51
|
The General Stress Response Is Conserved in Long-Term Soil-Persistent Strains of Escherichia coli. Appl Environ Microbiol 2016; 82:4628-4640. [PMID: 27235429 DOI: 10.1128/aem.01175-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/12/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Although Escherichia coli is generally considered to be predominantly a commensal of the gastrointestinal tract, a number of recent studies suggest that it is also capable of long-term survival and growth in environments outside the host. As the extraintestinal physical and chemical conditions are often different from those within the host, it is possible that distinct genetic adaptations may be required to enable this transition. Several studies have shown a trade-off between growth and stress resistance in nutrient-poor environments, with lesions in the rpoS locus, which encodes the stress sigma factor RpoS (σ(S)). In this study, we investigated a unique collection of long-term soil-persistent E. coli isolates to determine whether the RpoS-controlled general stress response is altered during adaptation to a nutrient-poor extraintestinal environment. The sequence of the rpoS locus was found to be highly conserved in these isolates, and no nonsense or frameshift mutations were detected. Known RpoS-dependent phenotypes, including glycogen synthesis and γ-aminobutyrate production, were found to be conserved in all strains. All strains expressed the full-length RpoS protein, which was fully functional using the RpoS-dependent promoter reporter fusion PgadX::gfp RpoS was shown to be essential for long-term soil survival of E. coli, since mutants lacking rpoS lost viability rapidly in soil survival assays. Thus, despite some phenotypic heterogeneity, the soil-persistent strains all retained a fully functional RpoS-regulated general stress response, which we interpret to indicate that the stresses encountered in soil provide a strong selective pressure for maintaining stress resistance, despite limited nutrient availability. IMPORTANCE Escherichia coli has been, and continues to be, used as an important indicator species reflecting potential fecal contamination events in the environment. However, recent studies have questioned the validity of this, since E. coli has been found to be capable of long-term colonization of soils. This study investigated whether long-term soil-persistent E. coli strains have evolved altered stress resistance characteristics. In particular, the study investigated whether the main regulator of genes involved in stress protection, the sigma factor RpoS, has been altered in the soil-persistent strains. The results show that RpoS stress protection is fully conserved in soil-persistent strains of E. coli They also show that loss of the rpoS gene dramatically reduces the ability of this organism to survive in a soil environment. Overall, the results indicate that soil represents a stressful environment for E. coli, and their survival in it requires that they deploy a full stress protection response.
Collapse
|
52
|
Kennedy NM, Mukherjee N, Banerjee P. Escherichia coli O157:H7 Cells Exposed to Lettuce Leaf Lysate in Refrigerated Conditions Exhibit Differential Expression of Selected Virulence and Adhesion-Related Genes with Altered Mammalian Cell Adherence. J Food Prot 2016; 79:1259-65. [PMID: 27357048 DOI: 10.4315/0362-028x.jfp-15-504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Contamination by and persistence of pathogenic bacteria in ready-to-eat produce have emerged as significant food safety and public health concerns. Viable produceborne pathogens cope with several stresses (e.g., temperature fluctuations and lowtemperature storage) during production and storage of the commodities. In this study, we investigated the impact of transient cold shock on Escherichia coli O157:H7 (EcO157) cells in a produce matrix (romaine lettuce leaf lysate). EcO157 cells were exposed to 25°C for 1 h, 4°C for 1 h, and 4°C for 10 min in lettuce lysate. The expression of selected genes coding for virulence, stress response, and heat and cold shock proteins was quantified by real-time quantitative reverse transcription PCR assay. Treated EcO157 cells adhered to MAC-T mammalian cells were enumerated by in vitro bioassay. Expression of the Shiga toxin 1 gene (stx1a) was upregulated significantly (P < 0.05) upon cold shock treatments, but virulence genes related to EcO157 attachment (eaeA, lpfA, and hcpA) were down-regulated. Two key members of the cold shock regulon, cold shock protein (cspA) and gyrA, were significantly induced (P < 0.05) at the refrigeration temperature (4°C). Significant upregulation of an SOS response gene, recA, was also observed. E. coli heat shock regulon member grpE was induced, but a universal stress protein (uspA) was downregulated at the refrigeration temperatures in lettuce lysate. The adhesion assay revealed a temperature-dependent reduction in the attachment of cold-shocked EcO157 cells. The results of the current study indicate a reduction in the attachment of cold-shocked EcO157 to epithelial cells and higher levels of Shiga toxin gene expression at the molecular level.
Collapse
Affiliation(s)
- Nicole M Kennedy
- Department of Food and Animal Sciences, Alabama A&M University, Huntsville, Alabama 35762, USA
| | - Nabanita Mukherjee
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, Tennessee 38152, USA
| | - Pratik Banerjee
- Department of Food and Animal Sciences, Alabama A&M University, Huntsville, Alabama 35762, USA; Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, Tennessee 38152, USA.
| |
Collapse
|
53
|
Response of Vibrio cholerae to Low-Temperature Shifts: CspV Regulation of Type VI Secretion, Biofilm Formation, and Association with Zooplankton. Appl Environ Microbiol 2016; 82:4441-52. [PMID: 27208110 DOI: 10.1128/aem.00807-16] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/02/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The ability to sense and adapt to temperature fluctuation is critical to the aquatic survival, transmission, and infectivity of Vibrio cholerae, the causative agent of the disease cholera. Little information is available on the physiological changes that occur when V. cholerae experiences temperature shifts. The genome-wide transcriptional profile of V. cholerae upon a shift in human body temperature (37°C) to lower temperatures, 15°C and 25°C, which mimic those found in the aquatic environment, was determined. Differentially expressed genes included those involved in the cold shock response, biofilm formation, type VI secretion, and virulence. Analysis of a mutant lacking the cold shock gene cspV, which was upregulated >50-fold upon a low-temperature shift, revealed that it regulates genes involved in biofilm formation and type VI secretion. CspV controls biofilm formation through modulation of the second messenger cyclic diguanylate and regulates type VI-mediated interspecies killing in a temperature-dependent manner. Furthermore, a strain lacking cspV had significant defects for attachment and type VI-mediated killing on the surface of the aquatic crustacean Daphnia magna Collectively, these studies reveal that cspV is a major regulator of the temperature downshift response and plays an important role in controlling cellular processes crucial to the infectious cycle of V. cholerae IMPORTANCE Little is known about how human pathogens respond and adapt to ever-changing parameters of natural habitats outside the human host and how environmental adaptation alters dissemination. Vibrio cholerae, the causative agent of the severe diarrheal disease cholera, experiences fluctuations in temperature in its natural aquatic habitats and during the infection process. Furthermore, temperature is a critical environmental signal governing the occurrence of V. cholerae and cholera outbreaks. In this study, we showed that V. cholerae reprograms its transcriptome in response to fluctuations in temperature, which results in changes to biofilm formation and type VI secretion system activation. These processes in turn impact environmental survival and the virulence potential of this pathogen.
Collapse
|
54
|
Influence of Low-Shear Modeled Microgravity on Heat Resistance, Membrane Fatty Acid Composition, and Heat Stress-Related Gene Expression in Escherichia coli O157:H7 ATCC 35150, ATCC 43889, ATCC 43890, and ATCC 43895. Appl Environ Microbiol 2016; 82:2893-2901. [PMID: 26944847 DOI: 10.1128/aem.00050-16] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/01/2016] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED We previously showed that modeled microgravity conditions alter the physiological characteristics of Escherichia coli O157:H7. To examine how microgravity conditions affect bacterial heat stress responses, D values, membrane fatty acid composition, and heat stress-related gene expression (clpB, dnaK, grpE, groES, htpG, htpX, ibpB, and rpoH), E. coli O157:H7 ATCC 35150, ATCC 43889, ATCC 43890, and ATCC 43895 were cultured under two different conditions: low-shear modeled microgravity (LSMMG, an analog of spaceflight conditions) and normal gravity (NG, Earth-like conditions). When 24-h cultures were heated to 55°C, cells cultured under LSMMG conditions showed reduced survival compared with cells cultured under NG conditions at all time points (P < 0.05). D values of all tested strains were lower after LSMMG culture than after NG culture. Fourteen of 37 fatty acids examined were present in the bacterial membrane: nine saturated fatty acids (SFA) and five unsaturated fatty acids (USFA). The USFA/SFA ratio, a measure of membrane fluidity, was higher under LSMMG conditions than under NG conditions. Compared with control cells grown under NG conditions, cells cultured under LSMMG conditions showed downregulation of eight heat stress-related genes (average, -1.9- to -3.7-fold). The results of this study indicate that in a simulated space environment, heat resistance of E. coli O157:H7 decreased, and this might be due to the synergistic effects of the increases in membrane fluidity and downregulated relevant heat stress genes. IMPORTANCE Microgravity is a major factor that represents the environmental conditions in space. Since infectious diseases are difficult to deal with in a space environment, comprehensive studies on the behavior of pathogenic bacteria under microgravity conditions are warranted. This study reports the changes in heat stress resistance of E. coli O157:H7, the severe foodborne pathogen, under conditions that mimic microgravity. The results provide scientific clues for further understanding of the bacterial response under the simulated microgravity conditions. It will contribute not only to the improvement of scientific knowledge in the academic fields but also ultimately to the development of a prevention strategy for bacterial disease in the space environment.
Collapse
|
55
|
Contributions of EspA Filaments and Curli Fimbriae in Cellular Adherence and Biofilm Formation of Enterohemorrhagic Escherichia coli O157:H7. PLoS One 2016; 11:e0149745. [PMID: 26900701 PMCID: PMC4764202 DOI: 10.1371/journal.pone.0149745] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 02/04/2016] [Indexed: 12/14/2022] Open
Abstract
In Escherichia coli O157:H7 (O157), the filamentous structure of the type III secretion system is produced from the polymerization of the EspA protein. EspA filaments are essential for O157 adherence to epithelial cells. In previous studies, we demonstrated that O157 hha deletion mutants showed increased adherence to HEp-2 cells and produced abundant biofilms. Transcriptional analysis revealed increased expression of espA as well as the csgA gene, which encodes curli fimbriae that are essential for biofilm formation. In the present study, we constructed hha espA, hha csgA, and hha csgA espA deletion mutants to determine the relative importance of EspA and CsgA in O157 adherence to HEp-2 cells and biofilm formation. In vitro adherence assays, conducted at 37°C in a tissue culture medium containing 0.1% glucose, showed that HEp-2 cell adherence required EspA because hha espA and hha csgA espA mutants adhered to HEp-2 cells at higher levels only when complemented with an espA-expressing plasmid. Biofilm assays performed at 28°C in a medium lacking glucose showed dependency of biofilm formation on CsgA; however EspA was not produced under these conditions. Despite production of detectable levels of EspA at 37°C in media supplemented with 0.1% glucose, the biofilm formation occurred independent of EspA. These results indicate dependency of O157 adherence to epithelial cells on EspA filaments, while CsgA promoted biofilm formation under conditions mimicking those found in the environment (low temperature with nutrient limitations) and in the digestive tract of an host animal (higher temperature and low levels of glucose).
Collapse
|
56
|
Balière C, Rincé A, Blanco J, Dahbi G, Harel J, Vogeleer P, Giard JC, Mariani-Kurkdjian P, Gourmelon M. Prevalence and Characterization of Shiga Toxin-Producing and Enteropathogenic Escherichia coli in Shellfish-Harvesting Areas and Their Watersheds. Front Microbiol 2015; 6:1356. [PMID: 26648928 PMCID: PMC4664706 DOI: 10.3389/fmicb.2015.01356] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/16/2015] [Indexed: 11/13/2022] Open
Abstract
more strains formed a strong biofilm at 18 than at 30°C. Finally, more than 85% of analyzed strains were found to be sensitive to the 16 tested antibiotics. These data suggest the low risk of human infection by STEC if shellfish from these shellfish-harvesting areas were consumed.
Collapse
Affiliation(s)
- Charlotte Balière
- Laboratoire Santé Environnement et Microbiologie, Unité Santé, Génétique et Microbiologie des Mollusques, Département Ressources Biologiques et Environnement, Ifremer Plouzané, France
| | - Alain Rincé
- U2RM EA4655 Stress/Virulence, Normandie-Université, University of Caen Normandy Caen, France
| | - Jorge Blanco
- Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela Lugo, Spain
| | - Ghizlane Dahbi
- Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela Lugo, Spain
| | - Josée Harel
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Centre de Recherche d'Infectiologie Porcine et Avicole, Université de Montréal Saint-Hyacinthe, QC, Canada
| | - Philippe Vogeleer
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Centre de Recherche d'Infectiologie Porcine et Avicole, Université de Montréal Saint-Hyacinthe, QC, Canada
| | - Jean-Christophe Giard
- U2RM EA4655 Antibio-Résistance, Normandie-Université, University of Caen Normandy Caen, France
| | - Patricia Mariani-Kurkdjian
- Service de Microbiologie, CNR Associé Escherichia coli, AP-HP, Hôpital Robert-Debré Paris, France ; Infection, Antimicrobials, Modelling, Evolution, UMR 1137, INSERM Paris, France ; Infection, Antimicrobials, Modelling, Evolution, UMR 1137, Université Paris Diderot - Sorbonne Paris Cité Paris, France
| | - Michèle Gourmelon
- Laboratoire Santé Environnement et Microbiologie, Unité Santé, Génétique et Microbiologie des Mollusques, Département Ressources Biologiques et Environnement, Ifremer Plouzané, France
| |
Collapse
|
57
|
Influence of Salmonella enterica Serovar Typhimurium ssrB on Colonization of Eastern Oysters (Crassostrea virginica) as Revealed by a Promoter Probe Screen. Appl Environ Microbiol 2015; 82:328-39. [PMID: 26497459 DOI: 10.1128/aem.02870-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/20/2015] [Indexed: 12/14/2022] Open
Abstract
Although Salmonella has been isolated from 7.4 to 8.6% of domestic raw oysters, representing a significant risk for food-borne illness, little is known about the factors that influence their initial colonization by Salmonella. This study tested the hypothesis that specific regulatory changes enable a portion of the invading Salmonella population to colonize oysters. An in vivo promoter probe library screen identified 19 unique regions as regulated during colonization. The mutants in the nearest corresponding downstream genes were tested for colonization defects in oysters. Only one mutation, in ssrB, resulted in a significantly reduced ability to colonize oysters compared to that of wild-type Salmonella. Because ssrB regulates Salmonella pathogenicity island 2 (SPI-2)-dependent infections in vertebrate macrophages, the possibility that ssrB mediated colonization of oyster hemocytes in a similar manner was examined. However, no difference in hemocyte colonization was observed. The complementary hypothesis that signal exchange between Salmonella and the oyster's native microbial community aids colonization was also tested. Signals that triggered responses in quorum sensing (QS) reporters were shown to be produced by oyster-associated bacteria and present in oyster tissue. However, no evidence for signal exchange was observed in vivo. The sdiA reporter responded to salinity, suggesting that SdiA may also have a role in environmental sensing. Overall, this study suggests the initial colonization of live oysters by Salmonella is controlled by a limited number of regulators, including ssrB.
Collapse
|
58
|
Cayrol B, Fortas E, Martret C, Cech G, Kloska A, Caulet S, Barbet M, Trépout S, Marco S, Taghbalout A, Busi F, Wegrzyn G, Arluison V. Riboregulation of the bacterial actin-homolog MreB by DsrA small noncoding RNA. Integr Biol (Camb) 2015; 7:128-41. [PMID: 25407044 DOI: 10.1039/c4ib00102h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The bacterial actin-homolog MreB is a key player in bacterial cell-wall biosynthesis and is required for the maintenance of the rod-like morphology of Escherichia coli. However, how MreB cellular levels are adjusted to growth conditions is poorly understood. Here, we show that DsrA, an E. coli small noncoding RNA (sRNA), is involved in the post-transcriptional regulation of mreB. DsrA is required for the downregulation of MreB cellular concentration during environmentally induced slow growth-rates, mainly growth at low temperature and during the stationary phase. DsrA interacts in an Hfq-dependent manner with the 5' region of mreB mRNA, which contains signals for translation initiation and thereby affects mreB translation and stability. Moreover, as DsrA is also involved in the regulation of two transcriptional regulators, σ(S) and the nucleoid associated protein H-NS, which negatively regulate mreB transcription, it also indirectly contributes to mreB transcriptional down-regulation. By using quantitative analyses, our results evidence the complexity of this regulation and the tangled interplay between transcriptional and post-transcriptional control. As transcription factors and sRNA-mediated post-transcriptional regulators use different timescales, we propose that the sRNA pathway helps to adapt to changes in temperature, but also indirectly mediates long-term regulation of MreB concentration. The tight regulation and fine-tuning of mreB gene expression in response to cellular stresses is discussed in regard to the effect of the MreB protein on cell elongation.
Collapse
Affiliation(s)
- Bastien Cayrol
- Laboratoire Léon Brillouin, CEA - Centre de Saclay, 91191 Gif-sur-Yvette, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Townsley L, Yildiz FH. Temperature affects c-di-GMP signalling and biofilm formation in Vibrio cholerae. Environ Microbiol 2015; 17:4290-305. [PMID: 25684220 DOI: 10.1111/1462-2920.12799] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 01/19/2015] [Accepted: 01/31/2015] [Indexed: 02/04/2023]
Abstract
Biofilm formation is crucial to the environmental survival and transmission of Vibrio cholerae, the facultative human pathogen responsible for the disease cholera. During its infectious cycle, V. cholerae experiences fluctuations in temperature within the aquatic environment and during the transition between human host and aquatic reservoirs. In this study, we report that biofilm formation is induced at low temperatures through increased levels of the signalling molecule, cyclic diguanylate (c-di-GMP). Strains harbouring in frame deletions of all V. cholerae genes that are predicted to encode diguanylate cyclases (DGCs) or phosphodiesterases (PDEs) were screened for their involvement in low-temperature-induced biofilm formation and Vibrio polysaccharide gene expression. Of the 52 mutants tested, deletions of six DGCs and three PDEs were found to affect these phenotypes at low temperatures. Unlike wild type, a strain lacking all six DGCs did not exhibit a low-temperature-dependent increase in c-di-GMP, indicating that these DGCs are required for temperature modulation of c-di-GMP levels. We also show that temperature modulates c-di-GMP levels in a similar fashion in the Gram-negative pathogen Pseudomonas aeruginosa but not in the Gram-positive pathogen Listeria monocytogenes. This study uncovers the role of temperature in environmental regulation of biofilm formation and c-di-GMP signalling.
Collapse
Affiliation(s)
- Loni Townsley
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, 95064, USA
| | - Fitnat H Yildiz
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, 95064, USA
| |
Collapse
|
60
|
De Biase D, Lund PA. The Escherichia coli Acid Stress Response and Its Significance for Pathogenesis. ADVANCES IN APPLIED MICROBIOLOGY 2015; 92:49-88. [PMID: 26003933 DOI: 10.1016/bs.aambs.2015.03.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Escherichia coli has a remarkable ability to survive low pH and possesses a number of different genetic systems that enable it to do this. These may be expressed constitutively, typically in stationary phase, or induced by growth under a variety of conditions. The activities of these systems have been implicated in the ability of E. coli to pass the acidic barrier of the stomach and to become established in the gastrointestinal tract, something causing serious infections. However, much of the work characterizing these systems has been done on standard laboratory strains of E. coli and under conditions which do not closely resemble those found in the human gut. Here we review what is known about acid resistance in E. coli as a model laboratory organism and in the context of its lifestyle as an inhabitant-sometimes an unwelcome one-of the human gut.
Collapse
|
61
|
Liu NT, Nou X, Bauchan GR, Murphy C, Lefcourt AM, Shelton DR, Lo YM. Effects of environmental parameters on the dual-species biofilms formed by Escherichia coli O157:H7 and Ralstonia insidiosa, a strong biofilm producer isolated from a fresh-cut produce processing plant. J Food Prot 2015; 78:121-7. [PMID: 25581186 DOI: 10.4315/0362-028x.jfp-14-302] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Biofilm-forming bacteria resident to food processing facilities are a food safety concern due to the potential of biofilms to harbor foodborne bacterial pathogens. When cultured together, Ralstonia insidiosa, a strong biofilm former frequently isolated from produce processing environments, has been shown to promote the incorporation of Escherichia coli O157:H7 into dual-species biofilms. In this study, interactions between E. coli O157:H7 and R. insidiosa were examined under different incubating conditions. Under static culture conditions, the incorporation of E. coli O157:H7 into biofilms with R. insidiosa was not significantly affected by either low incubating temperature (10°C) or by limited nutrient availability. Greater enhancement of E. coli O157:H7 incorporation in dual-species biofilms was observed by using a continuous culture system with limited nutrient availability. Under the continuous culture conditions used in this study, E coli O157:H7 cells showed a strong tendency of colocalizing with R. insidiosa on a glass surface at the early stage of biofilm formation. As the biofilms matured, E coli O157:H7 cells were mostly found at the bottom layer of the dual-species biofilms, suggesting an effective protection by R. insidiosa in the mature biofilms.
Collapse
Affiliation(s)
- Nancy T Liu
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, Maryland 20705, USA; Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20740, USA
| | - Xiangwu Nou
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, Maryland 20705, USA.
| | - Gary R Bauchan
- Electron and Confocal Microscopy Unit, Beltsville Agricultural Research Center, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, Maryland 20705, USA
| | - Charles Murphy
- Electron and Confocal Microscopy Unit, Beltsville Agricultural Research Center, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, Maryland 20705, USA
| | - Alan M Lefcourt
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, Maryland 20705, USA
| | - Daniel R Shelton
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, Maryland 20705, USA
| | - Y Martin Lo
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20740, USA
| |
Collapse
|
62
|
Shimizu K. Metabolic Regulation and Coordination of the Metabolism in Bacteria in Response to a Variety of Growth Conditions. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 155:1-54. [PMID: 25712586 DOI: 10.1007/10_2015_320] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Living organisms have sophisticated but well-organized regulation system. It is important to understand the metabolic regulation mechanisms in relation to growth environment for the efficient design of cell factories for biofuels and biochemicals production. Here, an overview is given for carbon catabolite regulation, nitrogen regulation, ion, sulfur, and phosphate regulations, stringent response under nutrient starvation as well as oxidative stress regulation, redox state regulation, acid-shock, heat- and cold-shock regulations, solvent stress regulation, osmoregulation, and biofilm formation, and quorum sensing focusing on Escherichia coli metabolism and others. The coordinated regulation mechanisms are of particular interest in getting insight into the principle which governs the cell metabolism. The metabolism is controlled by both enzyme-level regulation and transcriptional regulation via transcription factors such as cAMP-Crp, Cra, Csr, Fis, P(II)(GlnB), NtrBC, CysB, PhoR/B, SoxR/S, Fur, MarR, ArcA/B, Fnr, NarX/L, RpoS, and (p)ppGpp for stringent response, where the timescales for enzyme-level and gene-level regulations are different. Moreover, multiple regulations are coordinated by the intracellular metabolites, where fructose 1,6-bisphosphate (FBP), phosphoenolpyruvate (PEP), and acetyl-CoA (AcCoA) play important roles for enzyme-level regulation as well as transcriptional control, while α-ketoacids such as α-ketoglutaric acid (αKG), pyruvate (PYR), and oxaloacetate (OAA) play important roles for the coordinated regulation between carbon source uptake rate and other nutrient uptake rate such as nitrogen or sulfur uptake rate by modulation of cAMP via Cya.
Collapse
Affiliation(s)
- Kazuyuki Shimizu
- Kyushu Institute of Technology, Iizuka, Fukuoka, 820-8502, Japan. .,Institute of Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0017, Japan.
| |
Collapse
|
63
|
Panahibazaz M, Moosavian M, Khataminia G, Feghhi M, Yazdi F, Abbasi Montazeri E. Sub-Conjunctival Injection of Antibiotics vs. Povidone-Iodine Drop on Bacterial Colonies in Phacoemulsification Cataract Surgery. Jundishapur J Microbiol 2014. [PMID: 25485065 DOI: 10.5812/jjm-13108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Postoperative endophthalmitis is one the most serious complications of cataract surgery. The majority of causative organisms in this destructive infection come from the patient's own periocular flora. Efforts have been made to reduce the virulence of organisms in the eyelid and conjunctiva with perioperative topical antibiotics, preparation of surgical field, covering eyelids and conjunctival surface with 5% povidone-iodine solution and intracameral antibiotics at the time of surgery to minimize the risk of endophthalmitis. OBJECTIVES We assessed the effect of subconjunctival injection of cefazolin and pouring povidone-iodine on the conjunctiva bacterial colony forming units (CFU) in phacoemulsification cataract surgery. PATIENTS AND METHODS In this prospective, randomized, double-blind clinical trial, 122 patients having phacoemulsification cataract surgery with clear corneal incision and topical anesthesia were randomized into two groups including group 1 (subconjunctival injection of cefazolin) and group 2 (recipients of a drop of povidone-iodine). Cultures were collected from the bulbar conjunctiva at the injection site and from the corresponding location in the patient's eye, three different times. RESULTS The mean of eyelid samples on blood and chocolate agars, on the day after compared to the day before the surgery in group 1 showed a 52% and 56% reduction. These values were 58% and 50% in group 2 (P < 0.05). The mean CFU of conjunctiva before and at the end of surgery on blood and chocolate agars showed 57% and 56% reduction in group one and 51% and 52% reduction in group 2 (P < 0.05). While comparing mean CFU of conjunctiva at the end and one day post-surgery (interval of 14 ± 2 hours) showed 27% and 27% increase in group 1 and 20% and 21% increase in group 2 (P < 0.05), which reflects conjunctival flora proliferation during the early postoperative period. CONCLUSIONS Due to the good tolerance of patients towards topical anesthesia, pouring a drop of povidone-iodine 10% seems to be a simple and acceptable method to reduce the growth of microorganisms of the conjunctiva.
Collapse
Affiliation(s)
- Mahamoudreza Panahibazaz
- Department of Ophthalmology, Ophthalmic Research Center, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
| | - Mojataba Moosavian
- Department of Microbiology, Infectious Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
| | - Gholamreza Khataminia
- Department of Ophthalmology, Ophthalmic Research Center, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
| | - Mostafa Feghhi
- Department of Ophthalmology, Ophthalmic Research Center, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
| | - Farsim Yazdi
- Department of Ophthalmology, Ophthalmic Research Center, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
| | - Effat Abbasi Montazeri
- Department of Microbiology, Infectious Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
| |
Collapse
|
64
|
Nguyen MH, Ojima Y, Taya M. Enhanced colonization of rpoS-deficient Escherichia coli cells on solid surfaces by reinforced csgA gene expression. Biocontrol Sci 2014; 19:147-50. [PMID: 25252647 DOI: 10.4265/bio.19.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Scanning electron microscopy revealed that the rpoS-deficient cells of E. coli K-12 BW25113 (ΔrpoS) increased the number of flagella on the cell surfaces. However, the quantitative analysis of cell colonization showed that the increased number of flagella on ΔrpoS cell surfaces did not cause the enhancement of cell colonization on the surfaces of polyvinyl chloride (PVC), polypropylene (PP) and polystyrene (PS) after 24 h of incubation at 37℃. To facilitate the enhanced expression of curli, the csgA gene was introduced into the ΔrpoS cells. The transformed cells rich in flagella and curli on the cell surfaces were found to make colonies 2-3 times larger than both the wild type and ΔrpoS cells on the PVC, PP and PS surfaces at 37℃. It was thus verified that the reinforcement of csgA gene in the ΔrpoS cells induced the enhanced colonization on the solid surfaces with the increased flagellum and curli expressions.
Collapse
Affiliation(s)
- Minh Hong Nguyen
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University
| | | | | |
Collapse
|
65
|
Jeong HH, Jeong SG, Park A, Jang SC, Hong SG, Lee CS. Effect of temperature on biofilm formation by Antarctic marine bacteria in a microfluidic device. Anal Biochem 2014; 446:90-5. [PMID: 24513116 DOI: 10.1016/j.ab.2013.10.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 09/25/2013] [Accepted: 10/17/2013] [Indexed: 12/12/2022]
Abstract
Polar biofilms have become an increasingly popular biological issue because new materials and phenotypes have been discovered in microorganisms in the polar region. Various environmental factors affect the functionality and adaptation of microorganisms. Because the polar region represents an extremely cold environment, polar microorganisms have a functionality different from that of normal microorganisms. Thus, determining the effective temperature for the development of polar biofilms is crucial. Here, we present a simple, novel one-pot assay for analysis of the effect of temperature on formation of Antarctic bacterial biofilm using a microfluidic system where continuous temperature gradients are generated. We find that a specific range of temperature is required for the growth of biofilms. Thus, this microfluidic approach provides precise information regarding the effective temperature for polar biofilm development with a new high-throughput screening format.
Collapse
|
66
|
Hook AL, Chang CY, Scurr DJ, Langer R, Anderson DG, Williams P, Davies MC, Alexander MR. Thermally switchable polymers achieve controlled Escherichia coli detachment. Adv Healthc Mater 2014; 3:1020-5. [PMID: 24497458 DOI: 10.1002/adhm.201300518] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 12/06/2013] [Indexed: 01/11/2023]
Abstract
The thermally triggered release of up to 96% of attached uropathogenic E. coli is achieved on two polymers with opposite changes in surface wettability upon reduction in temperature. This demonstrates that the bacterial attachment to a surface cannot be explained in terms of water contact angle alone; rather, the surface composition of the polymer plays the key role.
Collapse
Affiliation(s)
- Andrew L. Hook
- Laboratory of Biophysics and Surface Analysis, School of Pharmacy; University of Nottingham; Nottingham NG72RD UK
| | - Chien-Yi Chang
- School of Life Sciences; University of Nottingham; Nottingham NG72RD UK
| | - David J. Scurr
- Laboratory of Biophysics and Surface Analysis, School of Pharmacy; University of Nottingham; Nottingham NG72RD UK
| | - Robert Langer
- Department of Chemical Engineering; Harvard-MIT Division of Health Sciences and Technology; 77 Massachusetts Avenue Cambridge MA 02139 USA
- Institute for Integrative Cancer Research; Massachusetts Institute of Technology; 500 Main Street Cambridge MA 02139 USA
| | - Daniel G. Anderson
- Department of Chemical Engineering; Harvard-MIT Division of Health Sciences and Technology; 77 Massachusetts Avenue Cambridge MA 02139 USA
- Institute for Integrative Cancer Research; Massachusetts Institute of Technology; 500 Main Street Cambridge MA 02139 USA
| | - Paul Williams
- School of Life Sciences; University of Nottingham; Nottingham NG72RD UK
| | - Martyn C. Davies
- Laboratory of Biophysics and Surface Analysis, School of Pharmacy; University of Nottingham; Nottingham NG72RD UK
| | - Morgan R. Alexander
- Laboratory of Biophysics and Surface Analysis, School of Pharmacy; University of Nottingham; Nottingham NG72RD UK
| |
Collapse
|
67
|
King T, Kocharunchitt C, Gobius K, Bowman JP, Ross T. Global genome response of Escherichia coli O157∶H7 Sakai during dynamic changes in growth kinetics induced by an abrupt temperature downshift. PLoS One 2014; 9:e99627. [PMID: 24926786 PMCID: PMC4057180 DOI: 10.1371/journal.pone.0099627] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 05/17/2014] [Indexed: 11/23/2022] Open
Abstract
Escherichia coli O157∶H7 is a mesophilic food-borne pathogen. We investigated the growth kinetics of E. coli O157∶H7 Sakai during an abrupt temperature downshift from 35°C to either 20°C, 17°C, 14°C or 10°C; as well as the molecular mechanisms enabling growth after cold stress upon an abrupt downshift from 35°C to 14°C in an integrated transcriptomic and proteomic analysis. All downshifts caused a lag period of growth before growth resumed at a rate typical of the post-shift temperature. Lag and generation time increased with the magnitude of the shift or with the final temperature, while relative lag time displayed little variation across the test range. Analysis of time-dependent molecular changes revealed, in keeping with a decreased growth rate at lower temperature, repression of genes and proteins involved in DNA replication, protein synthesis and carbohydrate catabolism. Consistent with cold-induced remodelling of the bacterial cell envelope, alterations occurred in the expression of genes and proteins involved in transport and binding. The RpoS regulon exhibited sustained induction confirming its importance in adaptation and growth at 14°C. The RpoE regulon was transiently induced, indicating a potential role for this extracytoplasmic stress response system in the early phase of low temperature adaptation during lag phase. Interestingly, genes previously reported to be amongst the most highly up-regulated under oxidative stress were consistently down-regulated. This comprehensive analysis provides insight into the molecular mechanisms operating during adaptation of E. coli to growth at low temperature and is relevant to its physiological state during chilling in foods, such as carcasses.
Collapse
Affiliation(s)
- Thea King
- Commonwealth Scientific and Industrial Research Organisation, Animal, Food and Health Sciences, North Ryde, New South Wales, Australia
- * E-mail:
| | - Chawalit Kocharunchitt
- Food Safety Centre, Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
| | - Kari Gobius
- Commonwealth Scientific and Industrial Research Organisation, Animal, Food and Health Sciences, Werribee, Victoria, Australia
| | - John P. Bowman
- Food Safety Centre, Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
| | - Tom Ross
- Food Safety Centre, Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
68
|
Intracellular concentrations of 65 species of transcription factors with known regulatory functions in Escherichia coli. J Bacteriol 2014; 196:2718-27. [PMID: 24837290 DOI: 10.1128/jb.01579-14] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The expression pattern of the Escherichia coli genome is controlled in part by regulating the utilization of a limited number of RNA polymerases among a total of its approximately 4,600 genes. The distribution pattern of RNA polymerase changes from modulation of two types of protein-protein interactions: the interaction of core RNA polymerase with seven species of the sigma subunit for differential promoter recognition and the interaction of RNA polymerase holoenzyme with about 300 different species of transcription factors (TFs) with regulatory functions. We have been involved in the systematic search for the target promoters recognized by each sigma factor and each TF using the newly developed Genomic SELEX system. In parallel, we developed the promoter-specific (PS)-TF screening system for identification of the whole set of TFs involved in regulation of each promoter. Understanding the regulation of genome transcription also requires knowing the intracellular concentrations of the sigma subunits and TFs under various growth conditions. This report describes the intracellular levels of 65 species of TF with known function in E. coli K-12 W3110 at various phases of cell growth and at various temperatures. The list of intracellular concentrations of the sigma factors and TFs provides a community resource for understanding the transcription regulation of E. coli under various stressful conditions in nature.
Collapse
|
69
|
Abstract
Temperature, among other environmental factors, influences the incidence and severity of many plant diseases. Likewise, numerous traits, including the expression of virulence factors, are regulated by temperature. Little is known about the underlying genetic determinants of thermoregulation in plant-pathogenic bacteria. Previously, we showed that the expression of both fliC (encoding flagellin) and syfA (encoding a nonribosomal polypeptide synthetase) was suppressed at high temperatures in Pseudomonas syringae. In this work, we used a high-throughput screen to identify mutations that conferred overexpression of syfA at elevated temperatures (28°C compared to 20°C). Two genes, Psyr_2474, encoding an acyl-coenzyme A (CoA) dehydrogenase, and Psyr_4843, encoding an ortholog of RppH, which in Escherichia coli mediates RNA turnover, contribute to thermoregulation of syfA. To assess the global role of rppH in thermoregulation in P. syringae, RNA sequencing was used to compare the transcriptomes of an rppH deletion mutant and the wild-type strain incubated at 20°C and 30°C. The disruption of rppH had a large effect on the temperature-dependent transcriptome of P. syringae, affecting the expression of 569 genes at either 20°C or 30°C but not at both temperatures. Intriguingly, RppH is involved in the thermoregulation of ribosome-associated proteins, as well as of RNase E, suggesting a prominent role of rppH on the proteome in addition to its effect on the transcriptome.
Collapse
|
70
|
Growth temperature alters Salmonella Enteritidis heat/acid resistance, membrane lipid composition and stress/virulence related gene expression. Int J Food Microbiol 2014; 172:102-9. [DOI: 10.1016/j.ijfoodmicro.2013.12.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 11/20/2013] [Accepted: 12/04/2013] [Indexed: 11/22/2022]
|
71
|
Vestby LK, Johannesen KCS, Witsø IL, Habimana O, Scheie AA, Urdahl AM, Benneche T, Langsrud S, Nesse LL. Synthetic brominated furanone F202 prevents biofilm formation by potentially human pathogenic Escherichia coli O103:H2 and Salmonella ser. Agona on abiotic surfaces. J Appl Microbiol 2014; 116:258-68. [PMID: 24118802 PMCID: PMC4255294 DOI: 10.1111/jam.12355] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 09/23/2013] [Accepted: 09/24/2013] [Indexed: 02/07/2023]
Abstract
AIMS Investigate the use of a synthetic brominated furanone (F202) against the establishment of biofilm by Salmonella ser. Agona and E. coli O103:H2 under temperature conditions relevant for the food and feed industry as well as under temperature conditions optimum for growth. METHODS AND RESULTS Effect of F202 on biofilm formation by Salmonella ser. Agona and E. coli O103:H2 was evaluated using a microtiter plate assay and confocal microscopy. Effect of F202 on bacterial motility was investigated using swimming and swarming assays. Influence on flagellar synthesis by F202 was examined by flagellar staining. Results showed that F202 inhibited biofilm formation without being bactericidal. F202 was found to affect both swimming and swarming motility without, however, affecting the expression of flagella. CONCLUSIONS F202 showed its potential as a biofilm inhibitor of Salmonella ser. Agona and E. coli O103:H2 under temperature conditions relevant for the feed and food industry as well as temperatures optimum for growth. One potential mode of action of F202 was found to be by targeting flagellar function. SIGNIFICANCE AND IMPACT OF THE STUDY The present study gives valuable new knowledge to the potential use of furanones as a tool in biofilm management in the food and feed industry.
Collapse
Affiliation(s)
- L K Vestby
- Norwegian Veterinary Institute, Department of Laboratory Services, Section for Bacteriology- aquatic and terrestrial, Oslo, Norway
| | - K C S Johannesen
- Norwegian Veterinary Institute, Department of Laboratory Services, Section for Bacteriology- aquatic and terrestrial, Oslo, Norway
| | - I L Witsø
- Faculty of Dentistry, Department of Oral Biology, University of Oslo, Oslo, Norway
| | | | - A A Scheie
- Faculty of Dentistry, Department of Oral Biology, University of Oslo, Oslo, Norway
| | - A M Urdahl
- Norwegian Veterinary Institute, Department of Health Surveillance, Section for Veterinary Public Health, Oslo, Norway
| | - T Benneche
- Faculty of Mathematics and Natural Sciences, Department of Chemistry, University of Oslo, Oslo, Norway
| | | | - L L Nesse
- Norwegian Veterinary Institute, Department of Laboratory Services, Section for Bacteriology- aquatic and terrestrial, Oslo, Norway
| |
Collapse
|
72
|
Regulation Systems of Bacteria such as Escherichia coli in Response to Nutrient Limitation and Environmental Stresses. Metabolites 2013; 4:1-35. [PMID: 24958385 PMCID: PMC4018673 DOI: 10.3390/metabo4010001] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/18/2013] [Accepted: 12/06/2013] [Indexed: 11/16/2022] Open
Abstract
An overview was made to understand the regulation system of a bacterial cell such as Escherichia coli in response to nutrient limitation such as carbon, nitrogen, phosphate, sulfur, ion sources, and environmental stresses such as oxidative stress, acid shock, heat shock, and solvent stresses. It is quite important to understand how the cell detects environmental signals, integrate such information, and how the cell system is regulated. As for catabolite regulation, F1,6B P (FDP), PEP, and PYR play important roles in enzyme level regulation together with transcriptional regulation by such transcription factors as Cra, Fis, CsrA, and cAMP-Crp. αKG plays an important role in the coordinated control between carbon (C)- and nitrogen (N)-limitations, where αKG inhibits enzyme I (EI) of phosphotransferase system (PTS), thus regulating the glucose uptake rate in accordance with N level. As such, multiple regulation systems are co-ordinated for the cell synthesis and energy generation against nutrient limitations and environmental stresses. As for oxidative stress, the TCA cycle both generates and scavenges the reactive oxygen species (ROSs), where NADPH produced at ICDH and the oxidative pentose phosphate pathways play an important role in coping with oxidative stress. Solvent resistant mechanism was also considered for the stresses caused by biofuels and biochemicals production in the cell.
Collapse
|
73
|
Barria C, Malecki M, Arraiano CM. Bacterial adaptation to cold. MICROBIOLOGY-SGM 2013; 159:2437-2443. [PMID: 24068238 DOI: 10.1099/mic.0.052209-0] [Citation(s) in RCA: 191] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Micro-organisms react to a rapid temperature downshift by triggering a physiological response to ensure survival in unfavourable conditions. Adaptation includes changes in membrane composition and in the translation and transcription machineries. The cold shock response leads to a growth block and overall repression of translation; however, there is the induction of a set of specific proteins that help to tune cell metabolism and readjust it to the new conditions. For a mesophile like E. coli, the adaptation process takes about 4 h. Although the bacterial cold shock response was discovered over two decades ago we are still far from understanding this process. In this review, we aim to describe current knowledge, focusing on the functions of RNA-interacting proteins and RNases involved in cold shock adaptation.
Collapse
Affiliation(s)
- C Barria
- Instituto de Tecnologia Quimica e Biologica (ITQB), Oeiras, Portugal
| | - M Malecki
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Poland.,Instituto de Tecnologia Quimica e Biologica (ITQB), Oeiras, Portugal
| | - C M Arraiano
- Instituto de Tecnologia Quimica e Biologica (ITQB), Oeiras, Portugal
| |
Collapse
|
74
|
Evolutionary potential, cross-stress behavior and the genetic basis of acquired stress resistance in Escherichia coli. Mol Syst Biol 2013; 9:643. [PMID: 23385483 PMCID: PMC3588905 DOI: 10.1038/msb.2012.76] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 12/08/2012] [Indexed: 12/20/2022] Open
Abstract
Escherichia coli cells were evolved over 500 generations and profiled in four abiotic stressors to observe several cases of emerging cross-stress behavior whereby adaptation to one stressful environment provided fitness advantage when exposed to a second stressor. ![]()
Cross-stress dependencies were found to be ubiquitous, highly interconnected and can emerge within short timeframes. Several targets were implicated in adaptation and cross-stress protection, including genes related to iron transport and flagella. Adaptation in a first stress can lead to higher fitness to a second stress when compared with cells adapted only in the latter environment. Adaptation to any specific stress and the growth media was found to be generally independent.
Bacterial populations have a remarkable capacity to cope with extreme environmental fluctuations in their natural environments. In certain cases, adaptation to one stressful environment provides a fitness advantage when cells are exposed to a second stressor, a phenomenon that has been coined as cross-stress protection. A tantalizing question in bacterial physiology is how the cross-stress behavior emerges during evolutionary adaptation and what the genetic basis of acquired stress resistance is. To address these questions, we evolved Escherichia coli cells over 500 generations in five environments that include four abiotic stressors. Through growth profiling and competition assays, we identified several cases of positive and negative cross-stress behavior that span all strain–stress combinations. Resequencing the genomes of the evolved strains resulted in the identification of several mutations and gene amplifications, whose fitness effect was further assessed by mutation reversal and competition assays. Transcriptional profiling of all strains under a specific stress, NaCl-induced osmotic stress, and integration with resequencing data further elucidated the regulatory responses and genes that are involved in this phenomenon. Our results suggest that cross-stress dependencies are ubiquitous, highly interconnected, and can emerge within short timeframes. The high adaptive potential that we observed argues that bacterial populations occupy a genotypic space that enables a high phenotypic plasticity during adaptation in fluctuating environments.
Collapse
|
75
|
Alternative sigma factor σE has an important role in stress tolerance of Yersinia pseudotuberculosis IP32953. Appl Environ Microbiol 2013; 79:5970-7. [PMID: 23872565 DOI: 10.1128/aem.01891-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yersinia pseudotuberculosis is an important pathogen that probably survives well in the modern food chain. However, little is known about the mechanisms that allow the growth of this pathogen in foods under stress conditions. The expression of rpoE encoding σ(E) was defined by quantitative real-time reverse transcription-PCR. Expression of rpoE was induced at 3°C, 37°C, and 42°C, under exposure to 3% NaCl, 3% ethanol, or high and low pH, in relation to its expression at the optimum growth temperature of 28°C of Y. pseudotuberculosis. Mutation of rpoE either impaired or abolished growth under stresses caused by low or high temperature, low pH, and ethanol. In addition, the growth temperature range of the mutant was significantly diminished compared to that of the wild-type strain IP32953. The results were confirmed with complementation of the mutant. Thus, σ(E) plays a significant role in the stress tolerance of Y. pseudotuberculosis IP32953 and probably contributes to the survival of this pathogen in the food chain.
Collapse
|
76
|
Da Re S, Valle J, Charbonnel N, Beloin C, Latour-Lambert P, Faure P, Turlin E, Le Bouguénec C, Renauld-Mongénie G, Forestier C, Ghigo JM. Identification of commensal Escherichia coli genes involved in biofilm resistance to pathogen colonization. PLoS One 2013; 8:e61628. [PMID: 23667443 PMCID: PMC3646849 DOI: 10.1371/journal.pone.0061628] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 03/12/2013] [Indexed: 12/24/2022] Open
Abstract
Protection provided by host bacterial microbiota against microbial pathogens is a well known but ill-understood property referred to as the barrier effect, or colonization resistance. Despite recent genome-wide analyses of host microbiota and increasing therapeutic interest, molecular analysis of colonization resistance is hampered by the complexity of direct in vivo experiments. Here we developed an in vitro-to-in vivo approach to identification of genes involved in resistance of commensal bacteria to exogenous pathogens. We analyzed genetic responses induced in commensal Escherichia coli upon entry of a diarrheagenic enteroaggregative E. coli or an unrelated Klebsiella pneumoniae pathogen into a biofilm community. We showed that pathogens trigger specific responses in commensal bacteria and we identified genes involved in limiting colonization of incoming pathogens within commensal biofilm. We tested the in vivo relevance of our findings by comparing the extent of intestinal colonization by enteroaggregative E. coli and K. pneumoniae pathogens in mice pre-colonized with E. coli wild type commensal strain, or mutants corresponding to identified colonization resistance genes. We demonstrated that the absence of yiaF and bssS (yceP) differentially alters pathogen colonization in the mouse gut. This study therefore identifies previously uncharacterized colonization resistance genes and provides new approaches to unravelling molecular aspects of commensal/pathogen competitive interactions.
Collapse
Affiliation(s)
- Sandra Da Re
- Institut Pasteur, Unité de Génétique des Biofilms, Département de Microbiologie, Paris, France
| | - Jaione Valle
- Institut Pasteur, Unité de Génétique des Biofilms, Département de Microbiologie, Paris, France
| | - Nicolas Charbonnel
- Université d'Auvergne-Clermont 1, Laboratoire de Bactériologie, Clermont-Ferrand, France
| | - Christophe Beloin
- Institut Pasteur, Unité de Génétique des Biofilms, Département de Microbiologie, Paris, France
| | - Patricia Latour-Lambert
- Institut Pasteur, Unité de Génétique des Biofilms, Département de Microbiologie, Paris, France
| | - Philippe Faure
- Université Pierre et Marie Curie, Equipe Neurophysiologie et Comportement (NPC) - UMR 7102, Paris, France
| | - Evelyne Turlin
- Institut Pasteur, Unité des Membranes Bactériennes, Département de Microbiologie, Paris, France
| | - Chantal Le Bouguénec
- Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram Positif, Département de Microbiologie, Paris, France
| | | | - Christiane Forestier
- Université d'Auvergne-Clermont 1, Laboratoire de Bactériologie, Clermont-Ferrand, France
| | - Jean-Marc Ghigo
- Institut Pasteur, Unité de Génétique des Biofilms, Département de Microbiologie, Paris, France
- * E-mail:
| |
Collapse
|
77
|
Karthikeyan P, Bhat SG, Chandrasekaran M. Halocin SH10 production by an extreme haloarchaeon Natrinema sp. BTSH10 isolated from salt pans of South India. Saudi J Biol Sci 2013; 20:205-12. [PMID: 23961237 PMCID: PMC3730894 DOI: 10.1016/j.sjbs.2013.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 01/28/2013] [Accepted: 02/01/2013] [Indexed: 11/26/2022] Open
Abstract
Halobacteria, members of the domain Archaea that live under extremely halophilic conditions, are often considered as dependable source for deriving novel enzymes, novel genes, bioactive compounds and other industrially important molecules. Protein antibiotics have potential for application as preserving agents in food industry, leather industry and in control of infectious bacteria. Halocins are proteinaceous antibiotics synthesized and released into the environment by extreme halophiles, a universal characteristic of halophilic bacteria. Herein, we report the production of halocin (SH10) by an extremely halophilic archeon Natrinema sp. BTSH10 isolated from salt pan of Kanyakumari, Tamilnadu, India and optimization of medium for enhanced production of halocin. It was found that the optimal conditions for maximal halocin production were 42 °C, pH 8.0, and 104 h of incubation at 200 rpm with 2% (V/V) inoculum concentration in Zobell's medium containing 3 M NaCl, Galactose, beef extract, and calcium chloride as additional supplements. Results indicated scope for fermentation production of halocin for probable applications using halophilic archeon Natrinema sp. BTSH10.
Collapse
Affiliation(s)
- P. Karthikeyan
- Department of Biotechnology, Cochin University of Science and Technology, Cochin 682022, Kerala, India
| | - Sarita G. Bhat
- Department of Biotechnology, Cochin University of Science and Technology, Cochin 682022, Kerala, India
| | - M. Chandrasekaran
- Department of Biotechnology, Cochin University of Science and Technology, Cochin 682022, Kerala, India
- Department of Botany and Microbiology, College of Science, PB No. 2455, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
78
|
Hha controls Escherichia coli O157:H7 biofilm formation by differential regulation of global transcriptional regulators FlhDC and CsgD. Appl Environ Microbiol 2013; 79:2384-96. [PMID: 23377937 DOI: 10.1128/aem.02998-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although molecular mechanisms promoting adherence of enterohemorrhagic Escherichia coli (EHEC) O157:H7 on epithelial cells are well characterized, regulatory mechanisms controlling biofilm formation are not fully understood. In this study, we demonstrate that biofilm formation in EHEC O157:H7 strain 86-24 is highly repressed compared to that in an isogenic hha mutant. The hha mutant produced large quantities of biofilm compared to the wild-type strain at 30°C and 37°C. Complementation of the hha mutant reduced the level of biofilm formation to that of the wild-type strain, indicating that Hha is a negative regulator of biofilm production. While swimming motility and expression of the flagellar gene fliC were significantly reduced, the expression of csgA (encoding curlin of curli fimbriae) and the ability to bind Congo red were significantly enhanced. The expression of both fliC and csgA and the phenotypes of motility and curli production affected by these two genes, respectively, were restored to wild-type levels in the complemented hha mutant. The csgA deletion abolished biofilm formation in the hha mutant and wild-type strain, and csgA complementation restored biofilm formation to these strains, indicating the importance of csgA and curli in biofilm formation. The regulatory effects of Hha on flagellar and curli gene expression appear to occur via the induction and repression of FlhDC and CsgD, as demonstrated by reduced flhD and increased csgD transcription in the hha mutant, respectively. In gel shift assays Hha interacted with flhDC and csgD promoters. In conclusion, Hha regulates biofilm formation in EHEC O157:H7 by differential regulation of FlhDC and CsgD, the global regulators of motility and curli production, respectively.
Collapse
|
79
|
Duval V, Lister IM. MarA, SoxS and Rob of Escherichia coli - Global regulators of multidrug resistance, virulence and stress response. ACTA ACUST UNITED AC 2013; 2:101-124. [PMID: 24860636 DOI: 10.6000/1927-3037.2013.02.03.2] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Bacteria have a great capacity for adjusting their metabolism in response to environmental changes by linking extracellular stimuli to the regulation of genes by transcription factors. By working in a co-operative manner, transcription factors provide a rapid response to external threats, allowing the bacteria to survive. This review will focus on transcription factors MarA, SoxS and Rob in Escherichia coli, three members of the AraC family of proteins. These homologous proteins exemplify the ability to respond to multiple threats such as oxidative stress, drugs and toxic compounds, acidic pH, and host antimicrobial peptides. MarA, SoxS and Rob recognize similar DNA sequences in the promoter region of more than 40 regulatory target genes. As their regulons overlap, a finely tuned adaptive response allows E. coli to survive in the presence of different assaults in a co-ordinated manner. These regulators are well conserved amongst Enterobacteriaceae and due to their broad involvement in bacterial adaptation in the host, have recently been explored as targets to develop new anti-virulence agents. The regulators are also being examined for their roles in novel technologies such as biofuel production.
Collapse
Affiliation(s)
- Valérie Duval
- Center for Adaptation Genetics and Drug Resistance, Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111
| | - Ida M Lister
- Arietis Corporation, 650 Albany Street, Room 130, Boston, MA 02118
| |
Collapse
|
80
|
Khona DK, Dongre SS, Arraiano CM, D'Souza JS. A BolA-like morphogene from the alga Chlamydomonas reinhardtii changes morphology and induces biofilm formation in Escherichia coli. FEMS Microbiol Lett 2012; 339:39-47. [PMID: 23278832 DOI: 10.1111/1574-6968.12051] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 10/13/2012] [Accepted: 11/09/2012] [Indexed: 11/29/2022] Open
Abstract
Escherichia coli BolA protein is a stress-inducible morphogene, regulates transcription, forms biofilms and interacts with monothiol glutaredoxins. Its presence has been documented in plants but its role remains enigmatic. This study attempts to functionally dissect the role of a BolA-domain-containing protein in the alga Chlamydomonas reinhardtii. Of the five C. reinhardtii bolA-like genes annotated for the presence of BolA-domain, the open reading frame with the highest similarity to algal systems was cloned and the protein over-expressed in E. coli. This over-expression did not affect E. coli growth but induced biofilm formation and changed its morphology, indicating functional conservancy. This is the first compelling evidence depicting the role of a plant BolA-like protein in morphogenetic pathway and biofilm formation. The implications of the phenotypic consequences of this heterologous expression are discussed.
Collapse
Affiliation(s)
- Dolly K Khona
- UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Santacruz (E), Mumbai, India
| | | | | | | |
Collapse
|
81
|
Poole K. Bacterial stress responses as determinants of antimicrobial resistance. J Antimicrob Chemother 2012; 67:2069-89. [PMID: 22618862 DOI: 10.1093/jac/dks196] [Citation(s) in RCA: 319] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bacteria encounter a myriad of stresses in their natural environments, including, for pathogens, their hosts. These stresses elicit a variety of specific and highly regulated adaptive responses that not only protect bacteria from the offending stress, but also manifest changes in the cell that impact innate antimicrobial susceptibility. Thus exposure to nutrient starvation/limitation (nutrient stress), reactive oxygen and nitrogen species (oxidative/nitrosative stress), membrane damage (envelope stress), elevated temperature (heat stress) and ribosome disruption (ribosomal stress) all impact bacterial susceptibility to a variety of antimicrobials through their initiation of stress responses that positively impact recruitment of resistance determinants or promote physiological changes that compromise antimicrobial activity. As de facto determinants of antimicrobial, even multidrug, resistance, stress responses may be worthy of consideration as therapeutic targets.
Collapse
Affiliation(s)
- Keith Poole
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada K7L 3N6.
| |
Collapse
|
82
|
Song W, Lin X, Huang X. Characterization and expression analysis of three cold shock protein (CSP) genes under different stress conditions in the Antarctic bacterium Psychrobacter sp. G. Polar Biol 2012. [DOI: 10.1007/s00300-012-1191-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
83
|
Abstract
In their stressful natural environments, bacteria often are in stationary phase and use their limited resources for maintenance and stress survival. Underlying this activity is the general stress response, which in Escherichia coli depends on the σS (RpoS) subunit of RNA polymerase. σS is closely related to the vegetative sigma factor σ70 (RpoD), and these two sigmas recognize similar but not identical promoter sequences. During the postexponential phase and entry into stationary phase, σS is induced by a fine-tuned combination of transcriptional, translational, and proteolytic control. In addition, regulatory "short-cuts" to high cellular σS levels, which mainly rely on the rapid inhibition of σS proteolysis, are triggered by sudden starvation for various nutrients and other stressful shift conditons. σS directly or indirectly activates more than 500 genes. Additional signal input is integrated by σS cooperating with various transcription factors in complex cascades and feedforward loops. Target gene products have stress-protective functions, redirect metabolism, affect cell envelope and cell shape, are involved in biofilm formation or pathogenesis, or can increased stationary phase and stress-induced mutagenesis. This review summarizes these diverse functions and the amazingly complex regulation of σS. At the molecular level, these processes are integrated with the partitioning of global transcription space by sigma factor competition for RNA polymerase core enzyme and signaling by nucleotide second messengers that include cAMP, (p)ppGpp, and c-di-GMP. Physiologically, σS is the key player in choosing between a lifestyle associated with postexponential growth based on nutrient scavenging and motility and a lifestyle focused on maintenance, strong stress resistance, and increased adhesiveness. Finally, research with other proteobacteria is beginning to reveal how evolution has further adapted function and regulation of σS to specific environmental niches.
Collapse
|
84
|
Palonen E, Lindström M, Karttunen R, Somervuo P, Korkeala H. Expression of signal transduction system encoding genes of Yersinia pseudotuberculosis IP32953 at 28°C and 3°C. PLoS One 2011; 6:e25063. [PMID: 21949852 PMCID: PMC3176822 DOI: 10.1371/journal.pone.0025063] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 08/26/2011] [Indexed: 11/18/2022] Open
Abstract
Yersinia pseudotuberculosis is a significant psychrotrophic food pathogen whose cold tolerance mechanisms are poorly understood. Signal transduction systems serve to monitor the environment, but no systematic investigation of their role at cold temperatures in Y. pseudotuberculosis has yet been undertaken. The relative expression levels of 54 genes predicted to encode proteins belonging to signal transduction systems in Y. pseudotuberculosis IP32953 were determined at 28°C and 3°C by quantitative real-time reverse transcription-PCR. The relative expression levels of 44 genes were significantly (p<0.05) higher at 3°C than at 28°C. Genes encoding the two-component system CheA/CheY had the highest relative expression levels at 3°C. Mutational analysis revealed that cheA is important for growth and motility at 3°C. The relative expression level of one gene, rssB, encoding an RpoS regulator, was significantly (p<0.05) lower at 3°C than at 28°C. The results suggest that several signal transduction systems might be used during growth at low temperature, and at least, CheA/CheY two-component system is important for low-temperature growth.
Collapse
Affiliation(s)
- Eveliina Palonen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.
| | | | | | | | | |
Collapse
|
85
|
Chen XM, Jiang Y, Li YT, Zhang HH, Li J, Chen X, Zhao Q, Zhao J, Si J, Lin ZW, Zhang H, Dyson P, An LZ. Regulation of expression of trehalose-6-phosphate synthase during cold shock in Arthrobacter strain A3. Extremophiles 2011; 15:499-508. [DOI: 10.1007/s00792-011-0380-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 05/20/2011] [Indexed: 10/18/2022]
|
86
|
Fonseca P, Moreno R, Rojo F. Growth of Pseudomonas putida at low temperature: global transcriptomic and proteomic analyses. ENVIRONMENTAL MICROBIOLOGY REPORTS 2011; 3:329-339. [PMID: 23761279 DOI: 10.1111/j.1758-2229.2010.00229.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In its natural habitats (soil, water and rhizosphere), Pseudomonas putida can suffer frequent and long-term changes in temperature that affect its growth and survival. Pseudomonas putida KT2440, a well-characterized model strain, grows optimally at 30°C but can proliferate at temperatures as low as 4°C. However, little information is available on the physiological changes that occur when P. putida grows at low temperatures. To investigate this area, the transcriptome and proteome profiles of cells exponentially growing in a complex medium at 10°C were compared with those of cells exponentially growing at 30°C. Low temperature modified the expression of at least 266 genes (some 5% of the genome). Many of the genes showing differential expression were involved in energy metabolism or in the transport and binding of substrates, although genes implicated in other cellular functions were also affected. Several changes seemed directed towards neutralizing problems created by low temperature, such as increased protein misfolding, the increased stability of DNA/RNA secondary structures, reduced membrane fluidity and a reduced growth rate. The present results improve our understanding of the P. putida lifestyle at low temperature, which may be relevant for its applications in bioremediation and in promotion of plant growth.
Collapse
Affiliation(s)
- Pilar Fonseca
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
87
|
Yamazaki A, Li J, Hutchins WC, Wang L, Ma J, Ibekwe AM, Yang CH. Commensal effect of pectate lyases secreted from Dickeya dadantii on proliferation of Escherichia coli O157:H7 EDL933 on lettuce leaves. Appl Environ Microbiol 2011; 77:156-62. [PMID: 21075884 PMCID: PMC3019694 DOI: 10.1128/aem.01079-10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 10/31/2010] [Indexed: 11/20/2022] Open
Abstract
The outbreaks caused by enterohemorrhagic Escherichia coli O157:H7 on leafy greens have raised serious and immediate food safety concerns. It has been suggested that several phytopathogens aid in the persistence and proliferation of the human enteropathogens in the phyllosphere. In this work, we examined the influence of virulence mechanisms of Dickeya dadantii 3937, a broad-host-range phytopathogen, on the proliferation of the human pathogen E. coli O157:H7 EDL933 (EDL933) on postharvest lettuce by coinoculation of EDL933 with D. dadantii 3937 derivatives that have mutations in virulence-related genes. A type II secretion system (T2SS)-deficient mutant of D. dadantii 3937, A1919 (ΔoutC), lost the capability to promote the multiplication of EDL933, whereas Ech159 (ΔrpoS), a stress-responsive σ factor RpoS-deficient mutant, increased EDL933 proliferation on lettuce leaves. A spectrophotometric enzyme activity assay revealed that A1919 (ΔoutC) was completely deficient in the secretion of pectate lyases (Pels), which play a major role in plant tissue maceration. In contrast to A1919 (ΔoutC), Ech159 (ΔrpoS) showed more than 2-fold-greater Pel activity than the wild-type D. dadantii 3937. Increased expression of pelD (encodes an endo-pectate lyase) was observed in Ech159 (ΔrpoS) in planta. These results suggest that the pectinolytic activity of D. dadantii 3937 is the dominant determinant of enhanced EDL933 proliferation on the lettuce leaves. In addition, RpoS, the general stress response σ factor involved in cell survival in suboptimal conditions, plays a role in EDL933 proliferation by controlling the production of pectate lyases in D. dadantii 3937.
Collapse
Affiliation(s)
- Akihiro Yamazaki
- Department of Biological Sciences, University of Wisconsin—Milwaukee, Milwaukee, Wisconsin 53211, Department of Civil Engineering and Mechanics, University of Wisconsin—Milwaukee, Milwaukee, Wisconsin 53211, USDA-ARS U.S. Salinity Laboratory, Riverside, California 92507
| | - Jin Li
- Department of Biological Sciences, University of Wisconsin—Milwaukee, Milwaukee, Wisconsin 53211, Department of Civil Engineering and Mechanics, University of Wisconsin—Milwaukee, Milwaukee, Wisconsin 53211, USDA-ARS U.S. Salinity Laboratory, Riverside, California 92507
| | - William C. Hutchins
- Department of Biological Sciences, University of Wisconsin—Milwaukee, Milwaukee, Wisconsin 53211, Department of Civil Engineering and Mechanics, University of Wisconsin—Milwaukee, Milwaukee, Wisconsin 53211, USDA-ARS U.S. Salinity Laboratory, Riverside, California 92507
| | - Lixia Wang
- Department of Biological Sciences, University of Wisconsin—Milwaukee, Milwaukee, Wisconsin 53211, Department of Civil Engineering and Mechanics, University of Wisconsin—Milwaukee, Milwaukee, Wisconsin 53211, USDA-ARS U.S. Salinity Laboratory, Riverside, California 92507
| | - Jincai Ma
- Department of Biological Sciences, University of Wisconsin—Milwaukee, Milwaukee, Wisconsin 53211, Department of Civil Engineering and Mechanics, University of Wisconsin—Milwaukee, Milwaukee, Wisconsin 53211, USDA-ARS U.S. Salinity Laboratory, Riverside, California 92507
| | - A. Mark Ibekwe
- Department of Biological Sciences, University of Wisconsin—Milwaukee, Milwaukee, Wisconsin 53211, Department of Civil Engineering and Mechanics, University of Wisconsin—Milwaukee, Milwaukee, Wisconsin 53211, USDA-ARS U.S. Salinity Laboratory, Riverside, California 92507
| | - Ching-Hong Yang
- Department of Biological Sciences, University of Wisconsin—Milwaukee, Milwaukee, Wisconsin 53211, Department of Civil Engineering and Mechanics, University of Wisconsin—Milwaukee, Milwaukee, Wisconsin 53211, USDA-ARS U.S. Salinity Laboratory, Riverside, California 92507
| |
Collapse
|
88
|
Effects of deficiency and overdose of group 2 sigma factors in triple inactivation strains of Synechocystis sp. strain PCC 6803. J Bacteriol 2010; 193:265-73. [PMID: 20971916 DOI: 10.1128/jb.01045-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acclimation of cyanobacteria to environmental changes includes major changes in the gene expression patterns partly orchestrated by the replacement of a particular σ subunit with another in the RNA polymerase holoenzyme. The cyanobacterium Synechocystis sp. strain PCC 6803 encodes nine σ factors, all belonging to the σ(70) family. Cyanobacteria typically encode many group 2 σ factors that closely resemble the principal σ factor. We inactivated three out of the four group 2 σ factors of Synechocystis simultaneously in all possible combinations and found that all triple inactivation strains grow well under standard conditions. Unlike the other strains, the ΔsigBCD strain, which contains SigE as the only functional group 2 σ factor, did not grow faster under mixotrophic than under autotrophic conditions. The SigB and SigD factors were important in low-temperature acclimation, especially under diurnal light rhythm. The ΔsigBCD, ΔsigBCE, and ΔsigBDE strains were sensitive to high-light-induced photoinhibition, indicating a central role of the SigB factor in high-light tolerance. Furthermore, the ΔsigBCE strain (SigD is the only functional group 2 σ factor) appeared to be locked in the high-fluorescence state (state 1) and grew slowly in blue but not in orange or white light. Our results suggest that features of the triple inactivation strains can be categorized as (i) direct consequences of the inactivation of a particular σ factor(s) and (ii) effects resulting from the higher probability that the remaining group 2 σ factors associate with the RNA polymerase core.
Collapse
|
89
|
Stress induced cross-protection against environmental challenges on prokaryotic and eukaryotic microbes. World J Microbiol Biotechnol 2010; 27:1281-96. [PMID: 25187127 DOI: 10.1007/s11274-010-0584-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 09/20/2010] [Indexed: 02/07/2023]
Abstract
Prokaryotic and eukaryotic microbes thrive successfully in stressful environments such as high osmolarity, acidic or alkali, solar heat and u.v. radiation, nutrient starvation, oxidative stress, and several others. To live under these continuous stress conditions, these microbes must have mechanisms to protect their proteins, membranes, and nucleic acids, as well as other mechanisms that repair nucleic acids. The stress responses in bacteria are controlled by master regulators, which include alternative sigma factors, such as RpoS and RpoH. The sigma factor RpoS integrates multiple signals, such as the general stress response regulators and the sigma factor RpoH regulates the heat shock proteins. These response pathways extensively overlap and are induced to various extents by the same environmental stresses. In eukaryotes, two major pathways regulate the stress responses: stress proteins, termed heat shock proteins (HSP), which appear to be required only for growth during moderate stress, and stress response elements (STRE), which are induced by different stress conditions and these elements result in the acquisition of a tolerant state towards any stress condition. In this review, the mechanisms of stress resistance between prokaryotic and eukaryotic microbes will be described and compared.
Collapse
|
90
|
The catalytic efficiency of trehalose-6-phosphate synthase is effected by the N-loop at low temperatures. Arch Microbiol 2010; 192:937-43. [PMID: 20838774 DOI: 10.1007/s00203-010-0625-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 08/24/2010] [Accepted: 08/26/2010] [Indexed: 10/19/2022]
Abstract
The enzyme OtsA (trehalose-6-phosphate synthase) is ubiquitous in both prokaryotic and eukaryotic organisms, where it plays a critical role in stress resistance and glucose metabolism. Here, we cloned the otsA gene from Arthrobacter sp. Cjts, and expressed and then purified the recombinant proteins. Enzyme activity analysis indicated that the high catalytic efficiency of OtsA from Arthrobacter sp. Cjts resulted from the high affinity of the enzyme for uridine 5'-diphosphoglucose (UDP-Glc) at low temperatures. We also confirmed that the N-loop sequence of OtsA has a large effect on its affinity for UDP-Glc. Sequence analysis indicated that the flexibility of the N-loop may be directly related to the catalytic efficiency of OtsA at low temperatures.
Collapse
|
91
|
Lehti TA, Bauchart P, Heikkinen J, Hacker J, Korhonen TK, Dobrindt U, Westerlund-Wikström B. Mat fimbriae promote biofilm formation by meningitis-associated Escherichia coli. MICROBIOLOGY-SGM 2010; 156:2408-2417. [PMID: 20522494 DOI: 10.1099/mic.0.039610-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The mat (or ecp) fimbrial operon is ubiquitous and conserved in Escherichia coli, but its functions remain poorly described. In routine growth media newborn meningitis isolates of E. coli express the meningitis-associated and temperature-regulated (Mat) fimbria, also termed E. coli common pilus (ECP), at 20 degrees C, and here we show that the six-gene (matABCDEF)-encoded Mat fimbria is needed for temperature-dependent biofilm formation on abiotic surfaces. The matBCDEF deletion mutant of meningitis E. coli IHE 3034 was defective in an early stage of biofilm development and consequently unable to establish a detectable biofilm, contrasting with IHE 3034 derivatives deleted for flagella, type 1 fimbriae or S-fimbriae, which retained the wild-type biofilm phenotype. Furthermore, induced production of Mat fimbriae from expression plasmids enabled biofilm-deficient E. coli K-12 cells to form biofilm at 20 degrees C. No biofilm was detected with IHE 3034 or MG1655 strains grown at 37 degrees C. The surface expression of Mat fimbriae and the frequency of Mat-positive cells in the IHE 3034 population from 20 degrees C were high and remained unaltered during the transition from planktonic to biofilm growth and within the matured biofilm community. Considering the prevalence of the highly conserved mat locus in E. coli genomes, we hypothesize that Mat fimbria-mediated biofilm formation is an ancestral characteristic of E. coli.
Collapse
Affiliation(s)
- Timo A Lehti
- General Microbiology, Department of Biosciences, FI-00014 University of Helsinki, Finland
| | - Philippe Bauchart
- Institute for Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany
| | - Johanna Heikkinen
- General Microbiology, Department of Biosciences, FI-00014 University of Helsinki, Finland
| | - Jörg Hacker
- Robert Koch-Institute, D-13353 Berlin, Germany.,Institute for Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany
| | - Timo K Korhonen
- General Microbiology, Department of Biosciences, FI-00014 University of Helsinki, Finland
| | - Ulrich Dobrindt
- Institute for Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany
| | | |
Collapse
|
92
|
Lopez-Velasco G, Davis M, Boyer RR, Williams RC, Ponder MA. Alterations of the phylloepiphytic bacterial community associated with interactions of Escherichia coli O157:H7 during storage of packaged spinach at refrigeration temperatures. Food Microbiol 2010; 27:476-86. [DOI: 10.1016/j.fm.2009.12.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 12/21/2009] [Accepted: 12/22/2009] [Indexed: 11/25/2022]
|
93
|
Contribution of rpoS and bolA genes in biofilm formation in Escherichia coli K-12 MG1655. Mol Cell Biochem 2010; 342:207-13. [PMID: 20480211 DOI: 10.1007/s11010-010-0485-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 05/04/2010] [Indexed: 10/19/2022]
Abstract
Flexibility of gene expression in bacteria permits its survival in varied environments. The genetic adaptation of bacteria through systematized gene expression is not only important, but also clinically relevant in their ability to grow biofilms in stress environments. Stress responses enable their survival under more severe conditions, enhanced resistance and/or virulence. In Escherichia coli (E. coli), two of the possible important genes for biofilm growth are rpoS and bolA gene. RpoS is also called as a master regulator of general stress response. Even though many studies have revealed the importance of rpoS in planktonic cells, little is known about the functions of rpoS in biofilms. In contrast, bolA which is a morphogene in E. coli is overexpressed under stressed environments resulting in round morphology. The hypothesis is that bolA could be implicated in biofilm development. This study reviewed the literature with the aim of understanding the stress tolerance response of E. coli in relation with rpoS and bolA genes in different environmental conditions including heat shock, cold shock, and stress in response to oxidation, acidic condition and in presence of cadmium. Knowledge of the genetic regulation of biofilm formation may lead to the understanding of the factors that drive the bacteria to switch to the biofilm mode of growth.
Collapse
|
94
|
Palonen E, Lindström M, Korkeala H. Adaptation of enteropathogenic Yersinia to low growth temperature. Crit Rev Microbiol 2010; 36:54-67. [PMID: 20088683 DOI: 10.3109/10408410903382581] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Yersinia enterocolitica and Yersinia pseudotuberculosis are important foodborne pathogens that cause infections through contaminated refrigerated food. Their cold tolerance mechanisms are therefore of special interest. Adaptation to cold involves changes in protein synthesis and in cell membranes to overcome diminished transcriptional and translational efficiency and reduced fluidity of cell membranes. Studies of low temperature adaptation mechanisms have mainly been performed on mesophilic bacteria, while most modern food hygiene risks are caused by psychrotrophs. Understanding low temperature adaptation of psychrotrophs would help to control these pathogens. This review demonstrates that more studies on cold tolerance mechanisms of psychrotrophs are needed.
Collapse
Affiliation(s)
- Eveliina Palonen
- Department of Food and Environmental Hygiene, University of Helsinki, Finland.
| | | | | |
Collapse
|
95
|
Ferrières L, Thompson A, Clarke DJ. Elevated levels of σ
S inhibit biofilm formation in Escherichia coli: a role for the Rcs phosphorelay. Microbiology (Reading) 2009; 155:3544-3553. [DOI: 10.1099/mic.0.032722-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Lionel Ferrières
- Molecular Microbiology Laboratory, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - Aoife Thompson
- Department of Microbiology and Alimentary Pharmabiotic Centre, University College Cork, Ireland
| | - David J. Clarke
- Department of Microbiology and Alimentary Pharmabiotic Centre, University College Cork, Ireland
- Molecular Microbiology Laboratory, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| |
Collapse
|
96
|
Klinkert B, Narberhaus F. Microbial thermosensors. Cell Mol Life Sci 2009; 66:2661-76. [PMID: 19554260 PMCID: PMC11115684 DOI: 10.1007/s00018-009-0041-3] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 03/27/2009] [Accepted: 04/21/2009] [Indexed: 12/27/2022]
Abstract
Temperature is among the most important of the parameters that free-living microbes monitor. Microbial physiology needs to be readjusted in response to sudden temperature changes. When the ambient temperature rises or drops to potentially harmful levels, cells mount protective stress responses--so-called heat or cold shock responses, respectively. Pathogenic microorganisms often respond to a temperature of around 37 degrees C by inducing virulence gene expression. There are two main ways in which temperature can be measured. Often, the consequences of a sudden temperature shift are detected. Such indirect signals are known to be the accumulation of denatured proteins (heat shock) or stalled ribosomes (cold shock). However, this article focuses solely on direct thermosensors. Since the conformation of virtually every biomolecule is susceptible to temperature changes, primary sensors include DNA, RNA, proteins and lipids.
Collapse
Affiliation(s)
- Birgit Klinkert
- Lehrstuhl für Biologie der Mikroorganismen, Ruhr-Universität Bochum, Universitätsstrasse 150, NDEF 06/783, 44780 Bochum, Germany
| | - Franz Narberhaus
- Lehrstuhl für Biologie der Mikroorganismen, Ruhr-Universität Bochum, Universitätsstrasse 150, NDEF 06/783, 44780 Bochum, Germany
| |
Collapse
|
97
|
Tschowri N, Busse S, Hengge R. The BLUF-EAL protein YcgF acts as a direct anti-repressor in a blue-light response of Escherichia coli. Genes Dev 2009; 23:522-34. [PMID: 19240136 DOI: 10.1101/gad.499409] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The blue light using FAD (BLUF)-EAL protein YcgF is a known blue-light sensor of Escherichia coli, but its direct regulatory output and physiological function have remained unknown. Here, we demonstrate that unlike other EAL domain proteins, YcgF does not degrade the signaling molecule c-di-GMP, but directly binds to and releases the MerR-like repressor YcgE from its operator DNA upon blue-light irradiation. As a consequence, a distinct regulon of eight small proteins (of 71-126 amino acids) is strongly induced. These include YmgA and YmgB, which, via the RcsC/RcsD/RcsB two-component phosphorelay system, activate production of the biofilm matrix substance colanic acid as well as acid resistance genes and the biofilm-associated bdm gene and down-regulate adhesive curli fimbriae. Thus, small proteins under YcgF/YcgE control seem to act as "connectors" that provide additional signal input into a two-component signaling pathway. Moreover, we found ycgF and ycgE expression to be strongly activated at low temperature, and we elucidate how blue light, cold, and starvation signals are integrated in the expression and activity of the YcgF/YcgE/small protein signaling pathway. In conclusion, this pathway may modulate biofilm formation via the two-component network when E. coli has to survive in an extrahost aquatic environment.
Collapse
Affiliation(s)
- Natalia Tschowri
- Institut für Biologie-Mikrobiologie, Freie Universität Berlin, 14195 Berlin, Germany
| | | | | |
Collapse
|
98
|
Kim KS, Manasherob R, Cohen SN. YmdB: a stress-responsive ribonuclease-binding regulator of E. coli RNase III activity. Genes Dev 2009; 22:3497-508. [PMID: 19141481 DOI: 10.1101/gad.1729508] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The broad cellular actions of RNase III family enzymes include ribosomal RNA (rRNA) processing, mRNA decay, and the generation of noncoding microRNAs in both prokaryotes and eukaryotes. Here we report that YmdB, an evolutionarily conserved 18.8-kDa protein of Escherichia coli of previously unknown function, is a regulator of RNase III cleavages. We show that YmdB functions by interacting with a site in the RNase III catalytic region, that expression of YmdB is transcriptionally activated by both cold-shock stress and the entry of cells into stationary phase, and that this activation requires the sigma-factor-encoding gene, rpoS. We discovered that down-regulation of RNase III activity occurs during both stresses and is dependent on YmdB production during cold shock; in contrast, stationary-phase regulation was unperturbed in YmdB-null mutant bacteria, indicating the existence of additional, YmdB-independent, factors that dynamically regulate RNase III actions during normal cell growth. Our results reveal the previously unsuspected role of ribonuclease-binding proteins in the regulation of RNase III activity.
Collapse
Affiliation(s)
- Kwang-sun Kim
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | |
Collapse
|
99
|
Genome-wide identification of H-NS-controlled, temperature-regulated genes in Escherichia coli K-12. J Bacteriol 2008; 191:1106-10. [PMID: 19011022 DOI: 10.1128/jb.00599-08] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
DNA microarrays demonstrate that H-NS controls 69% of the temperature regulated genes in Escherichia coli K-12. H-NS is shown to be a common regulator of multiple iron and other nutrient acquisition systems preferentially expressed at 37 degrees C and of general stress response, biofilm formation, and cold shock genes highly expressed at 23 degrees C.
Collapse
|
100
|
Lin YM, Chou IC, Wang JF, Ho FI, Chu YJ, Huang PC, Lu DK, Shen HL, Elbaz M, Huang SM, Cheng CP. Transposon mutagenesis reveals differential pathogenesis of Ralstonia solanacearum on tomato and Arabidopsis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:1261-1270. [PMID: 18700830 DOI: 10.1094/mpmi-21-9-1261] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Ralstonia solanacearum causes a deadly wilting disease on a wide range of crops. To elucidate pathogenesis of this bacterium in different host plants, we set out to identify R. solanacearum genes involved in pathogenesis by screening random transposon insertion mutants of a highly virulent strain, Pss190, on tomato and Arabidopsis thaliana. Mutants exhibiting various decreased virulence levels on these two hosts were identified. Sequence analysis showed that most, but not all, of the identified pathogenesis genes are conserved among distinct R. solanacearum strains. A few of the disrupted loci were not reported previously as being involved in R. solanacearum pathogenesis. Notably, a group of mutants exhibited differential pathogenesis on tomato and Arabidopsis. These results were confirmed by characterizing allelic mutants in one other R. solanacearum strain of the same phylotype. The significantly decreased mutants' colonization in Arabidopsis was found to be correlated with differential pathogenesis on these two plants. Differential requirement of virulence genes suggests adaptation of this bacterium in different host environments. Together, this study reveals commonalities and differences of R. solanacearum pathogenesis on single solanaceous and nonsolanaceous hosts, and provides important new insights into interactions between R. solanacearum and different host plants.
Collapse
Affiliation(s)
- Yu-Mei Lin
- Graduate Institute of Plant Biology, Department of Life Science, National Taiwan University, Taipei, Taiwan. Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|