51
|
Cencig S, Nanbru C, Le SY, Gueydan C, Huez G, Kruys V. Mapping and characterization of the minimal internal ribosome entry segment in the human c-myc mRNA 5' untranslated region. Oncogene 2004; 23:267-77. [PMID: 14712232 DOI: 10.1038/sj.onc.1207017] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The human c-myc proto-oncogene is transcribed from four alternative promoters generating transcripts with 5' untranslated regions of various lengths. These transcripts encode two proteins, c-Myc1 and c-Myc2, from two initiation codons, CUG and AUG, respectively. We and others have previously demonstrated that the region of c-myc transcripts between nucleotides (nt) -363 and -94 upstream from the CUG start codon contained an internal ribosome entry site leading to the cap-independent translation of c-myc open reading frames (ORFs). Here, we mapped a 50-nt sequence (-143 -94), which is sufficient to promote internal translation initiation of c-myc ORFs. Interestingly, this 50-nt element can be further dissected into two segments of 14 nt, each capable of activating internal translation initiation. We also demonstrate that this 50-nt element acts as the ribosome landing site from which the preinitiation ribosomal complex scans the mRNA until the CUG or AUG start codons.
Collapse
Affiliation(s)
- Sabrina Cencig
- Laboratoire de Chimie Biologique, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, rue des Profs Jeener et Brachet 12, 6041 Gosselies, Belgium
| | | | | | | | | | | |
Collapse
|
52
|
Bonnal S, Schaeffer C, Créancier L, Clamens S, Moine H, Prats AC, Vagner S. A single internal ribosome entry site containing a G quartet RNA structure drives fibroblast growth factor 2 gene expression at four alternative translation initiation codons. J Biol Chem 2003; 278:39330-6. [PMID: 12857733 PMCID: PMC2635476 DOI: 10.1074/jbc.m305580200] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 484-nucleotide (nt) alternatively translated region (ATR) of the human fibroblast growth factor 2 (FGF-2) mRNA contains four CUG and one AUG translation initiation codons. Although the 5'-end proximal CUG codon is initiated by a cap-dependent translation process, the other four initiation codons are initiated by a mechanism of internal entry of ribosomes. We undertook here a detailed analysis of the cis-acting elements defining the FGF-2 internal ribosome entry site (IRES). A thorough deletion analysis study within the 5'-ATR led us to define a 176-nt region as being necessary and sufficient for IRES function at four codons present in a downstream 308-nt RNA segment. Unexpectedly, a single IRES module is therefore responsible for translation initiation at four distantly localized codons. The determination of the FGF-2 5'-ATR RNA secondary structure by enzymatic and chemical probing experiments showed that the FGF-2 IRES contained two stem-loop regions and a G quartet motif that constitute novel structural determinants of IRES function.
Collapse
Affiliation(s)
- Sophie Bonnal
- Hormones, facteurs de croissance et physiopathologie vasculaire
INSERM : U589IFR31Université Paul Sabatier - Toulouse IIIHopital de Rangueil
1, Avenue Jean Poulhes
31059 TOULOUSE CEDEX 9,FR
| | - Céline Schaeffer
- SMBMR, Structure des macromolécules biologiques et mécanismes de reconnaissance
CNRS : UPR9002IBMC
15, Rue René Descartes
67084 STRASBOURG CEDEX,FR
| | - Laurent Créancier
- Centre de Recherches Pierre Fabre
Centre de Recherches Pierre Fabre81106 Castres,FR
| | - Simone Clamens
- Hormones, facteurs de croissance et physiopathologie vasculaire
INSERM : U589IFR31Université Paul Sabatier - Toulouse IIIHopital de Rangueil
1, Avenue Jean Poulhes
31059 TOULOUSE CEDEX 9,FR
| | - Hervé Moine
- SMBMR, Structure des macromolécules biologiques et mécanismes de reconnaissance
CNRS : UPR9002IBMC
15, Rue René Descartes
67084 STRASBOURG CEDEX,FR
| | - Anne-Catherine Prats
- Hormones, facteurs de croissance et physiopathologie vasculaire
INSERM : U589IFR31Université Paul Sabatier - Toulouse IIIHopital de Rangueil
1, Avenue Jean Poulhes
31059 TOULOUSE CEDEX 9,FR
- * Correspondence should be adressed to: Anne-Catherine Prats
| | - Stéphan Vagner
- Hormones, facteurs de croissance et physiopathologie vasculaire
INSERM : U589IFR31Université Paul Sabatier - Toulouse IIIHopital de Rangueil
1, Avenue Jean Poulhes
31059 TOULOUSE CEDEX 9,FR
| |
Collapse
|
53
|
Chappell SA, Mauro VP. The internal ribosome entry site (IRES) contained within the RNA-binding motif protein 3 (Rbm3) mRNA is composed of functionally distinct elements. J Biol Chem 2003; 278:33793-800. [PMID: 12824175 DOI: 10.1074/jbc.m303495200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Although the internal ribosome entry sites (IRESes) of viral mRNAs are highly structured and comprise several hundred nucleotides, there is a variety of evidence indicating that very short nucleotide sequences, both naturally occurring and synthetic, can similarly mediate internal initiation of translation. In this study, we performed deletion and mutational analyses of an IRES contained within the 720-nucleotide (nt) 5' leader of the Rbm3 mRNA and demonstrated that this IRES is highly modular, with at least 9 discrete cis-acting sequences. These cis-acting sequences include a 22-nt IRES module, a 10-nt enhancer, and 2 inhibitory sequences. The 22-nt sequence was shown to function as an IRES when tested in isolation, and we demonstrated that it did not enhance translation by functioning as a transcriptional promoter, enhancer, or splice site. The activities of all 4 cis-acting sequences were further confirmed by their mutation in the context of the full IRES. Interestingly, one of the inhibitory cis-acting sequences is contained within an upstream open reading frame (uORF), and its activity seems to be masked by translation of this uORF. Binding studies revealed that all 4 cis-acting sequences could bind specifically to distinct cytoplasmic proteins. In addition, the 22-nt IRES module was shown to bind specifically to 40 S ribosomal subunits. The results demonstrate that different types of cis-acting sequences mediate or modulate translation of the Rbm3 mRNA and suggest that one of the IRES modules contained within the 5' leader facilitates translation initiation by binding directly to 40 S ribosomal subunits.
Collapse
Affiliation(s)
- Stephen A Chappell
- Department of Neurobiology, The Scripps Research Institute, and The Skaggs Institute for Chemical Biology, La Jolla, California 92037, USA
| | | |
Collapse
|
54
|
Shao GZ, Zhou RL, Zhang QY, Zhang Y, Liu JJ, Rui JA, Wei X, Ye DX. Molecular cloning and characterization of LAPTM4B, a novel gene upregulated in hepatocellular carcinoma. Oncogene 2003; 22:5060-9. [PMID: 12902989 DOI: 10.1038/sj.onc.1206832] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Lysosomal-associated protein transmembrane-4 beta (LAPTM4B), a novel gene upregulated in hepatocellular carcinoma (HCC), was cloned using fluorescence differential display, RACE, and RT-PCR. It contains seven exons and encodes a 35-kDa protein with four putative transmembrane regions. Both the N- and C-termini of the protein are proline-rich, and may serve as potential ligands for the SH3 domain. Immunohistochemical analysis localized the protein predominantly to intracellular membranes. Northern blot showed that the LAPTM4B mRNAs were remarkably upregulated in HCC (87.3%) and correlated inversely with differentiation status. LAPTM4B was also overexpressed in many HCC-derived cell lines. It was also highly expressed in fetal livers and certain adult normal tissues including the heart, skeletal muscle, testis, and ovary. Promoter function assays showed a distinct difference in the gene's activities between BEL7402 and HLE cell lines, suggesting that the transcription factors responsible for regulation of the gene in the two cell lines are different, and that possible negative regulatory cis-elements may exist upstream of the promoter region. It was demonstrated that the N-terminus of LAPTM4B was essential for survival of the cells. Cells harboring the full-length LAPTM4B cDNA expression clone displayed a slightly increased efficiency in colony formation. These results suggest that LAPTM4B is a potential protooncogene, whose overexpression is involved in carcinogenesis and progression of HCC. In normal cells, it may also play important roles such as regulation of cell proliferation and survival.
Collapse
Affiliation(s)
- Gen-Ze Shao
- Department of Cell Biology & Genetics, School of Basic Medical Sciences, Peking University, Beijing 100083, China
| | | | | | | | | | | | | | | |
Collapse
|
55
|
De Pietri Tonelli D, Mihailovich M, Schnurbus R, Pesole G, Grohovaz F, Zacchetti D. Translational control of Scamper expression via a cell-specific internal ribosome entry site. Nucleic Acids Res 2003; 31:2508-13. [PMID: 12736299 PMCID: PMC156039 DOI: 10.1093/nar/gkg357] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The mRNA of Scamper, a putative intracellular calcium channel activated by sphingosylphosphocholine, contains a long 5' transcript leader with several upstream AUGs. In this work we have investigated the role this sequence plays in the translational control of Scamper expression. The cytosolic transcription machinery of a T7 RNA polymerase recombinant vaccinia virus was used to avoid artifacts arising from cryptic promoters or mRNA processing. Based on transient transfection experiments of dicistronic and bi-monocistronic plasmids expressing reporter genes, we present evidence that the 5' transcript leader of Scamper contains a functional internal ribosome entry site (IRES). Our data indicate that Scamper translation in Madin-Darby canine kidney cells is driven by a cap-independent mechanism supported by the IRES activity of its mRNA. Finally, the Scamper IRES appears to be the first IRES with specificity for kidney epithelial cells.
Collapse
Affiliation(s)
- Davide De Pietri Tonelli
- Cellular Neurophysiology Unit, Department of Neuroscience, San Raffaele Scientific Institute, University of Milano, Milano, Italy
| | | | | | | | | | | |
Collapse
|
56
|
Maier D, Nagel AC, Preiss A. Two isoforms of the Notch antagonist Hairless are produced by differential translation initiation. Proc Natl Acad Sci U S A 2002; 99:15480-5. [PMID: 12422020 PMCID: PMC137742 DOI: 10.1073/pnas.242596699] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The Notch-signaling pathway controls cellular differentiation, including proliferation and cell death in all higher metazoans (including flies and men). Signal transduction through activated Notch involves the CSL group of transcriptional regulators. Notch signals need to be tightly regulated, and in Drosophila they are antagonized by the Hairless (H) protein. H silences the activity of Notch target genes by transforming the Drosophila CSL protein, Suppressor of Hairless [Su(H)], from a transcriptional activator into a repressor while recruiting one of the corepressors dCtBP or Groucho. The H protein has a calculated molecular mass of approximately 110 kDa and contains several functional domains apart from the two small corepressor-binding domains. However, although there is no indication for alternative splicing, two Hairless protein isoforms, H(p120) and H(p150), are observed throughout development. Here, we show that the smaller isoform derives from an internal ribosome entry site (IRES) within the ORF. The IRES is active in a heterologous assay and contains an essential, conserved structural element. The two Hairless isoforms have residual activity in vivo which is, however, reduced compared to a combination of both, which implies that both protein isoforms are necessary for WT function. In larval tissues, translation of the two isoforms is cell-cycle regulated: whereas the H(p150) isoform is translated during interphase, H(p120) is enriched during mitosis. Thus, the presence of either H isoform throughout the cell cycle allows efficient inhibition of Notch-regulated cell proliferation.
Collapse
Affiliation(s)
- Dieter Maier
- Universität Hohenheim, Institut für Genetik (240), Garbenstrasse 30, 70599 Stuttgart, Germany Europe.
| | | | | |
Collapse
|
57
|
Meijer HA, Thomas AAM. Control of eukaryotic protein synthesis by upstream open reading frames in the 5'-untranslated region of an mRNA. Biochem J 2002; 367:1-11. [PMID: 12117416 PMCID: PMC1222879 DOI: 10.1042/bj20011706] [Citation(s) in RCA: 233] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2001] [Revised: 06/25/2002] [Accepted: 07/15/2002] [Indexed: 11/17/2022]
Abstract
Control of gene expression is achieved at various levels. Translational control becomes crucial in the absence of transcription, such as occurs in early developmental stages. One of the initiating events in translation is that the 40 S subunit of the ribosome binds the mRNA at the 5'-cap structure and scans the 5'-untranslated region (5'-UTR) for AUG initiation codons. AUG codons upstream of the main open reading frame can induce formation of a translation-competent ribosome that may translate and (i) terminate and re-initiate, (ii) terminate and leave the mRNA, resulting in down-regulation of translation of the main open reading frame, or (iii) synthesize an N-terminally extended protein. In the present review we discuss how upstream AUGs can control the expression of the main open reading frame, and a comparison is made with other elements in the 5'-UTR that control mRNA translation, such as hairpins and internal ribosome entry sites. Recent data indicate the flexibility of controlling translation initiation, and how the mode of ribosome entry on the mRNA as well as the elements in the 5'-UTR can accurately regulate the amount of protein synthesized from a specific mRNA.
Collapse
Affiliation(s)
- Hedda A Meijer
- Department of Developmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | | |
Collapse
|
58
|
Heppner Goss K, Trzepacz C, Tuohy TMF, Groden J. Attenuated APC alleles produce functional protein from internal translation initiation. Proc Natl Acad Sci U S A 2002; 99:8161-6. [PMID: 12034871 PMCID: PMC123038 DOI: 10.1073/pnas.112072199] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Some truncating mutations of the APC tumor suppressor gene are associated with an attenuated phenotype of familial adenomatous polyposis coli (AAPC). This work demonstrates that APC alleles with 5' mutations produce APC protein that down-regulates beta-catenin, inhibits beta-catenin/T cell factor-mediated transactivation, and induces cell-cycle arrest. Transfection studies demonstrate that cap-independent translation is initiated internally at an AUG at codon 184 of APC. Furthermore, APC coding sequence between AAPC mutations and AUG 184 permits internal ribosome entry in a bicistronic vector. These data suggest that AAPC alleles in vivo may produce functional APC by internal initiation and establish a functional correlation between 5' APC mutations and their associated clinical phenotype.
Collapse
Affiliation(s)
- Kathleen Heppner Goss
- Department of Molecular Genetics, Biochemistry, and Microbiology, Howard Hughes Medical Institute, University of Cincinnati College of Medicine, 231 Albert Dabin Way, Cincinnati, OH 45267-0521, USA
| | | | | | | |
Collapse
|
59
|
Pedersen SK, Christiansen J, Hansen TVO, Larsen MR, Nielsen FC. Human insulin-like growth factor II leader 2 mediates internal initiation of translation. Biochem J 2002; 363:37-44. [PMID: 11903044 PMCID: PMC1222448 DOI: 10.1042/0264-6021:3630037] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Insulin-like growth factor II (IGF-II) is a fetal growth factor, which belongs to the family of insulin-like peptides. During fetal life, the IGF-II gene generates three mRNAs with different 5' untranslated regions (UTRs), but identical coding regions and 3' UTRs. We have shown previously that IGF-II leader 3 mRNA translation is regulated by a rapamycin-sensitive pathway, whereas leader 4 mRNA is constitutively translated, but so far the significance of leader 2 mRNA has been unclear. Here, we show that leader 2 mRNA is translated efficiently in an eIF4E-independent manner. In a bicistronic vector system, the 411 nt leader 2 was capable of internal initiation via a phylogenetically conserved internal ribosome entry site (IRES), located in the 3' half of the leader. The IRES is composed of an approx. 120 nt ribosome recruitment element, followed by an 80 nt spacer region, which is scanned by the ribosomal pre-initiation complex. Since cap-dependent translation is down-regulated during cell division, leader 2 might facilitate a continuous IGF-II production in rapidly dividing cells during development.
Collapse
Affiliation(s)
- Susanne K Pedersen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
60
|
Webb CT, Shabalina SA, Ogurtsov AY, Kondrashov AS. Analysis of similarity within 142 pairs of orthologous intergenic regions of Caenorhabditis elegans and Caenorhabditis briggsae. Nucleic Acids Res 2002; 30:1233-9. [PMID: 11861916 PMCID: PMC101251 DOI: 10.1093/nar/30.5.1233] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2001] [Revised: 01/11/2002] [Accepted: 01/11/2002] [Indexed: 11/12/2022] Open
Abstract
Patterns of similarity between genomes of related species reflect the distribution of selective constraint within DNA. We analyzed alignments of 142 orthologous intergenic regions of Caenorhabditis elegans and Caenorhabditis briggsae and found a mosaic pattern with regions of high similarity (phylogenetic footprints) interspersed with non-alignable sequences. Footprints cover approximately 20% of intergenic regions, often occur in clumps and are rare within 5' UTRs but common within 3' UTRs. The footprints have a higher ratio of transitions to transversions than expected at random and a higher GC content than the rest of the intergenic region. The number of footprints and the GC content of footprints within an intergenic region are higher when genes are oriented so that their 5' ends form the boundaries of the intergenic region. Overall, the patterns and characteristics identified here, along with other comparative and experimental studies, suggest that many footprints have a regulatory function, although other types of function are also possible. These conclusions may be quite general across eukaryotes, and the characteristics of conserved regulatory elements determined from genomic comparisons can be useful in prediction of regulation sites within individual DNA sequences.
Collapse
Affiliation(s)
- Colleen T Webb
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | | | | | | |
Collapse
|
61
|
Wong ET, Ngoi SM, Lee CGL. Improved co-expression of multiple genes in vectors containing internal ribosome entry sites (IRESes) from human genes. Gene Ther 2002; 9:337-44. [PMID: 11938453 DOI: 10.1038/sj.gt.3301667] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2001] [Accepted: 11/16/2001] [Indexed: 01/02/2023]
Abstract
Incorporation of an internal ribosome entry site (IRES) into the gene therapy vector represents a promising strategy to efficiently co-express several gene products from the same promoter. However, vector systems that utilize the encephalomyocarditis virus IRES express the downstream gene much less efficiently than the upstream gene. In this study, we compared four IRESes isolated from human genes against the EMCV IRES, using beta-galactosidase and chloramphenicol acetyl transferase genes as reporters, to evaluate their potential for providing better expression of the downstream gene. We found that an IRES from the eukaryotic initiation factor 4G gene mediates greater than 100-fold higher expression of the downstream gene compared with the EMCV IRES in four different cell lines tested. Other mammalian IRESes displayed more variable results and smaller enhancement of downstream gene expression in three different cell lines tested. Furthermore, while the efficiency of the IRES from the vascular endothelium growth factor gene was not significantly higher than the EMCV IRES under normoxic conditions, expression was significantly increased under hypoglycemic conditions, suggesting that the VEGF IRES could be exploited in cancer gene therapy to preferentially target expression of therapeutic genes at the relatively hypoglycemic cores of tumors.
Collapse
Affiliation(s)
- E-T Wong
- Department of Biochemistry, National University of Singapore, Singapore
| | | | | |
Collapse
|
62
|
Pesole G, Liuni S, Grillo G, Licciulli F, Mignone F, Gissi C, Saccone C. UTRdb and UTRsite: specialized databases of sequences and functional elements of 5' and 3' untranslated regions of eukaryotic mRNAs. Update 2002. Nucleic Acids Res 2002; 30:335-40. [PMID: 11752330 PMCID: PMC99102 DOI: 10.1093/nar/30.1.335] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The 5'- and 3'-untranslated regions (5'- and 3'-UTRs) of eukaryotic mRNAs are known to play a crucial role in post-transcriptional regulation of gene expression modulating nucleo-cytoplasmic mRNA transport, translation efficiency, subcellular localization and stability. UTRdb is a specialized database of 5' and 3' untranslated sequences of eukaryotic mRNAs cleaned from redundancy. UTRdb entries are enriched with specialized information not present in the primary databases including the presence of nucleotide sequence patterns already demonstrated by experimental analysis to have some functional role. All these patterns have been collected in the UTRsite database so that it is possible to search any input sequence for the presence of annotated functional motifs. Furthermore, UTRdb entries have been annotated for the presence of repetitive elements. All Internet resources we implemented for retrieval and functional analysis of 5'- and 3'-UTRs of eukaryotic mRNAs are accessible at http://bighost.area.ba.cnr.it/BIG/UTRHome/.
Collapse
Affiliation(s)
- Graziano Pesole
- Dipartimento di Fisiologia e Biochimica Generali, Università di Milano, via Celoria 26, 20133 Milano, Italy.
| | | | | | | | | | | | | |
Collapse
|
63
|
Abstract
Gene expression is finely regulated at the post-transcriptional level. Features of the untranslated regions of mRNAs that control their translation, degradation and localization include stem-loop structures, upstream initiation codons and open reading frames, internal ribosome entry sites and various cis-acting elements that are bound by RNA-binding proteins.
Collapse
Affiliation(s)
- Flavio Mignone
- Dipartimento di Fisiologia e Biochimica Generali, Università di Milano, Via Celoria, 26, 20133 Milano, Italy.
| | | | | | | |
Collapse
|
64
|
Pesole G, Mignone F, Gissi C, Grillo G, Licciulli F, Liuni S. Structural and functional features of eukaryotic mRNA untranslated regions. Gene 2001; 276:73-81. [PMID: 11591473 DOI: 10.1016/s0378-1119(01)00674-6] [Citation(s) in RCA: 303] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The crucial role of the non-coding portion of genomes is now widely acknowledged. In particular, mRNA untranslated regions are involved in many post-transcriptional regulatory pathways that control mRNA localization, stability and translation efficiency. We review in this paper the major structural and compositional features of eukaryotic mRNA untranslated regions and provide some examples of bioinformatic analyses for their functional characterization.
Collapse
Affiliation(s)
- G Pesole
- Dipartimento di Fisiologia e Biochimica Generali, Università di Milano, via Celoria, 26, 20133, Milan, Italy.
| | | | | | | | | | | |
Collapse
|
65
|
Hennecke M, Kwissa M, Metzger K, Oumard A, Kröger A, Schirmbeck R, Reimann J, Hauser H. Composition and arrangement of genes define the strength of IRES-driven translation in bicistronic mRNAs. Nucleic Acids Res 2001; 29:3327-34. [PMID: 11504870 PMCID: PMC55851 DOI: 10.1093/nar/29.16.3327] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2001] [Revised: 07/02/2001] [Accepted: 07/02/2001] [Indexed: 11/14/2022] Open
Abstract
In addition to the cap-dependent mechanism, eukaryotic initiation of translation can occur by a cap-independent mechanism which directs ribosomes to defined start codons enabled by internal ribosome entry site (IRES) elements. IRES elements from poliovirus and encephalomyocarditis virus are often used to construct bi- or oligocistronic expression vectors to co-express various genes from one mRNA. We found that while cap-dependent translation initiation from bicistronic mRNAs remains comparable to monocistronic expression, internal initiation mediated by these viral IRESs is often very inefficient. Expression of bicistronic expression vectors containing the hepatitis B virus core antigen (HBcAg) together with various cytokines in the second cistron of bicistronic mRNAs gave rise to very low levels of the tested cytokines. On the other hand, the HBcAg was well expressed when positioned in the second cistron. This suggests that the arrangement of cistrons in a bicistronic setting is crucial for IRES-dependent translation of the second cistron. A systematic examination of expression of reporter cistrons from bicistronic mRNAs with respect to position was carried out. Using the dual luciferase assay system we show that the composition of reading frames on a bicistronic mRNA and the order in which they are arranged define the strength of IRES-dependent translation. Although the cellular environment and the nature of the IRES element influence translation strength the dominant determinant is the nature and the arrangement of cistrons on the mRNA.
Collapse
Affiliation(s)
- M Hennecke
- Department of Gene Regulation and Differentiation, GBF-German Research Center for Biotechnology, Mascheroder Weg 1, D-38124 Braunschweig, Germany
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Nanbru C, Prats AC, Droogmans L, Defrance P, Huez G, Kruys V. Translation of the human c-myc P0 tricistronic mRNA involves two independent internal ribosome entry sites. Oncogene 2001; 20:4270-80. [PMID: 11464293 DOI: 10.1038/sj.onc.1204548] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2001] [Revised: 03/28/2001] [Accepted: 04/11/2001] [Indexed: 11/08/2022]
Abstract
The human c-myc proto-oncogene is transcribed from four alternative promoters (P0, P1, P2, and P3) giving rise to mRNAs having 5' leader sequences of various length. The c-myc P0 mRNA contains three open reading frames (ORFs), the last one encoding c-Myc1 and c-Myc2 proteins generated by alternative translation initiated at CUG and AUG codons. The middle ORF (MYCHEX1) and the 5' ORF (ORF1) code for proteins 188 and 114 amino acids in length, respectively. We and others previously identified an internal ribosome entry site (IRES) in P0 and P2 c-myc mRNAs, promoting the cap-independent translation of c-Myc1 and c-Myc2. Here, we report the presence of a second IRES (named IRES1) promoting the cap-independent translation of MYCHEX1 in c-myc P0 mRNA. Using deletion analysis, we mapped an 80-nt region essential for IRES1 activity. c-myc P0 mRNA is thus the first eukaryotic polycistronic mRNA described for which translation initiation of two different open reading frames (MYCHEX1 and c-Myc1/c-Myc2) involves internal ribosome entry.
Collapse
Affiliation(s)
- C Nanbru
- Laboratoire de Chimie Biologique, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, rue Profs Jeener et Brachet 12, 6041 Gosselies, Belgium
| | | | | | | | | | | |
Collapse
|
67
|
Griffin E, Re A, Hamel N, Fu C, Bush H, McCaffrey T, Asch AS. A link between diabetes and atherosclerosis: Glucose regulates expression of CD36 at the level of translation. Nat Med 2001; 7:840-6. [PMID: 11433350 DOI: 10.1038/89969] [Citation(s) in RCA: 185] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Both the risk and the rate of development of atherosclerosis are increased in diabetics, but the mechanisms involved are unknown. Here we report a glucose-mediated increase in CD36 mRNA translation efficiency that results in increased expression of the macrophage scavenger receptor CD36. Expression of CD36 was increased in endarterectomy lesions from patients with a history of hyperglycemia. Macrophages that were differentiated from human peripheral blood monocytes in the presence of high glucose concentrations showed increased expression of cell-surface CD36 secondary to an increase in translational efficiency of CD36 mRNA. We obtained similar data from primary cells isolated from human vascular lesions, and we found that glucose sensitivity is a function of ribosomal reinitiation following translation of an upstream open reading frame (uORF). Increased translation of macrophage CD36 transcript under high glucose conditions provides a mechanism for accelerated atherosclerosis in diabetics.
Collapse
Affiliation(s)
- E Griffin
- Weill Medical College of Cornell University, New York, NY, USA
| | | | | | | | | | | | | |
Collapse
|
68
|
Affiliation(s)
- C U Hellen
- Department of Microbiology and Immunology, Morse Institute for Molecular Genetics, State University of New York Health Science Center at Brooklyn, Brooklyn, New York 11203, USA.
| | | |
Collapse
|
69
|
Vivinus S, Baulande S, van Zanten M, Campbell F, Topley P, Ellis JH, Dessen P, Coste H. An element within the 5' untranslated region of human Hsp70 mRNA which acts as a general enhancer of mRNA translation. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:1908-17. [PMID: 11277913 DOI: 10.1046/j.1432-1327.2001.02064.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The untranslated regions of mRNAs encoding heat-shock proteins have been reported to contain elements important to the post-transcriptional regulation of these key components of the stress response. In this report we describe an element from the 5'UTR of human Hsp70 mRNA that increases the efficiency of mRNA translation. Cloning of this region upstream of the coding sequence of two different reporter genes (firefly luciferase and chloramphenicol acetyltransferase) increases expression of the reporter under normal cell culture conditions by up to an order of magnitude. This effect was observed in three different promoter contexts (HSP, SV40 and CMV) and in six cell lines. The increase in protein production is not accompanied by any alteration in mRNA levels, suggesting that the element facilitates translation. 5' or 3' truncated sequences are ineffective in enhancing reporter expression, suggesting that the activity arises from the secondary structure of the element, rather than from some smaller defined motif. Computer analysis of this region revealed that it is able to form stable secondary structures (DeltaG approximately -292.6 kJ x mol(-1)). The Hsp70 element does not seem to act as an internal ribosome entry site. Incorporation of the sequence into plasmids used for DNA vaccination produces increased antibody responses, confirming that the sequence is functional in primary cells. These data suggest that the 5'UTR of human Hsp70 mRNA plays an important role in determining Hsp70 expression levels, and that it contains an element of general utility in enhancing recombinant protein expression systems.
Collapse
Affiliation(s)
- S Vivinus
- Laboratoire GlaxoWellcome, Les Ulis, France
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Venkatesan A, Dasgupta A. Novel fluorescence-based screen to identify small synthetic internal ribosome entry site elements. Mol Cell Biol 2001; 21:2826-37. [PMID: 11283261 PMCID: PMC86912 DOI: 10.1128/mcb.21.8.2826-2837.2001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We report here a novel fluorescent protein-based screen to identify small, synthetic internal ribosome entry site (IRES) elements in vivo. A library of bicistronic plasmids encoding the enhanced blue and green fluorescent proteins (EBFP and EGFP) separated by randomized 50-nucleotide-long sequences was amplified in bacteria and delivered into mammalian cells via protoplast fusion. Cells that received functional IRES elements were isolated using the EBFP and EGFP reporters and fluorescence-activated cell sorting, and several small IRES elements were identified. Two of these elements were subsequently shown to possess IRES activity comparable to that of a variant of the encephalomyocarditis virus IRES element in a context-independent manner both in vitro and in vivo, and these elements functioned in multiple cell types. Although no sequence or structural homology was apparent between the synthetic IRES elements and known viral and cellular IRES elements, the two synthetic IRES elements specifically blocked poliovirus (PV) IRES-mediated translation in vitro. Competitive protein-binding experiments suggested that these IRES elements compete with PV IRES-mediated translation by utilizing some of the same factors as the PV IRES to direct translation. The utility of this fluorescent protein-based screen in identifying IRES elements with improved activity as well as in probing the mechanism of IRES-mediated translation is discussed.
Collapse
Affiliation(s)
- A Venkatesan
- Molecular Biology Institute, University of California, Los Angeles 90095, USA
| | | |
Collapse
|
71
|
Sacchetti A, El Sewedy T, Nasr AF, Alberti S. Efficient GFP mutations profoundly affect mRNA transcription and translation rates. FEBS Lett 2001; 492:151-5. [PMID: 11248254 DOI: 10.1016/s0014-5793(01)02246-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Green fluorescent protein (GFP) variants with higher expression efficiencies have been generated by mutagenesis. Favorable mutations often improve the folding of GFP. However, an effect on protein folding fails to explain the efficiency of several other GFP mutations. In this work, we demonstrate that mutations of the GFP open reading frame and untranslated regions profoundly affect mRNA transcription and translation efficiencies. The removal of the GFP 5' untranslated region halves the transcription rate of the GFP gene, but hugely improves its translation rate. Mutations of the GFP open reading frame or the addition of peptide sequences differentially reduce the GFP mRNA transcription rate, translation efficiency and protein stability. These previously unrecognized effects are demonstrated to be critical to the efficiency of GFP mutants. These findings indicate the feasibility of generating more efficient GFP variants, with optimized mRNA transcription and translation in eukaryotic cells.
Collapse
Affiliation(s)
- A Sacchetti
- Laboratory of Experimental Oncology and Biotech Group, Department of Cell Biology and Oncology, Instituto di Ricerche Farmacologiche Mario Negri, Consorzio Mario Negri Sud, 66030 Santa Maria Imbaro (Chieti), Italy
| | | | | | | |
Collapse
|
72
|
Giraud S, Greco A, Brink M, Diaz JJ, Delafontaine P. Translation initiation of the insulin-like growth factor I receptor mRNA is mediated by an internal ribosome entry site. J Biol Chem 2001; 276:5668-75. [PMID: 11063741 DOI: 10.1074/jbc.m005928200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The insulin-like growth factor I receptor (IGF-IR) is a heterotetrameric receptor mediating the effects of insulin-like growth I and other growth factors. This receptor is encoded by an mRNA containing an unusually long, G-C-rich, and highly structured 5' untranslated region. Using bicistronic constructs, we demonstrated here that the 5' untranslated region of the IGF-IR allows translation initiation by internal ribosome entry and therefore constitutes an internal ribosome entry site. In vitro cross-linking revealed that this internal ribosome entry site binds a protein of 57 kDa. Immunoprecipitation of UV cross-linked proteins proved that this protein was the polypyrimidine tract-binding protein, a well known regulator of picornavirus mRNA translation. The efficiency of translation of the endogenous IGF-IR mRNA is not affected by rapamycin, which is a potent inhibitor of cap-dependent translation. This result provides evidence that the endogenous IGF-IR mRNA is translated, at least in part, through a cap-independent mechanism. This is the first report of a growth factor receptor containing sequence elements that allow translation initiation to occur by internal initiation. Because the IGF-IR has a pivotal function in the cell cycle, this mechanism of translation regulation could play a crucial role in the control of cell proliferation and differentiation.
Collapse
Affiliation(s)
- S Giraud
- Division of Cardiology, University Hospital of Geneva, Rue Micheli-du-Crest 24, 1211 Geneva 14, Switzerland and the INSERM Unité 369, Faculté de Médecine Lyon RTH Laennec, 7 Rue Guillaume Paradin, 69372 Lyon Cedex 08, France
| | | | | | | | | |
Collapse
|
73
|
Zhou W, Edelman GM, Mauro VP. Transcript leader regions of two Saccharomyces cerevisiae mRNAs contain internal ribosome entry sites that function in living cells. Proc Natl Acad Sci U S A 2001; 98:1531-6. [PMID: 11171985 PMCID: PMC29291 DOI: 10.1073/pnas.98.4.1531] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In higher eukaryotes, translation of some mRNAs occurs by internal initiation. It is not known, however, whether this mechanism is used to initiate the translation of any yeast mRNAs. In this report, we identify naturally occurring nucleotide sequences that function as internal ribosome entry sites (IRESes) within the 5' leader sequences of Saccharomyces cerevisiae YAP1 and p150 mRNAs. When tested in the 5' untranslated regions of monocistronic reporter genes, both leader sequences enhanced translation efficiency in vegetatively growing yeast cells. Moreover, when tested in the intercistronic region of dicistronic mRNAs, both sequences were shown to contain IRESes that functioned in living cells. The activity of the p150 leader was much greater than that of the YAP1 leader. The second cistron was not expressed in control dicistronic constructs that lacked these sequences or contained the 5' leader sequence of the CLN3 mRNA in the intercistronic region. Further analyses of the p150 IRES revealed that it contained several nonoverlapping segments that were able independently to mediate internal initiation. These results suggested a modular composition for the p150 IRES that resembled the composition of IRESes contained within some cellular mRNAs of higher eukaryotes. Both YAP1 and p150 leaders contain several complementary sequence matches to yeast 18S rRNA. The findings are discussed in terms of our understanding of internal initiation in higher eukaryotes.
Collapse
Affiliation(s)
- W Zhou
- Department of Neurobiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
74
|
Owens GC, Chappell SA, Mauro VP, Edelman GM. Identification of two short internal ribosome entry sites selected from libraries of random oligonucleotides. Proc Natl Acad Sci U S A 2001; 98:1471-6. [PMID: 11171975 PMCID: PMC29281 DOI: 10.1073/pnas.98.4.1471] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Sequences that control translation of mRNA may play critical roles in regulating protein levels. One such element is the internal ribosome entry site (IRES). We previously showed that a 9-nt segment in the 5' leader sequence of the mRNA encoding Gtx homeodomain protein could function as an IRES. To identify other short sequences with similar properties, we designed a selection procedure that uses a retroviral vector to express dicistronic mRNAs encoding enhanced green and cyan fluorescent proteins as the first and second cistrons, respectively. Expression of the second cistron was dependent upon the intercistronic sequences and was indicative of IRES activity. B104 cells were infected with two retroviral libraries that contained random sequences of 9 or 18 nt in the intercistronic region. Cells expressing both cistrons were sorted, and sequences recovered from selected cells were reassayed for IRES activity in a dual luciferase dicistronic mRNA. Two novel IRESes were identified by this procedure, and both contained segments with complementarity to 18S rRNA. When multiple copies of either segment were linked together, IRES activities were dramatically enhanced. Moreover, these synthetic IRESes were differentially active in various cell types. These properties are similar to those of the previously identified 9-nt IRES module from Gtx mRNA. These results provide further evidence that short nucleotide sequences can function as IRESes and support the idea that some cellular IRESes may be composed of shorter functional modules. The ability to identify IRES modules with specific expression properties may be useful in the design of vectors for biotechnology and gene therapy.
Collapse
Affiliation(s)
- G C Owens
- The Neurosciences Institute, 10640 John Jay Hopkins Drive, San Diego, CA 92121, USA.
| | | | | | | |
Collapse
|
75
|
Pesole G, Gissi C, Grillo G, Licciulli F, Liuni S, Saccone C. Analysis of oligonucleotide AUG start codon context in eukariotic mRNAs. Gene 2000; 261:85-91. [PMID: 11164040 DOI: 10.1016/s0378-1119(00)00471-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The AUG start codon context features have been investigated by analyzing eukaryotic mRNAs belonging to various taxonomic groups. The functional relevance of each specific position surrounding the AUG start codon has been established as a function of the measured shift between base composition observed at that particular position, and base composition averaged over all the 5'untranslated regions. A more detailed analysis carried out on human genes belonging to different isochores showed significant isochore-specific fea-tures that cannot be explained only by a mutational bias effect. The most represented heptamers spanning from position -3 to +4 with respect to the initiator AUG have been determined for mRNAs belonging to different taxonomic groups and a web page utility has been set up (http://bigarea.area.ba.cnr.it:8000/BioWWW/ATG.html) to determine the relative abundance of a user submitted oligonucleotide context in a given species or taxon.
Collapse
Affiliation(s)
- G Pesole
- Dipartimento di Fisiologia e Biochimica Generali, Università di Milano, Via Celoria 26, 20133, Milan, Italy.
| | | | | | | | | | | |
Collapse
|
76
|
Abstract
The introns-early view has been challenged for several genes; prominent instances are triose phosphate isomerase (TPI), aldolase, pyruvate kinase (PK), alcohol dehydrogenase (ADH), glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and myosin heavy chain. While some of their introns appear to be phylogenetically ancient and/or to delineate exons corresponding to protein modules, a considerable number seemingly do not. But it is argued here that many of these anomalous introns are periodic, that is, relics of internal sequence repetitions within the ancestral gene. Some of these periodic-intron patterns are shared between related genes, as in the alphabeta -barrels of TPI, aldolase and PK, or the Rossmann nucleotide-binding domain common to PK, ADH and GAPDH. This is further evidence for the ancestral status of these introns. The myosin heavy chain C-terminal rod region is paradoxical in that its sequence is clearly periodic but its intron placements are not; however, they exhibit a remarkable coherence of intron translational phases, suggesting that these introns may also have originally had a periodic arrangement now obscured by intron slipping.
Collapse
Affiliation(s)
- D Elder
- School of Pharmacy, University of South Australia, North Terrace, Adelaide, SA, 5000, Australia
| |
Collapse
|
77
|
Hayashi S, Nishimura K, Fukuchi-Shimogori T, Kashiwagi K, Igarashi K. Increase in cap- and IRES-dependent protein synthesis by overproduction of translation initiation factor eIF4G. Biochem Biophys Res Commun 2000; 277:117-23. [PMID: 11027650 DOI: 10.1006/bbrc.2000.3637] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of eIF4G during the initiation of protein synthesis was studied using mouse mammary carcinoma FM3A cells and FM4G cells that overproduce an N-terminally truncated form of eIF4G, which lacks the binding site of poly(A)-binding protein. An increase in eIF4G was correlated with an increase in protein synthesis and RNA helicase activity. Translation of mRNAshaving both short and long 5'-untranslated regions (5'-UTR) increased significantly in FM4G cells compared to that in FM3A cells. Both full-length and N-terminally truncated eIF4G transfectants of NIH3T3 cells formed colonies in soft agar and increased the saturation density of cell growth, indicating that both eIF4Gs function similarly. We also found that an internal ribosome entry site (IRES) exists in the 5'-UTR of ornithinedecarboxylase mRNA and that IRES-dependent protein synthesis increased in FM4G cells. Our results indicate that an increase in eIF4G contributes to the formation of active eIF4F similarly to that caused by an increase in eIF4E, as well as to a stimulation of IRES-dependent protein synthesis.
Collapse
Affiliation(s)
- S Hayashi
- Faculty of Pharmaceutical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | | | | | | | | |
Collapse
|
78
|
López de Quinto S, Martínez-Salas E. Interaction of the eIF4G initiation factor with the aphthovirus IRES is essential for internal translation initiation in vivo. RNA (NEW YORK, N.Y.) 2000; 6:1380-92. [PMID: 11073214 PMCID: PMC1370009 DOI: 10.1017/s1355838200000753] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The strategies developed by internal ribosome entry site (IRES) elements to recruit the translational machinery are poorly understood. In this study we show that protein-RNA interaction of the eIF4G translation initiation factor with sequences of the foot-and-mouth disease virus (FMDV) IRES is a key determinant of internal translation initiation in living cells. Moreover, we have identified the nucleotides required for eIF4G-RNA functional interaction, using native proteins from FMDV-susceptible cell extracts. Substitutions in the conserved internal AA loop of the base of domain 4 led to strong impairment of both eIF4G-RNA interaction in vitro and IRES-dependent translation initiation in vivo. Conversely, substitutions in the vicinity of the internal AA loop that did not impair IRES activity retained their ability to interact with eIF4G. Direct UV-crosslinking as well as competition assays indicated that domains 1-2, 3, and 5 of the IRES did not contribute to this interaction. In agreement with this, binding to domain 4 alone was as efficient as to the full-length IRES. The C-terminal fragment of eIF4G, proteolytically processed by the FMDV Lb protease, was sufficient to interact with the IRES or to its domain 4 alone. Additionally, we show here that binding of the eIF4B initiation factor to the IRES required domain 5 sequences. Moreover, eIF4G-IRES interaction was detected in the absence of eIF4B-IRES binding, suggesting that both initiation factors interact with the 3' region of the IRES but use different residues. The strong correlation found between eIF4G-RNA interaction and IRES activity in transfected cells suggests that eIF4G acts as a linker to recruit the translational machinery in IRES-dependent initiation.
Collapse
|
79
|
Görlach A, Camenisch G, Kvietikova I, Vogt L, Wenger RH, Gassmann M. Efficient translation of mouse hypoxia-inducible factor-1alpha under normoxic and hypoxic conditions. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1493:125-34. [PMID: 10978514 DOI: 10.1016/s0167-4781(00)00172-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The heterodimeric hypoxia-inducible factor-1 (HIF-1), consisting of the subunits HIF-1alpha and HIF-1beta/ARNT, is a master transcriptional regulator of oxygen homeostasis. Under hypoxic conditions, HIF-1alpha levels very rapidly increase, mostly due to protein stabilization. However, translational regulation of HIF-1alpha has not been directly analyzed so far. Mouse HIF-1alpha exists as two mRNA isoforms (termed mHIF-1alphaI.1 and mHIF-1alphaI. 2) containing structurally different 5'-termini which might modulate translation initiation. Whereas the in vitro translation efficiency of these two mRNA isoforms was about equal, the mHIF-1alphaI.2 5'-untranslated region (5'-UTR) conferred significantly higher in vivo luciferase reporter gene activity than the mHIF-1alphaI.1 5'-UTR. Similar corresponding luciferase mRNA levels indicate translational rather than transcriptional alterations. Reporter gene expression was not affected upon exposure of transiently transfected cells to hypoxia (1% oxygen). Direct assessment of translational regulation by polysomal profile analysis of HeLaS3 cells showed that HIF-1alpha (and to a lower extent ARNT) mRNA was found mainly in the translationally active polyribosomal fractions under both normoxic and hypoxic conditions. In contrast, the association of mRNAs for beta-actin and ribosomal protein L28 with the polyribosomal fractions was substantially reduced under hypoxic conditions, suggesting decreased overall protein synthesis. Thus, efficient translation of mouse HIF-1alpha in a situation where the general translation efficiency is reduced represents a prerequisite for the very rapid accumulation of HIF-1alpha protein upon exposure to hypoxia.
Collapse
Affiliation(s)
- A Görlach
- Institute of Physiology, University of Zürich-Irchel, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
80
|
Gingras AC, Raught B, Sonenberg N. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem 2000; 68:913-63. [PMID: 10872469 DOI: 10.1146/annurev.biochem.68.1.913] [Citation(s) in RCA: 1645] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Eukaryotic translation initiation factor 4F (eIF4F) is a protein complex that mediates recruitment of ribosomes to mRNA. This event is the rate-limiting step for translation under most circumstances and a primary target for translational control. Functions of the constituent proteins of eIF4F include recognition of the mRNA 5' cap structure (eIF4E), delivery of an RNA helicase to the 5' region (eIF4A), bridging of the mRNA and the ribosome (eIF4G), and circularization of the mRNA via interaction with poly(A)-binding protein (eIF4G). eIF4 activity is regulated by transcription, phosphorylation, inhibitory proteins, and proteolytic cleavage. Extracellular stimuli evoke changes in phosphorylation that influence eIF4F activity, especially through the phosphoinositide 3-kinase (PI3K) and Ras signaling pathways. Viral infection and cellular stresses also affect eIF4F function. The recent determination of the structure of eIF4E at atomic resolution has provided insight about how translation is initiated and regulated. Evidence suggests that eIF4F is also implicated in malignancy and apoptosis.
Collapse
Affiliation(s)
- A C Gingras
- Department of Biochemistry McGill University, Montréal, Québec, Canada.
| | | | | |
Collapse
|
81
|
Sehgal A, Briggs J, Rinehart-Kim J, Basso J, Bos TJ. The chicken c-Jun 5' untranslated region directs translation by internal initiation. Oncogene 2000; 19:2836-45. [PMID: 10851087 DOI: 10.1038/sj.onc.1203601] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The 5' untranslated region (UTR) of the chicken c-jun message is exceptionally GC rich and has the potential to form a complex and extremely stable secondary structure. Because stable RNA secondary structures can serve as obstacles to scanning ribosomes, their presence suggests inefficient translation or initiation through alternate mechanisms. We have examined the role of the c-jun 5' UTR with respect to its ability to influence translation both in vitro and in vivo. We find, using rabbit reticulocyte lysates, that the presence of the c-jun 5' UTR severely inhibits translation of both homologous and heterologous genes in vitro. Furthermore, translational inhibition correlates with the degree of secondary structure exhibited by the 5' UTR. Thus, in the rabbit reticulocyte lysate system, the c-jun 5' UTR likely impedes ribosome scanning resulting in inefficient translation. In contrast to our results in vitro, the c-jun 5' UTR does not inhibit translation in a variety of different cell lines suggesting that it may direct an alternate mechanism of translational initiation in vivo. To distinguish among the alternate mechanisms, we generated a series of bicistronic expression plasmids. Our results demonstrate that the downstream cistron, in the bicistronic gene, is expressed to a much higher level when directly preceded by the c-jun 5' UTR. In addition, inhibition of ribosome scanning on the bicistronic message, through insertion of a synthetic stable hairpin, inhibits translation of the first cistron but does not inhibit translation of the cistron downstream of the c-jun 5' UTR. These results are consistent with a model by which the c-jun message is translated through cap independent internal initiation. Oncogene (2000) 19, 2836 - 2845
Collapse
Affiliation(s)
- A Sehgal
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, PO Box 1980, Norfolk, Virginia, VA 23501, USA
| | | | | | | | | |
Collapse
|
82
|
Feo S, Arcuri D, Piddini E, Passantino R, Giallongo A. ENO1 gene product binds to the c-myc promoter and acts as a transcriptional repressor: relationship with Myc promoter-binding protein 1 (MBP-1). FEBS Lett 2000; 473:47-52. [PMID: 10802057 DOI: 10.1016/s0014-5793(00)01494-0] [Citation(s) in RCA: 201] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The Myc promoter-binding protein-1 (MBP-1) is a 37-38 kDa protein that binds to the c-myc P2 promoter and negatively regulates transcription of the protooncogene. MBP-1 cDNA shares 97% similarity with the cDNA encoding the glycolytic enzyme alpha-enolase and both genes have been mapped to the same region of human chromosome 1, suggesting the hypothesis that the two proteins might be encoded by the same gene. We show here data indicating that a 37 kDa protein is alternatively translated from the full-length alpha-enolase mRNA. This shorter form of alpha-enolase is able to bind the MBP-1 consensus sequence and to downregulate expression of a luciferase reporter gene under the control of the c-myc P2 promoter. Furthermore, using alpha-enolase/green fluorescent protein chimeras in transfection experiments we show that, while the 48 kDa alpha-enolase mainly has a cytoplasmic localization, the 37 kDa alpha-enolase is preferentially localized in the cell nuclei. The finding that a transcriptional repressor of the c-myc oncogene is an alternatively translated product of the ENO1 gene, which maps to a region of human chromosome 1 frequently deleted in human cancers, makes ENO1 a potential candidate for tumor suppressor.
Collapse
Affiliation(s)
- S Feo
- Dipartimento di Biologia Cellulare e dello Sviluppo, Università di Palermo, Viale delle Scienze, Parco D'Orleans, 90128, Palermo, Italy.
| | | | | | | | | |
Collapse
|
83
|
Oumard A, Hennecke M, Hauser H, Nourbakhsh M. Translation of NRF mRNA is mediated by highly efficient internal ribosome entry. Mol Cell Biol 2000; 20:2755-9. [PMID: 10733578 PMCID: PMC85491 DOI: 10.1128/mcb.20.8.2755-2759.2000] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/1999] [Accepted: 12/30/1999] [Indexed: 11/20/2022] Open
Abstract
The ubiquitous transcription factor NRF (NF-kappaB repressing factor) is a constitutive transcriptional silencer of the multifunctional cytokine interferon-beta. NRF mRNA contains a long 5' untranslated region (5'UTR) predicted to fold into a strong secondary structure. The presence of stable hairpins is known to be incompatible with efficient translation by ribosomal scanning. Using dicistronic reporter gene constructs, we show that the NRF 5'UTR acts as an internal ribosome entry site (IRES) which directs ribosomes to the downstream start codon by a cap-independent mechanism. The relative activity of this IRES in various cell lines is at least 30-fold higher than that of picornaviral IRESs. The NRF 5'UTR also functions as a translational enhancer in the context of monocistronic mRNAs. Our results indicate that the NRF 5'UTR contains a highly potent IRES, which may allow for an alternate mode of translation under physiological conditions in which cap-dependent translation is inhibited.
Collapse
Affiliation(s)
- A Oumard
- Department of Gene Regulation and Differentiation, National Research Institute for Biotechnology, D-38124 Braunschweig, Germany
| | | | | | | |
Collapse
|
84
|
Pozner A, Goldenberg D, Negreanu V, Le SY, Elroy-Stein O, Levanon D, Groner Y. Transcription-coupled translation control of AML1/RUNX1 is mediated by cap- and internal ribosome entry site-dependent mechanisms. Mol Cell Biol 2000; 20:2297-307. [PMID: 10713153 PMCID: PMC85390 DOI: 10.1128/mcb.20.7.2297-2307.2000] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AML1/RUNX1 belongs to the runt domain transcription factors that are important regulators of hematopoiesis and osteogenesis. Expression of AML1 is regulated at the level of transcription by two promoters, distal (D) and proximal (P), that give rise to mRNAs bearing two distinct 5' untranslated regions (5'UTRs) (D-UTR and P-UTR). Here we show that these 5'UTRs act as translation regulators in vivo. AML1 mRNAs bearing the uncommonly long (1,631-bp) P-UTR are poorly translated, whereas those with the shorter (452-bp) D-UTR are readily translated. The low translational efficiency of the P-UTR is attributed to its length and the cis-acting elements along it. Transfections and in vitro assays with bicistronic constructs demonstrate that the D-UTR mediates cap-dependent translation whereas the P-UTR mediates cap-independent translation and contains a functional internal ribosome entry site (IRES). The IRES-containing bicistronic constructs are more active in hematopoietic cell lines that normally express the P-UTR-containing mRNAs. Furthermore, we show that the IRES-dependent translation increases during megakaryocytic differentiation but not during erythroid differentiation, of K562 cells. These results strongly suggest that the function of the P-UTR IRES-dependent translation in vivo is to tightly regulate the translation of AML1 mRNAs. The data show that AML1 expression is regulated through usage of alternative promoters coupled with IRES-mediated translation control. This IRES-mediated translation regulation adds an important new dimension to the fine-tuned control of AML1 expression.
Collapse
Affiliation(s)
- A Pozner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76000, Israel
| | | | | | | | | | | | | |
Collapse
|
85
|
Sizova DV, Shatsky IN. Internal ribosome entry sites of viral and cellular RNAs. Mol Biol 2000. [DOI: 10.1007/bf02759634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
86
|
Chappell SA, Edelman GM, Mauro VP. A 9-nt segment of a cellular mRNA can function as an internal ribosome entry site (IRES) and when present in linked multiple copies greatly enhances IRES activity. Proc Natl Acad Sci U S A 2000; 97:1536-41. [PMID: 10677496 PMCID: PMC26470 DOI: 10.1073/pnas.97.4.1536] [Citation(s) in RCA: 191] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
This study addresses the properties of a newly identified internal ribosome entry site (IRES) contained within the mRNA of the homeodomain protein Gtx. Sequential deletions of the 5' untranslated region (UTR) from either end did not define distinct IRES boundaries; when five nonoverlapping UTR fragments were tested, four had IRES activity. These observations are consistent with other cellular IRES analyses suggesting that some cellular IRESes are composed of segments (IRES modules) that independently and combinatorially contribute to overall IRES activity. We characterize a 9-nt IRES module from the Gtx 5' UTR that is 100% complementary to the 18S rRNA at nucleotides 1132-1124. In previous work, we demonstrated that this mRNA segment could be crosslinked to its complement within intact 40S subunits. Here we show that increasing the number of copies of this IRES module in the intercistronic region of a dicistronic mRNA strongly enhances IRES activity in various cell lines. Ten linked copies increased IRES activity up to 570-fold in Neuro 2a cells. This level of IRES activity is up to 63-fold greater than that obtained by using the well characterized encephalomyocarditis virus IRES when tested in the same assay system. When the number of nucleotides between two of the 9-nt Gtx IRES modules was increased, the synergy between them decreased. In light of these findings, we discuss possible mechanisms of ribosome recruitment by cellular mRNAs, address the proposed role of higher order RNA structures on cellular IRES activity, and suggest parallels between IRES modules and transcriptional enhancer elements.
Collapse
Affiliation(s)
- S A Chappell
- Department of Neurobiology, Scripps Research Institute and Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
87
|
Goldstaub D, Gradi A, Bercovitch Z, Grosmann Z, Nophar Y, Luria S, Sonenberg N, Kahana C. Poliovirus 2A protease induces apoptotic cell death. Mol Cell Biol 2000; 20:1271-7. [PMID: 10648613 PMCID: PMC85262 DOI: 10.1128/mcb.20.4.1271-1277.2000] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A cell line was generated that expresses the poliovirus 2A protease in an inducible manner. Tightly controlled expression was achieved by utilizing the muristerone A-regulated expression system. Upon induction, cleavage of the eukaryotic translation initiation factor 4GI (eIF4GI) and eIF4GII is observed, with the latter being cleaved in a somewhat slower kinetics. eIF4G cleavage was accompanied by a severe inhibition of protein synthesis activity. Upon induction of the poliovirus 2A protease, the cells displayed fragmented nuclei, chromatin condensation, oligonucleosome-size DNA ladder, and positive TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling) staining; hence, their death can be characterized as apoptosis. These results indicate that the expression of the 2A protease in mammalian cells is sufficient to induce apoptosis. We suggest that the poliovirus 2A protease induces apoptosis either by arresting cap-dependent translation of some cellular mRNAs that encode proteins required for cell viability, by preferential cap-independent translation of cellular mRNAs encoding apoptosis inducing proteins, or by cleaving other, yet unidentified cellular target proteins.
Collapse
Affiliation(s)
- D Goldstaub
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Abstract
A reporter gene construct was used to study the regulation of connexin43 (Cx43) expression, the major gap junction protein found in heart and uterus, in transfected cell lines. The construct had the firefly luciferase gene under the control of the Cx43 promoter. Inclusion of the 5'-untranslated region (UTR) of the mRNA in the construct increased luciferase expression by 70%. A bicistronic vector assay demonstrated that the Cx43 5'-UTR contains a strong internal ribosome entry site (IRES). Deletion analysis localized the IRES element to the upstream portion of the 5'-UTR.
Collapse
Affiliation(s)
- A Schiavi
- Department of Biochemistry, University of Miami School of Medicine, Miami, FL, USA
| | | | | |
Collapse
|
89
|
Attal J, Théron MC, Houdebine LM. The optimal use of IRES (internal ribosome entry site) in expression vectors. GENETIC ANALYSIS : BIOMOLECULAR ENGINEERING 1999; 15:161-5. [PMID: 10596757 DOI: 10.1016/s1050-3862(99)00021-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In higher eucaryotes, natural bicistronic mRNA have been rarely found so far. The second cistron of constructed bicistronic mRNAs is generally considered as not translated unless special sequences named internal ribosome entry site (IRES) are added between the two cistrons. These sequences are believed to recruit ribosomes independently of a cap structure. In the present report, a new IRES found in the HTLV-1 genome is described. A systematic study revealed that this IRES, but also the poliovirus (polio) and the encephalomyocarditis virus (EMCV) IRES work optimally when they are added about 100 nucleotides after the termination codon of the first cistron. Unexpectedly, these IRES became totally inefficient when added after 300-500 nucleotide spacers. This result and others are not compatible with the admitted mechanism of IRES action. The IRES appear to be rather potent translation stimulators. Their effects are particularly emphasized in cells in which the normal mechanism of translation initiation is inhibited. For these reasons, we suggest to call IRES rescue translation stimulators (RTS).
Collapse
Affiliation(s)
- J Attal
- Laboratoire de Différenciation Cellulaire, Institut National de la Recherche Agronomique, Jousy-en-Josas, France
| | | | | |
Collapse
|
90
|
Sella O, Gerlitz G, Le SY, Elroy-Stein O. Differentiation-induced internal translation of c-sis mRNA: analysis of the cis elements and their differentiation-linked binding to the hnRNP C protein. Mol Cell Biol 1999; 19:5429-40. [PMID: 10409733 PMCID: PMC84385 DOI: 10.1128/mcb.19.8.5429] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In previous reports we showed that the long 5' untranslated region (5' UTR) of c-sis, the gene encoding the B chain of platelet-derived growth factor, has translational modulating activity due to its differentiation-activated internal ribosomal entry site (D-IRES). Here we show that the 5' UTR contains three regions with a computer-predicted Y-shaped structure upstream of an AUG codon, each of which can confer some degree of internal translation by itself. In nondifferentiated cells, the entire 5' UTR is required for maximal basal IRES activity. The elements required for the differentiation-sensing ability (i.e., D-IRES) were mapped to a 630-nucleotide fragment within the central portion of the 5' UTR. Even though the region responsible for IRES activation is smaller, the full-length 5' UTR is capable of mediating the maximal translation efficiency in differentiated cells, since only the entire 5' UTR is able to confer the maximal basal IRES activity. Interestingly, a 43-kDa protein, identified as hnRNP C, binds in a differentiation-induced manner to the differentiation-sensing region. Using UV cross-linking experiments, we show that while hnRNP C is mainly a nuclear protein, its binding activity to the D-IRES is mostly nuclear in nondifferentiated cells, whereas in differentiated cells such binding activity is associated with the ribosomal fraction. Since the c-sis 5' UTR is a translational modulator in response to cellular changes, it seems that the large number of cross-talking structural entities and the interactions with regulated trans-acting factors are important for the strength of modulation in response to cellular changes. These characteristics may constitute the major difference between strong IRESs, such as those seen in some viruses, and IRESs that serve as translational modulators in response to developmental signals, such as that of c-sis.
Collapse
Affiliation(s)
- O Sella
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
91
|
Abstract
The mechanisms whereby ribosomes engage a messenger RNA and select the start site for translation differ between prokaryotes and eukaryotes. Initiation sites in polycistronic prokaryotic mRNAs are usually selected via base pairing with ribosomal RNA. That straightforward mechanism is made complicated and interesting by cis- and trans-acting elements employed to regulate translation. Initiation sites in eukaryotic mRNAs are reached via a scanning mechanism which predicts that translation should start at the AUG codon nearest the 5' end of the mRNA. Interest has focused on mechanisms that occasionally allow escape from this first-AUG rule. With natural mRNAs, three escape mechanisms - context-dependent leaky scanning, reinitiation, and possibly direct internal initiation - allow access to AUG codons which, although not first, are still close to the 5' end of the mRNA. This constraint on the initiation step of translation in eukaryotes dictates the location of transcriptional promoters and may have contributed to the evolution of splicing.The binding of Met-tRNA to ribosomes is mediated by a GTP-binding protein in both prokaryotes and eukaryotes, but the more complex structure of the eukaryotic factor (eIF-2) and its association with other proteins underlie some aspects of initiation unique to eukaryotes. Modulation of GTP hydrolysis by eIF-2 is important during the scanning phase of initiation, while modulating the release of GDP from eIF-2 is a key mechanism for regulating translation in eukaryotes. Our understanding of how some other protein factors participate in the initiation phase of translation is in flux. Genetic tests suggest that some proteins conventionally counted as eukaryotic initiation factors may not be required for translation, while other tests have uncovered interesting new candidates. Some popular ideas about the initiation pathway are predicated on static interactions between isolated factors and mRNA. The need for functional testing of these complexes is discussed. Interspersed with these theoretical topics are some practical points concerning the interpretation of cDNA sequences and the use of in vitro translation systems. Some human diseases resulting from defects in the initiation step of translation are also discussed.
Collapse
Affiliation(s)
- M Kozak
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA
| |
Collapse
|
92
|
Abstract
IRESs are known to recruit ribosomes directly, without a previous scanning of untranslated region of mRNA by the ribosomes. IRESs have been found in a number of viral and cellular mRNAs. Experimentally, IRESs are commonly used to direct the expression of the second cistrons of bicistronic mRNAs. The mechanism of action of IRESs is not fully understood and a certain number of laboratories were not successful in using them in a reliable manner. Three observations done in our laboratory suggested that IRESs might not work as functionally as it was generally believed. Stem loops added before IRESs inhibited mRNA translation. When added into bicistronic mRNAs, IRESs initiated translation of the second cistrons efficiently only when the intercistronic region contained about 80 nucleotides, and they did not work any more effectively with intercistronic regions containing at least 300-400 nucleotides. Conversely, IRESs inserted at any position into the coding region of a cistron interrupted its translation and initiated translation of the following cistron. The first two data are hardly compatible with the idea that IRESs are able to recruit ribosomes without using the classical scanning mechanism. IRESs are highly structured and cannot be scanned by the 40S ribosomal subunit. We suggest that IRESs are short-circuited and are essentially potent stimulators favoring translation in particular physiological situations.
Collapse
Affiliation(s)
- L M Houdebine
- Laboratoire de Differenciation Cellulaire, Institut National de la Recherche Agronomique, Jouy-en-Josas, France.
| | | |
Collapse
|
93
|
Abstract
The t(12;13)(p13;q12) is a rare, recurrent translocation reported in a range of hematological malignancies. We have analyzed the molecular basis of this lesion in three patients with acute myeloid leukemia (AML), two of whom were known to have chromosome 12 breakpoints within the ETV6 gene. Fluorescence in situ hybridization (FISH) with ETV6 cosmids indicated that this gene was also disrupted in the third patient, while the normal ETV6 allele was retained. 3′ rapid amplification of cDNA ends (RACE) polymerase chain reaction (PCR) from bone marrow mRNA of this individual identified a novel sequence fused to ETV6 that was homologous to a region just upstream of the mouse CDX2 homeobox gene, the human homologue of which has previously been mapped to chromosome 13q12. PCR primers designed to amplify an ETV6-CDX2 fusion identified two major transcripts from this patient. First, a direct in-frame fusion between exon 2 of ETV6 and exon 2 of CDX2, and second, a transcript that had an additional sequence of unknown origin spliced between these same exons. Surprisingly, apparently normal CDX2 transcripts, usually expressed only in intestinal epithelium, were also detectable in cDNA from this patient. Neither normal nor fusion CDX2 mRNA was detectable in the two other patients with a t(12;13), indicating that this translocation is heterogeneous at the molecular level. Reverse transcription-PCR analysis showed that CDX2 mRNA, but not ETV6-CDX2 mRNA, was strongly expressed in 1 of 10 patients with chronic myeloid leukemia in transformation, suggesting that deregulation of this gene may be more widespread in leukemia. CDX2 is known to regulate class I homeobox genes and its expression in hematopoietic cells may critically alter the balance between differentiation and proliferation.
Collapse
|
94
|
Fusion of ETV6 to the Caudal-Related Homeobox Gene CDX2 in Acute Myeloid Leukemia With the t(12;13)(p13;q12). Blood 1999. [DOI: 10.1182/blood.v93.3.1025] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe t(12;13)(p13;q12) is a rare, recurrent translocation reported in a range of hematological malignancies. We have analyzed the molecular basis of this lesion in three patients with acute myeloid leukemia (AML), two of whom were known to have chromosome 12 breakpoints within the ETV6 gene. Fluorescence in situ hybridization (FISH) with ETV6 cosmids indicated that this gene was also disrupted in the third patient, while the normal ETV6 allele was retained. 3′ rapid amplification of cDNA ends (RACE) polymerase chain reaction (PCR) from bone marrow mRNA of this individual identified a novel sequence fused to ETV6 that was homologous to a region just upstream of the mouse CDX2 homeobox gene, the human homologue of which has previously been mapped to chromosome 13q12. PCR primers designed to amplify an ETV6-CDX2 fusion identified two major transcripts from this patient. First, a direct in-frame fusion between exon 2 of ETV6 and exon 2 of CDX2, and second, a transcript that had an additional sequence of unknown origin spliced between these same exons. Surprisingly, apparently normal CDX2 transcripts, usually expressed only in intestinal epithelium, were also detectable in cDNA from this patient. Neither normal nor fusion CDX2 mRNA was detectable in the two other patients with a t(12;13), indicating that this translocation is heterogeneous at the molecular level. Reverse transcription-PCR analysis showed that CDX2 mRNA, but not ETV6-CDX2 mRNA, was strongly expressed in 1 of 10 patients with chronic myeloid leukemia in transformation, suggesting that deregulation of this gene may be more widespread in leukemia. CDX2 is known to regulate class I homeobox genes and its expression in hematopoietic cells may critically alter the balance between differentiation and proliferation.
Collapse
|
95
|
Sloan J, Kinghorn JR, Unkles SE. The two subunits of human molybdopterin synthase: evidence for a bicistronic messenger RNA with overlapping reading frames. Nucleic Acids Res 1999; 27:854-8. [PMID: 9889283 PMCID: PMC148257 DOI: 10.1093/nar/27.3.854] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Molybdoenzymes are ubiquitous and require a prosthetic group called the molybdenum cofactor for activity. We provide evidence here that the two heteromeric subunits (MOCO1-A and MOCO1-B) of human molybdopterin synthase, which is involved in the conversion of precursor Z to molybdopterin in the molybdenum cofactor biosynthetic pathway, are spe-cified by a single bicistronic mRNA with overlapping reading frames. The transcript is in low abundance and shows variable tissue distribution. We propose that leaky scanning of the first translational initiation codon for MOCO1-A by 40S ribosomal subunits occurs, allowing recognition of the AUG for the downstream MOCO1-B reading frame. Such a genetic arrangement may result in a constant ratio and close proximity of lowly expressed enzyme subunits which should, a priori, be especially advantageous for assembly in complex mammalian cells. The MOCO1 locus resides on human chromosome 5.
Collapse
Affiliation(s)
- J Sloan
- Department of Microbiology, Monash University, Clayton, Victoria 3168, Australia andSchool of Environmental and Evolutionary Biology, University of St Andrews, St Andrews, Fife KY16 9TH, UK
| | | | | |
Collapse
|
96
|
Abstract
There is now a growing body of evidence which suggests links between the regulation of protein synthesis and the disruption of cell behaviour that typifies cancer. This directed issue of the International Journal of Biochemistry and Cell Biology presents several review articles of relevance to this field. The topics covered include the significance of the regulation and overexpression of polypeptide chain initiation factors for cell transformation and malignancy, the role of mRNA structure in the control of synthesis of key growth regulatory proteins, the actions of the eIF2 alpha-specific protein kinase PKR in the control cell growth and apoptosis, and the involvement of the elongation factor eEF1 in oncogenesis. The purpose of this article is to give an overview of the field and to indicate where we may expect developments to occur in the next few years.
Collapse
Affiliation(s)
- M J Clemens
- Department of Biochemistry, St George's Hospital Medical School, London, UK.
| | | |
Collapse
|
97
|
van der Velden AW, Thomas AA. The role of the 5' untranslated region of an mRNA in translation regulation during development. Int J Biochem Cell Biol 1999; 31:87-106. [PMID: 10216946 DOI: 10.1016/s1357-2725(98)00134-4] [Citation(s) in RCA: 272] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cap-dependent ribosomal scanning occurs on the majority of cellular 5' UTRs. This process is severely hampered on long 5' UTRs, containing AUGs and secondary structure. These characteristics are often found in mRNAs encoding regulatory proteins like proto-oncogenes, growth factors, their receptors, and homeodomain proteins. A number of these mRNAs use an alternative mechanism of translation initiation, involving an internal ribosomal entry site (IRES). Cellular mRNAs containing a complex 5' UTR or an IRES share an intriguing characteristic: their translational efficiency can be very specifically regulated by their 5' UTR, providing post-transcriptional regulation. During embryonic development, the 5' UTRs of Antp. Ubx RAR beta 2 c-mos and c-myc regulate protein expression in a spatio-temporal manner. Translation initiation on a number of growth factor RNAs (IGFII, PDGF2, TGF beta, FGF-2, and VEGF) is specifically regulated during differentiation, growth, and stress. Furthermore, 5' UTR activity, mutations in the 5' UTR, or the occurrence of alternative 5' UTRs have been implicated in the progression of various forms of cancer. The mechanisms involved in 5' UTR mediated control are not well understood. Binding of trans-acting factors could mediate translation stimulation or repression. Furthermore, the precise localization of upstream AUGs and the activity of the cap-binding initiation factor 4E are suggested to be important for translation regulation of these mRNAs. This review focuses on 5' UTRs whose activity is regulated, the processes during which this regulation occurs, and as far as known the mechanisms involved.
Collapse
Affiliation(s)
- A W van der Velden
- Department of Molecular Cell Biology, Utrecht University, The Netherlands.
| | | |
Collapse
|
98
|
Huez I, Créancier L, Audigier S, Gensac MC, Prats AC, Prats H. Two independent internal ribosome entry sites are involved in translation initiation of vascular endothelial growth factor mRNA. Mol Cell Biol 1998; 18:6178-90. [PMID: 9774635 PMCID: PMC109205 DOI: 10.1128/mcb.18.11.6178] [Citation(s) in RCA: 238] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The mRNA of vascular endothelial growth factor (VEGF), the major angiogenic growth factor, contains an unusually long (1,038 nucleotides) and structured 5' untranslated region (UTR). According to the classical translation initiation model of ribosome scanning, such a 5' UTR is expected to be a strong translation inhibitor. In vitro and bicistronic strategies were used to show that the VEGF mRNA translation was cap independent and occurred by an internal ribosome entry process. For the first time, we demonstrate that two independent internal ribosome entry sites (IRESs) are present in this 5' UTR. IRES A is located within the 300 nucleotides upstream from the AUG start codon. RNA secondary structure prediction and site-directed mutagenesis allowed the identification of a 49-nucleotide structural domain (D4) essential to IRES A activity. UV cross-linking experiments revealed that IRES A activity was correlated with binding of a 100-kDa protein to the D4 domain. IRES B is located in the first half of the 5' UTR. An element between nucleotides 379 and 483 is required for its activity. Immunoprecipitation experiments demonstrated that a main IRES B-bound protein was the polypyrimidine tract binding protein (PTB), a well-known regulator of picornavirus IRESs. However, we showed that binding of the PTB on IRES B does not seem to be correlated with its activity. Evidence is provided of an original cumulative effect of two IRESs, probably controlled by different factors, to promote an efficient initiation of translation at the same AUG codon.
Collapse
Affiliation(s)
- I Huez
- INSERM U397, Endocrinologie et Communication Cellulaire, Institut Fédératif de Recherche Louis Bugnard, CHU Rangueil, 31403 Toulouse cedex 04, France
| | | | | | | | | | | |
Collapse
|
99
|
Kim JG, Armstrong RC, Berndt JA, Kim NW, Hudson LD. A secreted DNA-binding protein that is translated through an internal ribosome entry site (IRES) and distributed in a discrete pattern in the central nervous system. Mol Cell Neurosci 1998; 12:119-40. [PMID: 9790734 DOI: 10.1006/mcne.1998.0701] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Internal initiation of translation, a mechanism infrequently used by cellular messages, avoids the requirement of a methyl cap structure for translation of messenger RNAs. The mRNA transcript encoding the DNA-binding protein MYT2 represents one of the exceptional cellular messages that contains an internal ribosome entry site (IRES). The RNA pseudoknot structure located in the 5' untranslated region of MYT2 functions to promote translation in vivo. MYT2 was cloned by its specific binding to a TTCCA motif in the promoter region of a glial-specific gene, myelin proteolipid protein. MYT2 also recognizes single-stranded nucleic acids. In the central nervous system, MYT2 protein is found in oligodendrocyte progenitor cells, subsets of neurons, and cells of the choroid plexus together with ciliated ependymal cells. MYT2 protein can also be secreted from cells, an atypical event for a DNA-binding protein. The presence of an internal ribosome entry site in MYT2, together with the unusual localization of MYT2, suggests that this nucleic acid-binding protein may be in the class of proteins involved in cellular growth control and survival in the nervous system.
Collapse
Affiliation(s)
- J G Kim
- Laboratory of Developmental Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, 20892-4160, USA
| | | | | | | | | |
Collapse
|
100
|
Szebenyi G, Fallon JF. Fibroblast growth factors as multifunctional signaling factors. INTERNATIONAL REVIEW OF CYTOLOGY 1998; 185:45-106. [PMID: 9750265 DOI: 10.1016/s0074-7696(08)60149-7] [Citation(s) in RCA: 327] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The fibroblast growth factor (FGF) family consists of at least 15 structurally related polypeptide growth factors. Their expression is controlled at the levels of transcription, mRNA stability, and translation. The bioavailability of FGFs is further modulated by posttranslational processing and regulated protein trafficking. FGFs bind to receptor tyrosine kinases (FGFRs), heparan sulfate proteoglycans (HSPG), and a cysteine-rich FGF receptor (CFR). FGFRs are required for most biological activities of FGFs. HSPGs alter FGF-FGFR interactions and CFR participates in FGF intracellular transport. FGF signaling pathways are intricate and are intertwined with insulin-like growth factor, transforming growth factor-beta, bone morphogenetic protein, and vertebrate homologs of Drosophila wingless activated pathways. FGFs are major regulators of embryonic development: They influence the formation of the primary body axis, neural axis, limbs, and other structures. The activities of FGFs depend on their coordination of fundamental cellular functions, such as survival, replication, differentiation, adhesion, and motility, through effects on gene expression and the cytoskeleton.
Collapse
Affiliation(s)
- G Szebenyi
- Anatomy Department, University of Wisconsin, Madison 53706, USA
| | | |
Collapse
|