51
|
Mechanistic insights into the inhibition mechanism of cysteine cathepsins by chalcone-based inhibitors—a QM cluster model approach. Struct Chem 2019. [DOI: 10.1007/s11224-018-1273-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
52
|
Shirmohammadi L, Ghayour-Mobarhan M, Saberi-Karimian M, Iranshahi M, Tavallaie S, Emamian M, Sahebkar A. Effect of Curcumin on Serum Cathepsin D in Patients with Metabolic Syndrome. Cardiovasc Hematol Disord Drug Targets 2019; 20:116-121. [PMID: 31538907 DOI: 10.2174/1871529x19666190919110652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 05/21/2019] [Accepted: 06/17/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Inflammation has been shown to accompany Metabolic Syndrome (MetS) and its features. Cathepsin D is one of a proinflammatory mediator. In the current study, we aimed to investigate the effect of curcumin supplementation on serum cathepsin D levels in patients with MetS. METHODS The current study was conducted on 18-65 years old individuals with MetS diagnosed according to the International Diabetes Federation guidelines. A total of 80 participants were randomly divided into treatment and control groups. The first group (n=40) was given 2 capsules containing 500 mg of phosphatidylcholine complex of curcumin, and the other group (n=40) was given two 500 mg placebo capsules for 6 weeks. Before (week 0) and after (week 6) the intervention, anthropometric indices and blood pressure were measured and blood samples were taken. Serum cathepsin D was measured using an ELISA kit. RESULTS There was no significant difference between treatment and control groups in terms of weight, body mass index, waist circumference and serum cathepsin D levels before and after the intervention. In addition, there was no significant difference between pre- and post-trial values of serum cathepsin D. CONCLUSION The present results do not suggest any effect of curcumin on cathepsin D levels in patients with MetS.
Collapse
Affiliation(s)
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Cardiovascular Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Saberi-Karimian
- Student Research Committee, Iranian UNESCO Center of Excellence for Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shima Tavallaie
- Metabolic Syndrome Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Emamian
- Metabolic Syndrome Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran.,Department of Biotechnology, School of Medicine, Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
53
|
Flanagan-Steet H, Christian C, Lu PN, Aarnio-Peterson M, Sanman L, Archer-Hartmann S, Azadi P, Bogyo M, Steet RA. TGF-ß Regulates Cathepsin Activation during Normal and Pathogenic Development. Cell Rep 2019. [PMID: 29539424 PMCID: PMC6247414 DOI: 10.1016/j.celrep.2018.02.066] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Cysteine cathepsins play roles during development and disease beyond their function in lysosomal protein turnover. Here, we leverage a fluorescent activity-based probe (ABP), BMV109, to track cysteine cathepsins in normal and diseased zebrafish embryos. Using this probe in a model of mucolipidosis II, we show that loss of carbohydrate-dependent lysosomal sorting alters the activity of several cathepsin proteases. The data support a pathogenic mechanism where TGF-β signals enhance the proteolytic processing of pro-Ctsk by modulating the expression of chondroitin 4-sulfate (C4-S). In MLII, elevated C4-S corresponds with TGF-β-mediated increases in chst11 expression. Inhibiting chst11 impairs the proteolytic activation of Ctsk and alleviates the MLII phenotypes. These findings uncover a regulatory loop between TGF-β signaling and Ctsk activation that is altered in the context of lysosomal disease. This work highlights the power of ABPs to identify mechanisms underlying pathogenic development in living animals. Chondroitin sulfate is a known regulator of cathepsin protease activity. Flanagan-Steet et al. identify a positive feedback mechanism whereby cathepsins secreted from chondrocytes upon loss of lysosomal targeting activate TGF-β signaling in developing cartilage. This increased signaling, in turn, stimulates chondroitin-4 sulfation and enhances cathepsin activity.
Collapse
Affiliation(s)
| | - Courtney Christian
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30606, USA
| | - Po-Nien Lu
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30606, USA
| | | | - Laura Sanman
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305-5324, USA
| | | | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30606, USA
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305-5324, USA
| | - Richard A Steet
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30606, USA
| |
Collapse
|
54
|
Zhang AW, Han XS, Xu XT, Fang YN, Chen HB, Jiang T. Acute phase serum cathepsin S level and cathepsin S/cystatin C ratio are the associated factors with cerebral infarction and their diagnostic value for cerebral infarction. Kaohsiung J Med Sci 2019; 35:95-101. [PMID: 30848029 DOI: 10.1002/kjm2.12014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 11/22/2018] [Indexed: 01/21/2023] Open
Abstract
Cathepsin S plays an important role in the pathogenesis of several cardiovascular diseases; however, the relationship between serum cathepsin S and cerebral infarction (CI) is still unknown. This study aimed to investigate the relationship between acute phase serum cathepsin S level and cerebral infarction. A total of 202 stroke patients were enrolled into this study, and were divided into cerebral infarction (n = 140) group and non-cerebral infarction group (non-CI, n = 62). Fifty healthy individuals were recruited as the control group. Serum levels of cathepsin S and cystatin C were measured at days 1, 7, and 14 posthospitalization. Compared to the non-CI group, the CI group had significantly higher rates of hypertension, dyslipidemia, and smoking (all P < 0.05). The CI group had significantly higher cathepsin S levels and cathepsin S to cystatin C ratio (CatS/CysC) at both days 1 and 7 posthospitalization (both P < 0.05). Multivariate logistic regression analysis demonstrated that cathepsin S level (day 7) and CatS/CysC (days 1 and 7) were the associated factors with CI (all P < 0.05). Receiver operating characteristic (ROC) curve analysis revealed that the Area Under Curve (AUC) value of CatS-day7, CatS/CysC-day1, and CatS/CysC-day7 were 0.726 (95% CI: 0.652-0.800, P < 0.001), 0.641 (95% CI: 0.559-0.723, P = 0.001), and 0.721 (95% CI: 0.645-0.797, P = 0.039), respectively. Cathepsin S and CatS/CysC were associated with acute CI, and may have the potential to be the diagnostic biomarkers for CI. Our findings help to better understand the role of serum cathepsin S level in CI.
Collapse
Affiliation(s)
- Ai-Wu Zhang
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xin-Sheng Han
- Department of Neurology, Kaifeng Central Hospital, Kaifeng, China
| | - Xiao-Tian Xu
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yan-Nan Fang
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hong-Bing Chen
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tao Jiang
- Department of Neurology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
55
|
Peng H, Hulleman JD. Prospective Application of Activity-Based Proteomic Profiling in Vision Research-Potential Unique Insights into Ocular Protease Biology and Pathology. Int J Mol Sci 2019; 20:ijms20163855. [PMID: 31398819 PMCID: PMC6720450 DOI: 10.3390/ijms20163855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 07/30/2019] [Indexed: 12/12/2022] Open
Abstract
Activity-based proteomic profiling (ABPP) is a powerful tool to specifically target and measure the activity of a family of enzymes with the same function and reactivity, which provides a significant advantage over conventional proteomic strategies that simply provide abundance information. A number of inherited and age-related eye diseases are caused by polymorphisms/mutations or abnormal expression of proteases including serine proteases, cysteine proteases, and matrix metalloproteinases, amongst others. However, neither conventional genomic, transcriptomic, nor traditional proteomic profiling directly interrogate protease activities. Thus, leveraging ABPP to probe the activity of these enzyme classes as they relate to normal function and pathophysiology of the eye represents a unique potential opportunity for disease interrogation and possibly intervention.
Collapse
Affiliation(s)
- Hui Peng
- Department of Ophthalmology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9057, USA
| | - John D Hulleman
- Department of Ophthalmology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9057, USA.
- Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA.
| |
Collapse
|
56
|
Poreba M, Groborz K, Vizovisek M, Maruggi M, Turk D, Turk B, Powis G, Drag M, Salvesen GS. Fluorescent probes towards selective cathepsin B detection and visualization in cancer cells and patient samples. Chem Sci 2019; 10:8461-8477. [PMID: 31803426 PMCID: PMC6839509 DOI: 10.1039/c9sc00997c] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/29/2019] [Indexed: 12/23/2022] Open
Abstract
Highly selective fluorescent activity-based probe for the visualization of cathepsin B in cancer cells.
Human cysteine cathepsins constitute an 11-membered family of proteases responsible for degradation of proteins in cellular endosomal–lysosomal compartments as such, they play important roles in antigen processing, cellular stress signaling, autophagy, and senescence. Moreover, for many years these enzymes were also linked to tumor growth, invasion, angiogenesis and metastasis when upregulated. Individual biological roles of each cathepsin are difficult to establish, because of their redundancy and similar substrate specificities. Selective chemical tools that enable imaging of individual cathepsin activities in living cells, tumors, and the tumor microenvironment may provide a better insight into their functions. In this work, we used HyCoSuL technology to profile the substrate specificity of human cathepsin B. The use of unnatural amino acids in the substrate library enabled us to uncover the broad cathepsin B preferences that we utilized to design highly-selective substrates and fluorescent activity-based probes (ABPs). We further demonstrated that Cy5-labeled MP-CB-2 probe can selectively label cathepsin B in eighteen cancer cell lines tested, making this ABP highly suitable for other biological setups. Moreover, using Cy5-labelled MP-CB-2 we were able to demonstrate by fluorescence microscopy that in cancer cells cathepsins B and L share overlapping, but not identical subcellular localization.
Collapse
Affiliation(s)
- Marcin Poreba
- Sanford Burnham Prebys Medical Discovery Institute , 10901 North Torrey Pines Road , La Jolla , CA 92037 , USA . ; ; .,Department of Bioorganic Chemistry , Faculty of Chemistry , Wroclaw University of Technology , Wyb. Wyspianskiego 27 , 50-370 Wroclaw , Poland
| | - Katarzyna Groborz
- Department of Bioorganic Chemistry , Faculty of Chemistry , Wroclaw University of Technology , Wyb. Wyspianskiego 27 , 50-370 Wroclaw , Poland
| | - Matej Vizovisek
- Department of Biochemistry and Molecular and Structural Biology , Jožef Stefan Institute , SI-1000 Ljubljana , Slovenia
| | - Marco Maruggi
- Sanford Burnham Prebys Medical Discovery Institute , 10901 North Torrey Pines Road , La Jolla , CA 92037 , USA . ; ;
| | - Dusan Turk
- Department of Biochemistry and Molecular and Structural Biology , Jožef Stefan Institute , SI-1000 Ljubljana , Slovenia
| | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology , Jožef Stefan Institute , SI-1000 Ljubljana , Slovenia.,Faculty of Chemistry and Chemical Technology , University of Ljubljana , SI-1000 Ljubljana , Slovenia
| | - Garth Powis
- Sanford Burnham Prebys Medical Discovery Institute , 10901 North Torrey Pines Road , La Jolla , CA 92037 , USA . ; ;
| | - Marcin Drag
- Sanford Burnham Prebys Medical Discovery Institute , 10901 North Torrey Pines Road , La Jolla , CA 92037 , USA . ; ; .,Department of Bioorganic Chemistry , Faculty of Chemistry , Wroclaw University of Technology , Wyb. Wyspianskiego 27 , 50-370 Wroclaw , Poland
| | - Guy S Salvesen
- Sanford Burnham Prebys Medical Discovery Institute , 10901 North Torrey Pines Road , La Jolla , CA 92037 , USA . ; ;
| |
Collapse
|
57
|
Andrault PM, Panwar P, Mackenzie NCW, Brömme D. Elastolytic activity of cysteine cathepsins K, S, and V promotes vascular calcification. Sci Rep 2019; 9:9682. [PMID: 31273243 PMCID: PMC6609650 DOI: 10.1038/s41598-019-45918-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 06/07/2019] [Indexed: 12/13/2022] Open
Abstract
Elastin plays an important role in maintaining blood vessel integrity. Proteolytic degradation of elastin in the vascular system promotes the development of atherosclerosis, including blood vessel calcification. Cysteine cathepsins have been implicated in this process, however, their role in disease progression and associated complications remains unclear. Here, we showed that the degradation of vascular elastin by cathepsins (Cat) K, S, and V directly stimulates the mineralization of elastin and that mineralized insoluble elastin fibers were ~25–30% more resistant to CatK, S, and V degradation when compared to native elastin. Energy dispersive X-ray spectroscopy investigations showed that insoluble elastin predigested by CatK, S, or V displayed an elemental percentage in calcium and phosphate up to 8-fold higher when compared to non-digested elastin. Cathepsin-generated elastin peptides increased the calcification of MOVAS-1 cells acting through the ERK1/2 pathway by 34–36%. We made similar observations when cathepsin-generated elastin peptides were added to ex vivo mouse aorta rings. Altogether, our data suggest that CatK-, S-, and V-mediated elastolysis directly accelerates the mineralization of the vascular matrix by the generation of nucleation points in the elastin matrix and indirectly by elastin-derived peptides stimulating the calcification by vascular smooth muscle cells. Both processes inversely protect against further extracellular matrix degradation.
Collapse
Affiliation(s)
- Pierre-Marie Andrault
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, V6T1Z3, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Preety Panwar
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, V6T1Z3, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Neil C W Mackenzie
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, V6T1Z3, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Dieter Brömme
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, V6T1Z3, Canada. .,Centre for Blood Research, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada. .,Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC, V6T1Z3, Canada.
| |
Collapse
|
58
|
Plasma Cathepsin S is Associated with High-density Lipoprotein Cholesterol and Bilirubin in Patients with Abdominal Aortic Aneurysms. J Med Biochem 2019; 38:268-275. [PMID: 31156336 PMCID: PMC6534947 DOI: 10.2478/jomb-2018-0039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 10/16/2018] [Indexed: 01/03/2023] Open
Abstract
Background Cathepsin S (CTSS) is a cysteine protease involved in atherogenesis. We compared the plasma CTSS as well as other biomarkers of atherosclerosis in patients with abdominal aortic aneurysms (AAA) and aortoiliac occlusive disease (AOD), aiming to identify the underlying pathogenic mechanisms of the disease development. Also, we hypothesised that the level of plasma CTSS simultaneously increases with a decrease of plasma high-density lipoprotein cholesterol (HDL-C) values. Methods 33 patients with AAA and 34 patients with AOD were included in this study. Results There was no difference in the level of plasma CTSS between the two analysed groups (p=0.833). In the patients with AAA, the plasma CTSS was correlated with HDL-C (r = -0.377, p = 0.034) and total bilirubin (r =0.500, p = 0.003) while, unexpectedly, it was not correlated with cystatin C (Cys C) (r =0.083, p = 0.652). In the patients with AOD, the plasma CTSS correlated with triglycerides (r = 0.597, p< 0.001), only. When the patients were divided according to HDL-C (with HDL-C ≤0.90 and HDL-C >0.90 mmol/L), the plasma CTSS values differed among these groups (31.27 vs.25.61 μg/L, respectively, p<0.001). Conclusions These results provide the first evidence that CTSS negatively correlated with HDL-C and bilirubin in patients with AAA. It is possible that differences in the association of the CTSS and other markers of atherosclerosis can determine whether atherosclerotic aorta will develop dilatation or stenosis.
Collapse
|
59
|
Liang ES, Bai WW, Wang H, Zhang JN, Zhang F, Ma Y, Jiang F, Yin M, Zhang MX, Chen XM, Qin WD. PARP-1 (Poly[ADP-Ribose] Polymerase 1) Inhibition Protects From Ang II (Angiotensin II)-Induced Abdominal Aortic Aneurysm in Mice. Hypertension 2019; 72:1189-1199. [PMID: 30354818 DOI: 10.1161/hypertensionaha.118.11184] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Abdominal aortic aneurysm (AAA) is a common vascular degenerative disease. PARP-1 (poly[ADP-ribose] polymerase 1) is a nuclear enzyme, which plays a critical role in vascular diseases. We hypothesized that PARP-1 inhibition might have protective effects on AAA. In vivo, Ang II (angiotensin II) was continuously infused by a micropump for 28 days to induce AAA in mice. In vitro, aortic endothelial cells and smooth muscle cells were stimulated by Ang II for 24 hours. Ang II infusion increased PARP-1 expression and activity and successfully induced AAA formation partly with a hemorrhage in ApoE-/- mice. Genetic deletion of PARP-1 markedly reduced the AAA incidence, abdominal aortic diameter, macrophage infiltration, ICAM-1 (intercellular adhesion molecule 1) and VCAM-1 (vascular adhesion molecule 1) expression, and MMP (matrix metalloproteinase) expression, as well as MMP activity; but increased smooth muscle cells content and collagens expression in AAA. PARP-1 inhibition by PJ-34 also exerted a protective effect on AAA in mice. In aortic endothelial cells, Ang II-induced oxidative stress and DNA damage, resulting in increased PARP-1 expression and activity. Compared with the control, Ang II increased TNF-α (tumor necrosis factor α) and IL-6 (interleukin-6) secretions, ICAM-1 expression and THP-1 (human acute monocytic leukemia cell line) cells adhesion, while PARP-1 inhibition by siRNA reduced the inflammatory response probably through inhibition of the phosphorylation of ERK (extracellular signal-regulated kinase), NF-κB (nuclear factor-κB), and Akt signaling pathways. In smooth muscle cells, Ang II promoted cell migration, proliferation, and apoptosis, reduced collagens expression, but increased MMPs expression, while PARP-1 deletion alleviated these effects partly by reducing NF-κB-targeted MMP-9 expression. PARP-1 inhibition might be a feasible strategy for the treatment of AAA.
Collapse
Affiliation(s)
- Er-Shun Liang
- From the The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China (E.-s.L., F.J., M.-x.Z.)
| | - Wen-Wu Bai
- Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, China (W.-w.B.)
| | - Hao Wang
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China (H.W., J.-n.Z., F.Z., Y.M., X.-m.C., W.-d.Q.)
| | - Jian-Ning Zhang
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China (H.W., J.-n.Z., F.Z., Y.M., X.-m.C., W.-d.Q.)
| | - Fan Zhang
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China (H.W., J.-n.Z., F.Z., Y.M., X.-m.C., W.-d.Q.)
| | - Yang Ma
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China (H.W., J.-n.Z., F.Z., Y.M., X.-m.C., W.-d.Q.)
| | - Fan Jiang
- From the The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China (E.-s.L., F.J., M.-x.Z.).,The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China (F.J.).,Department of Physiology and Pathophysiology, School of Basic Medicine, Shandong University, Jinan, China (F.J.)
| | - Mei Yin
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, China (M.Y.)
| | - Ming-Xiang Zhang
- From the The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China (E.-s.L., F.J., M.-x.Z.)
| | - Xiao-Mei Chen
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China (H.W., J.-n.Z., F.Z., Y.M., X.-m.C., W.-d.Q.)
| | - Wei-Dong Qin
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China (H.W., J.-n.Z., F.Z., Y.M., X.-m.C., W.-d.Q.)
| |
Collapse
|
60
|
Inhibiting Extracellular Cathepsin D Reduces Hepatic Steatosis in Sprague⁻Dawley Rats †. Biomolecules 2019; 9:biom9050171. [PMID: 31060228 PMCID: PMC6571693 DOI: 10.3390/biom9050171] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/28/2019] [Accepted: 05/02/2019] [Indexed: 12/30/2022] Open
Abstract
Dietary and lifestyle changes are leading to an increased occurrence of non-alcoholic fatty liver disease (NAFLD). Using a hyperlipidemic murine model for non-alcoholic steatohepatitis (NASH), we have previously demonstrated that the lysosomal protease cathepsin D (CTSD) is involved with lipid dysregulation and inflammation. However, despite identifying CTSD as a major player in NAFLD pathogenesis, the specific role of extracellular CTSD in NAFLD has not yet been investigated. Given that inhibition of intracellular CTSD is highly unfavorable due to its fundamental physiological function, we here investigated the impact of a highly specific and potent small-molecule inhibitor of extracellular CTSD (CTD-002) in the context of NAFLD. Treatment of bone marrow-derived macrophages with CTD-002, and incubation of hepatic HepG2 cells with a conditioned medium derived from CTD-002-treated macrophages, resulted in reduced levels of inflammation and improved cholesterol metabolism. Treatment with CTD-002 improved hepatic steatosis in high fat diet-fed rats. Additionally, plasma levels of insulin and hepatic transaminases were significantly reduced upon CTD-002 administration. Collectively, our findings demonstrate for the first time that modulation of extracellular CTSD can serve as a novel therapeutic modality for NAFLD.
Collapse
|
61
|
Lin JD, Nishi H, Poles J, Niu X, Mccauley C, Rahman K, Brown EJ, Yeung ST, Vozhilla N, Weinstock A, Ramsey SA, Fisher EA, Loke P. Single-cell analysis of fate-mapped macrophages reveals heterogeneity, including stem-like properties, during atherosclerosis progression and regression. JCI Insight 2019; 4:124574. [PMID: 30830865 PMCID: PMC6478411 DOI: 10.1172/jci.insight.124574] [Citation(s) in RCA: 234] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 01/17/2019] [Indexed: 12/21/2022] Open
Abstract
Atherosclerosis is a leading cause of death worldwide in industrialized countries. Disease progression and regression are associated with different activation states of macrophages derived from inflammatory monocytes entering the plaques. The features of monocyte-to-macrophage transition and the full spectrum of macrophage activation states during either plaque progression or regression, however, are incompletely established. Here, we use a combination of single-cell RNA sequencing and genetic fate mapping to profile, for the first time to our knowledge, plaque cells derived from CX3CR1+ precursors in mice during both progression and regression of atherosclerosis. The analyses revealed a spectrum of macrophage activation states with greater complexity than the traditional M1 and M2 polarization states, with progression associated with differentiation of CXC3R1+ monocytes into more distinct states than during regression. We also identified an unexpected cluster of proliferating monocytes with a stem cell-like signature, suggesting that monocytes may persist in a proliferating self-renewal state in inflamed tissue, rather than differentiating immediately into macrophages after entering the tissue.
Collapse
Affiliation(s)
| | - Hitoo Nishi
- Department of Medicine, New York University School of Medicine, New York, New York, USA
| | | | - Xiang Niu
- Tri-Institutional Program in Computational Biology and Medicine, Weill Cornell Medical College, New York, New York, USA
| | | | - Karishma Rahman
- Department of Medicine, New York University School of Medicine, New York, New York, USA
| | - Emily J. Brown
- Department of Medicine, New York University School of Medicine, New York, New York, USA
| | | | | | - Ada Weinstock
- Department of Medicine, New York University School of Medicine, New York, New York, USA
| | - Stephen A. Ramsey
- Department of Biomedical Sciences, School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, Oregon, USA
| | - Edward A. Fisher
- Department of Microbiology and
- Department of Medicine, New York University School of Medicine, New York, New York, USA
| | | |
Collapse
|
62
|
Vizovišek M, Fonović M, Turk B. Cysteine cathepsins in extracellular matrix remodeling: Extracellular matrix degradation and beyond. Matrix Biol 2019; 75-76:141-159. [DOI: 10.1016/j.matbio.2018.01.024] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/14/2018] [Accepted: 01/29/2018] [Indexed: 12/21/2022]
|
63
|
Ohukainen P, Ruskoaho H, Rysa J. Cellular Mechanisms of Valvular Thickening in Early and Intermediate Calcific Aortic Valve Disease. Curr Cardiol Rev 2018; 14:264-271. [PMID: 30124158 PMCID: PMC6300797 DOI: 10.2174/1573403x14666180820151325] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 01/23/2023] Open
Abstract
Background: Calcific aortic valve disease is common in an aging population. It is an ac-tive atheroinflammatory process that has an initial pathophysiology and similar risk factors as athero-sclerosis. However, the ultimate disease phenotypes are markedly different. While coronary heart dis-ease results in rupture-prone plaques, calcific aortic valve disease leads to heavily calcified and ossi-fied valves. Both are initiated by the retention of low-density lipoprotein particles in the subendotheli-al matrix leading to sterile inflammation. In calcific aortic valve disease, the process towards calcifica-tion and ossification is preceded by valvular thickening, which can cause the first clinical symptoms. This is attributable to the accumulation of lipids, inflammatory cells and subsequently disturbances in the valvular extracellular matrix. Fibrosis is also increased but the innermost extracellular matrix layer is simultaneously loosened. Ultimately, the pathological changes in the valve cause massive calcifica-tion and bone formation - the main reasons for the loss of valvular function and the subsequent myo-cardial pathology. Conclusion: Calcification may be irreversible, and no drug treatments have been found to be effec-tive, thus it is imperative to emphasize lifestyle prevention of the disease. Here we review the mecha-nisms underpinning the early stages of the disease.
Collapse
Affiliation(s)
- Pauli Ohukainen
- Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland
| | - Heikki Ruskoaho
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, University of Helsinki, Helsinki, Finland
| | - Jaana Rysa
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| |
Collapse
|
64
|
Danger-Associated Molecular Patterns (DAMPs): the Derivatives and Triggers of Inflammation. Curr Allergy Asthma Rep 2018; 18:63. [PMID: 30267163 DOI: 10.1007/s11882-018-0817-3] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Allergen is an umbrella term for irritants of diverse origin. Along with other offenders such as pathogens, mutagens, xenobiotics, and pollutants, allergens can be grouped as inflammatory agents. Danger-associated molecular patterns (DAMPs) are altered metabolism products of necrotic or stressed cells, which are deemed as alarm signals by the innate immune system. Like inflammation, DAMPs play a role in correcting the altered physiological state, but in excess, they can be lethal due to their signal transduction roles. In a vicious loop, inflammatory agents are DAMP generators and DAMPs create a pro-inflammatory state. Only a handful of DAMPs such as uric acid, mtDNA, extracellular ATP, HSPs, amyloid β, S100, HMGB1, and ECM proteins have been studied till now. A large number of DAMPs are still obscure, in need to be unveiled. The identification and functional characterization of those DAMPs in inflammation pathways can be insightful. RECENT FINDINGS As inflammation and immune activation have been implicated in almost all pathologies, studies on them have been intensified in recent times. Consequently, the pathologic mechanisms of various DAMPs have emerged. Following PRR ligation, the activation of inflammasome, MAPK, and NF-kB is some of the common pathways. The limited number of recognized DAMPs are only a fraction of the vast array of other DAMPs. In fact, any misplaced or abnormal level of metabolite can be a DAMP. Sophisticated analysis studies can reveal the full profile of the DAMPs. Lowering the level of DAMPs is useful therapeutic intervention but certainly not as effective as avoiding the DAMP generators, i.e., the inflammatory agents. So, rather than mitigating DAMPs, efforts should be focused on the elimination of inflammatory agents.
Collapse
|
65
|
Magalhães B, Trindade F, Barros AS, Klein J, Amado F, Ferreira R, Vitorino R. Reviewing Mechanistic Peptidomics in Body Fluids Focusing on Proteases. Proteomics 2018; 18:e1800187. [DOI: 10.1002/pmic.201800187] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/13/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Beatriz Magalhães
- Unidade de Investigação Cardiovascular; Departamento de Cirurgia e Fisiologia; Faculdade de Medicina da Universidade do Porto; 4200-319 Porto Portugal
| | - Fábio Trindade
- Unidade de Investigação Cardiovascular; Departamento de Cirurgia e Fisiologia; Faculdade de Medicina da Universidade do Porto; 4200-319 Porto Portugal
- Instituto de Biomedicina; Department of Medical Sciences; University of Aveiro; 3810-193 Aveiro Portugal
| | - António S. Barros
- Unidade de Investigação Cardiovascular; Departamento de Cirurgia e Fisiologia; Faculdade de Medicina da Universidade do Porto; 4200-319 Porto Portugal
| | - Julie Klein
- Institut National de la Santé et de la Recherche Médicale; Institute of Cardiovascular and Metabolic Disease; Toulouse France
- Université Toulouse III Paul-Sabatier; 31330 Toulouse France
| | - Francisco Amado
- Química Orgânica, Produtos Naturais e Agroalimentares; Department of Chemistry; University of Aveiro; 3810-193 Aveiro Portugal
| | - Rita Ferreira
- Química Orgânica, Produtos Naturais e Agroalimentares; Department of Chemistry; University of Aveiro; 3810-193 Aveiro Portugal
| | - Rui Vitorino
- Unidade de Investigação Cardiovascular; Departamento de Cirurgia e Fisiologia; Faculdade de Medicina da Universidade do Porto; 4200-319 Porto Portugal
- Instituto de Biomedicina; Department of Medical Sciences; University of Aveiro; 3810-193 Aveiro Portugal
| |
Collapse
|
66
|
Wuopio J, Hilden J, Bring C, Kastrup J, Sajadieh A, Jensen GB, Kjøller E, Kolmos HJ, Larsson A, Jakobsen JC, Winkel P, Gluud C, Carlsson AC, Ärnlöv J. Cathepsin B and S as markers for cardiovascular risk and all-cause mortality in patients with stable coronary heart disease during 10 years: a CLARICOR trial sub-study. Atherosclerosis 2018; 278:97-102. [PMID: 30261474 DOI: 10.1016/j.atherosclerosis.2018.09.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/22/2018] [Accepted: 09/07/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS The lysosomal cysteine proteases cathepsin B and S have been implicated in the atherosclerotic process. The present paper investigates the association between serum levels of cathepsin B and S and cardiovascular events and mortality in patients with stable coronary heart disease. METHODS The CLARICOR trial is a randomised, placebo-controlled trial investigating the effect of clarithromycin versus placebo in patients with stable coronary heart disease. The outcome was time to either a cardiovascular event or all-cause mortality. The placebo group was used as discovery sample and the clarithromycin group as replication sample: n = 1998, n = 1979; mean age (years) 65, 65; 31%, 30% women; follow-up for 10 years; number of composite outcomes n = 1204, n = 1220; respectively. We used a pre-defined multivariable Cox regression model adjusting for inflammation, established cardiovascular risk factors, kidney function, and use of cardiovascular drugs. RESULTS Cathepsin B was associated with an increased risk of the composite outcome in both samples after multivariable adjustment (discovery: multivariable ratio (HR) per standard deviation increase 1.12, 95% confidence interval (CI) 1.05-1.19, p < 0.001, replication; HR 1.14, 95% CI 1.07-1.21, p < 0.001). There was no significant association between cathepsin S and the composite outcome in either the discovery or replication sample after multivariable adjustment (p>0.45). Secondary analyses suggest that cathepsin B was predominantly associated with mortality rather than specific cardiovascular events. CONCLUSIONS Cathepsin B, but not serum cathepsin S, was associated with an increased risk of cardiovascular events in patients with stable coronary heart disease. The clinical implications of our findings remain to be established.
Collapse
Affiliation(s)
- Jonas Wuopio
- Department of Medicine, Mora County Hospital, Mora, Sweden.
| | - Jørgen Hilden
- Section of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - Carl Bring
- Department of Medicine, Lindesberg County Hospital, Lindesberg, Sweden
| | - Jens Kastrup
- Department of Cardiology, Rigshospitalet University of Copenhagen, Denmark
| | - Ahmad Sajadieh
- Department of Cardiology, Bispebjerg & Frederiksberg Hospital University of Copenhagen, Denmark
| | - Gorm Boje Jensen
- Department of Cardiology, Hvidovre Hospital University of Copenhagen, Denmark
| | - Erik Kjøller
- Department of Cardiology S, Herlev Hospital University of Copenhagen, Copenhagen, Denmark
| | - Hans Jørn Kolmos
- Department of Clinical Microbiology, Odense University Hospital, Denmark
| | - Anders Larsson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Janus Christian Jakobsen
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark; Department of Cardiology, Holbæk Hospital, Denmark
| | - Per Winkel
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Christian Gluud
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Axel C Carlsson
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Uppsala, Sweden; Division for Family Medicine and Primary Care, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden
| | - Johan Ärnlöv
- Division for Family Medicine and Primary Care, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden; School of Health and Social Studies, Dalarna University, Falun, Sweden
| |
Collapse
|
67
|
Patel S, Homaei A, El-Seedi HR, Akhtar N. Cathepsins: Proteases that are vital for survival but can also be fatal. Biomed Pharmacother 2018; 105:526-532. [PMID: 29885636 PMCID: PMC7172164 DOI: 10.1016/j.biopha.2018.05.148] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/29/2018] [Accepted: 05/29/2018] [Indexed: 12/27/2022] Open
Abstract
The state of enzymes in the human body determines the normal physiology or pathology, so all the six classes of enzymes are crucial. Proteases, the hydrolases, can be of several types based on the nucleophilic amino acid or the metal cofactor needed for their activity. Cathepsins are proteases with serine, cysteine, or aspartic acid residues as the nucleophiles, which are vital for digestion, coagulation, immune response, adipogenesis, hormone liberation, peptide synthesis, among a litany of other functions. But inflammatory state radically affects their normal roles. Released from the lysosomes, they degrade extracellular matrix proteins such as collagen and elastin, mediating parasite infection, autoimmune diseases, tumor metastasis, cardiovascular issues, and neural degeneration, among other health hazards. Over the years, the different types and isoforms of cathepsin, their optimal pH and functions have been studied, yet much information is still elusive. By taming and harnessing cathepsins, by inhibitors and judicious lifestyle, a gamut of malignancies can be resolved. This review discusses these aspects, which can be of clinical relevance.
Collapse
Affiliation(s)
- Seema Patel
- Bioinformatics and Medical Informatics Research Center, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182, USA,Corresponding author.
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran,Department of Biology, Faculty of Sciences, University of Hormozgan, Bandar Abbas, Iran
| | - Hesham R. El-Seedi
- Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Biomedical Centre, Box 574, SE-751 23, Uppsala, Sweden,Ecological Chemistry Group, Department of Chemistry, School of Chemical Science and Engineering, KTH, Stockholm, Sweden
| | - Nadeem Akhtar
- Department of Animal Biosciences, University of Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
68
|
Kubo A, Shirato I, Hidaka T, Takagi M, Sasaki Y, Asanuma K, Ishidoh K, Suzuki Y. Expression of Cathepsin L and Its Intrinsic Inhibitors in Glomeruli of Rats With Puromycin Aminonucleoside Nephrosis. J Histochem Cytochem 2018; 66:863-877. [PMID: 30052474 DOI: 10.1369/0022155418791822] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cathepsin L, a lysosomal cysteine proteinase, may have a key role in various biological and disease processes by intracellular and extracellular degradation of proteins. We examined the levels of cathepsin L and its intrinsic inhibitors in glomeruli of rats with puromycin aminonucleoside (PAN) nephrosis. In contrast to the weak levels of cathepsin L in normal glomeruli, on days 4 and 8, strong immunostaining was detected in almost all podocytes when proteinuria and pathological changes of the podocytes developed. Cathepsin L was reduced after day 28, but remained in a focal and segmental manner. Cystatin β, an intracellular inhibitor, was not detected in podocytes. However, cystatin C, an extracellular inhibitor, was detected in podocytes after day 4, coincident with cathepsin L. Cystatin C levels were gradually reduced but sustained in many podocytes on day 28, while cystatin C was not detected in podocytes sustained cathepsin L. These results demonstrated that cathepsin L levels are not always accompanied by the levels of its inhibitors in podocytes of PAN nephrosis, suggesting a potential role of cathepsin L in podocyte injury, which is a critical process for the development and progression of tuft adhesion and sclerosis.
Collapse
Affiliation(s)
- Ayano Kubo
- Department of Nephrology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | | | - Teruo Hidaka
- Department of Nephrology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Miyuki Takagi
- Department of Nephrology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Yu Sasaki
- Department of Nephrology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Katsuhiko Asanuma
- Department of Nephrology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazumi Ishidoh
- Division of Molecular Biology, Institute for Health Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Yusuke Suzuki
- Department of Nephrology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| |
Collapse
|
69
|
Trillhaase A, Haferkamp U, Rangnau A, Märtens M, Schmidt B, Trilck M, Seibler P, Aherrahrou R, Erdmann J, Aherrahrou Z. Differentiation of human iPSCs into VSMCs and generation of VSMC-derived calcifying vascular cells. Stem Cell Res 2018; 31:62-70. [PMID: 30029055 DOI: 10.1016/j.scr.2018.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/03/2018] [Accepted: 07/11/2018] [Indexed: 02/06/2023] Open
Abstract
Vascular calcification displays a major cause of death worldwide, which involve mainly vascular smooth muscle cells (VSMCs). Since 2007, there are increasing numbers of protocols to obtain different cell types from human induced-pluripotent stem cells (iPSCs), however a protocol for calcification is missing. Few protocols exist today for the differentiation of iPSCs towards VSMCs and none are known for their calcification. Here we present a protocol for the calcification of iPSC-derived VSMCs. We successfully differentiated iPSCs into VSMCs based on a modified protocol. Calcification in VSMCs is induced by a commercial StemXVivo™ osteogenic medium. Calcification was verified using Calcein and Alizarin Red S staining or Calcium assays, and molecular analyses showed enhanced expression of calcification-associated genes. The presented method could help to study genetic risk variants, using the CRISPR/Cas technology through the introduction of Knockouts or Knockins of risk variants. Finally, this method can be applied for drug screening.
Collapse
Affiliation(s)
- Anja Trillhaase
- Institute for Cardiogenetics, University of Luebeck, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Luebeck, Germany; University Heart Centre Luebeck, 23562 Luebeck, Germany
| | - Undine Haferkamp
- Institute for Cardiogenetics, University of Luebeck, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), 22525Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Luebeck, Germany; University Heart Centre Luebeck, 23562 Luebeck, Germany
| | - Alexandra Rangnau
- Institute for Cardiogenetics, University of Luebeck, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Luebeck, Germany; University Heart Centre Luebeck, 23562 Luebeck, Germany
| | - Marlon Märtens
- Institute for Cardiogenetics, University of Luebeck, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Luebeck, Germany; University Heart Centre Luebeck, 23562 Luebeck, Germany
| | - Beatrice Schmidt
- Institute for Cardiogenetics, University of Luebeck, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Luebeck, Germany; University Heart Centre Luebeck, 23562 Luebeck, Germany
| | - Michaela Trilck
- Institute for Neurogenetics, University of Luebeck, 23562 Luebeck, Germany
| | - Philip Seibler
- Institute for Neurogenetics, University of Luebeck, 23562 Luebeck, Germany
| | - Redouane Aherrahrou
- Institute for Cardiogenetics, University of Luebeck, Germany; Center for Public Health Genomics, Department of Biomedical Engineering, University of Virginia, Charlottesville, VA22908, USA; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Luebeck, Germany; University Heart Centre Luebeck, 23562 Luebeck, Germany
| | - Jeanette Erdmann
- Institute for Cardiogenetics, University of Luebeck, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Luebeck, Germany; University Heart Centre Luebeck, 23562 Luebeck, Germany
| | - Zouhair Aherrahrou
- Institute for Cardiogenetics, University of Luebeck, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Luebeck, Germany; University Heart Centre Luebeck, 23562 Luebeck, Germany.
| |
Collapse
|
70
|
Mohammadpour AH, Salehinejad Z, Elyasi S, Mouhebati M, Mirhafez SR, Samadi S, Ghayour-Mobarhan M, Ferns G, Sahebkar A. Evaluation of serum cathepsin D concentrations in coronary artery disease. Indian Heart J 2018; 70:471-475. [PMID: 30170638 PMCID: PMC6117802 DOI: 10.1016/j.ihj.2018.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/09/2017] [Accepted: 01/08/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Coronary artery disease (CAD) cannot be sufficiently explained by the presence of traditional risk factors. Cathepsin D has been proposed to serve as a surrogate marker of atherosclerosis but its alterations in CAD patients have not been studied. OBJECTIVE To evaluate serum cathepsin D concentrations in relation to the presence and severity of CAD. MATERIALS AND METHODS A total of 104 subjects were recruited; 71 patients with suspected CAD and 33 healthy subjects. Thirty-four patients had >50% coronary stenosis of at least one artery (CAD+); the remaining 37 patients had <50% stenosis (CAD-) based on angiography. CAD+ patients were sub-divided into three sub-groups with single (SVD; n=15), double (2VD; n=9), and triple vessel (3VD; n=10) disease. Serum soluble cathepsin D concentrations were determined using an enzyme-linked immunosorbent assay (ELISA). RESULTS Serum cathepsin D concentrations were significantly higher in the CAD+ compared with healthy control (p=0.016) but not CAD- group (p=0.098). Within the CAD+ group, patients with 3VD had significantly higher serum cathepsin D concentrations compared with the SVD group (p=0.025), and also compared with the CAD- (p=0.011) and SVD (p=0.001) groups. No significant associations were found between serum cathepsin D concentrations and potential confounders including age, sex, blood pressure, smoking history and dyslipidemia. CONCLUSION Serum cathepsin D concentrations may be associated with the presence of CAD.
Collapse
Affiliation(s)
- Amir Hooshang Mohammadpour
- Clinical Pharmacy Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zakieh Salehinejad
- Clinical Pharmacy Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sepideh Elyasi
- Clinical Pharmacy Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Mouhebati
- Cardiovascular Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Reza Mirhafez
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Sara Samadi
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Gordon Ferns
- Division of Medical Education, Rm 342, Mayfield House, University of Brighton, BN1 9PH, United Kingdom
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
71
|
Cardiomyocyte-specific disruption of Cathepsin K protects against doxorubicin-induced cardiotoxicity. Cell Death Dis 2018; 9:692. [PMID: 29880809 PMCID: PMC5992138 DOI: 10.1038/s41419-018-0727-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/19/2018] [Accepted: 05/21/2018] [Indexed: 12/12/2022]
Abstract
The lysosomal cysteine protease Cathepsin K is elevated in humans and animal models of heart failure. Our recent studies show that whole-body deletion of Cathepsin K protects mice against cardiac dysfunction. Whether this is attributable to a direct effect on cardiomyocytes or is a consequence of the global metabolic alterations associated with Cathepsin K deletion is unknown. To determine the role of Cathepsin K in cardiomyocytes, we developed a cardiomyocyte-specific Cathepsin K-deficient mouse model and tested the hypothesis that ablation of Cathepsin K in cardiomyocytes would ameliorate the cardiotoxic side-effects of the anticancer drug doxorubicin. We used an α-myosin heavy chain promoter to drive expression of Cre, which resulted in over 80% reduction in protein and mRNA levels of cardiac Cathepsin K at baseline. Four-month-old control (Myh-Cre-; Ctskfl/fl) and Cathepsin K knockout (Myh-Cre+; Ctskfl/fl) mice received intraperitoneal injections of doxorubicin or vehicle, 1 week following which, body and tissue weight, echocardiographic properties, cardiomyocyte contractile function and Ca2+-handling were evaluated. Control mice treated with doxorubicin exhibited a marked increase in cardiac Cathepsin K, which was associated with an impairment in cardiac structure and function, evidenced as an increase in end-systolic and end-diastolic diameters, decreased fractional shortening and wall thickness, disruption in cardiac sarcomere and microfilaments and impaired intracellular Ca2+ homeostasis. In contrast, the aforementioned cardiotoxic effects of doxorubicin were attenuated or reversed in mice lacking cardiac Cathepsin K. Mechanistically, Cathepsin K-deficiency reconciled the disturbance in cardiac energy homeostasis and attenuated NF-κB signaling and apoptosis to ameliorate doxorubicin-induced cardiotoxicity. Cathepsin K may represent a viable drug target to treat cardiac disease.
Collapse
|
72
|
Calfon Press MA, Mallas G, Rosenthal A, Hara T, Mauskapf A, Nudelman RN, Sheehy A, Polyakov IV, Kolodgie F, Virmani R, Guerrero JL, Ntziachristos V, Jaffer FA. Everolimus-eluting stents stabilize plaque inflammation in vivo: assessment by intravascular fluorescence molecular imaging. Eur Heart J Cardiovasc Imaging 2018; 18:510-518. [PMID: 28039209 DOI: 10.1093/ehjci/jew228] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 10/02/2016] [Indexed: 01/27/2023] Open
Abstract
Aims Inflammation drives atherosclerosis complications and is a promising therapeutic target for plaque stabilization. At present, it is unknown whether local stenting approaches can stabilize plaque inflammation in vivo. Here, we investigate whether everolimus-eluting stents (EES) can locally suppress plaque inflammatory protease activity in vivo using intravascular near-infrared fluorescence (NIRF) molecular imaging. Methods and results Balloon-injured, hyperlipidaemic rabbits with atherosclerosis received non-overlapping EES and bare metal stents (BMS) placement into the infrarenal aorta (n = 7 EES, n = 7 BMS, 3.5 mm diameter x 12 mm length). Four weeks later, rabbits received an injection of the cysteine protease-activatable NIRF imaging agent Prosense VM110. Twenty-four hours later, co-registered intravascular 2D NIRF, X-ray angiography and intravascular ultrasound imaging were performed. In vivo EES-stented plaques contained substantially reduced NIRF inflammatory protease activity compared with untreated plaques and BMS-stented plaques (P = 0.006). Ex vivo macroscopic NIRF imaging of plaque protease activity corroborated the in vivo results (P = 0.003). Histopathology analyses revealed that EES-treated plaques showed reduced neointimal and medial arterial macrophage and cathepsin B expression compared with unstented and BMS-treated plaques. Conclusions EES-stenting stabilizes plaque inflammation as assessed by translational intravascular NIRF molecular imaging in vivo. These data further support that EES may provide a local approach for stabilizing inflamed plaques.
Collapse
Affiliation(s)
- Marcella A Calfon Press
- Cardiology Division, Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Simches Research Building Room 3206, 185 Cambridge Street, Boston, MA 02114, USA.,Department of Cardiology, Ronald Reagan Medical Center, University of California in Los Angeles, Los Angeles CA, USA
| | - Georgios Mallas
- Cardiology Division, Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Simches Research Building Room 3206, 185 Cambridge Street, Boston, MA 02114, USA.,Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, USA
| | - Amir Rosenthal
- Cardiology Division, Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Simches Research Building Room 3206, 185 Cambridge Street, Boston, MA 02114, USA.,Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich & Technical University of Munich, Munich, Germany
| | - Tetsuya Hara
- Cardiology Division, Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Simches Research Building Room 3206, 185 Cambridge Street, Boston, MA 02114, USA
| | - Adam Mauskapf
- Cardiology Division, Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Simches Research Building Room 3206, 185 Cambridge Street, Boston, MA 02114, USA
| | - R Nika Nudelman
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich & Technical University of Munich, Munich, Germany
| | | | | | | | | | - J Luis Guerrero
- Cardiology Division, Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Simches Research Building Room 3206, 185 Cambridge Street, Boston, MA 02114, USA
| | - Vasilis Ntziachristos
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich & Technical University of Munich, Munich, Germany
| | - Farouc A Jaffer
- Cardiology Division, Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Simches Research Building Room 3206, 185 Cambridge Street, Boston, MA 02114, USA.,Center for Molecular Imaging Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
73
|
Befekadu R, Christiansen K, Larsson A, Grenegård M. Increased plasma cathepsin S and trombospondin-1 in patients with acute ST-segment elevation myocardial infarction. Cardiol J 2018; 26:385-393. [PMID: 29611169 DOI: 10.5603/cj.a2018.0030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 03/26/2018] [Accepted: 02/07/2018] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The role of cathepsins in the pathological progression of atherosclerotic lesions in ischem-ic heart disease have been defined in detail more than numerous times. This investigation examined the platelet-specific biomarker trombospondin-1 (TSP-1) and platelet function ex vivo, and compared this with cathepsin S (Cat-S; a biomarker unrelated to platelet activation but also associated this with increased mortality risk) in patients with ST-segment elevation myocardial infarction (STEMI). METHODS The STEMI patients were divided into two groups depending on the degree of coronary vessel occlusion: those with closed (n = 90) and open culprit vessel (n = 40). Cat-S and TSP-1 were analyzed before, 1-3 days after and 3 months after percutanous coronary intervention (PCI). RESULTS During acute STEMI, plasma TSP-1 was significantly elevated in patients with closed cul-prit lesions, but rapidly declined after PCI. In fact, TSP-1 after PCI was significantly lower inpatient samples compared to healthy individuals. In comparison, plasma Cat-S was significantly elevated both before and after PCI. In patients with closed culprit lesions, Cat-S was significantly higher compared to patients with open culprit lesions 3 months after PCI. Although troponin-I were higher (p < 0.01) in patients with closed culprit lesion, there was no correlation with Cat-S and TSP-1. CONCLUSIONS Cat-S but not TSP-1 may be a useful risk biomarker in relation to the severity of STEMI. However, the causality of Cat-S as a predictor for long-term mortality in STEMI remains to be ascertained in future studies.
Collapse
Affiliation(s)
- Rahel Befekadu
- Department of Laboratory Medicine, Section for Transfusion Medicine, Faculty of Medicine and Health Örebro University, Örebro, Sweden.
| | | | - Anders Larsson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Magnus Grenegård
- Cardiovascular Research Centre, School of Medical Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
74
|
Mao F, Lin Y, He Z, Li J, Xiang Z, Zhang Y, Yu Z. Dual roles of cystatin A in the immune defense of the pacific oyster, Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2018; 75:190-197. [PMID: 29407615 DOI: 10.1016/j.fsi.2018.01.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 01/12/2018] [Accepted: 01/25/2018] [Indexed: 06/07/2023]
Abstract
Cystatins are a large family of the proteins that function as reversible and tight-binding inhibitors of cysteine proteases, which consequently regulate multiple physiological activities including apoptosis and innate immunity. In the present study, we cloned a gene from Crassostrea gigas encoding cystatin, which is related to cystatin A superfamily. CgCytA was comprised of a cystatin-like domain with two conserved glycine residues (GG) near the N-terminal and a highly conserved glutamine-valine-glycine (Q-X-V-X-G) motif in the form of QVVAG loop. Transcription analysis of CgCytA indicated its constitutive expression in all tissues including mantle, gill, digestive tract, hemocytes, heart, adductor muscle, and gonads. Immune challenge with Vibrio alginolyticus, resulted in significant down-regulation of CgCytA expression at the initial stages of infection (till 12 h post infection) and the expression of cystatin increased 48 h post infection. Protease assay demonstrated the concentration of cystatin needed to inhibit half of the maximum biological response of cysteine protease is 14.4 μg/L (IC50). Furthermore, RNAi of CgCytA resulted in increase of apoptotic cell population in hemocytes of C. gigas, suggesting protection role of CgCytA from hemocytes apoptosis. Unexpectedly, knockdown of CgCytA leaded to enhancement of bacterial clearance in vivo, implying that CgCytA may negatively regulate immune defense by suppressing endogenous cysteine protease. Therefore, CgCytA plays dual roles in protection of host hemocytes from apoptosis and control of bacterial clearance, which may server as one of key endogenous balancer between apoptosis and innate immunity in oyster.
Collapse
Affiliation(s)
- Fan Mao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiying He
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou 510301, China
| | - Zhiming Xiang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou 510301, China
| | - Yang Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou 510301, China.
| | - Ziniu Yu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou 510301, China.
| |
Collapse
|
75
|
Wang Y, Jia L, Shen J, Wang Y, Fu Z, Su SA, Cai Z, Wang JA, Xiang M. Cathepsin B aggravates coxsackievirus B3-induced myocarditis through activating the inflammasome and promoting pyroptosis. PLoS Pathog 2018; 14:e1006872. [PMID: 29360865 PMCID: PMC5809100 DOI: 10.1371/journal.ppat.1006872] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 02/12/2018] [Accepted: 01/09/2018] [Indexed: 12/22/2022] Open
Abstract
Cathepsin B (CatB) is a cysteine proteolytic enzyme widely expressed in various cells and mainly located in the lysosomes. It contributes to the pathogenesis and development of many diseases. However, the role of CatB in viral myocarditis (VMC) has never been elucidated. Here we generated the VMC model by intraperitoneal injection of coxsackievirus B3 (CVB3) into mice. At day 7 and day 28, we found CatB was significantly activated in hearts from VMC mice. Compared with the wild-type mice receiving equal amount of CVB3, genetic ablation of CatB (Ctsb-/-) significantly improved survival, reduced inflammatory cell infiltration, decreased serum level of cardiac troponin I, and ameliorated cardiac dysfunction, without altering virus titers in hearts. Conversely, genetic deletion of cystatin C (Cstc-/-), which markedly enhanced CatB levels in hearts, distinctly increased the severity of VMC. Furthermore, compared with the control, we found the inflammasome was activated in the hearts of wild-type mice with VMC, which was attenuated in the hearts of Ctsb-/- mice but was further enhanced in Cstc-/- mice. Consistently, the inflammasome-initiated pyroptosis was reduced in Ctsb-/- mice hearts and further increased in Cstc-/- mice. These results suggest that CatB aggravates CVB3-induced VMC probably through activating the inflammasome and promoting pyroptosis. This finding might provide a novel strategy for VMC treatment. Severe VMC could lead to sudden cardiac death especially in youths, and is also the most common cause of secondary dilated cardiomyopathy. However, we still lack effective and specific clinical treatments currently. Therefore, further exploration of the pathogenesis and new therapeutic targets are urgently needed. Our results implied that CatB, a cysteine protease mainly located in the lysosome, is activated in the hearts of mice with VMC induced by intraperitoneal injection of CVB3. Genetic deletion of CatB significantly improves survival, attenuates cardiac inflammation, decreases serum cardiac troponin I levels and alleviates cardiac dysfunction, without altering virus titers in hearts. However, ablation of its main endogenous inhibitor, cystatin C, distinctly exaggerates the disease severity. Mechanistically, we found that CatB influences VMC probably by activating the NLRP3 inflammasome and promoting caspase-1-induced pyroptosis. This may provide a potential new therapeutic strategy for VMC.
Collapse
Affiliation(s)
- Yaping Wang
- Department of Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Cardiovascular Key Lab of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Liangliang Jia
- Department of Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Cardiovascular Key Lab of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jian Shen
- Department of Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Cardiovascular Key Lab of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yidong Wang
- Department of Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Cardiovascular Key Lab of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zurong Fu
- Department of Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Cardiovascular Key Lab of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Sheng-an Su
- Department of Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Cardiovascular Key Lab of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhejun Cai
- Department of Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Cardiovascular Key Lab of Zhejiang Province, Hangzhou, Zhejiang, China
- * E-mail: (MX); (ZC)
| | - Jian-an Wang
- Department of Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Cardiovascular Key Lab of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Meixiang Xiang
- Department of Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Cardiovascular Key Lab of Zhejiang Province, Hangzhou, Zhejiang, China
- * E-mail: (MX); (ZC)
| |
Collapse
|
76
|
Chen X, Gu X, Zhang H. Sidt2 regulates hepatocellular lipid metabolism through autophagy. J Lipid Res 2018; 59:404-415. [PMID: 29363559 DOI: 10.1194/jlr.m073817] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/23/2018] [Indexed: 12/22/2022] Open
Abstract
SID1 transmembrane family member 2 (Sidt2) is an integral lysosomal membrane protein. To investigate its explicit function, we generated a global Sidt2 knockout mouse model (Sidt2-/-). Compared with the littermate controls, Sidt2-/- mice exhibited a remarkable accumulation of lipid droplets in liver. First, it was observed that food consumption, hepatocyte fatty acid uptake and de novo lipogenesis, hepatocyte lipolysis, and TG secretion in the form of very low density lipoprotein were comparable between Sidt2-/- and WT mice. However, the hepatic β-oxidation of fatty acids decreased significantly as revealed by a low level of serum β-hydroxybutyrate in the Sidt2-/- mice along with normal mRNA expression of genes involved in fatty acid oxidation. In addition, the classical autophagy pathway marker proteins, p62 and LC3-II, increased in liver, along with compromised autophagic flux in primary hepatocytes, indicating a block of autophagosome maturation due to Sidt2 deficiency, which was also supported by electron microscopy image analysis both in livers and in primary hepatocytes from Sidt2-/- mice. It was concluded that Sidt2 plays an important role in mouse hepatic lipid homeostasis by regulating autophagy at the terminal stage.
Collapse
Affiliation(s)
- Xueru Chen
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuefan Gu
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huiwen Zhang
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
77
|
Sena BF, Figueiredo JL, Aikawa E. Cathepsin S As an Inhibitor of Cardiovascular Inflammation and Calcification in Chronic Kidney Disease. Front Cardiovasc Med 2018; 4:88. [PMID: 29379789 PMCID: PMC5770806 DOI: 10.3389/fcvm.2017.00088] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/14/2017] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular disease (CVD) is responsible for the majority of deaths in the developed world. Particularly, in patients with chronic kidney disease (CKD), the imbalance of calcium and phosphate may lead to the acceleration of both vascular and valve inflammation and calcification. One in two patients with CKD are reported as dying from cardiovascular causes due to the resulting acceleration in the development of atherosclerosis plaques. In addition, CKD patients on hemodialysis are prone to aortic valve calcification and often need valve replacement before kidney transplantation. The lysosomal proteases, cathepsins, are composed of 11 cysteine members (cathepsin B, C, F, H, K, L, O, S, V, W, and Z), as well as serine proteases cathepsin A and G, which cleave peptide bonds with serine as the amino acid, and aspartyl proteases D and E, which use an activated water molecule bound to aspartate to break peptide substrate. Cysteine proteases, also known as thiol proteases, degrade protein via the deprotonation of a thiol and have been found to play a significant role in autoimmune disease, atherosclerosis, aortic valve calcification, cardiac repair, and cardiomyopathy, operating within extracellular spaces. This review sought to evaluate recent findings in this field, highlighting how among cathepsins, the inhibition of cathepsin S in particular, could play a significant role in diminishing the effects of CVD, especially for patients with CKD.
Collapse
Affiliation(s)
- Brena F Sena
- Boston University School of Public Health, Boston, MA, United States
| | - Jose Luiz Figueiredo
- Department of Surgery, Introduction to Clinical and Surgical Techniques Division, Laboratory of Experimental Surgery, Federal University of Pernambuco, Recife, Brazil
| | - Elena Aikawa
- The Center of Excellence in Vascular Biology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
78
|
Mijovski MB, Boc V, Fonovic UP, Marc J, Blinc A, Kos J, Cerne D. Increased Plasma Cathepsin S at the Time of Percutaneous Transluminal Angioplasty is Associated with 6-Months’ Restenosis of the Femoropopliteal Artery. J Med Biochem 2018; 37:54-61. [PMID: 30581342 PMCID: PMC6294110 DOI: 10.1515/jomb-2017-0033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 05/23/2017] [Indexed: 01/15/2023] Open
Abstract
SummaryBackground: We tested the hypothesis that increased levels of cathepsin S and decreased levels of cystatin C in plasma at the time of percutaneous transluminal angioplasty (PTA) are associated with the occurrence of 6-months’ restenosis of the femoropopliteal artery (FPA). Methods: 20 patients with restenosis and 24 matched patients with patent FPA after a 6-months follow-up were in - cluded in this study. They all exhibited disabling claudication or critical limb ischemia and had undergone technically successful PTA. They were all receiving statins and ACE in hi - bitors (or angiotensin II receptor antagonist) before the PTA and the therapy did not change throughout the observational period. Plasma concentrations of C-reactive protein were < 10 mg/L and of creatinine within the reference range at the time of the PTA. Plasma concentration and activity of cathepsin S, together with its potent inhibitor cystatin C, were measured the day before and the day after the PTA. Results: The increased plasma concentration and activity of cathepsin S at the time of PTA was associated with the occurrence of 6-months’ restenosis of FPA, independently of established risk factors (lesion complexity, infrapopliteal run-off vessels, type of PTA, age, gender, smoking, diabetes, lipids) and of cystatin C. Plasma cystatin C concentration was not associated with restenosis and did not correlate with cathepsin S activity and concentration in the plasma. Conclusion: Increased level of plasma cathepsin S at the time of PTA is associated with 6-months’ restenosis of PTA, independently of established risk factors.
Collapse
Affiliation(s)
- Mojca Bozic Mijovski
- Department of Vascular Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Vinko Boc
- Department of Vascular Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | | | - Janja Marc
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Ales Blinc
- Department of Vascular Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Janko Kos
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Darko Cerne
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
- Prof. Dr. Darko Cerne Chair of Clinical Biochemistry, Faculty of Pharmacy, Askerceva 7, SI-1000 Ljubljana, Slovenia Tel: +38614769644; fax: +3861425803
| |
Collapse
|
79
|
Panwar P, Butler GS, Jamroz A, Azizi P, Overall CM, Brömme D. Aging-associated modifications of collagen affect its degradation by matrix metalloproteinases. Matrix Biol 2018. [DOI: 10.1016/j.matbio.2017.06.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
80
|
P-407-induced Mouse Model of Dose-controlled Hyperlipidemia and Atherosclerosis: 25 Years Later. J Cardiovasc Pharmacol 2017; 70:339-352. [DOI: 10.1097/fjc.0000000000000522] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
81
|
Law S, Panwar P, Li J, Aguda AH, Jamroz A, Guido RVC, Brömme D. A composite docking approach for the identification and characterization of ectosteric inhibitors of cathepsin K. PLoS One 2017; 12:e0186869. [PMID: 29088253 PMCID: PMC5663397 DOI: 10.1371/journal.pone.0186869] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/09/2017] [Indexed: 12/26/2022] Open
Abstract
Cathepsin K (CatK) is a cysteine protease that plays an important role in mammalian intra- and extracellular protein turnover and is known for its unique and potent collagenase activity. Through studies on the mechanism of its collagenase activity, selective ectosteric sites were identified that are remote from the active site. Inhibitors targeting these ectosteric sites are collagenase selective and do not interfere with other proteolytic activities of the enzyme. Potential ectosteric inhibitors were identified using a computational approach to screen the druggable subset of and the entire 281,987 compounds comprising Chemical Repository library of the National Cancer Institute-Developmental Therapeutics Program (NCI-DTP). Compounds were scored based on their affinity for the ectosteric site. Here we compared the scores of three individual molecular docking methods with that of a composite score of all three methods together. The composite docking method was up to five-fold more effective at identifying potent collagenase inhibitors (IC50 < 20 μM) than the individual methods. Of 160 top compounds tested in enzymatic assays, 28 compounds revealed blocking of the collagenase activity of CatK at 100 μM. Two compounds exhibited IC50 values below 5 μM corresponding to a molar protease:inhibitor concentration of <1:12. Both compounds were subsequently tested in osteoclast bone resorption assays where the most potent inhibitor, 10-[2-[bis(2-hydroxyethyl)amino]ethyl]-7,8-diethylbenzo[g]pteridine-2,4-dione, (NSC-374902), displayed an inhibition of bone resorption with an IC50-value of approximately 300 nM and no cell toxicity effects.
Collapse
Affiliation(s)
- Simon Law
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Preety Panwar
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jody Li
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Adeleke H. Aguda
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew Jamroz
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rafael V. C. Guido
- Centro de Inovação em Biodiversidade e Fármacos, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| | - Dieter Brömme
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
82
|
Wu H, Du Q, Dai Q, Ge J, Cheng X. Cysteine Protease Cathepsins in Atherosclerotic Cardiovascular Diseases. J Atheroscler Thromb 2017; 25:111-123. [PMID: 28978867 PMCID: PMC5827079 DOI: 10.5551/jat.rv17016] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is an inflammatory disease characterized by extensive arterial wall matrix protein degradation. Cysteine protease cathepsins play a pivotal role in extracellular matrix (ECM) remodeling and have been implicated in the development and progression of atherosclerosis-based cardiovascular diseases. An imbalance in expression between cathepsins (such as cathepsins S, K, L, C) and their inhibitor cystatin C may favor proteolysis of ECM in the pathogenesis of cardiovascular disease such as atherosclerosis, aneurysm formation, restenosis, and neovascularization. New insights into cathepsin functions have been made possible by the generation of knock-out mice and by the application of specific inhibitors. Inflammatory cytokines regulate the expression and activities of cathepsins in cultured vascular cells and macrophages. In addition, evaluations of the possibility of cathepsins as a diagnostic tool revealed that the circulating levels of cathepsin S, K, and L, and their endogenous inhibitor cystatin C could be promising biomarkers in the diagnosis of coronary artery disease, aneurysm, adiposity, peripheral arterial disease, and coronary artery calcification. In this review, we summarize the available information regarding the mechanistic contributions of cathepsins to ASCVD.
Collapse
Affiliation(s)
- Hongxian Wu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University
| | - Qiuna Du
- Department of Nephrology, Tongji Hospital, Tongji University
| | - Qiuyan Dai
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University
| | - Xianwu Cheng
- Department of Cardiology, Yanbian University Hospital.,Institute of Innovation for Future Society, Nagoya University, Graduate School of Medicine.,Division of Cardiology, Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
83
|
Yan L, Ding S, Gu B, Ma P. Clinical application of simultaneous detection of cystatin C, cathepsin S, and IL-1 in classification of coronary artery disease. J Biomed Res 2017; 31:315-320. [PMID: 28808203 PMCID: PMC5548992 DOI: 10.7555/jbr.31.20150152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Cystatin C, cathepsin S, and IL-1 are three important biomarkers of atherosclerosis. Previous studies emphasized the relationship between individual biomarkers in coronary artery disease (CAD) patients and severity of atherosclerostic lesions of the coronary arteries, while combined cystatin C, cathepsin S, and IL-1 have not been reported for clinical classification of CAD. We aimed to establish a link between cystatin C, cathepsin S, IL-1 and CAD in this cohort study. Totally 112 subjects were enrolled and divided into the stable angina pectoris group, the unstable angina pectoris group and the acute myocardial infarction (AMI) groups, and 50 healthy adults served as controls. The levels of the three biomarkers were detected by ELISA. The results showed that serum level of cystatin C (mg/L) was higher in CAD patients compared with those in the healthy controls (AMIvs. unstable angina pectoris vs. stable angina pectoris vs. controls: 1.27±0.18 vs. 1.09±0.19 vs. 0.91±0.05 vs. 0.78±0.07, all P<0.01). Cathepsin S (ng/mL) was also significantly different among the groups (AMI vs. unstable angina pectoris vs. stable angina pectoris vs. controls: 67.30±8.36 vs. 56.90±7.16 vs. 49.8±2.72 vs. 67.30±8.36, all P<0.01). IL-1 (pg/mL) was significantly different among the groups as well (AMIvs. unstable angina pectoris vs. stable angina pectoris vs. controls: 2.96±0.57 vs. 2.46±0.24 vs. 2.28±0.09 vs. 2.02±0.13, all P<0.01). Spearman's correlation test revealed positive correlation between cystatin C, cathepsin S, IL-1 and Gensini score (r=0.451, 0.491, 0.397, respectively). It is suggested that simultaneous detection of cystatin C, cathepsin S, and IL-1 in serum may be useful in clinical classification and assessment of severity of CAD.
Collapse
Affiliation(s)
- Ling Yan
- Medical Technology Institute of Xuzhou Medical College, Xuzhou, Jiangsu 221004, China
| | - Shuang Ding
- Department of Laboratory Medicine, the Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, China
| | - Bing Gu
- Medical Technology Institute of Xuzhou Medical College, Xuzhou, Jiangsu 221004, China.,Department of Laboratory Medicine, the Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, China
| | - Ping Ma
- Medical Technology Institute of Xuzhou Medical College, Xuzhou, Jiangsu 221004, China.,Department of Laboratory Medicine, the Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, China
| |
Collapse
|
84
|
Nakao S, Zandi S, Sun D, Hafezi-Moghadam A. Cathepsin B-mediated CD18 shedding regulates leukocyte recruitment from angiogenic vessels. FASEB J 2017; 32:143-154. [PMID: 28904019 DOI: 10.1096/fj.201601229r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 08/21/2017] [Indexed: 01/19/2023]
Abstract
Cathepsin B (CtsB) contributes to atherosclerosis and cancer progression by processing the extracellular matrix and promoting angiogenesis. Although CtsB was reported to promote and reduce angiogenesis, there is no mechanistic explanation that reconciles this apparent discrepancy. CtsB cleaves CD18 from the surface of immune cells, but its contribution to angiogenesis has not been studied. We developed an in vivo technique for visualization of immune cell transmigration from corneal vessels toward implanted cytokines. Wild-type (WT) leukocytes extravasated from limbal vessels, angiogenic stalks, and growing tip vessels and migrated toward the cytokines, indicating immune competence of angiogenic vessels. Compared to WT leukocytes, CtsB-/- leukocytes accumulated in a higher number in angiogenic vessels, but extravasated less toward the implanted cytokine. The accumulated CtsB-/- leukocytes in angiogenic vessels expressed more CD18. CD18-/- leukocytes extravasated later than WT leukocytes. However, once extravasated, CD18-/- leukocytes transmigrated more rapidly than their WT counterparts. These results suggest that, although CD18 facilitates efficient extravasation, outside of the vessel CD18 interaction with the extracellular matrix, it reduced transmigration velocity. Our results reveal an unexpected role for CtsB in leukocyte extravasation and transmigration, which advances our understanding of the complex contribution of CtsB to angiogenesis.-Nakao, S., Zandi, S., Sun, D., Hafezi-Moghadam, A. Cathepsin B-mediated CD18 shedding regulates leukocyte recruitment from angiogenic vessels.
Collapse
Affiliation(s)
- Shintaro Nakao
- Molecular Biomarkers Nano-Imaging Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; and.,Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Souska Zandi
- Molecular Biomarkers Nano-Imaging Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; and
| | - Dawei Sun
- Molecular Biomarkers Nano-Imaging Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; and
| | - Ali Hafezi-Moghadam
- Molecular Biomarkers Nano-Imaging Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; and
| |
Collapse
|
85
|
Wang L, Palme V, Schilcher N, Ladurner A, Heiss EH, Stangl H, Bauer R, Dirsch VM, Atanasov AG. The Dietary Constituent Falcarindiol Promotes Cholesterol Efflux from THP-1 Macrophages by Increasing ABCA1 Gene Transcription and Protein Stability. Front Pharmacol 2017; 8:596. [PMID: 28919859 PMCID: PMC5585181 DOI: 10.3389/fphar.2017.00596] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 08/17/2017] [Indexed: 11/13/2022] Open
Abstract
We report increased cholesterol efflux from macrophages in the presence of falcarindiol, an important dietary constituent present in commonly used vegetables and medicinal plants. Falcarindiol (3-20 μM) increased cholesterol efflux from THP-1-derived macrophages. Western blot analysis showed an increased protein level of ABCA1 upon falcarindiol exposure. Quantitative real-time PCR revealed that also ABCA1 mRNA level rise with falcarindiol (10 μM) treatment. The effect of falcarindiol on ABCA1 protein as well as mRNA level were counteracted by co-treatment with BADGE, an antagonist of PPARγ. Furthermore, falcarindiol significantly inhibited ABCA1 protein degradation in the presence of cycloheximide. This post-translational regulation of ABCA1 by falcarindiol occurs most likely by inhibition of lysosomal cathepsins, resulting in decreased proteolysis and extended protein half-life of ABCA1. Taken together, falcarindiol increases ABCA1 protein level by two complementary mechanisms, i.e., promoting ABCA1 gene expression and inhibiting ABCA1 protein degradation, which lead to enhanced cholesterol efflux.
Collapse
Affiliation(s)
- Limei Wang
- Department of Pharmacognosy, University of ViennaVienna, Austria
- Department of Pharmacology, School of Pharmacy, Qingdao UniversityQingdao, China
| | - Veronika Palme
- Department of Pharmacognosy, University of ViennaVienna, Austria
| | - Nicole Schilcher
- Department of Pharmacognosy, University of ViennaVienna, Austria
| | - Angela Ladurner
- Department of Pharmacognosy, University of ViennaVienna, Austria
| | - Elke H. Heiss
- Department of Pharmacognosy, University of ViennaVienna, Austria
| | - Herbert Stangl
- Center for Pathobiochemistry and Genetics, Institute of Medical Chemistry, Medical University of ViennaVienna, Austria
| | - Rudolf Bauer
- Department of Pharmacognosy, Institute of Pharmaceutical Sciences, Karl-Franzens-University GrazGraz, Austria
| | - Verena M. Dirsch
- Department of Pharmacognosy, University of ViennaVienna, Austria
| | - Atanas G. Atanasov
- Department of Pharmacognosy, University of ViennaVienna, Austria
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of SciencesLesznowola, Poland
| |
Collapse
|
86
|
Perlenfein TJ, Mehlhoff JD, Murphy RM. Insights into the mechanism of cystatin C oligomer and amyloid formation and its interaction with β-amyloid. J Biol Chem 2017; 292:11485-11498. [PMID: 28487367 DOI: 10.1074/jbc.m117.786558] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/21/2017] [Indexed: 01/12/2023] Open
Abstract
Cystatin C (CysC) is a versatile and ubiquitously-expressed member of the cysteine protease inhibitor family that is present at notably high concentrations in cerebrospinal fluid. Under mildly denaturing conditions, CysC forms inactive domain-swapped dimers. A destabilizing mutation, L68Q, increases the rate of domain-swapping and causes a fatal amyloid disease, hereditary cystatin C amyloid angiopathy. Wild-type (wt) CysC will also aggregate into amyloid fibrils under some conditions. Propagated domain-swapping has been proposed as the mechanism by which CysC fibrils grow. We present evidence that a CysC mutant, V57N, stabilized against domain-swapping, readily forms fibrils, contradicting the propagated domain-swapping hypothesis. Furthermore, in physiological buffer, wt CysC can form oligomers without undergoing domain-swapping. These non-swapped oligomers are identical in secondary structure to CysC monomers and completely retain protease inhibitory activity. However, unlike monomers or dimers, the oligomers bind fluorescent dyes that indicate they have characteristics of pre-amyloid aggregates. Although these oligomers appear to be a pre-amyloid assembly, they are slower than CysC monomers to form fibrils. Fibrillation of CysC therefore likely initiates from the monomer and does not require domain-swapping. The non-swapped oligomers likely represent a dead-end offshoot of the amyloid pathway and must dissociate to monomers prior to rearranging to amyloid fibrils. These prefibrillar CysC oligomers were potent inhibitors of aggregation of the Alzheimer's-related peptide, β-amyloid. This result illustrates an example where heterotypic interactions between pre-amyloid oligomers prevent the homotypic interactions that would lead to mature amyloid fibrils.
Collapse
Affiliation(s)
- Tyler J Perlenfein
- From the Department of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin 53706
| | - Jacob D Mehlhoff
- From the Department of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin 53706
| | - Regina M Murphy
- From the Department of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
87
|
Weiss-Sadan T, Gotsman I, Blum G. Cysteine proteases in atherosclerosis. FEBS J 2017; 284:1455-1472. [PMID: 28207191 DOI: 10.1111/febs.14043] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/04/2017] [Accepted: 02/13/2017] [Indexed: 12/22/2022]
Abstract
Atherosclerosis predisposes patients to cardiovascular diseases, such as myocardial infarction and stroke. Instigation of vascular injury is triggered by retention of lipids and inflammatory cells in the vascular endothelium. Whereas these vascular lesions develop in young adults and are mostly considered harmless, over time persistent inflammatory and remodeling processes will ultimately damage the arterial wall and cause a thrombotic event due to exposure of tissue factors into the lumen. Evidence from human tissues and preclinical animal models has clearly established the role of cathepsin cysteine proteases in the development and progression of vascular lesions. Hence, understanding the function of cathepsins in atherosclerosis is important for developing novel therapeutic strategies and advanced point of care diagnostics. In this review we will describe the roles of cysteine cathepsins in different cellular process that become dysfunctional in atherosclerosis, such as lipid metabolism, inflammation and apoptosis, and how they contribute to arterial remodeling and atherogenesis. Finally, we will explore new horizons in protease molecular imaging, which may potentially become a surrogate marker to identify future cardiovascular events.
Collapse
Affiliation(s)
- Tommy Weiss-Sadan
- The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Israel Gotsman
- Heart Institute, Hadassah University Hospital, Jerusalem, Israel
| | - Galia Blum
- The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| |
Collapse
|
88
|
Steubl D, Kumar SV, Tato M, Mulay SR, Larsson A, Lind L, Risérus U, Renders L, Heemann U, Carlsson AC, Ärnlöv J, Anders HJ. Circulating cathepsin-S levels correlate with GFR decline and sTNFR1 and sTNFR2 levels in mice and humans. Sci Rep 2017; 7:43538. [PMID: 28240259 PMCID: PMC5327444 DOI: 10.1038/srep43538] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/25/2017] [Indexed: 12/24/2022] Open
Abstract
Cardiovascular complications determine morbidity/mortality in chronic kidney disease (CKD). We hypothesized that progressive CKD drives the release of cathepsin-S (Cat-S), a cysteine protease that promotes endothelial dysfunction and cardiovascular complications. Therefore, Cat-S, soluble tumor-necrosis-factor receptor (sTNFR) 1/2 and glomerular filtration rate (GFR) were measured in a CKD mouse model, a German CKD-cohort (MCKD, n = 421) and two Swedish community-based cohorts (ULSAM, n = 764 and PIVUS, n = 804). Association between Cat-S and sTNFR1/2/GFR was assessed using multivariable linear regression. In the mouse model, Cat-S and sTNFR1/2 concentrations were increased following the progressive decline of GFR, showing a strong correlation between Cat-S and GFR (r = −0.746, p < 0.001) and Cat-S and sTNFR1/sTNFR2 (r = 0.837/0.916, p < 0.001, respectively). In the human cohorts, an increase of one standard deviation of estimated GFR was associated with a decrease of 1.008 ng/ml (95%-confidence interval (95%-CI) −1.576–(−0.439), p < 0.001) in Cat-S levels in MCKD; in ULSAM and PIVUS, results were similar. In all three cohorts, Cat-S and sTNFR1/sTNFR2 levels were associated in multivariable linear regression (p < 0.001). In conclusion, as GFR declines Cat-S and markers of inflammation-related endothelial dysfunction increase. The present data indicating that Cat-S activity increases with CKD progression suggest that Cat-S might be a therapeutic target to prevent cardiovascular complications in CKD.
Collapse
Affiliation(s)
- Dominik Steubl
- Abteilung für Nephrologie, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Santhosh V Kumar
- Medizinische Klinik und Poliklinik IV, Renal Division, Klinikum der Universität München, Campus Innenstadt, München, Germany
| | - Maia Tato
- Medizinische Klinik und Poliklinik IV, Renal Division, Klinikum der Universität München, Campus Innenstadt, München, Germany
| | - Shrikant R Mulay
- Medizinische Klinik und Poliklinik IV, Renal Division, Klinikum der Universität München, Campus Innenstadt, München, Germany
| | - Anders Larsson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Lars Lind
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Ulf Risérus
- Departments of Public Health and Caring Sciences/Clinical Nutrition, Uppsala University, Uppsala, Sweden
| | - Lutz Renders
- Abteilung für Nephrologie, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Uwe Heemann
- Abteilung für Nephrologie, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Axel C Carlsson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden.,Division of Family Medicine, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden
| | - Johan Ärnlöv
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden.,School of Health and Social Studies, Dalarna University, Falun, Sweden
| | - Hans-Joachim Anders
- Medizinische Klinik und Poliklinik IV, Renal Division, Klinikum der Universität München, Campus Innenstadt, München, Germany
| |
Collapse
|
89
|
Maheshwaran D, Nagendraraj T, Manimaran P, Ashokkumar B, Kumar M, Mayilmurugan R. A Highly Selective and Efficient Copper(II) - “Turn-On” Fluorescence Imaging Probe forl-Cysteine. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201601229] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Duraiyarasu Maheshwaran
- Bioinorganic Chemistry Laboratory/Physical Chemistry; School of Chemistry; Madurai Kamaraj University; 625021 Madurai Tamil Nadu India
| | - Thavasilingam Nagendraraj
- Bioinorganic Chemistry Laboratory/Physical Chemistry; School of Chemistry; Madurai Kamaraj University; 625021 Madurai Tamil Nadu India
| | - Paramasivam Manimaran
- School of Biotechnology; Madurai Kamaraj University; 625021 Madurai Tamil Nadu India
| | | | - Mukesh Kumar
- Solid State Physics Division; Physics Group; Bhabha Atomic Research Center; Mumbai Maharashtra India
| | - Ramasamy Mayilmurugan
- Bioinorganic Chemistry Laboratory/Physical Chemistry; School of Chemistry; Madurai Kamaraj University; 625021 Madurai Tamil Nadu India
| |
Collapse
|
90
|
Maheshwaran D, Priyanga S, Mayilmurugan R. Copper(ii)-benzimidazole complexes as efficient fluorescent probes forl-cysteine in water. Dalton Trans 2017; 46:11408-11417. [DOI: 10.1039/c7dt01895a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Copper(ii)-benzimidazole complexes could detectl-cysteine over other natural amino acids at pH 7.34 by a ‘turn-on’ fluorescence mechanismviathe reduction of Cu(ii) to Cu(i) followed by displacement with excellent selectivity.
Collapse
Affiliation(s)
- Duraiyarasu Maheshwaran
- Bioinorganic Chemistry Laboratory/Physical Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai 625 021
- India
| | - Selvarasu Priyanga
- Bioinorganic Chemistry Laboratory/Physical Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai 625 021
- India
| | - Ramasamy Mayilmurugan
- Bioinorganic Chemistry Laboratory/Physical Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai 625 021
- India
| |
Collapse
|
91
|
Wang F, Gao J, Zhao J, Zhang W, Bai J, Jia H, Wang Y. A new two-mode fluorescence signal amplification strategy for protease activity assay based on graphene oxide. RSC Adv 2017. [DOI: 10.1039/c7ra08166a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new graphene oxide-based two-mode fluorescence signal amplification strategy for the detection of protease activity has been established.
Collapse
Affiliation(s)
- Fangfang Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education
- Key Laboratory of Analytical Science and Technology of Hebei Province
- College of Chemistry and Environment Science
- Hebei University
- Baoding
| | - Jie Gao
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education
- Key Laboratory of Analytical Science and Technology of Hebei Province
- College of Chemistry and Environment Science
- Hebei University
- Baoding
| | - Jianwei Zhao
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education
- Key Laboratory of Analytical Science and Technology of Hebei Province
- College of Chemistry and Environment Science
- Hebei University
- Baoding
| | - Wenyue Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education
- Key Laboratory of Analytical Science and Technology of Hebei Province
- College of Chemistry and Environment Science
- Hebei University
- Baoding
| | - Jie Bai
- Medical Comprehensive Experimental Center
- Hebei University
- Baoding
- P. R. China
| | - Hongxia Jia
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education
- Key Laboratory of Analytical Science and Technology of Hebei Province
- College of Chemistry and Environment Science
- Hebei University
- Baoding
| | - Yucong Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education
- Key Laboratory of Analytical Science and Technology of Hebei Province
- College of Chemistry and Environment Science
- Hebei University
- Baoding
| |
Collapse
|
92
|
Ismael FO, Barrett TJ, Sheipouri D, Brown BE, Davies MJ, Hawkins CL. Role of Myeloperoxidase Oxidants in the Modulation of Cellular Lysosomal Enzyme Function: A Contributing Factor to Macrophage Dysfunction in Atherosclerosis? PLoS One 2016; 11:e0168844. [PMID: 27997605 PMCID: PMC5173366 DOI: 10.1371/journal.pone.0168844] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 12/07/2016] [Indexed: 11/18/2022] Open
Abstract
Low-density lipoprotein (LDL) is the major source of lipid within atherosclerotic lesions. Myeloperoxidase (MPO) is present in lesions and forms the reactive oxidants hypochlorous acid (HOCl) and hypothiocyanous acid (HOSCN). These oxidants modify LDL and have been strongly linked with the development of atherosclerosis. In this study, we examined the effect of HOCl, HOSCN and LDL pre-treated with these oxidants on the function of lysosomal enzymes responsible for protein catabolism and lipid hydrolysis in murine macrophage-like J774A.1 cells. In each case, the cells were exposed to HOCl or HOSCN or LDL pre-treated with these oxidants. Lysosomal cathepsin (B, L and D) and acid lipase activities were quantified, with cathepsin and LAMP-1 protein levels determined by Western blotting. Exposure of J774A.1 cells to HOCl or HOSCN resulted in a significant decrease in the activity of the Cys-dependent cathepsins B and L, but not the Asp-dependent cathepsin D. Cathepsins B and L were also inhibited in macrophages exposed to HOSCN-modified, and to a lesser extent, HOCl-modified LDL. No change was seen in cathepsin D activity or the expression of the cathepsin proteins or lysosomal marker protein LAMP-1. The activity of lysosomal acid lipase was also decreased on treatment of macrophages with each modified LDL. Taken together, these results suggest that HOCl, HOSCN and LDL modified by these oxidants could contribute to lysosomal dysfunction and thus perturb the cellular processing of LDL, which could be important during the development of atherosclerosis.
Collapse
Affiliation(s)
- Fahd O. Ismael
- The Heart Research Institute, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Tessa J. Barrett
- The Heart Research Institute, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Diba Sheipouri
- The Heart Research Institute, Sydney, New South Wales, Australia
| | - Bronwyn E. Brown
- The Heart Research Institute, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Michael J. Davies
- The Heart Research Institute, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Clare L. Hawkins
- The Heart Research Institute, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
93
|
Stoka V, Turk V, Turk B. Lysosomal cathepsins and their regulation in aging and neurodegeneration. Ageing Res Rev 2016; 32:22-37. [PMID: 27125852 DOI: 10.1016/j.arr.2016.04.010] [Citation(s) in RCA: 259] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/12/2016] [Accepted: 04/23/2016] [Indexed: 02/07/2023]
Abstract
Lysosomes and lysosomal hydrolases, including the cathepsins, have been shown to change their properties with aging brain a long time ago, although their function was not really understood. The first biochemical and clinical studies were followed by a major expansion in the last 20 years with the development of animal disease models and new approaches leading to a major advancement of understanding of the role of physiological and degenerative processes in the brain at the molecular level. This includes the understanding of the major role of autophagy and the cathepsins in a number of diseases, including its critical role in the neuronal ceroid lipofuscinosis. Similarly, cathepsins and some other lysosomal proteases were shown to have important roles in processing and/or degradation of several important neuronal proteins, thereby having either neuroprotective or harmful roles. In this review, we discuss lysosomal cathepsins and their regulation with the focus on cysteine cathepsins and their endogenous inhibitors, as well as their role in several neurodegenerative diseases.
Collapse
Affiliation(s)
- Veronika Stoka
- Department of Biochemistry and Molecular and Structural Biology, J. Stefan Institute, Jamova 39, Sl-1000 Ljubljana, Slovenia; J. Stefan International Postgraduate School, Jamova 39, Sl-1000 Ljubljana, Slovenia.
| | - Vito Turk
- Department of Biochemistry and Molecular and Structural Biology, J. Stefan Institute, Jamova 39, Sl-1000 Ljubljana, Slovenia; J. Stefan International Postgraduate School, Jamova 39, Sl-1000 Ljubljana, Slovenia
| | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, J. Stefan Institute, Jamova 39, Sl-1000 Ljubljana, Slovenia; Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, Jamova 39, Sl-1000 Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Sl-1000 Ljubljana, Slovenia.
| |
Collapse
|
94
|
de Mingo Á, de Gregorio E, Moles A, Tarrats N, Tutusaus A, Colell A, Fernandez-Checa JC, Morales A, Marí M. Cysteine cathepsins control hepatic NF-κB-dependent inflammation via sirtuin-1 regulation. Cell Death Dis 2016; 7:e2464. [PMID: 27831566 PMCID: PMC5260902 DOI: 10.1038/cddis.2016.368] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/11/2016] [Accepted: 10/12/2016] [Indexed: 12/18/2022]
Abstract
Sirtuin-1 (SIRT1) regulates hepatic metabolism but its contribution to NF-κB-dependent inflammation has been overlooked. Cysteine cathepsins (Cathepsin B or S, CTSB/S) execute specific functions in physiological processes, such as protein degradation, having SIRT1 as a substrate. We investigated the roles of CTSB/S and SIRT1 in the regulation of hepatic inflammation using primary parenchymal and non-parenchymal hepatic cell types and cell lines. In all cells analyzed, CTSB/S inhibition reduces nuclear p65-NF-κB and κB-dependent gene expression after LPS or TNF through enhanced SIRT1 expression. Accordingly, SIRT1 silencing was sufficient to enhance inflammatory gene expression. Importantly, in a dietary mouse model of non-alcoholic steatohepatitis, or in healthy and fibrotic mice after LPS challenge, cathepsins as well as NF-κB-dependent gene expression are activated. Consistent with the prominent role of cathepsin/SIRT1, cysteine cathepsin inhibition limits NF-κB-dependent hepatic inflammation through the regulation of SIRT1 in all in vivo settings, providing a novel anti-inflammatory therapeutic target in liver disease.
Collapse
Affiliation(s)
- Álvaro de Mingo
- Department of Cell Death and Proliferation, IIBB-CSIC/IDIBAPS, Barcelona, Catalonia, Spain
| | - Estefanía de Gregorio
- Department of Cell Death and Proliferation, IIBB-CSIC/IDIBAPS, Barcelona, Catalonia, Spain
| | - Anna Moles
- Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, UK
| | - Núria Tarrats
- Department of Cell Death and Proliferation, IIBB-CSIC/IDIBAPS, Barcelona, Catalonia, Spain
| | - Anna Tutusaus
- Department of Cell Death and Proliferation, IIBB-CSIC/IDIBAPS, Barcelona, Catalonia, Spain
| | - Anna Colell
- Department of Cell Death and Proliferation, IIBB-CSIC/IDIBAPS, Barcelona, Catalonia, Spain
| | - Jose C Fernandez-Checa
- Department of Cell Death and Proliferation, IIBB-CSIC/IDIBAPS, Barcelona, Catalonia, Spain.,Research Center for Alcoholic Liver and Pancreatic Diseases, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Albert Morales
- Department of Cell Death and Proliferation, IIBB-CSIC/IDIBAPS, Barcelona, Catalonia, Spain
| | - Montserrat Marí
- Department of Cell Death and Proliferation, IIBB-CSIC/IDIBAPS, Barcelona, Catalonia, Spain
| |
Collapse
|
95
|
Ruiz P, Martin-Millan M, Gonzalez-Martin MC, Almeida M, González-Macias J, Ros MA. CathepsinKCre mediated deletion of βcatenin results in dramatic loss of bone mass by targeting both osteoclasts and osteoblastic cells. Sci Rep 2016; 6:36201. [PMID: 27804995 PMCID: PMC5090355 DOI: 10.1038/srep36201] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 10/12/2016] [Indexed: 12/19/2022] Open
Abstract
It is well established that activation of Wnt/βcatenin signaling in the osteoblast lineage leads to an increase in bone mass through a dual mechanism: increased osteoblastogenesis and decreased osteoclastogenesis. However, the effect of this pathway on the osteoclast lineage has been less explored. Here, we aimed to examine the effects of Wnt/βcatenin signaling in mature osteoclasts by generating mice lacking βcatenin in CathepsinK-expressing cells (Ctnnb1f/f;CtsKCre mice). These mice developed a severe low-bone-mass phenotype with onset in the second month and in correlation with an excessive number of osteoclasts, detected by TRAP staining and histomorphometric quantification. We found that WNT3A, through the canonical pathway, promoted osteoclast apoptosis and therefore attenuated the number of M-CSF and RANKL-derived osteoclasts in vitro. This reveals a cell-autonomous effect of Wnt/βcatenin signaling in controlling the life span of mature osteoclasts. Furthermore, bone Opg expression in Ctnnb1f/f;CtsKCre mice was dramatically decreased pointing to an additional external activation of osteoclasts. Accordingly, expression of CathepsinK was detected in TRAP-negative cells of the inner periosteal layer also expressing Col1. Our results indicate that the bone phenotype of Ctnnb1f/f;CtsKCre animals combines a cell-autonomous effect in the mature osteoclast with indirect effects due to the additional targeting of osteoblastic cells.
Collapse
Affiliation(s)
- Paula Ruiz
- Instituto de Investigación Marqués de Valdecilla, IDIVAL, Cardenal Herrera Oria s/n. 39011 Santander, Spain
| | - Marta Martin-Millan
- Instituto de Investigación Marqués de Valdecilla, IDIVAL, Cardenal Herrera Oria s/n. 39011 Santander, Spain.,Department of Internal Medicine, HUMV, Hospital Universitario Marqués de Valdecilla, Avenida de Valdecilla s/n, 39008 Santander, Cantabria, Spain
| | - M C Gonzalez-Martin
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC-SODERCAN-Universidad de Cantabria). Albert Einstein 22, 39011 Santander, Spain
| | - Maria Almeida
- Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| | - Jesús González-Macias
- Instituto de Investigación Marqués de Valdecilla, IDIVAL, Cardenal Herrera Oria s/n. 39011 Santander, Spain.,Department of Internal Medicine, HUMV, Hospital Universitario Marqués de Valdecilla, Avenida de Valdecilla s/n, 39008 Santander, Cantabria, Spain.,Departamento de Medicina y Psiquiatría. Facultad de Medicina. Universidad de Cantabria, Cardenal Herrera Oria, s/n. 39011 Santander, Spain.,Red Temática de Investigación Cooperativa en Envejecimiento y Fragilidad (RETICEF), Avenida de Valdecilla, s/n. Santander 39008, Spain
| | - Maria A Ros
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC-SODERCAN-Universidad de Cantabria). Albert Einstein 22, 39011 Santander, Spain.,Departamento de Anatomía y Biología Celular, Facultad de Medicina, Universidad de Cantabria, Cardenal Herrera Oria, s/n. 39011 Santander, Spain
| |
Collapse
|
96
|
Domanski D, Zegrocka-Stendel O, Perzanowska A, Dutkiewicz M, Kowalewska M, Grabowska I, Maciejko D, Fogtman A, Dadlez M, Koziak K. Molecular Mechanism for Cellular Response to β-Escin and Its Therapeutic Implications. PLoS One 2016; 11:e0164365. [PMID: 27727329 PMCID: PMC5058498 DOI: 10.1371/journal.pone.0164365] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 09/23/2016] [Indexed: 11/18/2022] Open
Abstract
β-escin is a mixture of triterpene saponins isolated from the horse chestnut seeds (Aesculus hippocastanum L.). The anti-edematous, anti-inflammatory and venotonic properties of β-escin have been the most extensively clinically investigated effects of this plant-based drug and randomized controlled trials have proved the efficacy of β-escin for the treatment of chronic venous insufficiency. However, despite the clinical recognition of the drug its pharmacological mechanism of action still remains largely elusive. To determine the cellular and molecular basis for the therapeutic effectiveness of β-escin we performed discovery and targeted proteomic analyses and in vitro evaluation of cellular and molecular responses in human endothelial cells under inflammatory conditions. Our results demonstrate that in endothelial cells β-escin potently induces cholesterol synthesis which is rapidly followed with marked fall in actin cytoskeleton integrity. The concomitant changes in cell functioning result in a significantly diminished responses to TNF-α stimulation. These include reduced migration, alleviated endothelial monolayer permeability, and inhibition of NFκB signal transduction leading to down-expression of TNF-α-induced effector proteins. Moreover, the study provides evidence for novel therapeutic potential of β-escin beyond the current vascular indications.
Collapse
Affiliation(s)
- Dominik Domanski
- Laboratory of Mass Spectrometry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Oliwia Zegrocka-Stendel
- Centre for Preclinical Research and Technology, Department of Immunology, Biochemistry and Nutrition, Medical University of Warsaw, Warsaw, Poland
| | - Anna Perzanowska
- Laboratory of Mass Spectrometry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Malgorzata Dutkiewicz
- Centre for Preclinical Research and Technology, Department of Immunology, Biochemistry and Nutrition, Medical University of Warsaw, Warsaw, Poland
| | - Magdalena Kowalewska
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Iwona Grabowska
- Department of Cytology, Faculty of Biology, University of Warsaw, Warsaw, Miecznikowa 1, 02–096 Warsaw, Poland
| | - Dorota Maciejko
- Centre for Preclinical Research and Technology, Department of Immunology, Biochemistry and Nutrition, Medical University of Warsaw, Warsaw, Poland
| | - Anna Fogtman
- Laboratory for Microarray Analysis CORELAB, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Michal Dadlez
- Laboratory of Mass Spectrometry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Koziak
- Centre for Preclinical Research and Technology, Department of Immunology, Biochemistry and Nutrition, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
97
|
Liu F, Zhou ZF, An Y, Yu Y, Wu RX, Yin Y, Xue Y, Chen FM. Effects of cathepsin K on Emdogain-induced hard tissue formation by human periodontal ligament stem cells. J Tissue Eng Regen Med 2016; 11:2922-2934. [DOI: 10.1002/term.2195] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 02/22/2016] [Accepted: 03/14/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Fen Liu
- State Key Laboratory of Military Stomatology, Department of Periodontology; School of Stomatology, Fourth Military Medical University; Xi'an China
- Shaanxi Key Laboratory of Stomatology, Biomaterials Unit; School of Stomatology, Fourth Military Medical University; Xi'an China
- Department of Oral Medicine; Northwest Women's and Children's Hospital; Xi'an China
| | - Zhi-Fei Zhou
- State Key Laboratory of Military Stomatology, Department of Paediatric Dentistry; School of Stomatology, Fourth Military Medical University; Xi'an China
| | - Ying An
- State Key Laboratory of Military Stomatology, Department of Periodontology; School of Stomatology, Fourth Military Medical University; Xi'an China
| | - Yang Yu
- State Key Laboratory of Military Stomatology, Department of Periodontology; School of Stomatology, Fourth Military Medical University; Xi'an China
- Shaanxi Key Laboratory of Stomatology, Biomaterials Unit; School of Stomatology, Fourth Military Medical University; Xi'an China
| | - Rui-Xin Wu
- State Key Laboratory of Military Stomatology, Department of Periodontology; School of Stomatology, Fourth Military Medical University; Xi'an China
- Shaanxi Key Laboratory of Stomatology, Biomaterials Unit; School of Stomatology, Fourth Military Medical University; Xi'an China
| | - Yuan Yin
- State Key Laboratory of Military Stomatology, Department of Periodontology; School of Stomatology, Fourth Military Medical University; Xi'an China
- Shaanxi Key Laboratory of Stomatology, Biomaterials Unit; School of Stomatology, Fourth Military Medical University; Xi'an China
| | - Yang Xue
- State Key Laboratory of Military Stomatology, Department of Oral Biology; School of Stomatology, Fourth Military Medical University; Xi'an Shaanxi China
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery; School of Stomatology, Fourth Military Medical University; Xi'an Shaanxi China
| | - Fa-Ming Chen
- State Key Laboratory of Military Stomatology, Department of Periodontology; School of Stomatology, Fourth Military Medical University; Xi'an China
- Shaanxi Key Laboratory of Stomatology, Biomaterials Unit; School of Stomatology, Fourth Military Medical University; Xi'an China
| |
Collapse
|
98
|
Barbarash OL, Lebedeva NB, Kokov AN, Novitskaya AA, Hryachkova ON, Voronkina AV, Raskina TA, Kashtalap VV, Kutikhin AG, Shibanova IA. Decreased Cathepsin K Plasma Level may Reflect an Association of Osteopoenia/Osteoporosis with Coronary Atherosclerosis and Coronary Artery Calcification in Male Patients with Stable Angina. Heart Lung Circ 2016; 25:691-7. [DOI: 10.1016/j.hlc.2016.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 01/22/2016] [Accepted: 02/02/2016] [Indexed: 01/03/2023]
|
99
|
Withana NP, Saito T, Ma X, Garland M, Liu C, Kosuge H, Amsallem M, Verdoes M, Ofori LO, Fischbein M, Arakawa M, Cheng Z, McConnell MV, Bogyo M. Dual-Modality Activity-Based Probes as Molecular Imaging Agents for Vascular Inflammation. J Nucl Med 2016; 57:1583-1590. [PMID: 27199363 DOI: 10.2967/jnumed.115.171553] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/14/2016] [Indexed: 01/27/2023] Open
Abstract
Macrophages are cellular mediators of vascular inflammation and are involved in the formation of atherosclerotic plaques. These immune cells secrete proteases such as matrix metalloproteinases and cathepsins that contribute to disease formation and progression. Here, we demonstrate that activity-based probes (ABPs) targeting cysteine cathepsins can be used in murine models of atherosclerosis to noninvasively image activated macrophage populations using both optical and PET/CT methods. The probes can also be used to topically label human carotid plaques demonstrating similar specific labeling of activated macrophage populations. METHODS Macrophage-rich carotid lesions were induced in FVB mice fed on a high-fat diet by streptozotocin injection followed by ligation of the left common carotid artery. Mice with carotid atherosclerotic plaques were injected with the optical or dual-modality probes BMV109 and BMV101, respectively, via the tail vein and noninvasively imaged by optical and small-animal PET/CT at different time points. After noninvasive imaging, the murine carotid arteries were imaged in situ and ex vivo, followed by immunofluorescence staining to confirm target labeling. Additionally, human carotid plaques were topically labeled with the probe and analyzed by both sodium dodecyl sulfate polyacrylamide gel electrophoresis and immunofluorescence staining to confirm the primary targets of the probe. RESULTS Quantitative analysis of the signal intensity from both optical and PET/CT imaging showed significantly higher levels of accumulation of BMV109 and BMV101 (P < 0.005 and P < 0.05, respectively) in the ligated left carotid arteries than the right carotid or healthy arteries. Immunofluorescence staining for macrophages in cross-sectional slices of the murine artery demonstrated substantial infiltration of macrophages in the neointima and adventitia of the ligated left carotid arteries compared with the right. Analysis of the human plaque tissues by sodium dodecyl sulfate polyacrylamide gel electrophoresis confirmed that the primary targets of the probe were cathepsins X, B, S, and L. Immunofluorescence labeling of the human tissue with the probe demonstrated colocalization of the probe with CD68, elastin, and cathepsin S, similar to that observed in the experimental carotid inflammation murine model. CONCLUSION We demonstrate that ABPs targeting the cysteine cathepsins can be used in murine models of atherosclerosis to noninvasively image activated macrophage populations using both optical and PET/CT methods. The probes could also be used to topically label human carotid plaques demonstrating similar specific labeling of activated macrophage populations. Therefore, ABPs targeting the cysteine cathepsins are potentially valuable new reagents for rapid and noninvasive imaging of atherosclerotic disease progression and plaque vulnerability.
Collapse
Affiliation(s)
- Nimali P Withana
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Toshinobu Saito
- Department of Medicine (Cardiovascular), Stanford University School of Medicine, Stanford, California
| | - Xiaowei Ma
- Department of Radiology, Stanford University School of Medicine, Stanford, California
| | - Megan Garland
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Changhao Liu
- Department of Radiology, Stanford University School of Medicine, Stanford, California
| | - Hisanori Kosuge
- Department of Medicine (Cardiovascular), Stanford University School of Medicine, Stanford, California
| | - Myriam Amsallem
- Department of Medicine (Cardiovascular), Stanford University School of Medicine, Stanford, California
| | - Martijn Verdoes
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Leslie O Ofori
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Michael Fischbein
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California; and
| | - Mamoru Arakawa
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California; and
| | - Zhen Cheng
- Department of Radiology, Stanford University School of Medicine, Stanford, California
| | - Michael V McConnell
- Department of Medicine (Cardiovascular), Stanford University School of Medicine, Stanford, California
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, California Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
100
|
Yamashita T, Asano Y, Taniguchi T, Nakamura K, Saigusa R, Takahashi T, Ichimura Y, Toyama T, Yoshizaki A, Miyagaki T, Sugaya M, Sato S. A potential contribution of altered cathepsin L expression to the development of dermal fibrosis and vasculopathy in systemic sclerosis. Exp Dermatol 2016; 25:287-92. [DOI: 10.1111/exd.12920] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2015] [Indexed: 01/17/2023]
Affiliation(s)
- Takashi Yamashita
- Department of Dermatology; University of Tokyo Graduate School of Medicine; Tokyo Japan
| | - Yoshihide Asano
- Department of Dermatology; University of Tokyo Graduate School of Medicine; Tokyo Japan
| | - Takashi Taniguchi
- Department of Dermatology; University of Tokyo Graduate School of Medicine; Tokyo Japan
| | - Kouki Nakamura
- Department of Dermatology; University of Tokyo Graduate School of Medicine; Tokyo Japan
| | - Ryosuke Saigusa
- Department of Dermatology; University of Tokyo Graduate School of Medicine; Tokyo Japan
| | - Takehiro Takahashi
- Department of Dermatology; University of Tokyo Graduate School of Medicine; Tokyo Japan
| | - Yohei Ichimura
- Department of Dermatology; University of Tokyo Graduate School of Medicine; Tokyo Japan
| | - Tetsuo Toyama
- Department of Dermatology; University of Tokyo Graduate School of Medicine; Tokyo Japan
| | - Ayumi Yoshizaki
- Department of Dermatology; University of Tokyo Graduate School of Medicine; Tokyo Japan
| | - Tomomitsu Miyagaki
- Department of Dermatology; University of Tokyo Graduate School of Medicine; Tokyo Japan
| | - Makoto Sugaya
- Department of Dermatology; University of Tokyo Graduate School of Medicine; Tokyo Japan
| | - Shinichi Sato
- Department of Dermatology; University of Tokyo Graduate School of Medicine; Tokyo Japan
| |
Collapse
|