51
|
Wang M, Xie Z, Xu J, Feng Z. TWEAK/Fn14 axis in respiratory diseases. Clin Chim Acta 2020; 509:139-148. [PMID: 32526219 DOI: 10.1016/j.cca.2020.06.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/31/2020] [Accepted: 06/03/2020] [Indexed: 02/08/2023]
Abstract
Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) is a well known multifunctional cytokine extensively distributed in cell types and tissues. Accumulating evidence has shown that TWEAK binding to the receptor factor-inducible 14 (Fn14) participates in diverse pathologic processes including cell proliferation and death, angiogenesis, carcinogenesis and inflammation. Interestingly, alterations of intracellular signaling cascades are correlated to the development of respiratory disease. Recently, a several lines of evidence suggests that TWEAK in lung tissues are closely associated with these signaling pathways. In this review, we explore if TWEAK could provide a novel therapeutic strategy for managing respiratory disease in general and pulmonary arterial hypertension (PAH), obstructive sleep apnea syndrome (OSAS), asthma, idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD) and non-small cell lung cancer (NSCLC), specifically.
Collapse
Affiliation(s)
- Min Wang
- Department of Otorhinolaryngology, University of South China Affiliated Nanhua Hospital, Hengyang 421002, China
| | - Zhijuan Xie
- Department of Nephrology, The First Affiliated Hospital of University of South China, Hengyang 421001, China
| | - Jin Xu
- School of Pharmaceutical Sciences, Changsha Medical University, Changsha 410219, Hunan, China.
| | - Zhuyu Feng
- Department of Critical Care Medicine, University of South China Affiliated Nanhua Hospital, Hengyang 421002, China.
| |
Collapse
|
52
|
Sharma B, Dabur R. Role of Pro-inflammatory Cytokines in Regulation of Skeletal Muscle Metabolism: A Systematic Review. Curr Med Chem 2020; 27:2161-2188. [DOI: 10.2174/0929867326666181129095309] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 12/18/2022]
Abstract
Background:
Metabolic pathways perturbations lead to skeletal muscular atrophy in the
cachexia and sarcopenia due to increased catabolism. Pro-inflammatory cytokines induce the catabolic
pathways that impair the muscle integrity and function. Hence, this review primarily concentrates
on the effects of pro-inflammatory cytokines in regulation of skeletal muscle metabolism.
Objective:
This review will discuss the role of pro-inflammatory cytokines in skeletal muscles during
muscle wasting conditions. Moreover, the coordination among the pro-inflammatory cytokines
and their regulated molecular signaling pathways which increase the protein degradation will be
discussed.
Results:
During normal conditions, pro-inflammatory cytokines are required to balance anabolism
and catabolism and to maintain normal myogenesis process. However, during muscle wasting their
enhanced expression leads to marked destructive metabolism in the skeletal muscles. Proinflammatory
cytokines primarily exert their effects by increasing the expression of calpains and E3
ligases as well as of Nf-κB, required for protein breakdown and local inflammation. Proinflammatory
cytokines also locally suppress the IGF-1and insulin functions, hence increase the
FoxO activation and decrease the Akt function, the central point of carbohydrates lipid and protein
metabolism.
Conclusion:
Current advancements have revealed that the muscle mass loss during skeletal muscular
atrophy is multifactorial. Despite great efforts, not even a single FDA approved drug is available
in the market. It indicates the well-organized coordination among the pro-inflammatory cytokines
that need to be further understood and explored.
Collapse
Affiliation(s)
- Bhawana Sharma
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana-124001, India
| | - Rajesh Dabur
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana-124001, India
| |
Collapse
|
53
|
Marceca GP, Londhe P, Calore F. Management of Cancer Cachexia: Attempting to Develop New Pharmacological Agents for New Effective Therapeutic Options. Front Oncol 2020; 10:298. [PMID: 32195193 PMCID: PMC7064558 DOI: 10.3389/fonc.2020.00298] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/20/2020] [Indexed: 12/17/2022] Open
Abstract
Cancer cachexia (CC) is a multifactorial syndrome characterized by systemic inflammation, uncontrolled weight loss and dramatic metabolic alterations. This includes myofibrillar protein breakdown, increased lipolysis, insulin resistance, elevated energy expediture, and reduced food intake, hence impairing the patient's response to anti-cancer therapies and quality of life. While a decade ago the syndrome was considered incurable, over the most recent years much efforts have been put into the study of such disease, leading to the development of potential therapeutic strategies. Several important improvements have been reached in the management of CC from both the diagnostic-prognostic and the pharmacological viewpoint. However, given the heterogeneity of the disease, it is impossible to rely only on single variables to properly treat patients presenting this metabolic syndrome. Moreover, the cachexia symptoms are strictly dependent on the type of tumor, stage and the specific patient's response to cancer therapy. Thus, the attempt to translate experimentally effective therapies into the clinical practice results in a great challenge. For this reason, it is of crucial importance to further improve our understanding on the interplay of molecular mechanisms implicated in the onset and progression of CC, giving the opportunity to develop new effective, safe pharmacological treatments. In this review we outline the recent knowledge regarding cachexia mediators and pathways involved in skeletal muscle (SM) and adipose tissue (AT) loss, mainly from the experimental cachexia standpoint, then retracing the unimodal treatment options that have been developed to the present day.
Collapse
Affiliation(s)
- Gioacchino P Marceca
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Priya Londhe
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Federica Calore
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
54
|
Howard EE, Pasiakos SM, Blesso CN, Fussell MA, Rodriguez NR. Divergent Roles of Inflammation in Skeletal Muscle Recovery From Injury. Front Physiol 2020; 11:87. [PMID: 32116792 PMCID: PMC7031348 DOI: 10.3389/fphys.2020.00087] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 01/27/2020] [Indexed: 12/23/2022] Open
Abstract
A transient increase in local pro-inflammatory cytokine expression following skeletal muscle injury mediates the repair and regeneration of damaged myofibers through myogenesis. Regenerative capacity is diminished and muscle wasting occurs, however, when intramuscular inflammatory signaling is exceedingly high or persists chronically. An excessive and persistent inflammatory response to muscle injury may therefore impair recovery by limiting the repair of damaged tissue and triggering muscle atrophy. The concentration-dependent activation of different downstream signaling pathways by several pro-inflammatory cytokines in cell and animal models support these opposing roles of post-injury inflammation. Understanding these molecular pathways is essential in developing therapeutic strategies to attenuate excessive inflammation and accelerate functional recovery and muscle mass accretion following muscle damage. This is especially relevant given the observation that basal levels of intramuscular inflammation and the inflammatory response to muscle damage are not uniform across all populations, suggesting certain individuals may be more susceptible to an excessive inflammatory response to injury that limits recovery. This narrative review explores the opposing roles of intramuscular inflammation in muscle regeneration and muscle protein turnover. Factors contributing to an exceedingly high inflammatory response to damage and age-related impairments in regenerative capacity are also considered.
Collapse
Affiliation(s)
- Emily E Howard
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, United States.,Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, United States.,Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Stefan M Pasiakos
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Christopher N Blesso
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, United States
| | - Maya A Fussell
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, United States
| | - Nancy R Rodriguez
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
55
|
Zhou XL, Wei XJ, Li SP, Ma HL, Zhao Y. Lung-protective ventilation worsens ventilator-induced diaphragm atrophy and weakness. Respir Res 2020; 21:16. [PMID: 31924204 PMCID: PMC6954632 DOI: 10.1186/s12931-020-1276-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/02/2020] [Indexed: 02/07/2023] Open
Abstract
Background Lung–protective ventilation (LPV) has been found to minimize the risk of ventilator–induced lung injury (VILI). However, whether LPV is able to diminish ventilator–induced diaphragm dysfunction (VIDD) remains unknown. This study was designed to test the hypothesis that LPV protects the diaphragm against VIDD. Methods Adult male Wistar rats received either conventional mechanical (tidal volume [VT]: 10 ml/kg, positive end–expiratory pressure [PEEP]: 2 cm H2O; CV group) or lung-protective (VT: 5 ml/kg, PEEP: 10 cm H2O; LPV group) ventilation for 12 h. Then, diaphragms and lungs were collected for biochemical and histological analyses. Transcriptome sequencing (RNA–seq) was performed to determine the differentially expressed genes in the diaphragms between groups. Results Our results suggested that LPV was associated with diminished pulmonary injuries and reduced oxidative stress compared with the effects of the CV strategy in rats. However, animals that received LPV showed increased protein degradation, decreased cross–sectional areas (CSAs) of myofibers, and reduced forces of the diaphragm compared with the same parameters in animals receiving CV (p < 0.05). In addition, the LPV group showed a higher level of oxidative stress in the diaphragm than the CV group (p < 0.05). Moreover, RNA–seq and western blots revealed that the peroxisome proliferator–activated receptor γ coactivator–1alpha (PGC–1α), a powerful reactive oxygen species (ROS) inhibitor, was significantly downregulated in the LPV group compared with its expression in the CV group (p < 0.05). Conclusions Compared with the CV strategy, the LPV strategy did not protect the diaphragm against VIDD in rats. In contrast, the LPV strategy worsened VIDD by inducing oxidative stress together with the downregulation of PGC–1α in the diaphragm. However, further studies are required to determine the roles of PGC–1α in ventilator-induced diaphragmatic oxidative stress.
Collapse
Affiliation(s)
- Xian-Long Zhou
- Emergency Center, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Xiao-Jun Wei
- Emergency Center, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Shao-Ping Li
- Emergency Center, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Hao-Li Ma
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Yan Zhao
- Emergency Center, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China.
| |
Collapse
|
56
|
Tran MP, Tsutsumi R, Erberich JM, Chen KD, Flores MD, Cooper KL. Evolutionary loss of foot muscle during development with characteristics of atrophy and no evidence of cell death. eLife 2019; 8:50645. [PMID: 31612857 PMCID: PMC6855805 DOI: 10.7554/elife.50645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 10/01/2019] [Indexed: 12/19/2022] Open
Abstract
Many species that run or leap across sparsely vegetated habitats, including horses and deer, evolved the severe reduction or complete loss of foot muscles as skeletal elements elongated and digits were lost, and yet the developmental mechanisms remain unknown. Here, we report the natural loss of foot muscles in the bipedal jerboa, Jaculus jaculus. Although adults have no muscles in their feet, newborn animals have muscles that rapidly disappear soon after birth. We were surprised to find no evidence of apoptotic or necrotic cell death during stages of peak myofiber loss, countering well-supported assumptions of developmental tissue remodeling. We instead see hallmarks of muscle atrophy, including an ordered disassembly of the sarcomere associated with upregulation of the E3 ubiquitin ligases, MuRF1 and Atrogin-1. We propose that the natural loss of muscle, which remodeled foot anatomy during evolution and development, involves cellular mechanisms that are typically associated with disease or injury. Intrinsic muscles are a group of muscles deep inside the hands and feet. They help to control the precise movements required, for example, for a pianist to play their instrument or for certain animals to climb with remarkable agility. Some animals, such as horses and deer, have evolved in such a way that they no longer grasp objects with hands and feet. Where intrinsic muscles were once present in the hands and feet of their ancestors, these animals now have strong ligaments that prevent over-extension of the wrist and ankle joints during hard landings. Given their size, it is difficult to study horses and deer in the laboratory and understand how they lost their intrinsic muscles during evolution. Tran et al. therefore focused on a small rodent called the lesser Egyptian jerboa, which also displays long legs with strong ligaments and no intrinsic muscles. Newborn jerboas have foot muscles that look very much like the intrinsic muscles found in mice, but these muscles disappear within 4 days of birth. A mechanism called programmed cell death is often responsible for specific tissues disappearing during development, but the experiments of Tran et al. revealed that this was not the case in jerboas. Instead, their intrinsic muscles were degraded by processes triggered by genes that disassemble underused muscles. In mice and humans, fasting, nerve injuries, or immobility trigger this type of muscle degradation, but in jerboas these processes appear to be a normal part of development. This unexpected discovery shows that development and disease-like processes are linked, and that more studies of nontraditional research animals may help scientists better understand these connections.
Collapse
Affiliation(s)
- Mai P Tran
- Division of Biological Sciences, Section of Cellular and Developmental Biology, University of California, San Diego, La Jolla, United States
| | - Rio Tsutsumi
- Division of Biological Sciences, Section of Cellular and Developmental Biology, University of California, San Diego, La Jolla, United States
| | - Joel M Erberich
- Division of Biological Sciences, Section of Cellular and Developmental Biology, University of California, San Diego, La Jolla, United States
| | - Kevin D Chen
- Division of Biological Sciences, Section of Cellular and Developmental Biology, University of California, San Diego, La Jolla, United States
| | - Michelle D Flores
- Division of Biological Sciences, Section of Cellular and Developmental Biology, University of California, San Diego, La Jolla, United States
| | - Kimberly L Cooper
- Division of Biological Sciences, Section of Cellular and Developmental Biology, University of California, San Diego, La Jolla, United States
| |
Collapse
|
57
|
Bottoni A, dos Anjos Garnes S, Lasakosvitsch F, Bottoni A. Sarcopenia: an overview and analysis of molecular mechanisms. ACTA ACUST UNITED AC 2019. [DOI: 10.1186/s41110-019-0097-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
58
|
Walton RG, Kosmac K, Mula J, Fry CS, Peck BD, Groshong JS, Finlin BS, Zhu B, Kern PA, Peterson CA. Human skeletal muscle macrophages increase following cycle training and are associated with adaptations that may facilitate growth. Sci Rep 2019; 9:969. [PMID: 30700754 PMCID: PMC6353900 DOI: 10.1038/s41598-018-37187-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 11/23/2018] [Indexed: 12/26/2022] Open
Abstract
Skeletal muscle macrophages participate in repair and regeneration following injury. However, their role in physiological adaptations to exercise is unexplored. We determined whether endurance exercise training (EET) alters macrophage content and characteristics in response to resistance exercise (RE), and whether macrophages are associated with other exercise adaptations. Subjects provided vastus lateralis biopsies before and after one bout of RE, after 12 weeks of EET (cycling), and after a final bout of RE. M2 macrophages (CD11b+/CD206+) did not increase with RE, but increased in response to EET (P < 0.01). Increases in M2 macrophages were positively correlated with fiber hypertrophy (r = 0.49) and satellite cells (r = 0.47). M2c macrophages (CD206+/CD163+) also increased following EET (P < 0.001), and were associated with fiber hypertrophy (r = 0.64). Gene expression was quantified using NanoString. Following EET, the change in M2 macrophages was positively associated with changes in HGF, IGF1, and extracellular matrix genes. EET decreased expression of IL6 (P < 0.05), C/EBPβ (P < 0.01), and MuRF (P < 0.05), and increased expression of IL-4 (P < 0.01), TNFα (P < 0.01) and the TWEAK receptor FN14 (P < 0.05). The change in FN14 gene expression was inversely associated with changes in C/EBPβ (r = -0.58) and MuRF (r = -0.46) following EET. In cultured human myotubes, siRNA inhibition of FN14 increased expression of C/EBPβ (P < 0.05) and MuRF (P < 0.05). Our data suggest that macrophages contribute to the muscle response to EET, potentially including modulation of TWEAK-FN14 signaling.
Collapse
Affiliation(s)
- R Grace Walton
- College of Health Sciences and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA.
| | - Kate Kosmac
- College of Health Sciences and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Jyothi Mula
- College of Health Sciences and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Christopher S Fry
- Deptartment of Nutrition & Metabolism, School of Health Professions, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Bailey D Peck
- College of Health Sciences and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Jason S Groshong
- Department of Health Professions, University of Central Florida, Orlando, Florida, USA
| | - Brian S Finlin
- Department of Medicine, Division of Endocrinology, and Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, Kentucky, USA
| | - Beibei Zhu
- Department of Medicine, Division of Endocrinology, and Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, Kentucky, USA
| | - Philip A Kern
- Department of Medicine, Division of Endocrinology, and Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, Kentucky, USA
| | - Charlotte A Peterson
- College of Health Sciences and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
59
|
Genome-wide association analysis for body weight identifies candidate genes related to development and metabolism in rainbow trout (Oncorhynchus mykiss). Mol Genet Genomics 2019; 294:563-571. [PMID: 30635785 DOI: 10.1007/s00438-018-1518-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 12/03/2018] [Indexed: 01/12/2023]
Abstract
Growth is one of the most important traits from both a physiological and economic perspective in aquaculture species. Thus, identifying the genomic regions and genes underpinning genetic variation for this trait is of particular interest in several fish species, including rainbow trout. In this work, we perform a genome-wide association study (GWAS) to identify the genomic regions associated with body weight at tagging (BWT) and at 18 months (BW18M) using a dense SNP panel (57 k) and 4596 genotyped rainbow trout from 105 full-sib families belonging to a Chilean breeding population. Analysis was performed by means of single-step GBLUP approach. Genetic variance explained by 20 adjacent SNP windows across the whole genome is reported. To further explore candidate genes, we focused on windows that explained the highest proportion of genetic variance in the top 10 chromosomes for each trait. The main window from the top 10 chromosomes was explored by BLAST using the first and last SNP position of each window to determine the target nucleotide sequence. As expected, the percentage of genetic variance explained by windows was relatively low, due to the polygenic nature of body weight. The most important genomic region for BWT and BW18M were located on chromosomes 15 and 24 and they explained 2.14% and 3.02% of the genetic variance for each trait, respectively. Candidate genes including several growth factors, genes involved in development of skeletal muscle and bone tissue and nutrient metabolism were identified within the associated regions for both traits BWT and BW18M. These results indicate that body weight is polygenic in nature in rainbow trout, with the most important loci explaining as much as 3% of the genetic variance for the trait. The genes identified here represent good candidates for further functional validation to uncover biological mechanisms underlying variation for growth in rainbow trout.
Collapse
|
60
|
|
61
|
Sabadine MA, Russo TL, Luna GF, Oliveira Leal AM. Effects of mesenchymal stromal cells on type 1 diabetes mellitus rat muscles. Muscle Nerve 2018; 58:583-591. [PMID: 30028527 DOI: 10.1002/mus.26196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 06/05/2018] [Accepted: 06/09/2018] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Type 1 diabetes mellitus (DM) causes marked skeletal muscle atrophy. Mesenchymal stromal cells (MSC) are an attractive therapy to avoid diabetic complications because of their ability to modify the microenvironment at sites of tissue injury. The objective of this study was to evaluate the effects of MSC transplantation on muscle adaptation caused by diabetes. METHODS DM was induced by streptozotocin (STZ), and the diabetic animals received systemic MSC transplantation. The von Frey test and footprint analysis were used to assess sensation and sensory motor performance, respectively. Tibialis anterior muscles were investigated by morphology; molecular markers atrogin-1/muscle RING-finger protein-1, nuclear factor κB/p38 mitogen-activated protein kinase, tumor necrosis-like weak inducer of apoptosis/fibroblast growth factor-inducible 14, myostatin, myogenic differentiation 1, and insulin-like growth factor 1 were also assessed. RESULTS MSC transplantation improved sensation and walking performance and also decreased muscle fibrosis in DM rats by modulating atrogenes but did not prevent muscle atrophy. DISCUSSION MSCs can reduce muscle and functional complications that result from type 1 DM in rats. Muscle Nerve 58: 583-591, 2018.
Collapse
Affiliation(s)
- Maria Augusta Sabadine
- Department of Medicine, Federal University of São Carlos, Rodovia Washington Luís, Km 235 - SP310, CEP: 13565-905, São Carlos/SP, Brazil
| | - Thiago Luiz Russo
- Department of Physical Therapy, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Genoveva Flores Luna
- Department of Medicine, Federal University of São Carlos, Rodovia Washington Luís, Km 235 - SP310, CEP: 13565-905, São Carlos/SP, Brazil
| | - Angela Merice Oliveira Leal
- Department of Medicine, Federal University of São Carlos, Rodovia Washington Luís, Km 235 - SP310, CEP: 13565-905, São Carlos/SP, Brazil
| |
Collapse
|
62
|
Abstract
Adequate skeletal muscle plasticity is an essential element for our well-being, and compromised muscle function can drastically affect quality of life, morbidity, and mortality. Surprisingly, however, skeletal muscle remains one of the most under-medicated organs. Interventions in muscle diseases are scarce, not only in neuromuscular dystrophies, but also in highly prevalent secondary wasting pathologies such as sarcopenia and cachexia. Even in other diseases that exhibit a well-established risk correlation of muscle dysfunction due to a sedentary lifestyle, such as type 2 diabetes or cardiovascular pathologies, current treatments are mostly targeted on non-muscle tissues. In recent years, a renewed focus on skeletal muscle has led to the discovery of various novel drug targets and the design of new pharmacological approaches. This review provides an overview of the current knowledge of the key mechanisms involved in muscle wasting conditions and novel pharmacological avenues that could ameliorate muscle diseases.
Collapse
Affiliation(s)
- Regula Furrer
- Biozentrum, University of Basel, 4056 Basel, Switzerland; ,
| | | |
Collapse
|
63
|
de Sire R, Rizzatti G, Ingravalle F, Pizzoferrato M, Petito V, Lopetuso L, Graziani C, de Sire A, Mentella MC, Mele MC, Gasbarrini A, Scaldaferri F. Skeletal muscle-gut axis: emerging mechanisms of sarcopenia for intestinal and extra intestinal diseases. MINERVA GASTROENTERO 2018; 64:351-362. [PMID: 30016852 DOI: 10.23736/s1121-421x.18.02511-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In recent years, there has been an increasing interest on muscle wasting, considering the reduction of quality of life and the increase of morbidity and mortality associated. Sarcopenia and cachexia represent two conditions of reduction of muscle mass, sharing several elements involved in their pathogenesis, such as systemic inflammation, impaired muscle protein synthesis, increased muscle apoptosis, mitochondrial dysfunction in skeletal muscle tissue and insulin resistance. These features often characterize cancer, inactivity or denervation, but also inflammatory diseases, such as chronic obstructive pulmonary disease, renal failure, cardiac failure, rheumatoid arthritis, inflammatory bowel disease and aging in general. The gastrointestinal tract and gut microbiota are thought to be deeply associated with muscle function and metabolism, although the exact mechanisms that link gut with skeletal muscle are still not well known. This review summarized the potential pathways linking gut with muscle, in particular in conditions as sarcopenia and cachexia. The main emerging pathways implicated in the skeletal muscle-gut axis are: the myostatin/activin signaling pathway, the IGF1/PI3K/AKT/mTOR signaling pathway, which results suppressed, the NF-kB signaling pathway and the FOXO signaling pathway. Further researches in this field are necessary to better explain the linkage between gut microbiota and muscle wasting and the possible emerging therapies associated.
Collapse
Affiliation(s)
- Roberto de Sire
- Istituto di Patologia Speciale Medica, Sacred Heart Catholic University, Rome, Italy
| | - Gianenrico Rizzatti
- Istituto di Patologia Speciale Medica, Sacred Heart Catholic University, Rome, Italy
| | - Fabio Ingravalle
- Istituto di Patologia Speciale Medica, Sacred Heart Catholic University, Rome, Italy
| | - Marco Pizzoferrato
- Istituto di Patologia Speciale Medica, Sacred Heart Catholic University, Rome, Italy.,UOC Medicina Interna e Gastroenterologia, Area Gastroenterologia e Oncologia Medica, Dipartimento di Scienze Gastroenterologiche, Endocrino-Metaboliche e Nefro-Urologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Valentina Petito
- Istituto di Patologia Speciale Medica, Sacred Heart Catholic University, Rome, Italy.,UOC Medicina Interna e Gastroenterologia, Area Gastroenterologia e Oncologia Medica, Dipartimento di Scienze Gastroenterologiche, Endocrino-Metaboliche e Nefro-Urologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Loris Lopetuso
- Istituto di Patologia Speciale Medica, Sacred Heart Catholic University, Rome, Italy.,UOC Medicina Interna e Gastroenterologia, Area Gastroenterologia e Oncologia Medica, Dipartimento di Scienze Gastroenterologiche, Endocrino-Metaboliche e Nefro-Urologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Cristina Graziani
- Istituto di Patologia Speciale Medica, Sacred Heart Catholic University, Rome, Italy.,UOC Medicina Interna e Gastroenterologia, Area Gastroenterologia e Oncologia Medica, Dipartimento di Scienze Gastroenterologiche, Endocrino-Metaboliche e Nefro-Urologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Alessandro de Sire
- Department of Medical and Surgical Specialties and Dentistry, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Chiara Mentella
- Clinical Nutrition, A. Gemelli Polyclinic Foundation and Institute for Research and Care, Rome, Italy
| | - Maria Cristina Mele
- Clinical Nutrition, A. Gemelli Polyclinic Foundation and Institute for Research and Care, Rome, Italy
| | - Antonio Gasbarrini
- Istituto di Patologia Speciale Medica, Sacred Heart Catholic University, Rome, Italy.,UOC Medicina Interna e Gastroenterologia, Area Gastroenterologia e Oncologia Medica, Dipartimento di Scienze Gastroenterologiche, Endocrino-Metaboliche e Nefro-Urologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Franco Scaldaferri
- Istituto di Patologia Speciale Medica, Sacred Heart Catholic University, Rome, Italy - .,UOC Medicina Interna e Gastroenterologia, Area Gastroenterologia e Oncologia Medica, Dipartimento di Scienze Gastroenterologiche, Endocrino-Metaboliche e Nefro-Urologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
64
|
Das NA, Carpenter AJ, Yoshida T, Kumar SA, Gautam S, Mostany R, Izadpanah R, Kumar A, Mummidi S, Siebenlist U, Chandrasekar B. TRAF3IP2 mediates TWEAK/TWEAKR-induced pro-fibrotic responses in cultured cardiac fibroblasts and the heart. J Mol Cell Cardiol 2018; 121:107-123. [PMID: 29981796 DOI: 10.1016/j.yjmcc.2018.07.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/20/2018] [Accepted: 07/03/2018] [Indexed: 12/19/2022]
Abstract
Persistent inflammation promotes development and progression of heart failure (HF). TWEAK (TNF-Related WEAK Inducer Of Apoptosis), a NF-κB- and/or AP-1-responsive proinflammatory cytokine that signals via TWEAK receptor (TWEAKR), is expressed at high levels in human and preclinical models of HF. Since the adapter molecule TRAF3IP2 (TRAF3 Interacting Protein 2) is an upstream regulator of various proinflammatory pathways, including those activated by NF-κB and AP-1, we hypothesized that targeting TRAF3IP2 inhibits TWEAK-induced proinflammatory and pro-fibrotic responses in vitro and in vivo. Consistent with the hypothesis, forced expression of TRAF3IP2 upregulated TWEAK and its receptor expression in cultured adult mouse cardiac fibroblasts (CF). Further, exogenous TWEAK upregulated TRAF3IP2 expression in a time- and dose-dependent manner, suggesting a positive-feedback regulation of TRAF3IP2 and TWEAK. TWEAK also promoted TRAF3IP2 nuclear translocation. Confirming its critical role in TWEAK signaling, silencing TRAF3IP2 inhibited TWEAK autoregulation, TWEAKR upregulation, p38 MAPK, NF-κB and AP-1 activation, inflammatory cytokine expression, MMP and TIMP1 activation, collagen expression and secretion, and importantly, proliferation and migration. Recapitulating these in vitro results, continuous infusion of TWEAK for 7 days increased systolic blood pressure (SBP), upregulated TRAF3IP2 expression, activated p38 MAPK, NF-κB and AP-1, induced the expression of multiple proinflammatory and pro-fibrotic mediators, and interstitial fibrosis in hearts of wild type mice. These proinflammatory and pro-fibrotic changes occurred in conjunction with myocardial hypertrophy and contractile dysfunction. Importantly, genetic ablation of TRAF3IP2 inhibited these TWEAK-induced adverse cardiac changes independent of increases in SBP, indicating that TRAF3IP2 plays a causal role, and thus a therapeutic target, in chronic inflammatory and fibro-proliferative diseases.
Collapse
Affiliation(s)
- Nitin A Das
- Cardiothoracic Surgery, University of Texas Health Science Center, San Antonio, TX, USA
| | - Andrea J Carpenter
- Cardiothoracic Surgery, University of Texas Health Science Center, San Antonio, TX, USA
| | - Tadashi Yoshida
- Medicine/Cardiology, University of Missouri School of Medicine, Columbia, MO, USA
| | - Senthil A Kumar
- Medicine/Cardiology, University of Missouri School of Medicine, Columbia, MO, USA
| | - Sandeep Gautam
- Medicine/Cardiology, University of Missouri School of Medicine, Columbia, MO, USA
| | - Ricardo Mostany
- Department of Pharmacology, Tulane University Health Science Center, New Orleans, LA, USA
| | - Reza Izadpanah
- Medicine/Heart and Vascular Institute, Tulane University Health Science Center, New Orleans, LA, USA
| | - Ashok Kumar
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Srinivas Mummidi
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, The University of Texas Rio Grande Valley School of Medicine, Edinburg, TX, USA
| | | | - Bysani Chandrasekar
- Medicine/Cardiology, University of Missouri School of Medicine, Columbia, MO, USA; Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
65
|
Pasiakos SM, Berryman CE, Carbone JW, Murphy NE, Carrigan CT, Bamman MM, Ferrando AA, Young AJ, Margolis LM. Muscle Fn14 gene expression is associated with fat-free mass retention during energy deficit at high altitude. Physiol Rep 2018; 6:e13801. [PMID: 30009538 PMCID: PMC6046641 DOI: 10.14814/phy2.13801] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 06/28/2018] [Indexed: 12/22/2022] Open
Abstract
Intramuscular factors that modulate fat-free mass (FFM) loss in lowlanders exposed to energy deficit during high-altitude (HA) sojourns remain unclear. Muscle inflammation may contribute to FFM loss at HA by inducing atrophy and inhibiting myogenesis via the tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) and its receptor, fibroblast growth factor-inducible protein 14 (Fn14). To explore whether muscle inflammation modulates FFM loss reportedly developing during HA sojourns, muscle inflammation, myogenesis, and proteolysis were assessed in 16 men at sea level (SL) and following 21 days of energy deficit (-1862 ± 525 kcal/days) at high altitude (HA, 4300 m). Total body mass (TBM), FFM, and fat mass (FM) were assessed using DEXA. Gene expression and proteolytic enzymatic activities were assessed in muscle samples collected at rest at SL and HA. Participants lost 7.2 ± 1.8 kg TBM (P < 0.05); 43 ± 30% and 57 ± 30% of the TBM lost was FFM and FM, respectively. Fn14, TWEAK, TNF alpha-receptor (TNFα-R), TNFα, MYOGENIN, and paired box protein-7 (PAX7) were upregulated (P < 0.05) at HA compared to SL. Stepwise linear regression identified that Fn14 explained the highest percentage of variance in FFM loss (r2 = 0.511, P < 0.05). Dichotomization of volunteers into HIGH and LOW Fn14 gene expression indicated HIGH lost less FFM and more FM (28 ± 28% and 72 ± 28%, respectively) as a proportion of TBM loss than LOW (58 ± 26% and 42 ± 26%; P < 0.05) at HA. MYOGENIN gene expression was also greater for HIGH versus LOW (P < 0.05). These data suggest that heightened Fn14 gene expression is not catabolic and may protect FFM during HA sojourns.
Collapse
Affiliation(s)
- Stefan M. Pasiakos
- Military Nutrition DivisionU.S. Army Research Institute of Environmental MedicineNatickMassachusetts
| | - Claire E. Berryman
- Military Nutrition DivisionU.S. Army Research Institute of Environmental MedicineNatickMassachusetts
- Oak Ridge Institute of Science and EducationOak RidgeTennessee
| | - John W. Carbone
- Oak Ridge Institute of Science and EducationOak RidgeTennessee
- School of Health SciencesEastern Michigan UniversityYpsilantiMichigan
| | - Nancy E. Murphy
- Military Nutrition DivisionU.S. Army Research Institute of Environmental MedicineNatickMassachusetts
| | - Christopher T. Carrigan
- Military Nutrition DivisionU.S. Army Research Institute of Environmental MedicineNatickMassachusetts
| | - Marcas M. Bamman
- Department of Cell, Developmental, and Integrative BiologyUniversity of Alabama at BirminghamBirminghamAlabama
| | - Arny A. Ferrando
- Department of GeriatricsThe Center for Translational Research in Aging & LongevityDonald W. Reynolds Institute of AgingUniversity of Arkansas for Medical SciencesLittle RockArkansas
| | - Andrew J. Young
- Military Nutrition DivisionU.S. Army Research Institute of Environmental MedicineNatickMassachusetts
- Oak Ridge Institute of Science and EducationOak RidgeTennessee
| | - Lee M. Margolis
- Military Nutrition DivisionU.S. Army Research Institute of Environmental MedicineNatickMassachusetts
- Oak Ridge Institute of Science and EducationOak RidgeTennessee
| |
Collapse
|
66
|
Yates DT, Petersen JL, Schmidt TB, Cadaret CN, Barnes TL, Posont RJ, Beede KA. ASAS-SSR Triennnial Reproduction Symposium: Looking Back and Moving Forward-How Reproductive Physiology has Evolved: Fetal origins of impaired muscle growth and metabolic dysfunction: Lessons from the heat-stressed pregnant ewe. J Anim Sci 2018; 96:2987-3002. [PMID: 29701769 PMCID: PMC6095381 DOI: 10.1093/jas/sky164] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 04/24/2018] [Indexed: 12/11/2022] Open
Abstract
Intrauterine growth restriction (IUGR) is the second leading cause of perinatal mortality and predisposes offspring to metabolic disorders at all stages of life. Muscle-centric fetal adaptations reduce growth and yield metabolic parsimony, beneficial for IUGR fetal survival but detrimental to metabolic health after birth. Epidemiological studies have reported that IUGR-born children experience greater prevalence of insulin resistance and obesity, which progresses to diabetes, hypertension, and other metabolic disorders in adulthood that reduce quality of life. Similar adaptive programming in livestock results in decreased birth weights, reduced and inefficient growth, decreased carcass merit, and substantially greater mortality rates prior to maturation. High rates of glucose consumption and metabolic plasticity make skeletal muscle a primary target for nutrient-sparing adaptations in the IUGR fetus, but at the cost of its contribution to proper glucose homeostasis after birth. Identifying the mechanisms underlying IUGR pathophysiology is a fundamental step in developing treatments and interventions to improve outcomes in IUGR-born humans and livestock. In this review, we outline the current knowledge regarding the adaptive restriction of muscle growth and alteration of glucose metabolism that develops in response to progressively exacerbating intrauterine conditions. In addition, we discuss the evidence implicating developmental changes in β adrenergic and inflammatory systems as key mechanisms for dysregulation of these processes. Lastly, we highlight the utility and importance of sheep models in developing this knowledge.
Collapse
Affiliation(s)
- Dustin T Yates
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Jessica L Petersen
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Ty B Schmidt
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Caitlin N Cadaret
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Taylor L Barnes
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Robert J Posont
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Kristin A Beede
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| |
Collapse
|
67
|
S-allyl cysteine inhibits TNFα-induced skeletal muscle wasting through suppressing proteolysis and expression of inflammatory molecules. Biochim Biophys Acta Gen Subj 2018; 1862:895-906. [DOI: 10.1016/j.bbagen.2017.12.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/15/2017] [Accepted: 12/26/2017] [Indexed: 12/20/2022]
|
68
|
Molecular Mechanism of the "Babysitter" Procedure for Nerve Regeneration and Muscle Preservation in Peripheral Nerve Repair in a Rat Model. Ann Plast Surg 2018; 78:704-711. [PMID: 27984220 DOI: 10.1097/sap.0000000000000952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To investigate the molecular mechanism of nerve "babysitter" for nerve regeneration and muscle preservation in peripheral nerve repair. METHODS Eighty rats were equalized into 4 groups: peroneal nerve transected, group A received no treatment; group B underwent end-to-end repair; group C underwent end-to-side "babysitter" with donor epineurial window; group D underwent end-to-side "babysitter" with 40% donor neurectomy. During second-stage procedure, end-to-end neurorrhaphies were executed in groups A, C, and D. Expression of Insulin-like growth factor (IGF)-1 in spinal cord and IGF-1, TNF-like weak inducer of apoptosis (TWEAK), and Fn14 in anterior tibial muscles were evaluated by histopathology at 4-, 8-, 12-, and 24-week timepoints postoperatively. RESULTS At 4 weeks, group D expressed comparable IGF-1 with group B, and greater value than groups A and C in spinal cord. By 24 weeks, groups B and D showed higher values than groups A and C. Insulin-like growth factor 1 in muscles were greater in groups C and D than in groups A and B at 4 weeks, and comparable in all groups at 24 weeks. At 4 weeks, immunoreactive scores of TWEAK were 9.00 ± 0, 3.00 ± 0, 6.75 ± 0.75, and 6.75 ± 0.75, respectively. No differences were noticed in all groups by 24 weeks. At 4 weeks, Fn14 were similar in groups A, C, and D, but lower in group B. Group D showed comparable Fn14 with groups B and C, but lower value than group A at 24 weeks. CONCLUSIONS End-to-side nerve "babysitter" in peripheral nerve could promote fiber regeneration and muscle preservation by regulating expression of IGF-1 and TWEAK-Fn14. End-to-side "babysitter" with partial donor neurectomy could achieve comparable effects with end-to-end repair.
Collapse
|
69
|
Abstract
Muscle is primarily known for its mechanical roles in locomotion, maintenance of posture, and regulation of cardiac and respiratory function. There are numerous medical conditions that adversely affect muscle, myopathies that disrupt muscle development, regeneration and protein turnover to detrimental effect. Skeletal muscle is also a vital secretory organ that regulates thermogenesis, inflammatory signaling and directs context specific global metabolic changes in energy substrate preference on a daily basis. Myopathies differ in the causative factors that drive them but share common features including severe reduction in quality of life and significantly increased mortality all due irrefutably to the loss of muscle mass. Thus far clinically viable approaches for preserving muscle proteins and stimulating new muscle growth without unwanted side effects or limited efficacy has been elusive. Over the last few decades, evidence has emerged through in vitro and in vivo studies that suggest the nuclear receptors REV-ERB and ROR might modulate pathways involved in myogenesis and mitochondrial biogenesis. Hinting that REV-ERB and ROR might be targeted to treat myopathies. However there is still a need for substantial investigation into the roles of these nuclear receptors in in vivo rodent models of degenerative muscle diseases and acute injury. Although exciting, REV-ERB and ROR have somewhat confounding roles in muscle physiology and therefore more studies utilizing in vivo models of skeletal muscle myopathies are needed. In this review we highlight the molecular forces driving some of the major degenerative muscular diseases and showcase two promising molecular targets that may have the potential to treat myopathies: ROR and REV-ERB.
Collapse
MESH Headings
- Animals
- Humans
- Molecular Targeted Therapy/methods
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiology
- Muscle, Skeletal/physiopathology
- Muscular Diseases/metabolism
- Muscular Diseases/physiopathology
- Muscular Diseases/therapy
- Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism
- Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Receptors, Cytoplasmic and Nuclear/metabolism
- Repressor Proteins/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Ryan D Welch
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, United States of America
| | | |
Collapse
|
70
|
Sequera C, Vázquez-Carballo A, Arechederra M, Fernández-Veledo S, Porras A. TWEAK promotes migration and invasion in MEFs through a mechanism dependent on ERKs activation and Fibulin 3 down-regulation. J Cell Physiol 2017; 233:968-978. [PMID: 28383766 DOI: 10.1002/jcp.25942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 03/30/2017] [Indexed: 11/10/2022]
Abstract
TWEAK regulates multiple physio-pathological processes in fibroblasts such as fibrosis. It also induces migration and invasion in tumors and it can activate p38 MAPK in various cell types. Moreover, p38α MAPK promotes migration and invasion in several cancer cells types and in mouse embryonic fibroblasts (MEFs). However, it remains unknown if TWEAK could promote migration in fibroblasts and whether p38α MAPK might play a role. Our results reveal that TWEAK activates ERKs, Akt, and p38α/β MAPKs and reduces secreted Fibulin 3 in MEFs. TWEAK also increases migration and invasion in wt and p38α deficient MEFs, which indicates that p38α MAPK is not required to mediate these effects. In contrast, ERKs inhibition significantly decreases TWEAK-induced migration and Fibulin 3 knock-down mimics TWEAK effect. These results indicate that both ERKs activation and Fibulin 3 down-regulation would contribute to mediate TWEAK pro-migratory effect. In fact, the additional regulation of ERKs and/or p38β as a consequence of Fibulin 3 decrease might be also involved in the pro-migratory effect of TWEAK in MEFs. In conclusion, our studies uncover novel mechanisms by which TWEAK would favor tissue repair by promoting fibroblasts migration.
Collapse
Affiliation(s)
- Celia Sequera
- Facultad de Farmacia, Departamento de Bioquímica y Biología Molecular II, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Ana Vázquez-Carballo
- Facultad de Farmacia, Departamento de Bioquímica y Biología Molecular II, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - María Arechederra
- Facultad de Farmacia, Departamento de Bioquímica y Biología Molecular II, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Sonia Fernández-Veledo
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.,Hospital Universitari de Tarragona Joan XXIII, IISPV, Universitat Rovira i Virgili, Tarragona, Spain
| | - Almudena Porras
- Facultad de Farmacia, Departamento de Bioquímica y Biología Molecular II, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| |
Collapse
|
71
|
Padrão AI, Figueira ACC, Faustino-Rocha AI, Gama A, Loureiro MM, Neuparth MJ, Moreira-Gonçalves D, Vitorino R, Amado F, Santos LL, Oliveira PA, Duarte JA, Ferreira R. Long-term exercise training prevents mammary tumorigenesis-induced muscle wasting in rats through the regulation of TWEAK signalling. Acta Physiol (Oxf) 2017; 219:803-813. [PMID: 27228549 DOI: 10.1111/apha.12721] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 01/27/2016] [Accepted: 05/24/2016] [Indexed: 12/27/2022]
Abstract
AIM Exercise training has been suggested as a non-pharmacological approach to prevent skeletal muscle wasting and improve muscle function in cancer cachexia. However, little is known about the molecular mechanisms underlying such beneficial effect. In this study, we aimed to, firstly, examine the contribution of TWEAK signalling to cancer-induced skeletal muscle wasting and, secondly, evaluate whether long-term exercise alters TWEAK signalling and prevents muscle wasting. METHODS Female Sprague-Dawley rats were randomly assigned to control and exercise groups. Fifteen animals from each group were exposed to N-Methyl-N-nitrosourea carcinogen. Animals in exercise groups were submitted to moderate treadmill exercise for 35 weeks. After the experimental period, animals were killed and gastrocnemius muscles were harvested for morphological and biochemical analysis. RESULTS We verified that exercise training prevented tumour-induced TWEAK/NF-κB signalling in skeletal muscle with a beneficial impact in fibre cross-sectional area and metabolism. Indeed, 35 weeks of exercise training promoted the upregulation of PGC-1α and oxidative phosphorylation complexes. This exercise-induced muscle remodelling in tumour-bearing animals was associated with less malignant mammary lesions. CONCLUSION Data support the benefits of an active lifestyle for the prevention of muscle wasting secondary to breast cancer, highlighting TWEAK/NF- κB signalling as a potential therapeutic target for the preservation of muscle mass.
Collapse
Affiliation(s)
- A. I. Padrão
- QOPNA; Department of Chemistry; University of Aveiro; Aveiro Portugal
- CIAFEL; Faculty of Sport; University of Porto; Porto Portugal
| | | | - A. I. Faustino-Rocha
- CITAB; Department of Veterinary Sciences; University of Trás-os-Montes e Alto Douro; Vila Real Portugal
| | - A. Gama
- CITAB; Department of Veterinary Sciences; University of Trás-os-Montes e Alto Douro; Vila Real Portugal
| | - M. M. Loureiro
- QOPNA; Department of Chemistry; University of Aveiro; Aveiro Portugal
| | - M. J. Neuparth
- CIAFEL; Faculty of Sport; University of Porto; Porto Portugal
| | - D. Moreira-Gonçalves
- CIAFEL; Faculty of Sport; University of Porto; Porto Portugal
- Department of Physiology and Cardiothoracic Surgery; Faculty of Medicine; University of Porto; Porto Portugal
| | - R. Vitorino
- QOPNA; Department of Chemistry; University of Aveiro; Aveiro Portugal
- Department of Medical Sciences and Institute for Biomedicine - iBiMED; University of Aveiro; Aveiro Portugal
| | - F. Amado
- QOPNA; Department of Chemistry; University of Aveiro; Aveiro Portugal
| | - L. L. Santos
- Experimental Pathology and Therapeutics Group; Portuguese Institute of Oncology; Porto Portugal
| | - P. A. Oliveira
- CITAB; Department of Veterinary Sciences; University of Trás-os-Montes e Alto Douro; Vila Real Portugal
| | - J. A. Duarte
- CIAFEL; Faculty of Sport; University of Porto; Porto Portugal
| | - R. Ferreira
- QOPNA; Department of Chemistry; University of Aveiro; Aveiro Portugal
| |
Collapse
|
72
|
Abstract
Heart failure represents a systemic disease with profound effects on multiple peripheral tissues including skeletal muscle. Within the context of heart failure, perturbations in skeletal muscle physiology, structure, and function strongly contribute to exercise intolerance and the morbidity of this devastating disease. There is growing evidence that chronic heart failure imparts specific pathological changes within skeletal muscle beds resulting in muscle dysfunction and tissue atrophy. Mechanistically, systemic and local inflammatory responses drive critical aspects of this pathology. In this review, we will discuss pathological mechanisms that drive skeletal muscle inflammation and highlight emerging roles for distinct innate immune subsets that reside within damage muscle tissue focusing on the recently described embryonic and monocyte-derived macrophage lineages. Within this context, we will discuss how immune mechanisms can be differentially targeted to stimulate skeletal muscle inflammation, catabolism, fiber atrophy, and regeneration.
Collapse
Affiliation(s)
- Kory J Lavine
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine St. Louis, 660 S. Euclid Ave, Campus Box 8086, St. Louis, MO, 63110, USA.
- Department of Developmental Biology, Washington University School of Medicine St. Louis, St. Louis, MO, 63110, USA.
- Department of Immunology and Pathology, Washington University School of Medicine St. Louis, St. Louis, MO, 63110, USA.
| | - Oscar L Sierra
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine St. Louis, 660 S. Euclid Ave, Campus Box 8086, St. Louis, MO, 63110, USA
| |
Collapse
|
73
|
Zha Y, Qian Q. Protein Nutrition and Malnutrition in CKD and ESRD. Nutrients 2017; 9:nu9030208. [PMID: 28264439 PMCID: PMC5372871 DOI: 10.3390/nu9030208] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/23/2017] [Indexed: 01/28/2023] Open
Abstract
Elevated protein catabolism and protein malnutrition are common in patients with chronic kidney disease (CKD) and end-stage renal disease (ESRD). The underlying etiology includes, but is not limited to, metabolic acidosis intestinal dysbiosis; systemic inflammation with activation of complements, endothelin-1 and renin-angiotensin-aldosterone (RAAS) axis; anabolic hormone resistance; energy expenditure elevation; and uremic toxin accumulation. All of these derangements can further worsen kidney function, leading to poor patient outcomes. Many of these CKD-related derangements can be prevented and substantially reversed, representing an area of great potential to improve CKD and ESRD care. This review integrates known information and recent advances in the area of protein nutrition and malnutrition in CKD and ESRD. Management recommendations are summarized. Thorough understanding the pathogenesis and etiology of protein malnutrition in CKD and ESRD patients will undoubtedly facilitate the design and development of more effective strategies to optimize protein nutrition and improve outcomes.
Collapse
Affiliation(s)
- Yan Zha
- Department of Nephrology, Guizhou Provincial People's Hospital, Guizhou 550002, China.
| | - Qi Qian
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
74
|
Martínez-Miguel P, Medrano-Andrés D, Griera-Merino M, Ortiz A, Rodríguez-Puyol M, Rodríguez-Puyol D, López-Ongil S. Tweak up-regulates endothelin-1 system in mouse and human endothelial cells. Cardiovasc Res 2016; 113:207-221. [DOI: 10.1093/cvr/cvw239] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 10/20/2016] [Accepted: 11/21/2016] [Indexed: 12/21/2022] Open
|
75
|
Bilodeau PA, Coyne ES, Wing SS. The ubiquitin proteasome system in atrophying skeletal muscle: roles and regulation. Am J Physiol Cell Physiol 2016; 311:C392-403. [DOI: 10.1152/ajpcell.00125.2016] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/15/2016] [Indexed: 01/02/2023]
Abstract
Muscle atrophy complicates many diseases as well as aging, and its presence predicts both decreased quality of life and survival. Much work has been conducted to define the molecular mechanisms involved in maintaining protein homeostasis in muscle. To date, the ubiquitin proteasome system (UPS) has been shown to play an important role in mediating muscle wasting. In this review, we have collated the enzymes in the UPS whose roles in muscle wasting have been confirmed through loss-of-function studies. We have integrated information on their mechanisms of action to create a model of how they work together to produce muscle atrophy. These enzymes are involved in promoting myofibrillar disassembly and degradation, activation of autophagy, inhibition of myogenesis as well as in modulating the signaling pathways that control these processes. Many anabolic and catabolic signaling pathways are involved in regulating these UPS genes, but none appear to coordinately regulate a large number of these genes. A number of catabolic signaling pathways appear to instead function by inhibition of the insulin/IGF-I/protein kinase B anabolic pathway. This pathway is a critical determinant of muscle mass, since it can suppress key ubiquitin ligases and autophagy, activate protein synthesis, and promote myogenesis through its downstream mediators such as forkhead box O, mammalian target of rapamycin, and GSK3β, respectively. Although much progress has been made, a more complete inventory of the UPS genes involved in mediating muscle atrophy, their mechanisms of action, and their regulation will be useful for identifying novel therapeutic approaches to this important clinical problem.
Collapse
Affiliation(s)
- Philippe A. Bilodeau
- Department of Medicine, McGill University and Research Institute of the McGill University Health Center, Montreal, Quebec, Canada; and
| | - Erin S. Coyne
- Department of Biochemistry, McGill University and Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Simon S. Wing
- Department of Medicine, McGill University and Research Institute of the McGill University Health Center, Montreal, Quebec, Canada; and
- Department of Biochemistry, McGill University and Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| |
Collapse
|
76
|
Lu L, Huang YF, Chen DX, Wang M, Zou YC, Wan H, Wei LB. Astragalus polysaccharides decrease muscle wasting through Akt/mTOR, ubiquitin proteasome and autophagy signalling in 5/6 nephrectomised rats. JOURNAL OF ETHNOPHARMACOLOGY 2016; 186:125-135. [PMID: 27049295 DOI: 10.1016/j.jep.2016.03.068] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 02/17/2016] [Accepted: 03/31/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Existing evidences suggest that Radix Astragali and its polysaccharides composition (APS) can improve muscle mass, but the mechanisms need more research. AIM OF THE STUDY In this study, we aimed to examine the effects of APS on muscle wasting at molecular level in 5/6 nephrectomised rats. MATERIALS AND METHODS We performed 5/6 nephrectomy or sham operation in 160 6-week-old Sprague-Dawley rats, and feed animals with or without 2% APS for 155 days. After treatment, we compared the change of weight, muscle fibre, protein metabolism, pro-inflammatory factors (TNF-α, IL-15, CRP) and oxidative factors (MDA, SOD) among each group. In addition, we detected the Akt/mTOR, ubiquitin proteasome, autophagy signalling and AA transporters in vivo and in vitro. RESULTS Data in vivo show 2% APS could alleviate weight loss and improve protein metabolism in nephrectomised rats. The levels of serum pro-inflammatory factors and oxidative factors were restored by APS treatment. In molecular levels, APS restored Akt/mTOR, MAFbx, MuRF1, Atg7, LC3B-II/LC3B-I and SLC38A2 which changed in nephrectomised rats. Data in vitro show the optimal dose of APS is 0.2mg/mL, and SLC38A2 siRNA attenuated the effects of 0.2mg/mL APS on atrophy and autophagy. CONCLUSIONS Our results suggested APS could improve muscle wasting through Akt/mTOR, ubiquitin proteasome and autophagy signalling, and SLC38A2 may be one of potential targets.
Collapse
Affiliation(s)
- Lu Lu
- Department of Traditional Chinese Medicine, ZhuJiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; Department of Nephrology, Southern Medical University TCM-Integrated Hospital, Guangzhou 510515, China
| | - Yan-Feng Huang
- Department of Traditional Chinese Medicine, the First People's Hospital of Shunde Affiliated to Southern Medical University, Guangzhou 528300, China
| | - De-Xiu Chen
- Department of Traditional Chinese Medicine, ZhuJiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; Department of Nephrology, Southern Medical University TCM-Integrated Hospital, Guangzhou 510515, China
| | - Ming Wang
- Department of Traditional Chinese Medicine, ZhuJiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yu-Cong Zou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Heng Wan
- Department of Endocrinology, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510280, China
| | - Lian-Bo Wei
- Department of Traditional Chinese Medicine, ZhuJiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; Department of Nephrology, Southern Medical University TCM-Integrated Hospital, Guangzhou 510515, China.
| |
Collapse
|
77
|
Gallagher IJ, Jacobi C, Tardif N, Rooyackers O, Fearon K. Omics/systems biology and cancer cachexia. Semin Cell Dev Biol 2016; 54:92-103. [DOI: 10.1016/j.semcdb.2015.12.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 12/30/2015] [Indexed: 10/22/2022]
|
78
|
Yarar-Fisher C, Bickel CS, Kelly NA, Stec MJ, Windham ST, McLain AB, Oster RA, Bamman MM. Heightened TWEAK-NF-κB signaling and inflammation-associated fibrosis in paralyzed muscles of men with chronic spinal cord injury. Am J Physiol Endocrinol Metab 2016; 310:E754-61. [PMID: 26931128 PMCID: PMC4888537 DOI: 10.1152/ajpendo.00240.2015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 02/18/2016] [Indexed: 12/17/2022]
Abstract
Individuals with long-standing spinal cord injury (SCI) often present with extreme muscle atrophy and impaired glucose metabolism at both the skeletal muscle and whole body level. Persistent inflammation and increased levels of proinflammatory cytokines in the skeletal muscle are potential contributors to dysregulation of glucose metabolism and atrophy; however, to date no study has assessed the effects of long-standing SCI on their expression or intracellular signaling in the paralyzed muscle. In the present study, we assessed the expression of genes (TNFαR, TNFα, IL-6R, IL-6, TWEAK, TWEAK R, atrogin-1, and MuRF1) and abundance of intracellular signaling proteins (TWEAK, TWEAK R, NF-κB, and p-p65/p-50/105) that are known to mediate inflammation and atrophy in skeletal muscle. In addition, based on the effects of muscle inflammation on promotion of skeletal muscle fibrosis, we assessed the degree of fibrosis between myofibers and fascicles in both groups. For further insight into the distribution and variability of muscle fiber size, we also analyzed the frequency distribution of SCI fiber size. Resting vastus lateralis (VL) muscle biopsy samples were taken from 11 men with long-standing SCI (≈22 yr) and compared with VL samples from 11 able-bodied men of similar age. Our results demonstrated that chronic SCI muscle has heightened TNFαR and TWEAK R gene expression and NF-κB signaling (higher TWEAK R and phospho-NF-κB p65) and fibrosis, along with substantial myofiber size heterogeneity, compared with able-bodied individuals. Our data suggest that the TWEAK/TWEAK R/NF-κB signaling pathway may be an important mediator of chronic inflammation and fibrotic adaptation in SCI muscle.
Collapse
Affiliation(s)
- Ceren Yarar-Fisher
- Department of Physical Medicine and Rehabilitation, UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - C Scott Bickel
- Physical Therapy, UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Neil A Kelly
- Departments of Cell, Developmental, and Integrative Biology, UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Michael J Stec
- Departments of Cell, Developmental, and Integrative Biology, UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Samuel T Windham
- Surgery, and UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Amie B McLain
- Department of Physical Medicine and Rehabilitation, UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Robert A Oster
- Medicine/Division of Preventive Medicine, University of Alabama at Birmingham (UAB), Birmingham, Alabama
| | - Marcas M Bamman
- Departments of Cell, Developmental, and Integrative Biology, Medicine/Division of Preventive Medicine, University of Alabama at Birmingham (UAB), Birmingham, Alabama; Geriatric Research, Education, and Clinical Center, Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| |
Collapse
|
79
|
Yadava RS, Foff EP, Yu Q, Gladman JT, Zheng TS, Mahadevan MS. TWEAK Regulates Muscle Functions in a Mouse Model of RNA Toxicity. PLoS One 2016; 11:e0150192. [PMID: 26901467 PMCID: PMC4762946 DOI: 10.1371/journal.pone.0150192] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 02/09/2016] [Indexed: 12/31/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1), the most common form of muscular dystrophy in adults, is caused by toxic RNAs produced from the mutant DM protein kinase (DMPK) gene. DM1 is characterized by progressive muscle wasting and weakness. Therapeutic strategies have mainly focused on targeting the toxic RNA. Previously, we found that fibroblast growth factor-inducible 14 (Fn14), the receptor for TWEAK, is induced in skeletal muscles and hearts of mouse models of RNA toxicity and that blocking TWEAK/Fn14 signaling improves muscle function and histology. Here, we studied the effect of Tweak deficiency in a RNA toxicity mouse model. The genetic deletion of Tweak in these mice significantly reduced muscle damage and improved muscle function. In contrast, administration of TWEAK in the RNA toxicity mice impaired functional outcomes and worsened muscle histopathology. These studies show that signaling via TWEAK is deleterious to muscle in RNA toxicity and support the demonstrated utility of anti-TWEAK therapeutics.
Collapse
Affiliation(s)
- Ramesh S. Yadava
- Department of Pathology, University of Virginia, Charlottesville, VA, United States of America
| | - Erin P. Foff
- Department of Neurology, University of Virginia, Charlottesville, VA, United States of America
| | - Qing Yu
- Department of Pathology, University of Virginia, Charlottesville, VA, United States of America
| | - Jordan T. Gladman
- Department of Pathology, University of Virginia, Charlottesville, VA, United States of America
| | - Timothy S. Zheng
- Department of Immunology, Biogen Idec, Cambridge, MA, United States of America
| | - Mani S. Mahadevan
- Department of Pathology, University of Virginia, Charlottesville, VA, United States of America
- * E-mail:
| |
Collapse
|
80
|
Recent advances in the pathophysiology and management of protein-energy wasting in chronic kidney disease. RENAL REPLACEMENT THERAPY 2016. [DOI: 10.1186/s41100-016-0015-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
81
|
Fan WC, Huang CC, Yang YY, Lin A, Lee KC, Hsieh YC, Fung CP, Hsu HC, Hou MC, Lin HC. Serum pentraxin-3 and tumor necrosis factor-like weak inducer of apoptosis (TWEAK) predict severity of infections in acute decompensated cirrhotic patients. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2016; 50:905-914. [PMID: 26872435 DOI: 10.1016/j.jmii.2015.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 12/20/2015] [Accepted: 12/29/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND Pentraxin-3 (PTX3) and soluble tumor necrosis factor (TNF)-like weak inducer of apoptosis (sTWEAK) are new candidate prognostic markers for comorbidities and mortality in various inflammatory diseases. Acute decompensation of cirrhosis is characterized by acute exacerbation of chronic systemic inflammation. Recently, increased circulating PTX3 levels have been reported in nonalcoholic steatohepatitis patients and positively correlated with disease severity. This study aims to explore serum PTX3/sTWEAK levels and their relationship with clinical outcomes in cirrhotic patients with acute decompensation. METHODS We analyzed serum PTX3/sTWEAK levels in relation to inhospital and 3-month new clinical events and survivals in cirrhotic patients with acute decompensation. RESULTS During admission, serum PTX3/sTWEAK levels were significantly higher in acute decompensated cirrhotic patients than controls and positively correlated with protein-energy wasting (PEW), new infections, long hospital stays, high medical costs, and high mortality. During a 3-month follow-up, acute decompensated cirrhotic patients with high serum PTX3/sTWEAK levels had more episodes of unplanned readmission and high 3-month mortality. On multivariate analysis, high PTX3/sTWEAK levels and PEW were independent risk factors for high mortality. CONCLUSION High serum PTX3/sTWEAK levels and PEW are common in cirrhotic patients with acute decompensation. As compared with low serum PTX3 and sTWEAK cases, cirrhotic patients with high serum PTX3/sTWEAK levels a have higher probability of new severe infections, severe sepsis, septic shock, type 1 hepatorenal syndrome, in-hospital, and 3-month follow-up mortalities. Therefore, high serum PTX3/sTWEAK levels on hospital admission predict disease severity and case fatality in cirrhotic patients with acute decompensation.
Collapse
Affiliation(s)
- Wen-Chien Fan
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Chia-Chang Huang
- Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan; Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ying-Ying Yang
- Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan; Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.
| | - Alan Lin
- Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan; Institute of Oral Biology, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Kuei-Chuan Lee
- Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan; Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yun-Cheng Hsieh
- Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan; Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chang-Phone Fung
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Hui-Chi Hsu
- Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan; Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Chih Hou
- Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan; Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Han-Chieh Lin
- Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan; Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
82
|
Mai M, Jin L, Tian S, Liu R, Huang W, Tang Q, Ma J, Jiang A, Wang X, Hu Y, Wang D, Jiang Z, Li M, Zhou C, Li X. Deciphering the microRNA transcriptome of skeletal muscle during porcine development. PeerJ 2016; 4:e1504. [PMID: 26793416 PMCID: PMC4715453 DOI: 10.7717/peerj.1504] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 11/24/2015] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs (miRNAs) play critical roles in many important biological processes, such as growth and development in mammals. Various studies of porcine muscle development have mainly focused on identifying miRNAs that are important for fetal and adult muscle development; however, little is known about the role of miRNAs in middle-aged muscle development. Here, we present a comprehensive investigation of miRNA transcriptomes across five porcine muscle development stages, including one prenatal and four postnatal stages. We identified 404 known porcine miRNAs, 118 novel miRNAs, and 101 miRNAs that are conserved in other mammals. A set of universally abundant miRNAs was found across the distinct muscle development stages. This set of miRNAs may play important housekeeping roles that are involved in myogenesis. A short time-series expression miner analysis indicated significant variations in miRNA expression across distinct muscle development stages. We also found enhanced differentiation- and morphogenesis-related miRNA levels in the embryonic stage; conversely, apoptosis-related miRNA levels increased relatively later in muscle development. These results provide integral insight into miRNA function throughout pig muscle development stages. Our findings will promote further development of the pig as a model organism for human age-related muscle disease research.
Collapse
Affiliation(s)
- Miaomiao Mai
- College of Animal Science and Technology, Sichuan Agricultural University , Ya'an , People's Republic of China
| | - Long Jin
- College of Animal Science and Technology, Sichuan Agricultural University , Ya'an , People's Republic of China
| | - Shilin Tian
- Novogene Bioinformatics Institute , Beijing , People's Republic of China
| | - Rui Liu
- College of Animal Science and Technology, Sichuan Agricultural University , Ya'an , People's Republic of China
| | - Wenyao Huang
- College of Animal Science and Technology, Sichuan Agricultural University , Ya'an , People's Republic of China
| | - Qianzi Tang
- College of Animal Science and Technology, Sichuan Agricultural University , Ya'an , People's Republic of China
| | - Jideng Ma
- College of Animal Science and Technology, Sichuan Agricultural University , Ya'an , People's Republic of China
| | - An'an Jiang
- College of Animal Science and Technology, Sichuan Agricultural University , Ya'an , People's Republic of China
| | - Xun Wang
- College of Animal Science and Technology, Sichuan Agricultural University , Ya'an , People's Republic of China
| | - Yaodong Hu
- College of Animal Science and Technology, Sichuan Agricultural University , Ya'an , People's Republic of China
| | - Dawei Wang
- Novogene Bioinformatics Institute , Beijing , People's Republic of China
| | - Zhi Jiang
- Novogene Bioinformatics Institute , Beijing , People's Republic of China
| | - Mingzhou Li
- College of Animal Science and Technology, Sichuan Agricultural University , Ya'an , People's Republic of China
| | - Chaowei Zhou
- Department of Aquaculture, Southwest University at Rongchang , Chongqing , People's Republic of China
| | - Xuewei Li
- College of Animal Science and Technology, Sichuan Agricultural University , Ya'an , People's Republic of China
| |
Collapse
|
83
|
Murphy KT. The pathogenesis and treatment of cardiac atrophy in cancer cachexia. Am J Physiol Heart Circ Physiol 2015; 310:H466-77. [PMID: 26718971 DOI: 10.1152/ajpheart.00720.2015] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/29/2015] [Indexed: 02/08/2023]
Abstract
Cancer cachexia is a multifactorial syndrome characterized by a progressive loss of skeletal muscle mass associated with significant functional impairment. In addition to a loss of skeletal muscle mass and function, many patients with cancer cachexia also experience cardiac atrophy, remodeling, and dysfunction, which in the field of cancer cachexia is described as cardiac cachexia. The cardiac alterations may be due to underlying heart disease, the cancer itself, or problems initiated by the cancer treatment and, unfortunately, remains largely underappreciated by clinicians and basic scientists. Despite recent major advances in the treatment of cancer, little progress has been made in the treatment of cardiac cachexia in cancer, and much of this is due to lack of information regarding the mechanisms. This review focuses on the cardiac atrophy associated with cancer cachexia, describing some of the known mechanisms and discussing the current and future therapeutic strategies to treat this condition. Above all else, improved awareness of the condition and an increased focus on identification of mechanisms and therapeutic targets will facilitate the eventual development of an effective treatment for cardiac atrophy in cancer cachexia.
Collapse
Affiliation(s)
- Kate T Murphy
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Victoria, Australia
| |
Collapse
|
84
|
Johnston AJ, Murphy KT, Jenkinson L, Laine D, Emmrich K, Faou P, Weston R, Jayatilleke KM, Schloegel J, Talbo G, Casey JL, Levina V, Wong WWL, Dillon H, Sahay T, Hoogenraad J, Anderton H, Hall C, Schneider P, Tanzer M, Foley M, Scott AM, Gregorevic P, Liu SY, Burkly LC, Lynch GS, Silke J, Hoogenraad NJ. Targeting of Fn14 Prevents Cancer-Induced Cachexia and Prolongs Survival. Cell 2015; 162:1365-78. [PMID: 26359988 DOI: 10.1016/j.cell.2015.08.031] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 04/23/2015] [Accepted: 08/13/2015] [Indexed: 12/16/2022]
Abstract
The cytokine TWEAK and its cognate receptor Fn14 are members of the TNF/TNFR superfamily and are upregulated in tumors. We found that Fn14, when expressed in tumors, causes cachexia and that antibodies against Fn14 dramatically extended lifespan by inhibiting tumor-induced weight loss although having only moderate inhibitory effects on tumor growth. Anti-Fn14 antibodies prevented tumor-induced inflammation and loss of fat and muscle mass. Fn14 signaling in the tumor, rather than host, is responsible for inducing this cachexia because tumors in Fn14- and TWEAK-deficient hosts developed cachexia that was comparable to that of wild-type mice. These results extend the role of Fn14 in wound repair and muscle development to involvement in the etiology of cachexia and indicate that Fn14 antibodies may be a promising approach to treat cachexia, thereby extending lifespan and improving quality of life for cancer patients.
Collapse
Affiliation(s)
- Amelia J Johnston
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia.
| | - Kate T Murphy
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Laura Jenkinson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - David Laine
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Kerstin Emmrich
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Pierre Faou
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Ross Weston
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Krishnath M Jayatilleke
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Jessie Schloegel
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Gert Talbo
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Joanne L Casey
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Vita Levina
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - W Wei-Lynn Wong
- Institute of Experimental Immunology, University of Zürich, Zürich 8057, Switzerland
| | - Helen Dillon
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Tushar Sahay
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Joan Hoogenraad
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Holly Anderton
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia; The Walter and Eliza Hall Institute, Melbourne, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3050, Australia
| | - Cathrine Hall
- The Walter and Eliza Hall Institute, Melbourne, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3050, Australia
| | - Pascal Schneider
- Department of Biochemistry, University of Lausanne, Epalinges 1066, Switzerland
| | - Maria Tanzer
- The Walter and Eliza Hall Institute, Melbourne, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3050, Australia
| | - Michael Foley
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Andrew M Scott
- Olivia Newton-John Cancer Research Institute, Melbourne, VIC 3084, Australia; Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Paul Gregorevic
- Baker IDI Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | | | - Linda C Burkly
- Department of Immunology, Biogen Idec, 14 Cambridge Center, Cambridge, MA 02142, USA
| | - Gordon S Lynch
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - John Silke
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia; The Walter and Eliza Hall Institute, Melbourne, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3050, Australia
| | - Nicholas J Hoogenraad
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia.
| |
Collapse
|
85
|
Carson JA, Hardee JP, VanderVeen BN. The emerging role of skeletal muscle oxidative metabolism as a biological target and cellular regulator of cancer-induced muscle wasting. Semin Cell Dev Biol 2015; 54:53-67. [PMID: 26593326 DOI: 10.1016/j.semcdb.2015.11.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/12/2015] [Indexed: 12/17/2022]
Abstract
While skeletal muscle mass is an established primary outcome related to understanding cancer cachexia mechanisms, considerable gaps exist in our understanding of muscle biochemical and functional properties that have recognized roles in systemic health. Skeletal muscle quality is a classification beyond mass, and is aligned with muscle's metabolic capacity and substrate utilization flexibility. This supplies an additional role for the mitochondria in cancer-induced muscle wasting. While the historical assessment of mitochondria content and function during cancer-induced muscle loss was closely aligned with energy flux and wasting susceptibility, this understanding has expanded to link mitochondria dysfunction to cellular processes regulating myofiber wasting. The primary objective of this article is to highlight muscle mitochondria and oxidative metabolism as a biological target of cancer cachexia and also as a cellular regulator of cancer-induced muscle wasting. Initially, we examine the role of muscle metabolic phenotype and mitochondria content in cancer-induced wasting susceptibility. We then assess the evidence for cancer-induced regulation of skeletal muscle mitochondrial biogenesis, dynamics, mitophagy, and oxidative stress. In addition, we discuss environments associated with cancer cachexia that can impact the regulation of skeletal muscle oxidative metabolism. The article also examines the role of cytokine-mediated regulation of mitochondria function, followed by the potential role of cancer-induced hypogonadism. Lastly, a role for decreased muscle use in cancer-induced mitochondrial dysfunction is reviewed.
Collapse
Affiliation(s)
- James A Carson
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, 921 Assembly St., Columbia, SC, 29208, USA.
| | - Justin P Hardee
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, 921 Assembly St., Columbia, SC, 29208, USA
| | - Brandon N VanderVeen
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, 921 Assembly St., Columbia, SC, 29208, USA
| |
Collapse
|
86
|
Londhe P, Guttridge DC. Inflammation induced loss of skeletal muscle. Bone 2015; 80:131-142. [PMID: 26453502 PMCID: PMC4600538 DOI: 10.1016/j.bone.2015.03.015] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 03/03/2015] [Accepted: 03/18/2015] [Indexed: 12/21/2022]
Abstract
Inflammation is an important contributor to the pathology of diseases implicated in skeletal muscle dysfunction. A number of diseases and disorders including inflammatory myopathies and Chronic Obstructive Pulmonary Disorder (COPD) are characterized by chronic inflammation or elevation of the inflammatory mediators. While these disease states exhibit different pathologies, all have in common the loss of skeletal muscle mass and a deregulated skeletal muscle physiology. Pro-inflammatory cytokines are key contributors to chronic inflammation found in many of these diseases. This section of the review focuses on some of the known inflammatory disorders like COPD, Rheumatoid Arthritis (RA) and inflammatory myopathies that display skeletal muscle atrophy and also provides the reader an overview of the mediators of inflammation, their signaling pathways, and mechanisms of action. This article is part of a Special Issue entitled "Muscle Bone Interactions".
Collapse
Affiliation(s)
- Priya Londhe
- Department of Molecular Virology, Immunology, and Medical Genetics, Human Cancer Genetics Program, Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Denis C Guttridge
- Department of Molecular Virology, Immunology, and Medical Genetics, Human Cancer Genetics Program, Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
87
|
Mendes MCS, Pimentel GD, Costa FO, Carvalheira JBC. Molecular and neuroendocrine mechanisms of cancer cachexia. J Endocrinol 2015; 226:R29-R43. [PMID: 26112046 DOI: 10.1530/joe-15-0170] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/22/2015] [Indexed: 02/05/2023]
Abstract
Cancer and its morbidities, such as cancer cachexia, constitute a major public health problem. Although cancer cachexia has afflicted humanity for centuries, its underlying multifactorial and complex physiopathology has hindered the understanding of its mechanism. During the last few decades we have witnessed a dramatic increase in the understanding of cancer cachexia pathophysiology. Anorexia and muscle and adipose tissue wasting are the main features of cancer cachexia. These apparently independent symptoms have humoral factors secreted by the tumor as a common cause. Importantly, the hypothalamus has emerged as an organ that senses the peripheral signals emanating from the tumoral environment, and not only elicits anorexia but also contributes to the development of muscle and adipose tissue loss. Herein, we review the roles of factors secreted by the tumor and its effects on the hypothalamus, muscle and adipose tissue, as well as highlighting the key targets that are being exploited for cancer cachexia treatment.
Collapse
Affiliation(s)
- Maria Carolina S Mendes
- Department of Internal MedicineFaculty of Medical Sciences, State University of Campinas (UNICAMP), MA: 13083-970 Campinas, Sao Paulo, Brazil
| | - Gustavo D Pimentel
- Department of Internal MedicineFaculty of Medical Sciences, State University of Campinas (UNICAMP), MA: 13083-970 Campinas, Sao Paulo, Brazil
| | - Felipe O Costa
- Department of Internal MedicineFaculty of Medical Sciences, State University of Campinas (UNICAMP), MA: 13083-970 Campinas, Sao Paulo, Brazil
| | - José B C Carvalheira
- Department of Internal MedicineFaculty of Medical Sciences, State University of Campinas (UNICAMP), MA: 13083-970 Campinas, Sao Paulo, Brazil
| |
Collapse
|
88
|
Hao J, Hao C, Zhang L, Liu X, Zhou X, Dun Y, Li H, Li G, Zhao X, An Y, Liu J, Yu G. OM2, a Novel Oligomannuronate-Chromium(III) Complex, Promotes Mitochondrial Biogenesis and Lipid Metabolism in 3T3-L1 Adipocytes via the AMPK-PGC1α Pathway. PLoS One 2015; 10:e0131930. [PMID: 26176781 PMCID: PMC4503612 DOI: 10.1371/journal.pone.0131930] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 06/08/2015] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND In our previous studies, we prepared novel oligomannuronate-chromium(III) complexes (OM2, OM4) from marine alginate, and found that these compounds sensitize insulin action better than oligomannuronate(OM), chromium, and metformin in C2C12 skeletal muscle cells. In the present study, we studied their effects on mitochondrial biogenesis, lipid metabolism, and the underlying molecular mechanisms in differentiated 3T3-L1 adipocytes. METHODOLOGY/PRINCIPAL FINDINGS We firstly used the pGL3-PGC1α and pGL3-ATGL promoter plasmids to compare their effects on PGC1α and ATGL transcription activities. Then mitochondrial biogenesis was quantified by transmission electron microscopy and MitoTracker staining. Mitochondrial oxygen consumption and fatty acid oxidation were measured by an oxygen biosensor system and ³H-labelled water scintillation. The mitochondrial DNA and mRNA involved in mitochondrial biogenesis and lipid oxidation were evaluated by real-time PCR. AMPK together with other protein expression levels were measured by western blotting. The inhibitor compound C and siRNA of PGC1α were used to inhibit the OM2-induced AMPK-PGC1α signaling pathway. And we found that OM2 stimulated AMPK-PGC1α pathway in the 3T3-L1 adipocytes, which were correlated with induced mitochondrial biogenesis, improved mitochondrial function, and reduced lipid accumulation by enhanced fatty acid β-oxidation and augmented ATGL protein expression. CONCLUSIONS/SIGNIFICANCE Our data indicated that the marine oligosaccharide-derived OM2 might represent a novel class of molecules that could be useful for type 2 diabetes prevention and treatment by up-regulating AMPK-PGC1α signaling pathway.
Collapse
Affiliation(s)
- Jiejie Hao
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao, 266003, China
| | - Cui Hao
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao, 266003, China
| | - Lijuan Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao, 266003, China
| | - Xin Liu
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao, 266003, China
| | - Xiaolin Zhou
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao, 266003, China
| | - Yunlou Dun
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao, 266003, China
| | - Haihua Li
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao, 266003, China
| | - Guangsheng Li
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao, 266003, China
| | - Xiaoliang Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao, 266003, China
| | - Yuanyuan An
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao, 266003, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Guangli Yu
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao, 266003, China
- * E-mail:
| |
Collapse
|
89
|
Correia JC, Ferreira DMS, Ruas JL. Intercellular: local and systemic actions of skeletal muscle PGC-1s. Trends Endocrinol Metab 2015; 26:305-14. [PMID: 25934582 DOI: 10.1016/j.tem.2015.03.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 03/29/2015] [Accepted: 03/31/2015] [Indexed: 12/16/2022]
Abstract
Physical exercise promotes complex adaptations in skeletal muscle that benefit various aspects of human health. Many of these adaptations are coordinated at the gene expression level by the concerted action of transcriptional regulators. Peroxisome proliferator-activated receptor gamma (PPARγ) coactivator-1 (PGC-1) proteins play a prominent role in skeletal muscle transcriptional reprogramming induced by numerous stimuli. PGC-1s are master coactivators that orchestrate broad gene programs to modulate fuel supply and mitochondrial function, thus improving cellular energy metabolism. Recent studies unveiled novel biological functions for PGC-1s that extend well beyond skeletal muscle bioenergetics. Here we review recent advances in our understanding of PGC-1 actions in skeletal muscle, with special focus on their systemic effects.
Collapse
Affiliation(s)
- Jorge C Correia
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Duarte M S Ferreira
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Jorge L Ruas
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, SE-17177 Stockholm, Sweden.
| |
Collapse
|
90
|
Abstract
Atrophy occurs in specific muscles with inactivity (for example, during plaster cast immobilization) or denervation (for example, in patients with spinal cord injuries). Muscle wasting occurs systemically in older people (a condition known as sarcopenia); as a physiological response to fasting or malnutrition; and in many diseases, including chronic obstructive pulmonary disorder, cancer-associated cachexia, diabetes, renal failure, cardiac failure, Cushing syndrome, sepsis, burns and trauma. The rapid loss of muscle mass and strength primarily results from excessive protein breakdown, which is often accompanied by reduced protein synthesis. This loss of muscle function can lead to reduced quality of life, increased morbidity and mortality. Exercise is the only accepted approach to prevent or slow atrophy. However, several promising therapeutic agents are in development, and major advances in our understanding of the cellular mechanisms that regulate the protein balance in muscle include the identification of several cytokines, particularly myostatin, and a common transcriptional programme that promotes muscle wasting. Here, we discuss these new insights and the rationally designed therapies that are emerging to combat muscle wasting.
Collapse
|
91
|
Bowerman M, Salsac C, Coque E, Eiselt E, Deschaumes RG, Brodovitch A, Burkly LC, Scamps F, Raoul C. Tweak regulates astrogliosis, microgliosis and skeletal muscle atrophy in a mouse model of amyotrophic lateral sclerosis. Hum Mol Genet 2015; 24:3440-56. [DOI: 10.1093/hmg/ddv094] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 03/10/2015] [Indexed: 11/12/2022] Open
|
92
|
Zhao Q, Yang ST, Wang JJ, Zhou J, Xing SS, Shen CC, Wang XX, Yue YX, Song J, Chen M, Wei YY, Zhou QP, Dai T, Song YH. TNF alpha inhibits myogenic differentiation of C2C12 cells through NF-κB activation and impairment of IGF-1 signaling pathway. Biochem Biophys Res Commun 2015; 458:790-5. [PMID: 25686491 DOI: 10.1016/j.bbrc.2015.02.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 02/05/2015] [Indexed: 01/07/2023]
Abstract
Cachexia or muscle wasting is a common condition that occurs in many chronic diseases. The wasting conditions are characterized by increased levels of TNF-α which was also known as cachectin in the past. But how TNF-α exerts its cachetic effects remains controversial. To clarify this issue, we investigated the impact of TNF-α on C2C12 cell myogenic differentiation. Our results demonstrate that myotube formation was completely inhibited by TNF-α when added to differentiating C2C12 myoblasts. The inhibitory effect of TNF-α on differentiation was accompanied by activation of NF-κB and down regulation of myogenin and Akt. Importantly, TNF-α's effect on differentiation was abolished when IGF-1 was added to the culture. IGF-1 treatment also inhibited NF-κB reporter activity and restored Akt levels. Our data suggest that TNF-α inhibits myogenic differentiation through NF-κB activation and impairment of IGF-1 signaling pathway. The reversal of TNF-α induced inhibition of myogenesis by IGF-1 may have significant therapeutic potential.
Collapse
Affiliation(s)
- Q Zhao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, First Affiliated Hospital, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - S T Yang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, First Affiliated Hospital, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - J J Wang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, First Affiliated Hospital, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China; The Affiliated Wuxi Hospital for Maternal and Child Health Care of Medical University of Nanjing, Wuxi, Jiangsu Province, China
| | - J Zhou
- Department of Surgery, First Affiliated Hospital, Soochow University, Suzhou, China
| | - S S Xing
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, First Affiliated Hospital, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - C C Shen
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, First Affiliated Hospital, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - X X Wang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, First Affiliated Hospital, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Y X Yue
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, First Affiliated Hospital, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - J Song
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, First Affiliated Hospital, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - M Chen
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, First Affiliated Hospital, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Y Y Wei
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, First Affiliated Hospital, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Q P Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, First Affiliated Hospital, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - T Dai
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, First Affiliated Hospital, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Y H Song
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, First Affiliated Hospital, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
| |
Collapse
|
93
|
Rabinovich RA, Drost E, Manning JR, Dunbar DR, Díaz-Ramos M, Lakhdar R, Bastos R, MacNee W. Genome-wide mRNA expression profiling in vastus lateralis of COPD patients with low and normal fat free mass index and healthy controls. Respir Res 2015; 16:1. [PMID: 25567521 PMCID: PMC4333166 DOI: 10.1186/s12931-014-0139-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 10/24/2014] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Chronic Obstructive Pulmonary Disease (COPD) has significant systemic effects beyond the lungs amongst which muscle wasting is a prominent contributor to exercise limitation and an independent predictor of morbidity and mortality. The molecular mechanisms leading to skeletal muscle dysfunction/wasting are not fully understood and are likely to be multi-factorial. The need to develop therapeutic strategies aimed at improving skeletal muscle dysfunction/wasting requires a better understanding of the molecular mechanisms responsible for these abnormalities. Microarrays are powerful tools that allow the investigation of the expression of thousands of genes, virtually the whole genome, simultaneously. We aim at identifying genes and molecular pathways involved in skeletal muscle wasting in COPD. METHODS We assessed and compared the vastus lateralis transcriptome of COPD patients with low fat free mass index (FFMI) as a surrogate of muscle mass (COPDL) (FEV1 30 ± 3.6%pred, FFMI 15 ± 0.2 Kg.m(-2)) with patients with COPD and normal FFMI (COPDN) (FEV1 44 ± 5.8%pred, FFMI 19 ± 0.5 Kg.m(-2)) and a group of age and sex matched healthy controls (C) (FEV1 95 ± 3.9%pred, FFMI 20 ± 0.8 Kg.m(-2)) using Agilent Human Whole Genome 4x44K microarrays. The altered expression of several of these genes was confirmed by real time TaqMan PCR. Protein levels of P21 were assessed by immunoblotting. RESULTS A subset of 42 genes was differentially expressed in COPDL in comparison to both COPDN and C (PFP < 0.05; -1.5 ≥ FC ≥ 1.5). The altered expression of several of these genes was confirmed by real time TaqMan PCR and correlated with different functional and structural muscle parameters. Five of these genes (CDKN1A, GADD45A, PMP22, BEX2, CGREF1, CYR61), were associated with cell cycle arrest and growth regulation and had been previously identified in studies relating muscle wasting and ageing. Protein levels of CDKN1A, a recognized marker of premature ageing/cell cycle arrest, were also found to be increased in COPDL. CONCLUSIONS This study provides evidence of differentially expressed genes in peripheral muscle in COPD patients corresponding to relevant biological processes associated with skeletal muscle wasting and provides potential targets for future therapeutic interventions to prevent loss of muscle function and mass in COPD.
Collapse
Affiliation(s)
- Roberto A Rabinovich
- ELEGI Colt Laboratory, Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, Scotland, EH16 4TJ, UK.
| | - Ellen Drost
- ELEGI Colt Laboratory, Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, Scotland, EH16 4TJ, UK.
| | - Jonathan R Manning
- Centre for Cardiovascular Science, University of Edinburgh, Scotland, UK.
| | - Donald R Dunbar
- Centre for Cardiovascular Science, University of Edinburgh, Scotland, UK.
| | - MaCarmen Díaz-Ramos
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | - Ramzi Lakhdar
- ELEGI Colt Laboratory, Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, Scotland, EH16 4TJ, UK.
| | - Ricardo Bastos
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- Ciber de Enfermedades Respiratorias (CIBERES), Barcelona, Spain.
| | - William MacNee
- ELEGI Colt Laboratory, Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, Scotland, EH16 4TJ, UK.
| |
Collapse
|
94
|
Padrão AI, Moreira-Gonçalves D, Oliveira PA, Teixeira C, Faustino-Rocha AI, Helguero L, Vitorino R, Santos LL, Amado F, Duarte JA, Ferreira R. Endurance training prevents TWEAK but not myostatin-mediated cardiac remodelling in cancer cachexia. Arch Biochem Biophys 2015; 567:13-21. [PMID: 25575785 DOI: 10.1016/j.abb.2014.12.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/09/2014] [Accepted: 12/29/2014] [Indexed: 12/15/2022]
Abstract
Strategies to prevent tumour burden-induced cardiac remodelling that might progress to heart failure are necessary to improve patients' health outcomes and tolerability to cancer therapies. Exercise has been suggested as a measure to prevent cardiac damage; however, its effectiveness on regulating cardiac remodelling secondary to cancer was never addressed. Using an animal model of mammary tumorigenesis, we studied the impact of 35weeks of endurance training on heart, focusing on the signalling pathways modulated by pro-inflammatory and wasting cytokines. The cardiac fibrosis and myofiber disorganization induced by tumour burden was paralleled by the increase of myostatin and TWEAK with the activation of signalling pathways involving Smad-3, NF-κB, TRAF-6 and atrogin-1. The activation of Akt/mTOR was observed in heart from rats with tumours, for which contributed the extracellular matrix. Endurance training prevented the increase of serum and cardiac TWEAK promoted by cancer, as well as the activation of NF-κB, TRAF6, atrogin-1 and p70S6K in heart. Data highlight the impact of exercise in the modulation of signalling pathways activated by wasting cytokines and the resulting outcomes on heart adaptation. Future studies focused on the cellular pathways underlying cardiac remodelling will assist in the development of exercise programs targeting cancer-related cardiac alterations.
Collapse
Affiliation(s)
- Ana Isabel Padrão
- QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Daniel Moreira-Gonçalves
- CIAFEL, Faculty of Sport, University of Porto, Porto, Portugal; Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Paula A Oliveira
- CITAB, Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Catarina Teixeira
- CITAB, Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Ana I Faustino-Rocha
- CITAB, Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Luísa Helguero
- QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Rui Vitorino
- QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
| | - Francisco Amado
- QOPNA, School of Health Sciences, University of Aveiro, Portugal
| | | | - Rita Ferreira
- QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
95
|
Raue U, Jemiolo B, Yang Y, Trappe S. TWEAK-Fn14 pathway activation after exercise in human skeletal muscle: insights from two exercise modes and a time course investigation. J Appl Physiol (1985) 2014; 118:569-78. [PMID: 25539934 DOI: 10.1152/japplphysiol.00759.2014] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The cell surface receptor Fn14/TWEAKR was recently reported by our laboratory to be a prominent marker in the resistance exercise (RE) induced Transcriptome. The purpose of the present study was to extend our Transcriptome findings and investigate the gene and protein expression time course of markers in the TWEAK-Fn14 pathway following RE or run exercise (RUN). Vastus lateralis muscle biopsies were obtained from 6 RE subjects [25 ± 4 yr, 1-repetition maximum (RM): 99 ± 27 kg] pre- and 0, 1, 2, 4, 8, 12, and 24 h post RE (3 × 10 at 70% 1-RM). Lateral gastrocnemius biopsies were obtained from 6 RUN subjects [25 ± 4 yr, maximum oxygen uptake (V̇O2max): 63 ± 8 ml·kg(-1)·min(-1)] pre- and 0, 1, 2, 4, 8, 12, and 24 h after a 30-min RUN (75% V̇O2max). After RE, Fn14 gene and protein expression were induced (P < 0.05) and peaked at 8 and 12 h, respectively. Downstream markers analyzed showed evidence of TWEAK-Fn14 signaling through the alternative NF-κB pathway after RE. After RUN, Fn14 gene expression was induced (P < 0.05) to a much lesser extent and peaked at 24 h. Fn14 protein expression was only measurable on a sporadic basis, and there was weak evidence of alternative NF-κB pathway signaling after RUN. TWEAK gene and protein expression were not influenced by either exercise mode. These are the first human data to show a transient activation of the TWEAK-Fn14 axis in the recovery from exercise, and our data suggest the level of activation is exercise mode dependent. Furthermore, our collective data support a myogenic role for TWEAK-Fn14 through the alternative NF-κB pathway in human skeletal muscle.
Collapse
Affiliation(s)
- Ulrika Raue
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Bozena Jemiolo
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Yifan Yang
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Scott Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| |
Collapse
|
96
|
Yadava RS, Foff EP, Yu Q, Gladman JT, Kim YK, Bhatt KS, Thornton CA, Zheng TS, Mahadevan MS. TWEAK/Fn14, a pathway and novel therapeutic target in myotonic dystrophy. Hum Mol Genet 2014; 24:2035-48. [PMID: 25504044 DOI: 10.1093/hmg/ddu617] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1), the most prevalent muscular dystrophy in adults, is characterized by progressive muscle wasting and multi-systemic complications. DM1 is the prototype for disorders caused by RNA toxicity. Currently, no therapies exist. Here, we identify that fibroblast growth factor-inducible 14 (Fn14), a member of the tumor necrosis factor receptor super-family, is induced in skeletal muscles and hearts of mouse models of RNA toxicity and in tissues from DM1 patients, and that its expression correlates with severity of muscle pathology. This is associated with downstream signaling through the NF-κB pathways. In mice with RNA toxicity, genetic deletion of Fn14 results in reduced muscle pathology and better function. Importantly, blocking TWEAK/Fn14 signaling with an anti-TWEAK antibody likewise improves muscle histopathology and functional outcomes in affected mice. These results reveal new avenues for therapeutic development and provide proof of concept for a novel therapeutic target for which clinically available therapy exists to potentially treat muscular dystrophy in DM1.
Collapse
Affiliation(s)
| | - Erin P Foff
- Department of Neurology, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | - Kirti S Bhatt
- Department of Neurology, University of Rochester, Rochester, NY 14642, USA and
| | - Charles A Thornton
- Department of Neurology, University of Rochester, Rochester, NY 14642, USA and
| | - Timothy S Zheng
- Department of Immunology, Biogen Idec, Cambridge, MA 02142, USA
| | | |
Collapse
|
97
|
Sato S, Ogura Y, Tajrishi MM, Kumar A. Elevated levels of TWEAK in skeletal muscle promote visceral obesity, insulin resistance, and metabolic dysfunction. FASEB J 2014; 29:988-1002. [PMID: 25466899 DOI: 10.1096/fj.14-260703] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Skeletal muscle is responsible for the majority of glucose disposal in body. Impairment in skeletal muscle glucose handling capacity leads to the state of insulin resistance. The TNF-like weak inducer of apoptosis (TWEAK) cytokine has now emerged as a major regulator of skeletal muscle mass and function. However, the role of TWEAK in skeletal muscle metabolic function remains less understood. Here, we demonstrate that with progressive age, skeletal muscle-specific TWEAK-transgenic (TWEAK-Tg) mice gain increased body weight (∼16%) and fat mass (∼64%) and show glucose intolerance and insulin insensitivity. TWEAK-Tg mice also exhibit adipocyte hypertrophy in the epididymal fat. Oxygen uptake, voluntary physical activity, and exercise capacity were significantly reduced in TWEAK-Tg mice compared with controls. Overexpression of TWEAK inhibited (∼31%) 5' AMP-activated protein kinase (AMPK) and reduced (∼31%) the levels of glucose transporter type 4 (GLUT4) without affecting the Akt pathway. TWEAK also inhibited insulin-stimulated glucose uptake (∼32%) and repressed the levels of GLUT4 (∼50%) in cultured myotubes from C57BL6 mice. TWEAK represses the levels of Krüppel-like factor 15; myocyte enhancer factor 2, and peroxisome proliferator-activated receptor-γ coactivator-1α, which are required for the activation of the GLUT4 locus. Collectively our study demonstrates that elevated levels of TWEAK in skeletal muscle cause metabolic abnormalities. Inhibition of TWEAK could be a potential approach to prevent weight gain and type 2 diabetes.
Collapse
Affiliation(s)
- Shuichi Sato
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Yuji Ogura
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Marjan M Tajrishi
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Ashok Kumar
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
98
|
Wajant H. The TWEAK-Fn14 system as a potential drug target. Br J Pharmacol 2014; 170:748-64. [PMID: 23957828 DOI: 10.1111/bph.12337] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/29/2013] [Accepted: 08/12/2013] [Indexed: 12/27/2022] Open
Abstract
Fibroblast growth factor-inducible 14 (Fn14) is a member of the tumour necrosis factor (TNF) receptor family that is induced in a variety of cell types in situations of tissue injury. Fn14 becomes activated by TNF-like weak inducer of apoptosis (TWEAK), a typical member of the TNF ligand family. TWEAK is constitutively expressed by monocytes and some tumour cell lines and also shows cytokine inducible expression in various other cell types. Fn14 activation results in stimulation of signalling pathways culminating in the activation of NFκB transcription factors and various MAPKs but might also trigger the PI3K/Akt pathway and GTPases of the Rho family. In accordance with its tissue damage-associated expression pattern and its pleiotropic proinflammatory signalling capabilities, the TWEAK-Fn14 system has been implicated in a huge number of pathologies. The use of TWEAK- and Fn14-knockout mice identified the TWEAK-Fn14 system as a crucial player in muscle atrophy, cerebral ischaemia, kidney injury, atherosclerosis and infarction as well as in various autoimmune scenarios including experimental autoimmune encephalitis, rheumatoid arthritis and inflammatory bowel disease. Moreover, there is increasing preclinical evidence that Fn14 targeting is a useful option in tumour therapy. Based on a discussion of the signalling capabilities of TWEAK and Fn14, this review is focused on two major issues. On the one hand, on the molecular and cellular basis of the TWEAK/Fn14-related pathological outcomes in the aforementioned diseases and on the other hand, on the preclinical experience that have been made so far with TWEAK and Fn14 targeting drugs.
Collapse
Affiliation(s)
- Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
99
|
Reversal of muscle atrophy by Zhimu-Huangbai herb-pair via Akt/mTOR/FoxO3 signal pathway in streptozotocin-induced diabetic mice. PLoS One 2014; 9:e100918. [PMID: 24968071 PMCID: PMC4072704 DOI: 10.1371/journal.pone.0100918] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 06/02/2014] [Indexed: 12/22/2022] Open
Abstract
Skeletal muscle atrophy is one of the serious complications of diabetes. Zhimu-Huangbai herb-pair (ZB) is widely used in Chinese traditional medicine formulas for treating Xiaoke (known as diabetes) and its complications. However, the effect of ZB on reversal of muscle atrophy and the underlying mechanisms remain unknown. In this research, we investigated the effect and possible mechanisms of ZB on skeletal muscle atrophy in diabetic mice. Animal model of diabetic muscle atrophy was developed by high fat diet (HFD) feeding plus streptozotocin (STZ) injection. After oral adminstration of ZB for 6 weeks, the effects of ZB on reversal of muscle atrophy and the underlying mechanisms were evaluated by biochemical, histological and western blot methods. The skeletal muscle weight, strength, and cross-sectional area of diabetic mice were significantly increased by ZB treatment. Biochemical results showed that ZB treatment reduced the serum glucose level, and elevated the serum insulin-like growth factor 1 (IGF-1) and insulin levels significantly compared with untreated diabetic group. The western blot results showed that ZB activated the mTOR signal pathway, shown as increased phosphorylations (p-) of Akt, mTOR, Raptor, S6K1 and reduced Foxo3 expression compared with the model group. ZB could reverse muscle atrophy in diabetic mice. This may be through activation of mTOR signaling pathway that promotes protein synthesis, and inactivation foxo3 protein that inhibits protein degradation. These findings suggested that ZB may be considered as a potential candidate drug in treatment of diabetic muscle atrophy.
Collapse
|
100
|
Georgantas RW, Streicher K, Greenberg SA, Greenlees LM, Zhu W, Brohawn PZ, Higgs BW, Czapiga M, Morehouse CA, Amato A, Richman L, Jallal B, Yao Y, Ranade K. Inhibition of myogenic microRNAs 1, 133, and 206 by inflammatory cytokines links inflammation and muscle degeneration in adult inflammatory myopathies. Arthritis Rheumatol 2014; 66:1022-33. [PMID: 24757153 DOI: 10.1002/art.38292] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 11/19/2013] [Indexed: 12/23/2022]
Abstract
OBJECTIVE The molecular basis of inflammatory myopathies such as dermatomyositis (DM), polymyositis, and inclusion body myositis, which share the characteristics of chronic muscle inflammation and skeletal muscle wasting, are poorly understood. As such, effective targeted treatments for these diseases are lacking, resulting in critical unmet medical needs for these devastating diseases. The purpose of this study was to identify possible new targets for drug development by exploring the mechanism by which inflammation may play a role in the pathology of the inflammatory myopathies. METHODS We compared expression levels of inflammatory cytokines and microRNAs (miRNAs) between muscle biopsy samples from patients with inflammatory myopathies and those from donors without myositis. In vitro human and mouse model systems were then used to characterize the role of these cytokines and microRNAs on myoblast-to-myocyte differentiation. RESULTS We observed increased expression of inflammatory cytokines, including tumor necrosis factor α (TNFα), interferon-α (IFNα), IFNβ, and interleukin-1β, in different subtypes of inflammatory myopathies. We observed decreased expression of microRNA-1 (miR-1), miR-133a, and miR-133b in all of the inflammatory myopathy subtypes we evaluated, as well as decreased expression of miR-206 in DM; these miRNAs are essential for adult skeletal muscle differentiation and maintenance. TNFα was significantly inversely correlated with decreased myogenic miRNA expression in the inflammatory myopathy subtypes. In mechanistic studies, TNFα inhibited the expression of myogenic miRNAs and suppressed the differentiation of C2C12 myoblasts to myocytes/myotubes in an NF-κB-dependent manner. This block in differentiation by TNFα was relieved by overexpression of miR-1, miR-206, or miR-133a/b. CONCLUSION Taken together, these results provide a new mechanistic link between the action of proinflammatory cytokines and the degenerative pathology of inflammatory myopathies, and suggest therapeutic approaches for these diseases.
Collapse
|