51
|
Stefanou MI, Panagiotopoulos E, Palaiodimou L, Bakola E, Smyrnis N, Papadopoulou M, Moschovos C, Paraskevas GP, Rizos E, Boutati E, Tzavellas E, Gatzonis S, Mengel A, Giannopoulos S, Tsiodras S, Kimiskidis VK, Tsivgoulis G. Current update on the neurological manifestations of long COVID: more questions than answers. EXCLI JOURNAL 2024; 23:1463-1486. [PMID: 39850323 PMCID: PMC11755773 DOI: 10.17179/excli2024-7885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/12/2024] [Indexed: 01/25/2025]
Abstract
Since the outbreak of the COVID-19 pandemic, there has been a global surge in patients presenting with prolonged or late-onset debilitating sequelae of SARS-CoV-2 infection, colloquially termed long COVID. This narrative review provides an updated synthesis of the latest evidence on the neurological manifestations of long COVID, discussing its clinical phenotypes, underlying pathophysiology, while also presenting the current state of diagnostic and therapeutic approaches. Approximately one-third of COVID-19 survivors experience prolonged neurological sequelae that persist for at least 12-months post-infection, adversely affecting patients' quality of life. Core neurological manifestations comprise fatigue, post-exertional malaise, cognitive impairment, headache, lightheadedness ('brain fog'), sleep disturbances, taste or smell disorders, dysautonomia, anxiety, and depression. Some of these features overlap substantially with those reported in post-intensive-care syndrome, myalgic encephalomyelitis/chronic fatigue syndrome, fibromyalgia, and postural-orthostatic-tachycardia syndrome. Advances in data-driven research utilizing electronic-health-records combined with machine learning and artificial intelligence have propelled the identification of long COVID sub-phenotypes. Furthermore, the evolving definitions reflect the dynamic conceptualization of long COVID in both research and clinical contexts. Although the underlying pathophysiology remains incompletely elucidated, neuroinflammatory responses, endotheliopathy, and metabolic imbalances, rather than direct viral neuroinvasion, are implicated in neurological sequelae. Genetic susceptibility has also emerged as a potential risk factor. While major limitations remain with existing definitions, collaborative strategies to standardize diagnostic approaches are needed. Current therapeutic paradigms advocate for multimodal approaches, integrating pharmacological and non-pharmacological interventions along with comprehensive rehabilitation programs. Although preliminary evidence of therapeutic efficacy has been provided by a number of clinical trials, methodological constraints limit the generalizability of this evidence. Preventive measures, notably vaccination, have proven integral for reducing the global burden of long COVID. Considering the healthcare and socioeconomic repercussions incurred by long COVID worldwide, international collaborative initiatives are warranted to address the remaining challenges in diagnosing and managing patients presenting with neurological sequelae. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Maria-Ioanna Stefanou
- Second Department of Neurology, National and Kapodistrian University of Athens, School of Medicine, “Attikon” University Hospital, Athens, Greece
- Department of Neurology & Stroke, Eberhard-Karls University of Tuebingen, Tuebingen, Germany
- Hertie Institute for Clinical Brain Research, Eberhard-Karls University of Tuebingen, Tuebingen, Germany
| | - Evangelos Panagiotopoulos
- Second Department of Neurology, National and Kapodistrian University of Athens, School of Medicine, “Attikon” University Hospital, Athens, Greece
| | - Lina Palaiodimou
- Second Department of Neurology, National and Kapodistrian University of Athens, School of Medicine, “Attikon” University Hospital, Athens, Greece
| | - Eleni Bakola
- Second Department of Neurology, National and Kapodistrian University of Athens, School of Medicine, “Attikon” University Hospital, Athens, Greece
| | - Nikolaos Smyrnis
- Second Department of Psychiatry, National and Kapodistrian University of Athens, School of Medicine, "Attikon" University Hospital, Athens, Greece
| | - Marianna Papadopoulou
- Second Department of Neurology, National and Kapodistrian University of Athens, School of Medicine, “Attikon” University Hospital, Athens, Greece
- Department of Physiotherapy, University of West Attica, Athens, Greece
| | - Christos Moschovos
- Second Department of Neurology, National and Kapodistrian University of Athens, School of Medicine, “Attikon” University Hospital, Athens, Greece
| | - George P. Paraskevas
- Second Department of Neurology, National and Kapodistrian University of Athens, School of Medicine, “Attikon” University Hospital, Athens, Greece
| | - Emmanouil Rizos
- Second Department of Psychiatry, National and Kapodistrian University of Athens, School of Medicine, "Attikon" University Hospital, Athens, Greece
| | - Eleni Boutati
- Second Propaedeutic Department of Internal Medicine and Research Institute, University General Hospital Attikon, National and Kapodistrian University of Athens, Athens, Greece
| | - Elias Tzavellas
- First Department of Psychiatry, "Aiginition" Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Stylianos Gatzonis
- Department of Neurosurgery, National and Kapodistrian University of Athens, Athens, Greece
| | - Annerose Mengel
- Department of Neurology & Stroke, Eberhard-Karls University of Tuebingen, Tuebingen, Germany
- Hertie Institute for Clinical Brain Research, Eberhard-Karls University of Tuebingen, Tuebingen, Germany
| | - Sotirios Giannopoulos
- Second Department of Neurology, National and Kapodistrian University of Athens, School of Medicine, “Attikon” University Hospital, Athens, Greece
| | - Sotirios Tsiodras
- Fourth Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Vasilios K. Kimiskidis
- First Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Tsivgoulis
- Second Department of Neurology, National and Kapodistrian University of Athens, School of Medicine, “Attikon” University Hospital, Athens, Greece
| |
Collapse
|
52
|
Solopov PA, Colunga Biancatelli RML, Day T, Gregory B, Sharlow ER, Lazo JS, Catravas JD. KVX-053, a protein tyrosine phosphatase 4A3 inhibitor, ameliorates SARS-CoV-2 spike protein subunit 1-induced acute lung injury in mice. J Pharmacol Exp Ther 2024; 392:100022. [PMID: 39969268 DOI: 10.1124/jpet.124.002154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 08/26/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS), often preceded by acute lung injury (ALI), is characterized by the accumulation of inflammatory fluid in the lung alveoli, leaky alveolar epithelium and endothelium, and overexpression of proinflammatory cytokines. This progression from ALI to ARDS is a major contributor to the high mortality observed in patients with COVID-19. The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) binds to lung angiotensin-converting enzyme 2 (ACE2), and in addition to facilitating viral cell entry, it plays an important role in the development of ALI and ARDS, especially in the later phases of COVID-19 as well as long-COVID. Protein tyrosine phosphatase (PTP) 4A3 is a key mediator of ARDS pathology. This study tested the hypothesis that targeting PTP4A3 would prevent COVID-19-associated ALI. Intratracheal administration of SARS-CoV-2 spike protein subunit 1 to K18-hACE2 transgenic mice expressing human ACE2 elicited pulmonary and systemic inflammation, leaky alveoli, overexpression of cytokines, structural lung injury, and lung dysfunction; all these symptoms were ameliorated by the selective, allosteric inhibitor of PTP4A3, KVX-053. These findings provide the first evidence supporting a role for PTP4A3 in the development of SARS-CoV-2-mediated ALI. SIGNIFICANCE STATEMENT: This study tested the hypothesis that targeting PTP4A3 would prevent COVID-19-associated ALI/ARDS. Intratracheal administration of SARS-CoV-2 spike protein subunit 1 to K18-hACE2 transgenic mice expressing human ACE2 elicited pulmonary and systemic inflammation, leaky alveoli, overexpression of cytokines and chemokines, structural lung injury, and lung dysfunction; all these symptoms were ameliorated by the selective, allosteric inhibitor of PTP4A3, KVX-053. These findings suggest that this novel PTP4A3 inhibitor may be useful against COVID-19 and potentially other viral-induced ARDS.
Collapse
Affiliation(s)
- Pavel A Solopov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia.
| | | | - Tierney Day
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia
| | - Betsy Gregory
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia
| | - Elizabeth R Sharlow
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville, Virginia; KeViRx Inc, Charlottesville, Virginia
| | - John S Lazo
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville, Virginia; KeViRx Inc, Charlottesville, Virginia
| | - John D Catravas
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia; School of Medical Diagnostic & Translational Sciences, College of Health Sciences, Old Dominion University, Norfolk, Virginia
| |
Collapse
|
53
|
Hamlin RE, Pienkos SM, Chan L, Stabile MA, Pinedo K, Rao M, Grant P, Bonilla H, Holubar M, Singh U, Jacobson KB, Jagannathan P, Maldonado Y, Holmes SP, Subramanian A, Blish CA. Sex differences and immune correlates of Long Covid development, symptom persistence, and resolution. Sci Transl Med 2024; 16:eadr1032. [PMID: 39536117 DOI: 10.1126/scitranslmed.adr1032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Sex differences have been observed in acute coronavirus disease 2019 (COVID-19) and Long Covid (LC) outcomes, with greater disease severity and mortality during acute infection in males and greater proportions of females developing LC. We hypothesized that sex-specific immune dysregulation contributes to LC pathogenesis. To investigate the immunologic underpinnings of LC development and symptom persistence, we performed multiomic analyses on blood samples obtained during acute severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and 3 and 12 months after infection in a cohort of 45 participants who either developed LC or recovered. Several sex-specific immune pathways were associated with LC. Males who would later develop LC exhibited increases in transforming growth factor-β (TGF-β) signaling during acute infection, whereas females who would go on to develop LC had reduced TGFB1 expression. Females who developed LC demonstrated increased expression of XIST, an RNA gene implicated in autoimmunity, during acute infection compared with females who recovered. Many immune features of LC were also conserved across sexes, such as alterations in monocyte phenotype and activation state. Nuclear factor κB (NF-κB) transcription factors were up-regulated in many cell types at acute and convalescent time points. Those with ongoing LC demonstrated reduced ETS1 expression across lymphocyte subsets and elevated intracellular IL-4 in T cell subsets, suggesting that ETS1 alterations may drive aberrantly elevated T helper cell 2-like responses in LC. Altogether, this study describes multiple innate and adaptive immune correlates of LC, some of which differ by sex, and offers insights toward the pursuit of tailored therapeutics.
Collapse
Affiliation(s)
- Rebecca E Hamlin
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shaun M Pienkos
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Leslie Chan
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mikayla A Stabile
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kassandra Pinedo
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mallika Rao
- Stanford Center for Clinical Research, Stanford University, Stanford, CA 94305, USA
| | - Philip Grant
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hector Bonilla
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Marisa Holubar
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Upinder Singh
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Karen B Jacobson
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Kaiser Permanente Vaccine Study Center, Oakland, CA 94612, USA
| | - Prasanna Jagannathan
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yvonne Maldonado
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Susan P Holmes
- Department of Statistics, Stanford University, Stanford, CA 94305, USA
| | - Aruna Subramanian
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Catherine A Blish
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
54
|
Peluso MJ, Hanson MR, Deeks SG. Infection-associated chronic conditions: Why Long Covid is our best chance to untangle Osler's web. Sci Transl Med 2024; 16:eado2101. [PMID: 39536121 DOI: 10.1126/scitranslmed.ado2101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
The recognition of Long Covid has renewed efforts to understand other infection-associated chronic conditions (IACCs). Here, we describe how studies of Long Covid and other IACCs might inform one another. We argue for the importance of a coordinated research agenda addressing these debilitating illnesses.
Collapse
Affiliation(s)
- Michael J Peluso
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Steven G Deeks
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| |
Collapse
|
55
|
Antar AAR, Cox AL. Translating insights into therapies for Long Covid. Sci Transl Med 2024; 16:eado2106. [PMID: 39536116 DOI: 10.1126/scitranslmed.ado2106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Long Covid is defined by a wide range of symptoms that persist after the acute phase of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Commonly reported symptoms include fatigue, weakness, postexertional malaise, and cognitive dysfunction, with many other symptoms reported. Symptom range, duration, and severity are highly variable and partially overlap with symptoms of myalgic encephalomyelitis/chronic fatigue syndrome and other post-acute infectious syndromes, highlighting opportunities to define shared mechanisms of pathogenesis. Potential mechanisms of Long Covid are diverse, including persistence of viral reservoirs, dysregulated immune responses, direct viral damage of tissues targeted by SARS-CoV-2, inflammation driven by reactivation of latent viral infections, vascular endothelium activation or dysfunction, and subsequent thromboinflammation, autoimmunity, metabolic derangements, microglial activation, and microbiota dysbiosis. The heterogeneity of symptoms and baseline characteristics of people with Long Covid, as well as the varying states of immunity and therapies given at the time of acute infection, have made etiologies of Long Covid difficult to determine. Here, we examine progress on preclinical models for Long Covid and review progress being made in clinical trials, highlighting the need for large human studies and further development of models to better understand Long Covid. Such studies will inform clinical trials that will define treatments to benefit those living with this condition.
Collapse
Affiliation(s)
- Annukka A R Antar
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andrea L Cox
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
56
|
Adhikari A, Maddumage J, Eriksson EM, Annesley SJ, Lawson VA, Bryant VL, Gras S. Beyond acute infection: mechanisms underlying post-acute sequelae of COVID-19 (PASC). Med J Aust 2024; 221 Suppl 9:S40-S48. [PMID: 39489518 DOI: 10.5694/mja2.52456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 08/10/2024] [Indexed: 11/05/2024]
Abstract
Immune dysregulation is a key aspect of post-acute sequelae of coronavirus disease 2019 (PASC), also known as long COVID, with sustained activation of immune cells, T cell exhaustion, skewed B cell profiles, and disrupted immune communication thereby resulting in autoimmune-related complications. The gut is emerging as a critical link between microbiota, metabolism and overall dysfunction, potentially sharing similarities with other chronic fatigue conditions and PASC. Immunothrombosis and neurological signalling dysfunction emphasise the complex interplay between the immune system, blood clotting, and the central nervous system in the context of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Clear research gaps in the design of PASC studies, especially in the context of longitudinal research, stand out as significant areas of concern.
Collapse
Affiliation(s)
- Anurag Adhikari
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC
- Kathmandu Research Institute for Biological Sciences, Lalitpur, Nepal
| | - Janesha Maddumage
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC
| | - Emily M Eriksson
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC
| | | | - Victoria A Lawson
- Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC
| | - Vanessa L Bryant
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC
- Royal Melbourne Hospital, Melbourne, VIC
- University of Melbourne, Melbourne, VIC
| | - Stephanie Gras
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC
- Monash University, Melbourne, VIC
| |
Collapse
|
57
|
Qin S, Zhang Y, Li Y, Huang L, Yang T, Si J, Wang L, Zhao X, Ma X, Gao GF. Long COVID facts and findings: a large-scale online survey in 74,075 Chinese participants. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2024; 52:101218. [PMID: 39881668 PMCID: PMC11776084 DOI: 10.1016/j.lanwpc.2024.101218] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/24/2024] [Accepted: 09/23/2024] [Indexed: 01/02/2025]
Abstract
Background Research on long COVID in China is limited, particularly in terms of large-sample epidemiological data and the effects of recent SARS-CoV-2 sub-variants. China provides an ideal study environment owing to its large infection base, high vaccine coverage, and stringent pre-pandemic measures. Methods This retrospective study used an online questionnaire to investigate SARS-CoV-2 infection status and long COVID symptoms among 74,075 Chinese residents over one year. The relationships between baseline characteristics, vaccination status, pathogenic infection, and long COVID were analyzed using multinomial logistic regression, and propensity matching. Findings Analysis of 68,200 valid responses revealed that the most frequent long COVID symptoms include fatigue (30.53%), memory decline (27.93%), decreased exercise ability (18.29%), and brain fog (16.87%). These symptoms were less prevalent among those infected only once: fatigue (24.85%), memory decline (18.11%), and decreased exercise ability (12.52%), etc. Women were more likely to experience long COVID, with symptoms varying by age group, except for sleep disorders and muscle/joint pain, which were more common in older individuals. Northern China exhibits a higher prevalence of long COVID, potentially linked to temperature gradients. Risk factors included underlying diseases, alcohol consumption, smoking, and the severity of acute infection (OR > 1, FDR < 0.05). Reinfection was associated with milder symptoms but led to a higher incidence and severity of long COVID (OR > 1, FDR < 0.05). Vaccination, particularly multiple boosters, significantly reduced long-term symptoms by 30%-70% (OR < 1, FDR < 0.05). COVID-19 participants also self-reported more bacterial, influenza and mycoplasma infections, and 8%-10% of patients felt SARS-CoV-2-induced chronic diseases. Interpretation This survey provides valuable insights into long COVID situation among Chinese residents, with 10%-30% (including repeated infection) reporting symptoms. Monitoring at-risk individuals based on identified risk factors is essential for public health efforts. Funding This study was funded by the China Postdoctoral Science Foundation (2022M723344, 2023M743729), Guangdong Basic and Applied Basic Research Foundation (2023A1515110489), and the Bill & Melinda Gates Foundation (INV-027420).
Collapse
Affiliation(s)
- Shijie Qin
- Department of Infectious Diseases, Shenzhen Children's Hospital, Shenzhen, 518038, China
- Innovative Vaccine and Immunotherapy Research Center, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| | - Yanan Zhang
- Department of Infectious Diseases, Shenzhen Children's Hospital, Shenzhen, 518038, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| | - Yanhua Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| | - Ling Huang
- Department of Critical Medicine, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
| | - Ting Yang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| | - Jiahui Si
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| | - Likui Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences (CAS), Beijing, 100101, China
- International Institute of Vaccine Research and Innovation, University of Chinese Academy of Sciences (UCAS), Beijing, 101408, China
| | - Xin Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| | - Xiaopeng Ma
- Department of Infectious Diseases, Shenzhen Children's Hospital, Shenzhen, 518038, China
| | - George F. Gao
- Department of Infectious Diseases, Shenzhen Children's Hospital, Shenzhen, 518038, China
- Innovative Vaccine and Immunotherapy Research Center, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences (CAS), Beijing, 100101, China
| |
Collapse
|
58
|
Elliott MR, O'Connor AE, Marshall GD. Inflammatory pathways in patients with post-acute sequelae of COVID-19: The role of the clinical immunologist. Ann Allergy Asthma Immunol 2024; 133:507-515. [PMID: 39179099 PMCID: PMC11575468 DOI: 10.1016/j.anai.2024.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024]
Abstract
As the SARS-CoV-2 pandemic progressed, some survivors noted prolonged symptoms after acute infection, termed post-acute sequelae of COVID-19 (PASC) or "long COVID." PASC is a significant clinical and public health concern that adversely affects patients' quality of life, income, and health care expenses. Moreover, PASC symptoms are highly heterogeneous, the most common being fatigue and cognitive impairment, and they likely reflect a spectrum of clinical phenotypes. The proposed role of persistent inflammation is one of leading pathophysiological theories. This review article addresses these proposed mechanisms of persistent and aberrant inflammation, their clinical evaluation, and theoretical approaches to management. A review of public databases was used to collect literature for the review. The literature supports a prominent role of persistent and aberrant inflammation as a major contributor to the symptoms of PASC. Proposed mechanisms for persistent inflammation include reactivation of latent viruses, viral persistence, loss of immunoregulatory pathways, autoimmune mechanisms, and/or mast cell dysregulation. Persistent inflammation may result in constitutional symptoms such as fatigue, brain fog, body aches, and/or organ-specific dysfunction, such as gastrointestinal dysregulation and myocardial inflammation. There are no approved or even proven therapies for PASC at this time, but some studies have identified therapeutic options that may either reduce the risk for progression to PASC or decrease symptom burden. Laboratory evaluation and therapeutic options are limited and require further investigation to establish their clinical value. A more refined definition of PASC is needed to address the wide variety of clinical presentations, pathophysiology, and therapeutic options.
Collapse
Affiliation(s)
- Matthew R Elliott
- The University of Mississippi Medical Center, Department of Internal Medicine, Division of Clinical Immunology, Jackson, Mississippi.
| | - Anna E O'Connor
- The University of Mississippi Medical Center, Department of Internal Medicine, Division of Clinical Immunology, Jackson, Mississippi
| | - Gailen D Marshall
- The University of Mississippi Medical Center, Department of Internal Medicine, Division of Clinical Immunology, Jackson, Mississippi
| |
Collapse
|
59
|
Hsieh WY, Yu CN, Chen CC, Chiou CT, Green BD, Lee OK, Wu CC, Doan LH, Huang CYF, Huang C, Liu CJ, Chen YH, Cheng JJ, Pan HC, Liu HK. Evaluating the antiviral efficacy and specificity of chlorogenic acid and related herbal extracts against SARS-CoV-2 variants via spike protein binding intervention. J Tradit Complement Med 2024. [DOI: 10.1016/j.jtcme.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
|
60
|
Jiang Q, Li G, Wang H, Chen W, Liang F, Kong H, Chen TSR, Lin L, Hong H, Pei Z. SARS-CoV-2 spike S1 protein induces microglial NLRP3-dependent neuroinflammation and cognitive impairment in mice. Exp Neurol 2024; 383:115020. [PMID: 39428044 DOI: 10.1016/j.expneurol.2024.115020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Cognitive impairment is often found at the acute stages and sequelae of coronavirus disease 2019 (COVID-19), and the underlying mechanisms remain unclear. The S1 protein from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) might be a cause of cognitive impairment associated with COVID-19. The nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome and neuroinflammation play important roles in Alzheimer's disease (AD) with cognitive impairment. However, their roles remain unknown in COVID-19 with cognitive impairment. We stimulated BV2 cells with S1 protein in vitro and injected the hippocampi of wild-type (WT) mice, NLRP3 knockout (KO), and microglia NLRP3 KO mice in vivo with S1 protein to induce cognitive impairment. We assessed exploratory behavior as associative memory using novel object recognition and Morris water maze tests. Neuroinflammation was analyzed using immunofluorescence and western blotting to detect inflammatory markers. Co-localized NLRP3 and S1 proteins were investigated using confocal microscopy. We found that S1 protein injection led to cognitive impairment, neuronal loss, and neuroinflammation by activating NLRP3 inflammation, and this was reduced by global NLRP3 KO and microglia NLRP3 KO. Furthermore, TAK 242, a specific inhibitor of Toll-like receptor-4, resulted in a significant reduction in NLRP3 and pro-IL-1β in BV2 cells with S1 protein stimulation. These results reveal a distinct mechanism through which the SARS-CoV-2 spike S1 protein promotes NLRP3 inflammasome activation and induces excessive inflammatory responses.
Collapse
Affiliation(s)
- Qiuhong Jiang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou 510080, China
| | - Ge Li
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou 510663, China
| | - Huacheng Wang
- The Seventh Affiliated Hospital, Sun Yat-Sen University, No 628 Zhenyuan Road Guangming District, Shenzhen 518107, China
| | - Weineng Chen
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou 510080, China
| | - Fengyin Liang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou 510080, China
| | - Haifan Kong
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou 510080, China
| | - Tara S R Chen
- Department of Rehabilitation Medicine, Guangdong Engineering and Technology Research Centre for Rehabilitation Medicine and Translation, The Seventh Affiliated Hospital, Sun Yat-Sen University, WHO Collaborating Centre for Rehabilitation CHN-50, Shenzhen, Guangdong, China
| | - Lishan Lin
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou 510080, China
| | - Hua Hong
- Health Management Center, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou 510080, China..
| | - Zhong Pei
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou 510080, China.
| |
Collapse
|
61
|
Matula Z, Király V, Bekő G, Gönczi M, Zóka A, Steinhauser R, Uher F, Vályi-Nagy I. High prevalence of long COVID in anti-TPO positive euthyroid individuals with strongly elevated SARS-CoV-2-specific T cell responses and moderately raised anti-spike IgG levels 23 months post-infection. Front Immunol 2024; 15:1448659. [PMID: 39450181 PMCID: PMC11499158 DOI: 10.3389/fimmu.2024.1448659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Introduction Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection, the causative agent of coronavirus disease 2019 (COVID-19), causes post-acute infection syndrome in a surprisingly large number of cases worldwide. This condition, also known as long COVID or post-acute sequelae of COVID-19, is characterized by extremely complex symptoms and pathology. There is a growing consensus that this condition is a consequence of virus-induced immune activation and the inflammatory cascade, with its prolonged duration caused by a persistent virus reservoir. Methods In this cross-sectional study, we analyzed the SARS-CoV-2-specific T cell response against the spike, nucleocapsid, and membrane proteins, as well as the levels of spike-specific IgG antibodies in 51 healthcare workers, categorized into long COVID or convalescent control groups based on the presence or absence of post-acute symptoms. Additionally, we compared the levels of autoantibodies previously identified during acute or critical COVID-19, including anti-dsDNA, anti-cardiolipin, anti-β2-glycoprotein I, anti-neutrophil cytoplasmic antibodies, and anti-thyroid peroxidase (anti-TPO). Furthermore, we analyzed the antibody levels targeting six nuclear antigens within the ENA-6 S panel, as positivity for certain anti-nuclear antibodies has recently been shown to associate not only with acute COVID-19 but also with long COVID. Finally, we examined the frequency of diabetes in both groups. Our investigations were conducted at an average of 18.2 months (convalescent control group) and 23.1 months (long COVID group) after confirmed acute COVID-19 infection, and an average of 21 months after booster vaccination. Results Our results showed significant differences between the two groups regarding the occurrence of acute infection relative to administering the individual vaccine doses, the frequency of acute symptoms, and the T cell response against all structural SARS-CoV-2 proteins. A statistical association was observed between the incidence of long COVID symptoms and highly elevated anti-TPO antibodies based on Pearson's chi-squared test. Although patients with long COVID showed moderately elevated anti-SARS-CoV-2 spike IgG serum antibody levels compared to control participants, and further differences were found regarding the positivity for anti-nuclear antibodies, anti-dsDNA, and HbA1c levels between the two groups, these differences were not statistically significant. Disscussion This study highlights the need for close monitoring of long COVID development in patients with elevated anti-TPO titers, which can be indicated by strongly elevated SARS-CoV-2-specific T cell response and moderately raised anti-spike IgG levels even long after the acute infection. However, our results do not exclude the possibility of new-onset thyroid autoimmunity after COVID-19, and further investigations are required to clarify the etiological link between highly elevated anti-TPO titers and long COVID.
Collapse
Affiliation(s)
- Zsolt Matula
- Laboratory for Experimental Cell Therapy, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Viktória Király
- Central Laboratory of Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Gabriella Bekő
- Central Laboratory of Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Márton Gönczi
- Central Laboratory of Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - András Zóka
- Central Laboratory of Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Róbert Steinhauser
- Central Laboratory of Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Ferenc Uher
- Laboratory for Experimental Cell Therapy, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - István Vályi-Nagy
- Department of Hematology and Stem Cell Transplantation, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| |
Collapse
|
62
|
Zhang S, Wu Y, Mprah R, Wang M. COVID-19 and persistent symptoms: implications for polycystic ovary syndrome and its management. Front Endocrinol (Lausanne) 2024; 15:1434331. [PMID: 39429741 PMCID: PMC11486749 DOI: 10.3389/fendo.2024.1434331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/28/2024] [Indexed: 10/22/2024] Open
Abstract
The COVID-19 pandemic has left a profound mark on global health, leading to substantial morbidity and mortality worldwide. Beyond the immediate symptoms of infection, the emergence of "long COVID", the long-term effects of SARS-CoV-2, has become a significant public health concern. Long COVID is a multifaceted condition affecting various organs and systems, including the cardiovascular, digestive, nervous, and endocrine systems. Individuals diagnosed with polycystic ovary syndrome (PCOS) may face an increased risk of severe COVID-19 symptoms and infection. It is crucial to comprehend how long COVID affects PCOS patients to devise effective treatment and care strategies. Here, we review the detrimental effects of COVID-19 and its long-term effects on reproductive health, endocrine function, inflammation, metabolism, cardiovascular health, body composition, lifestyle, and mental health in patients with PCOS. We offer recommendations for the post-covid-19 management of PCOS, emphasizing the necessity of a comprehensive, multidisciplinary approach to patient care. Furthermore, we discuss prospective research directions, highlighting the significance of continued investigations and clinical trials to evaluate treatment approaches for long COVID and its ramifications in individuals with PCOS.
Collapse
Affiliation(s)
- Shanshan Zhang
- School of Biological Science, Jining Medical University, Rizhao, Shandong, China
| | - Yanqun Wu
- School of Biological Science, Jining Medical University, Rizhao, Shandong, China
| | - Richard Mprah
- Department of Physiology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Mingming Wang
- Department of Physiology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
- China National Experimental Teaching Demonstration Center for Basic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
63
|
Peluso MJ, Deeks SG. Mechanisms of long COVID and the path toward therapeutics. Cell 2024; 187:5500-5529. [PMID: 39326415 PMCID: PMC11455603 DOI: 10.1016/j.cell.2024.07.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 09/28/2024]
Abstract
Long COVID, a type of post-acute sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (PASC) defined by medically unexplained symptoms following infection with SARS-CoV-2, is a newly recognized infection-associated chronic condition that causes disability in some people. Substantial progress has been made in defining its epidemiology, biology, and pathophysiology. However, there is no cure for the tens of millions of people believed to be experiencing long COVID, and industry engagement in developing therapeutics has been limited. Here, we review the current state of knowledge regarding the biology and pathophysiology of long COVID, focusing on how the proposed mechanisms explain the physiology of the syndrome and how they provide a rationale for the implementation of a broad experimental medicine and clinical trials agenda. Progress toward preventing and curing long COVID and other infection-associated chronic conditions will require deep and sustained investment by funders and industry.
Collapse
Affiliation(s)
- Michael J Peluso
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA.
| | - Steven G Deeks
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
64
|
Zha S, Liu X, Yao Y, He Y, Wang Y, Zhang Q, Zhang J, Yi Y, Xiao R, Hu K. Short-term intermittent hypoxia exposure for dyspnea and fatigue in post-acute sequelae of COVID-19: A randomized controlled study. Respir Med 2024; 232:107763. [PMID: 39127085 DOI: 10.1016/j.rmed.2024.107763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/20/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Post-acute sequelae of COVID-19 (PASC) is incurring a huge health and economic burden worldwide. There is currently no effective treatment or recommended drug for PASC. METHODS This prospective randomized controlled study was conducted in a hospital in China. The effect of intermittent hypoxia exposure (IHE; 5-min hypoxia alternating with 5-min normal air, repeated five times) on dyspnea and fatigue was investigated in patients meeting the NICE definition of PASC. Patients were computationally randomized to receive normoxia exposure (NE) and routine therapy or IHE and routine therapy. Six-minute walk distance (6MWD) and spirometry were tested before and after the interventions; the Borg Dyspnea Scale (Borg) and the modified Medical Research Council Dyspnea Scale (mMRC) were used to assess dyspnea; and the Fatigue Assessment Scale (FAS) and the Chalder Fatigue Scale-11 (CFQ-11) were used to assess fatigue. The study was registered in the Chinese Clinical Trial Registry (ChiCTR2300070565). FINDINGS Ninety-five participants (33 males and 62 females) were recruited between March 1, 2023 and December 30, 2023. Forty-seven patients in the IHE group received 10.0 (9.0, 15.0) days of IHE, and 48 patients in NE group received 10.0 (8.0, 12.0) days of NE. 6MWD, forced vital capacity (FVC), FVC %pred, forced expiratory volume in 1 s (FEV1), FEV1 %pred, tidal volume (VT), and dyspnea and fatigue scales markedly improved after IHE (p < 0.05), and improvements were greater than in the NE group (all p < 0.05). Furthermore, participants in IHE group had better subjective improvements in dyspnea and fatigue than those in the NE group (p < 0.05). Compared with <10 days of IHE, ≥10 days of IHE had a greater impact on 6MWD, FVC, FEV1, FEV1 %pred, VT, FAS, and CFQ-11. No severe adverse events were reported. INTERPRETATION IHE improved spirometry and 6MWD and relieved dyspnea and fatigue in PASC patients. Larger prospective studies are now needed to verify these findings.
Collapse
Affiliation(s)
- Shiqian Zha
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xu Liu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yan Yao
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yang He
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yixuan Wang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qingfeng Zhang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jingyi Zhang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yaohua Yi
- School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, 430079, China; Research Center of Digital Imaging and Intelligent Perception, Wuhan University, Wuhan, 430079, China
| | - Rui Xiao
- School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, 430079, China; Research Center of Digital Imaging and Intelligent Perception, Wuhan University, Wuhan, 430079, China
| | - Ke Hu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
65
|
Dehhaghi M, Heydari M, Panahi HKS, Lewin SR, Heng B, Brew BJ, Guillemin GJ. The roles of the kynurenine pathway in COVID-19 neuropathogenesis. Infection 2024; 52:2043-2059. [PMID: 38802702 PMCID: PMC11499433 DOI: 10.1007/s15010-024-02293-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the highly contagious respiratory disease Corona Virus Disease 2019 (COVID-19) that may lead to various neurological and psychological disorders that can be acute, lasting days to weeks or months and possibly longer. The latter is known as long-COVID or more recently post-acute sequelae of COVID (PASC). During acute COVID-19 infection, a strong inflammatory response, known as the cytokine storm, occurs in some patients. The levels of interferon-γ (IFN-γ), interferon-β (IFN-β), interleukin-6 (IL-6) and tumour necrosis factor-alpha (TNF-α) are particularly increased. These cytokines are known to activate the enzyme indoleamine 2,3-dioxygenase 1 (IDO-1), catalysing the first step of tryptophan (Trp) catabolism through the kynurenine pathway (KP) leading to the production of several neurotoxic and immunosuppressive metabolites. There is already data showing elevation in KP metabolites both acutely and in PASC, especially regarding cognitive impairment. Thus, it is likely that KP involvement is significant in SARS-CoV-2 pathogenesis especially neurologically.
Collapse
Affiliation(s)
- Mona Dehhaghi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Mostafa Heydari
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Hamed Kazemi Shariat Panahi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Sharon R Lewin
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Infectious Diseases, The Alfred Hospital and Monash University, Melbourne, VIC, Australia
| | - Benjamin Heng
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.
| | - Bruce J Brew
- Peter Duncan Neurosciences Unit, St. Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia.
- Faculty of Medicine and Health, School of Clinical Medicine, UNSW Sydney, NSW, Australia.
- Departments of Neurology and Immunology, St. Vincent's Hospital, Sydney, NSW, Australia.
- University of Notre Dame, Darlinghurst, Sydney, NSW, Australia.
| | - Gilles J Guillemin
- Peter Duncan Neurosciences Unit, St. Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Pertanian Bogor University, Bogor, Indonesia
| |
Collapse
|
66
|
Guo M, Shang S, Li M, Cai G, Li P, Chen X, Li Q. Understanding autoimmune response after SARS-CoV-2 infection and the pathogenesis/mechanisms of long COVID. MEDICAL REVIEW (2021) 2024; 4:367-383. [PMID: 39444797 PMCID: PMC11495526 DOI: 10.1515/mr-2024-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/04/2024] [Indexed: 10/25/2024]
Abstract
COVID-19 posed a major challenge to the healthcare system and resources worldwide. The popularization of vaccines and the adoption of numerous prevention and control measures enabled the gradual end of the COVID-19 pandemic. However, successive occurrence of autoimmune diseases in patients with COVID-19 cannot be overlooked. Long COVID has been the major focus of research due to the long duration of different symptoms and the variety of systems involved. Autoimmunity may play a crucial role in the pathogenesis of long COVID. Here, we reviewed several autoimmune disorders occurring after COVID-19 infection and the pathogenesis of long COVID.
Collapse
Affiliation(s)
- Ming Guo
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| | - Shunlai Shang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, China
| | - Mengfei Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| | - Ping Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
- Haihe Laboratory of CellEcosystem, China
| | - Qinggang Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| |
Collapse
|
67
|
Skare TL, de Carvalho JF, de Medeiros IRT, Shoenfeld Y. Ear abnormalities in chronic fatigue syndrome (CFS), fibromyalgia (FM), Coronavirus-19 infectious disease (COVID) and long-COVID syndrome (PCS), sick-building syndrome (SBS), post-orthostatic tachycardia syndrome (PoTS), and autoimmune/inflammatory syndrome induced by adjuvants (ASIA): A systematic review. Autoimmun Rev 2024; 23:103606. [PMID: 39209013 DOI: 10.1016/j.autrev.2024.103606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 05/30/2024] [Indexed: 09/04/2024]
Abstract
Chronic fatigue syndrome (CFS), fibromyalgia (FM), silicone breast implants (SBI), Coronavirus-19 infectious disease (COVID), COVID-19 vaccination (post-COVIDvac-syndrome), Long-COVID syndrome (PCS), sick-building syndrome (SBS), post-orthostatic tachycardia syndrome (PoTS), and autoimmune/ inflammatory syndrome induced by adjuvants (ASIA) are a cluster of poorly understood medical conditions that have in common a group of ill-defined symptoms and dysautonomic features. Most of the clinical findings of this group of diseases are unspecific, such as fatigue, diffuse pain, cognitive impairment, paresthesia, tachycardia, anxiety, and depression. Hearing disturbances and vertigo have also been described in this context, the underlying pathophysiologic process for these conditions might rely on autonomic autoimmune dysbalance. The authors procced a literature review regarding to hearing and labyrinthic disturbances in CSF, FM, SBI, COVID, post-COVIDvac-syndrome, PCS, SBS, POTS, and ASIA. The PRISMA guidelines were followed, and the literature reviewed encompassed papers from January 1990 to January 2024. After the initial evaluation of the articles found in the search through Pubmed, Scielo and Embase, a total of 172 articles were read and included in this review. The prevalence of hearing loss, dizziness, vertigo and tinnitus was described and correlated with the diseases investigated in this study. There are great variability in the frequencies of symptoms found, but cochlear complaints are the most frequent in most studies. Vestibular symptoms are less reported. The main pathophysiological mechanisms are discussed. Direct effects of the virus in the inner ear or nervous pathways, impaired vascular perfusion, cross-reaction or autoimmune immunoreactivity, oxidative stress, DNA methylation, epigenetic modifications and gene activation were implicated in the generation of the investigated symptoms. In clinical practice, all patients with these autoimmune conditions who have any audiological complaint an ENT consultation followed by an audiometry are needed.
Collapse
Affiliation(s)
- Thelma L Skare
- Serviço de Reumatologia, Hospital Universitário Evangélico Mackenzie, Curitiba, PR, Brazil
| | - Jozélio Freire de Carvalho
- Núcleo de Pesquisa em Doenças Crônicas não Transmissíveis (NUPEN), School of Nutrition from the Federal University of Bahia, Salvador, Bahia, Brazil.
| | | | - Yehuda Shoenfeld
- Reichman University, Herzelia, Israel; Zabludowicz Center for Autoimmune Diseases (Founder), Sheba Medical Center, Tel-Hashomer, Israel
| |
Collapse
|
68
|
Damhorst GL, Martin SE, Wilber E, Verkerke H, Goodman M, Lam WA. Diagnostic Utility of SARS-CoV-2 Nucleocapsid Antigenemia: A Meta-analysis. Open Forum Infect Dis 2024; 11:ofae561. [PMID: 39431150 PMCID: PMC11487748 DOI: 10.1093/ofid/ofae561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/30/2024] [Indexed: 10/22/2024] Open
Abstract
Background Studies of the diagnostic performance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid antigen in blood (antigenemia) have reached variable conclusions. The potential utility of antigenemia measurements as a clinical diagnostic test needs clarification. Methods We performed a systematic review of Pubmed, Embase, and Scopus through July 15, 2023, and requested source data from corresponding authors. Results Summary sensitivity from 16 studies (4543 cases) sampled at ≤14 days of symptoms was 0.83 (0.75-0.89), and specificity was 0.98 (0.87-1.00) from 6 studies (792 reverse transcription polymerase chain reaction-negative controls). Summary sensitivity and specificity for paired respiratory specimens with cycle threshold values ≤33 were 0.91 (0.85-0.95) and 0.56 (0.39-0.73) from 10 studies (612 individuals). Source data from 1779 cases reveal that >70% have antigenemia 2 weeks following symptom onset, which persists in <10% at 28 days. The available studies suffer from heterogeneity, and Omicron-era data are scarce. Conclusions Nucleocapsid antigenemia currently has limited utility due to limitations of existing studies and lack of Omicron-era data. Improved study designs targeting potential clinical uses in screening, surveillance, and complex clinical decision-making-especially in immunocompromised patients-are needed.
Collapse
Affiliation(s)
- Gregory L Damhorst
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, USA
- The Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Atlanta, Georgia, USA
| | - Sydney E Martin
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Eli Wilber
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Hans Verkerke
- Emory University School of Medicine, Atlanta, Georgia, USA
| | - Michael Goodman
- Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Wilbur A Lam
- The Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Atlanta, Georgia, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Aflac Cancer & Blood Disorders Center at Children's Healthcare of Atlanta, Atlanta, Georgia, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
69
|
Au MT, Ni J, Tang K, Wang W, Zhang L, Wang H, Zhao F, Li Z, Luo P, Lau LCM, Chan PK, Luo C, Zhou B, Zhu L, Zhang CY, Jiang T, Lauwers M, Chan JFW, Yuan S, Wen C. Blockade of endothelin receptors mitigates SARS-CoV-2-induced osteoarthritis. Nat Microbiol 2024; 9:2538-2552. [PMID: 39261580 DOI: 10.1038/s41564-024-01802-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/01/2024] [Indexed: 09/13/2024]
Abstract
Joint pain and osteoarthritis can occur as coronavirus disease 2019 (COVID-19) sequelae after infection. However, little is known about the damage to articular cartilage. Here we illustrate knee joint damage after wild-type, Delta and Omicron variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in vivo. Rapid joint injury with cystic lesions at the osteochondral junction was observed in two patients with post-COVID osteoarthritis and recapitulated in a golden Syrian hamster model. SARS-CoV-2-activated endothelin-1 signalling increased vascular permeability and caused viral spike proteins leakage into the subchondral bone. Osteoclast activation, chondrocyte dropout and cyst formation were confirmed histologically. The US Food and Drug Administration-approved endothelin receptor antagonist, macitentan, mitigated cystic lesions and preserved chondrocyte number in the acute phase of viral infection in hamsters. Delayed macitentan treatment at post-acute infection phase alleviated chondrocyte senescence and restored subchondral bone loss. It is worth noting that it could also attenuate viral spike-induced joint pain. Our work suggests endothelin receptor blockade as a novel therapeutic strategy for post-COVID arthritis.
Collapse
Affiliation(s)
- Man Ting Au
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Junguo Ni
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Kaiming Tang
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Wei Wang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Lanlan Zhang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Hantang Wang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Fangyi Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Zhan Li
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Peng Luo
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Lawrence Chun-Man Lau
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Ping-Keung Chan
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Cuiting Luo
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Bo Zhou
- Department of Biology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Lin Zhu
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Charlie Yuli Zhang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Tianshu Jiang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Marianne Lauwers
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China.
- Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China.
| | - Chunyi Wen
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China.
- Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China.
| |
Collapse
|
70
|
Frank MG, Ball JB, Hopkins S, Kelley T, Kuzma AJ, Thompson RS, Fleshner M, Maier SF. SARS-CoV-2 S1 subunit produces a protracted priming of the neuroinflammatory, physiological, and behavioral responses to a remote immune challenge: A role for corticosteroids. Brain Behav Immun 2024; 121:87-103. [PMID: 39043345 DOI: 10.1016/j.bbi.2024.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/08/2024] [Accepted: 07/20/2024] [Indexed: 07/25/2024] Open
Abstract
Long COVID is a major public health consequence of COVID-19 and is characterized by multiple neurological and neuropsychatric symptoms. SARS-CoV-2 antigens (e.g., spike S1 subunit) are found in the circulation of Long COVID patients, have been detected in post-mortem brain of COVID patients, and exhibit neuroinflammatory properties. Considering recent observations of chronic neuroinflammation in Long COVID patients, the present study explores the idea that antigens derived from SARS-CoV-2 might produce a long-term priming or sensitization of neuroinflammatory processes, thereby potentiating the magnitude and/or duration of the neuroinflammatory response to future inflammatory insults. Rats were administered S1 or vehicle intra-cisterna magna and 7d later challenged with vehicle or LPS. The neuroinflammatory, physiological, and behavioral responses to LPS were measured at various time points post-LPS. We found that prior S1 treatment potentiated many of these responses to LPS suggesting that S1 produces a protracted priming of these processes. Further, S1 produced a protracted reduction in basal brain corticosteroids. Considering the anti-inflammatory properties of corticosteroids, these findings suggest that S1 might disinhibit innate immune processes in brain by reducing anti-inflammatory drive, thereby priming neuroinflammatory processes. Given that hypocortisolism is observed in Long COVID, we propose that similar S1-induced innate immune priming processes might play role in the pathophysiology of Long COVID.
Collapse
Affiliation(s)
- Matthew G Frank
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80301, USA; Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80301, USA.
| | - Jayson B Ball
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80301, USA
| | - Shelby Hopkins
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80301, USA
| | - Tel Kelley
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80301, USA
| | - Angelina J Kuzma
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80301, USA
| | - Robert S Thompson
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80301, USA
| | - Monika Fleshner
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80301, USA
| | - Steven F Maier
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80301, USA
| |
Collapse
|
71
|
He Y, Liu X, Zha S, Wang Y, Zhang J, Zhang Q, Hu K. A pilot randomized controlled trial of major ozone autohemotherapy for patients with post-acute sequelae of COVID-19. Int Immunopharmacol 2024; 139:112673. [PMID: 39018686 DOI: 10.1016/j.intimp.2024.112673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024]
Abstract
This prospective, randomized, controlled clinical trial assessed the therapeutic effects of major ozone autohemotherapy (O3-MAH) in patients with post-acute sequelae of COVID-19 (PASC). Seventy-three eligible participants were randomly assigned to an O3-MAH plus conventional therapy group (n = 35) or a conventional therapy alone group (n = 38). Symptom score, pulmonary function, 6-minute walk distance (6MWD), and hematological, biochemical, and immunological parameters were evaluated before and after the interventions. Both groups demonstrated improvements in various parameters post-intervention, but efficacy was greater in the O3-MAH group than the conventional treatment group; with intervention effectiveness defined as a ≥ 50 % reduction in symptom score, 25 of 35 patients (71 %) responded to O3-MAH, while 17/38 patients (45 %) responded to conventional treatment alone (P = 0.0325). Significant improvements in symptom scores (P = 0.0478), tidal volume (P = 0.0374), predicted 6MWD (P = 0.0032), and coagulation and inflammatory indicators were noted in the O3-MAH group compared with the conventional treatment group. O3-MAH was more likely to be effective in patients with elevated CRP levels. Furthermore, O3-MAH markedly improved cellular immunity, and this improvement became more pronounced with extended treatment duration. In summary, combining O3-MAH with conventional treatment was more effective than conventional therapy alone in improving symptoms, pulmonary function, inflammation, coagulation, and cellular immunity in patients with PASC. Further research is now warranted to validate these findings and individualize the regimen.
Collapse
Affiliation(s)
- Yang He
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Xu Liu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Shiqian Zha
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Yixuan Wang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Jingyi Zhang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Qingfeng Zhang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Ke Hu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, PR China.
| |
Collapse
|
72
|
Laughlin PM, Young K, Gonzalez-Gutierrez G, Wang JCY, Zlotnick A. A narrow ratio of nucleic acid to SARS-CoV-2 N-protein enables phase separation. J Biol Chem 2024; 300:107831. [PMID: 39343003 PMCID: PMC11541828 DOI: 10.1016/j.jbc.2024.107831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024] Open
Abstract
SARS-CoV-2 Nucleocapsid protein (N) is a viral structural protein that packages the 30 kb genomic RNA inside virions and forms condensates within infected cells through liquid-liquid phase separation (LLPS). In both soluble and condensed forms, N has accessory roles in the viral life cycle including genome replication and immunosuppression. The ability to perform these tasks depends on phase separation and its reversibility. The conditions that stabilize and destabilize N condensates and the role of N-N interactions are poorly understood. We have investigated LLPS formation and dissolution in a minimalist system comprised of N protein and an ssDNA oligomer just long enough to support assembly. The short oligo allows us to focus on the role of N-N interaction. We have developed a sensitive FRET assay to interrogate LLPS assembly reactions from the perspective of the oligonucleotide. We find that N alone can form oligomers but that oligonucleotide enables their assembly into a three-dimensional phase. At a ∼1:1 ratio of N to oligonucleotide, LLPS formation is maximal. We find that a modest excess of N or of nucleic acid causes the LLPS to break down catastrophically. Under the conditions examined here, assembly has a critical concentration of about 1 μM. The responsiveness of N condensates to their environment may have biological consequences. A better understanding of how nucleic acid modulates N-N association will shed light on condensate activity and could inform antiviral strategies targeting LLPS.
Collapse
Affiliation(s)
- Patrick M Laughlin
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, USA
| | - Kimberly Young
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, USA
| | | | - Joseph C-Y Wang
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Adam Zlotnick
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, USA.
| |
Collapse
|
73
|
Andrews JS, Boonyaratanakornkit JB, Krusinska E, Allen S, Posada JA. Assessment of the Impact of RNase in Patients With Severe Fatigue Related to Post-Acute Sequelae of SARS-CoV-2 Infection: A Randomized Phase 2 Trial of RSLV-132. Clin Infect Dis 2024; 79:635-642. [PMID: 38728385 DOI: 10.1093/cid/ciae205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA and RNA debris persist in viral reservoirs for weeks to months following infection, potentially triggering interferon production and chronic inflammation. RSLV-132 is a biologic drug composed of catalytically active human RNase1 fused to human IgG1 Fc and is designed to remain in circulation and digest extracellular RNA. We hypothesized that removal of SARS-CoV-2 viral RNA from latent reservoirs may improve inflammation, neuroinflammation, and fatigue associated with post-acute sequelae of SARS-CoV-2 infection (PASC). METHODS This was a phase 2, double-blind, placebo-controlled randomized clinical trial in participants with a 24-week history of PASC and severe fatigue. The primary endpoint of the trial assessed the impact of 6 intravenous doses of RSLV-132 on the mean change from baseline at day 71 in the Patient-Reported Outcomes Measurement Information System Fatigue Short Form 7a (PROMIS Fatigue SF 7a). RESULTS A statistically significant difference on day 71 was not observed with respect to the primary or secondary endpoints. This was likely due to a placebo response that increased during the trial. Statistically significant improvement in fatigue as measured by the PROMIS Fatigue SF 7a, Functional Assessment of Chronic Illness Therapy-Fatigue (FACIT-Fatigue), and Physicians Global Assessment (PGA) instruments were observed earlier in the trial, with women demonstrating greater responses to RSLV-132 than men. CONCLUSION While fatigue was not statistically significantly improved at Day 71, earlier timepoints revealed statistically significant improvement in fatigue and physician global assessment. The data suggest eliminating latent viral RNA by increasing serum RNase activity may improve fatigue in PASC patients. Women may respond better to this approach than men. Future studies will aim to confirm these findings.
Collapse
Affiliation(s)
- James S Andrews
- Department of Rheumatology, University of Alabama, Birmingham, Alabama, USA
| | - Jim B Boonyaratanakornkit
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Infectious Disease, University of Washington, Seattle, Washington, USA
| | | | | | | |
Collapse
|
74
|
Kanwal A, Zhang Z. Exploring common pathogenic association between Epstein Barr virus infection and long-COVID by integrating RNA-Seq and molecular dynamics simulations. Front Immunol 2024; 15:1435170. [PMID: 39391317 PMCID: PMC11464307 DOI: 10.3389/fimmu.2024.1435170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/27/2024] [Indexed: 10/12/2024] Open
Abstract
The term "Long-COVID" (LC) is characterized by the aftereffects of COVID-19 infection. Various studies have suggested that Epstein-Barr virus (EBV) reactivation is among the significant reported causes of LC. However, there is a lack of in-depth research that could largely explore the pathogenic mechanism and pinpoint the key genes in the EBV and LC context. This study mainly aimed to predict the potential disease-associated common genes between EBV reactivation and LC condition using next-generation sequencing (NGS) data and reported naturally occurring biomolecules as inhibitors. We applied the bulk RNA-Seq from LC and EBV-infected peripheral blood mononuclear cells (PBMCs), identified the differentially expressed genes (DEGs) and the Protein-Protein interaction (PPI) network using the STRING database, identified hub genes using the cytoscape plugins CytoHubba and MCODE, and performed enrichment analysis using ClueGO. The interaction analysis of a hub gene was performed against naturally occurring bioflavonoid molecules using molecular docking and the molecular dynamics (MD) simulation method. Out of 357 common genes, 22 genes (CCL2, CCL20, CDCA2, CEP55, CHI3L1, CKAP2L, DEPDC1, DIAPH3, DLGAP5, E2F8, FGF1, NEK2, PBK, TOP2A, CCL3, CXCL8, DEPDC1, IL6, RETN, MMP2, LCN2, and OLR1) were classified as hub genes, and the remaining ones were classified as neighboring genes. Enrichment analysis showed the role of hub genes in various pathways such as immune-signaling pathways, including JAK-STAT signaling, interleukin signaling, protein kinase signaling, and toll-like receptor pathways associated with the symptoms reported in the LC condition. ZNF and MYBL TF-family were predicted as abundant TFs controlling hub genes' transcriptional machinery. Furthermore, OLR1 (PDB: 7XMP) showed stable interactions with the five shortlisted refined naturally occurring bioflavonoids, i.e., apigenin, amentoflavone, ilexgenin A, myricetin, and orientin compounds. The total binding energy pattern was observed, with amentoflavone being the top docked molecule (with a binding affinity of -8.3 kcal/mol) with the lowest total binding energy of -18.48 kcal/mol. In conclusion, our research has predicted the hub genes, their molecular pathways, and the potential inhibitors between EBV and LC potential pathogenic association. The in vivo or in vitro experimental methods could be utilized to functionally validate our findings, which would be helpful to cure LC or to prevent EBV reactivation.
Collapse
Affiliation(s)
- Ayesha Kanwal
- MOE Key Laboratory for Cellular Dynamics and Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhiyong Zhang
- MOE Key Laboratory for Cellular Dynamics and Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Department of Physics, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
75
|
Ra SH, Chang E, Kwon JS, Kim JY, Son J, Kim W, Jang CY, Jang HM, Bae S, Jung J, Kim MJ, Chong YP, Lee SO, Choi SH, Kim YS, Lee KH, Kim SH. Viral, Immunologic, and Laboratory Parameters in Patients With and Without Post-Acute Sequelae of SARS-CoV-2 Infection (PASC). J Korean Med Sci 2024; 39:e237. [PMID: 39252682 PMCID: PMC11387074 DOI: 10.3346/jkms.2024.39.e237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/02/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND The pathophysiological mechanisms underlying the post-acute sequelae of severe acute respiratory syndrome coronavirus 2 infection (PASC) are not well understood. Our study aimed to investigate various aspects of theses mechanisms, including viral persistence, immunological responses, and laboratory parameters in patients with and without PASC. METHODS We prospectively enrolled adults aged ≥ 18 years diagnosed with coronavirus disease 2019 (COVID-19) between August 2022 and July 2023. Blood samples were collected at three time-points: within one month of diagnosis (acute phase) and at 1 month, and 3 months post-diagnosis. Following a recent well-designed definition of PASC, PASC patients were defined as those with a questionnaire-based PASC score ≥ 12 persisting for at least 4 weeks after the initial COVID-19 diagnosis. RESULTS Of 57 eligible COVID-19 patients, 29 (51%) had PASC, and 28 (49%) did not. The PASC group had significantly higher nucleocapsid protein (NP) antigenemia 3 months after COVID-19 diagnosis (P = 0.022). Furthermore, several cytokines, including IL-2, IL-17A, VEGF, RANTES, sCD40L, IP-10, I-TAC, and granzyme A, were markedly elevated in the PASC group 1 and/or 3 month(s) after COVID-19 diagnosis. In contrast, the median values of several serological markers, including thyroid markers, autoimmune indicators, and stress-related hormones, were within the normal range. CONCLUSION Levels of NP antigen and of various cytokines involved in immune responses become significantly elevated over time after COVID-19 diagnosis in PASC patients compared to non-PASC patients. This suggests that PASC is associated with prolonged immune dysregulation resulting from heightened antigenic stimulation.
Collapse
Affiliation(s)
- Sang Hyun Ra
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Euijin Chang
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ji-Soo Kwon
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ji Yeun Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - JuYeon Son
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Woori Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Choi Young Jang
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyeon Mu Jang
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seongman Bae
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jiwon Jung
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Min Jae Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yong Pil Chong
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang-Oh Lee
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang-Ho Choi
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yang Soo Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Keun Hwa Lee
- Department of Microbiology, Hanyang University College of Medicine, Seoul, Korea
| | - Sung-Han Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
76
|
Clausen TM, Fargen KM, Primiani CT, Sattur M, Amans MR, Hui FK. Post-acute sequelae of COVID infection and cerebral venous outflow disorders: Overlapping symptoms and mechanisms? Interv Neuroradiol 2024:15910199241273946. [PMID: 39223825 PMCID: PMC11571337 DOI: 10.1177/15910199241273946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 06/24/2024] [Indexed: 09/04/2024] Open
Abstract
Neurological long Covid (NLC) is a major post-acute sequela of SARS-CoV-2 infection, affecting up to 10% of infected patients. The clinical presentation of patients with NLC is varied, but general NLC symptoms have been noted to closely mimic symptoms of cerebral venous outflow disorders (CVD). Here we review key literature and discuss evidence supporting this comparison. We also aimed to describe the similarity between CVD symptomatology and neuro-NLC symptoms from two perspectives: a Twitter-distributed survey for long covid sufferers to estimate nature and frequency of neurological symptoms, and through a small cohort of patients with long covid who underwent CVD work up per our standard workflow. Over 700 patients responded, and we argue that there is a close symptom overlap with those of CVD. CVD workup in a series of 6 patients with neurological long COVID symptoms showed jugular vein stenosis by CT venography and varying degrees of increased intracranial pressure. Finally, we discuss the potential pathogenic association between vascular inflammation, associated with COVID-19 infection, venous outflow congestion, and its potential involvement in NLC.
Collapse
Affiliation(s)
| | - Kyle M Fargen
- Departments of Neurological Surgery and Radiology, Wake Forest University, Winston-Salem, NC, USA
| | | | - Mithun Sattur
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, USA
| | - Matthew R Amans
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Ferdinand K Hui
- Neuroscience Institute, Division of Neurointerventional Surgery, Queen's Medical Center, Honolulu, HI, USA
| |
Collapse
|
77
|
Geng LN, Bonilla H, Hedlin H, Jacobson KB, Tian L, Jagannathan P, Yang PC, Subramanian AK, Liang JW, Shen S, Deng Y, Shaw BJ, Botzheim B, Desai M, Pathak D, Jazayeri Y, Thai D, O’Donnell A, Mohaptra S, Leang Z, Reynolds GZM, Brooks EF, Bhatt AS, Shafer RW, Miglis MG, Quach T, Tiwari A, Banerjee A, Lopez RN, De Jesus M, Charnas LR, Utz PJ, Singh U. Nirmatrelvir-Ritonavir and Symptoms in Adults With Postacute Sequelae of SARS-CoV-2 Infection: The STOP-PASC Randomized Clinical Trial. JAMA Intern Med 2024; 184:1024-1034. [PMID: 38848477 PMCID: PMC11161857 DOI: 10.1001/jamainternmed.2024.2007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/30/2024] [Indexed: 06/09/2024]
Abstract
Importance There is an urgent need to identify treatments for postacute sequelae of SARS-CoV-2 infection (PASC). Objective To assess the efficacy of a 15-day course of nirmatrelvir-ritonavir in reducing the severity of select PASC symptoms. Design, Setting, and Participants This was a 15-week blinded, placebo-controlled, randomized clinical trial conducted from November 2022 to September 2023 at Stanford University (California). The participants were adults with moderate to severe PASC symptoms of 3 months or longer duration. Interventions Participants were randomized 2:1 to treatment with oral nirmatrelvir-ritonavir (NMV/r, 300 mg and 100 mg) or with placebo-ritonavir (PBO/r) twice daily for 15 days. Main Outcomes and Measures Primary outcome was a pooled severity of 6 PASC symptoms (fatigue, brain fog, shortness of breath, body aches, gastrointestinal symptoms, and cardiovascular symptoms) based on a Likert scale score at 10 weeks. Secondary outcomes included symptom severity at different time points, symptom burden and relief, patient global measures, Patient-Reported Outcomes Measurement Information System (PROMIS) measures, orthostatic vital signs, and sit-to-stand test change from baseline. Results Of the 155 participants (median [IQR] age, 43 [34-54] years; 92 [59%] females), 102 were randomized to the NMV/r group and 53 to the PBO/r group. Nearly all participants (n = 153) had received the primary series for COVID-19 vaccination. Mean (SD) time between index SARS-CoV-2 infection and randomization was 17.5 (9.1) months. There was no statistically significant difference in the model-derived severity outcome pooled across the 6 core symptoms at 10 weeks between the NMV/r and PBO/r groups. No statistically significant between-group differences were found at 10 weeks in the Patient Global Impression of Severity or Patient Global Impression of Change scores, summative symptom scores, and change from baseline to 10 weeks in PROMIS fatigue, dyspnea, cognitive function, and physical function measures. Adverse event rates were similar in NMV/r and PBO/r groups and mostly of low grade. Conclusions and Relevance The results of this randomized clinical trial showed that a 15-day course of NMV/r in a population of patients with PASC was generally safe but did not demonstrate a significant benefit for improving select PASC symptoms in a mostly vaccinated cohort with protracted symptom duration. Further studies are needed to determine the role of antivirals in the treatment of PASC. Trial Registration ClinicalTrials.gov Identifier: NCT05576662.
Collapse
Affiliation(s)
- Linda N. Geng
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Hector Bonilla
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Haley Hedlin
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Karen B. Jacobson
- Department of Medicine, Stanford University School of Medicine, Stanford, California
- Kaiser Permanente Northern California Division of Research, Oakland
| | - Lu Tian
- Department of Biomedical Data Science, Stanford School of Medicine, Stanford, California
| | - Prasanna Jagannathan
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Phillip C. Yang
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Aruna K. Subramanian
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Jane W. Liang
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Sa Shen
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Yaowei Deng
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Blake J. Shaw
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Bren Botzheim
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Manisha Desai
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Divya Pathak
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Yasmin Jazayeri
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Daniel Thai
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Andrew O’Donnell
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Sukanya Mohaptra
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Zenita Leang
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | | | - Erin F. Brooks
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Ami S. Bhatt
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Robert W. Shafer
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Mitchell G. Miglis
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | - Tom Quach
- Stanford University, Stanford, California
| | | | - Anindita Banerjee
- Pfizer Research and Development, Pfizer Inc, Cambridge, Massachusetts
| | - Rene N. Lopez
- Clinical Research Collaborations COE, Worldwide Medical and Safety, Pfizer Inc, Groton, Connecticut
| | - Magdia De Jesus
- Strategic Planning, Worldwide Medical and Safety, Pfizer Inc, New York, New York
| | - Lawrence R. Charnas
- Clinical Research Collaborations COE, Worldwide Medical and Safety, Pfizer Inc, Groton, Connecticut
| | - Paul J. Utz
- Department of Medicine, Stanford University School of Medicine, Stanford, California
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, California
| | - Upinder Singh
- Department of Medicine, Stanford University School of Medicine, Stanford, California
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
78
|
Chikopela T, Mwesigwa N, Masenga SK, Kirabo A, Shibao CA. The Interplay of HIV and Long COVID in Sub-Saharan Africa: Mechanisms of Endothelial Dysfunction. Curr Cardiol Rep 2024; 26:859-871. [PMID: 38958890 DOI: 10.1007/s11886-024-02087-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Abstract
PURPOSE OF REVIEW Long COVID affects approximately 5 million people in Africa. This disease is characterized by persistent symptoms or new onset of symptoms after an acute SARS-CoV-2 infection. Specifically, the most common symptoms include a range of cardiovascular problems such as chest pain, orthostatic intolerance, tachycardia, syncope, and uncontrolled hypertension. Importantly, these conditions appear to have endothelial dysfunction as the common denominator, which is often due to impaired nitric oxide (NO) mechanisms. This review discusses the role of mechanisms contributing to endothelial dysfunction in Long COVID, particularly in people living with HIV. RECENT FINDINGS Recent studies have reported that increased inflammation and oxidative stress, frequently observed in Long COVID, may contribute to NO dysfunction, ultimately leading to decreased vascular reactivity. These mechanisms have also been reported in people living with HIV. In regions like Africa, where HIV infection is still a major public health challenge with a prevalence of approximately 26 million people in 2022. Specifically, endothelial dysfunction has been reported as a major mechanism that appears to contribute to cardiovascular diseases and the intersection with Long COVID mechanisms is of particular concern. Further, it is well established that this population is more likely to develop Long COVID following infection with SARS-CoV-2. Therefore, concomitant infection with SARS-CoV-2 may lead to accelerated cardiovascular disease. We outline the details of the worsening health problems caused by Long COVID, which exacerbate pre-existing conditions such as endothelial dysfunction. The overlapping mechanisms of HIV and SARS-CoV-2, particularly the prolonged inflammatory response and chronic hypoxia, may increase susceptibility to Long COVID. Addressing these overlapping health issues is critical as it provides clinical entry points for interventions that could improve and enhance outcomes and quality of life for those affected by both HIV and Long COVID in the region.
Collapse
Affiliation(s)
- Theresa Chikopela
- Department of Human Physiology, Faculty of Medicine, Lusaka Apex Medical University, Lusaka, Zambia
| | - Naome Mwesigwa
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37332-0615, USA
| | - Sepiso K Masenga
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone, Zambia
| | - Annet Kirabo
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37332-0615, USA
| | - Cyndya A Shibao
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37332-0615, USA.
| |
Collapse
|
79
|
Wang Q, Ge R, Wang C, Elazab A, Fang Q, Zhang R. TDFFM: Transformer and Deep Forest Fusion Model for Predicting Coronavirus 3C-Like Protease Cleavage Sites. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:1231-1241. [PMID: 38498765 DOI: 10.1109/tcbb.2024.3378470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
COVID-19, caused by the highly contagious SARS-CoV-2 virus, is distinguished by its positive-sense, single-stranded RNA genome. A thorough understanding of SARS-CoV-2 pathogenesis is crucial for halting its proliferation. Notably, the 3C-like protease of the coronavirus (denoted as 3CLpro) is instrumental in the viral replication process. Precise delineation of 3CLpro cleavage sites is imperative for elucidating the transmission dynamics of SARS-CoV-2. While machine learning tools have been deployed to identify potential 3CLpro cleavage sites, these existing methods often fall short in terms of accuracy. To improve the performances of these predictions, we propose a novel analytical framework, the Transformer and Deep Forest Fusion Model (TDFFM). Within TDFFM, we utilize the AAindex and the BLOSUM62 matrix to encode protein sequences. These encoded features are subsequently input into two distinct components: a Deep Forest, which is an effective decision tree ensemble methodology, and a Transformer equipped with a Multi-Level Attention Model (TMLAM). The integration of the attention mechanism allows our model to more accurately identify positive samples, thus enhancing the overall predictive performance. Evaluation on a test set demonstrates that our TDFFM achieves an accuracy of 0.955, an AUC of 0.980, and an F1-score of 0.367, substantiating the model's superior prediction capabilities.
Collapse
|
80
|
Griffin DO. Postacute Sequelae of COVID (PASC or Long COVID): An Evidenced-Based Approach. Open Forum Infect Dis 2024; 11:ofae462. [PMID: 39220656 PMCID: PMC11363684 DOI: 10.1093/ofid/ofae462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
While the acute manifestations of infectious diseases are well known, in some individuals, symptoms can either persist or appear after the acute period. Postviral fatigue syndromes are recognized with other viral infections and are described after coronavirus disease 2019 (COVID-19). We have a growing number of individuals with symptoms that persist for weeks, months, and years. Here, we share the evidence regarding the abnormalities associated with postacute sequelae of COVID-19 (PASC) and therapeutics. We describe physiological and biochemical abnormalities seen in individuals reporting PASC. We describe the several evidence-based interventions to offer patients. It is expected that this growing understanding of the mechanisms driving PASC and the benefits seen with certain therapeutics may not only lead to better outcomes for those with PASC but may also have the potential for understanding and treating other postinfectious sequelae.
Collapse
Affiliation(s)
- Daniel O Griffin
- Division of Infectious Diseases, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
81
|
Okuducu YK, Mall MA, Yonker LM. COVID-19 in Pediatric Populations. Clin Chest Med 2024; 45:675-684. [PMID: 39069330 DOI: 10.1016/j.ccm.2024.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The COVID-19 pandemic reshaped the landscape of respiratory viral illnesses, causing common viruses to fade as SARS-CoV-2 took precedence. By 2023, more than 96% of the children in the United States were estimated to have been infected with SARS-CoV-2, with certain genetic predispositions and underlying health conditions posing risk factors for severe disease in children. Children, in general though, exhibit immunity advantages, protecting against aspects of the SARS-CoV-2 infection known to drive increased severity in older adults. Post-COVID-19 complications such as multisystem inflammatory syndrome in children and long COVID have emerged, underscoring the importance of vaccination. Here, we highlight the risks of severe pediatric COVID-19, age-specific immunoprotection, comparisons of SARS-CoV-2 with other respiratory viruses, and factors contributing to post-COVID-19 complications in children.
Collapse
Affiliation(s)
- Yanki K Okuducu
- Department of Pediatrics, Pulmonary Division, Massachusetts General Hospital, 175 Cambridge Street, 5(th) floor, Boston, MA 02114, USA; Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Marcus A Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin Augustenburger Platz 1, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 13353, Germany; German Center for Lung Research (DZL), Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lael M Yonker
- Department of Pediatrics, Pulmonary Division, Massachusetts General Hospital, 175 Cambridge Street, 5(th) floor, Boston, MA 02114, USA; Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
82
|
Kovar P, Richardson PL, Korepanova A, Afanador GA, Stojkovic V, Li T, Schrimpf MR, Ng TI, Degoey DA, Gopalakrishnan SM, Chen J. Development of a sensitive high-throughput enzymatic assay capable of measuring sub-nanomolar inhibitors of SARS-CoV2 Mpro. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100179. [PMID: 39151824 DOI: 10.1016/j.slasd.2024.100179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/23/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
The SARS-CoV-2 main protease (Mpro) is essential for viral replication because it is responsible for the processing of most of the non-structural proteins encoded by the virus. Inhibition of Mpro prevents viral replication and therefore constitutes an attractive antiviral strategy. We set out to develop a high-throughput Mpro enzymatic activity assay using fluorescently labeled peptide substrates. A library of fluorogenic substrates of various lengths, sequences and dye/quencher positions was prepared and tested against full length SARS-CoV-2 Mpro enzyme for optimal activity. The addition of buffers containing strongly hydrated kosmotropic anion salts, such as citrate, from the Hofmeister series significantly boosted the enzyme activity and enhanced the assay detection limit, enabling the ranking of sub-nanomolar inhibitors without relying on the low-throughput Morrison equation method. By comparing cooperativity in citrate or non-citrate buffer while titrating the Mpro enzyme concentration, we found full positive cooperativity of Mpro with citrate buffer at less than one nanomolar (nM), but at a much higher enzyme concentration (∼320 nM) with non-citrate buffer. In addition, using a tight binding Mpro inhibitor, we confirmed there was only one active catalytical site in each Mpro monomer. Since cooperativity requires at least two binding sites, we hypothesized that citrate facilitates dimerization of Mpro at sub-nanomolar concentration as one of the mechanisms enhances Mpro catalytic efficiency. This assay has been used in high-throughput screening and structure activity relationship (SAR) studies to support medicinal chemistry efforts. IC50 values determined in this assay correlates well with EC50 values generated by a SARS-CoV-2 antiviral assay after adjusted for cell penetration.
Collapse
Affiliation(s)
- Peter Kovar
- SMTPT, AbbVie Discovery, AbbVie, 1 N Waukegan Rd., North Chicago, IL 60065, USA
| | - Paul L Richardson
- SMTPT, AbbVie Discovery, AbbVie, 1 N Waukegan Rd., North Chicago, IL 60065, USA
| | - Alla Korepanova
- SMTPT, AbbVie Discovery, AbbVie, 1 N Waukegan Rd., North Chicago, IL 60065, USA
| | - Gustavo A Afanador
- SMTPT, AbbVie Discovery, AbbVie, 1 N Waukegan Rd., North Chicago, IL 60065, USA
| | - Vladimir Stojkovic
- SMTPT, AbbVie Discovery, AbbVie, 1 N Waukegan Rd., North Chicago, IL 60065, USA
| | - Tao Li
- SMTPT, AbbVie Discovery, AbbVie, 1 N Waukegan Rd., North Chicago, IL 60065, USA
| | - Michael R Schrimpf
- SMTPT, AbbVie Discovery, AbbVie, 1 N Waukegan Rd., North Chicago, IL 60065, USA
| | - Teresa I Ng
- SMTPT, AbbVie Discovery, AbbVie, 1 N Waukegan Rd., North Chicago, IL 60065, USA
| | - David A Degoey
- SMTPT, AbbVie Discovery, AbbVie, 1 N Waukegan Rd., North Chicago, IL 60065, USA
| | | | - Jun Chen
- SMTPT, AbbVie Discovery, AbbVie, 1 N Waukegan Rd., North Chicago, IL 60065, USA.
| |
Collapse
|
83
|
Deng X, Cui H, Liang H, Wang X, Yu H, Wang J, Wang W, Liu D, Zhang Y, Dong E, Tang Y, Xiao H. SARS-CoV-2 spike protein acts as a β-adrenergic receptor agonist: A potential mechanism for cardiac sequelae of long COVID. J Intern Med 2024; 296:291-297. [PMID: 39073192 DOI: 10.1111/joim.20000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
BACKGROUND Currently, pathophysiological mechanisms of post-acute sequelae of coronavirus disease-19-cardiovascular syndrome (PASC-CVS) remain unknown. METHODS AND RESULTS Patients with PASC-CVS exhibited significantly higher circulating levels of severe acute respiratory syndrome-coronavirus-2 spike protein S1 than the non-PASC-CVS patients and healthy controls. Moreover, individuals with high plasma spike protein S1 concentrations exhibited elevated heart rates and normalized low frequency, suggesting cardiac β-adrenergic receptor (β-AR) hyperactivity. Microscale thermophoresis (MST) assay revealed that the spike protein bound to β1- and β2-AR, but not to D1-dopamine receptor. These interactions were blocked by β1- and β2-AR blockers. Molecular docking and MST assay of β-AR mutants revealed that the spike protein interacted with the extracellular loop 2 of both β-ARs. In cardiomyocytes, spike protein dose-dependently increased the cyclic adenosine monophosphate production with or without epinephrine, indicating its allosteric effects on β-ARs. CONCLUSION Severe acute respiratory syndrome-coronavirus-2 spike proteins act as an allosteric β-AR agonist, leading to cardiac β-AR hyperactivity, thus contributing to PASC-CVS.
Collapse
Affiliation(s)
- Xiangning Deng
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
- Haihe Laboratory of Cell Ecosystem, Beijing, China
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Hongtu Cui
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
- Haihe Laboratory of Cell Ecosystem, Beijing, China
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Hao Liang
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing, China
| | - Xinyu Wang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
- Haihe Laboratory of Cell Ecosystem, Beijing, China
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Haiyi Yu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
- Haihe Laboratory of Cell Ecosystem, Beijing, China
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Jingjia Wang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
- Haihe Laboratory of Cell Ecosystem, Beijing, China
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Wenyao Wang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
- Haihe Laboratory of Cell Ecosystem, Beijing, China
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Dongyang Liu
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing, China
| | - Youyi Zhang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
- Haihe Laboratory of Cell Ecosystem, Beijing, China
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Erdan Dong
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
- Haihe Laboratory of Cell Ecosystem, Beijing, China
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China
- University of Health and Rehabilitation Sciences, Qingdao, China
| | - Yida Tang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
- Haihe Laboratory of Cell Ecosystem, Beijing, China
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Han Xiao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
- Haihe Laboratory of Cell Ecosystem, Beijing, China
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
- University of Health and Rehabilitation Sciences, Qingdao, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China
| |
Collapse
|
84
|
Ryu JK, Yan Z, Montano M, Sozmen EG, Dixit K, Suryawanshi RK, Matsui Y, Helmy E, Kaushal P, Makanani SK, Deerinck TJ, Meyer-Franke A, Rios Coronado PE, Trevino TN, Shin MG, Tognatta R, Liu Y, Schuck R, Le L, Miyajima H, Mendiola AS, Arun N, Guo B, Taha TY, Agrawal A, MacDonald E, Aries O, Yan A, Weaver O, Petersen MA, Meza Acevedo R, Alzamora MDPS, Thomas R, Traglia M, Kouznetsova VL, Tsigelny IF, Pico AR, Red-Horse K, Ellisman MH, Krogan NJ, Bouhaddou M, Ott M, Greene WC, Akassoglou K. Fibrin drives thromboinflammation and neuropathology in COVID-19. Nature 2024; 633:905-913. [PMID: 39198643 PMCID: PMC11424477 DOI: 10.1038/s41586-024-07873-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/24/2024] [Indexed: 09/01/2024]
Abstract
Life-threatening thrombotic events and neurological symptoms are prevalent in COVID-19 and are persistent in patients with long COVID experiencing post-acute sequelae of SARS-CoV-2 infection1-4. Despite the clinical evidence1,5-7, the underlying mechanisms of coagulopathy in COVID-19 and its consequences in inflammation and neuropathology remain poorly understood and treatment options are insufficient. Fibrinogen, the central structural component of blood clots, is abundantly deposited in the lungs and brains of patients with COVID-19, correlates with disease severity and is a predictive biomarker for post-COVID-19 cognitive deficits1,5,8-10. Here we show that fibrin binds to the SARS-CoV-2 spike protein, forming proinflammatory blood clots that drive systemic thromboinflammation and neuropathology in COVID-19. Fibrin, acting through its inflammatory domain, is required for oxidative stress and macrophage activation in the lungs, whereas it suppresses natural killer cells, after SARS-CoV-2 infection. Fibrin promotes neuroinflammation and neuronal loss after infection, as well as innate immune activation in the brain and lungs independently of active infection. A monoclonal antibody targeting the inflammatory fibrin domain provides protection from microglial activation and neuronal injury, as well as from thromboinflammation in the lung after infection. Thus, fibrin drives inflammation and neuropathology in SARS-CoV-2 infection, and fibrin-targeting immunotherapy may represent a therapeutic intervention for patients with acute COVID-19 and long COVID.
Collapse
Affiliation(s)
- Jae Kyu Ryu
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Zhaoqi Yan
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Mauricio Montano
- Gladstone Institute of Virology, San Francisco, CA, USA
- Michael Hulton Center for HIV Cure Research at Gladstone, San Francisco, CA, USA
| | - Elif G Sozmen
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Karuna Dixit
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | | | - Yusuke Matsui
- Gladstone Institute of Virology, San Francisco, CA, USA
- Michael Hulton Center for HIV Cure Research at Gladstone, San Francisco, CA, USA
| | - Ekram Helmy
- Gladstone Institute of Virology, San Francisco, CA, USA
- Michael Hulton Center for HIV Cure Research at Gladstone, San Francisco, CA, USA
| | - Prashant Kaushal
- Department of Microbiology, Immunology and Molecular Genetics (MIMG), University of California Los Angeles, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biosciences (QCBio), University of California Los Angeles, Los Angeles, CA, USA
| | - Sara K Makanani
- Department of Microbiology, Immunology and Molecular Genetics (MIMG), University of California Los Angeles, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biosciences (QCBio), University of California Los Angeles, Los Angeles, CA, USA
| | - Thomas J Deerinck
- National Center for Microscopy and Imaging Research, Center for Research on Biological Systems, University of California San Diego, La Jolla, CA, USA
| | | | | | - Troy N Trevino
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Min-Gyoung Shin
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
| | - Reshmi Tognatta
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Yixin Liu
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Renaud Schuck
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Lucas Le
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Hisao Miyajima
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Andrew S Mendiola
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Nikhita Arun
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Brandon Guo
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Taha Y Taha
- Gladstone Institute of Virology, San Francisco, CA, USA
- Michael Hulton Center for HIV Cure Research at Gladstone, San Francisco, CA, USA
| | - Ayushi Agrawal
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
| | - Eilidh MacDonald
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Oliver Aries
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Aaron Yan
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Olivia Weaver
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Mark A Petersen
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Rosa Meza Acevedo
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Maria Del Pilar S Alzamora
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Reuben Thomas
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
| | - Michela Traglia
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
| | - Valentina L Kouznetsova
- San Diego Supercomputer Center, University of California San Diego, La Jolla, CA, USA
- CureScience Institute, San Diego, CA, USA
| | - Igor F Tsigelny
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
- San Diego Supercomputer Center, University of California San Diego, La Jolla, CA, USA
- CureScience Institute, San Diego, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Alexander R Pico
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
| | - Kristy Red-Horse
- Department of Biology, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, Center for Research on Biological Systems, University of California San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Nevan J Krogan
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- COVID-19 Research Group (QCRG), University of California San Francisco, San Francisco, CA, USA
| | - Mehdi Bouhaddou
- Department of Microbiology, Immunology and Molecular Genetics (MIMG), University of California Los Angeles, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biosciences (QCBio), University of California Los Angeles, Los Angeles, CA, USA
| | - Melanie Ott
- Gladstone Institute of Virology, San Francisco, CA, USA
- Michael Hulton Center for HIV Cure Research at Gladstone, San Francisco, CA, USA
- COVID-19 Research Group (QCRG), University of California San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Warner C Greene
- Gladstone Institute of Virology, San Francisco, CA, USA.
- Michael Hulton Center for HIV Cure Research at Gladstone, San Francisco, CA, USA.
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.
| | - Katerina Akassoglou
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA.
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA.
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
85
|
Lu S, Peluso MJ, Glidden DV, Davidson MC, Lugtu K, Pineda-Ramirez J, Tassetto M, Garcia-Knight M, Zhang A, Goldberg SA, Chen JY, Fortes-Cobby M, Park S, Martinez A, So M, Donovan A, Viswanathan B, Hoh R, Donohue K, McIlwain DR, Gaudiliere B, Anglin K, Yee BC, Chenna A, Winslow JW, Petropoulos CJ, Deeks SG, Briggs-Hagen M, Andino R, Midgley CM, Martin JN, Saydah S, Kelly JD. Early biological markers of post-acute sequelae of SARS-CoV-2 infection. Nat Commun 2024; 15:7466. [PMID: 39198441 PMCID: PMC11358427 DOI: 10.1038/s41467-024-51893-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 08/19/2024] [Indexed: 09/01/2024] Open
Abstract
To understand the roles of acute-phase viral dynamics and host immune responses in post-acute sequelae of SARS-CoV-2 infection (PASC), we enrolled 136 participants within 5 days of their first positive SARS-CoV-2 real-time PCR test. Participants self-collected up to 21 nasal specimens within the first 28 days post-symptom onset; interviewer-administered questionnaires and blood samples were collected at enrollment, days 9, 14, 21, 28, and month 4 and 8 post-symptom onset. Defining PASC as the presence of any COVID-associated symptom at their 4-month visit, we compared viral markers (quantity and duration of nasal viral RNA load, infectious viral load, and plasma N-antigen level) and host immune markers (IL-6, IL-10, TNF-α, IFN-α, IFN-γ, MCP, IP-10, and Spike IgG) over the acute period. Compared to those who fully recovered, those reporting PASC demonstrated significantly higher maximum levels of SARS-CoV-2 RNA and N-antigen, burden of RNA and infectious viral shedding, and lower Spike-specific IgG levels within 9 days post-illness onset. No significant differences were identified among a panel of host immune markers. Our results suggest early viral dynamics and the associated host immune responses play a role in the pathogenesis of PASC, highlighting the importance of understanding early biological markers in the natural history of PASC.
Collapse
Affiliation(s)
- Scott Lu
- Institute for Global Health Sciences, University of California, San Francisco (UCSF), San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, CA, USA
| | - Michael J Peluso
- Division of HIV, Infectious Diseases, and Global Medicine, UCSF, San Francisco, CA, USA
| | - David V Glidden
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, CA, USA
| | | | - Kara Lugtu
- Institute for Global Health Sciences, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Jesus Pineda-Ramirez
- Institute for Global Health Sciences, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Michel Tassetto
- Department of Microbiology and Immunology, UCSF, San Francisco, CA, USA
| | - Miguel Garcia-Knight
- Department of Microbiology and Immunology, UCSF, San Francisco, CA, USA
- Departamento de Inmunologia, Instituto de Investigaciones Biomedicas, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Amethyst Zhang
- Department of Microbiology and Immunology, UCSF, San Francisco, CA, USA
| | - Sarah A Goldberg
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, CA, USA
| | - Jessica Y Chen
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, CA, USA
| | - Maya Fortes-Cobby
- Institute for Global Health Sciences, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Sara Park
- Institute for Global Health Sciences, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Ana Martinez
- Institute for Global Health Sciences, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Matthew So
- Institute for Global Health Sciences, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Aidan Donovan
- Division of HIV, Infectious Diseases, and Global Medicine, UCSF, San Francisco, CA, USA
| | - Badri Viswanathan
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, CA, USA
| | - Rebecca Hoh
- Division of HIV, Infectious Diseases, and Global Medicine, UCSF, San Francisco, CA, USA
| | | | | | | | - Khamal Anglin
- Institute for Global Health Sciences, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Brandon C Yee
- LabCorp - Monogram Biosciences, South San Francisco, San Francisco, CA, USA
| | - Ahmed Chenna
- LabCorp - Monogram Biosciences, South San Francisco, San Francisco, CA, USA
| | - John W Winslow
- LabCorp - Monogram Biosciences, South San Francisco, San Francisco, CA, USA
| | | | - Steven G Deeks
- Division of HIV, Infectious Diseases, and Global Medicine, UCSF, San Francisco, CA, USA
| | | | - Raul Andino
- Department of Microbiology and Immunology, UCSF, San Francisco, CA, USA
| | | | - Jeffrey N Martin
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, CA, USA
| | - Sharon Saydah
- Division of Respiratory Viral Pathogens, CDC, Atlanta, USA
| | - J Daniel Kelly
- Institute for Global Health Sciences, University of California, San Francisco (UCSF), San Francisco, CA, USA.
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, CA, USA.
- School of Medicine, UCSF, San Francisco, CA, USA.
- F.I. Proctor Foundation, UCSF, San Francisco, CA, USA.
| |
Collapse
|
86
|
Duraníková O, Horváthová S, Sabaka P, Minár M, Boleková V, Straka I, Valkovič P. Prevalence and Risk Factors of Headache Associated with COVID-19. J Clin Med 2024; 13:5013. [PMID: 39274228 PMCID: PMC11396359 DOI: 10.3390/jcm13175013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/14/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
Background: Headache is a prevalent and disabling non-respiratory symptom of COVID-19, posing a persistent challenge in post-COVID syndrome. This study aimed to determine the prevalence, phenotypes, risk factors and biomarkers associated with COVID-related headaches. Methods: A retrospective analysis of 634 hospitalized COVID-19 patients was conducted, with 295 participants being followed up 12-15 months post-discharge via telephone call. Initial laboratory workups, including complete blood count and various biochemical parameters, were compared between headache and non-headache groups. Results: One-third of hospitalized patients experienced headaches, predominantly younger individuals (p < 0.001) and women (p = 0.002). Non-dominant headaches were characterized as dull (56.9%) and holocranial (26.5%), while dominant headaches were unilateral (31.3%) with photophobia (34.3%) and nausea (56.3%). Persistent headaches were unilateral (40%) and pulsating (38%) with phonophobia (74%). Decreased CD4 T cells independently predicted COVID-associated headaches, with elevated IL-6 levels noted in the dominant-headache group (p = 0.040). Remarkably, 50% of patients reported persistent headaches 12-15 months post-infection. Dexamethasone administration significantly reduced the likelihood of long-COVID headaches (52% vs. 73%, p = 0.029). Conclusions: Headache was present in one-third of patients with heterogenous phenotypes: tension headache in the non-dominant group, and migraine in the dominant and persistent headache groups. Persistent headache remains a challenge, with dexamethasone showing potential in reducing its incidence, emphasizing the need for tailored approaches in managing long-COVID headaches.
Collapse
Affiliation(s)
- Oľga Duraníková
- 2nd Department of Neurology, Faculty of Medicine, Comenius University Bratislava, 813 72 Bratislava, Slovakia
| | - Simona Horváthová
- 2nd Department of Neurology, Faculty of Medicine, Comenius University Bratislava, 813 72 Bratislava, Slovakia
| | - Peter Sabaka
- Department of Infectology and Geographical Medicine, Faculty of Medicine, Comenius University Bratislava, 813 72 Bratislava, Slovakia
| | - Michal Minár
- 2nd Department of Neurology, Faculty of Medicine, Comenius University Bratislava, 813 72 Bratislava, Slovakia
| | - Veronika Boleková
- 2nd Department of Neurology, Faculty of Medicine, Comenius University Bratislava, 813 72 Bratislava, Slovakia
- Faculty of Psychology, Institute of Clinical Psychology, Pan-European University, 821 02 Bratislava, Slovakia
| | - Igor Straka
- 2nd Department of Neurology, Faculty of Medicine, Comenius University Bratislava, 813 72 Bratislava, Slovakia
| | - Peter Valkovič
- 2nd Department of Neurology, Faculty of Medicine, Comenius University Bratislava, 813 72 Bratislava, Slovakia
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, 813 71 Bratislava, Slovakia
| |
Collapse
|
87
|
Ward C, Schlichtholz B. Post-Acute Sequelae and Mitochondrial Aberration in SARS-CoV-2 Infection. Int J Mol Sci 2024; 25:9050. [PMID: 39201736 PMCID: PMC11354507 DOI: 10.3390/ijms25169050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/29/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
This review investigates links between post-acute sequelae of SARS-CoV-2 infection (PASC), post-infection viral persistence, mitochondrial involvement and aberrant innate immune response and cellular metabolism during SARS-CoV-2 infection. Advancement of proteomic and metabolomic studies now allows deeper investigation of alterations to cellular metabolism, autophagic processes and mitochondrial dysfunction caused by SARS-CoV-2 infection, while computational biology and machine learning have advanced methodologies of predicting virus-host gene and protein interactions. Particular focus is given to the interaction between viral genes and proteins with mitochondrial function and that of the innate immune system. Finally, the authors hypothesise that viral persistence may be a function of mitochondrial involvement in the sequestration of viral genetic material. While further work is necessary to understand the mechanisms definitively, a number of studies now point to the resolution of questions regarding the pathogenesis of PASC.
Collapse
Affiliation(s)
| | - Beata Schlichtholz
- Department of Biochemistry, Gdańsk University of Medicine, 80-210 Gdańsk, Poland;
| |
Collapse
|
88
|
Park JH, Park S, Kim NH, Lee Y, Chang Y, Song TJ. Postural Orthostatic Tachycardia Syndrome Associated with COVID-19: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1325. [PMID: 39202605 PMCID: PMC11356245 DOI: 10.3390/medicina60081325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024]
Abstract
Postural orthostatic tachycardia syndrome (POTS) is a complex condition marked by an atypical autonomic response to standing, leading to orthostatic intolerance and significant tachycardia without accompanying hypotension. In recent studies, a considerable number of individuals recovering from COVID-19 have been reported to experience POTS within 6 to 8 months post-infection. Key symptoms of POTS include fatigue, difficulty with orthostatic tolerance, tachycardia, and cognitive challenges. The underlying causes of POTS following COVID-19 remain unknown, with various theories proposed such as renin-angiotensin-aldosterone system (RAAS) dysregulation, hyperadrenergic reaction, and direct viral infection. Healthcare professionals should be vigilant for POTS in patients who have recovered from COVID-19 and are experiencing signs of autonomic dysfunction and use diagnostic procedures such as the tilt-up table test for confirmation. COVID-19-related POTS should be approached with a holistic strategy. Although many patients show improvement with initial non-drug treatments, for subjects who do not respond and exhibit more severe symptoms, medication-based therapies may be necessary. The current understanding of COVID-19-related POTS is limited, underscoring the need for more research to increase knowledge and enhance treatment approaches.
Collapse
Affiliation(s)
- Jung-Hyun Park
- Ewha Womans University College of Medicine, Seoul 07804, Republic of Korea; (J.-H.P.); (S.P.); (N.-H.K.); (Y.L.)
| | - Somin Park
- Ewha Womans University College of Medicine, Seoul 07804, Republic of Korea; (J.-H.P.); (S.P.); (N.-H.K.); (Y.L.)
| | - Na-Hye Kim
- Ewha Womans University College of Medicine, Seoul 07804, Republic of Korea; (J.-H.P.); (S.P.); (N.-H.K.); (Y.L.)
| | - Yoonjin Lee
- Ewha Womans University College of Medicine, Seoul 07804, Republic of Korea; (J.-H.P.); (S.P.); (N.-H.K.); (Y.L.)
| | - Yoonkyung Chang
- Department of Neurology, Mokdong Hospital, Ewha Womans University College of Medicine, Seoul 07985, Republic of Korea;
| | - Tae-Jin Song
- Department of Neurology, Seoul Hospital, Ewha Womans University College of Medicine, Seoul 07804, Republic of Korea
| |
Collapse
|
89
|
Sumi T, Harada K. Vaccine and antiviral drug promise for preventing post-acute sequelae of COVID-19, and their combination for its treatment. Front Immunol 2024; 15:1329162. [PMID: 39185419 PMCID: PMC11341427 DOI: 10.3389/fimmu.2024.1329162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 07/17/2024] [Indexed: 08/27/2024] Open
Abstract
Introduction Most healthy individuals recover from acute SARS-CoV-2 infection, whereas a remarkable number continues to suffer from unexplained symptoms, known as Long COVID or post-acute COVID-19 syndrome (PACS). It is therefore imperative that methods for preventing and treating the onset of PASC be investigated with the utmost urgency. Methods A mathematical model of the immune response to vaccination and viral infection with SARS-CoV-2, incorporating immune memory cells, was developed. Results and discussion Similar to our previous model, persistent infection was observed by the residual virus in the host, implying the possibility of chronic inflammation and delayed recovery from tissue injury. Pre-infectious vaccination and antiviral medication administered during onset can reduce the acute viral load; however, they show no beneficial effects in preventing persistent infection. Therefore, the impact of these treatments on the PASC, which has been clinically observed, is mainly attributed to their role in preventing severe tissue damage caused by acute viral infections. For PASC patients with persistent infection, vaccination was observed to cause an immediate rapid increase in viral load, followed by a temporary decrease over approximately one year. The former was effectively suppressed by the coadministration of antiviral medications, indicating that this combination is a promising treatment for PASC.
Collapse
Affiliation(s)
- Tomonari Sumi
- Research Institute for Interdisciplinary Science, Okayama University, Okayama, Japan
- Department of Chemistry, Faculty of Science, Okayama University, Okayama, Japan
| | - Kouji Harada
- Department of Computer Science and Engineering, Toyohashi University of Technology, Toyohashi, Aichi, Japan
- Center for IT-Based Education, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| |
Collapse
|
90
|
McMillan P, Turner AJ, Uhal BD. Mechanisms of Gut-Related Viral Persistence in Long COVID. Viruses 2024; 16:1266. [PMID: 39205240 PMCID: PMC11360392 DOI: 10.3390/v16081266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/31/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024] Open
Abstract
Long COVID (post-acute sequelae of COVID-19-PASC) is a consequence of infection by SARS-CoV-2 that continues to disrupt the well-being of millions of affected individuals for many months beyond their first infection. While the exact mechanisms underlying PASC remain to be defined, hypotheses regarding the pathogenesis of long COVID are varied and include (but are not limited to) dysregulated local or systemic inflammatory responses, autoimmune mechanisms, viral-induced hormonal imbalances, skeletal muscle abnormalities, complement dysregulation, novel abzymes, and long-term persistence of virus and/or fragments of viral RNA or proteins. This review article is based on a comprehensive review of the wide range of symptoms most often observed in long COVID and an attempt to integrate that information into a plausible hypothesis for the pathogenesis of PASC. In particular, it is proposed that long-term dysregulation of the gut in response to viral persistence could lead to the myriad of symptoms observed in PASC.
Collapse
Affiliation(s)
| | - Anthony J. Turner
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK;
| | - Bruce D. Uhal
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
91
|
Focosi D, Spezia PG, Maggi F. Subsequent Waves of Convergent Evolution in SARS-CoV-2 Genes and Proteins. Vaccines (Basel) 2024; 12:887. [PMID: 39204013 PMCID: PMC11358953 DOI: 10.3390/vaccines12080887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 09/03/2024] Open
Abstract
Beginning in 2022, following widespread infection and vaccination among the global population, the SARS-CoV-2 virus mainly evolved to evade immunity derived from vaccines and past infections. This review covers the convergent evolution of structural, nonstructural, and accessory proteins in SARS-CoV-2, with a specific look at common mutations found in long-lasting infections that hint at the virus potentially reverting to an enteric sarbecovirus type.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy;
| | - Pietro Giorgio Spezia
- Laboratory of Virology and Laboratory of Biosecurity, National Institute of Infectious Diseases Lazzaro Spallanzani—IRCCS, 00149 Rome, Italy;
| | - Fabrizio Maggi
- Laboratory of Virology and Laboratory of Biosecurity, National Institute of Infectious Diseases Lazzaro Spallanzani—IRCCS, 00149 Rome, Italy;
| |
Collapse
|
92
|
Manuelpillai B, Zendt M, Chang-Rabley E, Ricotta EE. Stuck in pandemic uncertainty: a review of the persistent effects of COVID-19 infection in immune-deficient people. Clin Microbiol Infect 2024; 30:1007-1011. [PMID: 38552795 PMCID: PMC11254561 DOI: 10.1016/j.cmi.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/04/2024] [Accepted: 03/23/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND People who are immune-deficient/disordered (IDP) are underrepresented in COVID-19 studies. Specifically, there is limited research on post-SARS-CoV-2 infection outcomes, including viral persistence and long-term sequelae in these populations. OBJECTIVES This review aimed to examine the published literature on the occurrence of persistent SARS-CoV-2 positivity, relapse, reinfections, variant coinfection, and post-acute sequelae of COVID-19 in IDP. Although the available literature largely centred on those with secondary immunodeficiencies, studies on people with inborn errors of immunity are also included. SOURCES PubMed was searched using medical subject headings terms to identify relevant articles from the last 4 years. Articles on primary and secondary immunodeficiencies were chosen, and a special emphasis was placed on including articles that studied people with inborn errors of immunity. The absence of extensive cohort studies including these individuals has limited most articles in this review to case reports, whereas the articles focusing on secondary immunodeficiencies include larger cohort, case-control, and cross-sectional studies. Articles focusing solely on HIV/AIDS were excluded. CONTENT Scientific literature suggests that IDP of any age are more likely to experience persistent SARS-CoV-2 infections. Although adult IDP exhibits a higher rate of post-acute sequelae of COVID-19, milder COVID-19 infections in children may reduce their risk of experiencing post-acute sequelae of COVID-19. Reinfections and coinfections may occur at a slightly higher rate in IDP than in the general population. IMPLICATIONS Although IDP experience increased viral persistence and inter-host evolution, it is unlikely that enough evidence can be generated at the population-level to support or refute the hypothesis that infections in IDP are significantly more likely to result in variants of concern than infections in the general population. Additional research on the relationship between viral persistence and the rate of long-term sequelae in IDP could inform the understanding of the immune response to SARS-CoV-2 in IDP and the general population.
Collapse
Affiliation(s)
- Bevin Manuelpillai
- Rollins School of Public Health, Emory University, Atlanta, GA, USA; Epidemiology and Data Management Unit, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mackenzie Zendt
- Epidemiology and Data Management Unit, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Emma Chang-Rabley
- Epidemiology and Data Management Unit, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Emily E Ricotta
- Epidemiology and Data Management Unit, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
93
|
Zuo W, He D, Liang C, Du S, Hua Z, Nie Q, Zhou X, Yang M, Tan H, Xu J, Yu Y, Zhan Y, Zhang Y, Gu X, Zhu W, Zhang H, Li H, Sun W, Sun M, Liu X, Liu L, Cao C, Li R, Li J, Zhang Y, Zhang Y, Guo J, Zhao L, Zhang CP, Liu H, Wang S, Xiao F, Wang Y, Wang Z, Li H, Cao B. The persistence of SARS-CoV-2 in tissues and its association with long COVID symptoms: a cross-sectional cohort study in China. THE LANCET. INFECTIOUS DISEASES 2024; 24:845-855. [PMID: 38663423 DOI: 10.1016/s1473-3099(24)00171-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Growing evidence suggests that symptoms associated with post-COVID-19 condition (also known as long COVID) can affect multiple organs and systems in the human body, but their association with viral persistence is not clear. The aim of this study was to investigate the persistence of SARS-CoV-2 in diverse tissues at three timepoints following recovery from mild COVID-19, as well as its association with long COVID symptoms. METHODS This single-centre, cross-sectional cohort study was done at China-Japan Friendship Hospital in Beijing, China, following the omicron wave of COVID-19 in December, 2022. Individuals with mild COVID-19 confirmed by PCR or a lateral flow test scheduled to undergo gastroscopy, surgery, or chemotherapy, or scheduled for treatment in hospital for other reasons, at 1 month, 2 months, or 4 months after infection were enrolled in this study. Residual surgical samples, gastroscopy samples, and blood samples were collected approximately 1 month (18-33 days), 2 months (55-84 days), or 4 months (115-134 days) after infection. SARS-CoV-2 was detected by digital droplet PCR and further confirmed through RNA in-situ hybridisation, immunofluorescence, and immunohistochemistry. Telephone follow-up was done at 4 months post-infection to assess the association between the persistence of SARS-CoV-2 RNA and long COVID symptoms. FINDINGS Between Jan 3 and April 28, 2023, 317 tissue samples were collected from 225 patients, including 201 residual surgical specimens, 59 gastroscopy samples, and 57 blood component samples. Viral RNA was detected in 16 (30%) of 53 solid tissue samples collected at 1 month, 38 (27%) of 141 collected at 2 months, and seven (11%) of 66 collected at 4 months. Viral RNA was distributed across ten different types of solid tissues, including liver, kidney, stomach, intestine, brain, blood vessel, lung, breast, skin, and thyroid. Additionally, subgenomic RNA was detected in 26 (43%) of 61 solid tissue samples tested for subgenomic RNA that also tested positive for viral RNA. At 2 months after infection, viral RNA was detected in the plasma of three (33%), granulocytes of one (11%), and peripheral blood mononuclear cells of two (22%) of nine patients who were immunocompromised, but in none of these blood compartments in ten patients who were immunocompetent. Among 213 patients who completed the telephone questionnaire, 72 (34%) reported at least one long COVID symptom, with fatigue (21%, 44 of 213) being the most frequent symptom. Detection of viral RNA in recovered patients was significantly associated with the development of long COVID symptoms (odds ratio 5·17, 95% CI 2·64-10·13, p<0·0001). Patients with higher virus copy numbers had a higher likelihood of developing long COVID symptoms. INTERPRETATION Our findings suggest that residual SARS-CoV-2 can persist in patients who have recovered from mild COVID-19 and that there is a significant association between viral persistence and long COVID symptoms. Further research is needed to verify a mechanistic link and identify potential targets to improve long COVID symptoms. FUNDING National Natural Science Foundation of China, National Key R&D Program of China, Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences, and New Cornerstone Science Foundation. TRANSLATION For the Chinese translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Wenting Zuo
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Chaoyang District, Beijing, China; Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Di He
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Chaoyang District, Beijing, China; Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Chaoyang Liang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Chaoyang District, Beijing, China; Department of General Thoracic Surgery, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Shiyu Du
- Department of Gastroenterology, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Zhan Hua
- Division of Gastrointestinal Surgery, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Qiangqiang Nie
- Department of General Surgery, Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Xiaofeng Zhou
- Department of Urology, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Meng Yang
- Division of Breast and Thyroid Surgery, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Haidong Tan
- Second Division of Hepatopancreatobiliary Surgery, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Jiuyang Xu
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Yanbing Yu
- Department of Neurosurgery, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Yuliang Zhan
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Ying Zhang
- Department of Anesthesiology and Operating Theatre, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Xiaoying Gu
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Chaoyang District, Beijing, China; Department of Clinical Research and Data Management, Center of Respiratory Medicine, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Weijie Zhu
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Chaoyang District, Beijing, China; Department of General Thoracic Surgery, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Hui Zhang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Chaoyang District, Beijing, China; Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Hongyan Li
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Weiliang Sun
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Mingzhi Sun
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Chaoyang District, Beijing, China; Changping Laboratory, Beijing, China
| | - Xiaolei Liu
- Second Division of Hepatopancreatobiliary Surgery, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Liguo Liu
- Second Division of Hepatopancreatobiliary Surgery, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Chuanzhen Cao
- Department of Urology, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Rui Li
- Department of Neurosurgery, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Jing Li
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Yun Zhang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Yuting Zhang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Jing Guo
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Ling Zhao
- Department of Pathology, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Chuan-Peng Zhang
- Department of Neurosurgery, China-Japan Friendship Hospital, Chaoyang District, Beijing, China; Department of Neurosurgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Hongyu Liu
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Chaoyang District, Beijing, China; Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Shiyao Wang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Fei Xiao
- Department of General Thoracic Surgery, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Yeming Wang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Zai Wang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Chaoyang District, Beijing, China.
| | - Haibo Li
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Chaoyang District, Beijing, China; Changping Laboratory, Beijing, China.
| | - Bin Cao
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Chaoyang District, Beijing, China; New Cornerstone Science Laboratory, China-Japan Friendship Hospital, Chaoyang District, Beijing, China; Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China; Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing, China; Changping Laboratory, Beijing, China; Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, China.
| |
Collapse
|
94
|
Thierry AR, Salmon D. Inflammation-, immunothrombosis,- and autoimmune-feedback loops may lead to persistent neutrophil self-stimulation in long COVID. J Med Virol 2024; 96:e29887. [PMID: 39189651 DOI: 10.1002/jmv.29887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/10/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
Understanding the pathophysiology of long COVID is one of the most intriguing challenges confronting contemporary medicine. Despite observations recently made in the relevant molecular, cellular, and physiological domains, it is still difficult to say whether the post-acute sequelae of COVID-19 directly correspond to the consequences of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. This work hypothesizes that neutrophils and neutrophil extracellular traps (NETs) production are at the interconnection of three positive feedback loops which are initiated in the acute phase of SARS-CoV-2 infection, and which involve inflammation, immunothrombosis, and autoimmunity. This phenomenon could be favored by the fact that SARS-CoV-2 may directly bind and penetrate neutrophils. The ensuing strong neutrophil stimulation leads to a progressive amplification of an exacerbated and uncontrolled NETs production, potentially persisting for months beyond the acute phase of infection. This continuous self-stimulation of neutrophils leads, in turn, to systemic inflammation, micro-thromboses, and the production of autoantibodies, whose significant consequences include the persistence of endothelial and multiorgan damage, and vascular complications.
Collapse
Affiliation(s)
- Alain R Thierry
- IRCM, Institute of Research on Cancerology of Montpellier, INSERM U1194, University of Montpellier, Montpellier, France
- Montpellier Cancer Institute (ICM), Montpellier, France
| | | |
Collapse
|
95
|
Zollner A, Koch R, Jukic A, Pfister A, Meyer M, Wick N, Wick G, Rössler A, Kimpel J, Adolph TE, Tilg H. Clearance of Gut Mucosal SARS-CoV-2 Antigens and Postacute COVID-19 After 2 Years in Patients With Inflammatory Bowel Disease. Gastroenterology 2024; 167:604-607.e8. [PMID: 38631418 DOI: 10.1053/j.gastro.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024]
Affiliation(s)
- Andreas Zollner
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Robert Koch
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Almina Jukic
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Alexandra Pfister
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Moritz Meyer
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Nikolaus Wick
- Center for Specialized Diagnostics Wick, Innsbruck, Austria
| | - Georg Wick
- Center for Specialized Diagnostics Wick, Innsbruck, Austria
| | - Annika Rössler
- Department of Hygiene, Microbiology, and Public Health, Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Janine Kimpel
- Department of Hygiene, Microbiology, and Public Health, Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, and Metabolism, Medical University of Innsbruck, Innsbruck, Austria.
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, and Metabolism, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
96
|
Caohuy H, Eidelman O, Chen T, Mungunsukh O, Yang Q, Walton NI, Pollard BS, Khanal S, Hentschel S, Florez C, Herbert AS, Pollard HB. Inflammation in the COVID-19 airway is due to inhibition of CFTR signaling by the SARS-CoV-2 spike protein. Sci Rep 2024; 14:16895. [PMID: 39043712 PMCID: PMC11266487 DOI: 10.1038/s41598-024-66473-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/01/2024] [Indexed: 07/25/2024] Open
Abstract
SARS-CoV-2-contributes to sickness and death in COVID-19 patients partly by inducing a hyper-proinflammatory immune response in the host airway. This hyper-proinflammatory state involves activation of signaling by NFκB, and unexpectedly, ENaC, the epithelial sodium channel. Post-infection inflammation may also contribute to "Long COVID"/PASC. Enhanced signaling by NFκB and ENaC also marks the airway of patients suffering from cystic fibrosis, a life-limiting proinflammatory genetic disease due to inactivating mutations in the CFTR gene. We therefore hypothesized that inflammation in the COVID-19 airway might similarly be due to inhibition of CFTR signaling by SARS-CoV-2 spike protein, and therefore activation of both NFκB and ENaC signaling. We used western blot and electrophysiological techniques, and an organoid model of normal airway epithelia, differentiated on an air-liquid-interface (ALI). We found that CFTR protein expression and CFTR cAMP-activated chloride channel activity were lost when the model epithelium was exposed to SARS-CoV-2 spike proteins. As hypothesized, the absence of CFTR led to activation of both TNFα/NFκB signaling and α and γ ENaC. We had previously shown that the cardiac glycoside drugs digoxin, digitoxin and ouabain blocked interaction of spike protein and ACE2. Consistently, addition of 30 nM concentrations of the cardiac glycoside drugs, prevented loss of both CFTR protein and CFTR channel activity. ACE2 and CFTR were found to co-immunoprecipitate in both basal cells and differentiated epithelia. Thus spike-dependent CFTR loss might involve ACE2 as a bridge between Spike and CFTR. In addition, spike exposure to the epithelia resulted in failure of endosomal recycling to return CFTR to the plasma membrane. Thus, failure of CFTR recovery from endosomal recycling might be a mechanism for spike-dependent loss of CFTR. Finally, we found that authentic SARS-CoV-2 virus infection induced loss of CFTR protein, which was rescued by the cardiac glycoside drugs digitoxin and ouabain. Based on experiments with this organoid model of small airway epithelia, and comparisons with 16HBE14o- and other cell types expressing normal CFTR, we predict that inflammation in the COVID-19 airway may be mediated by inhibition of CFTR signaling by the SARS-CoV-2 spike protein, thus inducing a cystic fibrosis-like clinical phenotype. To our knowledge this is the first time COVID-19 airway inflammation has been experimentally traced in normal subjects to a contribution from SARS-CoV-2 spike-dependent inhibition of CFTR signaling.
Collapse
Affiliation(s)
- Hung Caohuy
- Department of Anatomy, Physiology and Genetics, Uniformed Services University School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Collaborative Health Initiative Research Program (CHIRP), Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Consortium for Health and Military Performance (CHAMP), Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Ofer Eidelman
- Department of Anatomy, Physiology and Genetics, Uniformed Services University School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Collaborative Health Initiative Research Program (CHIRP), Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Tinghua Chen
- Department of Anatomy, Physiology and Genetics, Uniformed Services University School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Collaborative Health Initiative Research Program (CHIRP), Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Consortium for Health and Military Performance (CHAMP), Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Ognoon Mungunsukh
- Department of Anatomy, Physiology and Genetics, Uniformed Services University School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Consortium for Health and Military Performance (CHAMP), Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Center for Military Precision Health, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Qingfeng Yang
- Department of Anatomy, Physiology and Genetics, Uniformed Services University School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Center for the Study of Traumatic Stress (CSTS), and Department of Psychiatry, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Nathan I Walton
- Department of Anatomy, Physiology and Genetics, Uniformed Services University School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Collaborative Health Initiative Research Program (CHIRP), Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Consortium for Health and Military Performance (CHAMP), Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | | | - Sara Khanal
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, 21702, USA
- The Geneva Foundation, Tacoma, WA, 98402, USA
| | - Shannon Hentschel
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, 21702, USA
- Cherokee Nation Assurance, Catoosa, OK, 74015, USA
| | - Catalina Florez
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, 21702, USA
- The Geneva Foundation, Tacoma, WA, 98402, USA
| | - Andrew S Herbert
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, 21702, USA
| | - Harvey B Pollard
- Department of Anatomy, Physiology and Genetics, Uniformed Services University School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
- Collaborative Health Initiative Research Program (CHIRP), Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
- Consortium for Health and Military Performance (CHAMP), Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| |
Collapse
|
97
|
Datta G, Rezagholizadeh N, Hasler WA, Khan N, Chen X. SLC38A9 regulates SARS-CoV-2 viral entry. iScience 2024; 27:110387. [PMID: 39071889 PMCID: PMC11277692 DOI: 10.1016/j.isci.2024.110387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/13/2024] [Accepted: 06/24/2024] [Indexed: 07/30/2024] Open
Abstract
SARS-CoV-2 viral entry into host cells depends on the cleavage of spike (S) protein into S1 and S2 proteins. Such proteolytic cleavage by furin results in the exposure of a multibasic motif on S1, which is critical for SARS-CoV-2 viral infection and transmission; however, how such a multibasic motif contributes to the infection of SARS-CoV-2 remains elusive. Here, we demonstrate that the multibasic motif on S1 is critical for its interaction with SLC38A9, an endolysosome-resident arginine sensor. SLC38A9 knockdown prevents S1-induced endolysosome de-acidification and blocks the S protein-mediated entry of pseudo-SARS-CoV-2 in Calu-3, U87MG, Caco-2, and A549 cells. Our findings provide a novel mechanism in regulating SARS-CoV-2 viral entry; S1 present in endolysosome lumen could interact with SLC38A9, which mediates S1-induced endolysosome de-acidification and dysfunction, facilitating the escape of SARS-CoV-2 from endolysosomes and enhancing viral entry.
Collapse
Affiliation(s)
- Gaurav Datta
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| | - Neda Rezagholizadeh
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| | - Wendie A. Hasler
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| | - Nabab Khan
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| | - Xuesong Chen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| |
Collapse
|
98
|
Yang S, Tian M, Dai Y, Wang R, Yamada S, Feng S, Wang Y, Chhangani D, Ou T, Li W, Guo X, McAdow J, Rincon-Limas DE, Yin X, Tai W, Cheng G, Johnson A. Infection and chronic disease activate a systemic brain-muscle signaling axis. Sci Immunol 2024; 9:eadm7908. [PMID: 38996009 DOI: 10.1126/sciimmunol.adm7908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/18/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024]
Abstract
Infections and neurodegenerative diseases induce neuroinflammation, but affected individuals often show nonneural symptoms including muscle pain and muscle fatigue. The molecular pathways by which neuroinflammation causes pathologies outside the central nervous system (CNS) are poorly understood. We developed multiple models to investigate the impact of CNS stressors on motor function and found that Escherichia coli infections and SARS-CoV-2 protein expression caused reactive oxygen species (ROS) to accumulate in the brain. ROS induced expression of the cytokine Unpaired 3 (Upd3) in Drosophila and its ortholog, IL-6, in mice. CNS-derived Upd3/IL-6 activated the JAK-STAT pathway in skeletal muscle, which caused muscle mitochondrial dysfunction and impaired motor function. We observed similar phenotypes after expressing toxic amyloid-β (Aβ42) in the CNS. Infection and chronic disease therefore activate a systemic brain-muscle signaling axis in which CNS-derived cytokines bypass the connectome and directly regulate muscle physiology, highlighting IL-6 as a therapeutic target to treat disease-associated muscle dysfunction.
Collapse
Affiliation(s)
- Shuo Yang
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
- Department of Genetics and Genetics Engineering, School of Life Science, Fudan University, Shanghai 200438, China
| | - Meijie Tian
- Genetics Branch, Oncogenomics Section, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yulong Dai
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Rong Wang
- Department of Genetics and Genetics Engineering, School of Life Science, Fudan University, Shanghai 200438, China
| | - Shigehiro Yamada
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Shengyong Feng
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Yunyun Wang
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Deepak Chhangani
- Department of Neurology and McKnight Brain Institute, Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease, Genetics Institute, and Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Gainesville, FL 32611, USA
| | - Tiffany Ou
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Wenle Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xuan Guo
- Life Science Institute, Jinzhou Medical University, Jinzhou 121001, China
| | - Jennifer McAdow
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Diego E Rincon-Limas
- Department of Neurology and McKnight Brain Institute, Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease, Genetics Institute, and Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Gainesville, FL 32611, USA
| | - Xin Yin
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Wanbo Tai
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Gong Cheng
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
- Southwest United Graduate School, Kunming 650092, China
| | - Aaron Johnson
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
99
|
Haddad NS, Morrison-Porter A, Quehl H, Capric V, Lamothe PA, Anam F, Runnstrom MC, Truong AD, Dixit AN, Woodruff MC, Chen A, Park J, Nguyen DC, Hentenaar I, Kim CY, Kyu S, Stewart B, Wagman E, Geoffroy H, Sanz D, Cashman KS, Ramonell RP, Cabrera-Mora M, Alter DN, Roback JD, Horwath MC, O’Keefe JB, Dretler AW, Gripaldo R, Yeligar SM, Natoli T, Betin V, Patel R, Vela K, Hernandez MR, Usman S, Varghese J, Jalal A, Lee S, Le SN, Amoss RT, Daiss JL, Sanz I, Lee FEH. MENSA, a Media Enriched with Newly Synthesized Antibodies, to Identify SARS-CoV-2 Persistence and Latent Viral Reactivation in Long-COVID. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.05.24310017. [PMID: 39006446 PMCID: PMC11245097 DOI: 10.1101/2024.07.05.24310017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Post-acute sequelae of SARS-CoV-2 (SARS2) infection (PASC) is a heterogeneous condition, but the main viral drivers are unknown. Here, we use MENSA, Media Enriched with Newly Synthesized Antibodies, secreted exclusively from circulating human plasmablasts, to provide an immune snapshot that defines the underlying viral triggers. We provide proof-of-concept testing that the MENSA technology can capture the new host immune response to accurately diagnose acute primary and breakthrough infections when known SARS2 virus or proteins are present. It is also positive after vaccination when spike proteins elicit an acute immune response. Applying the same principles for long-COVID patients, MENSA is positive for SARS2 in 40% of PASC vs none of the COVID recovered (CR) patients without any sequelae demonstrating ongoing SARS2 viral inflammation only in PASC. Additionally, in PASC patients, MENSAs are also positive for Epstein-Barr Virus (EBV) in 37%, Human Cytomegalovirus (CMV) in 23%, and herpes simplex virus 2 (HSV2) in 15% compared to 17%, 4%, and 4% in CR controls respectively. Combined, a total of 60% of PASC patients have a positive MENSA for SARS2, EBV, CMV, and/or HSV2. MENSA offers a unique antibody snapshot to reveal the underlying viral drivers in long-COVID thus demonstrating the persistence of SARS2 and reactivation of viral herpes in 60% of PASC patients.
Collapse
Affiliation(s)
- Natalie S. Haddad
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
- MicroB-plex Inc, Atlanta, GA, 30332, USA
| | - Andrea Morrison-Porter
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
- MicroB-plex Inc, Atlanta, GA, 30332, USA
| | - Hannah Quehl
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Violeta Capric
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Pedro A. Lamothe
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Fabliha Anam
- Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Martin C. Runnstrom
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
- Department of Medicine, Atlanta Veterans Affairs Health Care System, Decatur, Georgia, 30033, USA
| | - Alex D. Truong
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Adviteeya N. Dixit
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Matthew C. Woodruff
- Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, 30322, USA
| | - Anting Chen
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Jiwon Park
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Doan C. Nguyen
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Ian Hentenaar
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Caroline Y. Kim
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Shuya Kyu
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Brandon Stewart
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Elizabeth Wagman
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Hannah Geoffroy
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | | | - Kevin S. Cashman
- Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, 30322, USA
| | - Richard P. Ramonell
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Asthma and Environmental Lung Health Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Monica Cabrera-Mora
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - David N. Alter
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, 30322, USA
| | - John D. Roback
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Michael C. Horwath
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, 30322, USA
| | - James B. O’Keefe
- Division of General Internal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | | | - Ria Gripaldo
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Samantha M. Yeligar
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
- Department of Medicine, Atlanta Veterans Affairs Health Care System, Decatur, Georgia, 30033, USA
| | - Ted Natoli
- ImmuneID, Inc Biotechnology Research, Waltham, MA, 02451, USA
| | - Viktoria Betin
- ImmuneID, Inc Biotechnology Research, Waltham, MA, 02451, USA
| | - Rahulkumar Patel
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
- Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Kennedy Vela
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
- Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Mindy Rodriguez Hernandez
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
- Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Sabeena Usman
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
- Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - John Varghese
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
- Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Anum Jalal
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
- Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Saeyun Lee
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
- Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Sang N. Le
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - R. Toby Amoss
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
- Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | | | - Ignacio Sanz
- Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, 30322, USA
| | - F. Eun-Hyung Lee
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, 30322, USA
| |
Collapse
|
100
|
Durieux JC, Zisis SN, Mouchati C, Labbato D, Abboud M, McComsey GA. Sex Modifies the Effect of COVID-19 on Arterial Elasticity. Viruses 2024; 16:1089. [PMID: 39066250 PMCID: PMC11281515 DOI: 10.3390/v16071089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
There is limited long-term evidence on the effects of COVID-19 on vascular injury between male and female sex. An adult cohort of COVID-19 survivors (COVID+) and confirmed SARS-CoV-2 antibody-negative participants (COVID-) were prospectively enrolled. COVID+ participants who have documented the presence of persistent symptoms four weeks following infection were considered to have post-acute sequelae of COVID-19 (PASC). Non-invasive, FDA-approved EndoPAT (Endo-PAT2000) was used for endothelial assessment. COVID-(n = 94) were 1:1 propensity score matched to COVID+ (n = 151) on baseline covariates including sex. Among COVID+, 66.2% (n = 100) had PASC. Higher levels of coagulation marker, D-dimer (p = 0.001), and gut permeability marker, zonulin (p = 0.001), were associated with female sex. Estimated differences in augmentation index (AI) between COVID- (0.9 ± 17.2) and COVID+ (8.4 ± 15.7; p = 0.001) and between female and male sex (12.9 ± 1.9; p < .0001) were observed. Among COVID+ with PASC, the average AI (10.5 ± 1.6) was 9.7 units higher than COVID- (p < .0001) and 6.2 units higher compared to COVID+ with no PASC (p = 0.03). COVID+ PASC+ female sex had the highest AI (14.3 ± 1.9). The effects of SARS-CoV-2 infection on vascular function varies across strata of sex and female sex in the post-acute phase of COVID-19 have the worse arterial elasticity (highest AI).
Collapse
Affiliation(s)
- Jared C. Durieux
- University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; (J.C.D.); (D.L.)
| | - Sokratis N. Zisis
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (S.N.Z.); (C.M.)
| | - Christian Mouchati
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (S.N.Z.); (C.M.)
| | - Danielle Labbato
- University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; (J.C.D.); (D.L.)
| | - Marc Abboud
- Faculty of Medicine, Saint Joseph University of Beirut, Beirut 1104 2020, Lebanon;
| | - Grace A. McComsey
- University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; (J.C.D.); (D.L.)
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (S.N.Z.); (C.M.)
| |
Collapse
|