51
|
Morgan D, Gardner AL, Brock A. Lineage Tracing Reveals Clone-Specific Responses to Doxorubicin in Triple-Negative Breast Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.18.643980. [PMID: 40166195 PMCID: PMC11956957 DOI: 10.1101/2025.03.18.643980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Triple-negative breast cancer, characterized by aggressive growth and high intratumor heterogeneity, presents a significant clinical challenge. Here, we use a lineage-tracing system, ClonMapper, which couples heritable clonal identifying tags with single-cell RNA-sequencing (scRNA-seq), to better elucidate the response to doxorubicin in a model of TNBC. We demonstrate that, while there is a dose-dependent reduction in overall clonal diversity, there is no pre-existing resistance signature among surviving clones. Separately, we found the existence of two transcriptomically distinct clonal subpopulations that remain through the course of treatment. Among clones persisting across multiple samples we identified divergent phenotypes, suggesting a response to treament independent of clonal identity. Finally, a subset of clones harbor novel changes in expression following treatment. The clone and sample specific responses to treatment identified herein highlight the need for better personalized treatment strategies to overcome tumor heterogeneity.
Collapse
Affiliation(s)
- Daylin Morgan
- Department of Biomedical Engineering, the University of Texas at Austin, Austin, TX, USA
| | - Andrea L. Gardner
- Department of Biomedical Engineering, the University of Texas at Austin, Austin, TX, USA
| | - Amy Brock
- Department of Biomedical Engineering, the University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
52
|
Liu D, Ames C, Khader S, Rapaport F. SciLinker: a large-scale text mining framework for mapping associations among biological entities. Front Artif Intell 2025; 8:1528562. [PMID: 40212086 PMCID: PMC11983328 DOI: 10.3389/frai.2025.1528562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/27/2025] [Indexed: 04/13/2025] Open
Abstract
Introduction The biomedical literature is the go-to source of information regarding relationships between biological entities, including genes, diseases, cell types, and drugs, but the rapid pace of publication makes an exhaustive manual exploration impossible. In order to efficiently explore an up-to-date repository of millions of abstracts, we constructed an efficient and modular natural language processing pipeline and applied it to the entire PubMed abstract corpora. Methods We developed SciLinker using open-source libraries and pre-trained named entity recognition models to identify human genes, diseases, cell types and drugs, normalizing these biological entities to the Unified Medical Language System (UMLS). We implemented a scoring schema to quantify the statistical significance of entity co-occurrences and applied a fine-tuned PubMedBERT model for gene-disease relationship extraction. Results We identified and analyzed over 30 million association sentences, including more than 11 million gene-disease co-occurrence sentences, revealing more than 1.25 million unique gene-disease associations. We demonstrate SciLinker's ability to extract specific gene-disease relationships using osteoporosis as a case study. We show how such an analysis benefits target identification as clinically validated targets are enriched in SciLinker-derived disease-associated genes. Moreover, this co-occurrence data can be used to construct disease-specific networks, providing insights into significant relationships among biological entities from scientific literature. Conclusion SciLinker represents a novel text mining approach that extracts and quantifies associations between biomedical entities through co-occurrence analysis and relationship extraction from PubMed abstracts. Its modular design enables expansion to additional entities and text corpora, making it a versatile tool for transforming unstructured biomedical data into actionable insights for drug discovery.
Collapse
Affiliation(s)
| | | | | | - Franck Rapaport
- Target, Disease and Systems Biology, Cambridge, MA, United States
| |
Collapse
|
53
|
Midani FS, Danhof HA, Mathew N, Ardis CK, Garey KW, Spinler JK, Britton RA. Emerging Clostridioides difficile ribotypes have divergent metabolic phenotypes. mSystems 2025; 10:e0107524. [PMID: 40013784 PMCID: PMC11915817 DOI: 10.1128/msystems.01075-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 02/06/2025] [Indexed: 02/28/2025] Open
Abstract
Clostridioides difficile is a gram-positive spore-forming pathogen that commonly causes diarrheal infections in the developed world. Although C. difficile is a genetically diverse species, certain ribotypes are overrepresented in human infections, and it is unclear if metabolic adaptations are essential for the emergence of these epidemic ribotypes. To identify ribotype-specific metabolic differences, we therefore tested carbon substrate utilization by 88 C. difficile isolates and looked for differences in growth between 22 ribotypes. As expected, C. difficile was capable of growing on a variety of carbon substrates. Further, C. difficile strains clustered by phylogenetic relationship and displayed ribotype-specific and clade-specific metabolic capabilities. Surprisingly, we observed that two emerging lineages, ribotypes 023 and 255, have divergent metabolic phenotypes. In addition, although C. difficile Clade 5 is the most evolutionary distant clade and often detected in animals, it displayed robust growth on simple sugars similar to Clades 1-4. Altogether, our results corroborate the generalist metabolic strategy of C. difficile but also demonstrate lineage-specific metabolic capabilities.IMPORTANCEThe gut pathogen Clostridioides difficile utilizes a wide range of carbon sources. Microbial communities can be rationally designed to combat C. difficile by depleting its preferred nutrients in the gut. However, C. difficile is genetically diverse with hundreds of identified ribotypes, and most of its metabolic studies were performed with lab-adapted strains. To identify ribotype-specific metabolic differences, we profiled carbon metabolism by a myriad of C. difficile clinical isolates. While the metabolic capabilities of these isolates clustered by their genetic lineage, we observed surprising metabolic divergence between two emerging lineages. We also found that genetically newer and older clades grew to a similar level on simple sugars, which contrasts with recent findings that newer clades experienced positive selection on genes involved in simple sugar metabolism. Altogether, our results underscore the importance of considering the metabolic diversity of pathogens in the study of their evolution and the rational design of therapeutic interventions.
Collapse
Affiliation(s)
- Firas S. Midani
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Heather A. Danhof
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Nathanael Mathew
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Colleen K. Ardis
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Kevin W. Garey
- Department of Pharmacy Practice and Translational Research, University of Houston, Houston, Texas, USA
| | - Jennifer K. Spinler
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
| | - Robert A. Britton
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
54
|
Liu YH, Chung MT, Lin HC, Lee TA, Cheng YJ, Huang CC, Wu HM, Tung YC. Shaping early neural development by timed elevated tissue oxygen tension: Insights from multiomic analysis on human cerebral organoids. SCIENCE ADVANCES 2025; 11:eado1164. [PMID: 40073136 PMCID: PMC11900884 DOI: 10.1126/sciadv.ado1164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 02/05/2025] [Indexed: 03/14/2025]
Abstract
Oxygen plays a critical role in early neural development in brains, particularly before establishment of complete vasculature; however, it has seldom been investigated due to technical limitations. This study uses an in vitro human cerebral organoid model with multiomic analysis, integrating advanced microscopies and single-cell RNA sequencing, to monitor tissue oxygen tension during neural development. Results reveal a key period between weeks 4 and 6 with elevated intra-organoid oxygen tension, altered energy homeostasis, and rapid neurogenesis within the organoids. The timed oxygen tension elevation can be suppressed by hypoxia treatment or silencing of neuroglobin gene. This study provides insights into the role of oxygen in early neurogenesis from functional, genotypic, phenotypic, and proteomic aspects. These findings highlight the significance of the timed tissue oxygen tension elevation in neurogenesis and provide insights into the role of neuroglobin in neural development, with potential implications for understanding neurodegenerative diseases and therapeutic strategies.
Collapse
Affiliation(s)
- Yuan-Hsuan Liu
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Meng-Ting Chung
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Hsi-Chieh Lin
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Tse-Ang Lee
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Ya-Jen Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, Taiwan
| | | | - Hsiao-Mei Wu
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
- Department of Biomechatronics Engineering, National Taiwan University, Taipei, Taiwan
| | - Yi-Chung Tung
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
55
|
Wang C, Zeng Z, Wang T, Xie Z, Zhang J, Dong W, Zhang F, Peng W. Unraveling the spatial and signaling dynamics and splicing kinetics of immune infiltration in osteoarthritis synovium. Front Immunol 2025; 16:1521038. [PMID: 40181977 PMCID: PMC11966058 DOI: 10.3389/fimmu.2025.1521038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/19/2025] [Indexed: 04/05/2025] Open
Abstract
Introduction Osteoarthritis (OA), a debilitating joint disorder characterized by synovial inflammation and immune myeloid cell infiltration, currently lacks a comprehensive spatial and transcriptional atlas. This study investigates the spatial dynamics, splicing kinetics, and signaling pathways that drive immune infiltration in OA synovium. Methods We integrated single-cell RNA sequencing (scRNA-seq) data from 8 OA and 4 healthy synovial samples with spatial transcriptomics using Spatrio. Spatial transition tensor (STT) analysis decoded multistable spatial homeostasis, while splicing kinetics and non-negative matrix factorization (NMF) identified gene modules. CellPhoneDB and pyLIGER mapped ligand-receptor interactions and transcriptional networks. Results Re-annotation of scRNA-seq data resolved synovial cells into 27 subclasses. Spatial analysis revealed OA-specific attractors (8 in OA vs. 6 in healthy samples), including immune myeloid (Attractor3) and lymphoid infiltration (Attractor4). Key genes OLR1 (myeloid homeostasis) and CD69 (T-cell activation) exhibited dysregulated splicing kinetics, driving inflammatory pathways. Myeloid-specific transcription factors (SPI1, MAF, NFKB1) and lymphoid-associated BCL11B were identified as regulators. Computational drug prediction nominated ZILEUTON as a potential inhibitor of ALXN5 to mitigate myeloid infiltration. Discussion This study delineates the spatial and transcriptional landscape of OA synovium, linking immune cell dynamics to localized inflammation. The identification of OLR1 and CD69 as spatial homeostasis drivers, alongside dysregulated signaling networks, offers novel therapeutic targets. These findings advance strategies to modulate immune infiltration and restore synovial homeostasis in OA.
Collapse
Affiliation(s)
- Chuan Wang
- Emergency Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zevar Zeng
- School of Life Sciences, Sun-Yat-sen University, Guangzhou, China
| | - Tao Wang
- Emergency Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zhihong Xie
- Emergency Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jian Zhang
- Emergency Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wentao Dong
- Emergency Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Fei Zhang
- Emergency Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wuxun Peng
- Emergency Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
56
|
Li Z, Zhang M, Zhang Y, Gan Y, Zhu Z, Wang J, Zhou Y, Yu G, Wang L. Integrative analysis of gene expression and chromatin dynamics multi-omics data in mouse models of bleomycin-induced lung fibrosis. Epigenetics Chromatin 2025; 18:11. [PMID: 40069909 PMCID: PMC11900494 DOI: 10.1186/s13072-025-00579-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 03/01/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Pulmonary fibrosis is a relentless and ultimately fatal lung disorder. Despite a wealth of research, the intricate molecular pathways that contribute to the onset of PF, especially the aspects related to epigenetic modifications and chromatin dynamics, continue to be elusive and not fully understood. METHODS Utilizing a bleomycin-induced pulmonary fibrosis model, we conducted a comprehensive analysis of the interplay between chromatin structure, chromatin accessibility, gene expression patterns, and cellular heterogeneity. Our chromatin structure analysis included 5 samples (2 control and 3 bleomycin-treated), while accessibility and expression analysis included 6 samples each (3 control and 3 bleomycin-treated). RESULTS We found that chromatin architecture, with its alterations in compartmentalization and accessibility, is positively correlated with genome-wide gene expression changes during fibrosis. The importance of immune system inflammation and extracellular matrix reorganization in fibrosis is underscored by these chromatin alterations. Transcription factors such as PU.1, AP-1, and IRF proteins, which are pivotal in immune regulation, are associated with an increased abundance of their motifs in accessible genomic regions and are correlated with highly expressed genes. CONCLUSIONS We identified 14 genes that demonstrated consistent changes in their expression, accessibility, and compartmentalization, suggesting their potential as promising targets for the development of treatments for lung fibrosis.
Collapse
Affiliation(s)
- Zhongzheng Li
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, 46 Jianshe Road, Xinxiang, Henan, 453007, China
| | - Mengke Zhang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, 46 Jianshe Road, Xinxiang, Henan, 453007, China
| | - Yujie Zhang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, 46 Jianshe Road, Xinxiang, Henan, 453007, China
| | - Yulong Gan
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, 46 Jianshe Road, Xinxiang, Henan, 453007, China
| | - Zhao Zhu
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, 46 Jianshe Road, Xinxiang, Henan, 453007, China
| | - Jiawei Wang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, 46 Jianshe Road, Xinxiang, Henan, 453007, China
| | - Yanlin Zhou
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, 46 Jianshe Road, Xinxiang, Henan, 453007, China
| | - Guoying Yu
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, 46 Jianshe Road, Xinxiang, Henan, 453007, China.
| | - Lan Wang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, 46 Jianshe Road, Xinxiang, Henan, 453007, China.
| |
Collapse
|
57
|
Mujal AM, Owyong M, Santosa EK, Sauter JC, Grassmann S, Pedde AM, Meiser P, Wingert CK, Pujol M, Buchholz VR, Lau CM, Böttcher JP, Sun JC. Splenic TNF-α signaling potentiates the innate-to-adaptive transition of antiviral NK cells. Immunity 2025; 58:585-600.e6. [PMID: 40023159 DOI: 10.1016/j.immuni.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/29/2024] [Accepted: 02/07/2025] [Indexed: 03/04/2025]
Abstract
Natural killer (NK) cells possess both innate and adaptive features. Here, we investigated NK cell activation across tissues during cytomegalovirus infection, which generates antigen-specific clonal expansion and long-lived memory responses. Longitudinal tracking and single-cell RNA sequencing of NK cells following infection revealed enhanced activation in the spleen, as well as early formation of a CD69lo precursor population that preferentially gave rise to adaptive NK cells. Splenic NK cells demonstrated heightened tumor necrosis factor alpha (TNF-α) signaling and increased expression of the receptor TNFR2, which coincided with elevated TNF-α production by splenic myeloid cells. TNFR2-deficient NK cells exhibited impaired interferon gamma (IFN-γ) production and expansion. TNFR2 signaling engaged two distinct nuclear factor κB (NF-κB) signaling arms-innate effector NK cell responses required canonical NF-κB signaling, whereas non-canonical NF-κB signaling enforced differentiation of CD69lo adaptive NK cell precursors. Thus, NK cell priming in the spleen during viral infection promotes an innate-to-adaptive transition, providing insight into avenues for generating adaptive NK cell immunity across diverse settings.
Collapse
MESH Headings
- Killer Cells, Natural/immunology
- Animals
- Mice
- Signal Transduction/immunology
- Spleen/immunology
- Immunity, Innate
- Tumor Necrosis Factor-alpha/metabolism
- Tumor Necrosis Factor-alpha/immunology
- NF-kappa B/metabolism
- Adaptive Immunity
- Mice, Inbred C57BL
- Lymphocyte Activation/immunology
- Cytomegalovirus Infections/immunology
- Mice, Knockout
- Receptors, Tumor Necrosis Factor, Type II/metabolism
- Receptors, Tumor Necrosis Factor, Type II/genetics
- Interferon-gamma/metabolism
- Muromegalovirus/immunology
- Antigens, Differentiation, T-Lymphocyte
- Antigens, CD
- Lectins, C-Type
Collapse
Affiliation(s)
- Adriana M Mujal
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Mark Owyong
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY, USA
| | - Endi K Santosa
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY, USA
| | - John C Sauter
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Simon Grassmann
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anna-Marie Pedde
- Department of Experimental Immunology, Institute of Immunology, University of Tübingen, Tübingen, Germany; M3 Research Center, University Hospital Tübingen, University of Tübingen, Tübingen, Germany; Institute of Molecular Immunology, TUM University Hospital, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Philippa Meiser
- Institute of Molecular Immunology, TUM University Hospital, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Claire K Wingert
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marine Pujol
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Veit R Buchholz
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Colleen M Lau
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jan P Böttcher
- Department of Experimental Immunology, Institute of Immunology, University of Tübingen, Tübingen, Germany; M3 Research Center, University Hospital Tübingen, University of Tübingen, Tübingen, Germany; Institute of Molecular Immunology, TUM University Hospital, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
58
|
Neuwirth T, Malzl D, Knapp K, Tsokkou P, Kleissl L, Gabriel A, Reininger B, Freystätter C, Marella N, Kutschat AP, Ponweiser E, Haschemi A, Seruggia D, Menche J, Wagner EF, Stary G. The polyamine-regulating enzyme SSAT1 impairs tissue regulatory T cell function in chronic cutaneous inflammation. Immunity 2025; 58:632-647.e12. [PMID: 40023161 DOI: 10.1016/j.immuni.2025.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 11/08/2024] [Accepted: 02/06/2025] [Indexed: 03/04/2025]
Abstract
Regulatory T (Treg) cells are a critical immune component guarding against excessive inflammation. Treg cell dysfunction can lead to chronic inflammatory diseases with current therapies aimed at inhibiting effector T cells rather than rescuing Treg cell function. We utilized single-cell RNAsequencing data from patients with chronic inflammation to identify SAT1, the gene encoding spermidine/spermine N1-acetyltransferase (SSAT), as a driver of skin-resident Treg cell dysfunction. CRISPRa-driven SAT1 expression in human skin-derived Treg cells impaired their suppressive function and induced a pro-inflammatory phenotype. During cutaneous type-17 inflammation, keratinocyte 4-1BBL induces SAT1 on Treg cells. In a mouse model of psoriasis, pharmacological inhibition of SSAT rescued Treg cell number and function. Together, these data show that SAT1 expression has severe functional consequences on Treg cells and suggest a therapeutic target to treat chronic inflammatory disease.
Collapse
Affiliation(s)
- Teresa Neuwirth
- Department of Dermatology, Medical University of Vienna, Vienna, Austria; CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences, Vienna, Austria
| | - Daniel Malzl
- CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences, Vienna, Austria; Max Perutz Labs, Department of Structural and Computational Biology, University of Vienna, Vienna, Austria; Center for Molecular Biology, Department of Structural and Computational Biology, University of Vienna, Vienna, Austria
| | - Katja Knapp
- Department of Dermatology, Medical University of Vienna, Vienna, Austria; CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences, Vienna, Austria
| | - Panagiota Tsokkou
- Department of Dermatology, Medical University of Vienna, Vienna, Austria; Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Lisa Kleissl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria; CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences, Vienna, Austria
| | - Anna Gabriel
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Baerbel Reininger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Christian Freystätter
- Department of Plastic and Reconstructive Surgery, Medical University of Vienna, Vienna, Austria
| | - Nara Marella
- CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences, Vienna, Austria
| | - Ana P Kutschat
- CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences, Vienna, Austria; St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Elisabeth Ponweiser
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Arvand Haschemi
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Davide Seruggia
- CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences, Vienna, Austria; St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Jörg Menche
- CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences, Vienna, Austria; Max Perutz Labs, Department of Structural and Computational Biology, University of Vienna, Vienna, Austria; Center for Molecular Biology, Department of Structural and Computational Biology, University of Vienna, Vienna, Austria; Faculty of Mathematics, University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Network Medicine at the University of Vienna, Vienna, Austria
| | - Erwin F Wagner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria; Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Vienna, Austria; CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences, Vienna, Austria; Christian Doppler Laboratory for Chronic Inflammatory Skin Diseases, Vienna, Austria.
| |
Collapse
|
59
|
Olaloye O, Gu W, Gehlhaar A, Sabuwala B, Eke CK, Li Y, Kehoe T, Farmer R, Gabernet G, Lucas CL, Tsang JS, Lakhani SA, Taylor SN, Tseng G, Kleinstein SH, Konnikova L. A single-cell atlas of circulating immune cells over the first 2 months of age in extremely premature infants. Sci Transl Med 2025; 17:eadr0942. [PMID: 40043141 DOI: 10.1126/scitranslmed.adr0942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/04/2024] [Accepted: 02/13/2025] [Indexed: 04/02/2025]
Abstract
Extremely premature infants (EPIs) who are born before 30 weeks of gestation are susceptible to infection; however, the trajectory of their peripheral immunity is poorly understood. Here, we undertook longitudinal analyses of immune cells from 250 μl of whole blood at 1 week, 1 month, and 2 months from 10 EPIs and compared these with samples from healthy adults and with preterm and full-term cord blood samples. Single-cell suspensions from individual samples were split to perform single-cell RNA sequencing, T and B cell receptor sequencing, and phosphoprotein mass cytometry. The trajectories of circulating T, B, myeloid, and natural killer cells in EPIs over the first 2 months of life were distinct from those of full-term infants. In EPIs, peripheral T cell development rapidly progressed over the first month of life, with an increase in the proportion of naïve CD4+, regulatory, and cycling T cells, accompanied by greater STAT5 (signal transducer and activator of transcription 5) signaling. EPI memory CD4+ T cells showed a T helper 1 (TH1) predominance compared with TH2 skewing of central memory-like T cells in full-term infants, and B cells from 2-month-old EPIs exhibited increased signatures of activation and differentiation. Both B and T cells from 2-month-old EPIs displayed increased interferon signatures compared with cells from full-term infants. In conclusion, we demonstrated the feasibility of longitudinal multiomic analyses in EPIs using minute amounts of blood and developed a resource describing peripheral immune development in EPIs that suggested ongoing activation in early life.
Collapse
Affiliation(s)
| | - Weihong Gu
- Department of Pediatrics, Yale Medical School, New Haven, CT 06520, USA
| | - Arne Gehlhaar
- Department of Pediatrics, Yale Medical School, New Haven, CT 06520, USA
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford, Oxford OX3 7L3, UK
- Medizinische Fakultät Heidelberg, Heidelberg University, 69117 Heidelberg, Germany
| | - Burhanuddin Sabuwala
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
- Program in Computational Biology and Bioinformatics, Yale School of Medicine, New Haven, CT 06520, USA
| | - Chino K Eke
- Department of Pediatrics, Yale Medical School, New Haven, CT 06520, USA
| | - Yujia Li
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Tessa Kehoe
- Department of Pediatrics, Yale Medical School, New Haven, CT 06520, USA
| | - Rohit Farmer
- NIH Center for Human Immunology, Inflammation, and Autoimmunity, NIAID, NIH, Bethesda, MD 20852, USA
| | - Gisela Gabernet
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Carrie L Lucas
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - John S Tsang
- Program in Computational Biology and Bioinformatics, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
- Center for Systems and Engineering Immunology, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Biomedical Engineering, Yale School of Medicine, New Haven, CT 06520, USA
| | - Saquib A Lakhani
- Department of Pediatrics, Yale Medical School, New Haven, CT 06520, USA
- Department of Pediatrics, Cedar Sinai Guerin Children's Hospital, Los Angeles, CA 90048, USA
| | - Sarah N Taylor
- Department of Pediatrics, Yale Medical School, New Haven, CT 06520, USA
| | - George Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Steven H Kleinstein
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
- Program in Computational Biology and Bioinformatics, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
- Center for Systems and Engineering Immunology, Yale School of Medicine, New Haven, CT 06520, USA
- Human and Translational Immunology Program, Yale School of Medicine, New Haven, CT 06520, USA
| | - Liza Konnikova
- Department of Pediatrics, Yale Medical School, New Haven, CT 06520, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
- Center for Systems and Engineering Immunology, Yale School of Medicine, New Haven, CT 06520, USA
- Human and Translational Immunology Program, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Obstetrics Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
60
|
Rubinstein JC, Domanskyi S, Sheridan TB, Sanderson B, Park S, Kaster J, Li H, Anczukow O, Herlyn M, Chuang JH. Spatiotemporal Profiling Defines Persistence and Resistance Dynamics during Targeted Treatment of Melanoma. Cancer Res 2025; 85:987-1002. [PMID: 39700408 PMCID: PMC11875961 DOI: 10.1158/0008-5472.can-24-0690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/03/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024]
Abstract
Resistance of BRAF-mutant melanomas to targeted therapy arises from the ability of cells to enter a persister state, evade treatment with relative dormancy, and repopulate the tumor when reactivated. A better understanding of the temporal dynamics and specific pathways leading into and out of the persister state is needed to identify strategies to prevent treatment failure. Using spatial transcriptomics in patient-derived xenograft models, we captured clonal lineage evolution during treatment. The persister state showed increased oxidative phosphorylation, decreased proliferation, and increased invasive capacity, with central-to-peripheral gradients. Phylogenetic tracing identified intrinsic and acquired resistance mechanisms (e.g., dual-specific phosphatases, reticulon-4, and cyclin-dependent kinase 2) and suggested specific temporal windows of potential therapeutic susceptibility. Deep learning-enabled analysis of histopathologic slides revealed morphologic features correlating with specific cell states, demonstrating that juxtaposition of transcriptomics and histologic data enabled identification of phenotypically distinct populations from using imaging data alone. In summary, this study defined state change and lineage selection during melanoma treatment with spatiotemporal resolution, elucidating how choice and timing of therapeutic agents will impact the ability to eradicate resistant clones. Significance: Tracking clonal progression during treatment uncovers conserved, global transcriptional changes and local clone-clone and spatial patterns underlying the emergence of resistance, providing insights into therapy-induced tumor evolution.
Collapse
Affiliation(s)
- Jill C. Rubinstein
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Department of Surgery, Hartford Healthcare, Hartford, CT, USA
- Department of Surgery, UCONN School of Medicine, Farmington, CT, USA
- These authors provided equal contribution to this work
- Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Jill Rubinstein
| | - Sergii Domanskyi
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- These authors provided equal contribution to this work
| | - Todd B. Sheridan
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Department of Surgery, Hartford Healthcare, Hartford, CT, USA
| | - Brian Sanderson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - SungHee Park
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Jessica Kaster
- The Wistar Institute, Philadelphia, PA, USA
- Saint Joseph’s University, Philadelphia, PA, USA
| | - Haiyin Li
- The Wistar Institute, Philadelphia, PA, USA
| | - Olga Anczukow
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | | | | |
Collapse
|
61
|
Huang X, Chen B, Xiao X, Piao C. Potential molecular mechanisms of Jiedu Tongluo Tiaogan Formula in treating hyperthyroidism based on network pharmacology and in vivo experiments in mice. Physiol Genomics 2025; 57:148-159. [PMID: 39854209 DOI: 10.1152/physiolgenomics.00113.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/06/2024] [Accepted: 12/31/2024] [Indexed: 01/26/2025] Open
Abstract
"Jiedu Tongluo Tiaoying Formula" (JDTLTYF) is a kind of traditional Chinese medicine (TCM) prescription for treating hyperthyroidism, which can effectively improve the condition of patients. The main active ingredients of JDTLTYF were collected from the traditional Chinese medicine systems pharmacology (TCMSP) database, and the target was predicted. Genes related to hyperthyroidism were identified using DisGeNET, GeneCards, and Online Mendelian Inheritance in Man (OMIM) databases. Protein-protein interaction (PPI) network and interaction network of "formula-herb-active ingredient-target genes" was constructed. Mass spectrometry was used to identify the components. The binding of key components to the target was verified by molecular docking and molecular dynamics (MD) simulations. A hyperthyroidism mouse model was established by using levothyroxine sodium tablets, and the hormone and expression levels of inflammatory factors were examined by ELISA and Western blot. The key genes of JDTLTYF in the treatment of hyperthyroidism were TNF and AKT1. The results of mass spectrometry also showed that quercetin was one of the main components. The results of molecular docking and MD simulation showed that the binding-free energy between AKT1 and quercetin was the lowest, and the binding was stable. In vivo experimental results showed that gastric lavage with JDTLTYF could target AKT1 and TNF-α, effectively alleviate the pathological features of hyperthyroidism in mice, and reduce inflammation response. This study elucidated the key small molecule compounds and their action targets of JDTLTYF in the treatment of hyperthyroidism. It provides a direction for the development of new drugs for clinical hyperthyroidism.NEW & NOTEWORTHY Based on the network pharmacology and molecular dynamics (MD) simulation, this study elucidated the key small molecule compounds and their action targets of JDTLTYF Chinese herbal prescription (debark peony root, common selfheal fruit-spike, figwort root, thunberg fritillary bulb, and oyster shell) in the treatment of hyperthyroidism, preliminarily analyzed its molecular mechanism, and provided a reference direction for subsequent cell experiments.
Collapse
Affiliation(s)
- Xin Huang
- Shenzhen Futian District Shenkang Community Health Care Service Station, Shenzhen Hospital (Fu Tian) Of Guangzhou University Of Chinese Medicine, Shenzhen, People's Republic of China
| | - Binqin Chen
- Shenzhen Hospital (Fu Tian) Of Guangzhou University Of Chinese Medicine, Shenzhen, People's Republic of China
| | - Xiaoli Xiao
- Shenzhen Futian District Tefa Community Health Care Service Station, Shenzhen Hospital (Fu Tian) Of Guangzhou University Of Chinese Medicine, Shenzhen, People's Republic of China
| | - Chunli Piao
- Shenzhen Hospital (Fu Tian) Of Guangzhou University Of Chinese Medicine, Shenzhen, People's Republic of China
| |
Collapse
|
62
|
Bultum LE, Kim G, Lee SW, Lee D. Data Mining and in Silico Analysis of Ethiopian Traditional Medicine: Unveiling the Therapeutic Potential of Rumex abyssinicus Jacq. Cell Biochem Biophys 2025; 83:467-488. [PMID: 39154130 PMCID: PMC11870893 DOI: 10.1007/s12013-024-01478-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2024] [Indexed: 08/19/2024]
Abstract
Multicomponent traditional medicine prescriptions are widely used in Ethiopia for disease treatment. However, inconsistencies across practitioners, cultures, and locations have hindered the development of reliable therapeutic medicines. Systematic analysis of traditional medicine data is crucial for identifying consistent and reliable medicinal materials. In this study, we compiled and analyzed a dataset of 505 prescriptions, encompassing 567 medicinal materials used for treating 106 diseases. Using association rule mining, we identified significant associations between diseases and medicinal materials. Notably, wound healing-the most frequently treated condition-was strongly associated with Rumex abyssinicus Jacq., showing a high support value. This association led to further in silico and network analysis of R. abyssinicus Jacq. compounds, revealing 756 therapeutic targets enriched in various KEGG pathways and biological processes. The Random-Walk with Restart (RWR) algorithm applied to the CODA PPI network identified these targets as linked to diseases such as cancer, inflammation, and metabolic, immune, respiratory, and neurological disorders. Many hub target genes from the PPI network were also directly associated with wound healing, supporting the traditional use of R. abyssinicus Jacq. for treating wounds. In conclusion, this study uncovers significant associations between diseases and medicinal materials in Ethiopian traditional medicine, emphasizing the therapeutic potential of R. abyssinicus Jacq. These findings provide a foundation for further research, including in vitro and in vivo studies, to explore and validate the efficacy of traditional and natural product-derived medicines.
Collapse
Affiliation(s)
- Lemessa Etana Bultum
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea.
- Bio-Synergy Research Center, Daejeon, South Korea.
- Institute of Agricultural Life Sciences, Dong-A University, Busan, South Korea.
| | - Gwangmin Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
- Bio-Synergy Research Center, Daejeon, South Korea
| | - Seon-Woo Lee
- Institute of Agricultural Life Sciences, Dong-A University, Busan, South Korea
| | - Doheon Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea.
- Bio-Synergy Research Center, Daejeon, South Korea.
| |
Collapse
|
63
|
Lyu T, Wu K, Zhou Y, Kong T, Li L, Wang K, Fu P, Wei P, Chen M, Zheng J. Single-Cell RNA Sequencing Reveals the Tumor Heterogeneity and Immunosuppressive Microenvironment in Urothelial Carcinoma. Cancer Sci 2025; 116:710-723. [PMID: 39726326 PMCID: PMC11875766 DOI: 10.1111/cas.16436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/24/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024] Open
Abstract
Urothelial carcinoma (UC) can arise from either the lower urinary tract or the upper tract; they represent different disease entities and require different clinical treatment strategies. A full understanding of the cellular characteristics in UC may guide the development of novel therapies. Here, we performed single-cell transcriptome analysis from four patients with UC of the bladder (UCB), five patients with UC of the ureter (UCU), and four patients with UC of the renal pelvis (UCRP) to develop a comprehensive cell atlas of UC. We found the rare epithelial cell subtype EP9 with epithelial-to-mesenchymal transition (EMT) and cancer stem cell (CSC) features, and specifically expressed SOX6, which was associated with poor prognosis. We also found that ACKR1+ endothelial cells and inflammatory cancer-associated fibroblasts (iCAFs) were more enriched in UCU, which may promote pathogenesis. While ESM1+ endothelial cells may more actively participate in UCB and UCRP tumorigenesis by promoting angiogenesis. Additionally, CD8 + effector T cells were more enriched in UCU and UCRP patients, while Tregs were mainly enriched in UCB tumors. C1QC+ macrophages and LAMP3+ dendritic cells were more enriched in UCB, which is closely related to the formation of the heterogeneous immunosuppressive microenvironment. Furthermore, we found strong interactions between iCAFs, EP9, and Endo_ESM1, and different degrees of activation of the FGF-FGFR3 axis and immune checkpoint pathway were observed in different UC subtypes. Our study elucidated the cellular heterogeneity and the components of the microenvironment in UC arising from the upper and lower urinary tracts and provided novel therapeutic targets.
Collapse
Affiliation(s)
- Tianqi Lyu
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS)Ningbo Institute of Materials Technology and Engineering, CAS NingboNingboChina
| | - Kerong Wu
- Department of Urology, Ningbo First HospitalSchool of Medicine Ningbo University, Zhejiang University Ningbo HospitalNingboChina
| | - Yincong Zhou
- Department of Bioinformatics, College of Life SciencesZhejiang UniversityHangzhouChina
| | - Tong Kong
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS)Ningbo Institute of Materials Technology and Engineering, CAS NingboNingboChina
| | - Lin Li
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS)Ningbo Institute of Materials Technology and Engineering, CAS NingboNingboChina
| | - Kaizhe Wang
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS)Ningbo Institute of Materials Technology and Engineering, CAS NingboNingboChina
| | - Pan Fu
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS)Ningbo Institute of Materials Technology and Engineering, CAS NingboNingboChina
| | - Pengyao Wei
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS)Ningbo Institute of Materials Technology and Engineering, CAS NingboNingboChina
| | - Ming Chen
- Department of Bioinformatics, College of Life SciencesZhejiang UniversityHangzhouChina
| | - Jianping Zheng
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS)Ningbo Institute of Materials Technology and Engineering, CAS NingboNingboChina
| |
Collapse
|
64
|
Morina LB, Cao HC, Chen S, Kumar S, McFarland KS, Majewska NI, Betenbaugh MJ, Timp W. Investigating subpopulation dynamics in clonal CHO-K1 cells with single-cell RNA sequencing. J Biotechnol 2025; 399:91-98. [PMID: 39824362 DOI: 10.1016/j.jbiotec.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 01/01/2025] [Accepted: 01/13/2025] [Indexed: 01/20/2025]
Abstract
Chinese Hamster Ovary (CHO) cells produce monoclonal antibodies and other biotherapeutics at industrial scale. Despite their ubiquitous nature in the biopharmaceutical industry, little is known about the behaviors of individual transfected clonal CHO cells. Most CHO cells are assessed on their stability, their ability to produce the protein of interest over time. But CHO cells have primarily been studied in bulk, instead assuming that these bulk samples are homogenous because of presumed genetic clonality across the sample. This does not address cellular heterogeneity in these ostensibly clonal cells. These variable stability phenotypes may reflect heterogeneity within the clonal samples. In this study, we performed single-cell RNA sequencing on two clonal CHO-K1 cell populations with different stability phenotypes over a 90 day culture period. Our data showed that the instability of one of the clone's gene expression was due in part to the emergence of a low-producing subpopulation in the aged samples. This low-producing subpopulation did not exhibit markers of cellular stress which were expressed in the higher-producing populations. Further multiomic investigation should be performed to better characterize this heterogeneity.
Collapse
Affiliation(s)
| | | | - Siqi Chen
- Johns Hopkins University Department of Molecular Biology and Genetics, Baltimore, MD, USA
| | - Swetha Kumar
- Johns Hopkins Chemical and Biomolecular Engineering, USA
| | | | | | | | - Winston Timp
- Johns Hopkins Biomedical Engineering, USA; Johns Hopkins University Department of Molecular Biology and Genetics, Baltimore, MD, USA; Johns Hopkins University Department of Medicine, Division of Infectious Disease, Baltimore, MD, USA.
| |
Collapse
|
65
|
Borgers JSW, Lenkala D, Kohler V, Jackson EK, Linssen MD, Hymson S, McCarthy B, O'Reilly Cosgrove E, Balogh KN, Esaulova E, Starr K, Ware Y, Klobuch S, Sciuto T, Chen X, Mahimkar G, Sheen JHF, Ramesh S, Wilgenhof S, van Thienen JV, Scheiner KC, Jedema I, Rooney M, Dong JZ, Srouji JR, Juneja VR, Arieta CM, Nuijen B, Gottstein C, Finney OC, Manson K, Nijenhuis CM, Gaynor RB, DeMario M, Haanen JB, van Buuren MM. Personalized, autologous neoantigen-specific T cell therapy in metastatic melanoma: a phase 1 trial. Nat Med 2025; 31:881-893. [PMID: 39753970 PMCID: PMC11922764 DOI: 10.1038/s41591-024-03418-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/13/2024] [Indexed: 03/21/2025]
Abstract
New treatment approaches are warranted for patients with advanced melanoma refractory to immune checkpoint blockade (ICB) or BRAF-targeted therapy. We designed BNT221, a personalized, neoantigen-specific autologous T cell product derived from peripheral blood, and tested this in a 3 + 3 dose-finding study with two dose levels (DLs) in patients with locally advanced or metastatic melanoma, disease progression after ICB, measurable disease (Response Evaluation Criteria in Solid Tumors version 1.1) and, where appropriate, BRAF-targeted therapy. Primary and secondary objectives were evaluation of safety, highest tolerated dose and anti-tumor activity. We report here the non-pre-specified, final results of the completed monotherapy arm consisting of nine patients: three at DL1 (1 × 108-1 × 109 cells) and six at DL2 (2 × 109-1 × 1010 cells). Drug products (DPs) were generated for all enrolled patients. BNT221 was well tolerated across both DLs, with no dose-limiting toxicities of grade 3 or higher attributed to the T cell product observed. Specifically, no cytokine release, immune effector cell-associated neurotoxicity or macrophage activation syndromes were reported. A dose of 5.0 × 108-1.0 × 1010 cells was identified for further study conduct. Six patients showed stable disease as best overall response, and tumor reductions (≤20%) were reported for four of these patients. In exploratory analyses, multiple mutant-specific CD4+ and CD8+ T cell responses were generated in each DP. These were cytotoxic, polyfunctional and expressed T cell receptors with broad functional avidities. Neoantigen-specific clonotypes were detected after treatment in blood and tumor. Our results provide key insights into this neoantigen-specific adoptive T cell therapy and demonstrate proof of concept for this new therapeutic approach. ClinicalTrials.gov registration: NCT04625205 .
Collapse
Affiliation(s)
- Jessica S W Borgers
- Department of Medical Oncology, Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| | | | | | | | - Matthijs D Linssen
- BioTherapeutics Unit, Division of Pharmacy and Pharmacology, Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | - Sebastian Klobuch
- Department of Medical Oncology, Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| | | | - Xi Chen
- BioNTech US, Cambridge, MA, USA
| | | | | | | | - Sofie Wilgenhof
- Department of Medical Oncology, Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| | - Johannes V van Thienen
- Department of Medical Oncology, Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| | - Karina C Scheiner
- BioTherapeutics Unit, Division of Pharmacy and Pharmacology, Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| | - Inge Jedema
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| | | | | | | | | | | | - Bastiaan Nuijen
- BioTherapeutics Unit, Division of Pharmacy and Pharmacology, Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| | | | | | | | - Cynthia M Nijenhuis
- BioTherapeutics Unit, Division of Pharmacy and Pharmacology, Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| | | | | | - John B Haanen
- Department of Medical Oncology, Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands.
| | | |
Collapse
|
66
|
Maatz H, Lindberg EL, Adami E, López-Anguita N, Perdomo-Sabogal A, Cocera Ortega L, Patone G, Reichart D, Myronova A, Schmidt S, Elsanhoury A, Klein O, Kühl U, Wyler E, Landthaler M, Yousefian S, Haas S, Kurth F, Teichmann SA, Oudit GY, Milting H, Noseda M, Seidman JG, Seidman CE, Heidecker B, Sander LE, Sawitzki B, Klingel K, Doeblin P, Kelle S, Van Linthout S, Hubner N, Tschöpe C. The cellular and molecular cardiac tissue responses in human inflammatory cardiomyopathies after SARS-CoV-2 infection and COVID-19 vaccination. NATURE CARDIOVASCULAR RESEARCH 2025; 4:330-345. [PMID: 39994453 PMCID: PMC11913730 DOI: 10.1038/s44161-025-00612-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/10/2025] [Indexed: 02/26/2025]
Abstract
Myocarditis, characterized by inflammatory cell infiltration, can have multiple etiologies, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or, rarely, mRNA-based coronavirus disease 2019 (COVID-19) vaccination. The underlying cellular and molecular mechanisms remain poorly understood. In this study, we performed single-nucleus RNA sequencing on left ventricular endomyocardial biopsies from patients with myocarditis unrelated to COVID-19 (Non-COVID-19), after SARS-CoV-2 infection (Post-COVID-19) and after COVID-19 vaccination (Post-Vaccination). We identified distinct cytokine expression patterns, with interferon-γ playing a key role in Post-COVID-19, and upregulated IL16 and IL18 expression serving as a hallmark of Post-Vaccination myocarditis. Although myeloid responses were similar across all groups, the Post-Vaccination group showed a higher proportion of CD4+ T cells, and the Post-COVID-19 group exhibited an expansion of cytotoxic CD8+ T and natural killer cells. Endothelial cells showed gene expression changes indicative of vascular barrier dysfunction in the Post-COVID-19 group and ongoing angiogenesis across all groups. These findings highlight shared and distinct mechanisms driving myocarditis in patients with and without a history of SARS-CoV-2 infection or vaccination.
Collapse
Affiliation(s)
- Henrike Maatz
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.
| | - Eric L Lindberg
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | - Eleonora Adami
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Natalia López-Anguita
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Alvaro Perdomo-Sabogal
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Lucía Cocera Ortega
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Giannino Patone
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Daniel Reichart
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Cardiovascular Division, Brigham and Women's Hospital Boston, Boston, MA, USA
| | - Anna Myronova
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Sabine Schmidt
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Ahmed Elsanhoury
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Oliver Klein
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Uwe Kühl
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Emanuel Wyler
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Markus Landthaler
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Institut für Biologie, Humboldt Universität zu Berlin, Berlin, Germany
| | - Schayan Yousefian
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Simon Haas
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, DKFZ and Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Florian Kurth
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt - Universität zu Berlin, Berlin, Germany
| | - Sarah A Teichmann
- Cellular Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | - Gavin Y Oudit
- Division of Cardiology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Hendrik Milting
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Bad Oeynhausen, Germany
| | - Michela Noseda
- National Heart and Lung Institute, Imperial College London, London, UK
- British Heart Foundation Centre for Research Excellence and Centre for Regenerative Medicine, Imperial College London, London, UK
| | | | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Cardiovascular Division, Brigham and Women's Hospital Boston, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Bettina Heidecker
- Department of Cardiology, Angiology and Intensive Medicine CBF, Deutsches Herzzentrum der Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Leif E Sander
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt - Universität zu Berlin, Berlin, Germany
| | - Birgit Sawitzki
- Translational Immunology, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Karin Klingel
- Cardiopathology, Institute for Pathology and Neuropathology, University Hospital Tübingen, Tübingen, Germany
| | - Patrick Doeblin
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Department of Cardiology, Angiology and Intensive Care, Campus Virchow, Deutsches Herzzentrum der Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian Kelle
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Department of Cardiology, Angiology and Intensive Care, Campus Virchow, Deutsches Herzzentrum der Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sophie Van Linthout
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Norbert Hubner
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.
- Charité - Universitätsmedizin Berlin, Berlin, Germany.
- Helmholtz-Institute for Translational AngioCardioScience (HI-TAC) of the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) at Heidelberg University, Heidelberg, Germany.
| | - Carsten Tschöpe
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany.
- Department of Cardiology, Angiology and Intensive Care, Campus Virchow, Deutsches Herzzentrum der Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
67
|
Li T, Li X, Kang P, Zhao J. Exploring CX3CR1 as a prognostic biomarker and immunotherapeutic target in sarcoma. Transl Oncol 2025; 53:102283. [PMID: 39837057 PMCID: PMC11787715 DOI: 10.1016/j.tranon.2025.102283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/29/2024] [Accepted: 01/07/2025] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Sarcomas (SARC) are a diverse group of malignant tumors originating from mesenchymal tissues, characterized by poor prognosis under conventional therapies. CX3CR1, a chemokine receptor involved in immune cell migration, has emerged as a key player in SARC. Post-translational modifications (PTMs) such as phosphorylation and ubiquitination critically modulate CX3CR1, influencing cancer progression, immune responses, and treatment resistance. METHODS This study investigates CX3CR1 expression, its biological functions, and prognostic value in SARC. Using data from The Cancer Genome Atlas (TCGA), we analyzed CX3CR1 gene expression, methylation patterns, CRISPR screening results, and immune infiltration metrics. Functional experiments included knockout and overexpression models, CCK-8 assays and flow cytometry to assess apoptosis. RESULTS CX3CR1 expression was significantly elevated in SARC tissues and positively correlated with overall survival, disease-specific survival, and progression-free intervals. Methylation analysis identified CpG sites associated with CX3CR1 expression, differentiating tumor and adjacent tissues. CRISPR screening highlighted CX3CR1's essential role in tumor growth, while immune infiltration analysis underscored its impact on the tumor microenvironment. PTMs were found to stabilize CX3CR1, enhancing its activity in key signaling pathways. Overexpression of CX3CR1 amplified inflammatory and apoptotic responses, while knockdown showed protective effects in vitro. CONCLUSIONS CX3CR1 serves as a promising prognostic biomarker and therapeutic target in sarcoma. Targeting CX3CR1's PTMs could advance personalized treatments and improve outcomes for sarcoma patients.
Collapse
Affiliation(s)
- Tengfei Li
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xun Li
- Department of Orthopedics, Loudi Central Hospital, Ward 32, Loudi, China
| | - Pengcheng Kang
- Department of Orthopedics, Loudi Central Hospital, Ward 32, Loudi, China
| | - Jinmin Zhao
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
68
|
Lee JH, Choi S, Lee DE, Kang HW, Lee JS, Kim JH. Discovery of Herbal Remedies and Key Components for Major Depressive Disorder Through Biased Random Walk Analysis on a Multiscale Network. Int J Mol Sci 2025; 26:2162. [PMID: 40076790 PMCID: PMC11900307 DOI: 10.3390/ijms26052162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/18/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Major depressive disorder (MDD) is a widespread psychiatric condition with substantial socioeconomic impacts, yet single-target pharmacotherapies often yield responses. To address its multifactorial nature, this study employed a multiscale network analysis of herbs, their active components, and MDD-associated protein targets. Using a biased random walk with restart, we calculated interactions between disease-related and herb-derived targets, identifying herbs highly correlated with MDD. Enrichment analysis further revealed key signaling pathways, including oxidative stress, neuroinflammation, and hormone metabolism, underlying these herbs' therapeutic effects. We identified Ephedrae herba, Glehniae radix, Euryales semen, and Campsitis flos as promising candidates, each containing multiple bioactive compounds (such as ephedrine, psoralen, xanthine, and ursolic acid) that modulate critical processes like oxidation-reduction, inflammatory cytokine regulation, and transcriptional control. Network visualization showed how these herbs collectively target both shared and distinct pathways, supporting a synergistic, multi-target therapeutic strategy. This approach underscores the significance of network-based methodologies in addressing complex disorders such as MDD, where focusing on a single target may overlook synergistic interactions. By integrating diverse molecular data, this study provides a systematic framework for identifying novel interventions. Future experimental validation will be crucial to confirm these predictions and facilitate the translation of findings into effective MDD therapies.
Collapse
Affiliation(s)
- Jun-Ho Lee
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang University, Iksan 54538, Republic of Korea
| | - Sungyoul Choi
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Do-Eun Lee
- Department of Korean Neuropsychiatry Medicine, College of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea
| | - Hyung Won Kang
- Department of Korean Neuropsychiatry Medicine, College of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea
| | - Jin-Seok Lee
- Institute of Bioscience & Integrative Medicine, Daejeon Hospital of Daejeon University, Daejeon 35235, Republic of Korea
| | - Ji-Hwan Kim
- Department of Sasang Constitutional Medicine, Division of Clinical Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
69
|
Jing Y, Wang Y, Li Y, Huang X, Wang J, Yelihamu D, Guo C. Diagnostics and immunological function of CENPN in human tumors: from pan-cancer analysis to validation in breast cancer. Transl Cancer Res 2025; 14:881-906. [PMID: 40104708 PMCID: PMC11912047 DOI: 10.21037/tcr-24-1291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/03/2025] [Indexed: 03/20/2025]
Abstract
Background Centromere protein N (CENPN), a member of the centromere protein family, contributes to ribonucleic assembly, mitosis progression, and chromosome separation. CENPN manifests a close link with the occurrence and progression of several malignant cancers, but there is no pan-cancer study on CENPN, and we aim to ascertain the connection between CENPN and human cancer prognosis and immunotherapy. Methods The CENPN function in multiple malignant tumors was comprehensively investigated with data from The Cancer Genome Atlas (TCGA) and integrated Gene Expression Omnibus (GEO) database. We examined the transcriptional level, prognostic effect, diagnostic value, genetic and epigenetic alteration, methylation level, and immunological importance of CENPN. Furthermore, this work provided further confirmation of the phenotypic regulating function of CENPN in breast cancer (BC) cells. Results CENPN exhibited significant upregulation in diverse cancer tissues and had different expression patterns across immunological and molecular subgroups in several cancer types. Elevated expression of CENPN may correlate with a worse prognosis. CENPN effectively differentiates most cancers from healthy tissues. Hypomethylate was shown to be CENPN promoter in most cancers. CENPN was shown to be connected with levels of different immune cell infiltration. Kyoto Encyclopedia of Genes and Genomes (KEGG) and the Gene Set Enrichment Analysis (GSEA) analysis suggested that CENPN may mediate neutrophil extranuclear trap formation, cell cycle, and P53 signaling pathways in cancer. In vitro studies showed that the overexpression of CENPN promotes the proliferation, invasion, and migration of BC cells, while concurrently inhibiting their apoptosis. Conclusions CENPN may operate as a novel predictive indicator and molecular target for targeted therapy in pan-cancer. Significantly, CENPN contributed to controlling the BC growth and advancement.
Collapse
Affiliation(s)
- Yubo Jing
- Department of Breast Surgery, Center of Digestive and Vascular, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yiyang Wang
- Department of Breast Surgery, Center of Digestive and Vascular, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yongxiang Li
- Department of Breast Surgery, Center of Digestive and Vascular, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xinzhu Huang
- Department of Breast Surgery, Center of Digestive and Vascular, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Junyi Wang
- Department of Breast Surgery, Center of Digestive and Vascular, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Dlraba Yelihamu
- Department of Breast Surgery, Center of Digestive and Vascular, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Chenming Guo
- Department of Breast Surgery, Center of Digestive and Vascular, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
70
|
Fu W, Xie Q, Yu P, Liu S, Xu L, Ye X, Zhao W, Wang Q, Pan Y, Zhang Z, Wang Z. Pig jejunal single-cell RNA landscapes revealing breed-specific immunology differentiation at various domestication stages. Front Immunol 2025; 16:1530214. [PMID: 40151618 PMCID: PMC11947726 DOI: 10.3389/fimmu.2025.1530214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/11/2025] [Indexed: 03/29/2025] Open
Abstract
Background Domestication of wild boars into local and intensive pig breeds has driven adaptive genomic changes, resulting in significant phenotypic differences in intestinal immune function. The intestine relies on diverse immune cells, but their evolutionary changes during domestication remain poorly understood at single-cell resolution. Methods We performed single-cell RNA sequencing (scRNA-seq) and marker gene analysis on jejunal tissues from wild boars, a Chinese local breed (Jinhua), and an intensive breed (Duroc). Then, we developed an immune cell evaluation system that includes immune scoring, gene identification, and cell communication analysis. Additionally, we mapped domestication-related clustering relationships, highlighting changes in gene expression and immune function. Results We generated a single-cell atlas of jejunal tissues, analyzing 26,246 cells and identifying 11 distinct cell lineages, including epithelial and plasma cells, and discovered shared and unique patterns in intestinal nutrition and immunity across breeds. Immune cell evaluation analysis confirmed the conservation and heterogeneity of immune cells, manifested by highly conserved functions of immune cell subgroups, but wild boars possess stronger immune capabilities than domesticated breeds. We also discovered four patterns of domestication-related breed-specific genes related to metabolism, immune surveillance, and cytotoxic functions. Lastly, we identified a unique population of plasma cells with distinctive antibody production in Jinhua pig population. Conclusions Our findings provide valuable single-cell insights into the cellular heterogeneity and immune function evolution in the jejunum during pig at various domestication stages. The single-cell atlas also serves as a resource for comparative studies and supports breeding programs aimed at enhancing immune traits in pigs.
Collapse
Affiliation(s)
- Wenyu Fu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Qinqin Xie
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Pengfei Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Shuang Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Lingyao Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiaowei Ye
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Wei Zhao
- SciGene Biotechnology Co., Ltd, Hefei, China
| | - Qishan Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Building 11, Yongyou Industrial Park, Yazhou Bay Science and Technology City, Yazhou District, Sanya, China
- Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Yuchun Pan
- Hainan Institute of Zhejiang University, Building 11, Yongyou Industrial Park, Yazhou Bay Science and Technology City, Yazhou District, Sanya, China
- Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, China
- Hainan Yazhou Bay Seed Lab, Yongyou Industrial Park, Yazhou Bay Sci-Tech City, Sanya, China
| | - Zhe Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Zhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| |
Collapse
|
71
|
Sanborn MA, Wang X, Gao S, Dai Y, Rehman J. Unveiling the cell-type-specific landscape of cellular senescence through single-cell transcriptomics using SenePy. Nat Commun 2025; 16:1884. [PMID: 39987255 PMCID: PMC11846890 DOI: 10.1038/s41467-025-57047-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 02/06/2025] [Indexed: 02/24/2025] Open
Abstract
Senescent cells accumulate in most tissues with organismal aging, exposure to stressors, or disease progression. It is challenging to identify senescent cells because cellular senescence signatures and phenotypes vary widely across distinct cell types and tissues. Here we developed an analytical algorithm that defines cell-type-specific and universal signatures of cellular senescence across a wide range of cell types and tissues. We utilize 72 mouse and 64 human weighted single-cell transcriptomic signatures of cellular senescence to create the SenePy scoring platform. SenePy signatures better recapitulate in vivo cellular senescence than signatures derived from in vitro senescence studies. We use SenePy to map the kinetics of senescent cell accumulation in healthy aging as well as multiple disease contexts, including tumorigenesis, inflammation, and myocardial infarction. SenePy characterizes cell-type-specific in vivo cellular senescence and could lead to the identification of genes that serve as mediators of cellular senescence and disease progression.
Collapse
Grants
- R01-AG091545 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- P01HL160469 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01-HL152515 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL152515 NHLBI NIH HHS
- R01-HL163978 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- P01 HL160469 NHLBI NIH HHS
- F31-AG090005 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- T32- HL139439 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- F31 AG090005 NIA NIH HHS
- R01 HL163978 NHLBI NIH HHS
- T32 HL139439 NHLBI NIH HHS
- R01 AG091545 NIA NIH HHS
- U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
Collapse
Affiliation(s)
- Mark A Sanborn
- Department of Biochemistry and Molecular Genetics, University of Illinois, College of Medicine, Chicago, Illinois, USA.
- Center for Bioinformatics and Quantitative Biology, University of Illinois Chicago, Chicago, Illinois, USA.
| | - Xinge Wang
- Department of Biochemistry and Molecular Genetics, University of Illinois, College of Medicine, Chicago, Illinois, USA
- Center for Bioinformatics and Quantitative Biology, University of Illinois Chicago, Chicago, Illinois, USA
- Department of Biomedical Engineering, University of Illinois Chicago, College of Engineering and College of Medicine, Chicago, Illinois, USA
| | - Shang Gao
- Department of Biochemistry and Molecular Genetics, University of Illinois, College of Medicine, Chicago, Illinois, USA
- Center for Bioinformatics and Quantitative Biology, University of Illinois Chicago, Chicago, Illinois, USA
- Department of Biomedical Engineering, University of Illinois Chicago, College of Engineering and College of Medicine, Chicago, Illinois, USA
| | - Yang Dai
- Center for Bioinformatics and Quantitative Biology, University of Illinois Chicago, Chicago, Illinois, USA
- Department of Biomedical Engineering, University of Illinois Chicago, College of Engineering and College of Medicine, Chicago, Illinois, USA
| | - Jalees Rehman
- Department of Biochemistry and Molecular Genetics, University of Illinois, College of Medicine, Chicago, Illinois, USA.
- Center for Bioinformatics and Quantitative Biology, University of Illinois Chicago, Chicago, Illinois, USA.
- Department of Biomedical Engineering, University of Illinois Chicago, College of Engineering and College of Medicine, Chicago, Illinois, USA.
- University of Illinois Cancer Center, Chicago, Illinois, USA.
| |
Collapse
|
72
|
Bhattacharya A, Fon EA, Dagher A, Iturria-Medina Y, Stratton JA, Savignac C, Stanley J, Hodgson L, Hammou BA, Bennett DA, Bzdok D. Cell type transcriptomics reveal shared genetic mechanisms in Alzheimer's and Parkinson's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.17.638647. [PMID: 40027681 PMCID: PMC11870532 DOI: 10.1101/2025.02.17.638647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Historically, Alzheimer's disease (AD) and Parkinson's disease (PD) have been investigated as two distinct disorders of the brain. However, a few similarities in neuropathology and clinical symptoms have been documented over the years. Traditional single gene-centric genetic studies, including GWAS and differential gene expression analyses, have struggled to unravel the molecular links between AD and PD. To address this, we tailor a pattern-learning framework to analyze synchronous gene co-expression at sub-cell-type resolution. Utilizing recently published single-nucleus AD (70,634 nuclei) and PD (340,902 nuclei) datasets from postmortem human brains, we systematically extract and juxtapose disease-critical gene modules. Our findings reveal extensive molecular similarities between AD and PD gene cliques. In neurons, disrupted cytoskeletal dynamics and mitochondrial stress highlight convergence in key processes; glial modules share roles in T-cell activation, myelin synthesis, and synapse pruning. This multi-module sub-cell-type approach offers insights into the molecular basis of shared neuropathology in AD and PD.
Collapse
|
73
|
Chang ACC, Schlegel BT, Carleton N, McAuliffe PF, Oesterreich S, Schwartz R, Lee AV. CITEgeist: Cellular Indexing of Transcriptomes and Epitopes for Guided Exploration of Intrinsic Spatial Trends. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.15.638331. [PMID: 40027773 PMCID: PMC11870549 DOI: 10.1101/2025.02.15.638331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Spatial transcriptomics provides insights into tissue architecture by linking gene expression with spatial localization. Current deconvolution methods rely heavily on single-cell RNA sequencing (scRNA-seq) references, which are costly and often unavailable, mainly if the tissue under evaluation is limited, such as in a core biopsy specimen. We present a novel tool, CITEgeist, that deconvolutes spatial transcriptomics data using antibody capture from the same slide as the reference, directly leveraging cell surface protein measurements from the same tissue section. This approach circumvents the limitations of scRNA-seq as a reference, offering a cost-effective and biologically grounded alternative. Our method employs mathematical optimization to estimate cell type proportions and gene expression profiles, incorporating sparsity constraints for robustness and interpretability. Benchmarks against state-of-the-art deconvolution methods show improved accuracy in cell type resolution, particularly in dense tumor microenvironments, while maintaining computational efficiency. This antibody-based tool advances spatial transcriptomics by providing a scalable, accurate, and reference-independent solution for deconvolution in complex tissues. We validate this tool by using a combined approach of simulated data and clinical samples by applying CITEgeist to translational pre-treatment and post-treatment ER+ breast tumors from an ongoing clinical trial, emphasizing the applicability and robustness of CITEgeist.
Collapse
Affiliation(s)
- Alexander Chih-Chieh Chang
- Women’s Cancer Research Center, UPMC Hillman Cancer Center, Magee-Womens Research Institute, Pittsburgh PA, USA
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Brent T. Schlegel
- Women’s Cancer Research Center, UPMC Hillman Cancer Center, Magee-Womens Research Institute, Pittsburgh PA, USA
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Neil Carleton
- Women’s Cancer Research Center, UPMC Hillman Cancer Center, Magee-Womens Research Institute, Pittsburgh PA, USA
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Priscilla F. McAuliffe
- Women’s Cancer Research Center, UPMC Hillman Cancer Center, Magee-Womens Research Institute, Pittsburgh PA, USA
- Department of Surgery, Division of Breast Surgical Oncology, University of Pittsburgh School of Medicine, Pittsburgh PA, USA
| | - Steffi Oesterreich
- Women’s Cancer Research Center, UPMC Hillman Cancer Center, Magee-Womens Research Institute, Pittsburgh PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh PA, USA
| | - Russell Schwartz
- Ray and Stephanie Lane Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Adrian V. Lee
- Women’s Cancer Research Center, UPMC Hillman Cancer Center, Magee-Womens Research Institute, Pittsburgh PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh PA, USA
- Institute of Precision Medicine, Pittsburgh PA, USA
| |
Collapse
|
74
|
García García A, Ferrer Aporta M, Vallejo Palma G, Giráldez Trujillo A, Castillo-González R, Calzón Lozano D, Mora Perdiguero A, Muñoz Velasco R, Colina Castro M, de Simone Benito E, Torres-Ruiz R, Rodriguez-Perales S, Dehairs J, Swinnen JV, Garcia-Cañaveras JC, Lahoz A, Montalvo Quirós S, Del Pozo-Rojas C, Luque Rioja C, Monroy F, Herráez-Aguilar D, Alonso Riaño M, Rodríguez Peralto JL, Sánchez-Arévalo Lobo VJ. Targeting ELOVL6 to disrupt c-MYC driven lipid metabolism in pancreatic cancer enhances chemosensitivity. Nat Commun 2025; 16:1694. [PMID: 39956817 PMCID: PMC11830767 DOI: 10.1038/s41467-025-56894-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/05/2025] [Indexed: 02/18/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal cancer with a 12% survival rate, highlighting the need for novel therapies. c-MYC overexpression, driven by upstream mutations and amplifications, reprograms tumor metabolism and promotes proliferation, migration and metastasis. This study identifies ELOVL6, a fatty acid elongase regulated by c-MYC, as a potential therapeutic target. Using PDAC mouse models and cell lines, we show that c-MYC directly upregulates ELOVL6 during tumor progression. Genetic or chemical inhibition of ELOVL6 reduces proliferation and migration by altering fatty acid composition, affecting membrane rigidity, permeability and pinocytosis. These changes increase Abraxane uptake and show a synergistic effect when combined with ELOVL6 inhibition in vitro. In vivo, ELOVL6 interference significantly suppresses tumor growth and improves Abraxane response, prolonging survival. These findings position ELOVL6 as a promising target for improving PDAC treatment outcomes.
Collapse
Affiliation(s)
- Ana García García
- Grupo de Oncología Molecular, Instituto de Investigaciones Biosanitarias, Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, 28223, Madrid, Spain
| | - María Ferrer Aporta
- Grupo de Oncología Molecular, Instituto de Investigaciones Biosanitarias, Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Germán Vallejo Palma
- Grupo de Oncología Cutánea. Servicio de Anatomía Patológica, Hospital Universitario 12 de Octubre. Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Avenida de Cordoba s/n, 28041, Madrid, Spain
| | - Antonio Giráldez Trujillo
- Grupo de Oncología Cutánea. Servicio de Anatomía Patológica, Hospital Universitario 12 de Octubre. Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Avenida de Cordoba s/n, 28041, Madrid, Spain
| | - Raquel Castillo-González
- Grupo de Oncología Cutánea. Servicio de Anatomía Patológica, Hospital Universitario 12 de Octubre. Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Avenida de Cordoba s/n, 28041, Madrid, Spain
- Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
| | - David Calzón Lozano
- Grupo de Oncología Molecular, Instituto de Investigaciones Biosanitarias, Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Alberto Mora Perdiguero
- Grupo de Oncología Molecular, Instituto de Investigaciones Biosanitarias, Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Raúl Muñoz Velasco
- Grupo de Oncología Molecular, Instituto de Investigaciones Biosanitarias, Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Miguel Colina Castro
- Grupo de Oncología Molecular, Instituto de Investigaciones Biosanitarias, Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Elena de Simone Benito
- Grupo de Oncología Molecular, Instituto de Investigaciones Biosanitarias, Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Raúl Torres-Ruiz
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
- Division of Hematopoietic Innovative Therapies, Biomedical Innovation Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040, Madrid, Spain
- Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, 28003, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029, Madrid, Spain
| | - Sandra Rodriguez-Perales
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| | - Jonas Dehairs
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, 3000, Leuven, Belgium
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, 3000, Leuven, Belgium
| | - Juan Carlos Garcia-Cañaveras
- Biomarkers and Precision Medicine Unit, Health Research Institute La Fe, Av. Fernando Abril Martorell, 106, 46026, Valencia, Spain
| | - Agustín Lahoz
- Biomarkers and Precision Medicine Unit, Health Research Institute La Fe, Av. Fernando Abril Martorell, 106, 46026, Valencia, Spain
| | - Sandra Montalvo Quirós
- Biofísica Computacional y Análisis de Datos Biológicos, Instituto de Investigaciones Biosanitarias, Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Carlos Del Pozo-Rojas
- Biofísica Computacional y Análisis de Datos Biológicos, Instituto de Investigaciones Biosanitarias, Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Clara Luque Rioja
- Department of Physical Chemistry, Complutense University of Madrid, 28040, Madrid, Spain
- Translational Biophysics, Institute for Biomedical Research Hospital 12 de Octubre, Avenida de Cordoba s/n, 28041, Madrid, Spain
| | - Francisco Monroy
- Department of Physical Chemistry, Complutense University of Madrid, 28040, Madrid, Spain
- Translational Biophysics, Institute for Biomedical Research Hospital 12 de Octubre, Avenida de Cordoba s/n, 28041, Madrid, Spain
| | - Diego Herráez-Aguilar
- Biofísica Computacional y Análisis de Datos Biológicos, Instituto de Investigaciones Biosanitarias, Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Marina Alonso Riaño
- Grupo de Oncología Cutánea. Servicio de Anatomía Patológica, Hospital Universitario 12 de Octubre. Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Avenida de Cordoba s/n, 28041, Madrid, Spain
| | - José Luis Rodríguez Peralto
- Grupo de Oncología Cutánea. Servicio de Anatomía Patológica, Hospital Universitario 12 de Octubre. Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Avenida de Cordoba s/n, 28041, Madrid, Spain
| | - Víctor Javier Sánchez-Arévalo Lobo
- Grupo de Oncología Molecular, Instituto de Investigaciones Biosanitarias, Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, 28223, Madrid, Spain.
- Grupo de Oncología Cutánea. Servicio de Anatomía Patológica, Hospital Universitario 12 de Octubre. Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Avenida de Cordoba s/n, 28041, Madrid, Spain.
| |
Collapse
|
75
|
Qian J, Shao X, Bao H, Fang Y, Guo W, Li C, Li A, Hua H, Fan X. Identification and characterization of cell niches in tissue from spatial omics data at single-cell resolution. Nat Commun 2025; 16:1693. [PMID: 39956823 PMCID: PMC11830827 DOI: 10.1038/s41467-025-57029-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 02/03/2025] [Indexed: 02/18/2025] Open
Abstract
Deciphering the features, structure, and functions of the cell niche in tissues remains a major challenge. Here, we present scNiche, a computational framework to identify and characterize cell niches from spatial omics data at single-cell resolution. We benchmark scNiche with both simulated and biological datasets, and demonstrate that scNiche can effectively and robustly identify cell niches while outperforming other existing methods. In spatial proteomics data from human triple-negative breast cancer, scNiche reveals the influence of the microenvironment on cellular phenotypes, and further dissects patient-specific niches with distinct cellular compositions or phenotypic characteristics. By analyzing mouse liver spatial transcriptomics data across normal and early-onset liver failure donors, scNiche uncovers disease-specific liver injury niches, and further delineates the niche remodeling from normal liver to liver failure. Overall, scNiche enables decoding the cellular microenvironment in tissues from single-cell spatial omics data.
Collapse
Affiliation(s)
- Jingyang Qian
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314102, China
| | - Xin Shao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- State Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314102, China.
- Zhejiang Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, China.
| | - Hudong Bao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yin Fang
- College of Computer Science and Technology, Zhejiang University, Hangzhou, 310013, China
| | - Wenbo Guo
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314102, China
- Zhejiang Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, China
| | - Chengyu Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314102, China
| | - Anyao Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314102, China
| | - Hua Hua
- Translational Chinese Medicine Key Laboratory of Sichuan Province, SiChuan Institute for Translational Chinese Medicine, Chengdu, 610041, China.
| | - Xiaohui Fan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- State Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314102, China.
- Zhejiang Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, China.
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, 310006, Hangzhou, China.
| |
Collapse
|
76
|
Carli F, Di Chiaro P, Morelli M, Arora C, Bisceglia L, De Oliveira Rosa N, Cortesi A, Franceschi S, Lessi F, Di Stefano AL, Santonocito OS, Pasqualetti F, Aretini P, Miglionico P, Diaferia GR, Giannotti F, Liò P, Duran-Frigola M, Mazzanti CM, Natoli G, Raimondi F. Learning and actioning general principles of cancer cell drug sensitivity. Nat Commun 2025; 16:1654. [PMID: 39952993 PMCID: PMC11828915 DOI: 10.1038/s41467-025-56827-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 02/03/2025] [Indexed: 02/17/2025] Open
Abstract
High-throughput screening of drug sensitivity of cancer cell lines (CCLs) holds the potential to unlock anti-tumor therapies. In this study, we leverage such datasets to predict drug response using cell line transcriptomics, focusing on models' interpretability and deployment on patients' data. We use large language models (LLMs) to match drug to mechanisms of action (MOA)-related pathways. Genes crucial for prediction are enriched in drug-MOAs, suggesting that our models learn the molecular determinants of response. Furthermore, by using only LLM-curated, MOA-genes, we enhance the predictive accuracy of our models. To enhance translatability, we align RNAseq data from CCLs, used for training, to those from patient samples, used for inference. We validated our approach on TCGA samples, where patients' best scoring drugs match those prescribed for their cancer type. We further predict and experimentally validate effective drugs for the patients of two highly lethal solid tumors, i.e., pancreatic cancer and glioblastoma.
Collapse
Affiliation(s)
- Francesco Carli
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy.
- Department of Computer Science, Univerisity of Pisa, Pisa, Italy.
| | - Pierluigi Di Chiaro
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | | | - Chakit Arora
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy
| | - Luisa Bisceglia
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy
| | | | - Alice Cortesi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | | | | | | | | | | | | | | | - Giuseppe R Diaferia
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
- Botton-Champalimaud Pancreatic Cancer Center, Champalimaud Foundation, Lisbon, Portugal
| | | | - Pietro Liò
- Department of Computer Science and Technology, University of Cambridge, Cambridge, UK
| | | | | | - Gioacchino Natoli
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | | |
Collapse
|
77
|
Gaudilliere B, Xue L, Tsai AS, Gao X, McAllister TN, Tingle M, Porras G, Feinstein I, Feyaerts D, Verdonk F, Sabayev M, Hedou J, Ganio EA, Berson E, Becker M, Espinosa C, Kim Y, Lehallier B, Rawner E, Feng C, Amanatullah DF, Huddleston JI, Goodman SB, Aghaeepour N, Angst MS. Infusion of young donor plasma components in older patients modifies the immune and inflammatory response to surgical tissue injury: a randomized clinical trial. J Transl Med 2025; 23:183. [PMID: 39953524 PMCID: PMC11829456 DOI: 10.1186/s12967-025-06215-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/07/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Preclinical evidence suggests that young plasma has beneficial effects on multiple organ systems in aged mice. Whether young plasma exerts beneficial effects in an aging human population remains highly controversial. Despite lacking data, young donor plasma infusions have been promoted for age-related conditions. Given the preclinical evidence that young plasma exerts beneficial effects by attenuating inflammation, this study examined whether administering a young plasma protein fraction to an elderly population would exert anti-inflammatory and immune modulating effects in humans, using surgery as a tissue injury model. METHODS This double-blind, placebo-controlled study enrolled and randomized 38 patients undergoing major joint replacement surgery. Patients received four separate infusions of a plasma protein fraction derived from young donors, or placebo one day before surgery, before and after surgery on the day of surgery, and one day after surgery. Blood specimens for proteomic and immunological analyses were collected before each infusion. Based on the high-content assessment of circulating plasma proteins with single-cell analyses of peripheral immune cells, proteomic signatures and cell-type-specific signaling responses that separated the treatment groups were derived with regression models. RESULTS Elastic net regression models revealed that administration a young plasma protein fraction significantly altered the proteomic (AUC = 0.796, p = 0.002) and the cellular immune response (AUC 0.904, p < 0.001) to surgical trauma resulting in signaling pathway- and cell type-specific anti-inflammatory immune modulation. Affected proteomic pathways regulating inflammation included JAK-STAT, NF-kappa B, and MAPK (p < 0.001). These findings were confirmed at the cellular level as the MAPK and JAK/STAT signaling responses were diminished and IkB, the negative regulator of NFkB, was elevated in adaptive immune cells. CONCLUSION Reported findings provide a first proof of principle in humans that a young plasma protein fraction actively regulates inflammatory and immune responses in an elderly population. They provide a solid rationale for elucidating active principles in young plasma that may be of therapeutic benefits for a range of age-related pathologies. TRIAL REGISTRATION ClinicalTrials.gov, NCT03981419.
Collapse
Affiliation(s)
- Brice Gaudilliere
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Lei Xue
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Amy S Tsai
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Xiaoxiao Gao
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Tiffany N McAllister
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Martha Tingle
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Gladys Porras
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Igor Feinstein
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Dorien Feyaerts
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Franck Verdonk
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
- Department of Anesthesiology and Intensive Care, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Maximilian Sabayev
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Julien Hedou
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Edward A Ganio
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Eloïse Berson
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Martin Becker
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Visual and Analytic Computing, University of Rostock, Rostock, Germany
| | - Camilo Espinosa
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Yeasul Kim
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | | - Derek F Amanatullah
- Department of Orthopedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - James I Huddleston
- Department of Orthopedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Stuart B Goodman
- Department of Orthopedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Nima Aghaeepour
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Martin S Angst
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA.
| |
Collapse
|
78
|
Dony L, Krontira AC, Kaspar L, Ahmad R, Demirel IS, Grochowicz M, Schäfer T, Begum F, Sportelli V, Raimundo C, Koedel M, Labeur M, Cappello S, Theis FJ, Cruceanu C, Binder EB. Chronic exposure to glucocorticoids amplifies inhibitory neuron cell fate during human neurodevelopment in organoids. SCIENCE ADVANCES 2025; 11:eadn8631. [PMID: 39951527 PMCID: PMC11827642 DOI: 10.1126/sciadv.adn8631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 01/15/2025] [Indexed: 02/16/2025]
Abstract
Disruptions in the tightly regulated process of human brain development have been linked to increased risk for brain and mental illnesses. While the genetic contribution to these diseases is well established, important environmental factors have been less studied at molecular and cellular levels. Here, we used single-cell and cell type-specific techniques to investigate the effect of glucocorticoid (GC) exposure, a mediator of antenatal environmental risk, on gene regulation and lineage specification in unguided human neural organoids. We characterized the transcriptional response to chronic GC exposure during neural differentiation and studied the underlying gene regulatory networks by integrating single-cell transcriptomics with chromatin accessibility data. We found lasting cell type-specific changes that included autism risk genes and several transcription factors associated with neurodevelopment. Chronic GC exposure influenced lineage specification primarily by priming the inhibitory neuron lineage through transcription factors like PBX3. We provide evidence for convergence of genetic and environmental risk factors through a common mechanism of altering lineage specification.
Collapse
Affiliation(s)
- Leander Dony
- Department Genes and Environment, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804 Munich, Germany
- Institute of Computational Biology, Computational Health Center, Helmholtz Munich, 85764 Neuherberg, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
- German Center for Mental Health (DZPG), partner site Munich, Munich, Germany
| | - Anthi C. Krontira
- Department Genes and Environment, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Lea Kaspar
- Department Genes and Environment, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804 Munich, Germany
| | - Ruhel Ahmad
- Department Genes and Environment, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Ilknur Safak Demirel
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - Tim Schäfer
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Fatema Begum
- Department Genes and Environment, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Vincenza Sportelli
- Department Genes and Environment, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- German Center for Mental Health (DZPG), partner site Munich, Munich, Germany
| | - Catarina Raimundo
- Department Genes and Environment, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Maik Koedel
- Department Genes and Environment, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Marta Labeur
- Department Genes and Environment, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Silvia Cappello
- German Center for Mental Health (DZPG), partner site Munich, Munich, Germany
- Physiological Genomics, Biomedical Center (BMC), LMU Munich Faculty of Medicine, 82152 Planegg-Martinsried, Germany
- Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Fabian J. Theis
- Institute of Computational Biology, Computational Health Center, Helmholtz Munich, 85764 Neuherberg, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
- German Center for Mental Health (DZPG), partner site Munich, Munich, Germany
- TUM School of Computation, Information and Technology, Technical University of Munich, 85748 Garching bei München, Germany
| | - Cristiana Cruceanu
- Department Genes and Environment, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Elisabeth B. Binder
- Department Genes and Environment, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- German Center for Mental Health (DZPG), partner site Munich, Munich, Germany
- Max Planck Institute of Psychiatry, 80804 Munich, Germany
| |
Collapse
|
79
|
Tian L, Liu B, Ren Y, Cui J, Pang Z. Proteomics of stress-induced cardiomyopathy: insights from differential expression, protein interaction networks, and functional pathway enrichment in an isoproterenol-induced TTC mouse model. PeerJ 2025; 13:e18984. [PMID: 39959819 PMCID: PMC11830371 DOI: 10.7717/peerj.18984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/22/2025] [Indexed: 02/18/2025] Open
Abstract
Backgrounds Takotsubo cardiomyopathy (TTC), also known as stress-induced cardiomyopathy, is a condition characterized by transient left ventricular dysfunction without coronary artery obstruction. Methods We utilized label-free quantitative proteomics to analyze protein expression in a murine model of TTC, induced by a high dose of isoproterenol (ISO) injection. Results We found that a single high dose of ISO injection in mice could induce stress-related cardiac dysfunction.The proteomic analysis revealed 81 differentially expressed proteins (DEPs) between the ISO and control groups-39 were upregulated, and 42 were downregulated. Key pathways enriched by Gene Ontology (GO) analysis included collagen fibril organization, cholesterol biosynthesis, and elastic fiber assembly. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment indicated significant changes in unsaturated fatty acid biosynthesis, glutathione metabolism, steroid biosynthesis, and ferroptosis. Key hub proteins identified by the protein-protein interaction (PPI) network included Ntrk2, Fdft1, Serpine1, and Cyp1a1. Gene set enrichment analysis (GSEA) showed upregulation in terpenoid backbone biosynthesis, oxidative phosphorylation, and ferroptosis, with downregulation in pathways such as systemic lupus erythematosus and Rap1 signaling. Conclusions This study employed high-throughput liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify key proteins associated with energy metabolism, oxidative stress, inflammation, and cell death in TTC. These findings provide new insights into the molecular mechanisms of stress-induced myocardial injury and may offer potential therapeutic targets for mitigating cardiovascular damage under stress conditions.
Collapse
Affiliation(s)
- Liuyang Tian
- Interventional Center of Valvular Heart Disease, Beijing Anzhen Hospital, Beijing, China
| | - Botao Liu
- China Medical University, Shenyang, China
| | - Ying Ren
- Department of Cardiology, Tianjin Union Medical Center, Tianjin, China
- Department of Cardiology, The First Affiliated Hospital of Nankai University, Tianjin, China
| | - Jian Cui
- Department of Cardiology, Tianjin Union Medical Center, Tianjin, China
- Department of Cardiology, The First Affiliated Hospital of Nankai University, Tianjin, China
| | - Zhihua Pang
- Department of Cardiology, Tianjin Union Medical Center, Tianjin, China
- Department of Cardiology, The First Affiliated Hospital of Nankai University, Tianjin, China
| |
Collapse
|
80
|
Lemarquis AL, Kousa AI, Argyropoulos KV, Jahn L, Gipson B, Pierce J, Serrano-Marin L, Victor K, Kanno Y, Girotra NN, Andrlova H, Tsai J, Velardi E, Sharma R, Grassmann S, Ekwall O, Goldstone AB, Dudakov JA, DeWolf S, van den Brink MRM. Recirculating regulatory T cells mediate thymic regeneration through amphiregulin following damage. Immunity 2025; 58:397-411.e6. [PMID: 39892391 PMCID: PMC11932356 DOI: 10.1016/j.immuni.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/15/2024] [Accepted: 01/10/2025] [Indexed: 02/03/2025]
Abstract
Thymic injury associated with disease or cancer treatment reduces T cell production and makes patients more vulnerable to infections and cancers. Here, we examined the role of regulatory T (Treg) cells on thymic regeneration. Treg cell frequencies increased in the thymus in various acute injury models. Depletion of Treg cells impaired thymic regeneration, impacting both the thymocyte compartment and the stromal cell compartment; adoptive transfer of Treg cells enhanced regeneration. Expansion of circulating Treg cells, as opposed to that of tissue resident or recent thymic emigrants, explained this increase, as seen using parabiotic and adoptive transfer models. Single-cell analyses of recirculating Treg cells revealed expression of various regenerative factors, including the cytokine amphiregulin. Deletion of amphiregulin in these Treg cells impaired regeneration in the injured thymus. We identified an analogous population of CD39+ICOS+ Treg cells in the human thymus. Our findings point to potential therapeutic avenues to address aging- and treatment-induced immunosuppression.
Collapse
Affiliation(s)
- Andri L Lemarquis
- City of Hope Los Angeles and National Medical Center, Duarte, CA, USA; Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Rheumatology and Inflammation Research, Institute of Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anastasia I Kousa
- City of Hope Los Angeles and National Medical Center, Duarte, CA, USA
| | - Kimon V Argyropoulos
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lorenz Jahn
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brianna Gipson
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jonah Pierce
- City of Hope Los Angeles and National Medical Center, Duarte, CA, USA; Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lucia Serrano-Marin
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kristen Victor
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yuzuka Kanno
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Narina N Girotra
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hana Andrlova
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jennifer Tsai
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Enrico Velardi
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Roshan Sharma
- Single Cell Analytics Innovation Lab, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Simon Grassmann
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Olov Ekwall
- Department of Rheumatology and Inflammation Research, Institute of Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Andrew B Goldstone
- Section of Pediatric and Congenital Cardiac Surgery, Division of Cardiothoracic Surgery, New York-Presbyterian Morgan Stanley Children's Hospital, New York, NY, USA
| | - Jarrod A Dudakov
- Department of Immunology, University of Washington, Seattle, WA, USA; Immunotherapy Integrated Research Center, Division of Translational Science and Therapeutics, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Susan DeWolf
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marcel R M van den Brink
- City of Hope Los Angeles and National Medical Center, Duarte, CA, USA; Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
81
|
Wilson AM, Jacobs MM, Lambert TY, Valada A, Meloni G, Gilmore E, Murray J, Morgello S, Akbarian S. Transcriptional impacts of substance use disorder and HIV on human ventral midbrain neurons and microglia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.05.636667. [PMID: 39974894 PMCID: PMC11838593 DOI: 10.1101/2025.02.05.636667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
For people with HIV (PWH), substance use disorders (SUDs) are a prominent neurological risk factor, and the impacts of both on dopaminergic pathways are a potential point of deleterious convergence. Here, we profile, at single nucleus resolution, the substantia nigra (SN) transcriptomes of 90 postmortem donors in the context of chronic HIV and opioid/cocaine SUD, including 67 prospectively characterized PWH. We report altered microglial expression for hundreds of pro- and anti-inflammatory regulators attributable to HIV, and separately, to SUD. Stepwise, progressive microglial dysregulation, coupled to altered SN dopaminergic and GABAergic signaling, was associated with SUD/HIV dual diagnosis and further with lack of viral suppression in blood. In virologically suppressed donors, SUD comorbidity was associated with microglial transcriptional changes permissive for HIV infection. We report HIV-related downregulation of monoamine reuptake transporters specifically in dopaminergic neurons regardless of SUD status or viral load, and additional transcriptional signatures consistent with selective vulnerability of SN dopamine neurons.
Collapse
Affiliation(s)
- Alyssa M. Wilson
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michelle M. Jacobs
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tova Y. Lambert
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Aditi Valada
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gregory Meloni
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Evan Gilmore
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jacinta Murray
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Susan Morgello
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Schahram Akbarian
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
82
|
Knight SR, Abbasova L, Zeighami Y, Hansen JY, Martins D, Zelaya F, Dipasquale O, Liu T, Shin D, Bossong M, Azis M, Antoniades M, Howes OD, Bonoldi I, Egerton A, Allen P, O'Daly O, McGuire P, Modinos G. Transcriptional and Neurochemical Signatures of Cerebral Blood Flow Alterations in Individuals With Schizophrenia or at Clinical High Risk for Psychosis. Biol Psychiatry 2025:S0006-3223(25)00076-9. [PMID: 39923816 DOI: 10.1016/j.biopsych.2025.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 01/24/2025] [Accepted: 01/31/2025] [Indexed: 02/11/2025]
Abstract
BACKGROUND The brain integrates multiple scales of description, from the level of cells and molecules to large-scale networks and behavior. Understanding relationships across these scales may be fundamental to advancing understanding of brain function in health and disease. Recent neuroimaging research has shown that functional brain alterations that are associated with schizophrenia spectrum disorders (SSDs) are already present in young adults at clinical high risk for psychosis (CHR-P), but the cellular and molecular determinants of these alterations remain unclear. METHODS Here, we used regional cerebral blood flow (rCBF) data from 425 individuals (122 with an SSD compared with 116 healthy control participants [HCs] and 129 individuals at CHR-P compared with 58 HCs) and applied a novel pipeline to integrate brainwide rCBF case-control maps with publicly available transcriptomic data (17,205 gene maps) and neurotransmitter atlases (19 maps) from 1074 healthy volunteers. RESULTS We identified significant correlations between astrocyte, oligodendrocyte, oligodendrocyte precursor cell, and vascular leptomeningeal cell gene modules for both SSD and CHR-P rCBF phenotypes. Additionally, endothelial cell genes were correlated in SSD, and microglia in CHR-P. Receptor distribution significantly predicted case-control rCBF differences, with dominance analysis highlighting dopamine (D1, D2, dopamine transporter), acetylcholine (VAChT, M1), gamma-aminobutyric acid A (GABAA), and glutamate (NMDA) receptors as key predictors for SSD (R2adjusted = 0.58, false discovery rate [FDR]-corrected p < .05) and CHR-P (R2adjusted = 0.6, pFDR < .05) rCBF phenotypes. These associations were primarily localized in subcortical regions and implicate cell types involved in stress response and inflammation, alongside specific neuroreceptor systems, in shared and distinct rCBF phenotypes in psychosis. CONCLUSIONS Our findings underscore the value of integrating multiscale data as a promising hypothesis-generating approach toward decoding biological pathways involved in neuroimaging-based psychosis phenotypes, potentially guiding novel interventions.
Collapse
Affiliation(s)
- Samuel R Knight
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.
| | - Leyla Abbasova
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Yashar Zeighami
- Douglas Research Centre, Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Justine Y Hansen
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Daniel Martins
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Fernando Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Ottavia Dipasquale
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Olea Medical, La Ciotat, France
| | - Thomas Liu
- Centre for Functional MRI, University of California San Diego, San Diego, California
| | - David Shin
- Global MR Applications and Workflow, GE Healthcare, Menlo Park, California
| | - Matthijs Bossong
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Department of Psychiatry, Brain Center Rudoph Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Matilda Azis
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Mathilde Antoniades
- Center for AI and Data Science for Integrated Diagnostics and Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Ilaria Bonoldi
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Alice Egerton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Paul Allen
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Owen O'Daly
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Philip McGuire
- Department of Psychiatry, Oxford University, Oxford, United Kingdom
| | - Gemma Modinos
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| |
Collapse
|
83
|
Hu B, He R, Pang K, Wang G, Wang N, Zhu W, Sui X, Teng H, Liu T, Zhu J, Jiang Z, Zhang J, Zuo Z, Wang W, Ji P, Zhao F. High-resolution spatially resolved proteomics of complex tissues based on microfluidics and transfer learning. Cell 2025; 188:734-748.e22. [PMID: 39855194 DOI: 10.1016/j.cell.2024.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/12/2024] [Accepted: 12/17/2024] [Indexed: 01/27/2025]
Abstract
Despite recent advances in imaging- and antibody-based methods, achieving in-depth, high-resolution protein mapping across entire tissues remains a significant challenge in spatial proteomics. Here, we present parallel-flow projection and transfer learning across omics data (PLATO), an integrated framework combining microfluidics with deep learning to enable high-resolution mapping of thousands of proteins in whole tissue sections. We validated the PLATO framework by profiling the spatial proteome of the mouse cerebellum, identifying 2,564 protein groups in a single run. We then applied PLATO to rat villus and human breast cancer samples, achieving a spatial resolution of 25 μm and uncovering proteomic dynamics associated with disease states. This approach revealed spatially distinct tumor subtypes, identified key dysregulated proteins, and provided novel insights into the complexity of the tumor microenvironment. We believe that PLATO represents a transformative platform for exploring spatial proteomic regulation and its interplay with genetic and environmental factors.
Collapse
Affiliation(s)
- Beiyu Hu
- Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Ruiqiao He
- Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Pang
- Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Ning Wang
- Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenzhuo Zhu
- Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xin Sui
- Key Laboratory of Carcinogenesis and Translational Research, Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Huajing Teng
- Key Laboratory of Carcinogenesis and Translational Research, Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Tianxin Liu
- Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Junjie Zhu
- Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Zewen Jiang
- Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinyang Zhang
- Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhenqiang Zuo
- Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Weihu Wang
- Key Laboratory of Carcinogenesis and Translational Research, Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Peifeng Ji
- Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Fangqing Zhao
- Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
84
|
Jiang S, Mantri M, Maymi V, Leddon SA, Schweitzer P, Bhandari S, Holdener C, Ntekas I, Vollmers C, Flyak AI, Fowell DJ, Rudd BD, De Vlaminck I. A Temporal and Spatial Atlas of Adaptive Immune Responses in the Lymph Node Following Viral Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.31.635509. [PMID: 39975238 PMCID: PMC11838507 DOI: 10.1101/2025.01.31.635509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The spatial organization of adaptive immune cells within lymph nodes is critical for understanding immune responses during infection and disease. Here, we introduce AIR-SPACE, an integrative approach that combines high-resolution spatial transcriptomics with paired, high-fidelity long-read sequencing of T and B cell receptors. This method enables the simultaneous analysis of cellular transcriptomes and adaptive immune receptor (AIR) repertoires within their native spatial context. We applied AIR-SPACE to mouse popliteal lymph nodes at five distinct time points after Vaccinia virus footpad infection and constructed a comprehensive map of the developing adaptive immune response. Our analysis revealed heterogeneous activation niches, characterized by Interferon-gamma (IFN-γ) production, during the early stages of infection. At later stages, we delineated sub-anatomical structures within the germinal center (GC) and observed evidence that antibody-producing plasma cells differentiate and exit the GC through the dark zone. Furthermore, by combining clonotype data with spatial lineage tracing, we demonstrate that B cell clones are shared among multiple GCs within the same lymph node, reinforcing the concept of a dynamic, interconnected network of GCs. Overall, our study demonstrates how AIR-SPACE can be used to gain insight into the spatial dynamics of infection responses within lymphoid organs.
Collapse
Affiliation(s)
- Shaowen Jiang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Madhav Mantri
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Viviana Maymi
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Scott A Leddon
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Peter Schweitzer
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Subash Bhandari
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Chase Holdener
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Ioannis Ntekas
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Christopher Vollmers
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Andrew I Flyak
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Deborah J Fowell
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Brian D Rudd
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Iwijn De Vlaminck
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| |
Collapse
|
85
|
Kaya VO, Adebali O. UV-induced reorganization of 3D genome mediates DNA damage response. Nat Commun 2025; 16:1376. [PMID: 39910043 PMCID: PMC11799157 DOI: 10.1038/s41467-024-55724-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 12/20/2024] [Indexed: 02/07/2025] Open
Abstract
While it is well-established that UV radiation threatens genomic integrity, the precise mechanisms by which cells orchestrate DNA damage response and repair within the context of 3D genome architecture remain unclear. Here, we address this gap by investigating the UV-induced reorganization of the 3D genome and its critical role in mediating damage response. Employing temporal maps of contact matrices and transcriptional profiles, we illustrate the immediate and holistic changes in genome architecture post-irradiation, emphasizing the significance of this reconfiguration for effective DNA repair processes. We demonstrate that UV radiation triggers a comprehensive restructuring of the 3D genome organization at all levels, including loops, topologically associating domains and compartments. Through the analysis of DNA damage and excision repair maps, we uncover a correlation between genome folding, gene regulation, damage formation probability, and repair efficacy. We show that adaptive reorganization of the 3D genome is a key mediator of the damage response, providing new insights into the complex interplay of genomic structure and cellular defense mechanisms against UV-induced damage, thereby advancing our understanding of cellular resilience.
Collapse
Affiliation(s)
- Veysel Oğulcan Kaya
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul, Türkiye
| | - Ogün Adebali
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul, Türkiye.
| |
Collapse
|
86
|
Clegg J, Mnich ME, Carignano A, Cova G, Tavarini S, Sammicheli C, Clemente B, Smith M, Siena E, Bardelli M, Brazzoli M, Bagnoli F, McLoughlin RM, Soldaini E. Staphylococcus aureus-specific TIGIT + Treg are present in the blood of healthy subjects - a hurdle for vaccination? Front Immunol 2025; 15:1500696. [PMID: 39981298 PMCID: PMC11840346 DOI: 10.3389/fimmu.2024.1500696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/12/2024] [Indexed: 02/22/2025] Open
Abstract
Staphylococcus aureus poses an enormous burden of morbidity and mortality worldwide. Making an efficacious vaccine has however proven extremely challenging. Due to colonizing interactions, pre-existing S. aureus-specific CD4+ T cells are often found in the human population and yet a detailed characterization of their phenotypes and how they might in turn impact vaccine efficacy are thus far unknown. Using an activation induced marker assay to sort for S. aureus-specific CD4+ T cells in an effector function-independent manner, single cell transcriptomic analysis was conducted. Remarkably, S. aureus-specific CD4+ T cells consisted not only of a broader spectrum of conventional T cells (Tcon) than previously described but also of regulatory T cells (Treg). As compared to polyclonally-activated CD4+ T cells, S. aureus-specific Tcon were enriched for the expression of the Th17-type cytokine genes IL17A, IL22 and IL26, while higher percentages of S. aureus-specific Treg expressed the T Cell Immunoreceptor with Ig and ITIM domains (TIGIT), a pleiotropic immune checkpoint. Notably, the antagonistic anti-TIGIT mAb Tiragolumab increased IL-1β production in response to S. aureus in vitro. Therefore, these results uncover the presence of S. aureus-specific TIGIT+ Treg in the blood of healthy subjects that could blunt responses to vaccination and indicate TIGIT as a potential targetable biomarker to overcome pre-exposure-induced immunosuppression.
Collapse
Affiliation(s)
- Jonah Clegg
- GSK, Research Center, Siena, Italy
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Malgorzata E. Mnich
- GSK, Research Center, Siena, Italy
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | | | | | | | | | | | - Megan Smith
- GSK, Research Center, Siena, Italy
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | | | | | | | - Rachel M. McLoughlin
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | |
Collapse
|
87
|
Punzi S, Cittaro D, Gatti G, Crupi G, Botrugno OA, Cartalemi AA, Gutfreund A, Oneto C, Giansanti V, Battistini C, Santacatterina G, Patruno L, Villanti I, Palumbo M, Laverty DJ, Giannese F, Graudenzi A, Caravagna G, Antoniotti M, Nagel Z, Cavallaro U, Lanfrancone L, Yap TA, Draetta G, Balaban N, Tonon G. Early tolerance and late persistence as alternative drug responses in cancer. Nat Commun 2025; 16:1291. [PMID: 39900637 PMCID: PMC11790948 DOI: 10.1038/s41467-024-54728-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 11/20/2024] [Indexed: 02/05/2025] Open
Abstract
Bacteria withstand antibiotic treatment through three alternative mechanisms: resistance, persistence or tolerance. While resistance and persistence have been described, whether drug-induced tolerance exists in cancer cells remains largely unknown. Here, we show that human cancer cells elicit a tolerant response when exposed to commonly used chemotherapy regimens, propelled by the pervasive activation of autophagy, leading to the comprehensive activation of DNA damage repair pathways. After prolonged drug exposure, such tolerant responses morph into persistence, whereby the increased DNA damage repair is entirely reversed. The central regulator of mitophagy PINK1 drives this reduction in DNA repair via the cytoplasmic relocalization of the cell identity master HNF4A, thus hampering HNF4A transcriptional activation of DNA repair genes. We conclude that exposing cancer cells to relevant standard-of-care antitumour therapies induces a pervasive drug-induced tolerant response that might be broadly exploited to increase the impact of first-line, adjuvant treatments and debulking in advanced cancers.
Collapse
Affiliation(s)
- Simona Punzi
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Università Vita-Salute San Raffaele, Milan, Italy.
| | - Davide Cittaro
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Guido Gatti
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Gemma Crupi
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Oronza A Botrugno
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antonino Alex Cartalemi
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Alon Gutfreund
- The Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Caterina Oneto
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Valentina Giansanti
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Battistini
- Unit of Gynaecological Oncology Research, European Institute of Oncology IRCSS, Milan, Italy
| | - Giovanni Santacatterina
- Cancer Data Science Laboratory, Department of Mathematics and Geosciences, University of Trieste, Trieste, Italy
| | - Lucrezia Patruno
- Department of Informatics, Systems and Communication of the University of Milan-Bicocca, Milan, Italy
| | | | - Martina Palumbo
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Francesca Giannese
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alex Graudenzi
- Department of Informatics, Systems and Communication of the University of Milan-Bicocca, Milan, Italy
| | - Giulio Caravagna
- Cancer Data Science Laboratory, Department of Mathematics and Geosciences, University of Trieste, Trieste, Italy
| | - Marco Antoniotti
- Department of Informatics, Systems and Communication of the University of Milan-Bicocca, Milan, Italy
| | - Zachary Nagel
- Harvard Chan School of Public Health, Boston, MA, USA
| | - Ugo Cavallaro
- Unit of Gynaecological Oncology Research, European Institute of Oncology IRCSS, Milan, Italy
| | - Luisa Lanfrancone
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Timothy A Yap
- Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Giulio Draetta
- Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center Houston, Houston, TX, USA
| | - Nathalie Balaban
- The Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Giovanni Tonon
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Università Vita-Salute San Raffaele, Milan, Italy.
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
88
|
Arnanz MA, Ferrer M, Grande MT, de Martín Esteban SR, Ruiz-Pérez G, Cravatt BF, Mostany R, Lobo VJSA, Romero J, Martínez-Relimpio AM. Fatty acid amide hydrolase gene inactivation induces hetero-cellular potentiation of microglial function in the 5xFAD mouse model of Alzheimer's disease. Glia 2025; 73:352-367. [PMID: 39474846 DOI: 10.1002/glia.24638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 12/22/2024]
Abstract
Neuroinflammation has recently emerged as a crucial factor in Alzheimer's disease (AD) etiopathogenesis. Microglial cells play an important function in the inflammatory response; specifically, the emergence of disease-associated microglia (DAM) has offered new insights into the conflicting perspectives on the detrimental or beneficial roles of microglia. We previously showed that modulating the endocannabinoid tone by fatty acid amide hydrolase (FAAH) inactivation renders beneficial effects in an amyloidosis context, paradoxically accompanied by an exacerbated neuroinflammatory response and the enrichment of DAM population. Here, we aim to elucidate the role of microglial cells in FAAH-lacking mice in the 5xFAD mouse model of AD by using RNA-sequencing analysis, molecular determinations, and morphological studies by using in vivo multiphoton microscopy. FAAH-lacking AD mice displayed upregulated inflammatory genes and exhibited a DAM genetic profile. Conversely, genes linked to AD were downregulated. Depleting microglia using PLX5622 revealed that plaque-associated microglia in FAAH-deficient AD mice had a more stable, ramified morphology and increased Aβ uptake, leading to reduced plaque growth compared to control mice. Importantly, FAAH expression was negligible in microglial cells, thus suggesting a role for FAAH in the cellular interplay in the central nervous system. Our findings show that Faah gene inactivation triggers a hetero-cellular enhancement of microglial function that was paradoxically paralleled by an exacerbated inflammatory response. Taken together, the present data highlight FAAH as a potential therapeutic target in AD.
Collapse
Affiliation(s)
- María Andrea Arnanz
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | - María Ferrer
- Departamento de Anatomía Patológica, Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | - María Teresa Grande
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | | | - Gonzalo Ruiz-Pérez
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Benjamin F Cravatt
- The Skaggs Institute for Chemical Biology, Department of Cell Biology, The Scripps Research Institute, San Diego, California, USA
- The Skaggs Institute for Chemical Biology, Department of Chemistry, The Scripps Research Institute, San Diego, California, USA
| | - Ricardo Mostany
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Víctor Javier Sánchez-Arévalo Lobo
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
- Departamento de Anatomía Patológica, Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | - Julián Romero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | | |
Collapse
|
89
|
Sun ED, Zhou OY, Hauptschein M, Rappoport N, Xu L, Navarro Negredo P, Liu L, Rando TA, Zou J, Brunet A. Spatial transcriptomic clocks reveal cell proximity effects in brain ageing. Nature 2025; 638:160-171. [PMID: 39695234 PMCID: PMC11798877 DOI: 10.1038/s41586-024-08334-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 11/01/2024] [Indexed: 12/20/2024]
Abstract
Old age is associated with a decline in cognitive function and an increase in neurodegenerative disease risk1. Brain ageing is complex and is accompanied by many cellular changes2. Furthermore, the influence that aged cells have on neighbouring cells and how this contributes to tissue decline is unknown. More generally, the tools to systematically address this question in ageing tissues have not yet been developed. Here we generate a spatially resolved single-cell transcriptomics brain atlas of 4.2 million cells from 20 distinct ages across the adult lifespan and across two rejuvenating interventions-exercise and partial reprogramming. We build spatial ageing clocks, machine learning models trained on this spatial transcriptomics atlas, to identify spatial and cell-type-specific transcriptomic fingerprints of ageing, rejuvenation and disease, including for rare cell types. Using spatial ageing clocks and deep learning, we find that T cells, which increasingly infiltrate the brain with age, have a marked pro-ageing proximity effect on neighbouring cells. Surprisingly, neural stem cells have a strong pro-rejuvenating proximity effect on neighbouring cells. We also identify potential mediators of the pro-ageing effect of T cells and the pro-rejuvenating effect of neural stem cells on their neighbours. These results suggest that rare cell types can have a potent influence on their neighbours and could be targeted to counter tissue ageing. Spatial ageing clocks represent a useful tool for studying cell-cell interactions in spatial contexts and should allow scalable assessment of the efficacy of interventions for ageing and disease.
Collapse
Affiliation(s)
- Eric D Sun
- Biomedical Data Science Graduate Program, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Olivia Y Zhou
- Department of Genetics, Stanford University, Stanford, CA, USA
- Biophysics Graduate Program, Stanford University, Stanford, CA, USA
- Medical Scientist Training Program, Stanford University, Stanford, CA, USA
| | - Max Hauptschein
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Lucy Xu
- Department of Genetics, Stanford University, Stanford, CA, USA
- Biology Graduate Program, Stanford University, Stanford, CA, USA
| | | | - Ling Liu
- Department of Neurology, Stanford University, Stanford, CA, USA
- Department of Neurology, UCLA, Los Angeles, CA, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology, UCLA, Los Angeles, CA, USA
| | - Thomas A Rando
- Department of Neurology, Stanford University, Stanford, CA, USA
- Department of Neurology, UCLA, Los Angeles, CA, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology, UCLA, Los Angeles, CA, USA
| | - James Zou
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA.
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Glenn Center for the Biology of Aging, Stanford University, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
- The Phil & Penny Knight Initiative for Brain Resilience at the Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
90
|
Feng Y, Wang S, Yang D, Zheng W, Xia H, Zhu Q, Wang Z, Hu B, Jiang X, Qin X, Ni C, Pan W, Zhao Y, Pan S, Zhang Y, Song W. Inhibition of IFITM3 in cerebrovascular endothelium alleviates Alzheimer's-related phenotypes. Alzheimers Dement 2025; 21:e14543. [PMID: 39807629 PMCID: PMC11851164 DOI: 10.1002/alz.14543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/26/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025]
Abstract
INTRODUCTION Interferon-induced transmembrane protein 3 (IFITM3) modulates γ-secretase in Alzheimer's Disease (AD). Although IFITM3 knockout reduces amyloid β protein (Aβ) production, its cell-specific effect on AD remains unclear. METHODS Single nucleus RNA sequencing (snRNA-seq) was used to assess IFITM3 expression. Adeno-associated virus-BI30 (AAV-BI30) was injected to reduce IFITM3 expression in the cerebrovascular endothelial cells (CVECs). The effects on AD phenotypes in cells and AD mice were examined through behavioral tests, two-photon imaging, flow cytometry, Western blot, immunohistochemistry, and quantitative polymerase chain reaction assay (qPCR). RESULTS IFITM3 expression was increased in the CVECs of patients with AD. Overexpression of IFITM3 in primary endothelial cells enhanced Aβ generation through regulating beta-site APP cleaving enzyme 1 (BACE1) and γ-secretase. Aβ further increased IFITM3 expression, creating a vicious cycle. Knockdown of IFITM3 in CVECs decreased Aβ accumulation within cerebrovascular walls, reduced Alzheimer's-related pathology, and improved cognitive performance in AD transgenic mice. DISCUSSION Knockdown of IFITM3 in CVECs alleviates AD pathology and cognitive impairment. Targeting cerebrovascular endothelial IFITM3 holds promise for AD treatment. HIGHLIGHTS Interferon-induced transmembrane protein 3 (IFITM3) expression was increased in the cerebrovascular endothelial cells (CVECs) of patients with Alzheimer's Disease (AD). Cerebrovascular endothelial IFITM3 regulates amyloid β protein (Aβ) generation through regulating beta-site APP cleaving enzyme 1 (BACE1) and γ-secretase. Knockdown of IFITM3 in CVECs reduces Aβ deposits and improves cognitive impairments in AD transgenic mice. Cerebrovascular endothelial IFITM3 could be a potential target for the treatment of AD.
Collapse
Affiliation(s)
- Yijia Feng
- Center for Geriatric MedicineKey Laboratory of Alzheimer's Disease of Zhejiang ProvinceThe First Affiliated Hospital and Institute of AgingWenzhou Medical UniversityWenzhouZhejiangChina
| | - Shengya Wang
- Center for Geriatric MedicineKey Laboratory of Alzheimer's Disease of Zhejiang ProvinceThe First Affiliated Hospital and Institute of AgingWenzhou Medical UniversityWenzhouZhejiangChina
| | - Danlu Yang
- Center for Geriatric MedicineKey Laboratory of Alzheimer's Disease of Zhejiang ProvinceThe First Affiliated Hospital and Institute of AgingWenzhou Medical UniversityWenzhouZhejiangChina
| | - Wu Zheng
- Neuroscience Medical CenterNingbo Medical Center Lihuili HospitalNingbo UniversityNingboZhejiangChina
| | - Huwei Xia
- Center for Geriatric MedicineKey Laboratory of Alzheimer's Disease of Zhejiang ProvinceThe First Affiliated Hospital and Institute of AgingWenzhou Medical UniversityWenzhouZhejiangChina
| | - Qinxin Zhu
- Center for Geriatric MedicineKey Laboratory of Alzheimer's Disease of Zhejiang ProvinceThe First Affiliated Hospital and Institute of AgingWenzhou Medical UniversityWenzhouZhejiangChina
| | - Zhipeng Wang
- Center for Geriatric MedicineKey Laboratory of Alzheimer's Disease of Zhejiang ProvinceThe First Affiliated Hospital and Institute of AgingWenzhou Medical UniversityWenzhouZhejiangChina
| | - Bolang Hu
- Center for Geriatric MedicineKey Laboratory of Alzheimer's Disease of Zhejiang ProvinceThe First Affiliated Hospital and Institute of AgingWenzhou Medical UniversityWenzhouZhejiangChina
| | - Xinyi Jiang
- Center for Geriatric MedicineKey Laboratory of Alzheimer's Disease of Zhejiang ProvinceThe First Affiliated Hospital and Institute of AgingWenzhou Medical UniversityWenzhouZhejiangChina
| | - Xuemei Qin
- Center for Geriatric MedicineKey Laboratory of Alzheimer's Disease of Zhejiang ProvinceThe First Affiliated Hospital and Institute of AgingWenzhou Medical UniversityWenzhouZhejiangChina
| | - Chenkang Ni
- Center for Geriatric MedicineKey Laboratory of Alzheimer's Disease of Zhejiang ProvinceThe First Affiliated Hospital and Institute of AgingWenzhou Medical UniversityWenzhouZhejiangChina
| | - Wenhao Pan
- Center for Geriatric MedicineKey Laboratory of Alzheimer's Disease of Zhejiang ProvinceThe First Affiliated Hospital and Institute of AgingWenzhou Medical UniversityWenzhouZhejiangChina
| | - Yifan Zhao
- Center for Geriatric MedicineKey Laboratory of Alzheimer's Disease of Zhejiang ProvinceThe First Affiliated Hospital and Institute of AgingWenzhou Medical UniversityWenzhouZhejiangChina
| | - Sipei Pan
- Center for Geriatric MedicineKey Laboratory of Alzheimer's Disease of Zhejiang ProvinceThe First Affiliated Hospital and Institute of AgingWenzhou Medical UniversityWenzhouZhejiangChina
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)WenzhouChina
| | - Yun Zhang
- Department of NeurologyNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Weihong Song
- Center for Geriatric MedicineKey Laboratory of Alzheimer's Disease of Zhejiang ProvinceThe First Affiliated Hospital and Institute of AgingWenzhou Medical UniversityWenzhouZhejiangChina
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)WenzhouChina
| |
Collapse
|
91
|
Karaoglu B, Gur Dedeoglu B. A Regulatory Circuits Analysis Tool, "miRCuit," Helps Reveal Breast Cancer Pathways: Toward Systems Medicine in Oncology. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2025; 29:49-59. [PMID: 39853230 DOI: 10.1089/omi.2024.0201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
A systems medicine understanding of the regulatory molecular circuits that underpin breast cancer is essential for early cancer detection and precision/personalized medicine in clinical oncology. Transcription factors (TFs), microRNAs (miRNAs), and long non-coding RNAs (lncRNAs) control gene expression and cell biology, and by extension, serve as pillars of the regulatory circuits that determine human health and disease. We report here the development of a regulatory circuit analysis program, miRCuit, constructing 10 different types of regulatory elements involving messenger RNA, miRNA, lncRNA, and TFs. Using the miRCuit, we analyzed expression profiling data from 179 invasive ductal breast carcinoma and 51 normal tissue samples from the Gene Expression Omnibus database. We identified eight circuit types along with two special types of circuits, one of which highlighted the significant roles of lncRNA CASC15, miR-130b-3p, and TF KLF5 in breast cancer development and progression. These findings advance our understanding of the regulatory molecules associated with breast cancer. Moreover, miRCuit offers a new avenue for users to construct circuits from regulatory molecules for potential applications to decipher disease pathogenesis.
Collapse
Affiliation(s)
- Begum Karaoglu
- Biotechnology Institute, Ankara University, Ankara, Turkey
- Intergen Genetics and Rare Diseases Diagnosis Center, Ankara, Turkey
| | | |
Collapse
|
92
|
Xue Z, Wu L, Tian R, Gao B, Zhao Y, He B, Sun D, Zhao B, Li Y, Zhu K, Wang L, Yao J, Liu W, Lu L. Integrative mapping of human CD8 + T cells in inflammation and cancer. Nat Methods 2025; 22:435-445. [PMID: 39614111 DOI: 10.1038/s41592-024-02530-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/16/2024] [Indexed: 12/01/2024]
Abstract
CD8+ T cells exhibit remarkable phenotypic diversity in inflammation and cancer. However, a comprehensive understanding of their clonal landscape and dynamics remains elusive. Here we introduce scAtlasVAE, a deep-learning-based model for the integration of large-scale single-cell RNA sequencing data and cross-atlas comparisons. scAtlasVAE has enabled us to construct an extensive human CD8+ T cell atlas, comprising 1,151,678 cells from 961 samples across 68 studies and 42 disease conditions, with paired T cell receptor information. Through incorporating information in T cell receptor clonal expansion and sharing, we have successfully established connections between distinct cell subtypes and shed light on their phenotypic and functional transitions. Notably, our approach characterizes three distinct exhausted T cell subtypes and reveals diverse transcriptome and clonal sharing patterns in autoimmune and immune-related adverse event inflammation. Furthermore, scAtlasVAE facilitates the automatic annotation of CD8+ T cell subtypes in query single-cell RNA sequencing datasets, enabling unbiased and scalable analyses. In conclusion, our work presents a comprehensive single-cell reference and computational framework for CD8+ T cell research.
Collapse
Affiliation(s)
- Ziwei Xue
- Department of Rheumatology and Immunology of the Second Affiliated Hospital, and Centre of Biomedical Systems and Informatics of Zhejiang University, University of Edinburgh Institute, Zhejiang University School of Medicine, Hangzhou, China
- Biomedical Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, China
| | - Lize Wu
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, China
- Institute of Immunology and Department of Rheumatology at Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruonan Tian
- Department of Rheumatology and Immunology of the Second Affiliated Hospital, and Centre of Biomedical Systems and Informatics of Zhejiang University, University of Edinburgh Institute, Zhejiang University School of Medicine, Hangzhou, China
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, China
| | - Bing Gao
- Department of Rheumatology and Immunology of the Second Affiliated Hospital, and Centre of Biomedical Systems and Informatics of Zhejiang University, University of Edinburgh Institute, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Zhao
- AI Lab, Tencent, Shenzhen, China
| | - Bing He
- AI Lab, Tencent, Shenzhen, China
| | - Di Sun
- Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bingkang Zhao
- Department of Rheumatology and Immunology of the Second Affiliated Hospital, and Centre of Biomedical Systems and Informatics of Zhejiang University, University of Edinburgh Institute, Zhejiang University School of Medicine, Hangzhou, China
- Biomedical Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
| | - Yicheng Li
- Department of Rheumatology and Immunology of the Second Affiliated Hospital, and Centre of Biomedical Systems and Informatics of Zhejiang University, University of Edinburgh Institute, Zhejiang University School of Medicine, Hangzhou, China
- Biomedical Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
| | - Kaixiang Zhu
- Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lie Wang
- Bone Marrow Transplantation Center and Institute of Immunology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Wanlu Liu
- Department of Rheumatology and Immunology of the Second Affiliated Hospital, and Centre of Biomedical Systems and Informatics of Zhejiang University, University of Edinburgh Institute, Zhejiang University School of Medicine, Hangzhou, China.
- Biomedical Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK.
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, China.
- Zhejiang Key Laboratory of Medical Imaging Artificial Intelligence, Haining, China.
| | - Linrong Lu
- Department of Rheumatology and Immunology of the Second Affiliated Hospital, and Centre of Biomedical Systems and Informatics of Zhejiang University, University of Edinburgh Institute, Zhejiang University School of Medicine, Hangzhou, China.
- Biomedical Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK.
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, China.
- Institute of Immunology and Department of Rheumatology at Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
93
|
Liu Y, Li Z, Chen X, Cui X, Gao Z, Jiang R. INSTINCT: Multi-sample integration of spatial chromatin accessibility sequencing data via stochastic domain translation. Nat Commun 2025; 16:1247. [PMID: 39893190 PMCID: PMC11787322 DOI: 10.1038/s41467-025-56535-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 01/13/2025] [Indexed: 02/04/2025] Open
Abstract
Recent advances in spatial epigenomic techniques have given rise to spatial assay for transposase-accessible chromatin using sequencing (spATAC-seq) data, enabling the characterization of epigenomic heterogeneity and spatial information simultaneously. Integrative analysis of multiple spATAC-seq samples, for which no method has been developed, allows for effective identification and elimination of unwanted non-biological factors within the data, enabling comprehensive exploration of tissue structures and providing a holistic epigenomic landscape, thereby facilitating the discovery of biological implications and the study of regulatory processes. In this article, we present INSTINCT, a method for multi-sample INtegration of Spatial chromaTIN accessibility sequencing data via stochastiC domain Translation. INSTINCT can efficiently handle the high dimensionality of spATAC-seq data and eliminate the complex noise and batch effects of samples through a stochastic domain translation procedure. We demonstrate the superiority and robustness of INSTINCT in integrating spATAC-seq data across multiple simulated scenarios and real datasets. Additionally, we highlight the advantages of INSTINCT in spatial domain identification, visualization, spot-type annotation, and various downstream analyses, including motif enrichment analysis, expression enrichment analysis, and partitioned heritability analysis.
Collapse
Affiliation(s)
- Yuyao Liu
- Ministry of Education Key Laboratory of Bioinformatics, Bioinformatics Division at the Beijing National Research Center for Information Science and Technology, Center for Synthetic and Systems Biology, Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Zhen Li
- Ministry of Education Key Laboratory of Bioinformatics, Bioinformatics Division at the Beijing National Research Center for Information Science and Technology, Center for Synthetic and Systems Biology, Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Xiaoyang Chen
- Ministry of Education Key Laboratory of Bioinformatics, Bioinformatics Division at the Beijing National Research Center for Information Science and Technology, Center for Synthetic and Systems Biology, Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Xuejian Cui
- Ministry of Education Key Laboratory of Bioinformatics, Bioinformatics Division at the Beijing National Research Center for Information Science and Technology, Center for Synthetic and Systems Biology, Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Zijing Gao
- Ministry of Education Key Laboratory of Bioinformatics, Bioinformatics Division at the Beijing National Research Center for Information Science and Technology, Center for Synthetic and Systems Biology, Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Rui Jiang
- Ministry of Education Key Laboratory of Bioinformatics, Bioinformatics Division at the Beijing National Research Center for Information Science and Technology, Center for Synthetic and Systems Biology, Department of Automation, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
94
|
Li D, Shi X, Yang Y, Deng Y, Chen D, Chen S, Wang J, Wen G, Liang Z, Wang F, Gao J, Liu Y, Wang D, Liang R, Xu H, Chen R, Chen S, Wang L. Targeting BRD4 ameliorates experimental emphysema by disrupting super-enhancer in polarized alveolar macrophage. Respir Res 2025; 26:46. [PMID: 39891210 PMCID: PMC11786429 DOI: 10.1186/s12931-025-03120-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/16/2025] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a progressive chronic lung disease characterized by chronic airway inflammation and emphysema. Macrophage polarization plays an important role in COPD pathogenesis by secreting inflammatory mediators. Bromodomain-containing protein 4 (BRD4), an epigenetic reader that specifically binds to histones, plays a crucial role in inflammatory diseases by regulating macrophage polarization. Herein, we attempted to examine the hypothesis that modulating alveolar macrophage polarization via BRD4 inhibitors might has a potential for COPD treatment. METHODS We firstly analyzed BRD4 expression and its correlation with clinical parameters and macrophage polarization markers in sputum transcriptomes from 94 COPD patients and 36 healthy individuals. In vivo, BRD4 inhibitor JQ1 and degrader ARV-825 were intraperitoneally administrated into emphysema mice to assess their effects on lung emphysema and inflammation. In vitro, RNA-seq and CUT&Tag assay of BRD4 and H3K27ac were applied for elucidating how BRD4 regulates macrophage polarization. RESULTS We found an increased expression of BRD4 in the induced sputum from patients with COPD and unveiled a strong correlation between BRD4 expression and clinical parameters as well as macrophage polarization. Subsequently, BRD4 inhibitor JQ1 and degrader ARV-825 significantly mitigated emphysema and airway inflammation along with better protection of lung function in mice. BRD4 inhibition also suppressed both M1 and M2 alveolar macrophage polarization. The CUT&Tag assay of BRD4 and H3K27ac, revealed that BRD4 inhibition disrupted the super-enhancers (SEs) of IRF4 (a crucial transcription factor for M2 macrophage), and subsequently affected the expression of matrix metalloproteinase 12 (MMP12) which is vital for emphysema development. CONCLUSION This study suggested that downregulation of BRD4 might suppress airway inflammation and emphysema through disrupting the SEs of IRF4 and alveolar macrophages polarization, which might be a potential target of therapeutic intervention in COPD. A diagram of the mechanism by which BRD4 mediated super-enhancer of IRF4 in M2 AMs. Graphic illustration showed targeting BRD4 in M2 polarized AMs lead to the downregulation of MMP12 expression, resulting in the amelioration of experimental emphysema by disrupting the super-enhancer of IRF4.
Collapse
Affiliation(s)
- Difei Li
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.
- National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guang Zhou, 510150, China.
| | - Xing Shi
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuqiong Yang
- National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guang Zhou, 510150, China
| | - Yao Deng
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Dandan Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shuyu Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jinyong Wang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Guanxi Wen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhenyu Liang
- National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guang Zhou, 510150, China
| | - Fengyan Wang
- National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guang Zhou, 510150, China
| | - Jiaqi Gao
- School of Life Sciences, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Yuanyuan Liu
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Danna Wang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ruifang Liang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Haizhao Xu
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Rongchang Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.
- National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guang Zhou, 510150, China.
| | - Shanze Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Lingwei Wang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
95
|
Wang Y, Fasching L, Wu F, Suvakov M, Huttner A, Berretta S, Roberts R, Leckman JF, Fernandez TV, Abyzov A, Vaccarino FM. Interneuron Loss and Microglia Activation by Transcriptome Analyses in the Basal Ganglia of Tourette Disorder. Biol Psychiatry 2025:S0006-3223(25)00064-2. [PMID: 39892689 DOI: 10.1016/j.biopsych.2024.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/28/2024] [Accepted: 12/30/2024] [Indexed: 02/04/2025]
Abstract
BACKGROUND Tourette disorder (TS) is characterized by motor hyperactivity and tics that are believed to originate in the basal ganglia. Postmortem immunocytochemical analyses has revealed decreases in cholinergic (CH), as well as parvalbumin and somatostatin GABA (gamma-aminobutyric acid) interneurons (INs) within the caudate/putamen of individuals with TS. METHODS We obtained transcriptome and open chromatin datasets by single-nucleus RNA sequencing and single-nucleus ATAC sequencing, respectively, from caudate/putamen postmortem specimens of 6 adults with TS and 6 matched normal control subjects. Differential gene expression and differential chromatin accessibility analyses were performed in identified cell types. RESULTS The data reproduced the known cellular composition of the human striatum, including a majority of medium spiny neurons (MSNs) and small populations of GABA-INs and CH-INs. INs were decreased by ∼50% in TS brains, with no difference in other cell types. Differential gene expression analysis suggested that mitochondrial oxidative metabolism in MSNs and synaptic adhesion and function in INs were both decreased in subjects with TS, while there was activation of immune response in microglia. Gene expression changes correlated with changes in activity of cis-regulatory elements, suggesting a relationship of transcriptomic and regulatory abnormalities in MSNs, oligodendrocytes, and astrocytes of TS brains. CONCLUSIONS This initial analysis of the TS basal ganglia transcriptome at the single-cell level confirms the loss and synaptic dysfunction of basal ganglia INs, consistent with in vivo basal ganglia hyperactivity. In parallel, oxidative metabolism was decreased in MSNs and correlated with activation of microglia cells, which is attributable at least in part to dysregulated activity of putative enhancers, implicating altered epigenomic regulation in TS.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - Liana Fasching
- Child Study Center, Yale University, New Haven, Connecticut
| | - Feinan Wu
- Child Study Center, Yale University, New Haven, Connecticut
| | - Milovan Suvakov
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - Anita Huttner
- Department of Pathology, Yale University, New Haven, Connecticut
| | - Sabina Berretta
- McLean Hospital, Harvard Medical School, Belmont, Massachusetts
| | - Rosalinda Roberts
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | | | | | - Alexej Abyzov
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota.
| | - Flora M Vaccarino
- Child Study Center, Yale University, New Haven, Connecticut; Department of Neuroscience, Yale University, New Haven, Connecticut; Yale Kavli Institute for Neuroscience, New Haven, Connecticut.
| |
Collapse
|
96
|
Keady J, Charnigo R, Shaykin JD, Prantzalos ER, Xia M, Denehy E, Bumgardner C, Miller J, Ortinski P, Bardo MT, Turner JR. Behavioral and genetic markers of susceptibility to escalate fentanyl intake. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.06.627259. [PMID: 39713469 PMCID: PMC11661085 DOI: 10.1101/2024.12.06.627259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Background The "loss of control" over drug consumption, present in opioid use disorder (OUD) and known as escalation of intake, is well-established in preclinical rodent models. However, little is known about how antecedent behavioral characteristics, such as valuation of hedonic reinforcers prior to drug use, may impact the trajectory of fentanyl intake over time. Moreover, it is unclear if distinct escalation phenotypes may be driven by genetic markers predictive of OUD susceptibility. Methods Male and female Sprague-Dawley rats (n=63) were trained in a sucrose reinforcement task using a progressive ratio schedule. Individual differences in responsivity to sucrose were hypothesized to predict escalation of fentanyl intake. Rats underwent daily 1-h acquisition sessions for i.v. fentanyl self-administration (2.5 μg/kg; FR1) for 7 days, followed by 21 6-h escalation sessions, then tissue from prefrontal cortex was collected for RNA sequencing and qPCR. Latent growth curve and group-based trajectory modeling were used, respectively, to evaluate the association between sucrose reinforcement and fentanyl self-administration and to identify whether distinct escalation phenotypes can be linked to gene expression patterns. Results Sucrose breakpoints were not predictive of fentanyl acquisition nor change during escalation, but did predict fentanyl intake on the first day of extended access to fentanyl. Permutation analyses did not identify associations between behavior and single gene expression when evaluated overall, or between our ascertained phenotypes. However, weighted genome correlation network analysis (WGCNA) and gene set enrichment analysis (GSEA) determined several gene modules linked to escalated fentanyl intake, including genes coding for voltage-gated potassium channels, calcium channels, and genes involved in excitatory synaptic signaling. Transcription factor analyses identified EZH2 and JARID2 as potential transcriptional regulators associated with escalated fentanyl intake. Genome-wide association study (GWAS) term categories were also generated and positively associated with terms relating to substance use disorders. Discussion Escalation of opioid intake is largely distinct from motivation for natural reward, such as sucrose. Further, the gene networks associated with fentanyl escalation suggest that engagement of select molecular pathways distinguish individuals with "addiction prone" behavioral endophenotypes, potentially representing druggable targets for opioid use disorder. Our extended in silico identification of SNPs and transcription factors associated with the "addiction prone" high escalating rats highlights the importance of integrating findings from translational preclinical models. Through a precision medicine approach, our results may aid in the development of patient-centered treatment options for those with OUD.
Collapse
Affiliation(s)
- Jack Keady
- College of Pharmacy, University of Kentucky, University of Kentucky, Lexington, KY 40506, USA
| | - Richard Charnigo
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
| | - Jakob D Shaykin
- College of Pharmacy, University of Kentucky, University of Kentucky, Lexington, KY 40506, USA
- Department of Psychology, University of Kentucky, University of Kentucky, Lexington, KY 40506, USA
| | - Emily R Prantzalos
- College of Pharmacy, University of Kentucky, University of Kentucky, Lexington, KY 40506, USA
| | - Mengfan Xia
- Department of Neuroscience, University of Kentucky, University of Kentucky, Lexington, KY 40506, USA
| | - Emily Denehy
- Department of Psychology, University of Kentucky, University of Kentucky, Lexington, KY 40506, USA
| | - Cody Bumgardner
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY 40506, USA
- Division of Biomedical Informatics, Department of Internal Medicine, University of Kentucky, Lexington, KY 40506, USA
| | - Justin Miller
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY 40506, USA
- Division of Biomedical Informatics, Department of Internal Medicine, University of Kentucky, Lexington, KY 40506, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40506, USA
| | - Pavel Ortinski
- Department of Neuroscience, University of Kentucky, University of Kentucky, Lexington, KY 40506, USA
| | - Michael T Bardo
- Department of Psychology, University of Kentucky, University of Kentucky, Lexington, KY 40506, USA
| | - Jill R Turner
- College of Pharmacy, University of Kentucky, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
97
|
Shanmugam V, Tokcan N, Chafamo D, Sullivan S, Borji M, Martin H, Newton G, Nadaf N, Hanbury S, Barrera I, Cable D, Weir J, Ashenberg O, Pinkus G, Rodig S, Uhler C, Macosko E, Shipp M, Louissaint A, Chen F, Golub T. Genome-scale spatial mapping of the Hodgkin lymphoma microenvironment identifies tumor cell survival factors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.24.631210. [PMID: 39896575 PMCID: PMC11785141 DOI: 10.1101/2025.01.24.631210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
A key challenge in cancer research is to identify the secreted factors that contribute to tumor cell survival. Nowhere is this more evident than in Hodgkin lymphoma, where malignant Hodgkin Reed Sternberg (HRS) cells comprise only 1-5% of the tumor mass, the remainder being infiltrating immune cells that presumably are required for the survival of the HRS cells. Until now, there has been no way to characterize the complex Hodgkin lymphoma tumor microenvironment at genome scale. Here, we performed genome-wide transcriptional profiling with spatial and single-cell resolution. We show that the neighborhood surrounding HRS cells forms a distinct niche involving 31 immune and stromal cell types and is enriched in CD4+ T cells, myeloid and follicular dendritic cells, while being depleted of plasma cells. Moreover, we used machine learning to nominate ligand-receptor pairs enriched in the HRS cell niche. Specifically, we identified IL13 as a candidate survival factor. In support of this hypothesis, recombinant IL13 augmented the proliferation of HRS cells in vitro. In addition, genome-wide CRISPR/Cas9 loss-of-function studies across more than 1,000 human cancer cell lines showed that IL4R and IL13RA1, the heterodimeric partners that constitute the IL13 receptor, were uniquely required for the survival of HRS cells. Moreover, monoclonal antibodies targeting either IL4R or IL13R phenocopied the genetic loss of function studies. IL13-targeting antibodies are already FDA-approved for atopic dermatitis, suggesting that clinical trials testing such agents should be explored in patients with Hodgkin lymphoma.
Collapse
Affiliation(s)
- Vignesh Shanmugam
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Neriman Tokcan
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Mathematics, University of Massachusetts Boston, Boston, MA, USA
| | - Daniel Chafamo
- Klarman Cell Observatory, Broad Institute, Cambridge, MA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sean Sullivan
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Mehdi Borji
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Haley Martin
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Gail Newton
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Naeem Nadaf
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | - Dylan Cable
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Jackson Weir
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Biological and Biomedical Sciences Program, Harvard University, Cambridge, MA, USA
| | - Orr Ashenberg
- Klarman Cell Observatory, Broad Institute, Cambridge, MA, USA
| | - Geraldine Pinkus
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Scott Rodig
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Caroline Uhler
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Laboratory for Information & Decision Systems, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Evan Macosko
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Margaret Shipp
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Abner Louissaint
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Fei Chen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Todd Golub
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| |
Collapse
|
98
|
Ng CW, Wong KK, Lawson BC, Ferri-Borgogno S, Mok SC. Spatial transcriptome reveals histology-correlated immune signature learnt by deep learning attention mechanism on H&E-stained images for ovarian cancer prognosis. J Transl Med 2025; 23:113. [PMID: 39856778 PMCID: PMC11761186 DOI: 10.1186/s12967-024-06007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 12/18/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND The ability to predict the prognosis of patients with ovarian cancer can greatly improve disease management. However, the knowledge on the mechanism of the prediction is limited. We sought to deconvolute the attention feature learnt by a deep learning convolutional neural networks trained with whole-slide images (WSIs) of hematoxylin-and-eosin (H&E)-stained tumor samples using spatial transcriptomic data. METHODS In this study, 773 WSIs of H&E-stained tumor sections from 335 patients with treatment naïve high-grade serous ovarian cancer who were included in The Cancer Genome Atlas (TCGA) Pan-Cancer study were used to train, and validate, and to test a ResNet101 CNN model modified with attention mechanism. WSIs from patients in an independent cohort were used to further evaluate the model. RESULTS The prognostic value of the predicted H&E-based survival scores from the trained model on patient survival was evaluated. The attention signals learnt by the model were then examined their correlation with immune signatures using spatial transcriptome. After validating the model with the testing datasets, pathway enrichment analysis showed that the H&E-based survival score significantly correlated with certain immune signatures and this was validated spatially using spatial transcriptome data generated from ovarian cancer FFPE samples by correlating the selected signature and attention signal. CONCLUSIONS In conclusion, attention mechanism might be useful to identify regions for their specific immune activities. This could guide future pathological study for the useful immunological features that are important in modulating the prognosis of ovarian cancer patients.
Collapse
Affiliation(s)
- Chun Wai Ng
- Department of Gynecologic Oncology and Reproductive Medicine, Unit 1362, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Kwong-Kwok Wong
- Department of Gynecologic Oncology and Reproductive Medicine, Unit 1362, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Barrett C Lawson
- Department of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sammy Ferri-Borgogno
- Department of Gynecologic Oncology and Reproductive Medicine, Unit 1362, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| | - Samuel C Mok
- Department of Gynecologic Oncology and Reproductive Medicine, Unit 1362, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| |
Collapse
|
99
|
Liu B, Wu T, Miao BA, Ji F, Liu S, Wang P, Zhao Y, Zhong Y, Sundaram A, Zeng TB, Majcherska-Agrawal M, Keenan RJ, Pan T, He C. snoRNA-facilitated protein secretion revealed by transcriptome-wide snoRNA target identification. Cell 2025; 188:465-483.e22. [PMID: 39579764 PMCID: PMC11761385 DOI: 10.1016/j.cell.2024.10.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/13/2024] [Accepted: 10/24/2024] [Indexed: 11/25/2024]
Abstract
Small nucleolar RNAs (snoRNAs) are non-coding RNAs known for guiding RNA modifications, including 2'-O-methylation (Nm) and pseudouridine (Ψ). While snoRNAs may also interact with other RNAs, such as mRNA, the full repertoire of RNAs targeted by snoRNA remains elusive due to the lack of effective technologies that identify snoRNA targets transcriptome wide. Here, we develop a chemical crosslinking-based approach that comprehensively detects cellular RNA targets of snoRNAs, yielding thousands of previously unrecognized snoRNA-mRNA interactions in human cells and mouse brain tissues. Many interactions occur outside of snoRNA-guided RNA modification sites, hinting at non-canonical functions beyond RNA modification. We find that one of these snoRNAs, SNORA73, targets mRNAs that encode secretory proteins and membrane proteins. SNORA73 also interacts with 7SL RNA, part of the signal recognition particle (SRP) required for protein secretion. The mRNA-SNORA73-7SL RNA interactions enhance the association of the SNORA73-target mRNAs with SRP, thereby facilitating the secretion of encoded proteins.
Collapse
Affiliation(s)
- Bei Liu
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, Chicago, IL 60637, USA
| | - Tong Wu
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, Chicago, IL 60637, USA
| | - Bernadette A Miao
- Howard Hughes Medical Institute, Chicago, IL 60637, USA; Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA; Medical Scientist Training Program, The University of Chicago, Chicago, IL 60637, USA
| | - Fei Ji
- Howard Hughes Medical Institute, Chicago, IL 60637, USA; Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL 60637, USA; Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL 60637, USA
| | - Shun Liu
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, Chicago, IL 60637, USA
| | - Pingluan Wang
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, Chicago, IL 60637, USA
| | - Yutao Zhao
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, Chicago, IL 60637, USA
| | - Yuhao Zhong
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, Chicago, IL 60637, USA
| | - Arunkumar Sundaram
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Tie-Bo Zeng
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, Chicago, IL 60637, USA
| | - Marta Majcherska-Agrawal
- Howard Hughes Medical Institute, Chicago, IL 60637, USA; Committee on Genetics, Genomics & System Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Robert J Keenan
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Tao Pan
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA.
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, Chicago, IL 60637, USA; Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA; Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
100
|
Sivakumar S, Wang Y, Goetsch SC, Pandit V, Wang L, Zhao H, Sundarrajan A, Armendariz D, Takeuchi C, Nzima M, Chen WC, Dederich AE, El Hayek L, Gao T, Ghazawi R, Gogate A, Kaur K, Kim HB, McCoy MK, Niederstrasser H, Oura S, Pinzon-Arteaga CA, Sanghvi M, Schmitz DA, Yu L, Zhang Y, Zhou Q, Kraus WL, Xu L, Wu J, Posner BA, Chahrour MH, Hon GC, Munshi NV. Benchmarking and optimizing Perturb-seq in differentiating human pluripotent stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.21.633969. [PMID: 39896670 PMCID: PMC11785042 DOI: 10.1101/2025.01.21.633969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Perturb-seq is a powerful approach to systematically assess how genes and enhancers impact the molecular and cellular pathways of development and disease. However, technical challenges have limited its application in stem cell-based systems. Here, we benchmarked Perturb-seq across multiple CRISPRi modalities, on diverse genomic targets, in multiple human pluripotent stem cells, during directed differentiation to multiple lineages, and across multiple sgRNA delivery systems. To ensure cost-effective production of large-scale Perturb-seq datasets as part of the Impact of Genomic Variants on Function (IGVF) consortium, our optimized protocol dynamically assesses experiment quality across the weeks-long procedure. Our analysis of 1,996,260 sequenced cells across benchmarking datasets reveals shared regulatory networks linking disease-associated enhancers and genes with downstream targets during cardiomyocyte differentiation. This study establishes open tools and resources for interrogating genome function during stem cell differentiation.
Collapse
Affiliation(s)
- Sushama Sivakumar
- Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yihan Wang
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sean C Goetsch
- Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Vrushali Pandit
- Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lei Wang
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Huan Zhao
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Anjana Sundarrajan
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Daniel Armendariz
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chikara Takeuchi
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mpathi Nzima
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wei-Chen Chen
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ashley E Dederich
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lauretta El Hayek
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Taosha Gao
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Renad Ghazawi
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ashlesha Gogate
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kiran Kaur
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hyung Bum Kim
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Melissa K McCoy
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Seiya Oura
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Carolos A Pinzon-Arteaga
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Menaka Sanghvi
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Daniel A Schmitz
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Leqian Yu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yanfeng Zhang
- Quantitative Biomedical Research Center, Peter O’Donnell Jr School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qinbo Zhou
- Quantitative Biomedical Research Center, Peter O’Donnell Jr School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - W. Lee Kraus
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Peter O’Donnell Jr School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bruce A Posner
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Maria H Chahrour
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Peter O’Donnell Jr Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gary C Hon
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Lyda Hill Department of Bioinformatics, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nikhil V Munshi
- Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|