51
|
Antonelli T, Fuxe K, Tomasini MC, Mazzoni E, Agnati LF, Tanganelli S, Ferraro L. Neurotensin receptor mechanisms and its modulation of glutamate transmission in the brain: relevance for neurodegenerative diseases and their treatment. Prog Neurobiol 2007; 83:92-109. [PMID: 17673354 DOI: 10.1016/j.pneurobio.2007.06.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 05/18/2007] [Accepted: 06/19/2007] [Indexed: 11/30/2022]
Abstract
The extracellular accumulation of glutamate and the excessive activation of glutamate receptors, in particular N-methyl-D-aspartate (NMDA) receptors, have been postulated to contribute to the neuronal cell death associated with chronic neurodegenerative disorders such as Parkinson's disease. Findings are reviewed indicating that the tridecaptide neurotensin (NT) via activation of NT receptor subtype 1 (NTS1) promotes and reinforces endogenous glutamate signalling in discrete brain regions. The increase of striatal, nigral and cortical glutamate outflow by NT and the enhancement of NMDA receptor function by a NTS1/NMDA interaction that involves the activation of protein kinase C may favour the depolarization of NTS1 containing neurons and the entry of calcium. These results strengthen the hypothesis that NT may be involved in the amplification of glutamate-induced neurotoxicity in mesencephalic dopamine and cortical neurons. The mechanisms involved may include also antagonistic NTS1/D2 interactions in the cortico-striatal glutamate terminals and in the nigral DA cell bodies and dendrites as well as in the nigro-striatal DA terminals. The possible increase in NT levels in the basal ganglia under pathological conditions leading to the NTS1 enhancement of glutamate signalling may contribute to the neurodegeneration of the nigro-striatal dopaminergic neurons found in Parkinson's disease, especially in view of the high density of NTS1 receptors in these neurons. The use of selective NTS1 antagonists together with conventional drug treatments could provide a novel therapeutic approach for treatment of Parkinson's disease.
Collapse
Affiliation(s)
- T Antonelli
- Department of Clinical and Experimental Medicine, Section of Pharmacology, University of Ferrara, 44100 Ferrara, Italy
| | | | | | | | | | | | | |
Collapse
|
52
|
Cao Y, Xie KQ, Zhu XZ. The enhancement of dopamine D1 receptor desensitization by adenosine A1 receptor activation. Eur J Pharmacol 2007; 562:34-8. [PMID: 17368618 DOI: 10.1016/j.ejphar.2007.01.090] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Revised: 01/29/2007] [Accepted: 01/31/2007] [Indexed: 11/20/2022]
Abstract
The present study was designed to examine the effects of adenosine A(1) receptor on dopamine D(1) receptor desensitization in a human embryonic kidney 293 cell line stably cotransfected with human adenosine A(1) receptor and dopamine D(1) receptor cDNAs (A(1)D(1) cells) by means of cAMP accumulation assay. Long-term exposure of A(1)D(1) cells to dopamine D(1) receptor agonist (+/-)-1-phenyl-2,3,4,5-tetrahydro-(1H)-3-benzazepine-7,8-diol hydrochloride (SKF38393) caused a rapid desensitization of dopamine D(1) receptor. Coadministration of adenosine A(1) receptor agonist N(6)-cyclopentyladenosine (CPA) potentiated the effect of SKF38393. This enhancement effect of CPA was blocked by adenosine A(1) receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) but not by pertussis toxin, indicating that this effect of CPA was mediated by adenosine A(1) receptor and was G(i) protein independent. Furthermore, the blockade of endogenous adenosine by adenosine deaminase or DPCPX attenuated dopamine D(1) receptor desensitization. Collectively, these results suggest that adenosine A(1) receptor plays an important role in the regulation of dopamine D(1) receptor by potentiating ligand-induced desensitization.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Adenosine/analogs & derivatives
- Adenosine/pharmacology
- Binding, Competitive
- Cell Line
- Cyclic AMP/metabolism
- Dopamine Agonists/pharmacology
- Drug Synergism
- Humans
- Receptor, Adenosine A1/genetics
- Receptor, Adenosine A1/metabolism
- Receptor, Adenosine A1/physiology
- Receptors, Dopamine D1/genetics
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D1/physiology
- Time Factors
- Transfection
- Xanthines/pharmacology
Collapse
Affiliation(s)
- Yan Cao
- Department of Pharmacology, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China.
| | | | | |
Collapse
|
53
|
Cao Y, Sun WC, Jin L, Xie KQ, Zhu XZ. Activation of adenosine A1 receptor modulates dopamine D1 receptor activity in stably cotransfected human embryonic kidney 293 cells. Eur J Pharmacol 2006; 548:29-35. [PMID: 16956604 DOI: 10.1016/j.ejphar.2006.07.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Revised: 07/13/2006] [Accepted: 07/17/2006] [Indexed: 11/21/2022]
Abstract
The antagonistic interactions between adenosine A1 receptors and dopamine D1 receptors were studied in a human embryonic kidney 293 cell line stably cotransfected with human adenosine A1 receptor and dopamine D1 receptor cDNAs. In the cotransfected cells, but not in control cells only transfected with dopamine D1 receptors, adenosine A1 receptor agonist N6-cyclopentyladenosine (CPA, 10 microM) increased the Kd of dopamine D1 receptor antagonist [N-methyl-3H]R(+)-7-Chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine ([3H]SCH23390) without affecting the Bmax. Moreover, CPA induced a concentration-dependent decrease in the affinity of dopamine D1 receptors for the agonist (+/-)-1-Phenyl-2,3,4,5-tetrahydro-(1H)-3-benzazepine-7,8-diol hydrochloride (SKF38393) and inhibited dopamine D1 receptor-mediated cyclic AMP response element recruitment. Furthermore, pertussis toxin treatment completely counteracted the effects of low concentrations of CPA but only partially counteracted the effects of high concentrations of CPA. These results suggest that adenosine A1 receptors antagonistically modulate dopamine D1 receptors at the level of receptor binding and the second messenger generation. Furthermore, the antagonistic interactions between these two receptors induced by low concentrations of CPA might have a different manner with those induced by high concentrations of CPA.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Adenosine/analogs & derivatives
- Adenosine/pharmacology
- Adenosine A1 Receptor Agonists
- Adenosine A1 Receptor Antagonists
- Alkaline Phosphatase/metabolism
- Benzazepines/pharmacology
- Cell Line
- Cyclic AMP Response Element-Binding Protein/metabolism
- DNA, Complementary/genetics
- Dopamine Agonists/pharmacology
- Dopamine Antagonists/pharmacology
- Humans
- Receptor, Adenosine A1/genetics
- Receptor, Adenosine A1/metabolism
- Receptors, Dopamine D1/agonists
- Receptors, Dopamine D1/antagonists & inhibitors
- Receptors, Dopamine D1/genetics
- Receptors, Dopamine D1/metabolism
- Transfection
- Xanthines/pharmacology
Collapse
Affiliation(s)
- Yan Cao
- Department of Pharmacology, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201203, China
| | | | | | | | | |
Collapse
|
54
|
Yabuuchi K, Kuroiwa M, Shuto T, Sotogaku N, Snyder GL, Higashi H, Tanaka M, Greengard P, Nishi A. Role of adenosine A1 receptors in the modulation of dopamine D1 and adenosine A2a receptor signaling in the neostriatum. Neuroscience 2006; 141:19-25. [PMID: 16750892 DOI: 10.1016/j.neuroscience.2006.04.047] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Revised: 04/21/2006] [Accepted: 04/21/2006] [Indexed: 11/15/2022]
Abstract
Adenosine is known to modulate the function of neostriatal neurons. Adenosine acting on A(2A) receptors increases the phosphorylation of dopamine- and cAMP-regulated phosphoprotein of M(r) 32 kDa (DARPP-32) at Thr34 (the cAMP-dependent protein kinase [PKA] site) in striatopallidal neurons, and opposes dopamine D2 receptor signaling. In contrast, the role of adenosine A(1) receptors in the regulation of dopamine/DARPP-32 signaling is not clearly understood. Here, we investigated the effect of adenosine A(1) receptors on D(1), D(2) and A(2A) receptor signaling using mouse neostriatal slices. An A(1) receptor agonist, 2-chloro-N(6)-cyclopentyladenosine (100 nM), caused a transient increase, followed by a transient decrease, in DARPP-32 Thr34 phosphorylation. Our data support the following model for the actions of the A(1) receptor agonist. The A(1) receptor-induced early increase in Thr34 phosphorylation was mediated by presynaptic inhibition of dopamine release, and the subsequent removal of tonic inhibition by D(2) receptors of A(2A) receptor/G(olf)/cAMP/PKA signaling. The A(1) receptor-induced late decrease in Thr34 phosphorylation was mediated by a postsynaptic G(i) mechanism, resulting in inhibition of D(1) and A(2A) receptor-coupled G(olf)/cAMP/PKA signaling in direct and indirect pathway neurons, respectively. In conclusion, A(1) receptors play a major modulatory role in dopamine and adenosine receptor signaling.
Collapse
Affiliation(s)
- K Yabuuchi
- Oita University Faculty of Medicine, Yufu, Oita 879-5593, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Batista LC, Prediger RDS, Morato GS, Takahashi RN. Blockade of adenosine and dopamine receptors inhibits the development of rapid tolerance to ethanol in mice. Psychopharmacology (Berl) 2005; 181:714-21. [PMID: 15983797 DOI: 10.1007/s00213-005-0014-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2004] [Accepted: 03/29/2005] [Indexed: 11/29/2022]
Abstract
RATIONALE Several reports have suggested the involvement of brain adenosine and dopamine receptors in different actions produced by ethanol such as motor incoordination or anxiolytic, hypnotic and reinforcing effects. The co-localization and interaction between adenosine and dopamine receptors in different brain regions has also been well documented. However, few studies have demonstrated the involvement of these mechanisms in the tolerance induced by ethanol. OBJECTIVES The aim of the present study was to evaluate the role of adenosine and dopamine receptors in the development of rapid tolerance to ethanol-induced motor incoordination in mice. METHODS In connection with the rota-rod apparatus, the effects of acute administration of the adenosine receptor antagonists caffeine (non-selective), 8-cyclopentyl-1,3-dipropylxanthine (DPCPX, adenosine A1 receptor antagonist) and 4-(2-[7-amino-2-{2-furyl}{1,2,4}triazolo-{2,3-a}{1,3,5}triazin-5-yl-amino]ethyl)phenol (ZM241385, adenosine A2A receptor antagonist), together with R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine (SCH23390, dopamine D1 receptor antagonist) and sulpiride (dopamine D2 receptor antagonist), alone or in combination with ethanol (2.25 g/kg, i.p.), were studied. Twenty-four hours after, all animals were re-tested on the rota-rod after receiving the same dose of ethanol. RESULTS The repeated administration of ethanol promoted a significant reduction of motor impairment on day 2 (i.e. rapid tolerance). This effect was blocked by caffeine (3.0-30.0 mg/kg, i.p.), DPCPX (3.0-6.0 mg/kg, i.p.) or SCH23390 (0.01-0.03 mg/kg, s.c.), but not with ZM241385 (0.5-1.0 mg/kg, i.p.) or sulpiride (1.0-3.0 mg/kg, i.p.). CONCLUSIONS Our results suggest that the rapid tolerance to ethanol-induced motor impairment in mice may be modulated by adenosine A1 receptors and dopamine D1 receptors.
Collapse
Affiliation(s)
- Luciano C Batista
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Campus Trindade, 88049-900, Florianópolis, SC, Brazil
| | | | | | | |
Collapse
|
56
|
Ruiz MA, Albasanz JL, León D, Ros M, Andrés A, Martín M. Different modulation of inhibitory and stimulatory pathways mediated by adenosine after chronic in vivo agonist exposure. Brain Res 2005; 1031:211-21. [PMID: 15649446 DOI: 10.1016/j.brainres.2004.10.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2004] [Indexed: 11/18/2022]
Abstract
After 6 days of in vivo treatment with two selective adenosine receptor agonists, 5'-N-ethylcarboxamido adenosine (NECA) and R-N6-phenylisopropiladenosine (R-PIA), we investigated their effects on adenosine receptors/adenylyl cyclase system in synaptic plasma membranes isolated from rat brain. NECA treatment caused a significant loss of NECA-stimulated adenylyl cyclase activity, suggesting a desensitization of the adenosine A2 receptors-mediated pathway. No significant differences in total adenosine A2 receptors were observed, but Gs protein levels were decreased, suggesting Gs down-regulation as a mechanism for desensitization. On the other hand, NECA treatment caused a significant decrease in high-affinity adenosine A1 receptors population; however, no changes in CHA-inhibited adenylyl cyclase activity or Gi protein level were observed. Finally, when we studied the effects of R-PIA, a selective adenosine A1 receptor agonist, on stimulatory pathway of adenosine, low-affinity adenosine A2 binding sites were decreased without affecting the functionality of the pathway. These results show that adenosine A1 and A2 receptors are modulated in a different way after chronic agonist exposure and suggest the existence of cross-talk mechanisms between both stimulatory an inhibitory pathways mediated by adenosine.
Collapse
Affiliation(s)
- María Angeles Ruiz
- Area de Bioquímica, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Químicas, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Avenida Camilo José Cela, 10. 13071 Ciudad Real, Spain
| | | | | | | | | | | |
Collapse
|
57
|
Janać B, Pesić V, Peković S, Rakić L, Stojiljković M. The time-course of ribavirin-provoked changes of basal and AMPH-induced motor activities in rats. Exp Brain Res 2005; 165:402-6. [PMID: 15883801 DOI: 10.1007/s00221-005-2311-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2004] [Accepted: 02/11/2005] [Indexed: 10/25/2022]
Abstract
The time-course of changes of basal and amphetamine (AMPH)-induced locomotor and stereotypic activities in adult male Wistar rats after a single ribavirin injection was studied. In the first set of experiments, 10, 20 or 30 mg ribavirin/kg body weight (b.w.) were injected i.p. to rats and their basal motor activities were recorded every 10 min for 2 h and compared with those of saline-treated controls. In the second set of experiments, the animals were pretreated with ribavirin and 20 min later i.p. injected with AMPH (1.5 mg/kg b.w.). The controls received AMPH 20 min after the saline injection. Motor activity was recorded after the first injection and until 120 min after AMPH administration. Ribavirin did not significantly affect the time-course of either basal locomotor or stereotypic activities. Pretreatment with any of the applied ribavirin doses decreased the AMPH-induced hyperlocomotor response. However, the most pronounced effect was observed with ribavirin doses of 20 mg/kg and 30 mg/kg when administered during the first 10 min and 30 min after the AMPH injection respectively. In contrast, the stereotypic activities of these animals were only slightly changed. These results indicate a different susceptibility of regions in the basal ganglia to ribavirin.
Collapse
Affiliation(s)
- Branka Janać
- Laboratory of Electrophysiology and Behaviour, Department of Neurobiology and Immunology, Institute for Biological Research, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia and Montenegro.
| | | | | | | | | |
Collapse
|
58
|
Ismayilova N, Crossman A, Verkhratsky A, Brotchie J. Effects of adenosine A1, dopamine D1 and metabotropic glutamate 5 receptors-modulating agents on locomotion of the reserpinised rats. Eur J Pharmacol 2004; 497:187-95. [PMID: 15306204 DOI: 10.1016/j.ejphar.2004.06.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Accepted: 06/18/2004] [Indexed: 11/24/2022]
Abstract
The pathophysiology of Parkinson's disease and l-3,4-dihydroxyphenylalanine (l-DOPA)-induced dyskinesia are characterised by an imbalance between activity of the direct and indirect pathways regulated by dopamine D1 and D2 receptors, respectively. In this study, we investigated the effects of treatments combining adenosine A(1) and metabotropic glutamate 5 (mGlu5) receptors modulators on locomotion induced by dopamine D1 receptor activation in the reserpine-treated rats. Administration of the adenosine A(1) receptor agonist and mGlu5 receptor antagonist resulted in the significant reduction of dopamine D1 receptor agonist-induced locomotion. The combination of adenosine A(1) receptor agonist with mGlu5 receptor antagonist had no greater effect than these compounds alone. However, the adenosine A(1) receptor antagonist attenuated the inhibitory effect of mGlu5 receptor antagonist. The data suggest that the effect of mGlu5 receptor blockade on locomotion elicited by dopamine D1 receptor stimulation involves activation of adenosine A(1) receptors. This interaction can improve our understanding of pathophysiology of L-DOPA-induced dyskinesia.
Collapse
Affiliation(s)
- Naila Ismayilova
- The University of Manchester, School of Biological Sciences, 1.124 Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | | | | | | |
Collapse
|
59
|
Halldner L, Adén U, Dahlberg V, Johansson B, Ledent C, Fredholm BB. The adenosine A1 receptor contributes to the stimulatory, but not the inhibitory effect of caffeine on locomotion: a study in mice lacking adenosine A1 and/or A2A receptors. Neuropharmacology 2004; 46:1008-17. [PMID: 15081797 DOI: 10.1016/j.neuropharm.2004.01.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2003] [Revised: 01/12/2004] [Accepted: 01/19/2004] [Indexed: 11/26/2022]
Abstract
Caffeine has biphasic effects on locomotion, and blockade of the adenosine A(2A) receptor (A2AR) is necessary for the stimulatory effect of low doses of caffeine, but not for the locomotor depressant effect observed at high doses. We wanted to elucidate the role of the adenosine A(1) receptor (A1R) in mediating the locomotor effects of increasing doses of caffeine using wild-type mice (A1R(WT)), mice heterozygous for (A1R(HET)), and mice lacking the adenosine A(1) receptor (A1R(KO)). Caffeine had the typical biphasic dose-effect relationship in all three genotypes, but the stimulatory action of caffeine was facilitated in the A1R(KO) mice. In order to investigate the interaction between blockade of A1Rs and A2ARs, mice lacking both receptors (A1R(KO)/A2AR(KO)) were tested. Regardless of A1R genotype, animals lacking A2AR were not stimulated by caffeine, whereas animals heterozygous for A2AR were. As expected, the A1R is not crucial for the stimulatory effect of caffeine, but seems to modulate the effect of caffeine exerted via A2AR blockade. Furthermore, these results suggest that the inhibitory effect of high doses of caffeine is due neither to blockade of the A1R, nor of the A2AR, and an effect independent of these adenosine receptors is likely.
Collapse
Affiliation(s)
- Linda Halldner
- Department of Physiology and Pharmacology, Section of Molecular Pharmacology, Karolinska Institutet, Nanna Svartz vag 2, S-171 77 Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
60
|
Bailey A, Davis L, Lesscher HMB, Kelly MDW, Ledent C, Hourani SMO, Kitchen I. Enhanced morphine withdrawal and micro -opioid receptor G-protein coupling in A2A adenosine receptor knockout mice. J Neurochem 2004; 88:827-34. [PMID: 14756803 DOI: 10.1046/j.1471-4159.2003.02214.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Much evidence supports the hypothesis that A2A adenosine receptors play an important role in the expression of morphine withdrawal and that the dopaminergic system might also be involved. We have evaluated morphine withdrawal signs in wild-type and A2A receptor knockout mice and shown a significant enhancement in some withdrawal signs in the knockout mice. In addition, micro -opioid and dopamine D2 receptor autoradiography, as well as micro -opioid receptor-stimulated guanylyl 5'-[gamma-[35S]thio]-triphosphate ([35S]GTPgammaS) autoradiography was carried out in brain sections of withdrawn wild-type and knockout mice. No significant changes in D2 and micro -opioid receptor binding were observed in any of the brain regions analysed. However, a significant increase in the level of micro receptor-stimulated [35S]GTPgammaS binding was observed in the nucleus accumbens of withdrawn knockout mice. These data indicate that the A2A receptor plays a role in opioid withdrawal related to functional receptor activation.
Collapse
Affiliation(s)
- Alexis Bailey
- Pharmacology group, School of Biomedial and Molecular Sciences, University of Surrey, Guildford, Surrey, UK
| | | | | | | | | | | | | |
Collapse
|
61
|
Janać B, Pesić V, Veskov R, Ristić S, Tasić J, Piperski V, Ruzdijić S, Jokanović M, Stukalov P, Rakić L. The effects of tiazofurin on basal and amphetamine-induced motor activity in rats. Pharmacol Biochem Behav 2004; 77:575-82. [PMID: 15006469 DOI: 10.1016/j.pbb.2003.12.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2003] [Revised: 12/18/2003] [Accepted: 12/19/2003] [Indexed: 11/25/2022]
Abstract
The effects of tiazofurin (TR; 2-beta-d-ribofuranosylthiazole-4-carboxamide), a purine nucleoside analogue on basal and amphetamine (AMPH)-induced locomotor and stereotypic activity of adult Wistar rat males were studied. The animals were injected with low (3.75, 7.5, and 15 mg/kg ip) and high (62.5, 125, and 250 mg/kg ip) TR doses. Neither low nor high TR doses influenced basal locomotor and stereotypic activity in comparison with the corresponding controls treated with saline only. However, pretreatment with TR at any dose applied, except for the lowest one, significantly decreased AMPH-induced (1.5 mg/kg ip) locomotor activity, while AMPH-induced stereotypic activity was inhibited with the two highest TR doses. In addition, TR was detected in the brain by HPLC already 15 min after the injection (125 mg/kg ip) to reach a maximum 2 h after the administration and was detectable in this tissue during the next 4 h. Our results indicate that TR modifies central regulation of the motor activity, possibly by influencing dopaminergic (DA-ergic) transmission.
Collapse
Affiliation(s)
- Branka Janać
- Laboratory of Electrophysiology and Behaviour, Department of Neurobiology and Immunology, Institute for Biological Research, 29th November 142, 11060 Belgrade, Serbia and Montenegro.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Toda S, Alguacil LF, Kalivas PW. Repeated cocaine administration changes the function and subcellular distribution of adenosine A1 receptor in the rat nucleus accumbens. J Neurochem 2004; 87:1478-84. [PMID: 14713303 DOI: 10.1046/j.1471-4159.2003.02121.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Adenosine A1 receptor (A1) protein and mRNA is increased in the nucleus accumbens following repeated cocaine treatment. In spite of this protein up-regulation, A1 agonist-stimulated [35S]GTPgammaS binding was attenuated in accumbens homogenates of rats withdrawn for 3 weeks from 1 week of daily cocaine injections. Cellular subfractionation revealed that the discrepancy between total A1 protein and G protein coupling resulted from a smaller proportion of receptors in the plasma membrane. The decrease in functional receptor in the plasma membrane was further indicated by diminished formation of heteromeric receptor complex consisting of A1 and dopamine D1A receptors. To explore the functional significance of the altered distribution of A1 receptors, at 3 weeks after discontinuing repeated cocaine or saline, animals were injected with cocaine and 45 min later the subcellular distribution of A1 receptors quantified. Whereas a cocaine challenge in repeated saline-treated animals induced a marked increase in membrane localization of the A1 receptor, the relative distribution of receptors in repeated cocaine rats was not affected by acute cocaine. These data suggest that the sorting and recycling of A1 receptors is dysregulated in the nucleus accumbens as the consequence of repeated cocaine administration.
Collapse
Affiliation(s)
- Shigenobu Toda
- Physiology and Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425, USA.
| | | | | |
Collapse
|
63
|
Scaramuzzi RJ, Baker DJ. Possible therapeutic benefits of adenosine-potentiating drugs in reducing age-related degenerative disease in dogs and cats. J Vet Pharmacol Ther 2003; 26:327-35. [PMID: 14633184 DOI: 10.1046/j.1365-2885.2003.00527.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Adenosine is a ubiquitous, biologically important molecule that is a precursor of other biologically active molecules. It also is a component of some co-factors and has distinct physiological actions in its own right. Levels are maintained by synthesis from dietary precursors and re-cycling. The daily turnover of adenosine is very high. Adenosine can act either as a hormone by binding to adenosine receptors, four adenosine receptor subtypes have been identified, and as an intracellular modulator, after transport into the cell by membrane transporter proteins. One of the principal intracellular actions of adenosine is inhibition of the enzyme phosphodiesterase. Extracellular adenosine also has specific neuromodulatory actions on dopamine and glutamate. Selective and nonselective agonists and antagonists of adenosine are available. The tasks of developing, evaluating and exploiting the therapeutic potential of these compounds is still in its infancy. Adenosine has actions in the central nervous system (CNS), heart and vascular system, skeletal muscle and the immune system and the presence of receptors suggests potential actions in the gonads and other organs. Adenosine agonists improve tissue perfusion through actions on vascular smooth muscle and erythrocyte fluidity and they can be used to improve the quality of life in aged dogs. This article reviews the therapeutic potential of adenosine-potentiating drugs in the treatment of age-related conditions in companion animals, some of which may be exacerbated by castration or spaying at an early age.
Collapse
Affiliation(s)
- R J Scaramuzzi
- Department of Veterinary Basic Sciences, Royal Veterinary College, London, UK.
| | | |
Collapse
|
64
|
Agnati LF, Ferré S, Lluis C, Franco R, Fuxe K. Molecular mechanisms and therapeutical implications of intramembrane receptor/receptor interactions among heptahelical receptors with examples from the striatopallidal GABA neurons. Pharmacol Rev 2003; 55:509-50. [PMID: 12869660 DOI: 10.1124/pr.55.3.2] [Citation(s) in RCA: 245] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The molecular basis for the known intramembrane receptor/receptor interactions among G protein-coupled receptors was postulated to be heteromerization based on receptor subtype-specific interactions between different types of receptor homomers. The discovery of GABAB heterodimers started this field rapidly followed by the discovery of heteromerization among isoreceptors of several G protein-coupled receptors such as delta/kappa opioid receptors. Heteromerization was also discovered among distinct types of G protein-coupled receptors with the initial demonstration of somatostatin SSTR5/dopamine D2 and adenosine A1/dopamine D1 heteromeric receptor complexes. The functional meaning of these heteromeric complexes is to achieve direct or indirect (via adapter proteins) intramembrane receptor/receptor interactions in the complex. G protein-coupled receptors also form heteromeric complexes involving direct interactions with ion channel receptors, the best example being the GABAA/dopamine D5 receptor heteromerization, as well as with receptor tyrosine kinases and with receptor activity modulating proteins. As an example, adenosine, dopamine, and glutamate metabotropic receptor/receptor interactions in the striatopallidal GABA neurons are discussed as well as their relevance for Parkinson's disease, schizophrenia, and drug dependence. The heterodimer is only one type of heteromeric complex, and the evidence is equally compatible with the existence of higher order heteromeric complexes, where also adapter proteins such as homer proteins and scaffolding proteins can exist. These complexes may assist in the process of linking G protein-coupled receptors and ion channel receptors together in a receptor mosaic that may have special integrative value and may constitute the molecular basis for some forms of learning and memory.
Collapse
Affiliation(s)
- Luigi F Agnati
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
65
|
Weerts EM, Griffiths RR. The adenosine receptor antagonist CGS15943 reinstates cocaine-seeking behavior and maintains self-administration in baboons. Psychopharmacology (Berl) 2003; 168:155-163. [PMID: 12669180 DOI: 10.1007/s00213-003-1410-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2002] [Accepted: 01/16/2003] [Indexed: 10/26/2022]
Abstract
RATIONALE Caffeine and the adenosine A(1) and A(2A) receptor antagonist CGS15943 produce many behavioral effects that are similar to those produced by classic stimulant drugs (e.g. cocaine and amphetamines). OBJECTIVES The current study evaluated whether CGS15943 would maintain self-administration and reinstate extinguished lever responding previously maintained by cocaine (i.e. cocaine-seeking) or by food (i.e. food-seeking). Reinstatement with CGS15943 was compared to cocaine, caffeine, and alprazolam. METHODS Up to 30 injections of 0.032 mg/kg cocaine or 30 deliveries of 1-g food pellets were available under a fixed ratio (FR10) schedule of reinforcement during daily 2-h sessions. For reinstatement tests, lever responses were extinguished by substituting saline for cocaine or by removing pellets from the mechanical feeder. After extinction of lever responding, acute "priming" doses (mg/kg, IV) of cocaine (0.1-3.2), the adenosine receptor antagonists caffeine (0.1-1.8) and CGS15943 (0.032-0.32) or the benzodiazepine receptor agonist alprazolam (0.1-1.8 mg/kg) were administered. The intravenous reinforcing effects of CGS15943 were also evaluated; each dose of CGS15943 (0.001-0.032 mg/kg) was substituted for cocaine for at least 10 days and until self-injection was relatively stable. RESULTS Cocaine, caffeine and CGS15943, dose-dependently increased cocaine-seeking, where as alprazolam did not. Cocaine, caffeine and CGS15943 did not increase food-seeking. CGS15943 reinstated cocaine-seeking at rates that were comparable to those produced by cocaine. Pretreatment with the adenosine A(2) agonist CGS21680 decreased CGS15943-induced reinstatement of cocaine-seeking. In self-injection testing, CGS15943 was self-administered at levels greater than vehicle. An inverted U-shaped dose-effect function was obtained with peak mean rates maintained by 0.01 mg/kg CGS15943. CONCLUSIONS The adenosine antagonist CGS15943 reinstated cocaine-seeking and functioned as an intravenous reinforcer. The finding that CGS21680 produced a rightward shift in the CGS15943 reinstatement dose-effect curve supports a role of adenosine mechanisms in the reinstatement of cocaine-seeking behavior.
Collapse
Affiliation(s)
- Elise M Weerts
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Md., USA.
- Behavioral Biology Research Center, Johns Hopkins Bayview, Suite 3000, 5510 Nathan Shock Drive, Baltimore, MD 21224, USA.
| | - Roland R Griffiths
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| |
Collapse
|
66
|
Florán B, Barajas C, Florán L, Erlij D, Aceves J. Adenosine A1 receptors control dopamine D1-dependent [(3)H]GABA release in slices of substantia nigra pars reticulata and motor behavior in the rat. Neuroscience 2003; 115:743-51. [PMID: 12435413 DOI: 10.1016/s0306-4522(02)00479-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Abnormalities in dopaminergic control of basal ganglia function play a key role in Parkinson's disease. Adenosine appears to modulate the dopaminergic control in striatum, where an inhibitory interaction between adenosine and dopamine receptors has been demonstrated. However the interaction has not been established in substantia nigra pars reticulata (SNr) where density of both receptors is high. Here we have explored the interaction between A1/D1 receptors in SNr. In SNr slices, SKF 38393, a selective D1 receptor agonist, produced a stimulation of depolarization-induced Ca(2+)-dependent [(3)H]GABA release that was inhibited by adenosine. The adenosine inhibition was abolished by 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), a selective adenosine A1 receptor antagonist. DPCPX per se enhanced GABA release, indicating inhibition of the release by endogenous adenosine. When D1 receptors were blocked with SCH 23390 or the slices were depleted of dopamine, the effect of DPCPX was suppressed, showing that activation of dopamine receptors was necessary for the adenosine inhibition. In normal slices, 2-chloro-n(6)-cyclopentyladenosine (CCPA), a selective A1 agonist, inhibited GABA release, but the inhibition was prevented by the blockade of D1 receptors with SCH 23390. Superperfusion with 8-bromo-cAMP produced a stimulation of GABA release that was not blocked by CCPA: this finding indicates that the blockade of D1 effects caused by activation of A1 receptors is specific. To see if these actions on GABA release were correlated with changes in motor behavior we studied the effect of unilateral intranigral injections of modifiers of adenosine A1 and dopamine D1 receptors in rats challenged with systemic methamphetamine. Both the A1 agonist CCPA and the D1 antagonist SCH 23390 produced ipsilateral turning whereas the A1 antagonist DPCPX caused contralateral turning. These motor effects are consistent with the findings on GABA release. The results indicate the presence of an inhibitory A1/D1 receptor interaction in SNr. The inhibition exerted by A1 adenosine receptors on GABAergic striatonigral transmission would be due exclusively to blockade of the facilitation resulting from activation of D1 dopamine receptors. The data permit to better understand the action of adenosine antagonists in the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- B Florán
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 14-740, 07000, México DF, Mexico.
| | | | | | | | | |
Collapse
|
67
|
The adenosine A2A receptor agonist CGS 21680 exhibits antipsychotic-like activity in Cebus apella monkeys. Behav Pharmacol 2002. [DOI: 10.1097/00008877-200212000-00005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
68
|
Torvinen M, Ginés S, Hillion J, Latini S, Canals M, Ciruela F, Bordoni F, Staines W, Pedata F, Agnati LF, Lluis C, Franco R, Ferré S, Fuxe K. Interactions among adenosine deaminase, adenosine A(1) receptors and dopamine D(1) receptors in stably cotransfected fibroblast cells and neurons. Neuroscience 2002; 113:709-19. [PMID: 12150791 DOI: 10.1016/s0306-4522(02)00058-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The role of adenosine deaminase in the interactions between adenosine A(1) and dopamine D(1) receptors was studied in a mouse fibroblast cell line stably cotransfected with human D(1) receptor and A(1) receptor cDNAs (A(1)D(1) cells). Confocal laser microscopy analysis showed a high degree of adenosine deaminase immunoreactivity on the membrane of the A(1)D(1) cells but not of the D(1) cells (only cotransfected with human D(1) receptor cDNAs). In double immunolabelling experiments in A(1)D(1) cells and cortical neurons a marked overlap in the distribution of the A(1) receptor and adenosine deaminase immunoreactivities and of the D(1) receptor and adenosine deaminase immunoreactivities was found. Quantitative analysis of A(1)D(1) cells showed that adenosine deaminase immunoreactivity to a large extent colocalizes with A(1) and D(1) receptor immunoreactivity, respectively. The A(1) receptor agonist caused in A(1)D(1) cells and in cortical neurons coaggregation of A(1) receptors and adenosine deaminase, and of D(1) receptors and adenosine deaminase. The A(1) receptor agonist-induced aggregation was blocked by R-deoxycoformycin, an irreversible adenosine deaminase inhibitor. The competitive binding experiments with the D(1) receptor antagonist [(3)H]SCH-23390 showed that the D(1) receptors had a better fit for two binding sites for dopamine, and treatment with the A(1) receptor agonist produced a disappearance of the high-affinity site for dopamine at the D(1) receptor. R-Deoxycoformycin treatment, which has previously been shown to block the interaction between adenosine deaminase and A(1) receptors, and which is crucial for the high-affinity state of the A(1) receptor, also blocked the A(1) receptor agonist-induced loss of high-affinity D(1) receptor binding. The conclusion of the present studies is that the high-affinity state of the A(1) receptor is essential for the A(1) receptor-mediated antagonistic modulation of D(1) receptors and for the A(1) receptor-induced coaggregates of A(1) and adenosine deaminase, and of D(1) and adenosine deaminase. Thus, the confocal experiments indicate that both A(1) and D(1) receptors form agonist-regulated clusters with adenosine deaminase, where the presence of a structurally intact adenosine deaminase bound to A(1) receptors is important for the A(1)-D(1) receptor-receptor interaction at the level of the D(1) receptor recognition.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Adenosine/analogs & derivatives
- Adenosine/metabolism
- Adenosine/pharmacology
- Adenosine Deaminase/immunology
- Adenosine Deaminase/metabolism
- Animals
- Cell Line
- Cerebral Cortex/cytology
- Cerebral Cortex/metabolism
- Fibroblasts/metabolism
- Humans
- Immunohistochemistry
- Mice
- Microscopy, Confocal
- Neurons/metabolism
- Purinergic P1 Receptor Agonists
- Receptors, Dopamine D1/agonists
- Receptors, Dopamine D1/immunology
- Receptors, Dopamine D1/metabolism
- Receptors, Purinergic P1/immunology
- Receptors, Purinergic P1/metabolism
- Transfection
Collapse
Affiliation(s)
- M Torvinen
- Department of Neuroscience, Karolinska Institute, 171 77, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Le Crom S, Prou D, Vernier P. Autocrine activation of adenosine A1 receptors blocks D1A but not D1B dopamine receptor desensitization. J Neurochem 2002; 82:1549-52. [PMID: 12354303 DOI: 10.1046/j.1471-4159.2002.01115.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Adenosine is known to modulate dopamine responses in several brain areas. Here, we show that tonic activation of adenosine receptors is able to impede desensitization of D1 dopamine receptors. As measured by cAMP accumulation in transfected COS-7 cells, long-term exposure to dopamine agonists promoted desensitization of D1B receptor but not that of D1A receptor. The inability of D1A receptor to desensitize was a result of the adenosine present in culture medium acting through activation of adenosine A1 receptors. Cell incubation with either adenosine deaminase, CGS-15943, a generic adenosine receptor antagonist, or the A1 antagonist DPCPX restored the long-term desensitization time-course of D1A receptors. In Ltk cells stably expressing A1 adenosine receptors and D1A dopamine receptors, pre-treatment of cells with R(-)-PIA, a full A1 receptor agonist, did not significantly inhibit the acute increase in cAMP levels induced by D1 receptor agonists, but blocked desensitization of D1A receptors. However, simultaneous activation of A1 and D1A receptors promoted a delayed D1A receptor desensitization. This suggests that functional interaction between A1 and D1A receptors may depend on the activation kinetics of components regulating D1 receptor responses, acting differentially on D1A and D1B receptors.
Collapse
Affiliation(s)
- Stéphane Le Crom
- Développement, Evolution, Plasticité du Système Nerveux -UPR 2197, Institut de Neurobiologie Alfred Fessard, CNRS, Gif-sur-Yvette, France
| | | | | |
Collapse
|
70
|
Onali P, Olianas MC. Muscarinic M4 receptor inhibition of dopamine D1-like receptor signalling in rat nucleus accumbens. Eur J Pharmacol 2002; 448:105-11. [PMID: 12144929 DOI: 10.1016/s0014-2999(02)01910-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Several studies have indicated the occurrence of an antagonistic interaction between muscarinic and dopamine D1-like receptors in the ventral striatum, but the subtype(s) of muscarinic receptor involved has not been characterized. We show that in membranes of rat nucleus accumbens, carbachol inhibited the stimulation of adenylyl cyclase activity by dopamine and the dopamine D1-like receptor agonist (+/-)-6-chloro-7,8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine without affecting the binding properties of dopamine to dopamine D1-like receptors. The carbachol inhibition was competitively counteracted by receptor antagonists with a rank order of potency typical of the involvement of the muscarinic M(4) receptor subtype. Moreover, muscarinic toxin 3, a selective muscarinic M(4) receptor antagonist, completely blocked the carbachol inhibition, whereas muscarinic toxin 7, a selective muscarinic M(1) receptor antagonist, had no effect. The muscarinic inhibition occurred to a similar extent in the core and shell regions. These data demonstrate that in nucleus accumbens, muscarinic M(4) receptors exert a direct inhibitory control on dopamine D1-like receptor signalling.
Collapse
Affiliation(s)
- Pierluigi Onali
- Section of Biochemical Pharmacology, Department of Neuroscience, University of Cagliari, Via Porcell 4, 09042 Monserrato, Cagliari, Italy.
| | | |
Collapse
|
71
|
Schwienbacher I, Fendt M, Hauber W, Koch M. Dopamine D1 receptors and adenosine A1 receptors in the rat nucleus accumbens regulate motor activity but not prepulse inhibition. Eur J Pharmacol 2002; 444:161-9. [PMID: 12063076 DOI: 10.1016/s0014-2999(02)01622-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Locomotor activity and sensorimotor gating (measured as prepulse inhibition of startle) are regulated by mesoaccumbal dopamine. Recent evidence indicated antagonistic interactions between adenosine A(1) receptors and dopamine D(1) receptors, as well as between adenosine A(2) receptors and dopamine D(2) receptors in the nucleus accumbens. Therefore, it is conceivable that accumbal dopamine and adenosine are both involved in the regulation of prepulse inhibition and locomotion. We tested whether accumbal adenosine A(1) and dopamine D(1) receptors control locomotor activity and prepulse inhibition using the following four treatments. (1) Injections of the selective adenosine A(1) receptor agonist N(6)-cyclopentanyladenosine (CPA 1.5 and 3 microg/microl per side) into the nucleus accumbens. (2) Stimulation of the ventral tegmental area by local infusion of the GABA(A) receptor antagonist picrotoxin (25-100 ng/0.5 microl bilaterally). (3) Picrotoxin injections into the ventral tegmental area (100 ng/0.5 microl) and simultaneous bilateral injections of CPA (3 microg/microl per side) into the nucleus accumbens. (4) Injections of the selective dopamine D(1) receptor antagonist SCH 23390 (3 microg/0.5 microl per side) into the nucleus accumbens and ventral tegmental area stimulation by picrotoxin. Intra-accumbal CPA infusion reduced locomotor activity but had no effect on prepulse inhibition. Picrotoxin stimulation of the ventral tegmental area increased locomotor activity which was antagonized by co-administration of CPA or SCH 23390 into the nucleus accumbens. An enhancement of prepulse inhibition was observed after stimulation of the ventral tegmental area and co-administration of SCH 23390 into the nucleus accumbens. These findings demonstrate that adenosine A(1) and dopamine D(1) receptors are involved in the regulation of locomotor activity mediated by the mesoaccumbal dopamine system. The finding that locomotor effects induced by stimulation of the mesoaccumbal dopamine system were not accompanied by a prepulse inhibition-deficit suggests a dissociation of the neuronal substrates involved in the control of locomotion and the regulation of sensorimotor gating.
Collapse
|
72
|
Gotoh L, Kawanami N, Nakahara T, Hondo H, Motomura K, Ohta E, Kanchiku I, Kuroki T, Hirano M, Uchimura H. Effects of the adenosine A(1) receptor agonist N(6)-cyclopentyladenosine on phencyclidine-induced behavior and expression of the immediate-early genes in the discrete brain regions of rats. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 100:1-12. [PMID: 12008016 DOI: 10.1016/s0169-328x(02)00136-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Because of the possible interaction between adenosine receptors and dopaminergic functions, the compound acting on the specific adenosine receptor subtype may be a candidate for novel antipsychotic drugs. To elucidate the antipsychotic potential of the selective adenosine A(1) receptor agonist N(6)-cyclopentyladenosine (CPA), we examined herein the effects of CPA on phencyclidine (PCP)-induced behavior and expression of the immediate-early genes (IEGs), arc, c-fos and jun B, in the discrete brain regions of rats. PCP (7.5 mg/kg, s.c.) increased locomotor activity and head weaving in rats and this effect was significantly attenuated by pretreatment with CPA (0.5 mg/kg, s.c.). PCP increased the mRNA levels of c-fos and jun B in the medial prefrontal cortex, nucleus accumbens and posterior cingulate cortex, while leaving the striatum and hippocampus unaffected. CPA pretreatment significantly attenuated the PCP-induced increase in c-fos mRNA levels in the medial prefrontal cortex and nucleus accumbens. CPA also significantly attenuated the PCP-induced arc expression in the medial prefrontal cortex and posterior cingulate cortex. When administered alone, CPA decreased the mRNA levels of all IEGs examined in the nucleus accumbens, but not in other brain regions. Based on the ability of CPA to inhibit PCP-induced hyperlocomotion and its interaction with neural systems in the medial prefrontal cortex, posterior cingulate cortex and nucleus accumbens, the present results provide further evidence for a significant antipsychotic effect of the adenosine A(1) receptor agonist.
Collapse
Affiliation(s)
- Leo Gotoh
- Department of Chemistry, Faculty of Science, Kyushu University, Ropponmatsu, Fukuoka 810-8560, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Powell KR, Iuvone PM, Holtzman SG. The role of dopamine in the locomotor stimulant effects and tolerance to these effects of caffeine. Pharmacol Biochem Behav 2001; 69:59-70. [PMID: 11420069 DOI: 10.1016/s0091-3057(01)00497-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Current evidence indicates that the acute locomotor stimulant effects of caffeine involve dopamine (DA) receptor activation; however, few studies have investigated the role of DA receptors in mediating the development of tolerance to caffeine. Therefore, the present study was designed to determine the degree to which DA receptors mediate the development of tolerance to the locomotor stimulant effects of caffeine. Caffeine was examined alone and in combination with haloperidol (HAL), GBR 12909, nisoxetine and fluoxetine. HAL dose-dependently and completely blocked the acute effects of caffeine on locomotor activity, and the highest dose of GBR 12909 enhanced the effects of caffeine. Neither nisoxetine nor fluoxetine altered the effects of caffeine. HAL was infused via osmotic pumps (0.1 mg/kg/day) during a 14-day regimen of chronic caffeine administered in a caffeinated drinking solution ( approximately 136 mg/kg/day). HAL did not block the development of tolerance to the locomotor stimulant effects of caffeine, but did impair the recovery from tolerance following withdrawal of caffeine. [3H]SCH 23390 (DA D(1)) binding sites were downregulated in the nucleus accumbens and striatum and were upregulated in the prefrontal cortex of caffeine-treated vs. control rats; however, the affinity of [3H]SCH 23390 for these binding sites was unaltered. There were no differences between the caffeine-treated and control rats in number or affinity of [3H]spiperone (DA D(2)) binding sites. These results suggest that, although HAL did not alter the development of tolerance to caffeine, changes in DA D(1) receptors could be one component of the mechanism underlying caffeine-induced tolerance.
Collapse
Affiliation(s)
- K R Powell
- Department of Pharmacology, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA.
| | | | | |
Collapse
|
74
|
Ferré S, Fuxe K. Adenosine as a volume transmission signal. A feedback detector of neuronal activation. PROGRESS IN BRAIN RESEARCH 2001; 125:353-61. [PMID: 11098671 DOI: 10.1016/s0079-6123(00)25024-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- S Ferré
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | | |
Collapse
|
75
|
Schenk S. Effects of the serotonin 5-HT(2) antagonist, ritanserin, and the serotonin 5-HT(1A) antagonist, WAY 100635, on cocaine-seeking in rats. Pharmacol Biochem Behav 2000; 67:363-9. [PMID: 11124402 DOI: 10.1016/s0091-3057(00)00377-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Manipulations of serotonergic systems have been shown to modify many of the behavioral effects of cocaine. It was recently demonstrated that serotonin (5-HT) depletions produced by inhibition of tryptophan hydroxylase reduced cocaine-seeking in an animal model. The present study was designed to determine whether pretreatment with specific 5-HT antagonists might also decrease cocaine-seeking. The effect of pretreatment with the 5-HT(2) antagonist, ritanserin (0.0, 1.0, or 10.0 mg/kg), or the 5-HT(1A) antagonist, WAY 100635 (0. 0, 0.1, 0.3, or 1.0 mg/kg), on cocaine (5.0, 10.0, or 20.0 mg/kg)-produced reinstatement of extinguished drug-taking behavior was measured. Although ritanserin was ineffective, WAY 100635 attenuated cocaine-produced reinstatement in a dose-dependent manner. These effects of WAY 100635 appeared to be specific since responding maintained by saccharin self-administration remained high following pretreatment with 0.3 or 1.0 mg/kg WAY 100635. These data suggest a role of 5-HT(1A), but not 5-HT(2), receptors in cocaine-seeking.
Collapse
Affiliation(s)
- S Schenk
- Department of Psychology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
76
|
Ginés S, Hillion J, Torvinen M, Le Crom S, Casadó V, Canela EI, Rondin S, Lew JY, Watson S, Zoli M, Agnati LF, Verniera P, Lluis C, Ferré S, Fuxe K, Franco R. Dopamine D1 and adenosine A1 receptors form functionally interacting heteromeric complexes. Proc Natl Acad Sci U S A 2000; 97:8606-11. [PMID: 10890919 PMCID: PMC26995 DOI: 10.1073/pnas.150241097] [Citation(s) in RCA: 328] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The possible molecular basis for the previously described antagonistic interactions between adenosine A(1) receptors (A(1)R) and dopamine D(1) receptors (D(1)R) in the brain have been studied in mouse fibroblast Ltk(-) cells cotransfected with human A(1)R and D(1)R cDNAs or with human A(1)R and dopamine D(2) receptor (long-form) (D(2)R) cDNAs and in cortical neurons in culture. A(1)R and D(1)R, but not A(1)R and D(2)R, were found to coimmunoprecipitate in cotransfected fibroblasts. This selective A(1)R/D(1)R heteromerization disappeared after pretreatment with the D(1)R agonist, but not after combined pretreatment with D(1)R and A(1)R agonists. A high degree of A(1)R and D(1)R colocalization, demonstrated in double immunofluorescence experiments with confocal laser microscopy, was found in both cotransfected fibroblast cells and cortical neurons in culture. On the other hand, a low degree of A(1)R and D(2)R colocalization was observed in cotransfected fibroblasts. Pretreatment with the A(1)R agonist caused coclustering (coaggregation) of A(1)R and D(1)R, which was blocked by combined pretreatment with the D(1)R and A(1)R agonists in both fibroblast cells and in cortical neurons in culture. Combined pretreatment with D(1)R and A(1)R agonists, but not with either one alone, substantially reduced the D(1)R agonist-induced accumulation of cAMP. The A(1)R/D(1)R heteromerization may be one molecular basis for the demonstrated antagonistic modulation of A(1)R of D(1)R receptor signaling in the brain. The persistence of A(1)R/D(1)R heteromerization seems to be essential for the blockade of A(1)R agonist-induced A(1)R/D(1)R coclustering and for the desensitization of the D(1)R agonist-induced cAMP accumulation seen on combined pretreatment with D(1)R and A(1)R agonists, which indicates a potential role of A(1)R/D(1)R heteromers also in desensitization mechanisms and receptor trafficking.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Adenosine/analogs & derivatives
- Adenosine/pharmacology
- Animals
- Cell Line
- Cells, Cultured
- Cerebral Cortex/cytology
- Cyclic AMP/metabolism
- Dimerization
- Dopamine Agonists/pharmacology
- Fibroblasts/cytology
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Humans
- Mice
- Neurons/cytology
- Neurons/drug effects
- Neurons/metabolism
- Precipitin Tests
- Rats
- Rats, Sprague-Dawley
- Receptors, Dopamine D1/genetics
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D1/physiology
- Receptors, Dopamine D2/metabolism
- Receptors, Purinergic P1/genetics
- Receptors, Purinergic P1/metabolism
- Receptors, Purinergic P1/physiology
Collapse
Affiliation(s)
- S Ginés
- Department of Biochemistry and Molecular Biology, University of Barcelona, 08028 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Halimi G, Devaux C, Clot-Faybesse O, Sampol J, Legof L, Rochat H, Guieu R. Modulation of adenosine concentration by opioid receptor agonists in rat striatum. Eur J Pharmacol 2000; 398:217-24. [PMID: 10854833 DOI: 10.1016/s0014-2999(00)00275-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
There is evidence that adenosine and morphine interact in the striatum. However, little is known about the precise role of the opioid receptor subtypes implicated in the modulation of adenosine tissue concentration and in adenosine receptor expression and function. We sought to evaluate, in the absence of withdrawal symptoms, the effects of the short-term administration of selective mu-, delta- or kappa-opioid receptor agonists on adenosine concentration and on adenosine A(2A) receptor function in rat striatum. Adenosine A(2A) receptor was chosen because the neuronal sub-population expressing this receptor coexpresses enkephalin, suggesting that adenosine A(2A) receptor may be regulated by opioid receptor agonists. Oxymorphone hydrochloride mu-opioid receptor agonist, 6 mg/kg/day), +[-(5 alpha,7 alpha, 8 beta)-(-)-N-methyl-N(7-(1-pyrrolidinyl)1-oxaspiro (4.5)dec-8-yl) benzenacetamide] (U69593) (kappa-opioid receptor agonist, 0.75 mg/kg/day), and (+)-4[(alpha R)-alpha-((2S,5R)-4-allyl-2, 5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide) (SNC80) (delta-opioid receptor agonist, 9 mm/kg/day), or vehicle, were administered i.p 3 x daily during 5 days to groups of rats (n=6). We also investigated the effects of opioid receptor agonists on adenosine uptake by striatal cell extracts. We found that administration of mu- or delta-opioid receptor agonists significantly decreased adenosine uptake in striatal cell extracts and increased adenosine concentration (mean+24% and +45% for mu- and delta-opioid receptor agonist, respectively, relative to controls). None of the receptor agonists tested induced obvious modifications of adenosine A(2A) receptor function. However, the delta-opioid receptor agonist induced an increase in adenosine A(2A) mRNA expression (mean 44%). We conclude that mu and delta receptor agonists inhibit adenosine uptake by striatal cell extracts and increase adenosine concentrations in rat striatum.
Collapse
MESH Headings
- Adenosine/analogs & derivatives
- Adenosine/metabolism
- Adenosine/pharmacokinetics
- Adenosine/pharmacology
- Animals
- Benzamides/pharmacology
- Benzeneacetamides
- Binding, Competitive
- Corpus Striatum/drug effects
- Corpus Striatum/metabolism
- Female
- Injections, Intraperitoneal
- Oxymorphone/pharmacology
- Phenethylamines/pharmacology
- Piperazines/pharmacology
- Purinergic P1 Receptor Agonists
- Pyrrolidines/pharmacology
- RNA, Messenger/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Radioligand Assay
- Rats
- Rats, Sprague-Dawley
- Receptor, Adenosine A2A
- Receptors, Opioid/agonists
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, kappa/agonists
- Receptors, Purinergic P1/drug effects
- Receptors, Purinergic P1/genetics
Collapse
Affiliation(s)
- G Halimi
- UMR CNRS 6560, Laboratoire de Biochimie et d'Ingéniérie des Protéines, Faculté de Médecine Secteur Nord, Bd Pierre Dramard, 13916 Cedex, Marseille, France
| | | | | | | | | | | | | |
Collapse
|
78
|
Casas M, Prat G, Rubio A, Barbanoj M, Jané F. Lack of synergism between caffeine and SKF 38393 on rotational behavior in 6-hydroxydopamine-denervated rats. Eur J Pharmacol 2000; 396:93-9. [PMID: 10822061 DOI: 10.1016/s0014-2999(00)00215-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have recently shown a synergistic effect between caffeine and the dopamine D(2) receptor agonist, bromocriptine, on contralateral rotational behavior in unilaterally 6-hydroxydopamine-denervated rats. In addition, we found that bromocriptine prevented caffeine-induced tolerance to this behavior following repeated treatment. In the present study, we investigated whether or not the dopamine D(1) receptor agonist, (+/-)-phenyl-2,3,4, 5-tetrahydro-(1H)-3-benzazepine-7,8-diol (SKF 38393), presented similar characteristics. Different groups of rats received simultaneous injections of either vehicle plus vehicle, caffeine (40 mg/kg) plus vehicle, SKF 38393 (0.5, 1, 2, and 4 mg/kg) plus vehicle, or caffeine plus SKF 38393 (0.5, 1, 2, and 4 mg/kg) for 5 consecutive days, and both ipsilateral and contralateral rotational behavior was measured. Results showed that, on the first day of treatment, caffeine produced significantly more rotational behavior than did a low dose of SKF 38393 (0.5 mg/kg), and significantly less turning than at higher doses (2 and 4 mg/kg). Combined treatment with caffeine and a high dose of SKF 38393 (4 mg/kg) produced significantly more rotational behavior than did caffeine plus vehicle. With repeated administration, caffeine produced sustained tolerance to its effects on rotational behavior, whereas SKF 38393 did not. In the groups treated with low doses of SKF 38393 (0.5, and 1 mg/kg) plus caffeine, tolerance was observed while in the groups that received high doses of SKF 38393 (2 and 4 mg/kg) plus caffeine, no tolerance was observed to rotational behavior. These results suggest that maximal stimulation of dopamine D(1) receptors may be needed to prevent the tolerance effects of caffeine in this animal model. This finding may have clinical relevance to the therapeutic treatment of Parkinson's disease.
Collapse
Affiliation(s)
- M Casas
- Laboratori de Neuropsicofarmacologia, Institut de Recerca de L'Hospital de la Santa Creu i Sant Pau, Departaments de Psiquiatria i de Farmacologia, Universitat Aut¿onoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Sain
| | | | | | | | | |
Collapse
|
79
|
Ferré S, Rimondini R, Popoli P, Reggio R, Pèzzola A, Hansson AC, Andersson A, Fuxe K. Stimulation of adenosine A1 receptors attenuates dopamine D1 receptor-mediated increase of NGFI-A, c-fos and jun-B mRNA levels in the dopamine-denervated striatum and dopamine D1 receptor-mediated turning behaviour. Eur J Neurosci 1999; 11:3884-92. [PMID: 10583477 DOI: 10.1046/j.1460-9568.1999.00810.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Adenosine A1 receptors antagonistically and specifically modulate the binding and functional characteristics of dopamine D1 receptors. In the striatum this interaction seems to take place in the GABAergic strionigro-strioentopeduncular neurons, where both receptors are colocalized. D1 receptors in the strionigro-strioentopeduncular neurons are involved in the increased striatal expression of immediate-early genes induced by the systemic administration of psychostimulants and D1 receptor agonists. Previous results suggest that a basal expression of the immediate-early gene c-fos tonically facilitates the functioning of strionigro-strioentopeduncular neurons and facilitates D1 receptor-mediated motor activation. The role of A1 receptors in the modulation of the expression of striatal D1 receptor-regulated immediate-early genes and the D1 receptor-mediated motor activation was investigated in rats with a unilateral lesion of the ascending dopaminergic pathways. The systemic administration of the A1 agonist N6-cyclopentyladenosine (CPA, 0.1 mg/kg) significantly decreased the number of contralateral turns induced by the D1 agonist SKF 38393 (3 mg/kg). Higher doses of CPA (0.5 mg/kg) were necessary to inhibit the turning behaviour induced by the D2 agonist quinpirole (0.1 mg/kg). By using in situ hybridization it was found that CPA (0.1 mg/kg) significantly inhibited the SKF 38393-induced increase in the expression of NGFI-A and c-fos mRNA levels in the dopamine-denervated striatum. The increase in jun-B mRNA expression could only be inhibited with the high dose of CPA (0.5 mg/kg). A stronger effect of the A1 agonist was found in the ventral striatum (nucleus accumbens) compared with the dorsal striatum (dorsolateral caudate-putamen). The results indicate the existence of antagonistic A1-D1 receptor-receptor interactions in the dopamine-denervated striatum controlling D1 receptor transduction at supersensitive D1 receptors.
Collapse
Affiliation(s)
- S Ferré
- Department of Neurochemistry, 08036 Barcelona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Mayfield RD, Jones BA, Miller HA, Simosky JK, Larson GA, Zahniser NR. Modulation of endogenous GABA release by an antagonistic adenosine A1/dopamineD1 receptor interaction in rat brain limbic regions but not basal ganglia. Synapse 1999; 33:274-81. [PMID: 10421708 DOI: 10.1002/(sici)1098-2396(19990915)33:4<274::aid-syn4>3.0.co;2-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Behavioral and biochemical studies suggest that a negative interaction exists between adenosine A(1) and dopamine D(1) receptors in the brain and that this may contribute to the psychomotor effects of adenosine receptor agonists and antagonists. We examined the functional significance of A(1) and D(1) receptor subtypes in modulating electrically evoked endogenous GABA release from slices/punches of rat basal ganglia (striatum, globus pallidus, striatum containing globus pallidus, and substantia nigra reticulata) and limbic regions (ventral pallidum and nucleus accumbens). In basal ganglia, stimulation of A(1) receptors with the selective agonist R-PIA (1-100 nM) resulted in a concentration-dependent decrease in GABA release. The selective A(1) antagonist DPCPX (10-100 nM) increased GABA release, suggesting that endogenous adenosine tonically inhibits GABA release. However, in basal ganglia, consistent dopamine D(1) receptor modulation of GABA, release was not observed in response to either D(1) agonists or antagonists. Furthermore, the A(1) receptor-mediated inhibition of GABA release was not changed by concurrent activation of D(1) receptors, thus confirming the lack of D(1) receptor modulation under these conditions. In contrast, in ventral pallidum and nucleus accumbens, stimulation of D(1) receptors with SKF-82958 (1 microM) increased GABA release significantly. The D(1) receptor-mediated increase in GABA release was attenuated by concurrent activation of adenosine A(1) receptors. These results are consistent with the hypothesis that an antagonistic A(1)/D(1) receptor interaction may be important in modulating GABA release in limbic regions.
Collapse
Affiliation(s)
- R D Mayfield
- Department of Pharmacology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | | | | | |
Collapse
|
81
|
Dixon DA, Fenix LA, Kim DM, Raffa RB. Indirect modulation of dopamine D2 receptors as potential pharmacotherapy for schizophrenia: I. Adenosine agonists. Ann Pharmacother 1999; 33:480-8. [PMID: 10332540 DOI: 10.1345/aph.18215] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE To review preclinical and clinical information related to pharmacologic modulation of dopamine D2 receptors as potential novel antipsychotic therapy. Specifically, to summarize the data that suggest a modulatory action of adenosine A2A receptors on dopamine D2 receptors and, therefore, a possible rational role of adenosine A2A agonists as novel antipsychotic agents. DATA SOURCES Primary and review articles were identified by MEDLINE search (from 1966 to May 1998) and through secondary sources. STUDY SELECTION AND DATA EXTRACTION All of the articles identified from the data sources were evaluated and all information deemed relevant was included in this review. DATA SYNTHESIS For all of the older and many of the newer antipsychotic agents, there is a strong correlation between clinical antipsychotic activity and affinity for dopamine D2 receptors. Unfortunately, dopamine D2 receptors are believed to also be involved in the adverse effect profile of these agents. The indirect modulation of dopamine D2 receptors, rather than direct block, might produce antipsychotic effects without the usual adverse reactions. Several lines of evidence from animal studies suggest that the use of selective A2A agonists might represent a novel approach to the treatment of psychoses. CONCLUSIONS Dopamine receptor modulation might represent a novel antipsychotic approach or adjunct therapy. The data regarding adenosine agonists (particularly selective A2A receptor agonists) are inconclusive at the present time. Direct clinical demonstration of effectiveness is required.
Collapse
Affiliation(s)
- D A Dixon
- School of Pharmacy, Temple University, Philadelphia, PA 19140, USA
| | | | | | | |
Collapse
|
82
|
Casas M, Prat G, Robledo P, Barbanoj M, Kulisevsky J, Jané F. Scopolamine prevents tolerance to the effects of caffeine on rotational behavior in 6-hydroxydopamine-denervated rats. Eur J Pharmacol 1999; 366:1-11. [PMID: 10064145 DOI: 10.1016/s0014-2999(98)00911-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Continuous administration of caffeine has been shown to induce tolerance to its psychostimulant effects. In this study, using unilateral 6-hydroxydopamine nigrostriatal denervated rats, we tested the hypothesis that the muscarinic receptor antagonist, scopolamine, would prevent the tolerance to caffeine-induced contralateral rotational behavior. For that purpose we administered either caffeine (40 mg/kg) plus saline or scopolamine (5, 10 and 20 mg/kg) plus saline, as well as caffeine in combination with the various doses of scopolamine for 7 consecutive days, and measured ipsilateral and contralateral rotational behavior. The results showed that acute injections of scopolamine plus saline produced similar levels of both ipsilateral and contralateral turning, while caffeine produced more contralateral than ipsilateral turning. Tolerance to caffeine-induced contralateral turning was observed as of the second administration, while scopolamine plus saline injections did not produce significant changes in rotational behavior with repeated treatment. Scopolamine co-administered with caffeine significantly attenuated the increased contralateral turning produced by acute injections of caffeine plus saline, but significantly prevented the tolerance effects with repeated administration. These findings strongly suggest that muscarinic cholinergic processes may be involved in tolerance to caffeine-induced contralateral turning. The results are interpreted in terms of the possible interactions between dopamine, adenosine and acetylcholine neurotransmitter systems within the basal ganglia circuitry involved in motor behavior.
Collapse
Affiliation(s)
- M Casas
- Institut de Recerca Sant Pau, Departament de Psiquiatria, Universitat Autònoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Spain.
| | | | | | | | | | | |
Collapse
|
83
|
Popoli P, Reggio R, Pèzzola A, Fuxe K, Ferré S. Adenosine A1 and A2A receptor antagonists stimulate motor activity: evidence for an increased effectiveness in aged rats. Neurosci Lett 1998; 251:201-4. [PMID: 9726378 DOI: 10.1016/s0304-3940(98)00533-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The motor effects of selective adenosine A1 and A2A receptor antagonists were tested in young (2 months) and aged (24 months) Wistar rats. In young rats, both the selective A2A receptor antagonist 5-amino-7-(2-phenylethyl)-2-2(2-furyl)-pyrazolo[4,3-e]-1,2,4-triazo++ + lo[1,5-c]pyrimidine (SCH 58261, minimal effective dose 2 mg/kg intraperitoneally (i.p.)) and the selective A1 receptor antagonist 8-cyclopentyl-1,3-dimethylxanthine (CPT, minimal effective dose 1.2 mg/kg i.p.) stimulated motor activity. In old rats, both compounds induced significant motor activation starting from doses lower than those required in young animals. Specifically, the minimal effective doses of SCH 58261 and CPT in aged rats were 1 and 0.6 mg/kg i.p, respectively. The results indicate that both adenosine A1 and A2A receptors play a functional role in the control of motor activity, and, therefore, the blockade of both receptor subtypes is involved in the motor stimulating properties of methylxanthines. Also the evidence indicates, for the first time, that in aged animals the motor inhibitory adenosinergic tone seems to be increased with respect to young animals.
Collapse
Affiliation(s)
- P Popoli
- Department of Pharmacology, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | |
Collapse
|
84
|
Holtbäck U, Ohtomo Y, Förberg P, Sahlgren B, Aperia A. Neuropeptide Y shifts equilibrium between alpha- and beta-adrenergic tonus in proximal tubule cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:F1-7. [PMID: 9688998 DOI: 10.1152/ajprenal.1998.275.1.f1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Renal sympathetic nerves play a central role in the regulation of tubular Na+ reabsorption. Norepinephrine (NE) and neuropeptide Y (NPY) are colocalized in renal sympathetic nerve endings. The purpose of this study is to examine the integrated effects of these neurotransmitters on the regulation of Na+-K+-ATPase, the enzyme responsible for active Na+ reabsorption in renal tubular cells. Studies were performed on proximal tubular segments, which express adrenergic alpha- and beta-receptors, as well as NPY-Y2 receptors. It was found that alpha- and beta-adrenergic agonists had opposing effects on Na+-K+-ATPase activity. beta-Adrenergic agonists induced a dose-dependent inhibition of the Na+-K+-ATPase activity, whereas alpha-adrenergic agonists stimulated the enzyme. NPY abolished beta-agonist-induced deactivation of Na+-K+-ATPase and enhanced alpha-agonist-induced activation of Na+-K+-ATPase. The beta-adrenergic agonist appeared to inhibit Na+-K+-ATPase activity via a cAMP pathway. NPY antagonized beta-agonist-induced accumulation of cAMP. In our preparation, NE alone had no net effect but stimulated the Na+-K+-ATPase activity in the presence of beta-adrenergic antagonists, as well as in the presence of NPY. The results indicate that, in renal tissue, NPY determines the net effect of its colocalized transmitter, NE, by its ability to attenuate the beta- and enhance the alpha-adrenergic effect.
Collapse
Affiliation(s)
- U Holtbäck
- Department of Woman and Child Health, Pediatric Unit, Karolinska Institute, S-112-81 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
85
|
Fuxe K, Ferré S, Zoli M, Agnati LF. Integrated events in central dopamine transmission as analyzed at multiple levels. Evidence for intramembrane adenosine A2A/dopamine D2 and adenosine A1/dopamine D1 receptor interactions in the basal ganglia. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1998; 26:258-73. [PMID: 9651540 DOI: 10.1016/s0165-0173(97)00049-0] [Citation(s) in RCA: 226] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
An analysis at the network and membrane level has provided evidence that antagonistic interactions between adenosine A2A/dopamine D2 and adenosine A1/dopamine D1 receptors in the ventral and dorsal striatum are at least in part responsible for the motor stimulant effects of adenosine receptor antagonists like caffeine and for the motor depressant actions of adenosine receptor agonists. The results obtained in stably cotransfected cells also underline the hypothesis that the intramembrane A2A/D2 and A1/D1 receptor interactions represent functionally important mechanisms that may be the major mechanism for the demonstrated antagonistic A2A/D2 and A1/D1 receptor interactions found in vivo in behavioural studies and in studies on in vivo microdialysis of the striopallidal and strioentopeduncular GABAergic pathways. A major mechanism for the direct intramembrane A2A/D2 and A1/D1 receptor interactions may involve formation of A2A/D2 and A1/D1 heterodimers leading to allosteric changes that will alter the affinity as well as the G protein coupling and thus the efficacy to control the target proteins in the membranes. This is the first molecular network to cellular integration in the nerve cell membrane and may be well suited for a number of integrated tasks and can be performed in a short-time scale, in comparison with the very long-time scale observed when receptor heteroregulation involves phosphorylation or receptor resynthesis. Multiple receptor-receptor interactions within the membranes through formation of receptor clusters may lead to the storage of information within the membranes. Such molecular circuits can represent hidden layers within the membranes that substantially increase the computational potential of neuronal networks. These molecular circuits are biased and may therefore represent part of the molecular mechanism for the storage of memory traces (engrams) in the membranes.
Collapse
Affiliation(s)
- K Fuxe
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | | | | | | |
Collapse
|
86
|
Rimondini R, Ferré S, Giménez-Llort L, Ogren SO, Fuxe K. Differential effects of selective adenosine A1 and A2A receptor agonists on dopamine receptor agonist-induced behavioural responses in rats. Eur J Pharmacol 1998; 347:153-8. [PMID: 9653875 DOI: 10.1016/s0014-2999(98)00107-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The effects of the systemic (i.p.) administration of the selective adenosine A1 receptor agonist N6-cyclopentyladenosine (CPA) and the selective adenosine A2A receptor agonist sodium 2-p-carboxyethyl)phenylamino-5'-N-carboxamidoadenosine (CGS 21680) on different dopamine receptor agonist-induced behaviours were studied in the male rat. CGS 21680 (1 micromol/kg), but not CPA, was found to counteract the stereotypies induced by the non-selective dopamine receptor agonist apomorphine (0.25 mg/kg s.c.). Low doses of CGS 21680 (0.1 micromol/kg) and high doses of CPA (3 micromol/kg) counteracted yawning induced by the dopamine D2 selective agonist quinpirole (0.05 mg/kg). On the other hand, low doses of CPA (0.3 micromol/kg) antagonized grooming induced by the selective dopamine D1 receptor-selective agonist SKF 38393 (10 mg/kg i.p.), while CGS 21680 was ineffective. These results are consistent with the proposed existence of a selective antagonistic modulation of dopamine D1 and D2 receptors by adenosine A1 and A2A receptors, respectively. The ability of CGS 21680 to counteract apomorphine-induced stereotypies is weaker compared to its previously reported antagonistic effect of amphetamine-induced motor activity. This supports the hypothesis that adenosine A2A receptor agonists may be potential antipsychotic drugs with a low potential for extrapyramidal side effects.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Adenosine/analogs & derivatives
- Adenosine/pharmacology
- Animals
- Apomorphine/pharmacology
- Behavior, Animal/drug effects
- Dopamine Agonists/pharmacology
- Grooming/drug effects
- Male
- Phenethylamines/pharmacology
- Purinergic P1 Receptor Agonists
- Quinpirole/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptor, Adenosine A2A
- Receptors, Dopamine/drug effects
- Receptors, Dopamine/metabolism
- Receptors, Purinergic P1/metabolism
- Stereotyped Behavior/drug effects
- Yawning/drug effects
Collapse
Affiliation(s)
- R Rimondini
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
87
|
Ferré S, Torvinen M, Antoniou K, Irenius E, Civelli O, Arenas E, Fredholm BB, Fuxe K. Adenosine A1 receptor-mediated modulation of dopamine D1 receptors in stably cotransfected fibroblast cells. J Biol Chem 1998; 273:4718-24. [PMID: 9468534 DOI: 10.1074/jbc.273.8.4718] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The antagonistic interactions between adenosine A1 and dopamine D1 receptors were studied in a mouse Ltk- cell line stably cotransfected with human adenosine A1 receptor and dopamine D1 receptor cDNAs. In membrane preparations, both the adenosine A1 receptor agonist N6-cyclopentyladenosine and the GTP analogue guanyl-5'-yl imidodiphospate induced a decrease in the proportion of dopamine D1 receptors in a high affinity state. In the cotransfected cells, the adenosine A1 agonist induced a concentration-dependent inhibition of dopamine-induced cAMP accumulation. Blockade of adenosine A1 receptor signal transduction with the adenosine A1 receptor antagonist 1,3-dipropyl-8-cyclopentylxanthine or with pertussis toxin pretreatment increased both basal and dopamine-stimulated cAMP levels, indicating the existence of tonic adenosine A1 receptor activation. Pretreatment with pertussis toxin also counteracted the effects of low concentrations of the A1 agonist on D1 receptor-agonist binding. The results suggest that adenosine A1 receptors antagonistically modulate dopamine D1 receptors at the level of receptor binding and the generation of second messengers.
Collapse
Affiliation(s)
- S Ferré
- Department of Neuroscience, Karolinska Institute, S-171 77 Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Svenningsson P, Hall H, Sedvall G, Fredholm BB. Distribution of adenosine receptors in the postmortem human brain: an extended autoradiographic study. Synapse 1997; 27:322-35. [PMID: 9372555 DOI: 10.1002/(sici)1098-2396(199712)27:4<322::aid-syn6>3.0.co;2-e] [Citation(s) in RCA: 165] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Whole-hemisphere sections from six subjects were used in a quantitative autoradiographic study to characterize and to investigate the distribution of adenosine receptors, using [3H]DPCPX, [3H]CGS 21680, and [3H]SCH 58261 as radioligands. [3H]DPCPX-binding showed the pharmacology expected for adenosine A1 receptors and is therefore taken to mirror adenosine A1 receptors. Adenosine A1 receptors were widely distributed, with the highest densities in the stratum radiatum/pyramidale of the hippocampal region CA1. Adenosine A1 receptors were nonhomogeneously distributed in nucleus caudatus, globus pallidus, and cortical areas: In the cingulate and frontal cortex the deep layers showed the highest labeling, while in the occipital, parietal, temporal, and insular cortex it was highest in the superficial layers. In addition, we found very high levels of adenosine A1 receptors in structures known to be important for cholinergic transmission, especially the septal nuclei. The Bmax values and KD values for [3H]DPCPX-binding in stratum radiatum/pyramidale of CA1 and the superficial layer of insular cortex were 598 and 430 fmol/mg gray matter and 9.9 and 14.2 nM, respectively. [3H]CGS 21680-binding was multiphasic, but showed the pharmacology expected for adenosine A2A receptors and was taken to represent them. Adenosine A2A receptors were abundant in putamen, nucleus caudatus, nucleus accumbens, and globus pallidus pars lateralis. Specific [3H]CGS 21680-binding was also found in certain thalamic nuclei and throughout the cerebral cortex. The adenosine A2A receptor antagonist radioligand [3H]SCH 58261 was also found to label these extrastriatal structures. Thus, adenosine A2A receptors seem to be more widely distributed in the human brain than previously recognized.
Collapse
Affiliation(s)
- P Svenningsson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | |
Collapse
|
89
|
Ferré S, Fredholm BB, Morelli M, Popoli P, Fuxe K. Adenosine-dopamine receptor-receptor interactions as an integrative mechanism in the basal ganglia. Trends Neurosci 1997; 20:482-7. [PMID: 9347617 DOI: 10.1016/s0166-2236(97)01096-5] [Citation(s) in RCA: 601] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Increasing evidence suggests that antagonistic interactions between specific subtypes of adenosine and dopamine receptors in the basal ganglia are involved in the motor depressant effects of adenosine receptor agonists and the motor stimulant effects of adenosine receptor antagonists, such as caffeine. The GABAergic striatopallidal neurons are regulated by interacting adenosine A2A and dopamine D2 receptors. On the other hand, the GABAergic striatonigral and striatoentopeduncular neurons seem to be regulated by interacting adenosine A1 and dopamine D1 receptors. Furthermore, behavioural studies have revealed interactions between adenosine A2A and dopamine D1 receptors that occur at the network level. These adenosine-dopamine receptor-receptor interactions might offer new therapeutic leads for basal ganglia disorders.
Collapse
Affiliation(s)
- S Ferré
- Dept of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
90
|
Popoli P, Reggio R, Pèzzola A. Adenosine A1 and A2 receptor agonists significantly prevent the electroencephalographic effects induced by MK-801 in rats. Eur J Pharmacol 1997; 333:143-6. [PMID: 9314027 DOI: 10.1016/s0014-2999(97)01122-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Both N6-cyclopentyladenosine (CPA, adenosine A1 receptor agonist) and 2-[4-(2-carboxyethyl)phenethylamino]-5'-N-ethylcarboxamido-adenosi ne (CGS 21680, adenosine A2 receptor agonist) inhibited the electroencephalographic (EEG) effects induced by the noncompetitive NMDA receptor antagonist (+)-5-methyl-10,11-dihydro-5H-dibenzo-(a,d)cyclohepten-5,10-imine maleate (MK-801) in rats. While the inhibitory effects of CPA were evident at doses (0.1 and 0.5 mg/kg i.p.) devoid of intrinsic behavioral effects, CGS 21680 was effective only when administered at depressant doses (2 mg/kg i.p.). Since the effects induced by NMDA receptor antagonists may be regarded as a model of psychosis, these results suggest a possible role of adenosine receptor agonists as antipsychotics.
Collapse
Affiliation(s)
- P Popoli
- Pharmacology Department, Istituto Superiore di Sanità, Rome, Italy
| | | | | |
Collapse
|
91
|
Kaplan GB, Leite-Morris KA. Up-regulation of adenosine transporter-binding sites in striatum and hypothalamus of opiate tolerant mice. Brain Res 1997; 763:215-20. [PMID: 9296562 DOI: 10.1016/s0006-8993(97)00413-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Opioid-adenosine interactions have been demonstrated at both cellular and behavioral levels. Short-term morphine treatment has been shown to enhance adenosine release in brain and spinal tissues. Since adenosine uptake and release is regulated by a nitrobenzylthioinosine-sensitive adenosine transporter, we examined the effects of morphine treatment on this transporter-binding site. Adenosine transporter-binding sites were examined using equilibrium binding studies with [3H]nitrobenzylthioinosine in brain regions of morphine-treated mice. A 72-hour morphine pellet implantation procedure, which previously produced up-regulation of central adenosine A1 receptors and created a state of opiate dependence [G.B. Kaplan, K.A. Leite-Morris and M.T. Sears, Alterations in adenosine A receptors in morphine dependence, Brain Res., 657 (1994) 347-350], was used in this current study. This chronic morphine treatment significantly increased adenosine transporter-binding site concentrations in striatum and hypothalamus by 12 and 37%, respectively, compared to vehicle pellet implantation. No effects of morphine treatment were demonstrated in cortex, hippocampus, brainstem or cerebellum. In behavioral studies, mice receiving this same chronic morphine or vehicle treatment were given saline or morphine injections (40 or 50 mg/kg i.p.) followed by ambulatory activity monitoring. In the chronic vehicle treatment group, morphine injections significantly stimulated ambulatory activity while in the chronic morphine treatment group there was no such stimulation by acute morphine, suggestive of opiate tolerance. Morphine-induced up-regulation of striatal and hypothalamic adenosine transporter sites could potentially alter extracellular adenosine release and adenosine receptor activation and mediate aspects of opiate tolerance and dependence.
Collapse
Affiliation(s)
- G B Kaplan
- Department of Psychiatry and Human Behavior, Veterans Affairs Medical Center and Brown University School of Medicine, Providence, RI 02908, USA
| | | |
Collapse
|
92
|
Abstract
Dopamine has been proposed to mediate some of the behavioral effects of caffeine. This review discusses cellular mechanisms of action that could explain the role of dopamine in the behavioral effects of caffeine and summarizes the results of behavioral studies in both animals and humans that provide evidence for a role of dopamine in these effects. Caffeine is a competitive antagonist at adenosine receptors and produces a range of central and physiological effects that are opposite those of adenosine. Recently, caffeine has been shown to enhance dopaminergic activity, presumably by competitive antagonism at adenosine receptors that are colocalized and interact functionally with dopamine receptors. Thus, caffeine, as a competitive antagonist at adenosine receptors, may produce its behavioral effects by removing the negative modulatory effects of adenosine from dopamine receptors, thus stimulating dopaminergic activity. Consistent with this interpretation, preclinical behavioral studies show that caffeine produces behavioral effects similar to classic dopaminergically mediated stimulants such as cocaine and amphetamine, including increased locomotor activity, increased turning behavior in 6-hydroxydopamine-lesioned animals, stimulant-like discriminative stimulus effects, and self-administration. Furthermore, caffeine potentiates the effects of dopamine-mediated drugs on these same behaviors, and some of caffeine's effects on these behaviors can be blocked by dopamine receptor antagonists. Although more limited in scope, human studies also show that caffeine produces subjective, discriminative stimulus and reinforcing effects that have some similarities to those produced by cocaine and amphetamine.
Collapse
Affiliation(s)
- B E Garrett
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
93
|
Chen Y, Hillefors-Berglund M, Herrera-Marschitz M, Bjelke B, Gross J, Andersson K, von Euler G. Perinatal asphyxia induces long-term changes in dopamine D1, D2, and D3 receptor binding in the rat brain. Exp Neurol 1997; 146:74-80. [PMID: 9225740 DOI: 10.1006/exnr.1997.6497] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have investigated the long-term effects of 15-16 min or 19-20 min of perinatal asphyxia on D1, D2, and D3 receptors (analyzed by quantitative autoradiography) in the mesotelencephalic dopamine systems of the 4-week-old rat. Perinatal asphyxia reduced D1 antagonist binding ([3H]SCH 23390 in the presence of ketanserine) in the accumbens nucleus, the olfactory tubercle, and the substantia nigra and increased D1 agonist binding ([3H]dopamine in the presence of spiperone) in the accumbens nucleus and the olfactory tubercle. No changes in D2 antagonist binding ([123]iodosulpride) were found, whereas D2 agonist binding ([3H]N-propylnorapomorphine, [3H]NPA) was reduced in the posterior part of the caudate-putamen, and following 19-20 min of asphyxia it was also reduced in the accumbens nucleus. D3 agonist binding (R/S-(+/-)-2-(N,N-di[2,3(n)-3H] propylamino)-7-hydroxy-1,2,3,4-tetrahydronaphthalene, [3H]7-OH-DPAT) was increased in the anterior part of the caudate-putamen following 15-16 min but not 19-20 min of asphyxia. The results indicate that perinatal asphyxia reduced the number of D1 receptors and increased D1 agonist affinity in the accumbens nucleus and the olfactory tubercle and reduced the number of D1 receptors in the substantia nigra. The number of D2 receptors was unchanged by asphyxia, whereas the D2 agonist affinity was reduced in the caudate-putamen and in the accumbens nucleus. D3 agonist binding was increased in the caudate-putamen selectively following 15-16 min of asphyxia. In conclusion, asphyxia during birth induces long-term changes in the binding characteristics of dopamine receptors in the mesotelencephalic dopamine systems, which may contribute to previously reported behavioral changes.
Collapse
Affiliation(s)
- Y Chen
- Department of Medicine, Karolinska Institutet, Huddinge Hospital, Sweden
| | | | | | | | | | | | | |
Collapse
|
94
|
Giménez-Llort L, Ferré S, De Vera N, Martínez E. Motor depressant effects of systemically administered polyamines in mice: involvement of central NMDA receptors. Eur J Pharmacol 1996; 318:231-8. [PMID: 9016910 DOI: 10.1016/s0014-2999(96)00786-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The systemic administration of polyamines (s.c.) produced a dose-dependent motor depression. With high doses the depressant effect was long-lasting and the animals showed signs of toxicity. ED50 values for spermine, spermidine and putrescine were 38, 90 and 251 mg/kg respectively. The motor depression induced by the systemic administration of N-methyl-D-aspartate (NMDA; 25 mg/kg i.p.) was used as a model for studying the interactions between polyamines and the NMDA receptor. Results indicate that (1) the motor effects elicited by NMDA are very similar to those induced by polyamines at ED50 doses; (2) polyamines, even at non-active doses, potentiate the motor depressant effect induced by NMDA; (3) the NMDA receptor antagonist, (5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,1 0-imine (MK-801; 0.5 mg/kg i.p.), abolishes the depressant effect elicited by NMDA and by polyamines, even at toxic doses; (4) amphetamine (1.5 mg/kg i.p.) does not counteract the motor depressant effects of NMDA or polyamines. On the other hand, the adenosine receptor antagonist, theophylline (30 mg/kg i.p.), counteracts NMDA- but not polyamine-induced motor depression. The concentration of polyamines in the brain is modified after their systemic administration at high doses and at the ED50 dose of putrescine. In conclusion, the data suggest that the NMDA receptor could be a target mediating the motor effect elicited by polyamines. They also show that the quantitative analysis of the motor effects elicited by non-convulsant doses of NMDA might be a powerful tool for studying in vivo the interaction between neurotransmission systems involved in the regulation of motor activity.
Collapse
Affiliation(s)
- L Giménez-Llort
- Department of Neurochemistry, Institut de Investigacions Biomèdiques de Barcelona (IIBB), CSIC, Spain
| | | | | | | |
Collapse
|
95
|
Pollack AE, Fink JS. Synergistic interaction between an adenosine antagonist and a D1 dopamine agonist on rotational behavior and striatal c-Fos induction in 6-hydroxydopamine-lesioned rats. Brain Res 1996; 743:124-30. [PMID: 9017239 DOI: 10.1016/s0006-8993(96)01036-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The interaction between adenosine and D1 dopamine systems in regulating motor behavior and striatal c-Fos expression was examined in rats with unilateral 6-hydroxydopamine (6-OHDA) lesions. These results were compared to the synergistic interaction between D1 and D2 dopamine systems in 6-OHDA rats. Coadministration of the adenosine antagonist 3,7-dimethyl-1-propargylxanthine (DMPX: 10 mg/kg) and the D1 dopamine agonist SKF38393 (0.5 mg/kg) to 6-OHDA-lesioned rats produced significant contralateral rotation and c-Fos expression in the ipsilateral striatum compared to 6-OHDA rats treated with either drug alone. However, the regional pattern of striatal c-Fos activation following treatment of 6-OHDA rats with SKF38393 and DMPX was different from the dorsolateral pattern of striatal c-Fos induction observed after coadministration of D1 and D2 dopamine agonists (SKF38393: 0.5 mg/kg + quinpirole: 0.05 mg/kg). These data are consistent with a functional interaction between D1 dopamine and adenosine systems in the striatum, but suggest that activation of different subsets of striatal neurons underlie the behavioral synergy observed following combined adenosine antagonist-D1 dopamine agonist and combined D1 dopamine agonist-D2 dopamine agonist treatment.
Collapse
Affiliation(s)
- A E Pollack
- Molecular Neurobiology Laboratory, Massachusetts General Hospital, Boston, USA
| | | |
Collapse
|
96
|
Popoli P, Giménez-Llort L, Pezzola A, Reggio R, Martínez E, Fuxe K, Ferré S. Adenosine A1 receptor blockade selectively potentiates the motor effects induced by dopamine D1 receptor stimulation in rodents. Neurosci Lett 1996; 218:209-13. [PMID: 8945765 DOI: 10.1016/s0304-3940(96)13143-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
An antagonistic interaction between adenosine A1 and dopamine D1 receptors has previously been found in the basal ganglia. However, direct evidence for a selective adenosine A1 antagonist-induced potentiation of dopamine D1-mediated motor activation is lacking. The systemic administration of the adenosine A1 antagonist 8-cyclopentyl-1,3-dimethylxanthine significantly potentiated the motor activating properties of the systemically administered dopamine D1 agonist SKF 38393 in both reserpinized mice and unilaterally 6-hydroxy-dopamine-lesioned rats. However, 8-cyclopentyl-1, 3-dimethylxanthine did not modify the motor effects of the dopamine D2 agonist quinpirole. The present work shows that an antagonistic interaction between adenosine A1 and dopamine D1 receptors may be involved in the motor activating effects of adenosine antagonists, like caffeine.
Collapse
Affiliation(s)
- P Popoli
- Pharmacology Department, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
97
|
Ferre S, O'Connor WT, Svenningsson P, Bjorklund L, Lindberg J, Tinner B, Stromberg I, Goldstein M, Ogren SO, Ungerstedt U, Fredholm BB, Fuxe K. Dopamine D1 receptor-mediated facilitation of GABAergic neurotransmission in the rat strioentopenduncular pathway and its modulation by adenosine A1 receptor-mediated mechanisms. Eur J Neurosci 1996; 8:1545-53. [PMID: 8758962 DOI: 10.1111/j.1460-9568.1996.tb01617.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
By using in vivo microdialysis it was found that one of the main functions of striatal dopamine D1 receptors is to selectively facilitate GABAergic neurotransmission in the 'direct' strioentopeduncular pathway. D1 receptors localized in the entopeduncular nucleus were also found to facilitate GABA release. However, results obtained from in vivo microdialysis, in vivo electrochemistry, immunohistochemistry and confocal laser microscopy suggested that entopeduncular D1 receptors could only be activated under pharmacological conditions. Adenosine A1 receptors were found to antagonistically modulate the D1-mediated regulation of the strioentopeduncular pathway. Furthermore, using in situ hybridization D1 and A1 receptors were shown to be colocalized in medium-sized striatal neurons. These results show that the strioentopeduncular neuron is a main locus for adenosine-dopamine interactions in the brain.
Collapse
Affiliation(s)
- S Ferre
- Division of Molecular and Cellular Neurochemistry, Department of Neuroscience, Karolinska Institute, S171 77 Stockholm Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Popoli P, Ferré S, Pèzzola A, Reggio R, Scotti de Carolis A, Fuxe K. Stimulation of adenosine A1 receptors prevents the EEG arousal due to dopamine D1 receptor activation in rabbits. Eur J Pharmacol 1996; 305:123-6. [PMID: 8813542 DOI: 10.1016/0014-2999(96)00242-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The influence of adenosine A1 (N6-cyclopentyladenosine, CPA) and A2 (2-[4-(2-carboxylethyl)phenethylamino]-5'-N-ethylcarboxamido -adenosine hydrochloride, CGS 21680) receptor agonists on SKF 38393-induced electroencephalographic (EEG) arousal was studied in rabbits. While CPA (0.1 mg/kg i.v.) significantly prevented the EEG effects of SKF 38393, CGS 21680 (0.2 mg/kg i.v.) did not affect them. These results demonstrate that adenosine A1 receptors can modulate dopamine D1 receptor-induced EEG arousal and show, for the first time, that adenosine-dopamine interactions are involved in brain functions other than motor activity.
Collapse
Affiliation(s)
- P Popoli
- Department of Pharmacology, Istituto Superiore di Sanità, Roma, Italy
| | | | | | | | | | | |
Collapse
|
99
|
Ferre S, Popoli P, Tinner-Staines B, Fuxe K. Adenosine A1 receptor-dopamine D1 receptor interaction in the rat limbic system: modulation of dopamine D1 receptor antagonist binding sites. Neurosci Lett 1996; 208:109-12. [PMID: 8859902 DOI: 10.1016/0304-3940(96)12577-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Antagonistic interactions between adenosine A2a and dopamine D2 receptors and between adenosine A1 and dopamine D1 receptors have been previously found in the basal ganglia. Those interactions have been proposed to be key mechanisms of action responsible for the motor depressant effects of adenosine agonists and the motor activating effects of adenosine antagonists, like caffeine. By using quantitative receptor autoradiography, the selective adenosine A1 receptor agonist N6-cyclopentyladenosine was found to decrease the affinity of dopamine D1 receptors for the specific D1 antagonist [(125)I]SCH 23982 in both the nucleus accumbens and the medial prefrontal cortex of the rat brain. The present results suggest that dopamine neurotransmission, through an A1-D1 interaction, might also he involved in the behavioural effects of adenosine agonists and antagonists not related to motor activity, like the sedative-hypnogenic properties of adenosine analogues and the psychostimulant effects of caffeine.
Collapse
Affiliation(s)
- S Ferre
- Department of Neuroscience, Division of Molecular and Cellular Neurochemistry, Karolinska Institute, Stockholm, Sweden
| | | | | | | |
Collapse
|
100
|
Turgeon SM, Pollack AE, Schusheim L, Fink JS. Effects of selective adenosine A1 and A2a agonists on amphetamine-induced locomotion and c-Fos in striatum and nucleus accumbens. Brain Res 1996; 707:75-80. [PMID: 8866715 DOI: 10.1016/0006-8993(95)01223-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Low to moderate doses of amphetamine produce locomotion which is dependent on release of dopamine in the anteromedial striatum and nucleus accumbens. The effects of selective adenosine A1 and A2a receptor agonists on locomotion and c-Fos induction following a moderate dose of amphetamine was assessed in rats. Pretreatment with the adenosine A1 receptor agonist N6-cyclohexyladenosine (CHA) or the adenosine A2a receptor agonist 2-[(2-aminoethylamino)carbonylethylphenylethylamino]-5'-N- ethylcarboxamidoadenosine (APEC) inhibited locomotion following an injection of amphetamine (1.5 mg/kg). This dose of amphetamine induced Fos-like immunoreactivity in an antero-dorsomedial distribution in the caudate-putamen and uniformly in the core and shell of the nucleus accumbens. Pretreatment with the adenosine A2a receptor agonist APEC, but not the adenosine A1 receptor agonist CHA, attenuated c-Fos induction in caudate-putamen and nucleus accumbens by amphetamine. These findings indicate that amphetamine-induced behavior is subject to modulation by adenosine receptors through mechanisms which are both related to and independent of c-Fos induction.
Collapse
Affiliation(s)
- S M Turgeon
- Molecular Neurobiology Laboratory, Massachusetts General Hospital, Boston 02114, USA
| | | | | | | |
Collapse
|