51
|
Imamura S, Kawase Y, Kobayashi I, Sone T, Era A, Miyagishima SY, Shimojima M, Ohta H, Tanaka K. Target of rapamycin (TOR) plays a critical role in triacylglycerol accumulation in microalgae. PLANT MOLECULAR BIOLOGY 2015; 89:309-18. [PMID: 26350402 DOI: 10.1007/s11103-015-0370-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 08/24/2015] [Indexed: 05/18/2023]
Abstract
Most microalgae produce triacylglycerol (TAG) under stress conditions such as nitrogen depletion, but the underlying molecular mechanism remains unclear. In this study, we focused on the role of target of rapamycin (TOR) in TAG accumulation. TOR is a serine/threonine protein kinase that is highly conserved and plays pivotal roles in nitrogen and other signaling pathways in eukaryotes. We previously constructed a rapamycin-susceptible Cyanidioschyzon merolae, a unicellular red alga, by expressing yeast FKBP12 protein to evaluate the results of TOR inhibition (Imamura et al. in Biochem Biophys Res Commun 439:264-269, 2013). By using this strain, we here report that rapamycin-induced TOR inhibition results in accumulation of cytoplasmic lipid droplets containing TAG. Transcripts for TAG synthesis-related genes, such as glycerol-3-phosphate acyltransferase and acyl-CoA:diacylglycerol acyltransferase (DGAT), were increased by rapamycin treatment. We also found that fatty acid synthase-dependent de novo fatty acid synthesis was required for the accumulation of lipid droplets. Induction of TAG and up-regulation of DGAT gene expression by rapamycin were similarly observed in the unicellular green alga, Chlamydomonas reinhardtii. These results suggest the general involvement of TOR signaling in TAG accumulation in divergent microalgae.
Collapse
Affiliation(s)
- Sousuke Imamura
- Chemical Resources Laboratory, Tokyo Institute of Technology, 4259-R1 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan.
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama, 332-0012, Japan.
| | - Yasuko Kawase
- Chemical Resources Laboratory, Tokyo Institute of Technology, 4259-R1 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Ikki Kobayashi
- Chemical Resources Laboratory, Tokyo Institute of Technology, 4259-R1 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Toshiyuki Sone
- Chemical Resources Laboratory, Tokyo Institute of Technology, 4259-R1 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Atsuko Era
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama, 332-0012, Japan
- Department of Cell Genetics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Shin-Ya Miyagishima
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama, 332-0012, Japan
- Department of Cell Genetics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Mie Shimojima
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B1 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan
| | - Hiroyuki Ohta
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama, 332-0012, Japan
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B1 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Kan Tanaka
- Chemical Resources Laboratory, Tokyo Institute of Technology, 4259-R1 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan.
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama, 332-0012, Japan.
| |
Collapse
|
52
|
Sumiya N, Kawase Y, Hayakawa J, Matsuda M, Nakamura M, Era A, Tanaka K, Kondo A, Hasunuma T, Imamura S, Miyagishima SY. Expression of Cyanobacterial Acyl-ACP Reductase Elevates the Triacylglycerol Level in the Red Alga Cyanidioschyzon merolae. PLANT & CELL PHYSIOLOGY 2015; 56:1962-80. [PMID: 26272551 DOI: 10.1093/pcp/pcv120] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/07/2015] [Indexed: 05/21/2023]
Abstract
Nitrogen starvation is known to induce the accumulation of triacylglycerol (TAG) in many microalgae, and potential use of microalgae as a source of biofuel has been explored. However, nitrogen starvation also stops cellular growth. The expression of cyanobacterial acyl-acyl carrier protein (ACP) reductase in the unicellular red alga Cyanidioschyzon merolae chloroplasts resulted in an accumulation of TAG, which led to an increase in the number and size of lipid droplets while maintaining cellular growth. Transcriptome and metabolome analyses showed that the expression of acyl-ACP reductase altered the activities of several metabolic pathways. The activities of enzymes involved in fatty acid synthesis in chloroplasts, such as acetyl-CoA carboxylase and pyruvate dehydrogenase, were up-regulated, while pyruvate decarboxylation in mitochondria and the subsequent consumption of acetyl-CoA by the tricarboxylic acid (TCA) cycle were down-regulated. Aldehyde dehydrogenase, which oxidizes fatty aldehydes to fatty acids, was also up-regulated in the acyl-ACP reductase expresser. This activation was required for the lipid droplet accumulation and metabolic changes observed in the acyl-ACP reductase expresser. Nitrogen starvation also resulted in lipid droplet accumulation in C. merolae, while cell growth ceased as in the case of other algal species. The metabolic changes that occur upon the expression of acyl-ACP reductase are quite different from those caused by nitrogen starvation. Therefore, there should be a method for further increasing the storage lipid level while still maintaining cell growth that is different from the metabolic response to nitrogen starvation.
Collapse
Affiliation(s)
- Nobuko Sumiya
- Department of Cell Genetics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Yasuko Kawase
- Chemical Resources Laboratory, Tokyo Institute of Technology, 4259-R1 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Jumpei Hayakawa
- Department of Biological Sciences, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Mami Matsuda
- Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, 3-5 Sanbancho, Chiyoda-ku, Tokyo, 102-0075, Japan
| | - Mami Nakamura
- Department of Cell Genetics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Atsuko Era
- Department of Cell Genetics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Kan Tanaka
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan Chemical Resources Laboratory, Tokyo Institute of Technology, 4259-R1 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Akihiko Kondo
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan Biomass Engineering Program, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Tomohisa Hasunuma
- Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, 3-5 Sanbancho, Chiyoda-ku, Tokyo, 102-0075, Japan
| | - Sousuke Imamura
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan Chemical Resources Laboratory, Tokyo Institute of Technology, 4259-R1 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Shin-ya Miyagishima
- Department of Cell Genetics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| |
Collapse
|
53
|
Moriyama T, Mori N, Sato N. Activation of oxidative carbon metabolism by nutritional enrichment by photosynthesis and exogenous organic compounds in the red alga Cyanidioschyzon merolae: evidence for heterotrophic growth. SPRINGERPLUS 2015; 4:559. [PMID: 26435905 PMCID: PMC4586181 DOI: 10.1186/s40064-015-1365-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 09/21/2015] [Indexed: 11/30/2022]
Abstract
Respiration is an important process in photosynthetic organisms, as it is in other organisms, for the supply of ATP and metabolites required for biosynthesis. Furthermore, individual enzymatic activity is subject to regulation by metabolic intermediates in glycolysis and the citric acid cycle. However, little is known about how glycolysis or catabolism are related to photosynthetic activity or accumulation of photosynthetic products. We previously developed a flat-plate culture apparatus assembled from materials commonly used for gel electrophoresis, which enables high-density culture of the unicellular red alga Cyanidioschyzon merolae. In this study, a stationary dense culture of C. merolae, when re-activated in this culture apparatus, exhibited an accumulation of photosynthetically produced starch. We demonstrated that respiratory activity increased during the culture period, while photosynthetic activity remained constant. Gene expression analysis revealed that the genes involved in cytosolic glycolysis and the citric acid cycle were selectively activated, compared to the genes for the oxidative pentose phosphate pathway and the Calvin–Benson cycle. Measurements of the respiratory rate after addition of various organic substances showed that C. merolae can utilize almost any exogenous organic compound as a respiratory substrate, although the effectiveness of each compound was dependent on the culture time in the flat-plate culture, suggesting that glycolysis was rate-limiting to respiration, and its activity depended on the level of photosynthetic products within the cells. We also demonstrated that organic substances increased the rate of cell growth under dim light and, interestingly, C. merolae could grow heterotrophically in the presence of glycerol. Obligate photoautotrophy should be considered an ecological, rather than physiological, characteristic of C. merolae.
Collapse
Affiliation(s)
- Takashi Moriyama
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902 Japan ; JST, CREST, K's Gobancho 7 Gobancho, Chiyoda-ku, Tokyo, 102-0076 Japan
| | - Natsumi Mori
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902 Japan ; JST, CREST, K's Gobancho 7 Gobancho, Chiyoda-ku, Tokyo, 102-0076 Japan
| | - Naoki Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902 Japan ; JST, CREST, K's Gobancho 7 Gobancho, Chiyoda-ku, Tokyo, 102-0076 Japan
| |
Collapse
|
54
|
Ohnuma M, Yokoyama T, Inouye T, Sekine Y, Kuroiwa T, Tanaka K. Optimization of polyethylene glycol (PEG)-mediated DNA introduction conditions for transient gene expression in the unicellular red alga Cyanidioschyzon merolae. J GEN APPL MICROBIOL 2015; 60:156-9. [PMID: 25273989 DOI: 10.2323/jgam.60.156] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Mio Ohnuma
- Institute of Molecular and Cellular Biosciences, The University of Tokyo
| | | | | | | | | | | |
Collapse
|
55
|
Kanesaki Y, Imamura S, Matsuzaki M, Tanaka K. Identification of centromere regions in chromosomes of a unicellular red alga,Cyanidioschyzon merolae. FEBS Lett 2015; 589:1219-24. [DOI: 10.1016/j.febslet.2015.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 04/07/2015] [Accepted: 04/09/2015] [Indexed: 01/20/2023]
|
56
|
Fujii G, Imamura S, Era A, Miyagishima SY, Hanaoka M, Tanaka K. The nuclear-encoded sigma factor SIG4 directly activates transcription of chloroplast psbA and ycf17 genes in the unicellular red alga Cyanidioschyzon merolae. FEMS Microbiol Lett 2015; 362:fnv063. [DOI: 10.1093/femsle/fnv063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2015] [Indexed: 01/01/2023] Open
Affiliation(s)
- Gaku Fujii
- Chemical Resources Laboratory, Tokyo Institute of Technology, 4259-R1-29 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Sousuke Imamura
- Chemical Resources Laboratory, Tokyo Institute of Technology, 4259-R1-29 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| | - Atsuko Era
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
- Center for Frontier Research, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Shin-ya Miyagishima
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
- Center for Frontier Research, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Mitsumasa Hanaoka
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba 271-8510, Japan
| | - Kan Tanaka
- Chemical Resources Laboratory, Tokyo Institute of Technology, 4259-R1-29 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| |
Collapse
|
57
|
Fujiwara T, Kanesaki Y, Hirooka S, Era A, Sumiya N, Yoshikawa H, Tanaka K, Miyagishima SY. A nitrogen source-dependent inducible and repressible gene expression system in the red alga Cyanidioschyzon merolae. FRONTIERS IN PLANT SCIENCE 2015; 6:657. [PMID: 26379685 PMCID: PMC4549557 DOI: 10.3389/fpls.2015.00657] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 08/10/2015] [Indexed: 05/19/2023]
Abstract
The unicellular red alga Cyanidioschyzon merolae is a model organism for studying the basic biology of photosynthetic organisms. The C. merolae cell is composed of an extremely simple set of organelles. The genome is completely sequenced. Gene targeting and a heat-shock inducible gene expression system has been recently established. However, a conditional gene knockdown system has not been established, which is required for the examination of function of genes that are essential to cell viability and primary mutant defects. In the current study, we first evaluated the expression of a transgene from two chromosomal neutral loci located in the intergenic region between CMD184C and CMD185C, and a region upstream of the URA5.3 gene. There was no significant difference in expression between them and this result suggests that both may be used as neutral loci. We then designed an inducible and repressible gene expression by using promoters of nitrate-assimilation genes. The expression of nitrate-assimilation genes such as NR (nitrate reductase), NIR (nitrite reductase), and NRT (the nitrate/nitrite transporter) are reversibly regulated by their dependence on nitrogen sources. We constructed stable strains in which a cassette containing the NR, NIR, or NRT promoter and sfGFP gene was inserted in a region upstream of URA5.3 and examined the efficacy of the promoters. The NR, NIR, and NRT promoters were constitutively activated in the nitrate medium, whereas their activities were extremely low in presence of ammonium. The activation of each promoter was immediately inhibited within a period of 1 h by the addition of ammonium. Thus, a conditional knockdown system in C. merolae was successfully established. The activity varies among the promoters, and each is selectable according to the expression level of a target gene estimated by RNA-sequencing. This method is applicable to defects in genes of interest in photosynthetic organism.
Collapse
Affiliation(s)
- Takayuki Fujiwara
- Department of Cell Genetics, National Institute of GeneticsMishima, Japan
- *Correspondence: Takayuki Fujiwara and Shin-Ya Miyagishima, Department of Cell Genetics, National Institute of Genetics, 1111 Yata, Mishima 411-8540, Shizuoka, Japan, ;
| | - Yu Kanesaki
- NODAI Genome Research Center, Tokyo University of AgricultureTokyo, Japan
| | - Shunsuke Hirooka
- Department of Cell Genetics, National Institute of GeneticsMishima, Japan
- Japan Science and Technology Agency, Core Research for Evolutional Science and TechnologyKawaguchi, Japan
| | - Atsuko Era
- Department of Cell Genetics, National Institute of GeneticsMishima, Japan
- Japan Science and Technology Agency, Core Research for Evolutional Science and TechnologyKawaguchi, Japan
| | - Nobuko Sumiya
- Department of Cell Genetics, National Institute of GeneticsMishima, Japan
- Japan Science and Technology Agency, Core Research for Evolutional Science and TechnologyKawaguchi, Japan
| | - Hirofumi Yoshikawa
- Japan Science and Technology Agency, Core Research for Evolutional Science and TechnologyKawaguchi, Japan
- Department of Bioscience, Tokyo University of AgricultureTokyo, Japan
| | - Kan Tanaka
- Japan Science and Technology Agency, Core Research for Evolutional Science and TechnologyKawaguchi, Japan
- Chemical Resources Laboratory, Tokyo Institute of TechnologyYokohama, Japan
| | - Shin-Ya Miyagishima
- Department of Cell Genetics, National Institute of GeneticsMishima, Japan
- Japan Science and Technology Agency, Core Research for Evolutional Science and TechnologyKawaguchi, Japan
- Department of Genetics, Graduate University for Advanced StudiesMishima, Japan
- *Correspondence: Takayuki Fujiwara and Shin-Ya Miyagishima, Department of Cell Genetics, National Institute of Genetics, 1111 Yata, Mishima 411-8540, Shizuoka, Japan, ;
| |
Collapse
|
58
|
Development of a heat-shock inducible gene expression system in the red alga Cyanidioschyzon merolae. PLoS One 2014; 9:e111261. [PMID: 25337786 PMCID: PMC4206486 DOI: 10.1371/journal.pone.0111261] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/26/2014] [Indexed: 11/19/2022] Open
Abstract
The cell of the unicellular red alga Cyanidioschyzon merolae contains a single chloroplast and mitochondrion, the division of which is tightly synchronized by a light/dark cycle. The genome content is extremely simple, with a low level of genetic redundancy, in photosynthetic eukaryotes. In addition, transient transformation and stable transformation by homologous recombination have been reported. However, for molecular genetic analyses of phenomena that are essential for cellular growth and survival, inducible gene expression/suppression systems are needed. Here, we report the development of a heat-shock inducible gene expression system in C. merolae. CMJ101C, encoding a small heat shock protein, is transcribed only when cells are exposed to an elevated temperature. Using a superfolder GFP as a reporter protein, the 200-bp upstream region of CMJ101C orf was determined to be the optimal promoter for heat-shock induction. The optimal temperature to induce expression is 50°C, at which C. merolae cells are able to proliferate. At least a 30-min heat shock is required for the expression of a protein of interest and a 60-min heat shock yields the maximum level of protein expression. After the heat shock, the mRNA level decreases rapidly. As an example of the system, the expression of a dominant negative form of chloroplast division DRP5B protein, which has a mutation in the GTPase domain, was induced. Expression of the dominant negative DRP5B resulted in the appearance of aberrant-shaped cells in which two daughter chloroplasts and the cells are still connected by a small DRP5B positive tube-like structure. This result suggests that the dominant negative DRP5B inhibited the final scission of the chloroplast division site, but not the earlier stages of division site constriction. It is also suggested that cell cycle progression is not arrested by the impairment of chloroplast division at the final stage.
Collapse
|
59
|
Mikami K. A technical breakthrough close at hand: feasible approaches toward establishing a gene-targeting genetic transformation system in seaweeds. FRONTIERS IN PLANT SCIENCE 2014; 5:498. [PMID: 25309568 PMCID: PMC4173807 DOI: 10.3389/fpls.2014.00498] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 09/08/2014] [Indexed: 05/23/2023]
|
60
|
Moriyama T, Sakurai K, Sekine K, Sato N. Subcellular distribution of central carbohydrate metabolism pathways in the red alga Cyanidioschyzon merolae. PLANTA 2014; 240:585-98. [PMID: 25009310 DOI: 10.1007/s00425-014-2108-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/10/2014] [Indexed: 05/19/2023]
Abstract
Comprehensive subcellular localization analysis revealed that the subcellular distribution of carbohydrate metabolic pathways in the red alga Cyanidioschyzon is essentially identical with that in Arabidopsis , except the lack of transaldolase. In plants, the glycolysis and oxidative pentose phosphate pathways (oxPPP) are located in both cytosol and plastids. However, in algae, particularly red algae, the subcellular localization of enzymes involved in carbon metabolism is unclear. Here, we identified and examined the localization of enzymes related to glycolysis, oxPPP, and tricarboxylic acid (TCA) and Calvin-Benson cycles in the red alga Cyanidioschyzon merolae. A gene encoding transaldolase of the oxPPP was not found in the C. merolae genome, and no transaldolase activity was detected in cellular extracts. The subcellular localization of 65 carbon metabolic enzymes tagged with green fluorescent protein or hemagglutinin was examined in C. merolae cells. As expected, TCA and Calvin-Benson cycle enzymes were localized to mitochondria and plastids, respectively. The analyses also revealed that the cytosol contains the entire glycolytic pathway and partial oxPPP, whereas the plastid contains a partial glycolytic pathway and complete oxPPP, with the exception of transaldolase. Together, these results suggest that the subcellular distribution of carbohydrate metabolic pathways in C. merolae is essentially identical with that reported in the photosynthetic tissue of Arabidopsis thaliana; however, it appears that substrates typically utilized by transaldolase are consumed by glycolytic enzymes in the plastidic oxPPP of C. merolae.
Collapse
Affiliation(s)
- Takashi Moriyama
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902, Japan,
| | | | | | | |
Collapse
|
61
|
Moriyama T, Tajima N, Sekine K, Sato N. Localization and phylogenetic analysis of enzymes related to organellar genome replication in the unicellular rhodophyte Cyanidioschyzon merolae. Genome Biol Evol 2014; 6:228-37. [PMID: 24407855 PMCID: PMC3914683 DOI: 10.1093/gbe/evu009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Plants and algae possess plastids and mitochondria harboring their own genomes, which are replicated by the apparatus consisting of DNA polymerase, DNA primase, DNA helicase, DNA topoisomerase, single-stranded DNA maintenance protein, DNA ligase, and primer removal enzyme. In the higher plant Arabidopsis thaliana, organellar replication-related enzymes (OREs) are similar in plastids and mitochondria because many of them are dually targeted to plastids and mitochondria. In the red algae, there is a report about a DNA replicase, plant/protist organellar DNA polymerase, which is localized to both plastids and mitochondria. However, other OREs remain unclear in algae. Here, we identified OREs possibly localized to organelles in the unicellular rhodophyte Cyanidioschyzon merolae. We then examined intracellular localization of green fluorescent protein-fusion proteins of these enzymes in C. merolae, whose cell has a single plastid and a single mitochondrion and is suitable for localization analysis, demonstrating that the plastid and the mitochondrion contain markedly different components of replication machinery. Phylogenetic analyses revealed that the organelle replication apparatus was composed of enzymes of various different origins, such as proteobacterial, cyanobacterial, and eukaryotic, in both red algae and green plants. Especially in the red alga, many enzymes of cyanobacterial origin remained. Finally, on the basis of the results of localization and phylogenetic analyses, we propose a model on the succession of OREs in eukaryotes.
Collapse
Affiliation(s)
- Takashi Moriyama
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Japan
| | | | | | | |
Collapse
|
62
|
Shen J, Fu J, Ma J, Wang X, Gao C, Zhuang C, Wan J, Jiang L. Isolation, culture, and transient transformation of plant protoplasts. CURRENT PROTOCOLS IN CELL BIOLOGY 2014; 63:2.8.1-17. [PMID: 24894837 DOI: 10.1002/0471143030.cb0208s63] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Transient gene expression in protoplasts, which has been used in several plant species, is an important and versatile tool for rapid functional gene analysis, protein subcellular localization, and biochemical manipulations. This unit describes transient gene expression by electroporation of DNA into protoplasts of Arabidopsis or tobacco suspension-cultured cells and by polyethylene glycol (PEG)-mediated DNA transformation into protoplasts derived from rice leaf sheaths. PEG-mediated DNA transformation for transient gene expression in rice protoplasts in suspension culture is also described as an alternative technique. Methods for collecting intracellular and secreted proteins are also provided.
Collapse
Affiliation(s)
- Jinbo Shen
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Miyagishima SY, Fujiwara T, Sumiya N, Hirooka S, Nakano A, Kabeya Y, Nakamura M. Translation-independent circadian control of the cell cycle in a unicellular photosynthetic eukaryote. Nat Commun 2014; 5:3807. [PMID: 24806410 DOI: 10.1038/ncomms4807] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 04/04/2014] [Indexed: 12/31/2022] Open
Abstract
Circadian rhythms of cell division have been observed in several lineages of eukaryotes, especially photosynthetic unicellular eukaryotes. However, the mechanism underlying the circadian regulation of the cell cycle and the nature of the advantage conferred remain unknown. Here, using the unicellular red alga Cyanidioschyzon merolae, we show that the G1/S regulator RBR-E2F-DP complex links the G1/S transition to circadian rhythms. Time-dependent E2F phosphorylation promotes the G1/S transition during subjective night and this phosphorylation event occurs independently of cell cycle progression, even under continuous dark or when cytosolic translation is inhibited. Constitutive expression of a phospho-mimic of E2F or depletion of RBR unlinks cell cycle progression from circadian rhythms. These transgenic lines are exposed to higher oxidative stress than the wild type. Circadian inhibition of cell cycle progression during the daytime by RBR-E2F-DP pathway likely protects cells from photosynthetic oxidative stress by temporally compartmentalizing photosynthesis and cell cycle progression.
Collapse
Affiliation(s)
- Shin-ya Miyagishima
- 1] Center for Frontier Research, National Institute of Genetics, 1111 Yata, Mishima 411-8540, Shizuoka, Japan [2] Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), 1111 Yata, Mishima 411-8540, Shizuoka, Japan [3] Japan Science and Technology Agency, CREST, 4-1-8 Honcho, Kawaguchi 332-0012, Saitama, Japan [4]
| | - Takayuki Fujiwara
- 1] Center for Frontier Research, National Institute of Genetics, 1111 Yata, Mishima 411-8540, Shizuoka, Japan [2]
| | - Nobuko Sumiya
- 1] Center for Frontier Research, National Institute of Genetics, 1111 Yata, Mishima 411-8540, Shizuoka, Japan [2] Japan Science and Technology Agency, CREST, 4-1-8 Honcho, Kawaguchi 332-0012, Saitama, Japan [3]
| | - Shunsuke Hirooka
- 1] Center for Frontier Research, National Institute of Genetics, 1111 Yata, Mishima 411-8540, Shizuoka, Japan [2] Japan Science and Technology Agency, CREST, 4-1-8 Honcho, Kawaguchi 332-0012, Saitama, Japan
| | - Akihiko Nakano
- 1] Live Cell Molecular Imaging Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako 351-0198, Saitama, Japan [2] Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku 113-0033, Tokyo, Japan
| | - Yukihiro Kabeya
- Center for Frontier Research, National Institute of Genetics, 1111 Yata, Mishima 411-8540, Shizuoka, Japan
| | - Mami Nakamura
- 1] Center for Frontier Research, National Institute of Genetics, 1111 Yata, Mishima 411-8540, Shizuoka, Japan [2] Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), 1111 Yata, Mishima 411-8540, Shizuoka, Japan
| |
Collapse
|
64
|
Watanabe S, Sato J, Imamura S, Ohnuma M, Ohoba Y, Chibazakura T, Tanaka K, Yoshikawa H. Stable expression of a GFP-reporter gene in the red alga Cyanidioschyzon merolae. Biosci Biotechnol Biochem 2014; 78:175-7. [PMID: 25036501 DOI: 10.1080/09168451.2014.877823] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The unicellular red alga Cyanidioschyzon merolae is used as a model organism to investigate the basic architecture of photosynthetic eukaryotes. We established a stable expression system for the green fluorescent protein fused with the phycocyanin-associated rod linker (APCC) protein in C. merolae, which was clearly localized on the plastid. This system should be useful in the genetic engineering of C. merolae.
Collapse
Affiliation(s)
- Satoru Watanabe
- a Department of Bioscience , Tokyo University of Agriculture , Tokyo , Japan
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Veyel D, Erban A, Fehrle I, Kopka J, Schroda M. Rationales and approaches for studying metabolism in eukaryotic microalgae. Metabolites 2014; 4:184-217. [PMID: 24957022 PMCID: PMC4101502 DOI: 10.3390/metabo4020184] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 03/23/2014] [Accepted: 03/25/2014] [Indexed: 11/16/2022] Open
Abstract
The generation of efficient production strains is essential for the use of eukaryotic microalgae for biofuel production. Systems biology approaches including metabolite profiling on promising microalgal strains, will provide a better understanding of their metabolic networks, which is crucial for metabolic engineering efforts. Chlamydomonas reinhardtii represents a suited model system for this purpose. We give an overview to genetically amenable microalgal strains with the potential for biofuel production and provide a critical review of currently used protocols for metabolite profiling on Chlamydomonas. We provide our own experimental data to underpin the validity of the conclusions drawn.
Collapse
Affiliation(s)
- Daniel Veyel
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, D-14476 Potsdam-Golm, Germany.
| | - Alexander Erban
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, D-14476 Potsdam-Golm, Germany.
| | - Ines Fehrle
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, D-14476 Potsdam-Golm, Germany.
| | - Joachim Kopka
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, D-14476 Potsdam-Golm, Germany.
| | - Michael Schroda
- Molecular Biotechnology & Systems Biology, Technical University of Kaiserslautern, Paul-Ehrlich-Str. 23, D-67663 Kaiserslautern, Germany.
| |
Collapse
|
66
|
Fujii G, Imamura S, Hanaoka M, Tanaka K. Nuclear-encoded chloroplast RNA polymerase sigma factor SIG2 activates chloroplast-encoded phycobilisome genes in a red alga, Cyanidioschyzon merolae. FEBS Lett 2013; 587:3354-9. [PMID: 24036445 DOI: 10.1016/j.febslet.2013.08.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 08/23/2013] [Accepted: 08/23/2013] [Indexed: 10/26/2022]
Abstract
The phycobilisome (PBS) is a photosynthetic light-harvesting complex in red algae, whose structural genes are separately encoded by both the nuclear and chloroplast genomes. While the expression of PBS genes in both genomes is responsive to environmental changes to modulate light-harvesting efficiency, little is known about how gene expression of the two genomes is coordinated. In this study, we focused on the four nuclear-encoded chloroplast sigma factors to understand aspects of this coordination, and found that SIG2 directs the expression of chloroplast PBS genes in the red alga Cyanidioschyzon merolae.
Collapse
Affiliation(s)
- Gaku Fujii
- Chemical Resources Laboratory, Tokyo Institute of Technology, 4259-R1-29 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan; Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba 271-8510, Japan
| | | | | | | |
Collapse
|
67
|
Fujiwara T, Ohnuma M, Yoshida M, Kuroiwa T, Hirano T. Gene targeting in the red alga Cyanidioschyzon merolae: single- and multi-copy insertion using authentic and chimeric selection markers. PLoS One 2013; 8:e73608. [PMID: 24039997 PMCID: PMC3764038 DOI: 10.1371/journal.pone.0073608] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 07/23/2013] [Indexed: 11/18/2022] Open
Abstract
The unicellular red alga Cyanidioschyzon merolae is an emerging model organism for studying organelle division and inheritance: the cell is composed of an extremely simple set of organelles (one nucleus, one mitochondrion and one chloroplast), and their genomes are completely sequenced. Although a fruitful set of cytological and biochemical methods have now been developed, gene targeting techniques remain to be fully established in this organism. Thus far, only a single selection marker, URA Cm-Gs , has been available that complements the uracil-auxotrophic mutant M4. URA Cm-Gs , a chimeric URA5.3 gene of C. merolae and the related alga Galdieria sulphuraria, was originally designed to avoid gene conversion of the mutated URA5.3 allele in the parental strain M4. Although an early example of targeted gene disruption by homologous recombination was reported using this marker, the genome structure of the resultant transformants had never been fully characterized. In the current study, we showed that the use of the chimeric URA Cm-Gs selection marker caused multicopy insertion at high frequencies, accompanied by undesired recombination events at the targeted loci. The copy number of the inserted fragments was variable among the transformants, resulting in high yet uneven levels of transgene expression. In striking contrast, when the authentic URA5.3 gene (URA Cm-Cm ) was used as a selection marker, efficient single-copy insertion was observed at the targeted locus. Thus, we have successfully established a highly reliable and reproducible method for gene targeting in C. merolae. Our method will be applicable to a number of genetic manipulations in this organism, including targeted gene disruption, replacement and tagging.
Collapse
Affiliation(s)
| | - Mio Ohnuma
- Faculty of Science, Rikkyo University, Toshima-ku, Tokyo, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Chiyoda-ku, Tokyo, Japan
| | - Masaki Yoshida
- Faculty of Life & Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Tsuneyoshi Kuroiwa
- Faculty of Science, Rikkyo University, Toshima-ku, Tokyo, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Chiyoda-ku, Tokyo, Japan
| | - Tatsuya Hirano
- Chromosome Dynamics Laboratory, RIKEN, Wako, Saitama, Japan
- * E-mail:
| |
Collapse
|
68
|
Imamura S, Ishiwata A, Watanabe S, Yoshikawa H, Tanaka K. Expression of budding yeast FKBP12 confers rapamycin susceptibility to the unicellular red alga Cyanidioschyzon merolae. Biochem Biophys Res Commun 2013; 439:264-9. [PMID: 23973485 DOI: 10.1016/j.bbrc.2013.08.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 08/14/2013] [Indexed: 12/31/2022]
Abstract
The target of rapamycin (TOR) is serine/threonine protein kinase that is highly conserved among eukaryotes and can be inactivated by the antibiotic rapamycin through the formation of a ternary complex composed of rapamycin and two proteins, TOR and FKBP12. Differing from fungi and animals, plant FKBP12 proteins are unable to form the ternary complex, and thus plant TORs are insensitive to rapamycin. This has led to a poor understanding of TOR functions in plants. As a first step toward the understanding of TOR function in a rapamycin-insensitive unicellular red alga, Cyanidioschyzon merolae, we constructed a rapamycin-susceptible strain in which the Saccharomyces cerevisiae FKBP12 protein (ScFKBP12) was expressed. Treatment with rapamycin resulted in growth inhibition and decreased polysome formation in this strain. Binding of ScFKBP12 with C. merolae TOR in the presence of rapamycin was demonstrated in vivo and in vitro by pull-down experiments. Moreover, in vitro kinase assay showed that inhibition of C. merolae TOR kinase activity was dependent on ScFKBP12 and rapamycin.
Collapse
Affiliation(s)
- Sousuke Imamura
- Chemical Resources Laboratory, Tokyo Institute of Technology, Yokohama 226-8503, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| | | | | | | | | |
Collapse
|
69
|
Watanabe S, Hanaoka M, Ohba Y, Ono T, Ohnuma M, Yoshikawa H, Taketani S, Tanaka K. Mitochondrial localization of ferrochelatase in a red alga Cyanidioschyzon merolae. PLANT & CELL PHYSIOLOGY 2013; 54:1289-95. [PMID: 23700350 DOI: 10.1093/pcp/pct077] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Ferrochelatase (FECH) is an essential enzyme for the final step of heme biosynthesis. In green plants, its activity has been reported in both plastids and mitochondria. However, the precise subcellular localization of FECH remains uncertain. In this study, we analyzed the localization of FECH in the unicellular red alga, Cyanidioschyzon merolae. Immunoblot and enzyme activity analyses of subcellular fractions localized little FECH in the plastid. In addition, immunofluorescence microscopy identified that both intrinsic and hemagglutinin (HA)-tagged FECH are localized in the mitochondrion. We therefore conclude that FECH is localized in the mitochondrion in C. merolae.
Collapse
Affiliation(s)
- Satoru Watanabe
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Yagisawa F, Fujiwara T, Ohnuma M, Kuroiwa H, Nishida K, Imoto Y, Yoshida Y, Kuroiwa T. Golgi inheritance in the primitive red alga, Cyanidioschyzon merolae. PROTOPLASMA 2013. [PMID: 23197134 DOI: 10.1007/s00709-012-0467-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The Golgi body has important roles in modifying, sorting, and transport of proteins and lipids. Eukaryotic cells have evolved in various ways to inherit the Golgi body from mother to daughter cells, which allows the cells to function properly immediately after mitosis. Here we used Cyanidioschyzon merolae, one of the most suitable systems for studies of organelle dynamics, to investigate the inheritance of the Golgi. Two proteins, Sed5 and Got1, were used as Golgi markers. Using immunofluorescence microscopy, we demonstrated that C. merolae contains one to two Golgi bodies per cell. The Golgi body was localized to the perinuclear region during the G1 and S phases and next to the spindle poles in a microtubule-dependent manner during M phase. It was inherited together with spindle poles upon cytokinesis. These observations suggested that Golgi inheritance is dependent on microtubules in C. merolae.
Collapse
Affiliation(s)
- Fumi Yagisawa
- Research Information Center for Extremophiles, Rikkyo (St. Paul's) University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Fujiwara T, Tanaka K, Kuroiwa T, Hirano T. Spatiotemporal dynamics of condensins I and II: evolutionary insights from the primitive red alga Cyanidioschyzon merolae. Mol Biol Cell 2013; 24:2515-27. [PMID: 23783031 PMCID: PMC3744952 DOI: 10.1091/mbc.e13-04-0208] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Spatiotemporal dynamics of condensins I and II in the primitive red alga Cyanidioschyzon merolae is surprisingly similar to that observed in mammalian cells. Condensin II is not essential for mitosis under laboratory growth conditions but is required for sister centromere resolution in the presence of a microtubule drug. Condensins are multisubunit complexes that play central roles in chromosome organization and segregation in eukaryotes. Many eukaryotic species have two different condensin complexes (condensins I and II), although some species, such as fungi, have condensin I only. Here we use the red alga Cyanidioschyzon merolae as a model organism because it represents the smallest and simplest organism that is predicted to possess both condensins I and II. We demonstrate that, despite the great evolutionary distance, spatiotemporal dynamics of condensins in C. merolae is strikingly similar to that observed in mammalian cells: condensin II is nuclear throughout the cell cycle, whereas condensin I appears on chromosomes only after the nuclear envelope partially dissolves at prometaphase. Unlike in mammalian cells, however, condensin II is confined to centromeres in metaphase, whereas condensin I distributes more broadly along arms. We firmly establish a targeted gene disruption technique in this organism and find, to our surprise, that condensin II is not essential for mitosis under laboratory growth conditions, although it plays a crucial role in facilitating sister centromere resolution in the presence of a microtubule drug. The results provide fundamental insights into the evolution of condensin-based chromosome architecture and dynamics.
Collapse
Affiliation(s)
- Takayuki Fujiwara
- Chromosome Dynamics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| | | | | | | |
Collapse
|
72
|
Yoshida Y, Fujiwara T, Imoto Y, Yoshida M, Ohnuma M, Hirooka S, Misumi O, Kuroiwa H, Kato S, Matsunaga S, Kuroiwa T. The kinesin-like protein TOP promotes Aurora localisation and induces mitochondrial, chloroplast and nuclear division. J Cell Sci 2013; 126:2392-400. [DOI: 10.1242/jcs.116798] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The cell cycle usually refers to the mitotic cycle, but the cell-division cycle in the plant kingdom consists of not only nuclear but also mitochondrial and chloroplast division cycle. However an integrated control system that initiates division of the three organelles has not been found. We first report that a novel C-terminal kinesin-like protein, three-organelle divisions inducing protein (TOP), controls nuclear, mitochondrial and chloroplast divisions in red alga Cyanidioschyzon merolae. A proteomics revealed that TOP was contained in the complex of mitochondrial-dividing (MD) and plastid-dividing (PD) machineries (MD/PD machinery complex) just prior to constriction. After TOP localized on the MD/PD machinery complex, mitochondrial and chloroplast divisions were performed and the components of the MD/PD machinery complexes were phosphorylated. Furthermore, TOP down-regulation impaired both mitochondrial and chloroplast divisions. MD/PD machinery complexes were formed normally at each division site but they were neither phosphorylated nor constricted in these cells. Immunofluorescence signals of Aurora kinase (AUR) were localized around the MD machinery before constriction whereas AUR was dispersed in cytosol by TOP down-regulation, suggesting that AUR is presumably required for the constriction. Taken together, TOP is likely to induce protein phosphorylation of MD/PD machinery components to accomplish mitochondrial and chloroplast divisions prior to nuclear division by transferring of AUR. Concurrently, the involvement of TOP in mitochondrial and chloroplast division, given the presence of TOP homologs throughout eukaryotes, may illuminate the original function of C-terminal kinesin-like proteins.
Collapse
|
73
|
Haematococcus as a promising cell factory to produce recombinant pharmaceutical proteins. Mol Biol Rep 2012; 39:9931-9. [DOI: 10.1007/s11033-012-1861-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 06/13/2012] [Indexed: 10/28/2022]
|
74
|
Kanesaki Y, Imamura S, Minoda A, Tanaka K. External light conditions and internal cell cycle phases coordinate accumulation of chloroplast and mitochondrial transcripts in the red alga Cyanidioschyzon merolae. DNA Res 2012; 19:289-303. [PMID: 22518007 PMCID: PMC3372377 DOI: 10.1093/dnares/dss013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 03/14/2012] [Indexed: 01/08/2023] Open
Abstract
The mitochondria and chloroplasts in plant cells are originated from bacterial endosymbioses, and they still replicate their own genome and divide in a similar manner as their ancestors did. It is thus likely that the organelle transcription is coordinated with its proliferation cycle. However, this possibility has not extensively been explored to date, because in most plant cells there are many mitochondria and chloroplasts that proliferate asynchronously. It is generally believed that the gene transfer from the organellar to nuclear genome has enabled nuclear control of the organelle functions during the evolution of eukaryotic plant cells. Nevertheless, no significant relationship has been reported between the organelle transcriptome and the host cell cycle even in Chlamydomonas reinhardtii. While the organelle proliferation cycle is not coordinated with the cell cycle in vascular plants, in the unicellular red alga Cyanidioschyzon merolae that contains only one mitochondrion, one chloroplast, and one nucleus per cell, each of the organelles is known to proliferate at a specific phase of the cell cycle. Here, we show that the expression of most of the organelle genes is highly coordinated with the cell cycle phases as well as with light regimes in clustering analyses. In addition, a strong correlation was observed between the gene expression profiles in the mitochondrion and chloroplast, resulting in the identification of a network of functionally related genes that are co-expressed during organelle proliferation.
Collapse
Affiliation(s)
- Yu Kanesaki
- Genome Research Center, Nodai Research Institute, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo156-8502, Japan
- Laboratory of Molecular Genetics, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Sousuke Imamura
- Laboratory of Molecular Genetics, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo112-8551, Japan
- Chemical Resources Laboratory, Tokyo Institute of Technology, 4259-R1-29 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Ayumi Minoda
- Laboratory of Molecular Genetics, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Horinouchi, Tokyo192-0392, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8572, Japan
| | - Kan Tanaka
- Laboratory of Molecular Genetics, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Chemical Resources Laboratory, Tokyo Institute of Technology, 4259-R1-29 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba 271-8510, Japan
| |
Collapse
|
75
|
Imoto Y, Kuroiwa H, Ohnuma M, Kawano S, Kuroiwa T. Identification of Peroxisome-Dividing Ring in Cyanidioschyzon merolae Based on Organelle Partner Hypothesis. CYTOLOGIA 2012. [DOI: 10.1508/cytologia.77.515] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Yuuta Imoto
- Faculty of Science, Rikkyo University
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo
| | - Haruko Kuroiwa
- Faculty of Science, Rikkyo University
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency
| | - Mio Ohnuma
- Faculty of Science, Rikkyo University
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency
| | - Shigeyuki Kawano
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo
| | - Tsuneyoshi Kuroiwa
- Faculty of Science, Rikkyo University
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency
| |
Collapse
|
76
|
Kuroiwa T, Ohnuma M, Imoto Y, Misumi O, Fujiwara T, Miyagishima SY, Sumiya N, Kuroiwa H. Lipid Droplets of Bacteria, Algae and Fungi and a Relationship between their Contents and Genome Sizes as Revealed by BODIPY and DAPI Staining. CYTOLOGIA 2012. [DOI: 10.1508/cytologia.77.289] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Tsuneyoshi Kuroiwa
- Faculty of Science, Rikkyo University
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency
| | - Mio Ohnuma
- Faculty of Science, Rikkyo University
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency
| | - Yuuta Imoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency
| | - Osami Misumi
- Department of Biological Science and Chemistry, Faculty of Science, Yamaguchi University
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency
| | | | - Shin-ya Miyagishima
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency
- Symbiosis and Cell Evolution Laboratory Center for Frontier Research, National Institute of Genetics
| | - Nobuko Sumiya
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency
- Symbiosis and Cell Evolution Laboratory Center for Frontier Research, National Institute of Genetics
| | - Haruko Kuroiwa
- Faculty of Science, Rikkyo University
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency
| |
Collapse
|
77
|
Watanabe S, Ohnuma M, Sato J, Yoshikawa H, Tanaka K. Utility of a GFP reporter system in the red alga Cyanidioschyzon merolae. J GEN APPL MICROBIOL 2011; 57:69-72. [PMID: 21478650 DOI: 10.2323/jgam.57.69] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Satoru Watanabe
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | |
Collapse
|
78
|
Ohnuma M, Kuroiwa T, Tanaka K. Optimization of cryopreservation conditions for the unicellular red alga Cyanidioschyzon merolae. J GEN APPL MICROBIOL 2011; 57:137-43. [DOI: 10.2323/jgam.57.137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
79
|
Specht E, Miyake-Stoner S, Mayfield S. Micro-algae come of age as a platform for recombinant protein production. Biotechnol Lett 2010; 32:1373-83. [PMID: 20556634 PMCID: PMC2941057 DOI: 10.1007/s10529-010-0326-5] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 06/07/2010] [Indexed: 12/03/2022]
Abstract
A complete set of genetic tools is still being developed for the micro-alga Chlamydomonas reinhardtii. Yet even with this incomplete set, this photosynthetic single-celled plant has demonstrated significant promise as a platform for recombinant protein expression. In recent years, techniques have been developed that allow for robust expression of genes from both the nuclear and plastid genome. With these advances, many research groups have examined the pliability of this and other micro-algae as biological machines capable of producing recombinant peptides and proteins. This review describes recent successes in recombinant protein production in Chlamydomonas, including production of complex mammalian therapeutic proteins and monoclonal antibodies at levels sufficient for production at economic parity with existing production platforms. These advances have also shed light on the details of algal protein production at the molecular level, and provide insight into the next steps for optimizing micro-algae as a useful platform for the production of therapeutic and industrially relevant recombinant proteins.
Collapse
Affiliation(s)
- Elizabeth Specht
- San Diego Center for Algae Biotechnology, Department of Biological Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0368 USA
| | - Shigeki Miyake-Stoner
- San Diego Center for Algae Biotechnology, Department of Biological Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0368 USA
| | - Stephen Mayfield
- San Diego Center for Algae Biotechnology, Department of Biological Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0368 USA
| |
Collapse
|
80
|
Specht E, Miyake-Stoner S, Mayfield S. Micro-algae come of age as a platform for recombinant protein production. Biotechnol Lett 2010; 32:1373-1383. [PMID: 20556634 DOI: 10.1007/s10529-010-0326-325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 06/07/2010] [Indexed: 05/28/2023]
Abstract
A complete set of genetic tools is still being developed for the micro-alga Chlamydomonas reinhardtii. Yet even with this incomplete set, this photosynthetic single-celled plant has demonstrated significant promise as a platform for recombinant protein expression. In recent years, techniques have been developed that allow for robust expression of genes from both the nuclear and plastid genome. With these advances, many research groups have examined the pliability of this and other micro-algae as biological machines capable of producing recombinant peptides and proteins. This review describes recent successes in recombinant protein production in Chlamydomonas, including production of complex mammalian therapeutic proteins and monoclonal antibodies at levels sufficient for production at economic parity with existing production platforms. These advances have also shed light on the details of algal protein production at the molecular level, and provide insight into the next steps for optimizing micro-algae as a useful platform for the production of therapeutic and industrially relevant recombinant proteins.
Collapse
Affiliation(s)
- Elizabeth Specht
- San Diego Center for Algae Biotechnology, Department of Biological Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0368, USA
| | | | | |
Collapse
|
81
|
Imamura S, Terashita M, Ohnuma M, Maruyama S, Minoda A, Weber APM, Inouye T, Sekine Y, Fujita Y, Omata T, Tanaka K. Nitrate assimilatory genes and their transcriptional regulation in a unicellular red alga Cyanidioschyzon merolae: genetic evidence for nitrite reduction by a sulfite reductase-like enzyme. PLANT & CELL PHYSIOLOGY 2010; 51:707-17. [PMID: 20375110 DOI: 10.1093/pcp/pcq043] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Cyanidioschyzon merolae is a unicellular red alga living in acid hot springs, which is able to grow on ammonium, as well as nitrate as sole nitrogen source. Based on the complete genome sequence, proteins for nitrate utilization, nitrate transporter (NRT) and nitrate reductase (NR), were predicted to be encoded by the neighboring nuclear genes CMG018C and CMG019C, respectively, but no typical nitrite reductase (NiR) gene was found by similarity searches. On the other hand, two candidate genes for sulfite reductase (SiR) were found, one of which (CMG021C) is located next to the above-noted nitrate-related genes. Given that transcripts of CMG018C, CMG019C and CMG021C accumulate in nitrate-containing media, but are repressed by ammonium, and that SiR and NiR are structurally related enzymes, we hypothesized that the CMG021C gene product functions as an NiR in C. merolae. To test this hypothesis, we developed a method for targeted gene disruption in C. merolae. In support of our hypothesis, we found that a CMG021G null mutant in comparison with the parental strain showed decreased cell growth in nitrate-containing but not in ammonium-containing media. Furthermore, expression of CMG021C in the nirA mutant of a cyanobacterium, Leptolyngbya boryana (formerly Plectonema boryanum), could genetically complement the NiR defect. Immunofluorescent analysis indicated the localization of CMG021C in chloroplasts, and hence we propose an overall scheme for nitrate assimilation in C. merolae.
Collapse
Affiliation(s)
- Sousuke Imamura
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032 Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Fujiwara T, Kuroiwa H, Yagisawa F, Ohnuma M, Yoshida Y, Yoshida M, Nishida K, Misumi O, Watanabe S, Tanaka K, Kuroiwa T. The coiled-coil protein VIG1 is essential for tethering vacuoles to mitochondria during vacuole inheritance of Cyanidioschyzon merolae. THE PLANT CELL 2010; 22:772-81. [PMID: 20348431 PMCID: PMC2861457 DOI: 10.1105/tpc.109.070227] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Vacuoles/lysosomes function in endocytosis and in storage and digestion of metabolites. These organelles are inherited by the daughter cells in eukaryotes. However, the mechanisms of this inheritance are poorly understood because the cells contain multiple vacuoles that behave randomly. The primitive red alga Cyanidioschyzon merolae has a minimum set of organelles. Here, we show that C. merolae contains about four vacuoles that are distributed equally between the daughter cells by binding to dividing mitochondria. Binding is mediated by VIG1, a 30-kD coiled-coil protein identified by microarray analyses and immunological assays. VIG1 appears on the surface of free vacuoles in the cytosol and then tethers the vacuoles to the mitochondria. The vacuoles are released from the mitochondrion in the daughter cells following VIG1 digestion. Suppression of VIG1 by antisense RNA disrupted the migration of vacuoles. Thus, VIG1 is essential for tethering vacuoles to mitochondria during vacuole inheritance in C. merolae.
Collapse
Affiliation(s)
- Takayuki Fujiwara
- Research Information Center for Extremophile, Rikkyo University, Toshima-ku 171-8501, Japan
| | - Haruko Kuroiwa
- Research Information Center for Extremophile, Rikkyo University, Toshima-ku 171-8501, Japan
| | - Fumi Yagisawa
- Research Information Center for Extremophile, Rikkyo University, Toshima-ku 171-8501, Japan
| | - Mio Ohnuma
- Research Information Center for Extremophile, Rikkyo University, Toshima-ku 171-8501, Japan
| | - Yamato Yoshida
- Research Information Center for Extremophile, Rikkyo University, Toshima-ku 171-8501, Japan
| | - Masaki Yoshida
- Research Information Center for Extremophile, Rikkyo University, Toshima-ku 171-8501, Japan
| | - Keiji Nishida
- Research Information Center for Extremophile, Rikkyo University, Toshima-ku 171-8501, Japan
| | - Osami Misumi
- Research Information Center for Extremophile, Rikkyo University, Toshima-ku 171-8501, Japan
| | - Satoru Watanabe
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| | - Kan Tanaka
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba 271-8510, Japan
| | - Tsuneyoshi Kuroiwa
- Research Information Center for Extremophile, Rikkyo University, Toshima-ku 171-8501, Japan
- Address correspondence to
| |
Collapse
|
83
|
MORI T, KUBO T, HOSOYA K. Basic Chromatographic Properties of Polyethylene Glycol-type, Polymer-based Monolithic Columns. ANAL SCI 2010; 26:311-6. [PMID: 20215679 DOI: 10.2116/analsci.26.311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Tomoko MORI
- Graduate School of Environmental Studies, Tohoku University
| | - Takuya KUBO
- Graduate School of Environmental Studies, Tohoku University
| | - Ken HOSOYA
- Graduate School of Environmental Studies, Tohoku University
| |
Collapse
|
84
|
Yagisawa F, Nishida K, Yoshida M, Ohnuma M, Shimada T, Fujiwara T, Yoshida Y, Misumi O, Kuroiwa H, Kuroiwa T. Identification of novel proteins in isolated polyphosphate vacuoles in the primitive red alga Cyanidioschyzon merolae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 60:882-93. [PMID: 19709388 DOI: 10.1111/j.1365-313x.2009.04008.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plant vacuoles are organelles bound by a single membrane, and involved in various functions such as intracellular digestion, metabolite storage, and secretion. To understand their evolution and fundamental mechanisms, characterization of vacuoles in primitive plants would be invaluable. Algal cells often contain polyphosphate-rich compartments, which are thought to be the counterparts of seed plant vacuoles. Here, we developed a method for isolating these vacuoles from Cyanidioschyzon merolae, and identified their proteins by MALDI TOF-MS. The vacuoles were of unexpectedly high density, and were highly enriched at the boundary between 62 and 80% w/v iodixanol by density-gradient ultracentrifugation. The vacuole-containing fraction was subjected to SDS-PAGE, and a total of 46 proteins were identified, including six lytic enzymes, 13 transporters, six proteins for membrane fusion or vesicle trafficking, five non-lytic enzymes, 13 proteins of unknown function, and three miscellaneous proteins. Fourteen proteins were homologous to known vacuolar or lysosomal proteins from seed plants, yeasts or mammals, suggesting functional and evolutionary relationships between C. merolae vacuoles and these compartments. The vacuolar localization of four novel proteins, namely CMP249C (metallopeptidase), CMJ260C (prenylated Rab receptor), CMS401C (ABC transporter) and CMT369C (o-methyltransferase), was confirmed by labeling with specific antibodies or transient expression of hemagglutinin-tagged proteins. The results presented here provide insights into the proteome of C. merolae vacuoles and shed light on their functions, as well as indicating new features.
Collapse
Affiliation(s)
- Fumi Yagisawa
- Research Information Center for Extremophiles, Rikkyo (St Paul's) University, Nishi-Ikebukuro, Tokyo 171-8501, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
R2R3-type MYB transcription factor, CmMYB1, is a central nitrogen assimilation regulator in Cyanidioschyzon merolae. Proc Natl Acad Sci U S A 2009; 106:12548-53. [PMID: 19592510 DOI: 10.1073/pnas.0902790106] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plant cells sense environmental nitrogen levels and alter their gene expression accordingly to survive; however, the underlying regulatory mechanisms still remains to be elucidated. Here, we identified and characterized a transcription factor that is responsible for expression of nitrogen assimilation genes in a unicellular red alga Cyanidioschyzon merolae. DNA microarray and Northern blot analyses revealed that transcript of the gene encoding CmMYB1, an R2R3-type MYB transcription factor, increased 1 h after nitrogen depletion. The CmMYB1 protein started to accumulate after 2 h and reached a peak after 4 h after nitrogen depletion, correlating with the expression of key nitrogen assimilation genes, such as CmNRT, CmNAR, CmNIR, CmAMT, and CmGS. Although the transcripts of these nitrogen assimilation genes were detected in nitrate-grown cells, they disappeared upon the addition of preferred nitrogen source such as ammonium or glutamine, suggesting the presence of a nitrogen catabolite repression (NCR) mechanism. The nitrogen depletion-induced gene expression disappeared in a CmMYB1-null mutant, and the mutant showed decreased cell viability after exposure to the nitrogen-depleted conditions compared with the parental strain. Chromatin immunoprecipitation analysis demonstrated that CmMYB1 specifically occupied these nitrogen-responsive promoter regions only under nitrogen-depleted conditions, and electrophoretic mobility shift assays using crude cell extract revealed specific binding of CmMYB1, or a complex containing CmMYB1, to these promoters. Thus, the presented results indicated that CmMYB1 is a central nitrogen regulator in C. merolae.
Collapse
|
86
|
Ohnuma M, Misumi O, Fujiwara T, Watanabe S, Tanaka K, Kuroiwa T. Transient gene suppression in a red alga, Cyanidioschyzon merolae 10D. PROTOPLASMA 2009; 236:107-112. [PMID: 19533298 DOI: 10.1007/s00709-009-0056-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 05/27/2009] [Indexed: 05/27/2023]
Abstract
Antisense suppression is a powerful tool to analyze gene function. In this study, we show that antisense RNA suppressed the expression of a target gene in the unicellular red alga, Cyanidioschyzon merolae. In this study, the antisense strand of the catalase gene was cloned and inserted into an expression vector upstream of the GFP gene. This plasmid was introduced into C. merolae cells using a polyethylene glycol-mediated transformation protocol. Using the expression of GFP as a marker of transformed cells, the expression of catalase was examined by immunocytochemistry. Decreased expression of catalase was observed in cells that were transformed with the antisense strand of the catalase gene. These results indicate the utility of this antisense suppression system.
Collapse
Affiliation(s)
- Mio Ohnuma
- Research Information Center for Extremophile, Rikkyo University, 3-34-1 Nishiikebukuro, Toshima-ku, Tokyo, 171-8501, Japan.
| | | | | | | | | | | |
Collapse
|
87
|
The plant-specific TFIIB-related protein, pBrp, is a general transcription factor for RNA polymerase I. EMBO J 2009; 27:2317-27. [PMID: 18668124 DOI: 10.1038/emboj.2008.151] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 07/07/2008] [Indexed: 01/19/2023] Open
Abstract
TFIIB and BRF are general transcription factors (GTFs) for eukaryotic RNA polymerases II and III, respectively, and have important functions in transcriptional initiation. In this study, the third type of TFIIB-related protein, pBrp, found in plant lineages was characterized in the red alga Cyanidioschyzon merolae. Chromatin immunoprecipitation analysis revealed that CmpBrp specifically occupied the rDNA promoter region in vivo, and the occupancy was proportional to de novo 18S rRNA synthesis. Consistently, CmpBrp and CmTBP cooperatively bound the rDNA promoter region in vitro, and the binding site was identified at a proximal downstream region of the transcription start point. alpha-Amanitin-resistant transcription from the rDNA promoter in crude cell lysate was severely inhibited by the CmpBrp antibody and was also inhibited when DNA template with a mutated CmpBrp-CmTBP binding site was used. CmpBrp was shown to co-immunoprecipitate and co-localize with the RNA polymerase I subunit, CmRPA190, in the cell. Thus, together with comparative studies of Arabidopsis pBrp, we concluded that pBrp is a GTF for RNA polymerase I in plant cells.
Collapse
|