51
|
Abstract
DPANN is known as highly diverse, globally widespread, and mostly ectosymbiotic archaeal superphylum. However, this group of archaea was overlooked for a long time, and there were limited in-depth studies reported. In this investigation, 41 metagenome-assembled genomes (MAGs) belonging to the DPANN superphylum were recovered (18 MAGs had average nucleotide identity [ANI] values of <95% and a percentage of conserved proteins [POCP] of >50%, while 14 MAGs showed a POCP of <50%), which were analyzed comparatively with 515 other published DPANN genomes. Mismatches to known 16S rRNA gene primers were identified among 16S rRNA genes of DPANN archaea. Numbers of gene families lost (mostly related to energy and amino acid metabolism) were over three times greater than those gained in the evolution of DPANN archaea. Lateral gene transfer (LGT; ∼45.5% was cross-domain) had facilitated niche adaption of the DPANN archaea, ensuring a delicate equilibrium of streamlined genomes with efficient niche-adaptive strategies. For instance, LGT-derived cytochrome bd ubiquinol oxidase and arginine deiminase in the genomes of “Candidatus Micrarchaeota” could help them better adapt to aerobic acidic mine drainage habitats. In addition, most DPANN archaea acquired enzymes for biosynthesis of extracellular polymeric substances (EPS) and transketolase/transaldolase for the pentose phosphate pathway from Bacteria. IMPORTANCE The domain Archaea is a key research model for gaining insights into the origin and evolution of life, as well as the relevant biogeochemical processes. The discovery of nanosized DPANN archaea has overthrown many aspects of microbiology. However, the DPANN superphylum still contains a vast genetic novelty and diversity that need to be explored. Comprehensively comparative genomic analysis on the DPANN superphylum was performed in this study, with an attempt to illuminate its metabolic potential, ecological distribution and evolutionary history. Many interphylum differences within the DPANN superphylum were found. For example, Altiarchaeota had the biggest genome among DPANN phyla, possessing many pathways missing in other phyla, such as formaldehyde assimilation and the Wood-Ljungdahl pathway. In addition, LGT acted as an important force to provide DPANN archaeal genetic flexibility that permitted the occupation of diverse niches. This study has advanced our understanding of the diversity and genome evolution of archaea.
Collapse
|
52
|
McCutcheon JP. The Genomics and Cell Biology of Host-Beneficial Intracellular Infections. Annu Rev Cell Dev Biol 2021; 37:115-142. [PMID: 34242059 DOI: 10.1146/annurev-cellbio-120219-024122] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microbes gain access to eukaryotic cells as food for bacteria-grazing protists, for host protection by microbe-killing immune cells, or for microbial benefit when pathogens enter host cells to replicate. But microbes can also gain access to a host cell and become an important-often required-beneficial partner. The oldest beneficial microbial infections are the ancient eukaryotic organelles now called the mitochondrion and plastid. But numerous other host-beneficial intracellular infections occur throughout eukaryotes. Here I review the genomics and cell biology of these interactions with a focus on intracellular bacteria. The genomes of host-beneficial intracellular bacteria have features that span a previously unfilled gap between pathogens and organelles. Host cell adaptations to allow the intracellular persistence of beneficial bacteria are found along with evidence for the microbial manipulation of host cells, but the cellular mechanisms of beneficial bacterial infections are not well understood. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- John P McCutcheon
- Biodesign Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, Arizona 85287, USA;
| |
Collapse
|
53
|
Kiefer JST, Batsukh S, Bauer E, Hirota B, Weiss B, Wierz JC, Fukatsu T, Kaltenpoth M, Engl T. Inhibition of a nutritional endosymbiont by glyphosate abolishes mutualistic benefit on cuticle synthesis in Oryzaephilus surinamensis. Commun Biol 2021; 4:554. [PMID: 33976379 PMCID: PMC8113238 DOI: 10.1038/s42003-021-02057-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/26/2021] [Indexed: 02/07/2023] Open
Abstract
Glyphosate is widely used as a herbicide, but recent studies begin to reveal its detrimental side effects on animals by targeting the shikimate pathway of associated gut microorganisms. However, its impact on nutritional endosymbionts in insects remains poorly understood. Here, we sequenced the tiny, shikimate pathway encoding symbiont genome of the sawtoothed grain beetle Oryzaephilus surinamensis. Decreased titers of the aromatic amino acid tyrosine in symbiont-depleted beetles underscore the symbionts' ability to synthesize prephenate as the precursor for host tyrosine synthesis and its importance for cuticle sclerotization and melanization. Glyphosate exposure inhibited symbiont establishment during host development and abolished the mutualistic benefit on cuticle synthesis in adults, which could be partially rescued by dietary tyrosine supplementation. Furthermore, phylogenetic analyses indicate that the shikimate pathways of many nutritional endosymbionts likewise contain a glyphosate sensitive 5-enolpyruvylshikimate-3-phosphate synthase. These findings highlight the importance of symbiont-mediated tyrosine supplementation for cuticle biosynthesis in insects, but also paint an alarming scenario regarding the use of glyphosate in light of recent declines in insect populations.
Collapse
Affiliation(s)
- Julian Simon Thilo Kiefer
- Evolutionary Ecology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Mainz, Germany
| | - Suvdanselengee Batsukh
- Evolutionary Ecology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Mainz, Germany
| | - Eugen Bauer
- Evolutionary Ecology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Mainz, Germany
| | - Bin Hirota
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Benjamin Weiss
- Evolutionary Ecology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Mainz, Germany
- Research Group Insect Symbiosis, Max-Planck-Institute for Chemical Ecology, Jena, Germany
| | - Jürgen C Wierz
- Evolutionary Ecology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Mainz, Germany
| | - Takema Fukatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Martin Kaltenpoth
- Evolutionary Ecology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Mainz, Germany
- Research Group Insect Symbiosis, Max-Planck-Institute for Chemical Ecology, Jena, Germany
- Department of Insect Symbiosis, Max-Planck-Institute for Chemical Ecology, Jena, Germany
| | - Tobias Engl
- Evolutionary Ecology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Mainz, Germany.
- Research Group Insect Symbiosis, Max-Planck-Institute for Chemical Ecology, Jena, Germany.
- Department of Insect Symbiosis, Max-Planck-Institute for Chemical Ecology, Jena, Germany.
| |
Collapse
|
54
|
Genome assembly, sex-biased gene expression and dosage compensation in the damselfly Ischnura elegans. Genomics 2021; 113:1828-1837. [PMID: 33831439 DOI: 10.1016/j.ygeno.2021.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 02/27/2021] [Accepted: 04/04/2021] [Indexed: 12/14/2022]
Abstract
The evolution of sex chromosomes, and patterns of sex-biased gene expression and dosage compensation, are poorly known among early winged insects such as odonates. We assembled and annotated the genome of Ischnura elegans (blue-tailed damselfly), which, like other odonates, has a male-hemigametic sex-determining system (X0 males, XX females). By identifying X-linked genes in I. elegans and their orthologs in other insect genomes, we found homologies between the X chromosome in odonates and chromosomes of other orders, including the X chromosome in Coleoptera. Next, we showed balanced expression of X-linked genes between sexes in adult I. elegans, i.e. evidence of dosage compensation. Finally, among the genes in the sex-determining pathway only fruitless was found to be X-linked, while only doublesex showed sex-biased expression. This study reveals partly conserved sex chromosome synteny and independent evolution of dosage compensation among insect orders separated by several hundred million years of evolutionary history.
Collapse
|
55
|
Li Y, Zhang B, Moran NA. The Aphid X Chromosome Is a Dangerous Place for Functionally Important Genes: Diverse Evolution of Hemipteran Genomes Based on Chromosome-Level Assemblies. Mol Biol Evol 2021; 37:2357-2368. [PMID: 32289166 PMCID: PMC7403619 DOI: 10.1093/molbev/msaa095] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Different evolutionary forces shape gene content and sequence evolution on autosomes versus sex chromosomes. Location on a sex chromosome can favor male-beneficial or female-beneficial mutations depending on the sex determination system and selective pressure on different sexual morphs. An X0 sex determination can lead to autosomal enrichment of male-biased genes, as observed in some hemipteran insect species. Aphids share X0 sex determination; however, models predict the opposite pattern, due to their unusual life cycles, which alternate between all-female asexual generations and a single sexual generation. Predictions include enrichment of female-biased genes on autosomes and of male-biased genes on the X, in contrast to expectations for obligately sexual species. Robust tests of these models require chromosome-level genome assemblies for aphids and related hemipterans with X0 sex determination and obligate sexual reproduction. In this study, we built the first chromosome-level assembly of a psyllid, an aphid relative with X0 sex determination and obligate sexuality, and compared it with recently resolved chromosome-level assemblies of aphid genomes. Aphid and psyllid X chromosomes differ strikingly. In aphids, female-biased genes are strongly enriched on autosomes and male-biased genes are enriched on the X. In psyllids, male-biased genes are enriched on autosomes. Furthermore, functionally important gene categories of aphids are enriched on autosomes. Aphid X-linked genes and male-biased genes are under relaxed purifying selection, but gene content and order on the X is highly conserved, possibly reflecting constraints imposed by unique chromosomal mechanisms associated with the unusual aphid life cycle.
Collapse
Affiliation(s)
- Yiyuan Li
- Department of Integrative Biology, University of Texas at Austin, Austin, TX
| | - Bo Zhang
- Department of Integrative Biology, University of Texas at Austin, Austin, TX.,Laboratory of Predatory Mites, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Nancy A Moran
- Department of Integrative Biology, University of Texas at Austin, Austin, TX
| |
Collapse
|
56
|
Yang Z, Gong C, Hu Y, Zhong J, Xia J, Xie W, Yang X, Guo Z, Wang S, Wu Q, Zhang Y. Two Deoxythymidine Triphosphate Synthesis-Related Genes Regulate Obligate Symbiont Density and Reproduction in the Whitefly Bemisia tabaci MED. Front Physiol 2021; 11:574749. [PMID: 33716755 PMCID: PMC7943623 DOI: 10.3389/fphys.2020.574749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 09/04/2020] [Indexed: 11/17/2022] Open
Abstract
Deoxythymidine triphosphate (dTTP) is essential for DNA synthesis and cellular growth in all organisms. Here, genetic capacity analysis of the pyrimidine pathway in insects and their symbionts revealed that dTTP is a kind of metabolic input in several host insect/obligate symbiont symbiosis systems, including Bemisia tabaci MED/Candidatus Portiera aleyrodidarum (hereafter Portiera). As such, the roles of dTTP on both sides of the symbiosis system were investigated in B. tabaci MED/Portiera. Dietary RNA interference (RNAi) showed that suppressing dTTP production significantly reduced the density of Portiera, significantly repressed the expression levels of horizontally transferred essential amino acid (EAA) synthesis-related genes, and significantly decreased the reproduction of B. tabaci MED adults as well as the hatchability of their offspring. Our results revealed the regulatory role of dTTP in B. tabaci MED/Portiera and showed that dTTP synthesis-related genes could be potential targets for controlling B. tabaci as well as other sucking pests.
Collapse
Affiliation(s)
- Zezhong Yang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Cheng Gong
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuan Hu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Zhong
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jixing Xia
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wen Xie
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xin Yang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhaojiang Guo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shaoli Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
57
|
Pantothenate mediates the coordination of whitefly and symbiont fitness. ISME JOURNAL 2021; 15:1655-1667. [PMID: 33432136 DOI: 10.1038/s41396-020-00877-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 01/11/2023]
Abstract
Intracellular symbionts in insects often have reduced genomes. Host acquisition of genes from bacteria is an important adaptation that supports symbionts. However, the function of horizontally transferred genes in insect symbiosis remains largely unclear. The primary symbiont Portiera housed in bacteriocytes lacks pantothenate synthesis genes: panB and panC, which is presumably complemented by a fused gene panB-panC (hereafter panBC) horizontally transferred from bacteria in Bemisia tabaci MEAM1. We found panBC in many laboratory cultures, and species of B. tabaci shares a common evolutionary origin. We demonstrated that complementation with whitefly panBC rescued E. coli pantothenate gene knockout mutants. Portiera elimination decreased the pantothenate level and PanBC abundance in bacteriocytes, and reduced whitefly survival and fecundity. Silencing PanBC decreased the Portiera titer, reduced the pantothenate level, and decreased whitefly survival and fecundity. Supplementation with pantothenate restored the symbiont titer, PanBC level, and fitness of RNAi whiteflies. These data suggest that pantothenate synthesis requires cooperation and coordination of whitefly PanBC expression and Portiera. This host-symbiont co-regulation was mediated by the pantothenate level. Our findings demonstrated that pantothenate production, by the cooperation of a horizontally acquired, fused bacteria gene and Portiera, facilitates the coordination of whitefly and symbiont fitness. Thus, this study extends our understanding on the basis of complex host-symbiont interactions.
Collapse
|
58
|
Waneka G, Vasquez YM, Bennett GM, Sloan DB. Mutational Pressure Drives Differential Genome Conservation in Two Bacterial Endosymbionts of Sap-Feeding Insects. Genome Biol Evol 2020; 13:6020258. [PMID: 33275136 PMCID: PMC7952229 DOI: 10.1093/gbe/evaa254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2020] [Indexed: 11/16/2022] Open
Abstract
Compared with free-living bacteria, endosymbionts of sap-feeding insects have tiny and rapidly evolving genomes. Increased genetic drift, high mutation rates, and relaxed selection associated with host control of key cellular functions all likely contribute to genome decay. Phylogenetic comparisons have revealed massive variation in endosymbiont evolutionary rate, but such methods make it difficult to partition the effects of mutation versus selection. For example, the ancestor of Auchenorrhynchan insects contained two obligate endosymbionts, Sulcia and a betaproteobacterium (BetaSymb; called Nasuia in leafhoppers) that exhibit divergent rates of sequence evolution and different propensities for loss and replacement in the ensuing ∼300 Ma. Here, we use the auchenorrhynchan leafhopper Macrosteles sp. nr. severini, which retains both of the ancestral endosymbionts, to test the hypothesis that differences in evolutionary rate are driven by differential mutagenesis. We used a high-fidelity technique known as duplex sequencing to measure and compare low-frequency variants in each endosymbiont. Our direct detection of de novode novo mutations reveals that the rapidly evolving endosymbiont (Nasuia) has a much higher frequency of single-nucleotide variants than the more stable endosymbiont (Sulcia) and a mutation spectrum that is potentially even more AT-biased than implied by the 83.1% AT content of its genome. We show that indels are common in both endosymbionts but differ substantially in length and distribution around repetitive regions. Our results suggest that differences in long-term rates of sequence evolution in Sulcia versus BetaSymb, and perhaps the contrasting degrees of stability of their relationships with the host, are driven by differences in mutagenesis.
Collapse
Affiliation(s)
- Gus Waneka
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Yumary M Vasquez
- Department of Life and Environmental Sciences, University of California, Merced, CA, USA
| | - Gordon M Bennett
- Department of Life and Environmental Sciences, University of California, Merced, CA, USA
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
59
|
Andreason SA, Shelby EA, Moss JB, Moore PJ, Moore AJ, Simmons AM. Whitefly Endosymbionts: Biology, Evolution, and Plant Virus Interactions. INSECTS 2020; 11:insects11110775. [PMID: 33182634 PMCID: PMC7696030 DOI: 10.3390/insects11110775] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/03/2020] [Accepted: 11/07/2020] [Indexed: 11/16/2022]
Abstract
Whiteflies (Hemiptera: Aleyrodidae) are sap-feeding global agricultural pests. These piercing-sucking insects have coevolved with intracellular endosymbiotic bacteria that help to supplement their nutrient-poor plant sap diets with essential amino acids and carotenoids. These obligate, primary endosymbionts have been incorporated into specialized organs called bacteriomes where they sometimes coexist with facultative, secondary endosymbionts. All whitefly species harbor the primary endosymbiont Candidatus Portiera aleyrodidarum and have a variable number of secondary endosymbionts. The secondary endosymbiont complement harbored by the cryptic whitefly species Bemisia tabaci is particularly complex with various assemblages of seven different genera identified to date. In this review, we discuss whitefly associated primary and secondary endosymbionts. We focus on those associated with the notorious B. tabaci species complex with emphasis on their biological characteristics and diversity. We also discuss their interactions with phytopathogenic begomoviruses (family Geminiviridae), which are transmitted exclusively by B. tabaci in a persistent-circulative manner. Unraveling the complex interactions of these endosymbionts with their insect hosts and plant viruses could lead to advancements in whitefly and whitefly transmitted virus management.
Collapse
Affiliation(s)
- Sharon A. Andreason
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Vegetable Laboratory, Charleston, SC 29414, USA;
| | - Emily A. Shelby
- Department of Entomology, University of Georgia, Athens, GA 30602, USA; (E.A.S.); (J.B.M.); (P.J.M.); (A.J.M.)
| | - Jeanette B. Moss
- Department of Entomology, University of Georgia, Athens, GA 30602, USA; (E.A.S.); (J.B.M.); (P.J.M.); (A.J.M.)
| | - Patricia J. Moore
- Department of Entomology, University of Georgia, Athens, GA 30602, USA; (E.A.S.); (J.B.M.); (P.J.M.); (A.J.M.)
| | - Allen J. Moore
- Department of Entomology, University of Georgia, Athens, GA 30602, USA; (E.A.S.); (J.B.M.); (P.J.M.); (A.J.M.)
| | - Alvin M. Simmons
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Vegetable Laboratory, Charleston, SC 29414, USA;
- Correspondence:
| |
Collapse
|
60
|
Liu Y, Liu H, Wang H, Huang T, Liu B, Yang B, Yin L, Li B, Zhang Y, Zhang S, Jiang F, Zhang X, Ren Y, Wang B, Wang S, Lu Y, Wu K, Fan W, Wang G. Apolygus lucorum genome provides insights into omnivorousness and mesophyll feeding. Mol Ecol Resour 2020; 21:287-300. [PMID: 32939994 DOI: 10.1111/1755-0998.13253] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/03/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022]
Abstract
Apolygus lucorum (Miridae) is an omnivorous pest that occurs worldwide and is notorious for the serious damage it causes to various crops and substantial economic losses. Although some studies have examined the biological characteristics of the mirid bug, no reference genome is available in Miridae, limiting in-depth studies of this pest. Here, we present a chromosome-scale reference genome of A. lucorum, the first sequenced Miridae species. The assembled genome size was 1.02 Gb with a contig N50 of 785 kb. With Hi-C scaffolding, 1,016 Mb contig sequences were clustered, ordered and assembled into 17 large scaffolds with scaffold N50 length 68 Mb, each corresponding to a natural chromosome. Numerous transposable elements occur in this genome and contribute to the large genome size. Expansions of genes associated with omnivorousness and mesophyll feeding such as those related to digestion, chemosensory perception, and detoxification were observed in A. lucorum, suggesting that gene expansion contributed to its strong environmental adaptability and severe harm to crops. We clarified that a salivary enzyme polygalacturonase is unique in mirid bugs and has significantly expanded in A. lucorum, which may contribute to leaf damage from this pest. The reference genome of A. lucorum not only facilitates biological studies of Hemiptera as well as an understanding of the damage mechanism of mesophyll feeding, but also provides a basis on which to develop efficient control technologies for mirid bugs.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hangwei Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Hengchao Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Tianyu Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bo Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Bin Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lijuan Yin
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Bin Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Sai Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fan Jiang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xiaxuan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuwei Ren
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Bing Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Sen Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yanhui Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kongming Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Fan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
61
|
Ren FR, Sun X, Wang TY, Yao YL, Huang YZ, Zhang X, Luan JB. Biotin provisioning by horizontally transferred genes from bacteria confers animal fitness benefits. THE ISME JOURNAL 2020; 14:2542-2553. [PMID: 32572143 PMCID: PMC7490365 DOI: 10.1038/s41396-020-0704-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 06/01/2020] [Accepted: 06/11/2020] [Indexed: 12/15/2022]
Abstract
Insect symbionts are widespread in nature and lateral gene transfer is prevalent in insect symbiosis. However, the function of horizontally transferred genes (HTGs) in insect symbiosis remains speculative, including the mechanism that enables insects to feed on plant phloem deficient in B vitamins. Previously, we found there is redundancy in biotin synthesis pathways from both whitefly Bemisia tabaci and symbiotic Hamiltonella due to the presence of whitefly HTGs. Here, we demonstrate that elimination of Hamiltonella decreased biotin levels but elevated the expression of horizontally transferred biotin genes in whiteflies. HTGs proteins exhibit specific expression patterns in specialized insect cells called bacteriocytes housing symbionts. Complementation with whitefly HTGs rescued E. coli biotin gene knockout mutants. Furthermore, silencing whitefly HTGs in Hamiltonella-infected whiteflies reduced biotin levels and hindered adult survival and fecundity, which was partially rescued by biotin supplementation. Each of horizontally transferred biotin genes are conserved in various laboratory cultures and species of whiteflies with geographically diverse distributions, which shares an evolutionary origin. We provide the first experimental evidence that biotin synthesized through acquired HTGs is important in whiteflies and may be as well in other animals. Our findings suggest that B vitamin provisioning in animal-microbe symbiosis frequently evolved from bacterial symbionts to animal hosts through horizontal gene transfer events. This study will also shed light on how the animal genomes evolve through functional transfer of genes with bacterial origin in the wider contexts of microbial ecology.
Collapse
Affiliation(s)
- Fei-Rong Ren
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiang Sun
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Tian-Yu Wang
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Ya-Lin Yao
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yan-Zhen Huang
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xue Zhang
- China Agricultural University, Beijing, 100083, China
| | - Jun-Bo Luan
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
62
|
Salcedo-Porras N, Umaña-Diaz C, de Oliveira Barbosa Bitencourt R, Lowenberger C. The Role of Bacterial Symbionts in Triatomines: An Evolutionary Perspective. Microorganisms 2020; 8:E1438. [PMID: 32961808 PMCID: PMC7565714 DOI: 10.3390/microorganisms8091438] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/10/2020] [Accepted: 09/17/2020] [Indexed: 12/16/2022] Open
Abstract
Insects have established mutualistic symbiotic interactions with microorganisms that are beneficial to both host and symbiont. Many insects have exploited these symbioses to diversify and expand their ecological ranges. In the Hemiptera (i.e., aphids, cicadas, and true bugs), symbioses have established and evolved with obligatory essential microorganisms (primary symbionts) and with facultative beneficial symbionts (secondary symbionts). Primary symbionts are usually intracellular microorganisms found in insects with specialized diets such as obligate hematophagy or phytophagy. Most Heteroptera (true bugs), however, have gastrointestinal (GI) tract extracellular symbionts with functions analogous to primary endosymbionts. The triatomines, are vectors of the human parasite, Trypanosoma cruzi. A description of their small GI tract microbiota richness was based on a few culturable microorganisms first described almost a century ago. A growing literature describes more complex interactions between triatomines and bacteria with properties characteristic of both primary and secondary symbionts. In this review, we provide an evolutionary perspective of beneficial symbioses in the Hemiptera, illustrating the context that may drive the evolution of symbioses in triatomines. We highlight the diversity of the triatomine microbiota, bacterial taxa with potential to be beneficial symbionts, the unique characteristics of triatomine-bacteria symbioses, and the interactions among trypanosomes, microbiota, and triatomines.
Collapse
Affiliation(s)
- Nicolas Salcedo-Porras
- Centre for Cell Biology, Development and Disease, Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; (C.U.-D.); (R.d.O.B.B.); (C.L.)
| | - Claudia Umaña-Diaz
- Centre for Cell Biology, Development and Disease, Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; (C.U.-D.); (R.d.O.B.B.); (C.L.)
| | - Ricardo de Oliveira Barbosa Bitencourt
- Centre for Cell Biology, Development and Disease, Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; (C.U.-D.); (R.d.O.B.B.); (C.L.)
- Programa de Pós-graduação em Ciências Veterinárias, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, 23890-000 Seropédica, Brasil
| | - Carl Lowenberger
- Centre for Cell Biology, Development and Disease, Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; (C.U.-D.); (R.d.O.B.B.); (C.L.)
| |
Collapse
|
63
|
Nakabachi A, Malenovský I, Gjonov I, Hirose Y. 16S rRNA Sequencing Detected Profftella, Liberibacter, Wolbachia, and Diplorickettsia from Relatives of the Asian Citrus Psyllid. MICROBIAL ECOLOGY 2020; 80:410-422. [PMID: 32052099 DOI: 10.1007/s00248-020-01491-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/31/2020] [Indexed: 06/10/2023]
Abstract
The Asian citrus psyllid Diaphorina citri (Hemiptera: Psylloidea) is a serious pest of citrus species worldwide because it transmits Candidatus Liberibacter spp. (Alphaproteobacteria: Rhizobiales), the causative agents of the incurable citrus disease, huanglongbing or greening disease. Diaphorina citri possesses a specialized organ called a bacteriome, which harbors vertically transmitted intracellular mutualists, Ca. Carsonella ruddii (Gammaproteobacteria: Oceanospirillales) and Ca. Profftella armatura (Gammaproteobacteria: Betaproteobacteriales). Whereas Carsonella is a typical nutritional symbiont, Profftella is an unprecedented type of toxin-producing defensive symbiont, unusually sharing organelle-like features with nutritional symbionts. Additionally, many D. citri strains are infected with Wolbachia, which manipulate reproduction in various arthropod hosts. In the present study, in an effort to obtain insights into the evolution of symbioses between Diaphorina and bacteria, microbiomes of psyllids closely related to D. citri were investigated. Bacterial populations of Diaphorina cf. continua and Diaphorina lycii were analyzed using Illumina sequencing of 16S rRNA gene amplicons and compared with data obtained from D. citri. The analysis revealed that all three Diaphorina spp. harbor Profftella as well as Carsonella lineages, implying that Profftella is widespread within the genus Diaphorina. Moreover, the analysis identified Ca. Liberibacter europaeus and Diplorickettsia sp. (Gammaproteobacteria: Diplorickettsiales) in D. cf. continua, and a total of four Wolbachia (Alphaproteobacteria: Rickettsiales) lineages in the three psyllid species. These results provide deeper insights into the interactions among insects, bacteria, and plants, which would eventually help to better manage horticulture.
Collapse
Affiliation(s)
- Atsushi Nakabachi
- Electronics-Inspired Interdisciplinary Research Institute (EIIRIS), Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi, 441-8580, Japan.
- Department of Applied Chemistry and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi, 441-8580, Japan.
| | - Igor Malenovský
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, CZ-611 37, Brno, Czech Republic
| | - Ilia Gjonov
- Department of Zoology and Anthropology, Faculty of Biology, Sofia University, Dragan Tzankov 8, 1164, Sofia, Bulgaria
| | - Yuu Hirose
- Department of Applied Chemistry and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi, 441-8580, Japan
| |
Collapse
|
64
|
Owen CL, Stern DB, Hilton SK, Crandall KA. Hemiptera phylogenomic resources: Tree‐based orthology prediction and conserved exon identification. Mol Ecol Resour 2020; 20:1346-1360. [DOI: 10.1111/1755-0998.13180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 04/02/2020] [Accepted: 04/27/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Christopher L. Owen
- Computational Biology Institute George Washington University Washington DC USA
- Systematic Entomology Laboratory USDA‐ARS Beltsville MD USA
| | - David B. Stern
- Computational Biology Institute George Washington University Washington DC USA
- Department of Integrative Biology University of Wisconsin ‐ Madison Madison WI USA
| | - Sarah K. Hilton
- Computational Biology Institute George Washington University Washington DC USA
- Department of Genome Sciences University of Washington Washington DC USA
| | - Keith A. Crandall
- Computational Biology Institute George Washington University Washington DC USA
| |
Collapse
|
65
|
Abstract
Host-beneficial endosymbioses, which are formed when a microorganism takes up residence inside another cell and provides a fitness advantage to the host, have had a dramatic influence on the evolution of life. These intimate relationships have yielded the mitochondrion and the plastid (chloroplast) - the ancient organelles that in part define eukaryotic life - along with many more recent associations involving a wide variety of hosts and microbial partners. These relationships are often envisioned as stable associations that appear cooperative and persist for extremely long periods of time. But recent evidence suggests that this stable state is often born from turbulent and conflicting origins, and that the apparent stability of many beneficial endosymbiotic relationships - although certainly real in many cases - is not an inevitable outcome of these associations. Here we review how stable endosymbioses form, how they are maintained, and how they sometimes break down and are reborn. We focus on relationships formed by insects and their resident microorganisms because these symbioses have been the focus of significant empirical work over the last two decades. We review these relationships over five life stages: origin, birth, middle age, old age, and death.
Collapse
|
66
|
Husnik F, Hypsa V, Darby A. Insect-Symbiont Gene Expression in the Midgut Bacteriocytes of a Blood-Sucking Parasite. Genome Biol Evol 2020; 12:429-442. [PMID: 32068830 PMCID: PMC7197495 DOI: 10.1093/gbe/evaa032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2020] [Indexed: 12/18/2022] Open
Abstract
Animals interact with a diverse array of both beneficial and detrimental microorganisms. In insects, these symbioses in many cases allow feeding on nutritionally unbalanced diets. It is, however, still not clear how are obligate symbioses maintained at the cellular level for up to several hundred million years. Exact mechanisms driving host-symbiont interactions are only understood for a handful of model species and data on blood-feeding hosts with intracellular bacteria are particularly scarce. Here, we analyzed interactions between an obligately blood-sucking parasite of sheep, the louse fly Melophagus ovinus, and its obligate endosymbiont, Arsenophonus melophagi. We assembled a reference transcriptome for the insect host and used dual RNA-Seq with five biological replicates to compare expression in the midgut cells specialized for housing symbiotic bacteria (bacteriocytes) to the rest of the gut (foregut-hindgut). We found strong evidence for the importance of zinc in the system likely caused by symbionts using zinc-dependent proteases when acquiring amino acids, and for different immunity mechanisms controlling the symbionts than in closely related tsetse flies. Our results show that cellular and nutritional interactions between this blood-sucking insect and its symbionts are less intimate than what was previously found in most plant-sap sucking insects. This finding is likely interconnected to several features observed in symbionts in blood-sucking arthropods, particularly their midgut intracellular localization, intracytoplasmic presence, less severe genome reduction, and relatively recent associations caused by frequent evolutionary losses and replacements.
Collapse
Affiliation(s)
- Filip Husnik
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Vaclav Hypsa
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Alistair Darby
- Institute of Integrative Biology, University of Liverpool, United Kingdom
| |
Collapse
|
67
|
Blondel L, Jones TEM, Extavour CG. Bacterial contribution to genesis of the novel germ line determinant oskar. eLife 2020; 9:e45539. [PMID: 32091394 PMCID: PMC7250577 DOI: 10.7554/elife.45539] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 02/23/2020] [Indexed: 12/20/2022] Open
Abstract
New cellular functions and developmental processes can evolve by modifying existing genes or creating novel genes. Novel genes can arise not only via duplication or mutation but also by acquiring foreign DNA, also called horizontal gene transfer (HGT). Here we show that HGT likely contributed to the creation of a novel gene indispensable for reproduction in some insects. Long considered a novel gene with unknown origin, oskar has evolved to fulfil a crucial role in insect germ cell formation. Our analysis of over 100 insect Oskar sequences suggests that oskar arose de novo via fusion of eukaryotic and prokaryotic sequences. This work shows that highly unusual gene origin processes can give rise to novel genes that may facilitate evolution of novel developmental mechanisms.
Collapse
Affiliation(s)
- Leo Blondel
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Tamsin EM Jones
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Cassandra G Extavour
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| |
Collapse
|
68
|
Symbiont replacements reset the co-evolutionary relationship between insects and their heritable bacteria. ISME JOURNAL 2020; 14:1384-1395. [PMID: 32076126 DOI: 10.1038/s41396-020-0616-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/31/2020] [Accepted: 02/07/2020] [Indexed: 01/03/2023]
Abstract
Auchenorrhynchan insects (Hemiptera) generally depend on two bacterial symbionts for nutrition. These bacteria experience extreme genome reduction and loss of essential cell functions that require direct host support, or the replacement of failing symbionts with more capable ones. However, it remains unclear how hosts adapt to integrate symbionts into their systems, particularly when they are replaced. Here, we comparatively investigated the evolution of host-support mechanisms in the glassy-winged sharpshooter, Homalodisca vitripennis (GWSS), and the aster leafhopper, Macrosteles quadrilineatus (ALF). ALF harbors the ancestral co-symbionts of the Auchenorrhyncha that have tiny genomes, Sulcia (190 kb) and Nasuia (112 kb). In GWSS, Sulcia retains an expanded genome (245 kb), but Nasuia was replaced by the more capable Baumannia (686 kb). To support their symbionts, GWSS and ALF have evolved novel mechanisms via horizontal gene transfer, gene duplication, and co-option of mitochondrial support genes. However, GWSS has fewer support systems targeting essential bacterial processes. In particular, although both hosts use ancestral mechanisms to support Sulcia, GWSS does not encode all of the same support genes required to sustain Sulcia-ALF or Nasuia. Moreover, GWSS support of Baumannia is far more limited and tailored to its expanded capabilities. Our results demonstrate how symbiont replacements shape host genomes and the co-evolutionary process.
Collapse
|
69
|
Thairu MW, Hansen AK. Changes in Aphid Host Plant Diet Influence the Small-RNA Expression Profiles of Its Obligate Nutritional Symbiont, Buchnera. mBio 2019; 10:e01733-19. [PMID: 31744912 PMCID: PMC6867890 DOI: 10.1128/mbio.01733-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/08/2019] [Indexed: 12/31/2022] Open
Abstract
Plants are a difficult food resource to use, and herbivorous insects have evolved a variety of mechanisms that allow them to fully exploit this poor nutritional resource. One such mechanism is the maintenance of bacterial symbionts that aid in host plant feeding and development. The majority of these intracellular symbionts have highly eroded genomes that lack many key regulatory genes; consequently, it is unclear if these symbionts can respond to changes in the insect's diet to facilitate host plant use. There is emerging evidence that symbionts with highly eroded genomes express small RNAs (sRNAs), some of which potentially regulate gene expression. In this study, we sought to determine if the reduced genome of the nutritional symbiont (Buchnera) in the pea aphid responds to changes in the aphid's host plant diet. Using transcriptome sequencing (RNA-seq), Buchnera sRNA expression profiles were characterized within two Buchnera life stages when pea aphids fed on either alfalfa or fava bean. Overall, this study demonstrates that Buchnera sRNA expression changes not only with life stage but also with changes in aphid host plant diet. Of the 321 sRNAs characterized in this study, 47% were previously identified and 22% showed evidence of conservation in two or more Buchnera taxa. Functionally, 13 differentially expressed sRNAs were predicted to target genes related to pathways involved in essential amino acid biosynthesis. Overall, results from this study reveal that host plant diet influences the expression of conserved and lineage-specific sRNAs in Buchnera and that these sRNAs display distinct host plant-specific expression profiles among biological replicates.IMPORTANCE In general, the genomes of intracellular bacterial symbionts are reduced compared to those of free-living relatives and lack many key regulatory genes. Many of these reduced genomes belong to obligate mutualists of insects that feed on a diet that is deficient in essential nutrients, such as essential amino acids. It is unclear if these symbionts respond with their host to changes in insect diet, because of their reduced regulatory capacity. Emerging evidence suggests that these symbionts express small RNAs (sRNAs) that regulate gene expression at the posttranscriptional level. Therefore, in this study, we sought to determine if the reduced genome of the nutritional symbiont Buchnera in the pea aphid responds to changes in the aphid's host plant diet. This study demonstrates for the first time that Buchnera sRNAs, some conserved in two or more Buchnera lineages, are differentially expressed when aphids feed on different plant species and potentially target genes within essential amino acid biosynthesis pathways.
Collapse
Affiliation(s)
- Margaret W Thairu
- Department of Entomology, University of California, Riverside, Riverside, California, USA
- Department of Bacteriology, University of Wisconsin, Madison, Madison, Wisconsin, USA
| | - Allison K Hansen
- Department of Entomology, University of California, Riverside, Riverside, California, USA
| |
Collapse
|
70
|
Bublitz DC, Chadwick GL, Magyar JS, Sandoz KM, Brooks DM, Mesnage S, Ladinsky MS, Garber AI, Bjorkman PJ, Orphan VJ, McCutcheon JP. Peptidoglycan Production by an Insect-Bacterial Mosaic. Cell 2019; 179:703-712.e7. [PMID: 31587897 PMCID: PMC6838666 DOI: 10.1016/j.cell.2019.08.054] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/06/2019] [Accepted: 08/28/2019] [Indexed: 01/19/2023]
Abstract
Peptidoglycan (PG) is a defining feature of bacteria, involved in cell division, shape, and integrity. We previously reported that several genes related to PG biosynthesis were horizontally transferred from bacteria to the nuclear genome of mealybugs. Mealybugs are notable for containing a nested bacteria-within-bacterium endosymbiotic structure in specialized insect cells, where one bacterium, Moranella, lives in the cytoplasm of another bacterium, Tremblaya. Here we show that horizontally transferred genes on the mealybug genome work together with genes retained on the Moranella genome to produce a PG layer exclusively at the Moranella cell periphery. Furthermore, we show that an insect protein encoded by a horizontally transferred gene of bacterial origin is transported into the Moranella cytoplasm. These results provide a striking parallel to the genetic and biochemical mosaicism found in organelles, and prove that multiple horizontally transferred genes can become integrated into a functional pathway distributed between animal and bacterial endosymbiont genomes. Mealybugs have two bacterial endosymbionts; one symbiont lives inside the other The mealybug genome has acquired some bacterial peptidoglycan (PG)-related genes This insect-symbiont mosaic pathway produces a PG layer at the innermost symbiont Endosymbionts and organelles have evolved similar levels of biochemical integration
Collapse
Affiliation(s)
- DeAnna C Bublitz
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Grayson L Chadwick
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - John S Magyar
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Kelsi M Sandoz
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
| | - Diane M Brooks
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Stéphane Mesnage
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Mark S Ladinsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Arkadiy I Garber
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Victoria J Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - John P McCutcheon
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA.
| |
Collapse
|
71
|
Nakabachi A, Fujikami M. Concentration and distribution of diaphorin, and expression of diaphorin synthesis genes during Asian citrus psyllid development. JOURNAL OF INSECT PHYSIOLOGY 2019; 118:103931. [PMID: 31442480 DOI: 10.1016/j.jinsphys.2019.103931] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/19/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
The Asian citrus psyllid Diaphorina citri Kuwayama (Hemiptera: Sternorrhyncha: Psylloidea: Liviidae) is an important pest of citrus species worldwide because it transmits Candidatus Liberibacter spp. (Alphaproteobacteria); the causative agents of an incurable citrus disease known as huanglongbing or greening disease. D. citri possesses a vertically transmitted intracellular symbiont, Candidatus Profftella armatura (Betaproteobacteria), which produces diaphorin; a polyketide that is toxic to various eukaryotic organisms. Our previous study demonstrated that the total amount and average concentration of diaphorin in adult D. citri, when homogeneous distribution is assumed within the insect, are sufficient to exert inhibitory effects on fungi and insects, including the Asian lady beetle Harmonia axyridis (Coleoptera: Coccinellidae); one of the major predators of D. citri. However, diaphorin may be localized to a limited body area within D. citri, and its concentration may change during development. In the present study, to better understand the physiological and ecological function of diaphorin, we assessed the distribution of diaphorin within the D. citri body and analyzed concentrations of diaphorin in various developmental stages. Expression of genes involved in diaphorin synthesis was also analyzed. The results demonstrated that diaphorin is distributed widely in the D. citri body, which appears to be a prerequisite for effective deterrence of natural enemies. The concentration of diaphorin was shown to change significantly during the development of D. citri. It was highest in mature adults, followed by embryos and teneral adults, and lowest in nymphs. The lowest concentrations of diaphorin observed in nymphs are still presumed to be effective in deterring invasive natural enemies, including parasites, parasitoids, and entomopathogenic fungi. Quantitative RT-PCR indicated that amounts of transcripts for diaphorin synthesis genes dipP and dipT were at a minimum in embryos, increased during the nymphal period, and reached a maximum level just after adult eclosion. The alteration pattern of the amounts of transcripts for diaphorin synthesis genes appeared to partially disagree with that of the concentration of diaphorin. The present study provides new insights into the function of diaphorin, which is essential for further investigations that aim to improve the efficacy of D. citri biological control.
Collapse
Affiliation(s)
- Atsushi Nakabachi
- Electronics-Inspired Interdisciplinary Research Institute (EIIRIS), Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441-8580, Japan; Department of Applied Chemistry and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441-8580, Japan.
| | - Masaya Fujikami
- Department of Applied Chemistry and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441-8580, Japan
| |
Collapse
|
72
|
Cicada Endosymbionts Have tRNAs That Are Correctly Processed Despite Having Genomes That Do Not Encode All of the tRNA Processing Machinery. mBio 2019; 10:mBio.01950-18. [PMID: 31213566 PMCID: PMC6581868 DOI: 10.1128/mbio.01950-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The smallest bacterial genomes, in the range of about 0.1 to 0.5 million base pairs, are commonly found in the nutritional endosymbionts of insects. These tiny genomes are missing genes that encode proteins and RNAs required for the translation of mRNAs, one of the most highly conserved and important cellular processes. In this study, we found that the bacterial endosymbionts of cicadas have genomes which encode incomplete tRNA sets and lack genes required for tRNA processing. Nevertheless, we found that endosymbiont tRNAs are correctly processed at their 5′ and 3′ ends and, surprisingly, that mostly exist as tRNA halves. We hypothesize that the cicada host must supply its symbionts with these missing tRNA processing activities. Gene loss and genome reduction are defining characteristics of endosymbiotic bacteria. The most highly reduced endosymbiont genomes have lost numerous essential genes related to core cellular processes such as replication, transcription, and translation. Computational gene predictions performed for the genomes of the two bacterial symbionts of the cicada Diceroprocta semicincta, “Candidatus Hodgkinia cicadicola” (Alphaproteobacteria) and “Ca. Sulcia muelleri” (Bacteroidetes), have found only 26 and 16 tRNA genes and 15 and 10 aminoacyl tRNA synthetase genes, respectively. Furthermore, the original “Ca. Hodgkinia cicadicola” genome annotation was missing several essential genes involved in tRNA processing, such as those encoding RNase P and CCA tRNA nucleotidyltransferase as well as several RNA editing enzymes required for tRNA maturation. How these cicada endosymbionts perform basic translation-related processes remains unknown. Here, by sequencing eukaryotic mRNAs and total small RNAs, we show that the limited tRNA set predicted by computational annotation of “Ca. Sulcia muelleri” and “Ca. Hodgkinia cicadicola” is likely correct. Furthermore, we show that despite the absence of genes encoding tRNA processing activities in the symbiont genomes, symbiont tRNAs have correctly processed 5′ and 3′ ends and seem to undergo nucleotide modification. Surprisingly, we found that most “Ca. Hodgkinia cicadicola” and “Ca. Sulcia muelleri” tRNAs exist as tRNA halves. We hypothesize that “Ca. Sulcia muelleri” and “Ca. Hodgkinia cicadicola” tRNAs function in bacterial translation but require host-encoded enzymes to do so.
Collapse
|
73
|
Han G, Zhang N, Xu J, Jiang H, Ji C, Zhang Z, Song Q, Stanley D, Fang J, Wang J. Characterization of a novel Helitron family in insect genomes: insights into classification, evolution and horizontal transfer. Mob DNA 2019; 10:25. [PMID: 31164927 PMCID: PMC6544945 DOI: 10.1186/s13100-019-0165-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/30/2019] [Indexed: 01/09/2023] Open
Abstract
Background Helitrons play an important role in shaping eukaryotic genomes due to their ability to transfer horizontally between distantly related species and capture gene fragments during the transposition. However, the mechanisms of horizontal transfer (HT) and the process of gene fragment capturing of Helitrons still remain to be further clarified. Results Here, we characterized a novel Helitron family discontinuously distributed in 27 out of 256 insect genomes. The most prominent characteristic of Hel1 family is its high sequence similarity among species of different insect orders. Related elements were also identified in two spiders, representing the first report of spider Helitrons. All these elements were classified into 2 families, 9 subfamilies and 35 exemplars based on our new classification criteria. Autonomous partners of Helitron were reconstructed in the genomes of three insects and one spider. Integration pattern analysis showed that majority of Hel1A elements in Papilio xuthus and Pieris rapae inserted into introns. Consistent with filler DNA model, stepwise sequence acquisition was observed in Sfru_Hel1Aa, Sfru_Hel1Ab and Sfru_Hel1Ac in Spodoptera frugiperda. Remarkably, the evidence that Prap_Hel1Aa in a Lepdidoptera insect, Pieris rapae, was derived from Cves_Hel1Aa in a parasitoid wasp, Cotesia vestalis, suggested the role of nonregular host-parasite interactions in HT of Helitrons. Conclusions We proposed a modified classification criteria of Helitrons based on the important role of the 5′-end of Helitrons in transposition, and provided evidence for stepwise sequence acquisition and recurrent HT of a novel Helitron family. Our findings of the nonregular host-parasite interactions may be more conducive to the HT of transposons. Electronic supplementary material The online version of this article (10.1186/s13100-019-0165-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guangjie Han
- 1College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 China.,Jiangsu Lixiahe Institute of Agricultural Sciences, Yangzhou, 225007 China
| | - Nan Zhang
- 1College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 China
| | - Jian Xu
- Jiangsu Lixiahe Institute of Agricultural Sciences, Yangzhou, 225007 China
| | - Heng Jiang
- 1College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 China
| | - Caihong Ji
- 1College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 China
| | - Ze Zhang
- 3School of Life Sciences, Chongqing University, Chongqing, 400044 China
| | - Qisheng Song
- 4Division of Plant Sciences, University of Missouri, Columbia, MO USA
| | - David Stanley
- 5USDA/Agricultural Research Service, Biological Control of Insects Research Laboratory, Columbia, MO USA
| | - Jichao Fang
- 6Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
| | - Jianjun Wang
- 1College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 China
| |
Collapse
|
74
|
Adesiyan IM, Bisi-Johnson MA, Ogunfowokan AO, Okoh AI. Incidence and antimicrobial susceptibility fingerprints of Plesiomonas shigelliodes isolates in water samples collected from some freshwater resources in Southwest Nigeria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 665:632-640. [PMID: 30776635 DOI: 10.1016/j.scitotenv.2019.02.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/03/2019] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Abstract
Plesiomonas shigelloides, is an emerging and significant enteric pathogen in water having implication in both localised and gastrointestinal infections with characteristic of displaying high resistance against commonly used antibiotics. This study evaluated the prevalence of Plesiomonas shigelloides and their antibiogram fingerprints in water sample collected from four rivers in South-western Nigeria. In all, 148 presumptive Plesiomonas shigelloides isolates was recovered from the rivers out of which 66 (44.6%) were confirmed positive for the organism using polymerase chain reaction techniques. Confirmed isolates were evaluated for their antibiogram profiles against a panel of 20 antimicrobials using the disc diffusion method and further screened for relevant antibiotic resistance genes. Resistance of the isolates against the antimicrobials followed the order: sulphamethoxazole (100%), erythromycin (93%), ampicillin (90%), cephalotin (82%), streptomycin (64%), and chloramphenicol (58%), amoxicillin (53%), cefotaxime (50%), tetracycline (49%), neomycin (38%) and trimethoprim + sulphamethoxazole (38%). Conversely, all the isolates were susceptible against netilmicin, and susceptibility against the other antibiotics follows the order: meropenem (94%), gentamicin (88%), imipenem (79%), amikacin (70%), ciprofloxacin (70%), norfloxacin (59%), trimethoprim (56%) and ceftazidine (56%). The multiple antibiotic resistance indices of the organism were higher than the accepted threshold of 0.2. The incidence of 11 antimicrobial resistance determinants were obtained as follows: [sulphonamides; (sulI (18%), sulII (20%), dfr1 (70%), dfr(18) (5%)), [beta-lactams; (ampC 37%)], [tetracyclines; (tetA (78%), tetE (57%)], [phenicols; (catII (16%), cmlA1 (11%)] and [aminoglycosides; (aphA2 (36%) and strA (67%)]. Pearson chi-square exact test revealed positive associations among tetA, tetE, sullI and catII and tetA genes. To the best of our knowledge, this is the first report on the incidence and antibiogram fingerprint of P. shigelloides in these freshwater resources and we conclude that these rivers are important reservoirs of multiple antimicrobial resistant biotypes of this organism, and consequently a threat to public health.
Collapse
Affiliation(s)
- Ibukun M Adesiyan
- Institute of Ecology and Environmental Studies, Obafemi Awolowo University, Ile Ife, Nigeria; South Africa Medical Research Council, Water Monitoring Centre, University of Fort Hare, South Africa; Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, South Africa.
| | | | - Aderemi O Ogunfowokan
- Department of Industrial Chemistry, The Technical University, Ibadan, Oyo State, Nigeria; Department of Chemistry, Obafemi Awolowo University, Ile Ife, Nigeria
| | - Anthony I Okoh
- South Africa Medical Research Council, Water Monitoring Centre, University of Fort Hare, South Africa; Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, South Africa
| |
Collapse
|
75
|
Abstract
Microbial symbioses exhibit astounding adaptations, yet all symbionts face the problem of how to reliably associate with host offspring every generation. A common strategy is vertical transmission, in which symbionts are directly transmitted from the female to her offspring. The diversity of symbionts and vertical transmission mechanisms is as expansive as the diversity of eukaryotic host taxa that house them. However, there are several common themes among these mechanisms based on the degree to which symbionts associate with the host germline during transmission. In this review, we detail three distinct vertical transmission strategies, starting with associations that are transmitted from host somatic cells to offspring somatic cells, either due to lacking a germline or avoiding it. A second strategy involves somatically-localized symbionts that migrate into the germline during host development. The third strategy we discuss is one in which the symbiont maintains continuous association with the germline throughout development. Unexpectedly, the vast majority of documented vertically inherited symbionts rely on the second strategy: soma-to-germline migration. Given that not all eukaryotes contain a sequestered germline and instead produce offspring from somatic stem cell lineages, this soma-to-germline migration is discussed in the context of multicellular evolution. Lastly, as recent genomics data have revealed an abundance of horizontal gene transfer events from symbiotic and non-symbiotic bacteria to host genomes, we discuss their impact on eukaryotic host evolution.
Collapse
Affiliation(s)
- Shelbi L Russell
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, United States.
| | - Laura Chappell
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, United States
| | - William Sullivan
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, United States
| |
Collapse
|
76
|
Yamada T, Hamada M, Floreancig P, Nakabachi A. Diaphorin, a polyketide synthesized by an intracellular symbiont of the Asian citrus psyllid, is potentially harmful for biological control agents. PLoS One 2019; 14:e0216319. [PMID: 31048920 PMCID: PMC6497295 DOI: 10.1371/journal.pone.0216319] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/19/2019] [Indexed: 12/03/2022] Open
Abstract
The Asian citrus psyllid Diaphorina citri Kuwayama (Hemiptera: Sternorrhyncha: Psylloidea: Liviidae) is an important pest of citrus species worldwide because it transmits Candidatus Liberibacter spp. (Alphaproteobacteria), the causative agents of an incurable citrus disease known as huanglongbing or greening disease. Diaphorina citri possesses a vertically-transmitted intracellular symbiont, Candidatus Profftella armatura (Betaproteobacteria), which produces diaphorin, a polyketide that is significantly toxic to mammalian cells. Diaphorin is an analog of pederin, a defensive polyketide in the body fluid of Paederus rove beetles (Coleoptera: Staphylinidae) that deters predators. In the present study, as a first step to assess the possibility that diaphorin is toxic to biological control agents, we assayed diaphorin activities against insects and fungi. The target cells and organisms were (a) the Sf9 cell line derived from the fall armyworm moth Spodoptera frugiperda (Lepidoptera: Noctuidae), (b) the pea aphid Acyrthosiphon pisum (Hemiptera: Sternorrhyncha: Aphidoidea: Aphididae), a phloem sap-sucking insect that is closely related to psyllids, (c) the Asian lady beetle Harmonia axyridis (Coleoptera: Coccinellidae), one of the major predators of D. citri, and (d) the budding yeast Saccharomyces cerevisiae (Ascomycota: Saccharomycetes) as a model of fungal pathogens. For a comparison, we also evaluated pederin activities. The results of our analyses revealed the following: (1) Diaphorin and pederin are significantly toxic to the tested insects and yeast; (2) Their toxicities vary widely among the target cells and organisms; (3) Diaphorin is generally less toxic than pederin; (4) The toxicities of diaphorin and pederin are considerably different in the Sf9 insect cell line and S. cerevisiae, but similar in A. pisum and H. axyridis; and (5) The amount of diaphorin contained in D. citri is toxic to all of the tested cells and organisms, suggesting that this polyketide is potentially harmful for biological control agents.
Collapse
Affiliation(s)
- Tomoko Yamada
- Department of Environmental and Life Sciences, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Masato Hamada
- Department of Environmental and Life Sciences, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Paul Floreancig
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Atsushi Nakabachi
- Department of Environmental and Life Sciences, Toyohashi University of Technology, Toyohashi, Aichi, Japan
- Electronics-Inspired Interdisciplinary Research Institute (EIIRIS), Toyohashi University of Technology, Toyohashi, Aichi, Japan
| |
Collapse
|
77
|
Salcedo-Porras N, Guarneri A, Oliveira PL, Lowenberger C. Rhodnius prolixus: Identification of missing components of the IMD immune signaling pathway and functional characterization of its role in eliminating bacteria. PLoS One 2019; 14:e0214794. [PMID: 30943246 PMCID: PMC6447187 DOI: 10.1371/journal.pone.0214794] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/20/2019] [Indexed: 12/16/2022] Open
Abstract
The innate immune system in insects is regulated by specific signalling pathways. Most immune related pathways were identified and characterized in holometabolous insects such as Drosophila melanogaster, and it was assumed they would be highly conserved in all insects. The hemimetabolous insect, Rhodnius prolixus, has served as a model to study basic insect physiology, but also is a major vector of the human parasite, Trypanosoma cruzi, that causes 10,000 deaths annually. The publication of the R. prolixus genome revealed that one of the main immune pathways, the Immune-deficiency pathway (IMD), was incomplete and probably non-functional, an observation shared with other hemimetabolous insects including the pea aphid (Acyrthosiphon pisum) and the bedbug (Cimex lectularius). It was proposed that the IMD pathway is inactive in R. prolixus as an adaptation to prevent eliminating beneficial symbiont gut bacteria. We used bioinformatic analyses based on reciprocal BLAST and HMM-profile searches to find orthologs for most of the "missing" elements of the IMD pathway and provide data that these are regulated in response to infection with Gram-negative bacteria. We used RNAi strategies to demonstrate the role of the IMD pathway in regulating the expression of specific antimicrobial peptides (AMPs) in the fat body of R. prolixus. The data indicate that the IMD pathway is present and active in R. prolixus, which opens up new avenues of research on R. prolixus-T. cruzi interactions.
Collapse
Affiliation(s)
- Nicolas Salcedo-Porras
- Centre for Cell Biology, Development, and Disease, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Alessandra Guarneri
- Instituto René Rachou, Avenida Augusto de Lima, Belo Horizonte, Minas Gerais, Brazil
| | - Pedro L. Oliveira
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, CCS, Ilha do Fundão, Rio de Janeiro, Brazil
| | - Carl Lowenberger
- Centre for Cell Biology, Development, and Disease, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
78
|
Panfilio KA, Vargas Jentzsch IM, Benoit JB, Erezyilmaz D, Suzuki Y, Colella S, Robertson HM, Poelchau MF, Waterhouse RM, Ioannidis P, Weirauch MT, Hughes DST, Murali SC, Werren JH, Jacobs CGC, Duncan EJ, Armisén D, Vreede BMI, Baa-Puyoulet P, Berger CS, Chang CC, Chao H, Chen MJM, Chen YT, Childers CP, Chipman AD, Cridge AG, Crumière AJJ, Dearden PK, Didion EM, Dinh H, Doddapaneni HV, Dolan A, Dugan S, Extavour CG, Febvay G, Friedrich M, Ginzburg N, Han Y, Heger P, Holmes CJ, Horn T, Hsiao YM, Jennings EC, Johnston JS, Jones TE, Jones JW, Khila A, Koelzer S, Kovacova V, Leask M, Lee SL, Lee CY, Lovegrove MR, Lu HL, Lu Y, Moore PJ, Munoz-Torres MC, Muzny DM, Palli SR, Parisot N, Pick L, Porter ML, Qu J, Refki PN, Richter R, Rivera-Pomar R, Rosendale AJ, Roth S, Sachs L, Santos ME, Seibert J, Sghaier E, Shukla JN, Stancliffe RJ, Tidswell O, Traverso L, van der Zee M, Viala S, Worley KC, Zdobnov EM, Gibbs RA, Richards S. Molecular evolutionary trends and feeding ecology diversification in the Hemiptera, anchored by the milkweed bug genome. Genome Biol 2019. [PMID: 30935422 DOI: 10.1101/201731] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023] Open
Abstract
BACKGROUND The Hemiptera (aphids, cicadas, and true bugs) are a key insect order, with high diversity for feeding ecology and excellent experimental tractability for molecular genetics. Building upon recent sequencing of hemipteran pests such as phloem-feeding aphids and blood-feeding bed bugs, we present the genome sequence and comparative analyses centered on the milkweed bug Oncopeltus fasciatus, a seed feeder of the family Lygaeidae. RESULTS The 926-Mb Oncopeltus genome is well represented by the current assembly and official gene set. We use our genomic and RNA-seq data not only to characterize the protein-coding gene repertoire and perform isoform-specific RNAi, but also to elucidate patterns of molecular evolution and physiology. We find ongoing, lineage-specific expansion and diversification of repressive C2H2 zinc finger proteins. The discovery of intron gain and turnover specific to the Hemiptera also prompted the evaluation of lineage and genome size as predictors of gene structure evolution. Furthermore, we identify enzymatic gains and losses that correlate with feeding biology, particularly for reductions associated with derived, fluid nutrition feeding. CONCLUSIONS With the milkweed bug, we now have a critical mass of sequenced species for a hemimetabolous insect order and close outgroup to the Holometabola, substantially improving the diversity of insect genomics. We thereby define commonalities among the Hemiptera and delve into how hemipteran genomes reflect distinct feeding ecologies. Given Oncopeltus's strength as an experimental model, these new sequence resources bolster the foundation for molecular research and highlight technical considerations for the analysis of medium-sized invertebrate genomes.
Collapse
Affiliation(s)
- Kristen A Panfilio
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany.
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry, CV4 7AL, UK.
| | - Iris M Vargas Jentzsch
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Deniz Erezyilmaz
- Department of Biochemistry and Cell Biology and Center for Developmental Genetics, Stony Brook University, Stony Brook, NY, 11794, USA
- Present address: Department of Physiology, Anatomy and Genetics and Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, OX1 3SR, UK
| | - Yuichiro Suzuki
- Department of Biological Sciences, Wellesley College, 106 Central St., Wellesley, MA, 02481, USA
| | - Stefano Colella
- Univ Lyon, INSA-Lyon, INRA, BF2I, UMR0203, F-69621, Villeurbanne, France
- Present address: LSTM, Laboratoire des Symbioses Tropicales et Méditerranéennes, INRA, IRD, CIRAD, SupAgro, University of Montpellier, Montpellier, France
| | - Hugh M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | | | - Robert M Waterhouse
- Department of Genetic Medicine and Development and Swiss Institute of Bioinformatics, University of Geneva, 1211, Geneva, Switzerland
- Present address: Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland
| | - Panagiotis Ioannidis
- Department of Genetic Medicine and Development and Swiss Institute of Bioinformatics, University of Geneva, 1211, Geneva, Switzerland
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Division of Biomedical Informatics, and Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, 45229, USA
| | - Daniel S T Hughes
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Shwetha C Murali
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Present address: Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA
- Present address: Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - John H Werren
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Chris G C Jacobs
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
- Max Planck Institute for Chemical Ecology, Hans-Knöll Strasse 8, 07745, Jena, Germany
| | - Elizabeth J Duncan
- Department of Biochemistry and Genomics Aotearoa, University of Otago, Dunedin, 9054, New Zealand
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - David Armisén
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Barbara M I Vreede
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel
| | | | - Chloé S Berger
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Chun-Che Chang
- Department of Entomology/Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsu Chao
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Mei-Ju M Chen
- National Agricultural Library, Beltsville, MD, 20705, USA
| | - Yen-Ta Chen
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | | | - Ariel D Chipman
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel
| | - Andrew G Cridge
- Department of Biochemistry and Genomics Aotearoa, University of Otago, Dunedin, 9054, New Zealand
| | - Antonin J J Crumière
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Peter K Dearden
- Department of Biochemistry and Genomics Aotearoa, University of Otago, Dunedin, 9054, New Zealand
| | - Elise M Didion
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Huyen Dinh
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Harsha Vardhan Doddapaneni
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Amanda Dolan
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
- Present address: School of Life Sciences, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Shannon Dugan
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
- Department of Molecular and Cellular Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | - Gérard Febvay
- Univ Lyon, INSA-Lyon, INRA, BF2I, UMR0203, F-69621, Villeurbanne, France
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Neta Ginzburg
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel
| | - Yi Han
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Peter Heger
- Institute for Genetics, University of Cologne, Zülpicher Straße 47a, 50674, Cologne, Germany
| | - Christopher J Holmes
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Thorsten Horn
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Yi-Min Hsiao
- Department of Entomology/Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Emily C Jennings
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - J Spencer Johnston
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Tamsin E Jones
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | - Jeffery W Jones
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Abderrahman Khila
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Stefan Koelzer
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | | | - Megan Leask
- Department of Biochemistry and Genomics Aotearoa, University of Otago, Dunedin, 9054, New Zealand
| | - Sandra L Lee
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Chien-Yueh Lee
- National Agricultural Library, Beltsville, MD, 20705, USA
| | - Mackenzie R Lovegrove
- Department of Biochemistry and Genomics Aotearoa, University of Otago, Dunedin, 9054, New Zealand
| | - Hsiao-Ling Lu
- Department of Entomology/Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Yong Lu
- Department of Entomology and Program in Molecular & Cell Biology, University of Maryland, College Park, MD, 20742, USA
| | - Patricia J Moore
- Department of Entomology, University of Georgia, 120 Cedar St., Athens, GA, 30602, USA
| | - Monica C Munoz-Torres
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Subba R Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - Nicolas Parisot
- Univ Lyon, INSA-Lyon, INRA, BF2I, UMR0203, F-69621, Villeurbanne, France
| | - Leslie Pick
- Department of Entomology and Program in Molecular & Cell Biology, University of Maryland, College Park, MD, 20742, USA
| | - Megan L Porter
- Department of Biology, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Jiaxin Qu
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Peter N Refki
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
- Present address: Department of Evolutionary Genetics, Max-Planck-Institut für Evolutionsbiologie, August-Thienemann-Straße 2, 24306, Plön, Germany
| | - Rose Richter
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
- Present address: Earthworks Institute, 185 Caroline Street, Rochester, NY, 14620, USA
| | - Rolando Rivera-Pomar
- Centro de Bioinvestigaciones, Universidad Nacional del Noroeste de Buenos Aires, Pergamino, Argentina
| | - Andrew J Rosendale
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Siegfried Roth
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Lena Sachs
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - M Emília Santos
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Jan Seibert
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Essia Sghaier
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Jayendra N Shukla
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
- Present address: Department of Biotechnology, Central University of Rajasthan (CURAJ), NH-8, Bandarsindri, Ajmer, 305801, India
| | - Richard J Stancliffe
- Argelander-Institut für Astronomie, Universität Bonn, Auf dem Hügel 71, 53121, Bonn, Germany
- Present address: E. A. Milne Centre for Astrophysics, Department of Physics and Mathematics, University of Hull, Hull, HU6 7RX, UK
| | - Olivia Tidswell
- Department of Biochemistry and Genomics Aotearoa, University of Otago, Dunedin, 9054, New Zealand
- Present address: Department of Zoology, University of Cambridge, Cambridge, CB2 3DT, UK
| | - Lucila Traverso
- Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Maurijn van der Zee
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
| | - Séverine Viala
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Kim C Worley
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Evgeny M Zdobnov
- Department of Genetic Medicine and Development and Swiss Institute of Bioinformatics, University of Geneva, 1211, Geneva, Switzerland
| | - Richard A Gibbs
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Stephen Richards
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| |
Collapse
|
79
|
Panfilio KA, Vargas Jentzsch IM, Benoit JB, Erezyilmaz D, Suzuki Y, Colella S, Robertson HM, Poelchau MF, Waterhouse RM, Ioannidis P, Weirauch MT, Hughes DST, Murali SC, Werren JH, Jacobs CGC, Duncan EJ, Armisén D, Vreede BMI, Baa-Puyoulet P, Berger CS, Chang CC, Chao H, Chen MJM, Chen YT, Childers CP, Chipman AD, Cridge AG, Crumière AJJ, Dearden PK, Didion EM, Dinh H, Doddapaneni HV, Dolan A, Dugan S, Extavour CG, Febvay G, Friedrich M, Ginzburg N, Han Y, Heger P, Holmes CJ, Horn T, Hsiao YM, Jennings EC, Johnston JS, Jones TE, Jones JW, Khila A, Koelzer S, Kovacova V, Leask M, Lee SL, Lee CY, Lovegrove MR, Lu HL, Lu Y, Moore PJ, Munoz-Torres MC, Muzny DM, Palli SR, Parisot N, Pick L, Porter ML, Qu J, Refki PN, Richter R, Rivera-Pomar R, Rosendale AJ, Roth S, Sachs L, Santos ME, Seibert J, Sghaier E, Shukla JN, Stancliffe RJ, Tidswell O, Traverso L, van der Zee M, Viala S, Worley KC, Zdobnov EM, Gibbs RA, Richards S. Molecular evolutionary trends and feeding ecology diversification in the Hemiptera, anchored by the milkweed bug genome. Genome Biol 2019; 20:64. [PMID: 30935422 PMCID: PMC6444547 DOI: 10.1186/s13059-019-1660-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/21/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The Hemiptera (aphids, cicadas, and true bugs) are a key insect order, with high diversity for feeding ecology and excellent experimental tractability for molecular genetics. Building upon recent sequencing of hemipteran pests such as phloem-feeding aphids and blood-feeding bed bugs, we present the genome sequence and comparative analyses centered on the milkweed bug Oncopeltus fasciatus, a seed feeder of the family Lygaeidae. RESULTS The 926-Mb Oncopeltus genome is well represented by the current assembly and official gene set. We use our genomic and RNA-seq data not only to characterize the protein-coding gene repertoire and perform isoform-specific RNAi, but also to elucidate patterns of molecular evolution and physiology. We find ongoing, lineage-specific expansion and diversification of repressive C2H2 zinc finger proteins. The discovery of intron gain and turnover specific to the Hemiptera also prompted the evaluation of lineage and genome size as predictors of gene structure evolution. Furthermore, we identify enzymatic gains and losses that correlate with feeding biology, particularly for reductions associated with derived, fluid nutrition feeding. CONCLUSIONS With the milkweed bug, we now have a critical mass of sequenced species for a hemimetabolous insect order and close outgroup to the Holometabola, substantially improving the diversity of insect genomics. We thereby define commonalities among the Hemiptera and delve into how hemipteran genomes reflect distinct feeding ecologies. Given Oncopeltus's strength as an experimental model, these new sequence resources bolster the foundation for molecular research and highlight technical considerations for the analysis of medium-sized invertebrate genomes.
Collapse
Affiliation(s)
- Kristen A Panfilio
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany.
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry, CV4 7AL, UK.
| | - Iris M Vargas Jentzsch
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Deniz Erezyilmaz
- Department of Biochemistry and Cell Biology and Center for Developmental Genetics, Stony Brook University, Stony Brook, NY, 11794, USA
- Present address: Department of Physiology, Anatomy and Genetics and Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, OX1 3SR, UK
| | - Yuichiro Suzuki
- Department of Biological Sciences, Wellesley College, 106 Central St., Wellesley, MA, 02481, USA
| | - Stefano Colella
- Univ Lyon, INSA-Lyon, INRA, BF2I, UMR0203, F-69621, Villeurbanne, France
- Present address: LSTM, Laboratoire des Symbioses Tropicales et Méditerranéennes, INRA, IRD, CIRAD, SupAgro, University of Montpellier, Montpellier, France
| | - Hugh M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | | | - Robert M Waterhouse
- Department of Genetic Medicine and Development and Swiss Institute of Bioinformatics, University of Geneva, 1211, Geneva, Switzerland
- Present address: Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland
| | - Panagiotis Ioannidis
- Department of Genetic Medicine and Development and Swiss Institute of Bioinformatics, University of Geneva, 1211, Geneva, Switzerland
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Division of Biomedical Informatics, and Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, 45229, USA
| | - Daniel S T Hughes
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Shwetha C Murali
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Present address: Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA
- Present address: Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - John H Werren
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Chris G C Jacobs
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
- Max Planck Institute for Chemical Ecology, Hans-Knöll Strasse 8, 07745, Jena, Germany
| | - Elizabeth J Duncan
- Department of Biochemistry and Genomics Aotearoa, University of Otago, Dunedin, 9054, New Zealand
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - David Armisén
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Barbara M I Vreede
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel
| | | | - Chloé S Berger
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Chun-Che Chang
- Department of Entomology/Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsu Chao
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Mei-Ju M Chen
- National Agricultural Library, Beltsville, MD, 20705, USA
| | - Yen-Ta Chen
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | | | - Ariel D Chipman
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel
| | - Andrew G Cridge
- Department of Biochemistry and Genomics Aotearoa, University of Otago, Dunedin, 9054, New Zealand
| | - Antonin J J Crumière
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Peter K Dearden
- Department of Biochemistry and Genomics Aotearoa, University of Otago, Dunedin, 9054, New Zealand
| | - Elise M Didion
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Huyen Dinh
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Harsha Vardhan Doddapaneni
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Amanda Dolan
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
- Present address: School of Life Sciences, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Shannon Dugan
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
- Department of Molecular and Cellular Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | - Gérard Febvay
- Univ Lyon, INSA-Lyon, INRA, BF2I, UMR0203, F-69621, Villeurbanne, France
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Neta Ginzburg
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel
| | - Yi Han
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Peter Heger
- Institute for Genetics, University of Cologne, Zülpicher Straße 47a, 50674, Cologne, Germany
| | - Christopher J Holmes
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Thorsten Horn
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Yi-Min Hsiao
- Department of Entomology/Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Emily C Jennings
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - J Spencer Johnston
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Tamsin E Jones
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | - Jeffery W Jones
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Abderrahman Khila
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Stefan Koelzer
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | | | - Megan Leask
- Department of Biochemistry and Genomics Aotearoa, University of Otago, Dunedin, 9054, New Zealand
| | - Sandra L Lee
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Chien-Yueh Lee
- National Agricultural Library, Beltsville, MD, 20705, USA
| | - Mackenzie R Lovegrove
- Department of Biochemistry and Genomics Aotearoa, University of Otago, Dunedin, 9054, New Zealand
| | - Hsiao-Ling Lu
- Department of Entomology/Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Yong Lu
- Department of Entomology and Program in Molecular & Cell Biology, University of Maryland, College Park, MD, 20742, USA
| | - Patricia J Moore
- Department of Entomology, University of Georgia, 120 Cedar St., Athens, GA, 30602, USA
| | - Monica C Munoz-Torres
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Subba R Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - Nicolas Parisot
- Univ Lyon, INSA-Lyon, INRA, BF2I, UMR0203, F-69621, Villeurbanne, France
| | - Leslie Pick
- Department of Entomology and Program in Molecular & Cell Biology, University of Maryland, College Park, MD, 20742, USA
| | - Megan L Porter
- Department of Biology, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Jiaxin Qu
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Peter N Refki
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
- Present address: Department of Evolutionary Genetics, Max-Planck-Institut für Evolutionsbiologie, August-Thienemann-Straße 2, 24306, Plön, Germany
| | - Rose Richter
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
- Present address: Earthworks Institute, 185 Caroline Street, Rochester, NY, 14620, USA
| | - Rolando Rivera-Pomar
- Centro de Bioinvestigaciones, Universidad Nacional del Noroeste de Buenos Aires, Pergamino, Argentina
| | - Andrew J Rosendale
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Siegfried Roth
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Lena Sachs
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - M Emília Santos
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Jan Seibert
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Essia Sghaier
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Jayendra N Shukla
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
- Present address: Department of Biotechnology, Central University of Rajasthan (CURAJ), NH-8, Bandarsindri, Ajmer, 305801, India
| | - Richard J Stancliffe
- Argelander-Institut für Astronomie, Universität Bonn, Auf dem Hügel 71, 53121, Bonn, Germany
- Present address: E. A. Milne Centre for Astrophysics, Department of Physics and Mathematics, University of Hull, Hull, HU6 7RX, UK
| | - Olivia Tidswell
- Department of Biochemistry and Genomics Aotearoa, University of Otago, Dunedin, 9054, New Zealand
- Present address: Department of Zoology, University of Cambridge, Cambridge, CB2 3DT, UK
| | - Lucila Traverso
- Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Maurijn van der Zee
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
| | - Séverine Viala
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Kim C Worley
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Evgeny M Zdobnov
- Department of Genetic Medicine and Development and Swiss Institute of Bioinformatics, University of Geneva, 1211, Geneva, Switzerland
| | - Richard A Gibbs
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Stephen Richards
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| |
Collapse
|
80
|
Gil R, Latorre A. Unity Makes Strength: A Review on Mutualistic Symbiosis in Representative Insect Clades. Life (Basel) 2019; 9:E21. [PMID: 30823538 PMCID: PMC6463088 DOI: 10.3390/life9010021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/11/2019] [Accepted: 02/19/2019] [Indexed: 12/14/2022] Open
Abstract
Settled on the foundations laid by zoologists and embryologists more than a century ago, the study of symbiosis between prokaryotes and eukaryotes is an expanding field. In this review, we present several models of insect⁻bacteria symbioses that allow for the detangling of most known features of this distinctive way of living, using a combination of very diverse screening approaches, including molecular, microscopic, and genomic techniques. With the increasing the amount of endosymbiotic bacteria genomes available, it has been possible to develop evolutionary models explaining the changes undergone by these bacteria in their adaptation to the intracellular host environment. The establishment of a given symbiotic system can be a root cause of substantial changes in the partners' way of life. Furthermore, symbiont replacement and/or the establishment of bacterial consortia are two ways in which the host can exploit its interaction with environmental bacteria for endosymbiotic reinvigoration. The detailed study of diverse and complex symbiotic systems has revealed a great variety of possible final genomic products, frequently below the limit considered compatible with cellular life, and sometimes with unanticipated genomic and population characteristics, raising new questions that need to be addressed in the near future through a wider exploration of new models and empirical observations.
Collapse
Affiliation(s)
- Rosario Gil
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València/CSIC. Calle Catedrático Agustín Escardino, 9, 46980 Paterna (Valencia), Spain.
- Departament de Genètica, Universitat de València. Calle Dr. Moliner, 50, 46100 Burjassot (València), Spain.
- Área de Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO). Avenida de Cataluña 21, 46020 València, Spain.
| | - Amparo Latorre
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València/CSIC. Calle Catedrático Agustín Escardino, 9, 46980 Paterna (Valencia), Spain.
- Departament de Genètica, Universitat de València. Calle Dr. Moliner, 50, 46100 Burjassot (València), Spain.
- Área de Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO). Avenida de Cataluña 21, 46020 València, Spain.
| |
Collapse
|
81
|
Mao M, Yang X, Bennett GM. Evolution of host support for two ancient bacterial symbionts with differentially degraded genomes in a leafhopper host. Proc Natl Acad Sci U S A 2018; 115:E11691-E11700. [PMID: 30463949 PMCID: PMC6294904 DOI: 10.1073/pnas.1811932115] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Plant sap-feeding insects (Hemiptera) rely on bacterial symbionts for nutrition absent in their diets. These bacteria experience extreme genome reduction and require genetic resources from their hosts, particularly for basic cellular processes other than nutrition synthesis. The host-derived mechanisms that complete these processes have remained poorly understood. It is also unclear how hosts meet the distinct needs of multiple bacterial partners with differentially degraded genomes. To address these questions, we investigated the cell-specific gene-expression patterns in the symbiotic organs of the aster leafhopper (ALF), Macrosteles quadrilineatus (Cicadellidae). ALF harbors two intracellular symbionts that have two of the smallest known bacterial genomes: Nasuia (112 kb) and Sulcia (190 kb). Symbionts are segregated into distinct host cell types (bacteriocytes) and vary widely in their basic cellular capabilities. ALF differentially expresses thousands of genes between the bacteriocyte types to meet the functional needs of each symbiont, including the provisioning of metabolites and support of cellular processes. For example, the host highly expresses genes in the bacteriocytes that likely complement gene losses in nucleic acid synthesis, DNA repair mechanisms, transcription, and translation. Such genes are required to function in the bacterial cytosol. Many host genes comprising these support mechanisms are derived from the evolution of novel functional traits via horizontally transferred genes, reassigned mitochondrial support genes, and gene duplications with bacteriocyte-specific expression. Comparison across other hemipteran lineages reveals that hosts generally support the incomplete symbiont cellular processes, but the origins of these support mechanisms are generally specific to the host-symbiont system.
Collapse
Affiliation(s)
- Meng Mao
- Department of Life and Environmental Sciences, University of California, Merced, CA 95343;
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI 96822
| | - Xiushuai Yang
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI 96822
| | - Gordon M Bennett
- Department of Life and Environmental Sciences, University of California, Merced, CA 95343
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI 96822
| |
Collapse
|
82
|
Armisén D, Rajakumar R, Friedrich M, Benoit JB, Robertson HM, Panfilio KA, Ahn SJ, Poelchau MF, Chao H, Dinh H, Doddapaneni HV, Dugan S, Gibbs RA, Hughes DST, Han Y, Lee SL, Murali SC, Muzny DM, Qu J, Worley KC, Munoz-Torres M, Abouheif E, Bonneton F, Chen T, Chiang LM, Childers CP, Cridge AG, Crumière AJJ, Decaras A, Didion EM, Duncan EJ, Elpidina EN, Favé MJ, Finet C, Jacobs CGC, Cheatle Jarvela AM, Jennings EC, Jones JW, Lesoway MP, Lovegrove MR, Martynov A, Oppert B, Lillico-Ouachour A, Rajakumar A, Refki PN, Rosendale AJ, Santos ME, Toubiana W, van der Zee M, Vargas Jentzsch IM, Lowman AV, Viala S, Richards S, Khila A. The genome of the water strider Gerris buenoi reveals expansions of gene repertoires associated with adaptations to life on the water. BMC Genomics 2018; 19:832. [PMID: 30463532 PMCID: PMC6249893 DOI: 10.1186/s12864-018-5163-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 10/14/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Having conquered water surfaces worldwide, the semi-aquatic bugs occupy ponds, streams, lakes, mangroves, and even open oceans. The diversity of this group has inspired a range of scientific studies from ecology and evolution to developmental genetics and hydrodynamics of fluid locomotion. However, the lack of a representative water strider genome hinders our ability to more thoroughly investigate the molecular mechanisms underlying the processes of adaptation and diversification within this group. RESULTS Here we report the sequencing and manual annotation of the Gerris buenoi (G. buenoi) genome; the first water strider genome to be sequenced thus far. The size of the G. buenoi genome is approximately 1,000 Mb, and this sequencing effort has recovered 20,949 predicted protein-coding genes. Manual annotation uncovered a number of local (tandem and proximal) gene duplications and expansions of gene families known for their importance in a variety of processes associated with morphological and physiological adaptations to a water surface lifestyle. These expansions may affect key processes associated with growth, vision, desiccation resistance, detoxification, olfaction and epigenetic regulation. Strikingly, the G. buenoi genome contains three insulin receptors, suggesting key changes in the rewiring and function of the insulin pathway. Other genomic changes affecting with opsin genes may be associated with wavelength sensitivity shifts in opsins, which is likely to be key in facilitating specific adaptations in vision for diverse water habitats. CONCLUSIONS Our findings suggest that local gene duplications might have played an important role during the evolution of water striders. Along with these findings, the sequencing of the G. buenoi genome now provides us the opportunity to pursue exciting research opportunities to further understand the genomic underpinnings of traits associated with the extreme body plan and life history of water striders.
Collapse
Affiliation(s)
- David Armisén
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, Ecole Normale Supérieure de Lyon 46, allée d’Italie, 69364 Lyon Cedex 07, France
| | - Rajendhran Rajakumar
- Department of Molecular Genetics & Microbiology and UF Genetics Institute, University of Florida, 2033 Mowry Road, Gainesville, FL 32610-3610 USA
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202 USA
| | - Joshua B. Benoit
- Department of Biological Sciences, McMicken College of Arts and Sciences, University of Cincinnati, 318 College Drive, Cincinnati, OH 45221-0006 USA
| | - Hugh M. Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Kristen A. Panfilio
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry, CV4 7AL UK
| | - Seung-Joon Ahn
- USDA-ARS Horticultural Crops Research Unit, 3420 NW Orchard Avenue, Corvallis, OR 97330 USA
- Department of Crop and Soil Science, Oregon State University, 3050 SW Campus Way, Corvallis, OR 97331 USA
| | - Monica F. Poelchau
- USDA Agricultural Research Service, National Agricultural Library, Beltsville, MD 20705 USA
| | - Hsu Chao
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Huyen Dinh
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Harsha Vardhan Doddapaneni
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Shannon Dugan
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Richard A. Gibbs
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Daniel S. T. Hughes
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Yi Han
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Sandra L. Lee
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Shwetha C. Murali
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195 USA
| | - Donna M. Muzny
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Jiaxin Qu
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Kim C. Worley
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | | | - Ehab Abouheif
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield Avenue, Montréal, Québec H3A 1B1 Canada
| | - François Bonneton
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, Ecole Normale Supérieure de Lyon 46, allée d’Italie, 69364 Lyon Cedex 07, France
| | - Travis Chen
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield Avenue, Montréal, Québec H3A 1B1 Canada
| | - Li-Mei Chiang
- USDA Agricultural Research Service, National Agricultural Library, Beltsville, MD 20705 USA
| | | | - Andrew G. Cridge
- Laboratory for Evolution and Development, Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Antonin J. J. Crumière
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, Ecole Normale Supérieure de Lyon 46, allée d’Italie, 69364 Lyon Cedex 07, France
| | - Amelie Decaras
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, Ecole Normale Supérieure de Lyon 46, allée d’Italie, 69364 Lyon Cedex 07, France
| | - Elise M. Didion
- Department of Biological Sciences, McMicken College of Arts and Sciences, University of Cincinnati, 318 College Drive, Cincinnati, OH 45221-0006 USA
| | - Elizabeth J. Duncan
- Laboratory for Evolution and Development, Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT UK
| | - Elena N. Elpidina
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991 Russia
| | - Marie-Julie Favé
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield Avenue, Montréal, Québec H3A 1B1 Canada
| | - Cédric Finet
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, Ecole Normale Supérieure de Lyon 46, allée d’Italie, 69364 Lyon Cedex 07, France
| | - Chris G. C. Jacobs
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, Netherlands
- Max Planck Institute for Chemical Ecology, Hans-Knöll Strasse 8, 07745 Jena, Germany
| | | | - Emily C. Jennings
- Department of Biological Sciences, McMicken College of Arts and Sciences, University of Cincinnati, 318 College Drive, Cincinnati, OH 45221-0006 USA
| | - Jeffery W. Jones
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202 USA
| | - Maryna P. Lesoway
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield Avenue, Montréal, Québec H3A 1B1 Canada
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Balboa Ancon, Panama City, Panama
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143025 Russia
| | - Mackenzie R. Lovegrove
- Laboratory for Evolution and Development, Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Alexander Martynov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143025 Russia
| | - Brenda Oppert
- USDA ARS Center for Grain and Animal Health Research, 1515 College Ave., Manhattan, KS-66502 USA
| | - Angelica Lillico-Ouachour
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield Avenue, Montréal, Québec H3A 1B1 Canada
| | - Arjuna Rajakumar
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield Avenue, Montréal, Québec H3A 1B1 Canada
| | - Peter Nagui Refki
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, Ecole Normale Supérieure de Lyon 46, allée d’Italie, 69364 Lyon Cedex 07, France
- Department of Evolutionary Genetics, Max-Planck-Institut für Evolutionsbiologie, August-Thienemann-Straße 2, 24306 Plön, Germany
| | - Andrew J. Rosendale
- Department of Biological Sciences, McMicken College of Arts and Sciences, University of Cincinnati, 318 College Drive, Cincinnati, OH 45221-0006 USA
| | - Maria Emilia Santos
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, Ecole Normale Supérieure de Lyon 46, allée d’Italie, 69364 Lyon Cedex 07, France
| | - William Toubiana
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, Ecole Normale Supérieure de Lyon 46, allée d’Italie, 69364 Lyon Cedex 07, France
| | - Maurijn van der Zee
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, Netherlands
| | - Iris M. Vargas Jentzsch
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
| | - Aidamalia Vargas Lowman
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, Ecole Normale Supérieure de Lyon 46, allée d’Italie, 69364 Lyon Cedex 07, France
| | - Severine Viala
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, Ecole Normale Supérieure de Lyon 46, allée d’Italie, 69364 Lyon Cedex 07, France
| | - Stephen Richards
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Abderrahman Khila
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, Ecole Normale Supérieure de Lyon 46, allée d’Italie, 69364 Lyon Cedex 07, France
| |
Collapse
|
83
|
Grosser K, Ramasamy P, Amirabad AD, Schulz MH, Gasparoni G, Simon M, Schrallhammer M. More than the "Killer Trait": Infection with the Bacterial Endosymbiont Caedibacter taeniospiralis Causes Transcriptomic Modulation in Paramecium Host. Genome Biol Evol 2018; 10:646-656. [PMID: 29390087 PMCID: PMC5814942 DOI: 10.1093/gbe/evy024] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2018] [Indexed: 12/13/2022] Open
Abstract
Endosymbiosis is a widespread phenomenon and hosts of bacterial endosymbionts can be found all-over the eukaryotic tree of life. Likely, this evolutionary success is connected to the altered phenotype arising from a symbiotic association. The potential variety of symbiont’s contributions to new characteristics or abilities of host organisms are largely unstudied. Addressing this aspect, we focused on an obligate bacterial endosymbiont that confers an intraspecific killer phenotype to its host. The symbiosis between Paramecium tetraurelia and Caedibacter taeniospiralis, living in the host’s cytoplasm, enables the infected paramecia to release Caedibacter symbionts, which can simultaneously produce a peculiar protein structure and a toxin. The ingestion of bacteria that harbor both components leads to the death of symbiont-free congeners. Thus, the symbiosis provides Caedibacter-infected cells a competitive advantage, the “killer trait.” We characterized the adaptive gene expression patterns in symbiont-harboring Paramecium as a second symbiosis-derived aspect next to the killer phenotype. Comparative transcriptomics of infected P. tetraurelia and genetically identical symbiont-free cells confirmed altered gene expression in the symbiont-bearing line. Our results show up-regulation of specific metabolic and heat shock genes whereas down-regulated genes were involved in signaling pathways and cell cycle regulation. Functional analyses to validate the transcriptomics results demonstrated that the symbiont increases host density hence providing a fitness advantage. Comparative transcriptomics shows gene expression modulation of a ciliate caused by its bacterial endosymbiont thus revealing new adaptive advantages of the symbiosis. Caedibacter taeniospiralis apparently increases its host fitness via manipulation of metabolic pathways and cell cycle control.
Collapse
Affiliation(s)
- Katrin Grosser
- Microbiology, Institute of Biology II, Albert-Ludwigs University of Freiburg, Germany
| | - Pathmanaban Ramasamy
- Excellence Cluster for Multimodal Computing and Interaction, Saarland Informatics Campus, Saarland University, Saarbruecken, Germany.,Molecular Cell Dynamics, Centre for Human and Molecular Biology, Saarland University, Saarbruecken, Germany
| | - Azim Dehghani Amirabad
- Excellence Cluster for Multimodal Computing and Interaction, Saarland Informatics Campus, Saarland University, Saarbruecken, Germany.,Computational Biology and Applied Algorithmics, Max-Planck-Institute for Informatics, Saarland Informatics Campus, Saarbruecken, Germany
| | - Marcel H Schulz
- Excellence Cluster for Multimodal Computing and Interaction, Saarland Informatics Campus, Saarland University, Saarbruecken, Germany.,Computational Biology and Applied Algorithmics, Max-Planck-Institute for Informatics, Saarland Informatics Campus, Saarbruecken, Germany
| | - Gilles Gasparoni
- Genetics, Centre for Human and Molecular Biology, Saarland University, Saarbruecken, Germany
| | - Martin Simon
- Molecular Cell Dynamics, Centre for Human and Molecular Biology, Saarland University, Saarbruecken, Germany
| | - Martina Schrallhammer
- Microbiology, Institute of Biology II, Albert-Ludwigs University of Freiburg, Germany
| |
Collapse
|
84
|
Bennett GM, Mao M. Comparative genomics of a quadripartite symbiosis in a planthopper host reveals the origins and rearranged nutritional responsibilities of anciently diverged bacterial lineages. Environ Microbiol 2018; 20:4461-4472. [PMID: 30047196 DOI: 10.1111/1462-2920.14367] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/15/2018] [Accepted: 07/23/2018] [Indexed: 11/28/2022]
Abstract
Insects in the Auchenorrhyncha (Hemiptera: Suborder) established nutritional symbioses with bacteria approximately 300 million years ago (MYA). The suborder split early during its diversification (~ 250 MYA) into the Fulgoroidea (planthoppers) and Cicadomorpha (leafhoppers and cicadas). The two lineages share some symbionts, including Sulcia and possibly a Betaproteobacteria that collaboratively provide their hosts with 10 essential amino acids (EAA). Some hosts harbour three bacteria, as is common among planthoppers. However, genomic studies are currently restricted to the dual-bacterial symbioses found in Cicadomorpha, leaving the origins and functions of these more complex symbioses unclear. To address these questions, we sequenced the genomes and performed phylogenomic analyses of 'Candidatus Sulcia muelleri' (Bacteroidetes), 'Ca. Vidania fulgoroideae' (Betaproteobacteria) and 'Ca. Purcelliella pentastirinorum' (Gammaproteobacteria) from a planthopper (Cixiidae: Oliarus). In contrast to the Cicadomorpha, nutritional synthesis responsibilities are rearranged between the cixiid symbionts. Although Sulcia has a highly conserved genome across the Auchenorrhyncha, in the cixiids it is greatly reduced and provides only three EAAs. Vidania contributes the remaining seven EAAs. Phylogenomic results suggest that it represents an ancient symbiont lineage paired with Sulcia throughout the Auchenorrhyncha. Finally, Purcelliella was recently acquired from plant-insect associated bacteria (Pantoea-Erwinia) to provide B vitamins and metabolic support to its degenerate partners.
Collapse
Affiliation(s)
- Gordon M Bennett
- Life and Environmental Sciences Unit, University of California, Merced, CA, 95343, USA.,Department of Plant and Environmental Protections Sciences, University of Hawaii at Mānoa, Honolulu, HI, 96822, USA
| | - Meng Mao
- Life and Environmental Sciences Unit, University of California, Merced, CA, 95343, USA.,Department of Plant and Environmental Protections Sciences, University of Hawaii at Mānoa, Honolulu, HI, 96822, USA
| |
Collapse
|
85
|
Douglas AE. Omics and the metabolic function of insect-microbial symbioses. CURRENT OPINION IN INSECT SCIENCE 2018; 29:1-6. [PMID: 30551814 DOI: 10.1016/j.cois.2018.05.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 05/23/2018] [Indexed: 06/09/2023]
Abstract
Omic studies of metabolic interactions between insects and their microbial symbionts enable us to construct precise hypotheses, especially regarding the metabolic services provided by microbial partners and the identity of metabolites exchanged between microorganisms and the insect host. Valuable sources of information include the complement of metabolism-related genes in the microbial partners, and differences in the abundance of transcripts, proteins or metabolites, either between microbe-bearing organs and the whole body or between insects bearing and lacking microbial symbionts. Hypotheses generated from omic data can, most productively, be tested by experiments using reverse genetics for precise manipulation of the gene expression.
Collapse
Affiliation(s)
- Angela E Douglas
- Department of Entomology and Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
86
|
Sloan DB, Warren JM, Williams AM, Wu Z, Abdel-Ghany SE, Chicco AJ, Havird JC. Cytonuclear integration and co-evolution. Nat Rev Genet 2018; 19:635-648. [PMID: 30018367 PMCID: PMC6469396 DOI: 10.1038/s41576-018-0035-9] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The partitioning of genetic material between the nucleus and cytoplasmic (mitochondrial and plastid) genomes within eukaryotic cells necessitates coordinated integration between these genomic compartments, with important evolutionary and biomedical implications. Classic questions persist about the pervasive reduction of cytoplasmic genomes via a combination of gene loss, transfer and functional replacement - and yet why they are almost always retained in some minimal form. One striking consequence of cytonuclear integration is the existence of 'chimeric' enzyme complexes composed of subunits encoded in two different genomes. Advances in structural biology and comparative genomics are yielding important insights into the evolution of such complexes, including correlated sequence changes and recruitment of novel subunits. Thus, chimeric cytonuclear complexes provide a powerful window into the mechanisms of molecular co-evolution.
Collapse
Affiliation(s)
- Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, USA.
| | - Jessica M Warren
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Alissa M Williams
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Zhiqiang Wu
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | | | - Adam J Chicco
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Justin C Havird
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
87
|
Santos-Garcia D, Silva FJ, Morin S, Dettner K, Kuechler SM. The All-Rounder Sodalis: A New Bacteriome-Associated Endosymbiont of the Lygaeoid Bug Henestaris halophilus (Heteroptera: Henestarinae) and a Critical Examination of Its Evolution. Genome Biol Evol 2018; 9:2893-2910. [PMID: 29036401 PMCID: PMC5737371 DOI: 10.1093/gbe/evx202] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2017] [Indexed: 12/21/2022] Open
Abstract
Hemipteran insects are well-known in their ability to establish symbiotic relationships with bacteria. Among them, heteropteran insects present an array of symbiotic systems, ranging from the most common gut crypt symbiosis to the more restricted bacteriome-associated endosymbiosis, which have only been detected in members of the superfamily Lygaeoidea and the family Cimicidae so far. Genomic data of heteropteran endosymbionts are scarce and have merely been analyzed from the Wolbachia endosymbiont in bed bug and a few gut crypt-associated symbionts in pentatomoid bugs. In this study, we present the first detailed genomic analysis of a bacteriome-associated endosymbiont of a phytophagous heteropteran, present in the seed bug Henestaris halophilus (Hemiptera: Heteroptera: Lygaeoidea). Using phylogenomics and genomics approaches, we have assigned the newly characterized endosymbiont to the Sodalis genus, named as Candidatus Sodalis baculum sp. nov. strain kilmister. In addition, our findings support the reunification of the Sodalis genus, currently divided into six different genera. We have also conducted comparative analyses between 15 Sodalis species that present different genome sizes and symbiotic relationships. These analyses suggest that Ca. Sodalis baculum is a mutualistic endosymbiont capable of supplying the amino acids tyrosine, lysine, and some cofactors to its host. It has a small genome with pseudogenes but no mobile elements, which indicates middle-stage reductive evolution. Most of the genes in Ca. Sodalis baculum are likely to be evolving under purifying selection with several signals pointing to the retention of the lysine/tyrosine biosynthetic pathways compared with other Sodalis.
Collapse
Affiliation(s)
- Diego Santos-Garcia
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Francisco J Silva
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Spain.,Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Spain
| | - Shai Morin
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Konrad Dettner
- Department of Animal Ecology II, University of Bayreuth, Germany
| | | |
Collapse
|
88
|
Santos-Garcia D, Juravel K, Freilich S, Zchori-Fein E, Latorre A, Moya A, Morin S, Silva FJ. To B or Not to B: Comparative Genomics Suggests Arsenophonus as a Source of B Vitamins in Whiteflies. Front Microbiol 2018; 9:2254. [PMID: 30319574 PMCID: PMC6167482 DOI: 10.3389/fmicb.2018.02254] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 09/04/2018] [Indexed: 02/05/2023] Open
Abstract
Insect lineages feeding on nutritionally restricted diets such as phloem sap, xylem sap, or blood, were able to diversify by acquiring bacterial species that complement lacking nutrients. These bacteria, considered obligate/primary endosymbionts, share a long evolutionary history with their hosts. In some cases, however, these endosymbionts are not able to fulfill all of their host's nutritional requirements, driving the acquisition of additional symbiotic species. Phloem-feeding members of the insect family Aleyrodidae (whiteflies) established an obligate relationship with Candidatus Portiera aleyrodidarum, which provides its hots with essential amino acids and carotenoids. In addition, many whitefly species harbor additional endosymbionts which may potentially further supplement their host's diet. To test this hypothesis, genomes of several endosymbionts of the whiteflies Aleurodicus dispersus, Aleurodicus floccissimus and Trialeurodes vaporariorum were analyzed. In addition to Portiera, all three species were found to harbor one Arsenophonus and one Wolbachia endosymbiont. A comparative analysis of Arsenophonus genomes revealed that although all three are capable of synthesizing B vitamins and cofactors, such as pyridoxal, riboflavin, or folate, their genomes and phylogenetic relationship vary greatly. Arsenophonus of A. floccissimus and T. vaporariorum belong to the same clade, and display characteristics of facultative endosymbionts, such as large genomes (3 Mb) with thousands of genes and pseudogenes, intermediate GC content, and mobile genetic elements. In contrast, Arsenophonus of A. dispersus belongs to a different lineage and displays the characteristics of a primary endosymbiont-a reduced genome (670 kb) with ~400 genes, 32% GC content, and no mobile genetic elements. However, the presence of 274 pseudogenes suggests that this symbiotic association is more recent than other reported primary endosymbionts of hemipterans. The gene repertoire of Arsenophonus of A. dispersus is completely integrated in the symbiotic consortia, and the biosynthesis of most vitamins occurs in shared pathways with its host. In addition, Wolbachia endosymbionts have also retained the ability to produce riboflavin, flavin adenine dinucleotide, and folate, and may make a nutritional contribution. Taken together, our results show that Arsenophonus hold a pivotal place in whitefly nutrition by their ability to produce B vitamins.
Collapse
Affiliation(s)
- Diego Santos-Garcia
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ksenia Juravel
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Shiri Freilich
- Institute of Plant Sciences, Newe-Ya'ar Research Center, Agricultural Research Organization, Ramat-Yishai, Israel
| | - Einat Zchori-Fein
- Department of Entomology, Newe-Ya'ar Research Center, Agricultural Research Organization, Volcani Center, Ramat-Yishai, Israel
| | - Amparo Latorre
- Institute for Integrative Systems Biology, Universitat de València-CSIC, València, Spain
- Unidad Mixta de Investigación en Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO) and Institute for Integrative Systems Biology, Universitat de València, València, Spain
| | - Andrés Moya
- Institute for Integrative Systems Biology, Universitat de València-CSIC, València, Spain
- Unidad Mixta de Investigación en Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO) and Institute for Integrative Systems Biology, Universitat de València, València, Spain
| | - Shai Morin
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Francisco J. Silva
- Institute for Integrative Systems Biology, Universitat de València-CSIC, València, Spain
- Unidad Mixta de Investigación en Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO) and Institute for Integrative Systems Biology, Universitat de València, València, Spain
| |
Collapse
|
89
|
Vicente CSL, Mondal SI, Akter A, Ozawa S, Kikuchi T, Hasegawa K. Genome analysis of new Blattabacterium spp., obligatory endosymbionts of Periplaneta fuliginosa and P. japonica. PLoS One 2018; 13:e0200512. [PMID: 29990378 PMCID: PMC6039017 DOI: 10.1371/journal.pone.0200512] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/27/2018] [Indexed: 11/18/2022] Open
Abstract
The successful adaptation of cockroaches is, in part, dependent of the activity of their obligatory endosymbionts, Blattabacterium spp., which are involved in uric acid degradation, nitrogen assimilation and nutrient provisioning. Their strategic localization, within bacteriocytes in the proximities of uric acid storage cells (urocytes), highlights their importance in the recycling of nitrogen from urea and ammonia, end-products not secreted by their host insects. In this study, we present the complete genome sequence of two new Blattabacterium spp. from Periplaneta fuliginosa (BPfu) and P. japonica (BPja), and detailed comparison with other Blattabacterium strains from different cockroach species. The genomes of BPfu and BPja show a high degree of stability as showed with for other Blattabacterium representatives, only presenting a 19-kb fragment inversion between BPja and BPfu. In fact, the phylogenomics showed BPja as an ancestor species of BPfu, BPLAN (P. americana) and BBor (Blatta orientalis), in congruence with their host cockroach phylogeny. Their functional profile is similar and closest to the omnivorous strain BBge (Blattella germanica). Interesting, BPja possesses the complete set of enzymes involved sulfate assimilatory pathway only found in BBge and BMda (Mastotermes darwiniensis). The newly sequenced genomes of BPja and BPfu emphasise the remarkable stability of Blattabacterium genomes supported by their long-term coevolution and obligatory lifestyle in their host insect.
Collapse
Affiliation(s)
- Cláudia S. L. Vicente
- NemaLab/ICAAM—Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Departamento de Biologia, Universidade de Évora, Núcleo da Mitra, Évora, Portugal
- Department of Environmental Biology, College of Bioscience & Biotechnology, Chubu University,Matsumoto, Kasugai, Aichi, Japan
| | - Shakhinur Islam Mondal
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
- Genetic Engineering and Biotechnology Department, Shahjalal University of Science and Technology, Kumargaon, Sylhet, Bangladesh
| | - Arzuba Akter
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
- Biochemistry and Molecular Biology Department, Shahjalal University of Science and Technology, Kumargaon, Sylhet, Bangladesh
| | - Sota Ozawa
- Department of Environmental Biology, College of Bioscience & Biotechnology, Chubu University,Matsumoto, Kasugai, Aichi, Japan
| | - Tasei Kikuchi
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Koichi Hasegawa
- Department of Environmental Biology, College of Bioscience & Biotechnology, Chubu University,Matsumoto, Kasugai, Aichi, Japan
- * E-mail:
| |
Collapse
|
90
|
Dunning Hotopp JC. Grafting or pruning in the animal tree: lateral gene transfer and gene loss? BMC Genomics 2018; 19:470. [PMID: 29914363 PMCID: PMC6006793 DOI: 10.1186/s12864-018-4832-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 05/29/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Lateral gene transfer (LGT), also known as horizontal gene transfer, into multicellular eukaryotes with differentiated tissues, particularly gonads, continues to be met with skepticism by many prominent evolutionary and genomic biologists. A detailed examination of 26 animal genomes identified putative LGTs in invertebrate and vertebrate genomes, concluding that there are fewer predicted LGTs in vertebrates/chordates than invertebrates, but there is still evidence of LGT into chordates, including humans. More recently, a reanalysis of a subset of these putative LGTs into vertebrates concluded that there is not horizontal gene transfer in the human genome. One of the genes in dispute is an N-acyl-aromatic-L-amino acid amidohydrolase (ENSG00000132744), which encodes ACY3. This gene was initially identified as a putative bacteria-chordate LGT but was later debunked as it has a significant BLAST match to a more recently deposited genome of Saccoglossus kowalevskii, a flatworm, Metazoan, and hemichordate. RESULTS Using BLAST searches, HMM searches, and phylogenetics to assess the evidence for LGT, gene loss, and rate variation in ACY3/ASPA homologues, the most parsimonious explanation for the distribution of ACY3/ASPA genes in eukaryotes involves both gene loss and bacteria-animal LGT, albeit LGT that occurred hundreds of millions of years ago prior to the divergence of gnathostomes. CONCLUSIONS ACY3/ASPA is most likely a bacteria-animal LGT. LGTs at these time scales in the ancestors of humans are not unexpected given the many known, well-characterized, and adaptive LGTs from bacteria to insects and nematodes.
Collapse
Affiliation(s)
- Julie C Dunning Hotopp
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
91
|
Weglarz KM, Havill NP, Burke GR, von Dohlen CD. Partnering With a Pest: Genomes of Hemlock Woolly Adelgid Symbionts Reveal Atypical Nutritional Provisioning Patterns in Dual-Obligate Bacteria. Genome Biol Evol 2018; 10:1607-1621. [PMID: 29860412 PMCID: PMC6022629 DOI: 10.1093/gbe/evy114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2018] [Indexed: 12/20/2022] Open
Abstract
Nutritional bacterial symbionts enhance the diets of sap-feeding insects with amino acids and vitamins missing from their diets. In many lineages, an ancestral senior symbiont is joined by a younger junior symbiont. To date, an emergent pattern is that senior symbionts supply a majority of amino acids, and junior symbionts supply a minority. Similar to other hemipterans, adelgids harbor obligate symbionts, but have higher diversity of bacterial associates, suggesting a history of symbiont turnover. The metabolic roles of dual symbionts in adelgids and their contributions to the consortium are largely unexplored. Here, we investigate the symbionts of Adelges tsugae, the hemlock woolly adelgid (HWA), an invasive species introduced from Japan to the eastern United States, where it kills hemlock trees. The response of hemlocks to HWA feeding has aspects of a defensive reaction against pathogens, and some have speculated that symbionts may be involved. We sequenced the genomes of "Ca. Annandia adelgestsuga" and "Ca. Pseudomonas adelgestsugas" symbionts to detail their metabolic capabilities, infer ages of relationship, and search for effectors of plant defenses. We also tested the relationship of "Ca. Annandia" to symbionts of other insects. We find that both symbionts provide nutrients, but in more balanced proportions than dual symbionts of other hemipterans. The lesser contributions of the senior "Ca. Annandia" support our hypothesis for symbiont replacements in adelgids. Phylogenomic results were ambiguous regarding the position of "Ca. Annandia". We found no obvious effectors of plant defenses related to insect virulence, but hypothetical proteins in symbionts are unknown players.
Collapse
Affiliation(s)
| | - Nathan P Havill
- USDA Forest Service, Northern Research Station, Hamden, Connecticut
| | | | | |
Collapse
|
92
|
Wybouw N, Van Leeuwen T, Dermauw W. A massive incorporation of microbial genes into the genome of Tetranychus urticae, a polyphagous arthropod herbivore. INSECT MOLECULAR BIOLOGY 2018; 27:333-351. [PMID: 29377385 DOI: 10.1111/imb.12374] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A number of horizontal gene transfers (HGTs) have been identified in the spider mite Tetranychus urticae, a chelicerate herbivore. However, the genome of this mite species has at present not been thoroughly mined for the presence of HGT genes. Here, we performed a systematic screen for HGT genes in the T. urticae genome using the h-index metric. Our results not only validated previously identified HGT genes but also uncovered 25 novel HGT genes. In addition to HGT genes with a predicted biochemical function in carbohydrate, lipid and folate metabolism, we also identified the horizontal transfer of a ketopantoate hydroxymethyltransferase and a pantoate β-alanine ligase gene. In plants and bacteria, both genes are essential for vitamin B5 biosynthesis and their presence in the mite genome strongly suggests that spider mites, similar to Bemisia tabaci and nematodes, can synthesize their own vitamin B5. We further show that HGT genes were physically embedded within the mite genome and were expressed in different life stages. By screening chelicerate genomes and transcriptomes, we were able to estimate the evolutionary histories of these HGTs during chelicerate evolution. Our study suggests that HGT has made a significant and underestimated impact on the metabolic repertoire of plant-feeding spider mites.
Collapse
Affiliation(s)
- N Wybouw
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - T Van Leeuwen
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - W Dermauw
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
93
|
Host-symbiont-pathogen interactions in blood-feeding parasites: nutrition, immune cross-talk and gene exchange. Parasitology 2018; 145:1294-1303. [PMID: 29642965 DOI: 10.1017/s0031182018000574] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Animals are common hosts of mutualistic, commensal and pathogenic microorganisms. Blood-feeding parasites feed on a diet that is nutritionally unbalanced and thus often rely on symbionts to supplement essential nutrients. However, they are also of medical importance as they can be infected by pathogens such as bacteria, protists or viruses that take advantage of the blood-feeding nutritional strategy for own transmission. Since blood-feeding evolved multiple times independently in diverse animals, it showcases a gradient of host-microbe interactions. While some parasitic lineages are possibly asymbiotic and manage to supplement their diet from other food sources, other lineages are either loosely associated with extracellular gut symbionts or harbour intracellular obligate symbionts that are essential for the host development and reproduction. What is perhaps even more diverse are the pathogenic lineages that infect blood-feeding parasites. This microbial diversity not only puts the host into a complicated situation - distinguishing between microorganisms that can greatly decrease or increase its fitness - but also increases opportunity for horizontal gene transfer to occur in this environment. In this review, I first introduce this diversity of mutualistic and pathogenic microorganisms associated with blood-feeding animals and then focus on patterns in their interactions, particularly nutrition, immune cross-talk and gene exchange.
Collapse
|
94
|
Panfilio KA, Angelini DR. By land, air, and sea: hemipteran diversity through the genomic lens. CURRENT OPINION IN INSECT SCIENCE 2018; 25:106-115. [PMID: 29602356 DOI: 10.1016/j.cois.2017.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 12/15/2017] [Indexed: 06/08/2023]
Abstract
Thanks to a recent spate of sequencing projects, the Hemiptera are the first hemimetabolous insect order to achieve a critical mass of species with sequenced genomes, establishing the basis for comparative genomics of the bugs. However, as the most speciose hemimetabolous order, there is still a vast swathe of the hemipteran phylogeny that awaits genomic representation across subterranean, terrestrial, and aquatic habitats, and with lineage-specific and developmentally plastic cases of both wing polyphenisms and flightlessness. In this review, we highlight opportunities for taxonomic sampling beyond obvious pest species candidates, motivated by intriguing biological features of certain groups as well as the rich research tradition of ecological, physiological, developmental, and particularly cytogenetic investigation that spans the diversity of the Hemiptera.
Collapse
Affiliation(s)
- Kristen A Panfilio
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom; Institute of Zoology: Developmental Biology, University of Cologne, 50674 Cologne, Germany.
| | - David R Angelini
- Department of Biology, Colby College, Waterville, ME 04901, United States
| |
Collapse
|
95
|
Gil R, Vargas-Chavez C, López-Madrigal S, Santos-García D, Latorre A, Moya A. Tremblaya phenacola PPER: an evolutionary beta-gammaproteobacterium collage. THE ISME JOURNAL 2018; 12:124-135. [PMID: 28914880 PMCID: PMC5739004 DOI: 10.1038/ismej.2017.144] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 05/31/2017] [Accepted: 07/28/2017] [Indexed: 02/07/2023]
Abstract
Many insects rely on bacterial endosymbionts to obtain nutrients that are scarce in their highly specialized diets. The most surprising example corresponds to the endosymbiotic system found in mealybugs from subfamily Pseudococcinae in which two bacteria, the betaproteobacterium 'Candidatus Tremblaya princeps' and a gammaproteobacterium, maintain a nested endosymbiotic consortium. In the sister subfamily Phenacoccinae, however, a single beta-endosymbiont, 'Candidatus Tremblaya phenacola', has been described. In a previous study, we detected a trpB gene of gammaproteobacterial origin in 'Ca. Tremblaya phenacola' from two Phenacoccus species, apparently indicating an unusual case of horizontal gene transfer (HGT) in a bacterial endosymbiont. What we found by sequencing the genome of 'Ca. Tremblaya phenacola' PPER, single endosymbiont of Phenacoccus peruvianus, goes beyond a HGT phenomenon. It rather represents a genome fusion between a beta and a gammaproteobacterium, followed by massive rearrangements and loss of redundant genes, leading to an unprecedented evolutionary collage. Mediated by the presence of several repeated sequences, there are many possible genome arrangements, and different subgenomic sequences might coexist within the same population.
Collapse
Affiliation(s)
- Rosario Gil
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva (ICBiBE), Universitat de València, Valencia, Spain
- Evolutionary Systems Biology of Symbionts Research Program, Institute for Integrative Systems Biology, Universitat de València/CSIC, Paterna (Valencia), Spain
| | - Carlos Vargas-Chavez
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva (ICBiBE), Universitat de València, Valencia, Spain
- Evolutionary Systems Biology of Symbionts Research Program, Institute for Integrative Systems Biology, Universitat de València/CSIC, Paterna (Valencia), Spain
| | - Sergio López-Madrigal
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva (ICBiBE), Universitat de València, Valencia, Spain
| | - Diego Santos-García
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva (ICBiBE), Universitat de València, Valencia, Spain
| | - Amparo Latorre
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva (ICBiBE), Universitat de València, Valencia, Spain
- Evolutionary Systems Biology of Symbionts Research Program, Institute for Integrative Systems Biology, Universitat de València/CSIC, Paterna (Valencia), Spain
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana, Valencia, Spain
| | - Andrés Moya
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva (ICBiBE), Universitat de València, Valencia, Spain
- Evolutionary Systems Biology of Symbionts Research Program, Institute for Integrative Systems Biology, Universitat de València/CSIC, Paterna (Valencia), Spain
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana, Valencia, Spain
| |
Collapse
|
96
|
Dan H, Ikeda N, Fujikami M, Nakabachi A. Behavior of bacteriome symbionts during transovarial transmission and development of the Asian citrus psyllid. PLoS One 2017; 12:e0189779. [PMID: 29240843 PMCID: PMC5730177 DOI: 10.1371/journal.pone.0189779] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 12/01/2017] [Indexed: 02/07/2023] Open
Abstract
The Asian citrus psyllid Diaphorina citri Kuwayama (Hemiptera: Liviidae) is a serious pest worldwide, transmitting Candidatus Liberibacter spp. (Alphaproteobacteria), the causative agents of a devastating citrus disease known as huanglongbing or greening disease. In a symbiotic organ called the bacteriome, D. citri possesses an organelle-like defensive symbiont, Candidatus Profftella armatura (Betaproteobacteria), and a nutritional symbiont, Ca. Carsonella ruddii (Gammaproteobacteria). Drastically reduced symbiont genomes and metabolic complementarity among the symbionts and D. citri indicate their mutually indispensable association. Moreover, horizontal gene transfer between the Profftella and Liberibacter lineages suggests ecological and evolutionary interactions between the bacteriome symbiont and the HLB pathogen. Using fluorescence in situ hybridization, we examined the behavior of Profftella and Carsonella during transovarial transmission and the development of D. citri. In the bacteriomes of sexually-mature female adults, symbionts transformed from an extremely elongated tubular form into spherical or short-rod forms, which migrated toward the ovary. The symbionts then formed mosaic masses, which entered at the posterior pole of the vitellogenic oocytes. After anatrepsis, Carsonella and Profftella migrated to the central and peripheral parts of the mass, respectively. Following the appearance of host nuclei, the mass cellularized, segregating Carsonella and Profftella in the central syncytium and peripheral uninucleate bacteriocytes, respectively. Subsequently, the uninucleate bacteriocytes harboring Profftella assembled at the posterior pole, while the syncytium, containing Carsonella, sat on the anterior side facing the germ band initiating katatrepsis. During dorsal closure, the syncytium was divided into uninuclear bacteriocytes, which surrounded the mass of bacteriocytes containing Profftella. Once fully surrounded, the bacteriocyte mass containing Profftella was fused into a syncytium. Prior to hatching, a pair of wing-like protrusions arose from both lateral sides of the bacteriome, which continued to grow throughout the nymphal stages. These findings provide a foundation for better understanding the intricate relationship between D. citri and its microbiota.
Collapse
Affiliation(s)
- Hiroki Dan
- Department of Environmental and Life Sciences, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Naoya Ikeda
- Department of Environmental and Life Sciences, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Masaya Fujikami
- Department of Environmental and Life Sciences, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Atsushi Nakabachi
- Department of Environmental and Life Sciences, Toyohashi University of Technology, Toyohashi, Aichi, Japan
- Electronics-Inspired Interdisciplinary Research Institute (EIIRIS), Toyohashi University of Technology, Toyohashi, Aichi, Japan
| |
Collapse
|
97
|
Šochová E, Husník F, Nováková E, Halajian A, Hypša V. Arsenophonus and Sodalis replacements shape evolution of symbiosis in louse flies. PeerJ 2017; 5:e4099. [PMID: 29250466 PMCID: PMC5729840 DOI: 10.7717/peerj.4099] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/06/2017] [Indexed: 12/24/2022] Open
Abstract
Symbiotic interactions between insects and bacteria are ubiquitous and form a continuum from loose facultative symbiosis to greatly intimate and stable obligate symbiosis. In blood-sucking insects living exclusively on vertebrate blood, obligate endosymbionts are essential for hosts and hypothesized to supplement B-vitamins and cofactors missing from their blood diet. The role and distribution of facultative endosymbionts and their evolutionary significance as seeds of obligate symbioses are much less understood. Here, using phylogenetic approaches, we focus on the Hippoboscidae phylogeny as well as the stability and dynamics of obligate symbioses within this bloodsucking group. In particular, we demonstrate a new potentially obligate lineage of Sodalis co-evolving with the Olfersini subclade of Hippoboscidae. We also show several likely facultative Sodalis lineages closely related to Sodalis praecaptivus (HS strain) and suggest repeated acquisition of novel symbionts from the environment. Similar to Sodalis, Arsenophonus endosymbionts also form both obligate endosymbiotic lineages co-evolving with their hosts (Ornithomyini and Ornithoica groups) as well as possibly facultative infections incongruent with the Hippoboscidae phylogeny. Finally, we reveal substantial diversity of Wolbachia strains detected in Hippoboscidae samples falling into three supergroups: A, B, and the most common F. Altogether, our results prove the associations between Hippoboscoidea and their symbiotic bacteria to undergo surprisingly dynamic, yet selective, evolutionary processes strongly shaped by repeated endosymbiont replacements. Interestingly, obligate symbionts only originate from two endosymbiont genera, Arsenophonus and Sodalis, suggesting that the host is either highly selective about its future obligate symbionts or that these two lineages are the most competitive when establishing symbioses in louse flies.
Collapse
Affiliation(s)
- Eva Šochová
- Department of Parasitology, University of South Bohemia, České Budějovice, Czech Republic
| | - Filip Husník
- Department of Molecular Biology, University of South Bohemia, České Budějovice, Czech Republic.,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Eva Nováková
- Department of Parasitology, University of South Bohemia, České Budějovice, Czech Republic.,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Ali Halajian
- Department of Biodiversity, University of Limpopo, Sovenga, South Africa
| | - Václav Hypša
- Department of Parasitology, University of South Bohemia, České Budějovice, Czech Republic.,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| |
Collapse
|
98
|
Tamborindeguy C, Huot OB, Ibanez F, Levy J. The influence of bacteria on multitrophic interactions among plants, psyllids, and pathogen. INSECT SCIENCE 2017; 24:961-974. [PMID: 28493539 DOI: 10.1111/1744-7917.12474] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 04/12/2017] [Accepted: 04/24/2017] [Indexed: 05/10/2023]
Abstract
The recent emergence of several plant diseases caused by psyllid-borne bacterial pathogens worldwide (Candidatus Liberibacter spp.) has created renewed interest on the interaction between psyllids and bacteria. In spite of these efforts to understand psyllid association with bacteria, many aspects of their interactions remain poorly understood. As more organisms are studied, subtleties on the molecular interactions as well as on the effects of the bacteria on the psyllid host are being uncovered. Additionally, psyllid-borne bacterial phytopathogens can also affect the host plant, which in turn can impact psyllid physiology and behavior. Here, we review the current literature on different aspects of the influence of bacteria on multitrophic interactions among plants, psyllids, and pathogens. We then highlight gaps that need to be addressed to advance this field, which can have significant implications for controlling these newly emergent and other plant diseases.
Collapse
Affiliation(s)
| | - Ordom Brian Huot
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Freddy Ibanez
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Julien Levy
- Department of Horticultural Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
99
|
Skidmore IH, Hansen AK. The evolutionary development of plant-feeding insects and their nutritional endosymbionts. INSECT SCIENCE 2017; 24:910-928. [PMID: 28371395 DOI: 10.1111/1744-7917.12463] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 03/15/2017] [Accepted: 03/16/2017] [Indexed: 06/07/2023]
Abstract
Herbivorous insects have evolved diverse mechanisms enabling them to feed on plants with suboptimal nutrient availability. Low nutrient availability negatively impacts insect herbivore development and fitness. To overcome this obstacle numerous insect lineages have evolved intimate associations with nutritional endosymbionts. This is especially true for insects that specialize on nitrogen-poor substrates, as these insects are highly dependent on intracellular symbionts to provide nitrogen lacking in their insect host's diet. Emerging evidence in these systems suggest that the symbiont's and/or the insect's biosynthetic pathways are dynamically regulated throughout the insect's development to potentially cope with the insect's changing nutritional demands. In this review, we evaluate the evolutionary development of symbiotic insect cells (bacteriocytes) by comparing and contrasting genes and mechanisms involved in maintaining and regulating the nutritional symbiosis throughout insect development in a diversity of insect herbivore-endosymbiont associations. With new advances in genome sequencing and functional genomics, we evaluate to what extent nutritional symbioses are shaped by (i) the regulation of symbiont titer, (ii) the regulation of insect symbiosis genes, and (iii) the regulation of symbiont genes. We discuss how important these mechanisms are for the biosynthesis of essential amino acids and vitamins across insect life stages in divergent insect-symbiont systems. We conclude by suggesting future directions of research to further elucidate the evolutionary development of bacteriocytes and the impact of these nutritional symbioses on insect-plant interactions.
Collapse
Affiliation(s)
- Isabel H Skidmore
- Department of Entomology, University of Illinois, Urbana-Champaign, Illinois, USA
| | - Allison K Hansen
- Department of Entomology, University of Illinois, Urbana-Champaign, Illinois, USA
| |
Collapse
|
100
|
|