a comparative approach utilizing two-dimensional difference gel electrophoresis and isobaric tags for relative and absolute quantitation to reveal protein components of flagellar structures via ablation by inducible RNA interference mutation. By this approach we identified 20 novel components of the paraflagellar rod (PFR). Using epitope tagging we validated a subset of these as being present within the PFR by immunofluorescence. Bioinformatic analysis of the PFR cohort reveals a likely calcium/calmodulin regulatory/signaling linkage between some components. We extended the RNA interference mutant/comparative proteomic analysis to individual novel components of our PFR proteome, showing that the approach has the power to reveal dependences between subgroups within the cohort.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Chromatography, Liquid
- DNA, Protozoan/genetics
- DNA, Protozoan/metabolism
- Electrophoresis, Gel, Two-Dimensional
- Flagella/genetics
- Flagella/metabolism
- Fluorescent Antibody Technique
- Proteomics
- Protozoan Proteins/antagonists & inhibitors
- Protozoan Proteins/genetics
- Protozoan Proteins/metabolism
- RNA Interference
- RNA, Protozoan/genetics
- RNA, Protozoan/metabolism
- RNA, Small Interfering/pharmacology
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Trypanosoma brucei brucei/genetics
- Trypanosoma brucei brucei/metabolism
Collapse
Affiliation(s)
- Neil Portman
- Sir William Dunn School of Pathology and Oxford Centre for Integrative Systems Biology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom
| | | | | | | | | |
Collapse
|
69
|
Morita M, Iguchi A, Takemura A. Roles of calmodulin and calcium/calmodulin-dependent protein kinase in flagellar motility regulation in the coral Acropora digitifera. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2009; 11:118-123. [PMID: 18661183 DOI: 10.1007/s10126-008-9127-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Accepted: 06/13/2008] [Indexed: 05/26/2023]
Abstract
In the corals Acropora spp., eggs secrete substances that induce sperm motility regulation. An elevation of intracellular pH ([pH]i) and a regulation of intracellular Ca(2+) concentration ([Ca(2+)]) are involved in the sperm motility regulation cascade. However, the detailed molecular aspects of flagellar motility regulation have not been fully demonstrated in Acropora. In this study, we determined the presence and roles of both calmodulin (CaM) and calcium/calmodulin dependent-protein kinase (CaMK) in the sperm flagellar motility regulation of Acropora. A (45)Ca(2+)-overlay assay and an immunoblot analysis showed that sperm contain an acidic 16-kDa protein that was CaM, and an immunoblot analysis revealed the presence of CaMK in coral sperm. In addition, a specific inhibitor of CaMK, KN-93, and a CaM antagonist, W-7, inhibited sperm motility activation induced by NH(4)Cl treatment. NH(4)Cl treatment causes an increase in intracellular [pH]i of sperm, suggesting that CaM and CaMK are involved in sperm motility initiation caused by an increase in [pH]i. The involvement of CaM and CaMK in motility regulation in coral highlights the importance of these molecules throughout the animal kingdom.
Collapse
Affiliation(s)
- Masaya Morita
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, 3422, Sesoko, Motobu, Okinawa 905-0227, Japan.
| | | | | |
Collapse
|
70
|
Wheeler GL, Joint I, Brownlee C. Rapid spatiotemporal patterning of cytosolic Ca2+ underlies flagellar excision in Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 53:401-413. [PMID: 18086284 DOI: 10.1111/j.1365-313x.2007.03349.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Ca(2+)-dependent signalling processes are implicated in many aspects of flagella function in the green alga, Chlamydomonas. In this study, we examine the spatiotemporal dynamics of cytosolic Ca2+ ([Ca2+](cyt)) in single Chlamydomonas cells during the process of flagellar excision, using biolistically loaded calcium-responsive dyes. Acid-induced deflagellation occurred in parallel with a single transient elevation in whole-cell [Ca2+](cyt), which was absent in the acid deflagellation-deficient adf1 mutant. Deflagellation could also be induced by elevated external Ca2+ ([Ca2+](ext)), which promoted very rapid spiking of [Ca2+](cyt) across the whole cell and in the flagella. We also detected very rapid apically localised Ca2+ signalling events with an approximate duration of 500 msec. Ninety-seven per cent of deflagellation events coincided with a rapid elevation in [Ca2+](cyt) in the apical region of the cell, either in the form of a whole cell or an apically localised increase, indicating that [Ca2+](cyt) elevations in the apical region play an underlying role in deflagellation. Our data indicate that elevated [Ca2+](ext) acts to disrupt Ca2+ homeostasis which induces deflagellation by both Adf1-dependent and Adf1-independent mechanisms. Elevated [Ca2+](ext) also results in further [Ca2+](cyt) elevations after the main period of whole cell spiking which are very strongly associated with deflagellation, exhibit a high degree of apical localisation and are largely absent in the adf1 mutant. We propose that these later elevations may act as specific signals for deflagellation.
Collapse
Affiliation(s)
- Glen L Wheeler
- Plymouth Marine Laboratory, Prospect Place, Plymouth PL1 3DH, UK.
| | | | | |
Collapse
|
71
|
Wirschell M, Zhao F, Yang C, Yang P, Diener D, Gaillard A, Rosenbaum JL, Sale WS. Building a radial spoke: Flagellar radial spoke protein 3 (RSP3) is a dimer. ACTA ACUST UNITED AC 2008; 65:238-48. [DOI: 10.1002/cm.20257] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
72
|
Dymek EE, Smith EF. A conserved CaM- and radial spoke associated complex mediates regulation of flagellar dynein activity. ACTA ACUST UNITED AC 2007; 179:515-26. [PMID: 17967944 PMCID: PMC2064796 DOI: 10.1083/jcb.200703107] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
For virtually all cilia and eukaryotic flagella, the second messengers calcium and cyclic adenosine monophosphate are implicated in modulating dynein- driven microtubule sliding to regulate beating. Calmodulin (CaM) localizes to the axoneme and is a key calcium sensor involved in regulating motility. Using immunoprecipitation and mass spectrometry, we identify members of a CaM-containing complex that are involved in regulating dynein activity. This complex includes flagellar-associated protein 91 (FAP91), which shares considerable sequence similarity to AAT-1, a protein originally identified in testis as an A-kinase anchor protein (AKAP)- binding protein. FAP91 directly interacts with radial spoke protein 3 (an AKAP), which is located at the base of the spoke. In a microtubule sliding assay, the addition of antibodies generated against FAP91 to mutant axonemes with reduced dynein activity restores dynein activity to wild-type levels. These combined results indicate that the CaM- and spoke-associated complex mediates regulatory signals between the radial spokes and dynein arms.
Collapse
Affiliation(s)
- Erin E Dymek
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | | |
Collapse
|
73
|
Joint I, Tait K, Wheeler G. Cross-kingdom signalling: exploitation of bacterial quorum sensing molecules by the green seaweed Ulva. Philos Trans R Soc Lond B Biol Sci 2007; 362:1223--33. [PMID: 17360272 PMCID: PMC2435585 DOI: 10.1098/rstb.2007.2047] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The green seaweed Ulva has been shown to detect signal molecules produced by bacteria. Biofilms that release N-acylhomoserine lactones (AHLs) attract zoospores--the motile reproductive stages of Ulva. The evidence for AHL involvement is based on several independent lines of evidence, including the observation that zoospores are attracted to wild-type bacteria that produce AHLs but are not attracted to mutants that do not produce signal molecules. Synthetic AHL also attracts zoospores and the attraction is lost in the presence of autoinducer inactivation (AiiA) protein. The mechanism of attraction is not chemotactic but involves chemokinesis. When zoospores detect AHLs, the swimming rate is reduced and this results in accumulation of cells at the source of the AHL. It has been demonstrated that the detection of AHLs results in calcium influx into the zoospore. This is the first example of a calcium signalling event in a eukaryote in response to bacterial quorum sensing molecules. The role of AHLs in the ecology of Ulva is discussed. It is probable that AHLs act as cues for the settlement of zoospores, rather than being directly involved as a signalling mechanism.
Collapse
Affiliation(s)
- Ian Joint
- Plymouth Marine Laboratory, The Hoe, Plymouth, UK.
| | | | | |
Collapse
|
74
|
Feistel K, Blum M. Three types of cilia including a novel 9+4 axoneme on the notochordal plate of the rabbit embryo. Dev Dyn 2007; 235:3348-58. [PMID: 17061268 DOI: 10.1002/dvdy.20986] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Motile monocilia play a pivotal role in left-right axis determination in mouse and zebrafish embryos. Cilia with 9+0 axonemes localize to the distal indentation of the mouse egg cylinder ("node"), while Kupffer's vesicle cilia in zebrafish show 9+2 arrangements. Here we studied cilia in a prototype mammalian embryo, the rabbit, which develops via a flat blastodisc. Transcription of ciliary marker genes Foxj1, Rfx3, lrd, polaris, and Kif3a initiated in Hensen's node and persisted in the nascent notochord. Cilia emerged on cells leaving Hensen's node anteriorly to form the notochordal plate. Cilia lengthened to about 5 mum and polarized from an initially central position to the posterior pole of cells. Electron-microscopic analysis revealed 9+0 and 9+2 cilia and a novel 9+4 axoneme intermingled in a salt-and-pepper-like fashion. Our data suggest that despite a highly conserved ciliogenic program, which initiates in the organizer, axonemal structures may vary widely within the vertebrates.
Collapse
Affiliation(s)
- Kerstin Feistel
- University of Hohenheim, Institute of Zoology, Stuttgart, Germany
| | | |
Collapse
|
75
|
Wirschell M, Hendrickson T, Sale WS. Keeping an eye on I1: I1 dynein as a model for flagellar dynein assembly and regulation. ACTA ACUST UNITED AC 2007; 64:569-79. [PMID: 17549744 DOI: 10.1002/cm.20211] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Among the major challenges in understanding ciliary and flagellar motility is to determine how the dynein motors are assembled and localized and how dynein-driven outer doublet microtubule sliding is controlled. Diverse studies, particularly in Chlamydomonas, have determined that the inner arm dynein I1 is targeted to a unique structural position and is critical for regulating the microtubule sliding required for normal ciliary/flagellar bending. As described in this review, I1 dynein offers additional opportunities to determine the principles of assembly and targeting of dyneins to cellular locations and for studying the mechanisms that regulate dynein activity and control of motility by phosphorylation.
Collapse
Affiliation(s)
- Maureen Wirschell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | |
Collapse
|
76
|
Abstract
Cilia are microtubule-based organelles that project like antennae from the surface of most cells in the body. Motile cilia move fluid past cells, for example mucus in the airway. Non-motile primary cilia, however, transduce a multitude of sensory stimuli, including chemical concentrations of growth factors, hormones, odorants, and developmental morphogens, as well as osmolarity, light intensity, and fluid flow. Cilia have evolved a complex ultrastructure to accommodate these diverse functions, and an extensive molecular machinery has developed to support the assembly of these organelles. Defects in the cilia themselves, or the machinery required to assemble them, lead to a broad spectrum of human disease symptoms, including polycystic kidney disease, nephronophthisis, hydrocephalus, polydactyly, situs inversus, retinal degeneration, and obesity. While these diseases highlight the pivotal roles of cilia in physiology and development, the mechanistic link between cilia, physiology, and disease remains unclear.
Collapse
Affiliation(s)
- Wallace F Marshall
- Department of Biochemistry and Biophysics, University of California San Francisco, 600 16th St., San Francisco, California 94143, USA.
| | | |
Collapse
|
77
|
Ueno H, Iwataki Y, Numata O. Homologues of Radial Spoke Head Proteins Interact with Ca2+/Calmodulin in Tetrahymena Cilia. ACTA ACUST UNITED AC 2006; 140:525-33. [PMID: 16936294 DOI: 10.1093/jb/mvj182] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Calmodulin (CaM) is an axonemal component. To examine the pathway of Ca(2+)/CaM signaling in cilia, using Ca(2+)/CaM-affinity column, we identified seven Ca(2+)/CaM-associated proteins from a crude dynein fraction and isolated 62 kDa (p62) and 66 kDa (p66) Ca(2+)/CaM-associated proteins in Tetrahymena cilia. The amino acid sequences deduced from the p62 and p66 cDNA sequences suggested that these proteins were similar to Chlamydomonas radial spoke proteins 4 and 6 (RSP4 and RSP6), components of the radial spoke head, and sea urchin sperm p63, which is a homologue of RSP4/6, and isolated as a key component that affect flagellar bending patterns. Although p62 and p66 do not have a conventional CaM-binding site, those have consecutive sequences which showed high normalized scores (>or= 5) from a CaM target database. These consecutive sequences were also found in RSP4, RSP6, and p63. These radial spoke heads proteins have a high similarity region composed of 15 amino acids between the five proteins. Immunoelectron microscopy using anti-CaM antibody showed that CaM was localized along the outer edge of the curved central pair microtubules in axoneme. Therefore, it is possible that the interaction between Ca(2+)/CaM and radial spoke head control axonemal curvature in the ciliary and flagellar waveform.
Collapse
Affiliation(s)
- Hironori Ueno
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572
| | | | | |
Collapse
|
78
|
Yang P, Diener DR, Yang C, Kohno T, Pazour GJ, Dienes JM, Agrin NS, King SM, Sale WS, Kamiya R, Rosenbaum JL, Witman GB. Radial spoke proteins of Chlamydomonas flagella. J Cell Sci 2006; 119:1165-74. [PMID: 16507594 PMCID: PMC1973137 DOI: 10.1242/jcs.02811] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The radial spoke is a ubiquitous component of '9+2' cilia and flagella, and plays an essential role in the control of dynein arm activity by relaying signals from the central pair of microtubules to the arms. The Chlamydomonas reinhardtii radial spoke contains at least 23 proteins, only 8 of which have been characterized at the molecular level. Here, we use mass spectrometry to identify 10 additional radial spoke proteins. Many of the newly identified proteins in the spoke stalk are predicted to contain domains associated with signal transduction, including Ca2+-, AKAP- and nucleotide-binding domains. This suggests that the spoke stalk is both a scaffold for signaling molecules and itself a transducer of signals. Moreover, in addition to the recently described HSP40 family member, a second spoke stalk protein is predicted to be a molecular chaperone, implying that there is a sophisticated mechanism for the assembly of this large complex. Among the 18 spoke proteins identified to date, at least 12 have apparent homologs in humans, indicating that the radial spoke has been conserved throughout evolution. The human genes encoding these proteins are candidates for causing primary ciliary dyskinesia, a severe inherited disease involving missing or defective axonemal structures, including the radial spokes.
Collapse
Affiliation(s)
- Pinfen Yang
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Morita M, Takemura A, Nakajima A, Okuno M. Microtubule sliding movement in tilapia sperm flagella axoneme is regulated by Ca2+/calmodulin-dependent protein phosphorylation. ACTA ACUST UNITED AC 2006; 63:459-70. [PMID: 16767745 DOI: 10.1002/cm.20137] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Demembranated euryhaline tilapia Oreochromis mossambicus sperm were reactivated in the presence of concentrations in excess of 10(-6) M Ca(2+). Motility features changed when Ca(2+) concentrations were increased from 10(-6) to 10(-5) M. Although the beat frequency did not increase, the shear angle and wave amplitude of flagellar beating increased, suggesting that the sliding velocity of microtubules in the axoneme, which represents dynein activity, rises with an increase in Ca(2+). Thus, it is possible that Ca(2+) binds to flagellar proteins to activate flagellar motility as a result of the enhanced dynein activity. One Ca(2+)-binding protein (18 kDa, pI 4.0), calmodulin (CaM), was detected by (45)Ca overlay assay and immunologically. A CaM antagonist, W-7, suppressed the reactivation ratio and swimming speed, suggesting that the 18 kDa Ca(2+)-binding protein is CaM and that CaM regulates flagellar motility. CaMKIV was detected immunologically as a single 48 kDa band in both the fraction of low ion extract of the axoneme and the remnant of the axoneme, suggesting that CaMKIV binds to distinct positions in the axoneme. It is possible that CaMKIV phosphorylates the axonemal proteins in a Ca(2+)/CaM-dependent manner for regulating the dynein activity. A (32)P-uptake in the axoneme showed that 48, 75, 120, 200, 250, 380, and 400 kDa proteins were phosphorylated in a Ca(2+)/CaM kinase-dependent manner. Proteins (380 kDa) were phosphorylated in the presence of 10(-5) M Ca(2+). It is possible that an increase in Ca(2+) induces Ca(2+)/CaM kinase-dependent regulation, including protein phosphorylation for activation/regulation of dynein activity in flagellar axoneme.
Collapse
Affiliation(s)
- Masaya Morita
- Department of Chemistry, Biology and Marine Sciences, University of the Ryukyus, Nishihara, Okinawa, Japan.
| | | | | | | |
Collapse
|
80
|
Zhang Z, Kostetskii I, Tang W, Haig-Ladewig L, Sapiro R, Wei Z, Patel AM, Bennett J, Gerton GL, Moss SB, Radice GL, Strauss JF. Deficiency of SPAG16L causes male infertility associated with impaired sperm motility. Biol Reprod 2005; 74:751-9. [PMID: 16382026 DOI: 10.1095/biolreprod.105.049254] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The axonemes of cilia and flagella contain a "9+2" structure of microtubules and associated proteins. Proteins associated with the central doublet pair have been identified in Chlamydomonas that result in motility defects when mutated. The murine orthologue of the Chlamydomonas PF20 gene, sperm-associated antigen 16 (Spag16), encodes two proteins of M(r) approximately 71 x 10(3) (SPAG16L) and M(r) approximately 35 x 10(3) (SPAG16S). In sperm, SPAG16L is found in the central apparatus of the axoneme. To determine the function of SPAG16L, gene targeting was used to generate mice lacking this protein but still expressing SPAG16S. Mutant animals were viable and showed no evidence of hydrocephalus, lateralization defects, sinusitis, bronchial infection, or cystic kidneys-symptoms typically associated with ciliary defects. However, males were infertile with a lower than normal sperm count. The sperm had marked motility defects, even though ultrastructural abnormalities of the axoneme were not evident. In addition, the testes of some nullizygous animals showed a spermatogenetic defect, which consisted of degenerated germ cells in the seminiferous tubules. We conclude that SPAG16L is essential for sperm flagellar function. The sperm defect is consistent with the motility phenotype of the Pf20 mutants of Chlamydomonas, but morphologically different in that the mutant algal axoneme lacks the central apparatus.
Collapse
Affiliation(s)
- Zhibing Zhang
- Center for Research on Reproduction and Women's Health, University of Pennsylvania Medical Center, Philadelphia 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Yang C, Yang P. The flagellar motility of Chlamydomonas pf25 mutant lacking an AKAP-binding protein is overtly sensitive to medium conditions. Mol Biol Cell 2005; 17:227-38. [PMID: 16267272 PMCID: PMC1345661 DOI: 10.1091/mbc.e05-07-0630] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Radial spokes are a conserved axonemal structural complex postulated to regulate the motility of 9 + 2 cilia and flagella via a network of phosphoenzymes and regulatory proteins. Consistently, a Chlamydomonas radial spoke protein, RSP3, has been identified by RII overlays as an A-kinase anchoring protein (AKAP) that localizes the cAMP-dependent protein kinase (PKA) holoenzyme by binding to the RIIa domain of PKA RII subunit. However, the highly conserved docking domain of PKA is also found in the N termini of several AKAP-binding proteins unrelated to PKA as well as a 24-kDa novel spoke protein, RSP11. Here, we report that RSP11 binds to RSP3 directly in vitro and colocalizes with RSP3 toward the spoke base near outer doublets and dynein motors in axonemes. Importantly, RSP11 mutant pf25 displays a spectrum of motility, from paralysis with flaccid or twitching flagella as other spoke mutants to wildtype-like swimming. The wide range of motility changes reversibly depending on the condition of liquid media without replacing defective proteins. We postulate that radial spokes use the RIIa/AKAP module to regulate ciliary and flagellar beating; absence of the spoke RIIa protein exposes a medium-sensitive regulatory mechanism that is not obvious in wild-type Chlamydomonas.
Collapse
Affiliation(s)
- Chun Yang
- Department of Biological Sciences, Marquette University, Milwaukee WI 53233, USA
| | | |
Collapse
|
82
|
Yu YY, Dai G, Pan FY, Chen J, Li CJ. Calmodulin regulates the post-anaphase reposition of centrioles during cytokinesis. Cell Res 2005; 15:548-52. [PMID: 16045818 DOI: 10.1038/sj.cr.7290324] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
A transient postanaphase repositioning of the centriole is found to control the completion of cytokinesis. Using a green fluorescent protein-calmodulin fusion protein as a living cell probe, we have previously found that calmodulin is associated with the initiation and progression of cytokinesis. In this study, we further studied the effect of calmodulin on the repositioning of the centriole and subsequent cell cycle progression. When activity of calmodulin is inhibited, the regression of the centriole from the intercellular bridge to the cell center is blocked, and thus the completion of cell division is repressed and two daughter cells are linked by longer cell bridge in perturbed cells. W7 treatment during cytokinesis also results in unfinished cytokinesis and stopped G1 phase. These results suggest that calmodulin activity is required for centriole repositioning and can affect the completion of cytokinesis and cell cycle progression.
Collapse
Affiliation(s)
- Yue Yue Yu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Sciences, Nanjing Normal University. Nanjing 210097, China
| | | | | | | | | |
Collapse
|
83
|
Wargo MJ, Dymek EE, Smith EF. Calmodulin and PF6 are components of a complex that localizes to the C1 microtubule of the flagellar central apparatus. J Cell Sci 2005; 118:4655-65. [PMID: 16188941 DOI: 10.1242/jcs.02585] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies of flagellar motility in Chlamydomonas mutants lacking specific central apparatus components have supported the hypothesis that the inherent asymmetry of this structure provides important spatial cues for asymmetric regulation of dynein activity. These studies have also suggested that specific projections associated with the C1 and C2 central tubules make unique contributions to modulating motility; yet, we still do not know the identities of most polypeptides associated with the central tubules. To identify components of the C1a projection, we took an immunoprecipitation approach using antibodies generated against PF6. The pf6 mutant lacks the C1a projection and possesses flagella that only twitch; calcium-induced modulation of dynein activity on specific doublet microtubules is also defective in pf6 axonemes. Our antibodies specifically precipitated five polypeptides in addition to PF6. Using mass spectrometry, we determined the amino acid identities of these five polypeptides. Most notably, the PF6-containing complex includes calmodulin. Using antibodies generated against each precipitated polypeptide, we confirmed that these polypeptides comprise a single complex with PF6, and we identified specific binding partners for each member of the complex. The finding of a calmodulin-containing complex as an asymmetrically assembled component of the central apparatus implicates the central apparatus in calcium modulation of flagellar waveform.
Collapse
Affiliation(s)
- Matthew J Wargo
- Dartmouth College, Department of Biological Sciences, 301 Gilman Hall, Hanover, NH 03755, USA
| | | | | |
Collapse
|
84
|
Dymek EE, Lefebvre PA, Smith EF. PF15p is the chlamydomonas homologue of the Katanin p80 subunit and is required for assembly of flagellar central microtubules. EUKARYOTIC CELL 2005; 3:870-9. [PMID: 15302820 PMCID: PMC500881 DOI: 10.1128/ec.3.4.870-879.2004] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Numerous studies have indicated that the central apparatus plays a significant role in regulating flagellar motility, yet little is known about how the central pair of microtubules or their associated projections assemble. Several Chlamydomonas mutants are defective in central apparatus assembly. For example, mutant pf15 cells have paralyzed flagella that completely lack the central pair of microtubules. We have cloned the wild-type PF15 gene and confirmed its identity by rescuing the motility and ultrastructural defects in two pf15 alleles, the original pf15a mutant and a mutant generated by insertional mutagenesis. Database searches using the 798-amino-acid polypeptide predicted from the complete coding sequence indicate that the PF15 gene encodes the Chlamydomonas homologue of the katanin p80 subunit. Katanin was originally identified as a heterodimeric protein with a microtubule-severing activity. These results reveal a novel role for the katanin p80 subunit in the assembly and/or stability of the central pair of flagellar microtubules.
Collapse
Affiliation(s)
- Erin E Dymek
- Department of Biological Sciences, 301 Gilman, Dartmouth College, Hanover, NH 03755, USA
| | | | | |
Collapse
|
85
|
Ignotz GG, Suarez SS. Calcium/Calmodulin and Calmodulin Kinase II Stimulate Hyperactivation in Demembranated Bovine Sperm1. Biol Reprod 2005; 73:519-26. [PMID: 15878888 DOI: 10.1095/biolreprod.105.040733] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Hyperactivated motility is observed among sperm in the mammalian oviduct near the time of ovulation. It is characterized by high-amplitude, asymmetrical flagellar beating and assists sperm in penetrating the cumulus oophorus and zona pellucida. Elevated intracellular Ca2+ is required for the initiation of hyperactivated motility, suggesting that calmodulin (CALM) and Ca2+/CALM-stimulated pathways are involved. A demembranated sperm model was used to investigate the role of CALM in promoting hyperactivation. Ejaculated bovine sperm were demembranated and immobilized by brief exposure to Triton X-100. Motility was restored by addition of reactivation medium containing MgATP and Ca2+, and hyperactivation was observed as free Ca2+ was increased from 50 nM to 1 microM. However, when 2.5 mM Ca2+ was added to the demembranation medium to extract flagellar CALM, motility was not reactivated unless exogenous CALM was readded. The inclusion of anti-CALM IgG in the reactivation medium reduced the proportion hyperactivated in 1 microM Ca2+ to 5%. Neither control IgG, the CALM antagonist W-7, nor a peptide directed against the CALM-binding domain of myosin light chain kinase (MYLK2) inhibited hyperactivation. However, when sperm were reactivated in the presence of CALM kinase II (CAMK2) inhibiting peptides, hyperactivation was reduced by 75%. Furthermore, an inhibitor of CAMK2, KN-93, inhibited hyperactivation without impairing normal motility of intact sperm. CALM and CAMK2 were immunolocalized to the acrosomal region and flagellum. These results indicate that hyperactivation is stimulated by a Ca2+/CALM pathway involving CAMK2.
Collapse
Affiliation(s)
- George G Ignotz
- Department of Biomedical Sciences, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
86
|
Ueyama S, Katsumaru H, Suzaki T, Nakaoka Y. Halteria grandinella: a rapid swimming ciliate with a high frequency of ciliary beating. ACTA ACUST UNITED AC 2005; 60:214-21. [PMID: 15754357 DOI: 10.1002/cm.20056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A ciliated protozoan, Halteria grandinella, swam backward rapidly with a migration distance per second attaining 100 times the cell size. This high swimming velocity was accompanied by a high frequency of ciliary beating. Recordings with a high-speed digital video (10(3) frames/s) revealed that the frequency during forward and backward swimming was, respectively, 105 +/- 10 Hz and 260 +/- 30 Hz. These frequencies are the highest among cilia and flagella reported to date. Electron microscopic observation of the ciliary structure confirmed normal 9 + 2 arrangements of the axoneme except that cilia for migration are bundled into membranelles. Ciliary beating of saponin-treated cells was reactivated by the addition of Mg2+ -ATP, although the beating amplitude was smaller than that of intact cells. Kinetic analysis of the ATP-dependent increase of beating frequency revealed that the maximal frequency in the presence of free Ca2+ and 0.9 microM Ca2+ was approximately 60 and 110 Hz, respectively. A possible mechanism to increase beating frequency with Ca2+ is discussed.
Collapse
Affiliation(s)
- Sumiko Ueyama
- Biophysical Dynamics Laboratories, Graduate School of Frontier Bioscience, Osaka University, Toyonaka, Osaka, Japan
| | | | | | | |
Collapse
|
87
|
Marín-Briggiler CI, Jha KN, Chertihin O, Buffone MG, Herr JC, Vazquez-Levin MH, Visconti PE. Evidence of the presence of calcium/calmodulin-dependent protein kinase IV in human sperm and its involvement in motility regulation. J Cell Sci 2005; 118:2013-22. [PMID: 15840651 DOI: 10.1242/jcs.02326] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The mechanisms involved in the regulation of mammalian sperm motility are not well understood. Calcium ions (Ca(2+)) have been suggested to play a key role in the maintenance of motility; nevertheless, how Ca(2+) modulates this process has not yet been completely characterized. Ca(2+) can bind to calmodulin and this complex regulates the activity of multiple enzymes, including Ca(2+)/calmodulin-dependent protein kinases (CaM kinases). Results from this study confirmed that the presence of Ca(2+) in the incubation medium is essential for maintaining human sperm motility. The involvement of CaM kinases in Ca(2+) regulation of human sperm motility was evaluated using specific inhibitors (KN62 and KN93) or their inactive analogues (KN04 and KN92 respectively). Sperm incubation in the presence of KN62 or KN93 led to a progressive decrease in the percentage of motile cells; in particular, incubation with KN62 also reduced sperm motility parameters. These inhibitors did not alter sperm viability, protein tyrosine phosphorylation or the follicular fluid-induced acrosome reaction; however, KN62 decreased the total amount of ATP in human sperm. Immunological studies showed that Ca(2+)/calmodulin-dependent protein kinase IV (CaMKIV) is present and localizes to the human sperm flagellum. Moreover, CaMKIV activity increases during capacitation and is inhibited in the presence of KN62. This report is the first to demonstrate the presence of CaMKIV in mammalian sperm and suggests the involvement of this kinase in the regulation of human sperm motility.
Collapse
Affiliation(s)
- Clara I Marín-Briggiler
- Instituto de Biología y Medicina Experimental (IBYME) CONICET, Vuelta de Obligado 2490, (1428) Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
88
|
White D, Aghigh S, Magder I, Cosson J, Huitorel P, Gagnon C. Two Anti-radial Spoke Monoclonal Antibodies Inhibit Chlamydomonas Axonemal Motility by Different Mechanisms. J Biol Chem 2005; 280:14803-10. [PMID: 15664983 DOI: 10.1074/jbc.m414114200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the 9 + 2 axoneme, radial spokes are structural components attached to the A-tubules of the nine outer doublet microtubules. They protrude toward the central pair microtubule complex with which they have transient but regular interactions for the normal flagellar motility to occur. Flagella of Chlamydomonas mutants deficient in entire radial spokes or spoke heads are paralyzed. In this study the importance of two radial spoke proteins in the flagellar movement is exemplified by the potent inhibitory action of two monoclonal antibodies on the axonemal motility of demembranated-reactivated Chlamydomonas models. We show that one of these proteins is localized on the stalk of the radial spokes, whereas the other is a component of the head of the same structure and most likely correspond to radial spoke protein 2 and 1, respectively. Fine motility analysis by videomicrography further indicates that these two anti-radial spoke protein antibodies at low concentration affect motility of demembranated-reactivated Chlamydomonas by changing the flagellar waveform without modifying axonemal beat frequency. They also modify wave amplitude differently during motility inhibition. This brings more direct evidence for the involvement of both radial spoke stalk and head in the fine tuning of the waveform during flagellar motility.
Collapse
Affiliation(s)
- Daniel White
- Urology Research Laboratory, McGill University Health Center, Faculty of Medecine, Montréal, Québec H3A 1A1, Canada.
| | | | | | | | | | | |
Collapse
|
89
|
Knippschild U, Gocht A, Wolff S, Huber N, Löhler J, Stöter M. The casein kinase 1 family: participation in multiple cellular processes in eukaryotes. Cell Signal 2005; 17:675-89. [PMID: 15722192 DOI: 10.1016/j.cellsig.2004.12.011] [Citation(s) in RCA: 429] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Revised: 12/22/2004] [Accepted: 12/22/2004] [Indexed: 12/11/2022]
Abstract
Phosphorylation of serine, threonine and tyrosine residues by cellular protein kinases plays an important role in the regulation of various cellular processes. The serine/threonine specific casein kinase 1 and 2 protein kinase families--(CK1 and CK2)--were among the first protein kinases that had been described. In recent years our knowledge of the regulation and function of mammalian CK1 kinase family members has rapidly increased. Extracellular stimuli, the subcellular localization of CK1 isoforms, their interaction with various cellular structures and proteins, as well as autophosphorylation and proteolytic cleavage of their C-terminal regulatory domains influence CK1 kinase activity. Mammalian CK1 isoforms phosphorylate many different substrates among them key regulatory proteins involved in the control of cell differentiation, proliferation, chromosome segregation and circadian rhythms. Deregulation and/or the incidence of mutations in the coding sequence of CK1 isoforms have been linked to neurodegenerative diseases and cancer. This review will summarize our current knowledge about the function and regulation of mammalian CK1 isoforms.
Collapse
Affiliation(s)
- Uwe Knippschild
- Department of Visceral and Transplantation Surgery, University of Ulm, Steinhövelstr. 9, 89075 Ulm, Germany.
| | | | | | | | | | | |
Collapse
|
90
|
|
91
|
Husser MR, Hardt M, Blanchard MP, Hentschel J, Klauke N, Plattner H. One-way calcium spill-over during signal transduction in Paramecium cells: from the cell cortex into cilia, but not in the reverse direction. Cell Calcium 2004; 36:349-58. [PMID: 15451619 DOI: 10.1016/j.ceca.2004.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2003] [Revised: 01/23/2004] [Accepted: 02/03/2004] [Indexed: 10/26/2022]
Abstract
We asked to what extent Ca(2+) signals in two different domains of Paramecium cells remain separated during different stimulations. Wild-type (7S) and pawn cells (strain d4-500r, without ciliary voltage-dependent Ca(2+)-channels) were stimulated for trichocyst exocytosis within 80 ms by quenched-flow preparation and analysed by energy-dispersive X-ray microanalysis (EDX), paralleled by fast confocal fluorochrome analysis. We also analysed depolarisation-dependent calcium signalling during ciliary beat rerversal, also by EDX, after 80-ms stimulation in the quenched-flow mode. EDX and fluorochrome analysis enable to register total and free intracellular calcium concentrations, [Ca] and [Ca(2+)], respectively. After exocytosis stimulation we find by both methods that the calcium signal sweeps into the basis of cilia, not only in 7S but also in pawn cells which then also perform ciliary reversal. After depolarisation we see an increase of [Ca] along cilia selectively in 7S, but not in pawn cells. Opposite to exocytosis stimulation, during depolarisation no calcium spill-over into the nearby cytosol and no exocytosis occurs. In sum, we conclude that cilia must contain a very potent Ca(2+) buffering system and that ciliary reversal induction, much more than exocytosis stimulation, involves strict microdomain regulation of Ca(2+) signals.
Collapse
Affiliation(s)
- Marc R Husser
- Department of Biology, University of Konstanz, P.O. Box 5560, 78457 Konstanz, Germany
| | | | | | | | | | | |
Collapse
|
92
|
Yang P, Yang C, Sale WS. Flagellar radial spoke protein 2 is a calmodulin binding protein required for motility in Chlamydomonas reinhardtii. EUKARYOTIC CELL 2004; 3:72-81. [PMID: 14871938 PMCID: PMC329519 DOI: 10.1128/ec.3.1.72-81.2004] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Genetic and morphological studies have revealed that the radial spokes regulate ciliary and flagellar bending. Functional and biochemical analysis and the discovery of calmodulin in the radial spokes suggest that the regulatory mechanism involves control of axonemal protein phosphorylation and calcium binding to spoke proteins. To identify potential regulatory proteins in the radial spoke, in-gel kinase assays were performed on isolated axonemes and radial spoke fractions. The results indicated that radial spoke protein 2 (RSP2) can bind ATP and transfer phosphate in vitro. RSP2 was cloned and mapped to the PF24 locus, a gene required for motility. Sequencing revealed that pf24 contains a point mutation converting the first ATG to ATA, resulting in only trace amounts of RSP2 and confirming the RSP2 mapping. Surprisingly, the sequence does not include signature domains for conventional kinases, indicating that RSP2 may not perform as a protein kinase in vivo. However, the predicted RSP2 protein sequence contains Ca2+-dependent calmodulin binding motifs and a GAF domain, a domain found in diverse signaling proteins for binding small ligands including cyclic nucleotides. As predicted from the sequence, recombinant RSP2 binds calmodulin in a calcium-dependent manner. We postulate that RSP2 is a regulatory subunit of the radial spoke involved in localization of calmodulin for control of motility.
Collapse
Affiliation(s)
- Pinfen Yang
- Department of Biology, Marquette University, Milwaukee, Wisconsin 53233, USA
| | | | | |
Collapse
|
93
|
Mitchell BF, Grulich LE, Mader MM. Flagellar quiescence in Chlamydomonas: Characterization and defective quiescence in cells carrying sup-pf-1 and sup-pf-2 outer dynein arm mutations. ACTA ACUST UNITED AC 2004; 57:186-96. [PMID: 14743351 DOI: 10.1002/cm.10166] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chlamydomonas reinhardtii can use their flagella for two distinct types of movement: swimming through liquid or gliding on a solid substrate. Cells switching from swimming to gliding motility undergo a reversible flagellar quiescence. This phenomenon appears to involve the outer dynein arms, since mutants having altered outer arm beta and gamma dyneins (sup-pf-1 and sup-pf-2) show a diminished ability to quiesce. Sup-pf-1 and sup-pf-2 were originally isolated as gain-of-function mutations that suppress the flagellar paralysis resulting from radial spoke or central pair defects. Defective quiescence is also a gain-of-function phenomenon, as cells completely lacking outer arm heavy chains show a normal quiescence phenotype. These data suggest that regulation of outer arm dynein activity is essential for flagellar quiescence and furthermore that regulation of quiescence involves a signal transduction pathway that shares elements with the radial spoke/central pair system.
Collapse
|
94
|
Smith EF, Yang P. The radial spokes and central apparatus: mechano-chemical transducers that regulate flagellar motility. ACTA ACUST UNITED AC 2004; 57:8-17. [PMID: 14648553 PMCID: PMC1950942 DOI: 10.1002/cm.10155] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Elizabeth F Smith
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA.
| | | |
Collapse
|
95
|
Zhang H, Mitchell DR. Cpc1, a Chlamydomonas central pair protein with an adenylate kinase domain. J Cell Sci 2004; 117:4179-88. [PMID: 15292403 PMCID: PMC1525021 DOI: 10.1242/jcs.01297] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutations at CPC1 disrupt assembly of a central pair microtubule-associated complex and alter flagellar beat frequency in Chlamydomonas. Sequences of wild-type genomic clones that complement cpc1, and of corresponding cDNAs, reveal the gene product to be a 205 kDa protein with two predicted functional domains, a single EF hand motif near the C-terminus and an unusual centrally located adenylate kinase domain. Homologs are expressed in mammals (testis and tracheal cilia) as well as ciliated lower eukaryotes. Western blots confirm that Cpc1 is one of six subunits in a 16S central pair-associated complex. Motility defects associated with cpc1 alleles in vivo are partially rescued in vitro by reactivation of axonemes or cell models in saturating concentrations of ATP; thus the Cpc1 complex is essential for maintaining normal ATP concentrations in the flagellum.
Collapse
Affiliation(s)
| | - David R. Mitchell
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| |
Collapse
|
96
|
Patel-King RS, Gorbatyuk O, Takebe S, King SM. Flagellar radial spokes contain a Ca2+-stimulated nucleoside diphosphate kinase. Mol Biol Cell 2004; 15:3891-902. [PMID: 15194815 PMCID: PMC491844 DOI: 10.1091/mbc.e04-04-0352] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The radial spokes are required for Ca(2+)-initiated intraflagellar signaling, resulting in modulation of inner and outer arm dynein activity. However, the mechanochemical properties of this signaling pathway remain unknown. Here, we describe a novel nucleoside diphosphate kinase (NDK) from the Chlamydomonas flagellum. This protein (termed p61 or RSP23) consists of an N-terminal catalytic NDK domain followed by a repetitive region that includes three IQ motifs and a highly acidic C-terminal segment. We find that p61 is missing in axonemes derived from the mutants pf14 (lacks radial spokes) and pf24 (lacks the spoke head and several stalk components) but not in those from pf17 (lacking only the spoke head). The p61 protein can be extracted from oda1 (lacks outer dynein arms) and pf17 axonemes with 0.5 M KI, and copurifies with radial spokes in sucrose density gradients. Furthermore, p61 contains two classes of calmodulin binding site: IQ1 interacts with calmodulin-Sepharose beads in a Ca(2+)-independent manner, whereas IQ2 and IQ3 show Ca(2+)-sensitive associations. Wild-type axonemes exhibit two distinct NDKase activities, at least one of which is stimulated by Ca(2+). This Ca(2+)-responsive enzyme, which accounts for approximately 45% of total axonemal NDKase, is missing from pf14 axonemes. We found that purified radial spokes also exhibit NDKase activity. Thus, we conclude that p61 is an integral component of the radial spoke stalk that binds calmodulin and exhibits Ca(2+)-controlled NDKase activity. These observations suggest that nucleotides other than ATP may play an important role in the signal transduction pathway that underlies the regulatory mechanism defined by the radial spokes.
Collapse
Affiliation(s)
- Ramila S Patel-King
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, Connecticut 06030-3305, USA
| | | | | | | |
Collapse
|
97
|
Wargo MJ, McPeek MA, Smith EF. Analysis of microtubule sliding patterns in Chlamydomonas flagellar axonemes reveals dynein activity on specific doublet microtubules. J Cell Sci 2004; 117:2533-44. [PMID: 15128866 DOI: 10.1242/jcs.01082] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Generating the complex waveforms characteristic of beating eukaryotic cilia and flagella requires spatial regulation of dynein-driven microtubule sliding. To generate bending, one prediction is that dynein arms alternate between active and inactive forms on specific subsets of doublet microtubules. Using an in vitro microtubule sliding assay combined with a structural approach, we determined that ATP induces sliding between specific subsets of doublet microtubules, apparently capturing one phase of the beat cycle. These studies were also conducted using high Ca2+ conditions. In Chlamydomonas, high Ca2+ induces changes in waveform which are predicted to result from regulating dynein activity on specific microtubules. Our results demonstrate that microtubule sliding in high Ca2+ buffer is also induced by dynein arms on specific doublets. However, the pattern of microtubule sliding in high Ca2+ buffer significantly differs from that in low Ca2+. These results are consistent with a 'switching hypothesis' of axonemal bending and provide evidence to indicate that Ca2+ control of waveform includes modulation of the pattern of microtubule sliding between specific doublets. In addition, analysis of microtubule sliding in mutant axonemes reveals that the control mechanism is disrupted in some mutants.
Collapse
Affiliation(s)
- Matthew J Wargo
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | | | | |
Collapse
|
98
|
Sakato M, King SM. Design and regulation of the AAA+ microtubule motor dynein. J Struct Biol 2004; 146:58-71. [PMID: 15037237 DOI: 10.1016/j.jsb.2003.09.026] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2003] [Revised: 09/22/2003] [Indexed: 11/19/2022]
Abstract
Dyneins are highly complex molecular motors that transport their attached cargo towards the minus end of microtubules. These enzymes are required for many essential motile activities within the cytoplasm and also power eukaryotic cilia and flagella. Each dynein contains one or more heavy chain motor units that consist of an N-terminal stem domain that is involved in cargo attachment, and six AAA+ domains (AAA1-6) plus a C-terminal globular segment that are arranged in a heptameric ring. At least one AAA+ domain (AAA1) is capable of ATP binding and hydrolysis, and the available data suggest that one or more additional domains also may bind nucleotide. The ATP-sensitive microtubule binding site is located at the tip of a 10nm coiled coil stalk that emanates from between AAA4 and AAA5. The function of this motor both in the cytoplasm and the flagellum must be tightly regulated in order to result in useful work. Consequently, dyneins also contain a series of additional components that serve to define the cargo-binding properties of the enzyme and which act as sensors to transmit regulatory inputs to the motor units. Here we describe the two basic dynein designs and detail the various regulatory systems that impinge on this motor within the eukaryotic flagellum.
Collapse
Affiliation(s)
- Miho Sakato
- Department of Biochemistry, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3305, USA
| | | |
Collapse
|
99
|
Abstract
Primary ciliary dyskinesia (PCD) is a phenotypically and genetically heterogeneous condition in which three genetic mutations have already been identified. The primary defect is in the ultrastructure or function of cilia, highly complex organelles that are structurally related to the flagella of sperm and protozoa. The clinical features of PCD include recurrent sinopulmonary infections, subfertility and laterality defects; the latter due to ciliary dysfunction at the embryological node. Completion of the human genome sequence has accelerated the identification and characterisation of disease genes, and the current molecular strategy in PCD includes candidate gene analysis, positional cloning, model organism analysis and proteomic analysis. The identification of these genes will provide new insights into the molecular mechanisms involved in the assembly and function of cilia and the pathway that determines left-right axis in man. This may also allow the development of new methods for diagnosis, prevention and treatment of PCD.
Collapse
Affiliation(s)
- R Chodhari
- Department of Paediatrics and Child Health, Royal Free and University College Medical School, Bloomsbury Campus, Rayne Building, 5 University Street, WC1 E 6JJ, UK
| | | | | |
Collapse
|
100
|
Adamíková L, Straube A, Schulz I, Steinberg G. Calcium signaling is involved in dynein-dependent microtubule organization. Mol Biol Cell 2004; 15:1969-80. [PMID: 14742707 PMCID: PMC379291 DOI: 10.1091/mbc.e03-09-0675] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The microtubule cytoskeleton supports cellular morphogenesis and polar growth, but the underlying mechanisms are not understood. In a screen for morphology mutants defective in microtubule organization in the fungus Ustilago maydis, we identified eca1 that encodes a sarcoplasmic/endoplasmic calcium ATPase. Eca1 resides in the endoplasmic reticulum and restores growth of a yeast mutant defective in calcium homeostasis. Deletion of eca1 resulted in elevated cytosolic calcium levels and a severe growth and morphology defect. While F-actin and myosin V distribution is unaffected, Deltaeca1 mutants contain longer and disorganized microtubules that show increased rescue and reduced catastrophe frequencies. Morphology can be restored by inhibition of Ca(2+)/calmodulin-dependent kinases or destabilizing microtubules, indicating that calcium-dependent alterations in dynamic instability are a major cause of the growth defect. Interestingly, dynein mutants show virtually identical changes in microtubule dynamics and dynein-dependent ER motility was drastically decreased in Deltaeca1. This indicates a connection between calcium signaling, dynein, and microtubule organization in morphogenesis of U. maydis.
Collapse
Affiliation(s)
- L'ubica Adamíková
- Max-Planck-Institut für terrestrische Mikrobiologie, Karl-von-Frisch-Strabetae, D-35043 Marburg, Germany
| | | | | | | |
Collapse
|