51
|
Mayr LM, Decoville T, Schmidt S, Laumond G, Klingler J, Ducloy C, Bahram S, Zolla-Pazner S, Moog C. Non-neutralizing Antibodies Targeting the V1V2 Domain of HIV Exhibit Strong Antibody-Dependent Cell-mediated Cytotoxic Activity. Sci Rep 2017; 7:12655. [PMID: 28978939 PMCID: PMC5627290 DOI: 10.1038/s41598-017-12883-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 09/15/2017] [Indexed: 12/19/2022] Open
Abstract
The development of an effective vaccine against HIV-1 has proven to be challenging. Broadly neutralizing antibodies (bNAbs), whilst exhibiting neutralization breadth and potency, are elicited only in a small subset of infected individuals and have yet to be induced by vaccination. Case-control studies of RV144 identified an inverse correlation of HIV-1 infection risk with antibodies (Abs) to the V1V2 region of gp120 with high antibody-dependent cellular cytotoxicity (ADCC) activity. The neutralizing activity of Abs was not found to contribute to this protective outcome. Using primary effector and target cells and primary virus isolates, we studied the ADCC profile of different monoclonal Abs targeting the V1V2 loop of gp120 that had low or no neutralizing activity. We compared their ADCC activity to some bNAbs targeting different regions of gp120. We found that mAbs targeting the V1V2 domain induce up to 60% NK cell mediated lysis of HIV-1 infected PBMCs in a physiologically relevant ADCC model, highlighting the interest in inducing such Abs in future HIV vaccine trials. Our data also suggest that in addition to neutralization, lysis of infected cells by Abs can effectively participate in HIV protection, as suggested by the RV144 immune correlate analysis.
Collapse
Affiliation(s)
- Luzia M Mayr
- INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Thomas Decoville
- INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Vaccine Research Institute (VRI), Créteil, France
| | - Sylvie Schmidt
- INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Géraldine Laumond
- INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Jéromine Klingler
- INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Camille Ducloy
- INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Vaccine Research Institute (VRI), Créteil, France
| | - Seiamak Bahram
- INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Susan Zolla-Pazner
- Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Christiane Moog
- INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France. .,Vaccine Research Institute (VRI), Créteil, France.
| |
Collapse
|
52
|
Increased, Durable B-Cell and ADCC Responses Associated with T-Helper Cell Responses to HIV-1 Envelope in Macaques Vaccinated with gp140 Occluded at the CD4 Receptor Binding Site. J Virol 2017; 91:JVI.00811-17. [PMID: 28701402 PMCID: PMC5599767 DOI: 10.1128/jvi.00811-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/26/2017] [Indexed: 01/05/2023] Open
Abstract
Strategies are needed to improve the immunogenicity of HIV-1 envelope (Env) antigens (Ag) for more long-lived, efficacious HIV-1 vaccine-induced B-cell responses. HIV-1 Env gp140 (native or uncleaved molecules) or gp120 monomeric proteins elicit relatively poor B-cell responses which are short-lived. We hypothesized that Env engagement of the CD4 receptor on T-helper cells results in anergic effects on T-cell recruitment and consequently a lack of strong, robust, and durable B-memory responses. To test this hypothesis, we occluded the CD4 binding site (CD4bs) of gp140 by stable cross-linking with a 3-kDa CD4 miniprotein mimetic, serving to block ligation of gp140 on CD4+ T cells while preserving CD4-inducible (CDi) neutralizing epitopes targeted by antibody-dependent cellular cytotoxicity (ADCC) effector responses. Importantly, immunization of rhesus macaques consistently gave superior B-cell (P < 0.001) response kinetics and superior ADCC (P < 0.014) in a group receiving the CD4bs-occluded vaccine compared to those of animals immunized with gp140. Of the cytokines examined, Ag-specific interleukin-4 (IL-4) T-helper enzyme-linked immunosorbent spot (ELISpot) assays of the CD4bs-occluded group increased earlier (P = 0.025) during the inductive phase. Importantly, CD4bs-occluded gp140 antigen induced superior B-cell and ADCC responses, and the elevated B-cell responses proved to be remarkably durable, lasting more than 60 weeks postimmunization. IMPORTANCE Attempts to develop HIV vaccines capable of inducing potent and durable B-cell responses have been unsuccessful until now. Antigen-specific B-cell development and affinity maturation occurs in germinal centers in lymphoid follicles through a critical interaction between B cells and T follicular helper cells. The HIV envelope binds the CD4 receptor on T cells as soluble shed antigen or as antigen-antibody complexes, causing impairment in the activation of these specialized CD4-positive T cells. We proposed that CD4-binding impairment is partly responsible for the relatively poor B-cell responses to HIV envelope-based vaccines. To test this hypothesis, we blocked the CD4 binding site of the envelope antigen and compared it to currently used unblocked envelope protein. We found superior and durable B-cell responses in macaques vaccinated with an occluded CD4 binding site on the HIV envelope antigen, demonstrating a potentially important new direction in future design of new HIV vaccines.
Collapse
|
53
|
Bernard NF, Kiani Z, Tremblay-McLean A, Kant SA, Leeks CE, Dupuy FP. Natural Killer (NK) Cell Education Differentially Influences HIV Antibody-Dependent NK Cell Activation and Antibody-Dependent Cellular Cytotoxicity. Front Immunol 2017; 8:1033. [PMID: 28883824 PMCID: PMC5574056 DOI: 10.3389/fimmu.2017.01033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/10/2017] [Indexed: 11/13/2022] Open
Abstract
Immunotherapy using broadly neutralizing antibodies (bNAbs) endowed with Fc-mediated effector functions has been shown to be critical for protecting or controlling viral replication in animal models. In human, the RV144 Thai trial was the first trial to demonstrate a significant protection against HIV infection following vaccination. Analysis of the correlates of immune protection in this trial identified an association between the presence of antibody-dependent cellular cytotoxicity (ADCC) mediated by immunoglobulin G (IgG) antibodies (Abs) to HIV envelope (Env) V1/V2 loop structures and protection from infection, provided IgA Abs with competing specificity were not present. Systems serology analyses implicated a broader range of Ab-dependent functions in protection from HIV infection, including but not limited to ADCC and Ab-dependent NK cell activation (ADNKA) for secretion of IFN-γ and CCL4 and expression of the degranulation marker CD107a. The existence of such correlations in the absence of bNAbs in the RV144 trial suggest that NK cells could be instrumental in protecting against HIV infection by limiting viral spread through Fc-mediated functions such as ADCC and the production of antiviral cytokines/chemokines. Beside the engagement of FcγRIIIa or CD16 by the Fc portion of anti-Env IgG1 and IgG3 Abs, natural killer (NK) cells are also able to directly kill infected cells and produce cytokines/chemokines in an Ab-independent manner. Responsiveness of NK cells depends on the integration of activating and inhibitory signals through NK receptors, which is determined by a process during their development known as education. NK cell education requires the engagement of inhibitory NK receptors by their human leukocyte antigen ligands to establish tolerance to self while allowing NK cells to respond to self cells altered by virus infection, transformation, stress, and to allogeneic cells. Here, we review recent findings regarding the impact of inter-individual differences in NK cell education on Ab-dependent functions such as ADCC and ADNKA, including what is known about the HIV Env epitope specificity of ADCC competent Abs and the conformation of HIV Env on target cells used for ADCC assays.
Collapse
Affiliation(s)
- Nicole F Bernard
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada.,Division of Clinical Immunology, McGill University Health Centre, Montreal, QC, Canada
| | - Zahra Kiani
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Alexandra Tremblay-McLean
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Sanket A Kant
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Christopher E Leeks
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Franck P Dupuy
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
54
|
HIV-1 Env- and Vpu-Specific Antibody-Dependent Cellular Cytotoxicity Responses Associated with Elite Control of HIV. J Virol 2017; 91:JVI.00700-17. [PMID: 28701393 DOI: 10.1128/jvi.00700-17] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 06/19/2017] [Indexed: 12/20/2022] Open
Abstract
Studying HIV-infected individuals who control HIV replication (elite controllers [ECs]) enables exploration of effective anti-HIV immunity. HIV Env-specific and non-Env-specific antibody-dependent cellular cytotoxicity (ADCC) may contribute to protection from progressive HIV infection, but the evidence is limited. We recruited 22 ECs and matched them with 44 viremic subjects. HIV Env- and Vpu-specific ADCC responses in sera were studied using a novel enzyme-linked immunosorbent assay (ELISA)-based dimeric recombinant soluble FcγRIIIa (rsFcγRIIIa)-binding assay, surface plasmon resonance, antibody-dependent natural killer (NK) cell activation assays, and ADCC-mediated killing assays. ECs had higher levels of HIV Env-specific antibodies capable of binding FcγRIIIa, activating NK cells, and mediating granzyme B activity (all P < 0.01) than viremic subjects. ECs also had higher levels of antibodies against a C-terminal 13-mer Vpu peptide capable of mediating FcγRIIIa binding and NK cell activation than viremic subjects (both P < 0.05). Our data associate Env-specific and Vpu epitope-specific ADCC in effective immune responses against HIV among ECs. Our findings have implications for understanding the role of ADCC in HIV control.IMPORTANCE Understanding immune responses associated with elite control of HIV may aid the development of immunotherapeutic and vaccine strategies for controlling HIV infection. Env is a major HIV protein target of functional antibody responses that are heightened in ECs. Interestingly, EC antibodies also target Vpu, an accessory protein crucial to HIV, which degrades CD4 and antagonizes tetherin. Antibodies specific to Vpu are a common feature of the immune response of ECs that may prove to be of functional importance to the design of improved ADCC-based immunotherapy and preventative HIV vaccines.
Collapse
|
55
|
Pegu A, Hessell AJ, Mascola JR, Haigwood NL. Use of broadly neutralizing antibodies for HIV-1 prevention. Immunol Rev 2017; 275:296-312. [PMID: 28133803 DOI: 10.1111/imr.12511] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Antibodies have a long history in antiviral therapy, but until recently, they have not been actively pursued for HIV-1 due to modest potency and breadth of early human monoclonal antibodies (MAbs) and perceived insurmountable technical, financial, and logistical hurdles. Recent advances in the identification and characterization of MAbs with the ability to potently neutralize diverse HIV-1 isolates have reinvigorated discussion and testing of these products in humans, since new broadly neutralizing MAbs (bnMAbs) are more likely to be effective against worldwide strains of HIV-1. In animal models, there is abundant evidence that bnMAbs can block infection in a dose-dependent manner, and the more potent bnMAbs will allow clinical testing at infusion doses that are practically achievable. Moreover, recent advances in antibody engineering are providing further improvements in MAb potency, breadth, and half-life. This review summarizes the current state of the field of bnMAb protection in animal models as well as a review of variables that are critical for antiviral activity. Several bnMAbs are currently in clinical testing, and we offer perspectives on their use as pre-exposure prophylaxis (PrEP), potential benefits beyond sterilizing immunity, and a discussion of future approaches to engineer novel molecules.
Collapse
Affiliation(s)
| | - Ann J Hessell
- Oregon National Primate Center, Oregon Health & Science University, Beaverton, OR, USA
| | | | - Nancy L Haigwood
- Oregon National Primate Center, Oregon Health & Science University, Beaverton, OR, USA
| |
Collapse
|
56
|
Abstract
The bar is high to improve on current combination antiretroviral therapy (ART), now highly effective, safe, and simple. However, antibodies that bind the HIV envelope are able to uniquely target the virus as it seeks to enter new target cells, or as it is expressed from previously infected cells. Furthermore, the use of antibodies against HIV as a therapeutic may offer advantages. Antibodies can have long half-lives, and are being considered as partners for long-acting antiretrovirals for use in therapy or prevention of HIV infection. Early studies in animal models and in clinical trials suggest that such antibodies can have antiviral activity but, as with small-molecule antiretrovirals, the issues of viral escape and resistance will have to be addressed. Most promising, however, are the unique properties of anti-HIV antibodies: the potential ability to opsonize viral particles, to direct antibody-dependent cellular cytotoxicity (ADCC) against actively infected cells, and ultimately the ability to direct the clearance of HIV-infected cells by effector cells of the immune system. These distinctive activities suggest that HIV antibodies and their derivatives may play an important role in the next frontier of HIV therapeutics, the effort to develop treatments that could lead to an HIV cure.
Collapse
Affiliation(s)
- David M Margolis
- UNC HIV Cure Center, Departments of Medicine, Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Richard A Koup
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Guido Ferrari
- Duke Human Vaccine Institute and Department of Surgery, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
57
|
McLean MR, Madhavi V, Wines BD, Hogarth PM, Chung AW, Kent SJ. Dimeric Fcγ Receptor Enzyme-Linked Immunosorbent Assay To Study HIV-Specific Antibodies: A New Look into Breadth of Fcγ Receptor Antibodies Induced by the RV144 Vaccine Trial. THE JOURNAL OF IMMUNOLOGY 2017; 199:816-826. [PMID: 28615419 DOI: 10.4049/jimmunol.1602161] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 05/17/2017] [Indexed: 02/04/2023]
Abstract
Ab-dependent cellular cytotoxicity (ADCC) responses are of growing interest in the HIV vaccine field but current cell-based assays are usually difficult to reproduce across laboratories. We developed an ELISA and multiplex assay to model the cross-linking of Fcγ receptors (FcγR) by Abs, which is required to initiate an ADCC response. Our FcγR dimer ELISA readily detected Abs in samples from two separate cohorts of the partially efficacious Thai RV144 HIV vaccine efficacy trial. The FcγR dimer-binding Abs induced by the RV144 regimen correlated well with a functional measure of ADCC as well as IgG subclasses. The high-throughput multiplex assay allowed us to simultaneously measure FcγR dimer-binding Abs to 32 different HIV Ags, providing a measure of the breadth of FcγR-binding Abs induced by the RV144 trial. FcγR-binding Abs specific to V regions 1 and 2 were strongly associated with increased breadth of recognition of different Env proteins, suggesting anti-V regions 1 and 2 Abs may be a marker of ADCC breadth. This FcγR dimer provides an important tool for the further analysis and refinement of ADCC-inducing HIV and other antiviral vaccine regimens.
Collapse
Affiliation(s)
- Milla R McLean
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Melbourne, Victoria 3000, Australia
| | - Vijaya Madhavi
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Melbourne, Victoria 3000, Australia
| | - Bruce D Wines
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia.,Department of Immunology, Monash University Central Clinical School, Melbourne, Victoria 3004, Australia.,Department of Pathology, The University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | - P Mark Hogarth
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia.,Department of Immunology, Monash University Central Clinical School, Melbourne, Victoria 3004, Australia.,Department of Pathology, The University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | - Amy W Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Melbourne, Victoria 3000, Australia;
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Melbourne, Victoria 3000, Australia; .,Melbourne Sexual Health Centre, Infectious Diseases Department, Alfred Health, Monash University Central Clinical School, Melbourne, Victoria 3053, Australia; and.,Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| |
Collapse
|
58
|
Lack of ADCC Breadth of Human Nonneutralizing Anti-HIV-1 Antibodies. J Virol 2017; 91:JVI.02440-16. [PMID: 28122982 DOI: 10.1128/jvi.02440-16] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 01/19/2017] [Indexed: 01/23/2023] Open
Abstract
Anti-human immunodeficiency virus type 1 (HIV-1) nonneutralizing antibodies (nnAbs) capable of antibody-dependent cellular cytotoxicity (ADCC) have been identified as a protective immune correlate in the RV144 vaccine efficacy trial. Broadly neutralizing antibodies (bNAbs) also mediate ADCC in cell culture and rely on their Fc region for optimal efficacy in animal models. Here, we selected 9 monoclonal nnAbs and 5 potent bNAbs targeting various epitopes and conformations of the gp120/41 complex and analyzed the potency of the two types of antibodies to bind and eliminate HIV-1-infected cells in culture. Regardless of their neutralizing activity, most of the selected antibodies recognized and killed cells infected with two laboratory-adapted HIV-1 strains. Some nnAbs also bound bystander cells that may have captured viral proteins. However, in contrast to the bNAbs, the nnAbs bound poorly to reactivated infected cells from 8 HIV-positive individuals and did not mediate effective ADCC against these cells. The nnAbs also inefficiently recognize cells infected with 8 different transmitted-founder (T/F) isolates. The addition of a synthetic CD4 mimetic enhanced the binding and killing efficacy of some of the nnAbs in an epitope-dependent manner without reaching the levels achieved by the most potent bNAbs. Overall, our data reveal important qualitative and quantitative differences between nnAbs and bNAbs in their ADCC capacity and strongly suggest that the breadth of recognition of HIV-1 by nnAbs is narrow.IMPORTANCE Most of the anti-HIV antibodies generated by infected individuals do not display potent neutralizing activities. These nonneutralizing antibodies (nnAbs) with antibody-dependent cellular cytotoxicity (ADCC) have been identified as a protective immune correlate in the RV144 vaccine efficacy trial. However, in primate models, the nnAbs do not protect against simian-human immunodeficiency virus (SHIV) acquisition. Thus, the role of nnAbs with ADCC activity in protection from infection remains debatable. In contrast, broadly neutralizing antibodies (bNAbs) neutralize a large array of viral strains and mediate ADCC in cell culture. We analyzed the capacities of 9 nnAbs and 5 bNAbs to eliminate infected cells. We selected 18 HIV-1 strains, including virus reactivated from the reservoir of HIV-positive individuals and transmitted-founder isolates. We report that the nnAbs bind poorly to cells infected with primary HIV-1 strains and do not mediate potent ADCC. Overall, our data show that the breadth of recognition of HIV-1 by nnAbs is narrow.
Collapse
|
59
|
Influence of the Envelope gp120 Phe 43 Cavity on HIV-1 Sensitivity to Antibody-Dependent Cell-Mediated Cytotoxicity Responses. J Virol 2017; 91:JVI.02452-16. [PMID: 28100618 DOI: 10.1128/jvi.02452-16] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 01/12/2017] [Indexed: 01/29/2023] Open
Abstract
HIV-1-infected cells presenting envelope glycoproteins (Env) in the CD4-bound conformation on their surface are preferentially targeted by antibody-dependent cellular-mediated cytotoxicity (ADCC). HIV-1 has evolved sophisticated mechanisms to avoid the exposure of Env ADCC epitopes by downregulating CD4 and by limiting the overall amount of Env on the cell surface. In HIV-1, substitution of large residues such as histidine or tryptophan for serine 375 (S375H/W) in the gp120 Phe 43 cavity, where Phe 43 of CD4 contacts gp120, results in the spontaneous sampling of an Env conformation closer to the CD4-bound state. While residue S375 is well conserved in the majority of group M HIV-1 isolates, CRF01_AE strains have a naturally occurring histidine at this position (H375). Interestingly, CRF01_AE is the predominant circulating strain in Thailand, where the RV144 trial took place. In this trial, which resulted in a modest degree of protection, ADCC responses were identified as being part of the correlate of protection. Here we investigate the influence of the Phe 43 cavity on ADCC responses. Filling this cavity with a histidine or tryptophan residue in Env with a natural serine residue at this position (S375H/W) increased the susceptibility of HIV-1-infected cells to ADCC. Conversely, the replacement of His 375 by a serine residue (H375S) within HIV-1 CRF01_AE decreased the efficiency of the ADCC response. Our results raise the intriguing possibility that the presence of His 375 in the circulating strain where the RV144 trial was held contributed to the observed vaccine efficacy.IMPORTANCE HIV-1-infected cells presenting Env in the CD4-bound conformation on their surface are preferentially targeted by ADCC mediated by HIV-positive (HIV+) sera. Here we show that the gp120 Phe 43 cavity modulates the propensity of Env to sample this conformation and therefore affects the susceptibility of infected cells to ADCC. CRF01_AE HIV-1 strains have an unusual Phe 43 cavity-filling His 375 residue, which increases the propensity of Env to sample the CD4-bound conformation, thereby increasing susceptibility to ADCC.
Collapse
|
60
|
Kulkarni A, Kurle S, Shete A, Ghate M, Godbole S, Madhavi V, Kent SJ, Paranjape R, Thakar M. Indian Long-term Non-Progressors Show Broad ADCC Responses with Preferential Recognition of V3 Region of Envelope and a Region from Tat Protein. Front Immunol 2017; 8:5. [PMID: 28154562 PMCID: PMC5243827 DOI: 10.3389/fimmu.2017.00005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 01/03/2017] [Indexed: 11/19/2022] Open
Abstract
HIV-specific antibody-dependent cell cytotoxicity (ADCC) is likely to be important in governing protection from human immunodeficiency virus (HIV) and slowing disease progression. Little is known about the ADCC responses to HIV-1 subtype C. We characterized ADCC responses in HIV-1 subtype C-infected Indian subjects with slow disease progression and identified the dominant antigenic regions recognized by these antibodies. ADCC responses were measured in plasma from 34 long-term non-progressors (LTNPs), who were asymptomatic and maintained CD4 count above 500 cells/mm3 for the last 7 years in the absence of antiretroviral therapy (ART), and 58 ART naïve progressors with CD4 count <500 cells/mm3 against overlapping HIV-1 peptides using a flow cytometry-based antibody-dependent natural killer (NK) cell activation assay. The assay measured CD107a expression on NK cells as a marker of antibody-dependent NK cell activation and IFN-γ secretion by NK cells upon activation. The ADCC epitopes were mapped using the matrix of overlapping peptides. Indian LTNPs showed higher and broader ADCC responses compared to the progressors. The Env-C and Tat-specific ADCC responses were associated with lower plasma viral load, whereas the Env-C responses were also associated with higher CD4 counts. Five of 10 LTNP responders targeted epitopes in the V3 region (amino acids 288–330) of Env-C. Additionally, three Tat regions were targeted by ADCC antibodies from LTNPs. ADCC responses were associated with slow HIV progression in Indian subtype C-infected cohort. The frequently recognized peptides from the V3 loop of Env and the novel epitopes from Tat by the LTNPs warrants further study to understand the role of ADCC responses to these regions in control and prevention of HIV-1 infection.
Collapse
Affiliation(s)
- Archana Kulkarni
- Department of Immunology and Serology, National AIDS Research Institute , Pune , India
| | - Swarali Kurle
- Department of Immunology and Serology, National AIDS Research Institute , Pune , India
| | - Ashwini Shete
- Department of Immunology and Serology, National AIDS Research Institute , Pune , India
| | - Manisha Ghate
- Department of Clinical Sciences, National AIDS Research Institute , Pune , India
| | - Sheela Godbole
- Department of Epidemiology and Biostatistics, National AIDS Research Institute , Pune , India
| | - Vijaya Madhavi
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne , Melbourne, VIC , Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne , Melbourne, VIC , Australia
| | - Ramesh Paranjape
- Department of Immunology and Serology, National AIDS Research Institute , Pune , India
| | - Madhuri Thakar
- Department of Immunology and Serology, National AIDS Research Institute , Pune , India
| |
Collapse
|
61
|
Huang Y, Ferrari G, Alter G, Forthal DN, Kappes JC, Lewis GK, Love JC, Borate B, Harris L, Greene K, Gao H, Phan TB, Landucci G, Goods BA, Dowell KG, Cheng HD, Bailey-Kellogg C, Montefiori DC, Ackerman ME. Diversity of Antiviral IgG Effector Activities Observed in HIV-Infected and Vaccinated Subjects. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 197:4603-4612. [PMID: 27913647 PMCID: PMC5137799 DOI: 10.4049/jimmunol.1601197] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/18/2016] [Indexed: 01/14/2023]
Abstract
Diverse Ab effector functions mediated by the Fc domain have been commonly associated with reduced risk of infection in a growing number of nonhuman primate and human clinical studies. This study evaluated the anti-HIV Ab effector activities in polyclonal serum samples from HIV-infected donors, VAX004 vaccine recipients, and healthy HIV-negative subjects using a variety of primary and cell line-based assays, including Ab-dependent cellular cytotoxicity (ADCC), Ab-dependent cell-mediated viral inhibition, and Ab-dependent cellular phagocytosis. Additional assay characterization was performed with a panel of Fc-engineered variants of mAb b12. The goal of this study was to characterize different effector functions in the study samples and identify assays that might most comprehensively and dependably capture Fc-mediated Ab functions mediated by different effector cell types and against different viral targets. Deployment of such assays may facilitate assessment of functionally unique humoral responses and contribute to identification of correlates of protection with potential mechanistic significance in future HIV vaccine studies. Multivariate and correlative comparisons identified a set of Ab-dependent cell-mediated viral inhibition and phagocytosis assays that captured different Ab activities and were distinct from a group of ADCC assays that showed a more similar response profile across polyclonal serum samples. The activities of a panel of b12 monoclonal Fc variants further identified distinctions among the ADCC assays. These results reveal the natural diversity of Fc-mediated Ab effector responses among vaccine recipients in the VAX004 trial and in HIV-infected subjects, and they point to the potential importance of polyfunctional Ab responses.
Collapse
Affiliation(s)
- Yunda Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Guido Ferrari
- Department of Surgery, Duke University Medical Center, Durham, NC 27710
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139
| | - Donald N Forthal
- Division of Infectious Diseases, University of California School of Medicine, Irvine, CA 92697
| | - John C Kappes
- Division of Infectious Diseases, University of California School of Medicine, Irvine, CA 92697
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - George K Lewis
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - J Christopher Love
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Bhavesh Borate
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Linda Harris
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Kelli Greene
- Department of Surgery, Duke University Medical Center, Durham, NC 27710
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710
| | - Hongmei Gao
- Department of Surgery, Duke University Medical Center, Durham, NC 27710
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710
| | - Tran B Phan
- Division of Infectious Diseases, University of California School of Medicine, Irvine, CA 92697
| | - Gary Landucci
- Division of Infectious Diseases, University of California School of Medicine, Irvine, CA 92697
| | - Brittany A Goods
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Karen G Dowell
- Department of Computer Science, Dartmouth College, Hanover, NH 03755; and
| | - Hao D Cheng
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755
| | | | - David C Montefiori
- Department of Surgery, Duke University Medical Center, Durham, NC 27710
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710
| | | |
Collapse
|
62
|
Shete A, Suryawanshi P, Chavan C, Kulkarni A, Godbole S, Ghate M, Thakar M. Development of IFN-γ secretory ELISPOT based assay for screening of ADCC responses. J Immunol Methods 2016; 441:49-55. [PMID: 27923642 DOI: 10.1016/j.jim.2016.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/21/2016] [Accepted: 12/02/2016] [Indexed: 10/20/2022]
Abstract
Antibody dependent cell mediated cytotoxicity has been established as one of the important protective immune mechanisms against HIV making it essential to evaluate it while testing immunogenicity of emerging vaccine candidates. IFN-γ secretory ELISPOT assay, widely used for evaluation of CTL response in HIV vaccine trials, was adapted for measuring ADCC responses and the results were compared with the standard ICS based assays. IFN-γ responses elicited by plasma samples of 23 HIV infected individuals against Env and Gag peptides using granulocytes as antigen presenting cells were assessed by both the methods. Supernatants of the activated cells in ELISPOT assay were also assessed for cytokine/chemokine estimation. ELISPOT assays detected significantly more ADCC responders against HIV-Env and Gag peptide pools than ICS assay. The magnitude of IFN-γ response in both the assay correlated significantly (p=0.002). NK cells were found to be the predominant cell type secreting IFN-γ in the assay. Although IFN-γ and IL-6 levels were significantly higher in supernatants of Env peptides stimulated cells, IP-10 and MCP-1α levels were found to be more against Gag peptides. Thus, IFN-γ secretory ELISPOT assay was found to be more sensitive in detecting ADCC responders than ICS assay making it a valuable tool for screening of ADCC responses in future vaccine trials. Differences in cytokine pattern of Env versus Gag stimulated cells warrants a need for investigating their role in protection against HIV infection.
Collapse
Affiliation(s)
- Ashwini Shete
- National AIDS Research Institute, 73, G Block, MIDC, Bhosari, Pune 411026, India.
| | - Poonam Suryawanshi
- National AIDS Research Institute, 73, G Block, MIDC, Bhosari, Pune 411026, India
| | - Chetan Chavan
- National AIDS Research Institute, 73, G Block, MIDC, Bhosari, Pune 411026, India
| | - Archana Kulkarni
- National AIDS Research Institute, 73, G Block, MIDC, Bhosari, Pune 411026, India
| | - Sheela Godbole
- National AIDS Research Institute, 73, G Block, MIDC, Bhosari, Pune 411026, India
| | - Manisha Ghate
- National AIDS Research Institute, 73, G Block, MIDC, Bhosari, Pune 411026, India
| | - Madhuri Thakar
- National AIDS Research Institute, 73, G Block, MIDC, Bhosari, Pune 411026, India
| |
Collapse
|
63
|
Fink E, Fuller K, Agan B, Berger EA, Saphire A, Quinnan GV, Elder JH. Humoral Antibody Responses to HIV Viral Proteins and to CD4 Among HIV Controllers, Rapid and Typical Progressors in an HIV-Positive Patient Cohort. AIDS Res Hum Retroviruses 2016; 32:1187-1197. [PMID: 27771962 PMCID: PMC5175433 DOI: 10.1089/aid.2016.0182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The purpose of this study was to assess humoral antibody responses as a function of disease progression (DP) in a well-defined HIV+ cohort. We quantified antibodies to HIV-1 gp120, Gag, and CD4 receptor by enzyme-linked immunosorbent assay in sera from a cohort of 97 HIV+ subjects at defined stages of DP. We also measured antibody-dependent cellular cytotoxicity (ADCC) as a function of the clinical status of the patients. We purified antibodies to CD4 and gp120 and assessed them for specificity, ability to block gp120 binding to target cells, ability to block virus infection, and ability to facilitate ADCC. All of the HIV+ patient samples were positive for antibodies to HIV gp120 and p24 and 80% showed evidence of hypergammaglobulinemia. Approximately 10% of cohort members were positive for antibodies to CD4, but we noted no significant correlation relevant to DP. There were statistically significant differences between the groups concerning the level of humoral response to gp120 and Gag. However, we observed no distinction in ability of anti-gp120 antibodies purified from each group to neutralize infection. In addition, there was a statistically significant difference in ADCC, with elite controllers exhibiting significantly lower levels of ADCC than the other five groups. We detected IgA anti-gp120 antibodies, but did not correlate their presence with either DP or ADCC levels. The results are consistent with the interpretation that the humoral antibody response to the antigens assessed here represents a signature of the level of viremia but does not correlate with clinical status of HIV infection.
Collapse
Affiliation(s)
- Elizabeth Fink
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California
| | - Katherine Fuller
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California
| | - Brian Agan
- Infectious Disease Clinical Research Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland
| | - Edward A. Berger
- Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases, The National Institutes of Health, Bethesda, Maryland
| | - Andrew Saphire
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California
| | - Gerald V. Quinnan
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - John H. Elder
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California
| |
Collapse
|
64
|
Control of early HIV-1 infection associates with plasmacytoid dendritic cell-reactive opsonophagocytic IgG antibodies to HIV-1 p24. AIDS 2016; 30:2757-2765. [PMID: 27603291 DOI: 10.1097/qad.0000000000001242] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES We have previously demonstrated that HIV-1 p24-specific plasmacytoid dendritic cell-reactive opsonophagocytic antibody (PROAb) responses associate with control of chronic HIV infection. Here, we examined whether HIV-1 p24-specific PROAbs associate with control of early HIV infection and their relationship with HIV-1 p24-specific IgG subclasses. METHODS Plasma collected at 8 and 52 weeks following primary HIV-1 infection was obtained from antiretroviral therapy-naïve patients who were classified as 'good' (plasma HIV-1 RNA < 5000 copies/ml; n = 17) or 'poor' (HIV-1 RNA > 50 000 copies/ml; n = 15) controllers at week 52. HIV-1 p24-specific PROAb responses were assayed using a plasmacytoid dendritic cell line (Gen2.2), and HIV-1 p24-specific IgG3, IgG1 and IgG2 levels were assayed by ELISA. RESULTS HIV-1 p24-specific PROAb responses increased in 'good controllers' (P = 0.01) but remained unchanged in 'poor controllers' between weeks 8 and 52. Of the HIV-1 p24-specific IgG subclasses measured, only IgG1 increased over this time period in 'good controllers' alone (P = 0.003), which correlated with the increase in HIV-1 p24-specific PROAb responses (r = 0.83, P < 0.0001). Depletion of IgG1 from IgG preparations of 'good controllers' resulted in the inhibition of HIV-1 p24-specific PROAb responses. In the total patient cohort, plasma HIV-1 RNA levels at week 52 correlated inversely with changes in HIV-1 p24-specific PROAb responses (r = -0.37, P = 0.04) and IgG1 (r = -0.51, P = 0.003) levels between weeks 8 and 52. CONCLUSION Control of early HIV-1 infection was associated with an increase in HIV-1 p24-specific PROAb responses, which was mediated by HIV-1 p24-specific IgG1 antibodies. These findings provide further evidence that antibodies to HIV core proteins may contribute to control of HIV-1 infection.
Collapse
|
65
|
Costa MR, Pollara J, Edwards RW, Seaman MS, Gorny MK, Montefiori DC, Liao HX, Ferrari G, Lu S, Wang S. Fc Receptor-Mediated Activities of Env-Specific Human Monoclonal Antibodies Generated from Volunteers Receiving the DNA Prime-Protein Boost HIV Vaccine DP6-001. J Virol 2016; 90:10362-10378. [PMID: 27630232 PMCID: PMC5105670 DOI: 10.1128/jvi.01458-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 08/31/2016] [Indexed: 11/20/2022] Open
Abstract
HIV-1 is able to elicit broadly potent neutralizing antibodies in a very small subset of individuals only after several years of infection, and therefore, vaccines that elicit these types of antibodies have been difficult to design. The RV144 trial showed that moderate protection is possible and that this protection may correlate with antibody-dependent cellular cytotoxicity (ADCC) activity. Our previous studies demonstrated that in an HIV vaccine phase I trial, the DP6-001 trial, a polyvalent Env DNA prime-protein boost formulation could elicit potent and broadly reactive, gp120-specific antibodies with positive neutralization activities. Here we report on the production and analysis of HIV-1 Env-specific human monoclonal antibodies (hMAbs) isolated from vaccinees in the DP6-001 trial. For this initial report, 13 hMAbs from four vaccinees in the DP6-001 trial showed broad binding to gp120 proteins of diverse subtypes both autologous and heterologous to vaccine immunogens. Equally cross-reactive Fc receptor-mediated functional activities, including ADCC and antibody-dependent cellular phagocytosis (ADCP) activities, were present with both immune sera and isolated MAbs, confirming the induction of nonneutralizing functional hMAbs by the DNA prime-protein boost vaccination. Elicitation of broadly reactive hMAbs by vaccination in healthy human volunteers confirms the value of the polyvalent formulation in this HIV vaccine design. IMPORTANCE The roles of Fc receptor-mediated protective antibody responses are gaining more attention due to their potential contribution to the low-level protection against HIV-1 infection that they provided in the RV144 trial. At the same time, information about hMabs from other human HIV vaccine studies is very limited. In the current study, both immune sera and monoclonal antibodies from vaccinated humans showed not only high-level ADCC and ADCP activities but also cross-subtype ADCC and ADCP activities when a polyvalent DNA prime-protein boost vaccine formulation was used.
Collapse
Affiliation(s)
- Matthew R Costa
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | | | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Miroslaw K Gorny
- Department of Pathology, NYU School of Medicine, New York, New York, USA
| | | | | | | | - Shan Lu
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Shixia Wang
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
66
|
Fan X, Zhu L, Liang H, Xie Z, Huang X, Wang S, Shen T. Antibody-dependent CD56+ T cell responses are functionally impaired in long-term HIV-1 infection. Retrovirology 2016; 13:76. [PMID: 27814766 PMCID: PMC5097383 DOI: 10.1186/s12977-016-0313-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/30/2016] [Indexed: 11/30/2022] Open
Abstract
Background Antibody-dependent cellular cytotoxicity (ADCC), which mainly mediated by natural killer (NK) cells, may play a critical role in slowing human immunodeficiency virus type-1 (HIV-1) disease progression and protecting from HIV-1 infection. Besides classic NK cells, CD56+ T cells also have some NK cell-like properties, such as the large granular lymphocyte morphology and the capacity to destroy NK-sensitive target cells. However, little is known about the potentials of antibody-dependent CD56+ T cell responses and the association between antibody-dependent CD56+ T cell responses and HIV-1 disease progression. Results In the present study, we showed evidences that, in addition to NK cells, CD56+ T cells could generate degranulation upon CD16 cross-linking. Ex vivo study showed that FcγRIII (CD16)-mediated CD56+ T cell responses were distinctly induced by IgG antibody-bound P815 cells. Comparatively, CD56− T cells and invariant NKT (CD3+ 6B11+) failed to induce antibody-dependent activation. Antibody-dependent CD56+ T cell responses were mainly ascribed to CD4/CD8 double negative subset and were functionally impaired in long-term HIV-1-infected former plasma donors, regardless of hepatitis C virus (HCV) coinfection status. Also, CD56+ T cell-mediated HIV-1-specific antibody-dependent responses were declined in men who have sex with men with HIV-1 infection over 3 years. Finally, we showed that matrix metalloprotease (MMP) inhibitor GM6001 could partially restored antibody-dependent CD56+ T cell responses of chronic HIV-1-infected subjects. Conclusions Our results suggested that CD56+ T cells could mediate ADCC responses and the responses were impaired in chronic HIV-1 infection. Electronic supplementary material The online version of this article (doi:10.1186/s12977-016-0313-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xueying Fan
- Department of Microbiology and Center of Infectious Diseases, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Liyan Zhu
- Department of Microbiology and Center of Infectious Diseases, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Hua Liang
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, China CDC, Beijing, China
| | - Zhe Xie
- Department of Microbiology and Center of Infectious Diseases, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Xiangbo Huang
- Department of Microbiology and Center of Infectious Diseases, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Shuo Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, China CDC, Beijing, China
| | - Tao Shen
- Department of Microbiology and Center of Infectious Diseases, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
67
|
Williams KL, Cortez V, Dingens AS, Gach JS, Rainwater S, Weis JF, Chen X, Spearman P, Forthal DN, Overbaugh J. HIV-specific CD4-induced Antibodies Mediate Broad and Potent Antibody-dependent Cellular Cytotoxicity Activity and Are Commonly Detected in Plasma From HIV-infected humans. EBioMedicine 2016; 2:1464-77. [PMID: 26629541 PMCID: PMC4634620 DOI: 10.1016/j.ebiom.2015.09.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 08/31/2015] [Accepted: 09/01/2015] [Indexed: 01/12/2023] Open
Abstract
HIV-specific antibodies (Abs) can reduce viral burden by blocking new rounds of infection or by destroying infected cells via activation of effector cells through Fc–FcR interaction. This latter process, referred to as antibody-dependent cellular cytotoxicity (ADCC), has been associated with viral control and improved clinical outcome following both HIV and SIV infections. Here we describe an HIV viral-like particle (VLP)-based sorting strategy that led to identification of HIV-specificmemory B cells encoding Abs that mediate ADCC froma subtype A-infected Kenyan woman at 914 days post-infection. Using this strategy, 12 HIV-envelope-specific monoclonal antibodies (mAbs) were isolated and three mediated potent ADCC activitywhen compared to well-characterized ADCC mAbs. The ADCC-mediating Abs also mediated antibody-dependent cell-mediated virus inhibition (ADCVI), which provides a net measure of Fc receptor-triggered effects against replicating virus. Two of the three ADCC-mediating Abs targeted a CD4-induced (CD4i) epitope also bound by the mAb C11; the third antibody targeted the N-terminus of V3. Both CD4i Abs identified here demonstrated strong cross-clade breadth with activity against 10 of 11 envelopes tested, including those from clades A, B, C, A/D and C/D, whereas the V3-specific antibody showed more limited breadth. Variants of these CD4i, C11-like mAbs engineered to interrupt binding to FcγRs inhibited a measurable percentage of the donor's ADCC activity starting as early as 189 days post-infection. C11-like antibodies also accounted for between 18–78% of ADCC activity in 9 chronically infected individuals from the same cohort study. Further, the two CD4i Abs originated from unique B cells, suggesting that antibodies targeting this epitope can be commonly produced. Taken together, these data provide strong evidence that CD4i, C11-like antibodies develop within the first 6 months of infection and they can arise fromunique B-cell lineages in the same individual. Further, thesemAbsmediate potent plasma IgG-specificADCC breadth and potency and contribute to ADCC activity in other HIV-infected individuals.
Collapse
|
68
|
Boesch AW, Brown EP, Ackerman ME. The role of Fc receptors in HIV prevention and therapy. Immunol Rev 2016; 268:296-310. [PMID: 26497529 DOI: 10.1111/imr.12339] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Over the past decade, a wealth of experimental evidence has accumulated supporting the importance of Fc receptor (FcR) ligation in antibody-mediated pathology and protection in many disease states. Here we present the diverse evidence base that has accumulated as to the importance of antibody effector functions in the setting of HIV prevention and therapy, including clinical correlates, genetic associations, viral evasion strategies, and a rapidly growing number of compelling animal model experiments. Collectively, this work identifies antibody interactions with FcR as important to both therapeutic and prophylactic strategies involving both passive and active immunity. These findings mirror those in other fields as investigators continue to work toward identifying the right antibodies and the right effectors to be present at the right sites at the right time.
Collapse
Affiliation(s)
- Austin W Boesch
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Eric P Brown
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Margaret E Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.,Molecular and Cellular Biology Program, Dartmouth College, Hanover, NH, USA.,Department of Microbiology and Immunology, Geisel School of Medicine, Lebanon, NH, USA
| |
Collapse
|
69
|
Remodeling of the Host Cell Plasma Membrane by HIV-1 Nef and Vpu: A Strategy to Ensure Viral Fitness and Persistence. Viruses 2016; 8:67. [PMID: 26950141 PMCID: PMC4810257 DOI: 10.3390/v8030067] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 02/09/2016] [Accepted: 02/16/2016] [Indexed: 02/07/2023] Open
Abstract
The plasma membrane protects the cell from its surroundings and regulates cellular communication, homing, and metabolism. Not surprisingly, the composition of this membrane is highly controlled through the vesicular trafficking of proteins to and from the cell surface. As intracellular pathogens, most viruses exploit the host plasma membrane to promote viral replication while avoiding immune detection. This is particularly true for the enveloped human immunodeficiency virus (HIV), which assembles and obtains its lipid shell directly at the plasma membrane. HIV-1 encodes two proteins, negative factor (Nef) and viral protein U (Vpu), which function primarily by altering the quantity and localization of cell surface molecules to increase virus fitness despite host antiviral immune responses. These proteins are expressed at different stages in the HIV-1 life cycle and employ a variety of mechanisms to target both unique and redundant surface proteins, including the viral receptor CD4, host restriction factors, immunoreceptors, homing molecules, tetraspanins and membrane transporters. In this review, we discuss recent progress in the study of the Nef and Vpu targeting of host membrane proteins with an emphasis on how remodeling of the cell membrane allows HIV-1 to avoid host antiviral immune responses leading to the establishment of systemic and persistent infection.
Collapse
|
70
|
Env-Specific IgA from Viremic HIV-Infected Subjects Compromises Antibody-Dependent Cellular Cytotoxicity. J Virol 2016; 90:670-81. [PMID: 26491172 PMCID: PMC4702681 DOI: 10.1128/jvi.02363-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 10/14/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Elucidating the factors that modulate HIV-specific antibody-dependent cellular cytotoxicity (ADCC) will help in understanding its role in HIV immunity. The aim of this study was to determine whether IgA could modify the magnitude of ADCC in HIV infection, abrogating its protective role. Plasma samples from 20 HIV-positive (HIV(+)) subjects enrolled during primary HIV infection (PHI), 10 chronically infected subjects (chronic), and 7 elite controllers (EC) were used. ADCC was determined by using a fluorometric ADCC assay, before and after removal of plasma IgA. Data were analyzed by using nonparametric statistics. ADCC was documented in 80% of PHI enrollment samples and in 100% of PHI 12-month, chronic, and EC samples; it peaked after acute infection, reached a plateau in chronic infection, and decreased after initiation of antiretroviral treatment (ART). Significant associations between ADCC and disease progression were found only after removal of plasma IgA from 12-month PHI samples: the magnitude of ADCC not only increased after IgA removal but also correlated with CD4(+) T-cell preservation. This work provides evidence that gp120-specific IgA was capable of modifying ADCC responses during natural HIV infection for the first time and adds to similar evidence provided in other settings. Furthermore, it underscores the complexity of the ADCC phenomenon and will help in an understanding of its underlying mechanisms. IMPORTANCE Although the induction of ADCC-mediating antibodies in HIV-infected subjects has been extensively documented, the association of these antibodies with protection from disease progression is poorly understood. Here, we demonstrate that plasma IgA is a factor capable of modifying the magnitude of IgG-mediated ADCC in HIV infection, mitigating its beneficial effect. These results help in understanding why previous studies failed to demonstrate correlations between ADCC and disease progression, and they also contribute to the notion that an HIV vaccine should stimulate the production of ADCC-mediating IgG antibodies but not IgA.
Collapse
|
71
|
Jensen SS, Fomsgaard A, Borggren M, Tingstedt JL, Gerstoft J, Kronborg G, Rasmussen LD, Pedersen C, Karlsson I. HIV-Specific Antibody-Dependent Cellular Cytotoxicity (ADCC) -Mediating Antibodies Decline while NK Cell Function Increases during Antiretroviral Therapy (ART). PLoS One 2015; 10:e0145249. [PMID: 26696395 PMCID: PMC4692281 DOI: 10.1371/journal.pone.0145249] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/30/2015] [Indexed: 12/31/2022] Open
Abstract
Understanding alterations in HIV-specific immune responses during antiretroviral therapy (ART), such as antibody-dependent cellular cytotoxicity (ADCC), is important in the development of novel strategies to control HIV-1 infection. This study included 53 HIV-1 positive individuals. We evaluated the ability of effector cells and antibodies to mediate ADCC separately and in combination using the ADCC-PanToxiLux assay. The ability of the peripheral blood mononuclear cells (PBMCs) to mediate ADCC was significantly higher in individuals who had been treated with ART before seroconversion, compared to the individuals initiating ART at a low CD4+ T cell count (<350 cells/μl blood) and the ART-naïve individuals. The frequency of CD16 expressing natural killer (NK) cells correlated with both the duration of ART and Granzyme B (GzB) activity. In contrast, the plasma titer of antibodies mediating ADCC declined during ART. These findings suggest improved cytotoxic function of the NK cells if initiating ART early during infection, while the levels of ADCC mediating antibodies declined during ART.
Collapse
Affiliation(s)
- Sanne Skov Jensen
- Virus Research & Development Laboratory, Department of Microbial Diagnostic and Virology, Statens Serum Institut, Copenhagen, Denmark.,Department of Infectious Diseases, Odense University Hospital, DK-5000 Odense, Denmark.,Infectious Disease Research Unit, Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Anders Fomsgaard
- Virus Research & Development Laboratory, Department of Microbial Diagnostic and Virology, Statens Serum Institut, Copenhagen, Denmark.,Infectious Disease Research Unit, Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Marie Borggren
- Virus Research & Development Laboratory, Department of Microbial Diagnostic and Virology, Statens Serum Institut, Copenhagen, Denmark
| | - Jeanette Linnea Tingstedt
- Virus Research & Development Laboratory, Department of Microbial Diagnostic and Virology, Statens Serum Institut, Copenhagen, Denmark
| | - Jan Gerstoft
- Viro-immunology Research Unit, Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Gitte Kronborg
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | | | - Court Pedersen
- Department of Infectious Diseases, Odense University Hospital, DK-5000 Odense, Denmark
| | - Ingrid Karlsson
- Virus Research & Development Laboratory, Department of Microbial Diagnostic and Virology, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
72
|
Antibody-Dependent Cellular Cytotoxicity against Reactivated HIV-1-Infected Cells. J Virol 2015; 90:2021-30. [PMID: 26656700 DOI: 10.1128/jvi.02717-15] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 11/30/2015] [Indexed: 01/02/2023] Open
Abstract
UNLABELLED Lifelong antiretroviral therapy (ART) for HIV-1 does not diminish the established latent reservoir. A possible cure approach is to reactivate the quiescent genome from latency and utilize immune responses to eliminate cells harboring reactivated HIV-1. It is not known whether antibodies within HIV-1-infected individuals can recognize and eliminate cells reactivated from latency through antibody-dependent cellular cytotoxicity (ADCC). We found that reactivation of HIV-1 expression in the latently infected ACH-2 cell line elicited antibody-mediated NK cell activation but did not result in antibody-mediated killing. The lack of CD4 expression on these HIV-1 envelope (Env)-expressing cells likely resulted in poor recognition of CD4-induced antibody epitopes on Env. To examine this further, cultured primary CD4(+) T cells from HIV-1(+) subjects were used as targets for ADCC. These ex vivo-expanded primary cells were modestly susceptible to ADCC mediated by autologous or heterologous HIV-1(+) serum antibodies. Importantly, ADCC mediated against these primary cells could be enhanced following incubation with a CD4-mimetic compound (JP-III-48) that exposes CD4-induced antibody epitopes on Env. Our studies suggest that with sufficient reactivation and expression of appropriate Env epitopes, primary HIV-1-infected cells can be targets for ADCC mediated by autologous serum antibodies and innate effector cells. The results of this study suggest that further investigation into the potential of ADCC to eliminate reactivated latently infected cells is warranted. IMPORTANCE An HIV-1 cure remains elusive due to the persistence of long-lived latently infected cells. An HIV-1 cure strategy, termed "shock and kill," aims to reactivate HIV-1 expression in latently infected cells and subsequently eliminate the reactivated cells through immune-mediated killing. While recent research efforts have focused on reversing HIV-1 latency, it remains unclear whether preexisting immune responses within HIV-1(+) individuals can efficiently eliminate the reactivated cells. HIV-1-specific antibodies can potentially eliminate cells reactivated from latency via Fc effector functions by recruiting innate immune cells. Our study highlights the potential role that antibody-dependent cellular cytotoxicity might play in antilatency cure approaches.
Collapse
|
73
|
Conformational Masking and Receptor-Dependent Unmasking of Highly Conserved Env Epitopes Recognized by Non-Neutralizing Antibodies That Mediate Potent ADCC against HIV-1. Viruses 2015; 7:5115-32. [PMID: 26393642 PMCID: PMC4584300 DOI: 10.3390/v7092856] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/12/2015] [Accepted: 08/18/2015] [Indexed: 01/11/2023] Open
Abstract
The mechanism of antibody-mediated protection is a major focus of HIV-1 vaccine development and a significant issue in the control of viremia. Virus neutralization, Fc-mediated effector function, or both, are major mechanisms of antibody-mediated protection against HIV-1, although other mechanisms, such as virus aggregation, are known. The interplay between virus neutralization and Fc-mediated effector function in protection against HIV-1 is complex and only partially understood. Passive immunization studies using potent broadly neutralizing antibodies (bnAbs) show that both neutralization and Fc-mediated effector function provides the widest dynamic range of protection; however, a vaccine to elicit these responses remains elusive. By contrast, active immunization studies in both humans and non-human primates using HIV-1 vaccine candidates suggest that weakly neutralizing or non-neutralizing antibodies can protect by Fc-mediated effector function, albeit with a much lower dynamic range seen for passive immunization with bnAbs. HIV-1 has evolved mechanisms to evade each type of antibody-mediated protection that must be countered by a successful AIDS vaccine. Overcoming the hurdles required to elicit bnAbs has become a major focus of HIV-1 vaccine development. Here, we discuss a less studied problem, the structural basis of protection (and its evasion) by antibodies that protect only by potent Fc-mediated effector function.
Collapse
|
74
|
Lin Y, Li B, Ye J, Wang M, Wang J, Zhang Y, Zhu J. Neutralization Analysis of a Chicken Single-Chain Variable Fragment Derived from an Immune Antibody Library Against Infectious Bronchitis Virus. Viral Immunol 2015; 28:397-404. [PMID: 26090700 DOI: 10.1089/vim.2014.0104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Avian infectious bronchitis virus (IBV), which is prevalent in many countries causing severe economic loss to the poultry industry, causes infectious bronchitis (IB) in birds. Recombinant single-chain variable fragments (scFvs) have been proven to effectively inhibit many viruses, both in vitro and in vivo, and they could be a potential diagnostic and therapeutic reagent to control IB. In this study, six anti-IBV chicken scFvs, ZL.10, ZL.64, ZL.78, ZL.80, ZL.138, and ZL.256, were obtained by screening random clones from an immune antibody library. An analysis of nucleotide sequences revealed that they represented distinctive genetic sequences and greatly varied in complementarity-determining region three of the heavy chain. Neutralization tests showed that ZL.10, which bound the S1 protein in western blots, inhibited the formation of syncytia in Vero cells 48 h post IBV infection and decreased the transcriptional level of nucleoprotein mRNA to 17.2%, while the other five scFvs, including ZL.78 and ZL.256, that bound the N protein did not. In conclusion, the results suggested that specific and neutralizing chicken scFvs against IBV, which can be safe and economical antibody reagents, can be produced in vitro through prokaryotic expression.
Collapse
Affiliation(s)
- Yuan Lin
- 1 School of Agriculture and Biology, Shanghai Key Lab of Veterinary Biology, Shanghai Jiaotong University , Shanghai, People's Republic of China .,2 School of Basic Medical Sciences, Ningxia Medical University , Yinchuan, People's Republic of China .,3 Department of Internal Medicine, College of Veterinary Medicine, Northwest Agriculture and Forestry University , Yangling, People's Republic of China
| | - Benqiang Li
- 1 School of Agriculture and Biology, Shanghai Key Lab of Veterinary Biology, Shanghai Jiaotong University , Shanghai, People's Republic of China
| | - Jiaxin Ye
- 1 School of Agriculture and Biology, Shanghai Key Lab of Veterinary Biology, Shanghai Jiaotong University , Shanghai, People's Republic of China
| | - Man Wang
- 1 School of Agriculture and Biology, Shanghai Key Lab of Veterinary Biology, Shanghai Jiaotong University , Shanghai, People's Republic of China
| | - Jianhua Wang
- 3 Department of Internal Medicine, College of Veterinary Medicine, Northwest Agriculture and Forestry University , Yangling, People's Republic of China
| | | | - Jianguo Zhu
- 1 School of Agriculture and Biology, Shanghai Key Lab of Veterinary Biology, Shanghai Jiaotong University , Shanghai, People's Republic of China
| |
Collapse
|
75
|
Lee WS, Parsons MS, Kent SJ, Lichtfuss M. Can HIV-1-Specific ADCC Assist the Clearance of Reactivated Latently Infected Cells? Front Immunol 2015; 6:265. [PMID: 26074924 PMCID: PMC4445400 DOI: 10.3389/fimmu.2015.00265] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/13/2015] [Indexed: 02/05/2023] Open
Affiliation(s)
- Wen Shi Lee
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne, VIC , Australia
| | - Matthew Sidney Parsons
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne, VIC , Australia
| | - Stephen John Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne, VIC , Australia
| | - Marit Lichtfuss
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne, VIC , Australia
| |
Collapse
|
76
|
Choi I, Chung AW, Suscovich TJ, Rerks-Ngarm S, Pitisuttithum P, Nitayaphan S, Kaewkungwal J, O'Connell RJ, Francis D, Robb ML, Michael NL, Kim JH, Alter G, Ackerman ME, Bailey-Kellogg C. Machine learning methods enable predictive modeling of antibody feature:function relationships in RV144 vaccinees. PLoS Comput Biol 2015; 11:e1004185. [PMID: 25874406 PMCID: PMC4395155 DOI: 10.1371/journal.pcbi.1004185] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 02/13/2015] [Indexed: 12/18/2022] Open
Abstract
The adaptive immune response to vaccination or infection can lead to the production of specific antibodies to neutralize the pathogen or recruit innate immune effector cells for help. The non-neutralizing role of antibodies in stimulating effector cell responses may have been a key mechanism of the protection observed in the RV144 HIV vaccine trial. In an extensive investigation of a rich set of data collected from RV144 vaccine recipients, we here employ machine learning methods to identify and model associations between antibody features (IgG subclass and antigen specificity) and effector function activities (antibody dependent cellular phagocytosis, cellular cytotoxicity, and cytokine release). We demonstrate via cross-validation that classification and regression approaches can effectively use the antibody features to robustly predict qualitative and quantitative functional outcomes. This integration of antibody feature and function data within a machine learning framework provides a new, objective approach to discovering and assessing multivariate immune correlates.
Collapse
Affiliation(s)
- Ickwon Choi
- Department of Computer Science, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Amy W. Chung
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Boston, Massachusetts, United States of America
| | - Todd J. Suscovich
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Boston, Massachusetts, United States of America
| | | | | | | | | | - Robert J. O'Connell
- Department of Retrovirology, U.S. Army Medical Component, AFRIMS, Bangkok, Thailand
| | - Donald Francis
- Global Solutions for Infectious Diseases (GSID), South San Francisco, California, United States of America
| | - Merlin L. Robb
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry Jackson Foundation HIV Program, US Military HIV Research Program, Bethesda, Maryland, United States of America
| | - Nelson L. Michael
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Jerome H. Kim
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Galit Alter
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Boston, Massachusetts, United States of America
| | - Margaret E. Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Chris Bailey-Kellogg
- Department of Computer Science, Dartmouth College, Hanover, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
77
|
The role of HIV-specific antibody-dependent cellular cytotoxicity in HIV prevention and the influence of the HIV-1 Vpu protein. AIDS 2015; 29:137-44. [PMID: 25396265 DOI: 10.1097/qad.0000000000000523] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There is growing interest in the role of anti-HIV antibody-dependent cellular cytotoxicity (ADCC) antibodies in the prevention and control of HIV infection. Passive transfer studies in macaques support a role for the Fc region of antibodies in assisting in the prevention of simian-human immunodeficiency virus (SHIV) infection. The Thai RV144 HIV-1 vaccine trial induced anti-HIV ADCC antibodies that may have played a role in the partial protection observed. Several observational studies support a role for ADCC antibodies in slowing HIV disease progression. However, HIV evolves to escape ADCC antibodies and chronic HIV infections causes dysfunction of effector cells such as natural killer (NK) cells that mediate the ADCC functions. Further, four recent studies show that the HIV-1 Vpu protein, by promoting release of virions, reduces the capacity of ADCC antibodies to recognize HIV-infected cells. The review dissects some of the recent research on HIV-specific ADCC antibodies and discusses mechanisms to further harness ADCC antibodies in the prevention and control of HIV infection.
Collapse
|
78
|
Identification of antibody glycosylation structures that predict monoclonal antibody Fc-effector function. AIDS 2014; 28:2523-30. [PMID: 25160934 DOI: 10.1097/qad.0000000000000444] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To determine monoclonal antibody (mAb) features that predict fragment crystalizable (Fc)-mediated effector functions against HIV. DESIGN Monoclonal antibodies, derived from Chinese hamster ovary cells or Epstein-Barr virus-immortalized mouse heteromyelomas, with specificity to key regions of the HIV envelope including gp120-V2, gp120-V3 loop, gp120-CD4(+) binding site, and gp41-specific antibodies, were functionally profiled to determine the relative contribution of the variable and constant domain features of the antibodies in driving robust Fc-effector functions. METHODS Each mAb was assayed for antibody-binding affinity to gp140(SR162), antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP) and for the ability to bind to FcγRIIa, FcγRIIb and FcγRIIIa receptors. Antibody glycan profiles were determined by HPLC. RESULTS Neither the specificity nor the affinity of the mAbs determined the potency of Fc-effector function. FcγRIIIa binding strongly predicted ADCC and decreased galactose content inversely correlated with ADCP, whereas N-glycolylneuraminic acid-containing structures exhibited enhanced ADCP. Additionally, the bi-antenary glycan arm onto which galactose was added predicted enhanced binding to FcγRIIIa and ADCC activity, independent of the specificity of the mAb. CONCLUSIONS Our studies point to the specific Fc-glycan structures that can selectively promote Fc-effector functions independently of the antibody specificity. Furthermore, we demonstrated antibody glycan structures associated with enhanced ADCP activity, an emerging Fc-effector function that may aid in the control and clearance of HIV infection.
Collapse
|
79
|
The HIV-1 gp120 CD4-bound conformation is preferentially targeted by antibody-dependent cellular cytotoxicity-mediating antibodies in sera from HIV-1-infected individuals. J Virol 2014; 89:545-51. [PMID: 25339767 DOI: 10.1128/jvi.02868-14] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Recent studies have linked antibody Fc-mediated effector functions with protection or control of human immunodeficiency type 1 (HIV-1) and simian immunodeficiency (SIV) infections. Interestingly, the presence of antibodies with potent antibody-dependent cellular cytotoxicity (ADCC) activity in the Thai RV144 vaccine trial was suggested to correlate with decreased HIV-1 acquisition risk. These antibodies recently were found to recognize HIV envelope (Env) epitopes exposed upon Env-CD4 interaction. CD4 downregulation by Nef and Vpu, as well as Vpu-mediated BST-2 antagonism, were reported to modulate exposure of those CD4-induced HIV-1 Env epitopes and were proposed to play a role in reducing the susceptibility of infected cells to ADCC mediated by this class of antibodies. Here, we report the high prevalence of antibodies recognizing CD4-induced HIV-1 Env epitopes in sera from HIV-1-infected individuals, which correlated with their ability to mediate ADCC responses against HIV-1-infected cells, exposing these Env epitopes at the cell surface. Furthermore, our results indicate that Env variable regions V1, V2, V3, and V5 do not represent a major determinant for ADCC responses mediated by sera from HIV-1-infected individuals. Altogether, these findings suggest that HIV-1 tightly controls the exposure of certain Env epitopes at the surface of infected cells in order to prevent elimination by Fc-effector functions. IMPORTANCE Here, we identified a particular conformation of HIV-1 Env that is specifically targeted by ADCC-mediating antibodies present in sera from HIV-1-infected individuals. This observation suggests that HIV-1 developed sophisticated mechanisms to minimize the exposure of these epitopes at the surface of infected cells.
Collapse
|
80
|
Abstract
Although some success was achieved in recent years in HIV prevention, an effective vaccine remains the means with the most potential of curtailing HIV-1 infections worldwide. Despite multiple failed attempts, a recent HIV vaccine regimen demonstrated modest protection from infection. Although the protective efficacy in this trial was not sufficient to warrant licensure, it spurred renewed optimism in the field and has provided valuable insights for improving future vaccine designs. This review summarizes the pertinent details of vaccine development and discusses ways the field is moving forward to develop a vaccine to prevent HIV infection and disease progression.
Collapse
Affiliation(s)
- Paul Goepfert
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, 908, 20th Street South, CCB 328, Birmingham, AL 35294, USA.
| | - Anju Bansal
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, 845, 19th Street South, BBRB 557, Birmingham, AL 35294, USA
| |
Collapse
|
81
|
Breadth of HIV-1 Env-specific antibody-dependent cellular cytotoxicity: relevance to global HIV vaccine design. AIDS 2014; 28:1859-70. [PMID: 24937308 DOI: 10.1097/qad.0000000000000310] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The objective of this study is to determine the breadth of HIV-1 Env-specific antibody-dependent cellular cytotoxicity (ADCC) in HIV controllers and HIV progressors with a view to design globally relevant HIV vaccines. DESIGN The breadth of ADCC towards four major HIV-1 Env subtypes was measured in vitro for 11 HIV controllers and 11 HIV progressors. METHODS Plasma from 11 HIV controllers (including long-term slow progressors, viremic controllers, elite controller and posttreatment controller) and 11 HIV progressors, mostly infected with HIV-1 subtype B, was analysed for ADCC responses. ADCC assays were performed against 10 HIV-1 gp120 and 8 gp140 proteins from four major HIV-1 subtypes (A, B, C and E) and 3 glycosylation-mutant gp140 proteins. RESULTS ADCC-mediated natural killer cell activation was significantly broader (P = 0.02) and of higher magnitude (P < 0.001) in HIV controllers than in HIV progressors. HIV controllers also showed significantly higher magnitude of ADCC-mediated killing of Env-coated target cells than HIV progressors to both HIV-1 subtype B and the heterologous subtype E gp140 (P = 0.001). We found good ADCC reactivity to subtype B and E Envs, less cross-reactivity to subtype A and minimal cross-reactivity to subtype C Envs. Glycosylation-dependent ADCC epitopes comprise a significant proportion of the total Env-specific ADCC response, as evident from the reduction in ADCC to nonglycosylated form of HIV-1 gp140 (P = 0.004). CONCLUSION HIV controllers have robust ADCC responses that recognize a broad range of HIV-1 Env. Glycosylation of Env was found to be important for recognition of ADCC epitopes. Identifying conserved ADCC epitopes will assist in designing globally relevant ADCC-based HIV vaccines.
Collapse
|
82
|
Antiretroviral therapy initiation in an Australian cohort: implications for increased use of antiretroviral therapy. Eur J Clin Microbiol Infect Dis 2014; 34:253-9. [PMID: 25139203 DOI: 10.1007/s10096-014-2227-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 08/04/2014] [Indexed: 11/27/2022]
Abstract
Human immunodeficiency virus (HIV) management is entering a "universal test and treat" phase, although the benefits from this approach in developed world scenarios are uncertain. We analyzed 79 combination anti-retroviral therapy (cART)-naïve HIV-positive individuals who were intensively prospectively followed from 2004 to 2013. We studied HIV-related illnesses, potential HIV transmissions, impact on sexual behavior, and factors impeding earlier cART initiation. Sixty-eight (86 %) subjects commenced cART at a mean of 6.0 years after diagnosis: 71 % with a CD4 T-cell count <350 cells/μl. A significant minority of subjects (29 %) resisted initiation of cART despite physician recommendation for a mean of 18 months. Only one HIV-related illness occurred in a patient who had not previously recorded a CD4 T-cell count <500 cell/μl, totaling 195 person-years of observation. A 40 % increase in sexually transmitted infections (STIs) occurred after commencing cART. We detected six HIV transmissions in our cohort, all of which were before initiating cART and 5 of them had a prior CD4 T-cell count <500 cells/μl. Illnesses related to cART deferral were rare and most HIV transmissions we detected occurred in people with a prior CD4 T-cell count <500 cells/μl. Our study raises concerns about increasing STI rates after cART initiation. Focusing resources on cART initiation among patients with CD4 T-cell counts <500 cells/μl and enhancing safe sexual practices should remain a priority.
Collapse
|
83
|
HIV‐specific antibody‐dependent phagocytosis matures during HIV infection. Immunol Cell Biol 2014; 92:679-87. [DOI: 10.1038/icb.2014.42] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/29/2014] [Accepted: 04/29/2014] [Indexed: 02/02/2023]
|
84
|
Lewis GK. Role of Fc-mediated antibody function in protective immunity against HIV-1. Immunology 2014; 142:46-57. [PMID: 24843871 PMCID: PMC3992047 DOI: 10.1111/imm.12232] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 12/09/2013] [Accepted: 12/11/2013] [Indexed: 12/23/2022] Open
Abstract
The importance of Fc-mediated effector function in protective immunity to HIV-1 (hereafter referred to simply as HIV) is becoming increasingly apparent. A large of number of studies in natural infection cohorts, spanning the last 26 years, have associated Fc-mediated effector function, particularly antibody-dependent cellular cytotoxicity, with a favourable clinical course. These studies strongly suggest a role for Fc-mediated effector function in the post-infection control of viraemia. More recently, studies in both humans and non-human primates (NHPs) also implicate Fc-mediated effector function in blocking HIV acquisition. Accordingly, this review will discuss the results supporting a role of Fc-mediated effector function in both blocking acquisition and post-infection control of viraemia. Parallel studies in NHPs and humans will be compared for common themes. Context for this discussion will be provided by summarizing the temporal emergence of key host and virological events over the course of an untreated HIV infection framing where, when and how Fc-mediated effector function might be protective. A hypothesis that Fc-mediated effector function protects primarily in the early stages of both acquisition and post-infection control of viraemia will be developed.
Collapse
Affiliation(s)
- George K Lewis
- Division of Basic Science and Vaccine Research, Institute of Human Virology, Department of Microbiology and Immunology, University of Maryland School of MedicineBaltimore, MD, USA
| |
Collapse
|
85
|
Chung AW, Alter G. Dissecting the antibody constant region protective immune parameters in HIV infection. Future Virol 2014. [DOI: 10.2217/fvl.14.19] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT: RV144 vaccine immune-correlates analysis has generated a renewed interest in understanding the potentially protective role of non-neutralizing antibodies in HIV infection and vaccine design. Antibodies consist of a variable region involved in antigen binding and a constant region. While both ends of the antibody collaborate to induce protective immunity, it is through the constant portion that an antibody provides instructions to the innate immune system on how the recognized antigen should be processed, contributing directly to antiviral immunity. Antibody constant regions, despite their name, are not uniform structures, but can vary both in protein sequence and glycosylation, together modulating antibody functionality via conformational changes that alter antibody affinity for Fc receptors, complement and so on. This review will focus on how the immune system naturally modulates the Fc domain of antibodies to achieve optimum protective Fc effector responses for vaccine and monoclonal therapeutic design efforts aimed at preventing or curing HIV infection.
Collapse
Affiliation(s)
- Amy W Chung
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology & Harvard, Boston, MA, USA
| | - Galit Alter
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology & Harvard, Boston, MA, USA
| |
Collapse
|
86
|
Madhavi V, Kent SJ, Stratov I. HIV-specific antibody-dependent cellular cytotoxicity: a novel vaccine modality. Expert Rev Clin Immunol 2014; 8:767-74. [DOI: 10.1586/eci.12.74] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
87
|
Mata MM, Iwema JR, Dell S, Neems L, Jamieson BD, Phair J, Cohen MH, Anastos K, Baum LL. Comparison of antibodies that mediate HIV type 1 gp120 antibody-dependent cell-mediated cytotoxicity in asymptomatic HIV type 1-positive men and women. AIDS Res Hum Retroviruses 2014; 30:50-7. [PMID: 23972002 DOI: 10.1089/aid.2012.0377] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recent studies suggest that HIV-specific antibody-dependent cell-mediated cytotoxicity (ADCC) antibodies contribute to protective immunity against HIV. An important characteristic of future HIV vaccines will, therefore, be the ability to stimulate production of these antibodies in both men and women. Early studies suggest that men may have a better ADCC antibody response against HIV than women. Our objective was to determine whether men and women differ with respect to their ADCC response to HIV-1 gp120. HIV-positive, asymptomatic untreated men and women were matched for race, age, CD4(+) T cell number, HIV-1 viral load, and treatment and HIV-1 gp120 ADCC antibody titers were compared. A standard (51)Cr-release assay was used to determine HIV-1 gp120 ADCC antibody titers in HIV-1-seropositive individuals from the Multicenter AIDS Cohort Study (MACS; n=32) and the Women's Interagency HIV Study (WIHS; n=32). Both sexes had high ADCC titers against HIV-1 gp120: 34.4% (n=11) and 40.6% (n=13) of men and women, respectively, had titers of 10,000; 62.5% (n=20) and 56.3% (n=18) had titers of 100,000. Groups did not differ in percent specific release (% SR), lytic units (LU), correlations of titer to viral load, or titer to CD4(+) T cells in men or women. Both groups also had similar cross-clade ADCC antibody responses (p>0.5 for % SR and LU). Comparable groups of asymptomatic HIV-1-infected men and women had comparable HIV-1 gp120 ADCC antibodies. Both sexes had significant cross-clade reactivity. Differences between men and women may become evident as disease progresses; this should be evaluated at later stages of HIV-1 infection.
Collapse
Affiliation(s)
- Mariana M. Mata
- Department of Immunology and Microbiology, Rush University Medical Center, Chicago, Illinois
| | - Joyce R. Iwema
- Department of Immunology and Microbiology, Rush University Medical Center, Chicago, Illinois
| | | | - Leslie Neems
- Washington University School of Medicine, St. Louis, Missouri
| | - Beth D. Jamieson
- Department of Medicine/Hematology-Oncology, David Geffen School of Medicine, University of California, Los Angeles, California
| | - John Phair
- Department of Medicine-Infectious Diseases, Northwestern University, Chicago, Illinois
| | - Mardge H. Cohen
- Departments of Medicine, Stroger (formerly Cook County) Hospital and Rush University, Chicago, Illinois
| | - Kathryn Anastos
- Departments of Medicine and Epidemiology and Population Health, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York
| | - Linda L. Baum
- Department of Immunology and Microbiology, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
88
|
Interaction with cellular CD4 exposes HIV-1 envelope epitopes targeted by antibody-dependent cell-mediated cytotoxicity. J Virol 2013; 88:2633-44. [PMID: 24352444 DOI: 10.1128/jvi.03230-13] [Citation(s) in RCA: 228] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Anti-HIV-1 envelope glycoprotein (Env) antibodies without broadly neutralizing activity correlated with protection in the RV144 clinical trial, stimulating interest in other protective mechanisms involving antibodies, such as antibody-dependent cell-mediated cytotoxicity (ADCC). Env epitopes targeted by many antibodies effective at mediating ADCC are poorly exposed on the unliganded Env trimer. Here we investigated the mechanism of exposure of ADCC epitopes on Env and showed that binding of Env and CD4 within the same HIV-1-infected cell effectively exposes these epitopes. Env capacity to transit to the CD4-bound conformation is required for ADCC epitope exposure. Importantly, cell surface CD4 downregulation by Nef and Vpu accessory proteins and Vpu-mediated BST-2 antagonism modulate exposure of ADCC-mediating epitopes and reduce the susceptibility of infected cells to this effector function in vitro. Significantly, Env conformational changes induced by cell surface CD4 are conserved among Env from HIV-1 and HIV-2/SIVmac lineages. Altogether, our observations describe a highly conserved mechanism required to expose ADCC epitopes that might help explain the evolutionary advantage of downregulation of cell surface CD4 by the HIV-1 Vpu and Nef proteins. IMPORTANCE HIV-1 envelope epitopes targeted by many antibodies effective at mediating antibody-dependent cell-mediated cytotoxicity (ADCC) are poorly exposed on the unliganded envelope trimer. Here we investigated the mechanism of exposure of these epitopes and found that envelope interaction with the HIV-1 CD4 receptor is required to expose some of these epitopes. Moreover, our results suggest that HIV-1 CD4 downregulation might help avoid the killing of HIV-1-infected cells by this immune mechanism.
Collapse
|
89
|
Zaunders J, van Bockel D. Innate and Adaptive Immunity in Long-Term Non-Progression in HIV Disease. Front Immunol 2013; 4:95. [PMID: 23630526 PMCID: PMC3633949 DOI: 10.3389/fimmu.2013.00095] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 04/09/2013] [Indexed: 12/20/2022] Open
Abstract
Long-term non-progressors (LTNP) were identified after 10-15 years of the epidemic, and have been the subject of intense investigation ever since. In a small minority of cases, infection with nef/3'LTR deleted attenuated viral strains allowed control over viral replication. A common feature of LTNP is the readily detected proliferation of CD4 T-cells in vitro, in response to p24. In some cases, the responding CD4 T-cells have cytotoxic effector function and may target conserved p24 epitopes, similar to the CD8 T-cells described below. LTNP may also carry much lower HIV DNA burden in key CD4 subsets, presumably resulting from lower viral replication during primary infection. Some studies, but not others, suggest that LTNP have CD4 T-cells that are relatively resistant to HIV infection in vitro. One possible mechanism may involve up-regulation of the cell cycle regulator p21/waf in CD4 T-cells from LTNP. Delayed progression in Caucasian LTNP is also partly associated with heterozygosity of the Δ32 CCR5 allele, probably through decreased expression of CCR5 co-receptor on CD4 T-cells. However, in approximately half of Caucasian LTNP, two host genotypes, namely HLA-B57 and HLA-B27, are associated with viral control. Immunodominant CD8 T-cells from these individuals target epitopes in p24 that are highly conserved, and escape mutations have significant fitness costs to the virus. Furthermore, recent studies have suggested that these CD8 T-cells from LTNP, but not from HLA-B27 or HLA-B57 progressors, can cross-react with intermediate escape mutations, preventing full escape via compensatory mutations. Humoral immunity appears to play little part in LTNP subjects, since broadly neutralizing antibodies are rare, even amongst slow progressors. Recent genome-wide comparisons between LTNP and progressors have confirmed the HLA-B57, HLA-B27, and delta32 CCR5 allelic associations, plus indicated a role for HLA-C/KIR interactions, but have not revealed any new genotypes so far. Nevertheless, it is hoped that studying the mechanisms of intracellular restriction factors, such as the recently identified SAMHD1, will lead to a better understanding of non-progression.
Collapse
Affiliation(s)
- John Zaunders
- Centre for Applied Medical Research, St Vincent's Hospital Darlinghurst, NSW, Australia
| | | |
Collapse
|
90
|
Antibody-dependent cellular cytotoxicity is associated with control of pandemic H1N1 influenza virus infection of macaques. J Virol 2013; 87:5512-22. [PMID: 23468501 DOI: 10.1128/jvi.03030-12] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Emerging influenza viruses pose a serious risk to global human health. Recent studies in ferrets, macaques, and humans suggest that seasonal H1N1 (sH1N1) infection provides some cross-protection against 2009 pandemic influenza viruses (H1N1pdm), but the correlates of cross-protection are poorly understood. Here we show that seasonal infection of influenza-naïve Indian rhesus macaques (Macaca mulatta) with A/Kawasaki/173/2001 (sH1N1) virus induces antibodies capable of binding the hemagglutinin (HA) of both the homologous seasonal virus and the antigenically divergent A/California/04/2009 (H1N1pdm) strain in the absence of detectable H1N1pdm-specific neutralizing antibodies. These influenza virus-specific antibodies activated macaque NK cells to express both CD107a and gamma interferon (IFN-γ) in the presence of HA proteins from either sH1N1 or H1N1pdm viruses. Although influenza virus-specific antibody-dependent cellular cytotoxicity (ADCC)-mediated NK cell activation diminished in titer over time following sH1N1 infection, these cells expanded rapidly within 7 days following H1N1pdm exposure. Furthermore, we found that influenza virus-specific ADCC was present in bronchoalveolar lavage fluid and was able to activate lung NK cells. We concluded that infection with a seasonal influenza virus can induce antibodies that mediate ADCC capable of recognizing divergent influenza virus strains. Cross-reactive ADCC may provide a mechanism for reducing the severity of divergent influenza virus infections.
Collapse
|
91
|
Kent SJ, Reece JC, Petravic J, Martyushev A, Kramski M, De Rose R, Cooper DA, Kelleher AD, Emery S, Cameron PU, Lewin SR, Davenport MP. The search for an HIV cure: tackling latent infection. THE LANCET. INFECTIOUS DISEASES 2013; 13:614-21. [PMID: 23481675 DOI: 10.1016/s1473-3099(13)70043-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Strategies to eliminate infectious HIV that persists despite present treatments and with the potential to cure HIV infection are of great interest. One patient seems to have been cured of HIV infection after receiving a bone marrow transplant with cells resistant to the virus, although this strategy is not viable for large numbers of infected people. Several clinical trials are underway in which drugs are being used to activate cells that harbour latent HIV. In a recent study, investigators showed that activation of latent HIV infection in patients on antiretroviral therapy could be achieved with a single dose of vorinostat, a licensed anticancer drug that inhibits histone deacetylase. Although far from a cure, such studies provide some guidance towards the logical next steps for research. Clinical studies that use a longer duration of drug dosing, alternative agents, combination approaches, gene therapy, and immune-modulation approaches are all underway.
Collapse
Affiliation(s)
- Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne, VIC, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
French MA, Center RJ, Wilson KM, Fleyfel I, Fernandez S, Schorcht A, Stratov I, Kramski M, Kent SJ, Kelleher AD. Isotype-switched immunoglobulin G antibodies to HIV Gag proteins may provide alternative or additional immune responses to 'protective' human leukocyte antigen-B alleles in HIV controllers. AIDS 2013; 27:519-28. [PMID: 23364441 DOI: 10.1097/qad.0b013e32835cb720] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Natural control of HIV infection is associated with CD8 T-cell responses to Gag-encoded antigens of the HIV core and carriage of 'protective' human leukocyte antigen (HLA)-B alleles, but some HIV controllers do not possess these attributes. As slower HIV disease progression is associated with high levels of antibodies to HIV Gag proteins, we have examined antibodies to HIV proteins in controllers with and without 'protective' HLA-B alleles. METHODS Plasma from 32 HIV controllers and 21 noncontrollers was examined for immunoglobulin G1 (IgG1) and IgG2 antibodies to HIV proteins in virus lysates by western blot assay and to recombinant (r) p55 and gp140 by ELISA. Natural killer (NK) cell-activating antibodies and FcγRIIa-binding immune complexes were also assessed. RESULTS Plasma levels of IgG1 antibodies to HIV Gag (p18, p24, rp55) and Pol-encoded (p32, p51, p66) proteins were higher in HIV controllers. In contrast, IgG1 antibodies to Env proteins were less discriminatory, with only antigp120 levels being higher in controllers. High-level IgG2 antibodies to any Gag protein were most common in HIV controllers not carrying a 'protective' HLA-B allele, particularly HLA-B*57 (P = 0.016). HIV controllers without 'protective' HLA-B alleles also had higher plasma levels of IgG1 antip32 (P = 0.04). NK cell-activating antibodies to gp140 Env protein were higher in elite controllers but did not differentiate HIV controllers with or without 'protective' HLA-B alleles. IgG1 was increased in FcγRIIa-binding immune complexes from noncontrollers. CONCLUSION We hypothesize that isotype-switched (IgG2+) antibodies to HIV Gag proteins and possibly IgG1 antip32 may provide alternative or additional immune control mechanisms to HLA-restricted CD8 T-cell responses in HIV controllers.
Collapse
|
93
|
Jia M, Li D, He X, Zhao Y, Peng H, Ma P, Hong K, Liang H, Shao Y. Impaired natural killer cell-induced antibody-dependent cell-mediated cytotoxicity is associated with human immunodeficiency virus-1 disease progression. Clin Exp Immunol 2013. [PMID: 23199330 DOI: 10.1111/j.1365-2249.2012.04672.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
This study evaluates the correlation between natural killer (NK) cell function and human immunodeficiency virus (HIV)-1 disease progression in 133 untreated HIV-1 positive Chinese subjects, including 41 former plasma donors (FPDs) and 92 men who have sex with men, and 35 HIV-negative controls. Flow cytometry was used to determine the abundance of NK cell subsets, the expression levels of receptor species, human leucocyte antigen (HLA) genotyping and the antibody-dependent cell-mediated cytotoxicity (ADCC) responses of NK cells. We observed a decreased expression of CD56(dim) CD16(+) NK cell subsets and an increased expression of CD56(-) CD16(+) with HIV-1 infection. As well, the expression of activating and inhibitory receptors increased significantly in NK cells, but CD16 receptor levels and the NKG2A/NKG2C ratio were down-regulated with HIV-1 infection. ADCC responses were higher in elite controllers than in all other groups, and were correlated inversely with HIV-1 viral load but correlated positively with CD4 count only in FPDs. Furthermore, individuals infected for < 1 year have lower ADCC responses than those infected for > 1 year. We also observed a negative association between ADCC responses and viral load in those who carry the HLA-A*30/B*13/Cw*06 haplotype. The positive correlation between CD16 expression and ADCC responses and a negative correlation trend between CD158a and ADCC responses were also observed (P = 0·058). Our results showed that the ADCC response is associated with patients' disease status, receptor expression levels, infection time and specific HLA alleles, which indicates that ADCC may offer protective effects against HIV-1 infection.
Collapse
Affiliation(s)
- M Jia
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Madhavi V, Navis M, Chung AW, Isitman G, Wren LH, De Rose R, Kent SJ, Stratov I. Activation of NK cells by HIV-specific ADCC antibodies: role for granulocytes in expressing HIV-1 peptide epitopes. Hum Vaccin Immunother 2013; 9:1011-8. [PMID: 23324623 DOI: 10.4161/hv.23446] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
HIV-specific ADCC antibodies could play a role in providing protective immunity. We have developed a whole blood ADCC assay that measures NK cell activation in response to HIV peptide epitopes. These HIV peptide-specific ADCC responses are associated with escape from immune recognition and slower progression of HIV infection and represent interesting HIV vaccine antigens. However, the mechanism by which these epitopes are expressed and whether or not they induce NK-mediated killing of cells expressing such peptide-antigens is not understood. Herein, we show that fluorescent-tagged ADCC peptide epitopes associate with blood granulocytes. The peptide-associated granulocytes become a specific target for antibody-mediated killing, as shown by enhanced expression of apoptosis marker Annexin and reduction in cell numbers. When HIV Envelope gp140 protein is utilized in the ADCC assay, we detected binding to its ligand, CD4. During the incubation, cells co-expressing gp140 and CD4 reduce in number. We also detected increasing Annexin expression in these cells. These data indicate that blood cells expressing HIV-specific ADCC epitopes are targeted for killing by NK cells in the presence of ADCC antibodies in HIV+ plasma and provide a clearer framework to evaluate these antigens as vaccine candidates.
Collapse
Affiliation(s)
- Vijaya Madhavi
- Department of Microbiology and Immunology; University of Melbourne; Melbourne, VIC Australia
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Jegaskanda S, Job ER, Kramski M, Laurie K, Isitman G, de Rose R, Winnall WR, Stratov I, Brooks AG, Reading PC, Kent SJ. Cross-reactive influenza-specific antibody-dependent cellular cytotoxicity antibodies in the absence of neutralizing antibodies. THE JOURNAL OF IMMUNOLOGY 2013; 190:1837-48. [PMID: 23319732 DOI: 10.4049/jimmunol.1201574] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A better understanding of immunity to influenza virus is needed to generate cross-protective vaccines. Engagement of Ab-dependent cellular cytotoxicity (ADCC) Abs by NK cells leads to killing of virus-infected cells and secretion of antiviral cytokines and chemokines. ADCC Abs may target more conserved influenza virus Ags compared with neutralizing Abs. There has been minimal interest in influenza-specific ADCC in recent decades. In this study, we developed novel assays to assess the specificity and function of influenza-specific ADCC Abs. We found that healthy influenza-seropositive young adults without detectable neutralizing Abs to the hemagglutinin of the 1968 H3N2 influenza strain (A/Aichi/2/1968) almost always had ADCC Abs that triggered NK cell activation and in vitro elimination of influenza-infected human blood and respiratory epithelial cells. Furthermore, we detected ADCC in the absence of neutralization to both the recent H1N1 pandemic strain (A/California/04/2009) as well as the avian H5N1 influenza hemagglutinin (A/Anhui/01/2005). We conclude that there is a remarkable degree of cross-reactivity of influenza-specific ADCC Abs in seropositive humans. Targeting cross-reactive influenza-specific ADCC epitopes by vaccination could lead to improved influenza vaccines.
Collapse
Affiliation(s)
- Sinthujan Jegaskanda
- Department of Microbiology and Immunology, University of Melbourne, Victoria 3010, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Diverse specificity and effector function among human antibodies to HIV-1 envelope glycoprotein epitopes exposed by CD4 binding. Proc Natl Acad Sci U S A 2013; 110:E69-78. [PMID: 23237851 PMCID: PMC3538257 DOI: 10.1073/pnas.1217609110] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The HIV-1 envelope glycoprotein (Env) undergoes conformational transitions consequent to CD4 binding and coreceptor engagement during viral entry. The physical steps in this process are becoming defined, but less is known about their significance as targets of antibodies potentially protective against HIV-1 infection. Here we probe the functional significance of transitional epitope exposure by characterizing 41 human mAbs specific for epitopes exposed on trimeric Env after CD4 engagement. These mAbs recognize three epitope clusters: cluster A, the gp120 face occluded by gp41 in trimeric Env; cluster B, a region proximal to the coreceptor-binding site (CoRBS) and involving the V1/V2 domain; and cluster C, the coreceptor-binding site. The mAbs were evaluated functionally by antibody-dependent, cell-mediated cytotoxicity (ADCC) and for neutralization of Tiers 1 and 2 pseudoviruses. All three clusters included mAbs mediating ADCC. However, there was a strong potency bias for cluster A, which harbors at least three potent ADCC epitopes whose cognate mAbs have electropositive paratopes. Cluster A epitopes are functional ADCC targets during viral entry in an assay format using virion-sensitized target cells. In contrast, only cluster C contained epitopes that were recognized by neutralizing mAbs. There was significant diversity in breadth and potency that correlated with epitope fine specificity. In contrast, ADCC potency had no relationship with neutralization potency or breadth for any epitope cluster. Thus, Fc-mediated effector function and neutralization coselect with specificity in anti-Env antibody responses, but the nature of selection is distinct for these two antiviral activities.
Collapse
|
97
|
A novel assay for antibody-dependent cell-mediated cytotoxicity against HIV-1- or SIV-infected cells reveals incomplete overlap with antibodies measured by neutralization and binding assays. J Virol 2012; 86:12039-52. [PMID: 22933282 DOI: 10.1128/jvi.01650-12] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The resistance of human immunodeficiency virus type 1 (HIV-1) to antibody-mediated immunity often prevents the detection of antibodies that neutralize primary isolates of HIV-1. However, conventional assays for antibody functions other than neutralization are suboptimal. Current methods for measuring the killing of virus-infected cells by antibody-dependent cell-mediated cytotoxicity (ADCC) are limited by the number of natural killer (NK) cells obtainable from individual donors, donor-to-donor variation, and the use of nonphysiological targets. We therefore developed an ADCC assay based on NK cell lines that express human or macaque CD16 and a CD4(+) T-cell line that expresses luciferase from a Tat-inducible promoter upon HIV-1 or simian immunodeficiency virus (SIV) infection. NK cells and virus-infected targets are mixed in the presence of serial plasma dilutions, and ADCC is measured as the dose-dependent loss of luciferase activity. Using this approach, ADCC titers were measured in plasma samples from HIV-infected human donors and SIV-infected macaques. For the same plasma samples paired with the same test viruses, this assay was approximately 2 orders of magnitude more sensitive than optimized assays for neutralizing antibodies-frequently allowing the measurement of ADCC in the absence of detectable neutralization. Although ADCC correlated with other measures of Env-specific antibodies, neutralizing and gp120 binding titers did not consistently predict ADCC activity. Hence, this assay affords a sensitive method for measuring antibodies capable of directing ADCC against HIV- or SIV-infected cells expressing native conformations of the viral envelope glycoprotein and reveals incomplete overlap of the antibodies that direct ADCC and those measured in neutralization and binding assays.
Collapse
|
98
|
Kramski M, Lichtfuss GF, Navis M, Isitman G, Wren L, Rawlin G, Center RJ, Jaworowski A, Kent SJ, Purcell DFJ. Anti-HIV-1 antibody-dependent cellular cytotoxicity mediated by hyperimmune bovine colostrum IgG. Eur J Immunol 2012; 42:2771-81. [PMID: 22730083 DOI: 10.1002/eji.201242469] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 05/11/2012] [Accepted: 06/15/2012] [Indexed: 11/07/2022]
Abstract
Antibodies with antibody-dependent cellular cytotoxicity (ADCC) activity play an important role in protection against HIV-1 infection, but generating sufficient amounts of antibodies to study their protective efficacy is difficult. HIV-specific IgG can be easily and inexpensively produced in large quantities using bovine colostrum. We previously vaccinated cows with HIV-1 envelope gp140 and elicited high titers of anti-gp140-binding IgG in colostrum. In the present study, we determined whether bovine antibodies would also demonstrate specific cytotoxic activity. We found that bovine IgG bind to Fcγ-receptors (FcγRs) on human neutrophils, monocytes, and NK cells in a dose-dependent manner. Antibody-dependent killing was observed in the presence of anti-HIV-1 colostrum IgG but not nonimmune colostrum IgG. Killing was dependent on Fc and FcγR interaction since ADDC activity was not seen with F(ab')(2) fragments. ADCC activity was primarily mediated by CD14(+) monocytes with FcγRIIa (CD32a) as the major receptor responsible for monocyte-mediated ADCC in response to bovine IgG. In conclusion, we demonstrate that bovine anti-HIV colostrum IgG have robust HIV-1-specific ADCC activity and therefore offer a useful source of antibodies able to provide a rapid and potent response against HIV-1 infection. This could assist the development of novel Ab-mediated approaches for prevention of HIV-1 transmission.
Collapse
Affiliation(s)
- Marit Kramski
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Kramski M, Schorcht A, Johnston APR, Lichtfuss GF, Jegaskanda S, De Rose R, Stratov I, Kelleher AD, French MA, Center RJ, Jaworowski A, Kent SJ. Role of monocytes in mediating HIV-specific antibody-dependent cellular cytotoxicity. J Immunol Methods 2012; 384:51-61. [PMID: 22841577 DOI: 10.1016/j.jim.2012.07.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Revised: 07/17/2012] [Accepted: 07/17/2012] [Indexed: 10/28/2022]
Abstract
Antibodies (Abs) that mediate antibody-dependent cellular cytotoxicity (ADCC) activity against HIV-1 are of major interest. A widely used method to measure ADCC Abs is the rapid and fluorometric antibody-dependent cellular cytotoxicity (RFADCC) assay. Antibody-dependent killing of a labelled target cell line by PBMC is assessed by loss of intracellular CFSE but retention of membrane dye PKH26 (CFSE-PKH26+). Cells of this phenotype are assumed to be derived from CFSE+PKH26+ target cells killed by NK cells. We assessed the effector cells that mediate ADCC in this assay. Backgating analysis and phenotyping of CFSE-PKH26+ revealed that the RFADCC assay's readout mainly represents CD3-CD14+ monocytes taking up the PKH26 dye. This was confirmed for 53 HIV+plasma-purified IgG samples when co-cultured with PBMC from three separate healthy donors. Emergence of the CFSE-PKH26+ monocyte population was observed upon co-culture of targets with purified monocytes but not with purified NK cells. Image flow cytometry and microscopy showed a monocyte-specific interaction with target cells without typical morphological changes associated with phagocytosis, suggesting a monocyte-mediated ADCC process. We conclude that the RFADCC assay primarily reflects Ab-mediated monocyte function. Further studies on the immunological importance of HIV-specific monocyte-mediated ADCC are warranted.
Collapse
Affiliation(s)
- M Kramski
- Department of Microbiology and Immunology, University of Melbourne, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Wren L, Parsons MS, Isitman G, Center RJ, Kelleher AD, Stratov I, Bernard NF, Kent SJ. Influence of cytokines on HIV-specific antibody-dependent cellular cytotoxicity activation profile of natural killer cells. PLoS One 2012; 7:e38580. [PMID: 22701674 PMCID: PMC3372512 DOI: 10.1371/journal.pone.0038580] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 05/07/2012] [Indexed: 01/12/2023] Open
Abstract
There is growing interest in HIV-specific antibody-dependent cellular cytotoxicity (ADCC) as an effective immune response to prevent or control HIV infection. ADCC relies on innate immune effector cells, particularly NK cells, to mediate control of virus-infected cells. The activation of NK cells (i.e., expression of cytokines and/or degranulation) by ADCC antibodies in serum is likely subject to the influence of other factors that are also present. We observed that the HIV-specific ADCC antibodies, within serum samples from a panel of HIV-infected individuals induced divergent activation profiles of NK cells from the same donor. Some serum samples primarily induced NK cell cytokine expression (i.e., IFNγ), some primarily initiated NK cell expression of a degranulation marker (CD107a) and others initiated a similar magnitude of responses across both effector functions. We therefore evaluated a number of HIV-relevant soluble factors for their influence on the activation of NK cells by HIV-specific ADCC antibodies. Key findings were that the cytokines IL-15 and IL-10 consistently enhanced the ability of NK cells to respond to HIV-specific ADCC antibodies. Furthermore, IL-15 was demonstrated to potently activate “educated” KIR3DL1+ NK cells from individuals carrying its HLA-Bw4 ligand. The cytokine was also demonstrated to activate “uneducated” KIR3DL1+ NK cells from HLA-Bw6 homozygotes, but to a lesser extent. Our results show that cytokines influence the ability of NK cells to respond to ADCC antibodies in vitro. Manipulating the immunological environment to enhance the potency of NK cell-mediated HIV-specific ADCC effector functions could be a promising immunotherapy or vaccine strategy.
Collapse
Affiliation(s)
- Leia Wren
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
| | - Matthew S. Parsons
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
| | - Gamze Isitman
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
| | - Robert J. Center
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
| | | | - Ivan Stratov
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
- Melbourne Sexual Health Clinic, Alfred Health, Carlton, Victoria, Australia
| | - Nicole F. Bernard
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
| | - Stephen J. Kent
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
- Melbourne Sexual Health Clinic, Alfred Health, Carlton, Victoria, Australia
- * E-mail:
| |
Collapse
|