51
|
Fang Y, Zhang Y, Zhou ZB, Shi WQ, Xia S, Li YY, Wu JT, Liu Q, Lin GY. Co-circulation of Aedes flavivirus, Culex flavivirus, and Quang Binh virus in Shanghai, China. Infect Dis Poverty 2018; 7:75. [PMID: 30021614 PMCID: PMC6052644 DOI: 10.1186/s40249-018-0457-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/26/2018] [Indexed: 11/22/2022] Open
Abstract
Background With increases in global travel and trade, the spread of arboviruses is undoubtedly alarming. Pathogen detection in field-caught mosquitoes can provide the earliest possible warning of transmission. Insect-specific flavivirus (ISFV) has been first detected in 1991 and documented worldwide in the latest ten years. Although infection with ISFVs is apparently limited to insects, an increase in the infection rate of mosquito-borne flaviviruses may be able to induce cytopathic effects in vertebrate cells during co-infection with other human pathogens. However, little is known whether ISFVs persist in most regions of China. Methods During the mosquito activity season in 2016, a surveillance program was carried out to detect ISFVs in mosquitoes in metropolitan Shanghai, China. The presence of ISFVs was randomly tested in different species of mosquitoes using RT-PCR-based and hemi-nested PCR assays, following by the sequencing of PCR products. Sequences from positive pooled samples were compared with those deposited in GenBank. Thereafter, sequences of representative insect flaviviruses were used for further phylogenetic and molecular evolutionary analyses. Results Our investigations showed: (1) the presence of Aedes flavivirus (AEFV) in 11/161 pooled samples (nine pools in Songjiang District, one pool in Huangpu District, and one pool in Qingpu District) of Aedes albopictus, (2) the presence of Quang Binh virus (QBV) in 10/195 pooled samples (all in Chongming District) of Culex tritaeniorhynchus; and (3) the presence of Culex flavivirus (CxFV) in 9/228 pooled samples (six pools in Pudong New Area, two pools in Huangpu District, and one pool in Chongming District) of Cx. pipiens. Furthermore, phylogenetic analyses of the gene sequences of envelope proteins indicated that Shanghai CxFV strains belonged to the Asia/USA genotype. The overall maximum likelihood estimation values (and 95% confidence interval) for CxFV, QBV, and AEFV in mosquitoes collected in Shanghai in 2016 were 1.34 (0.66–2.45), 1.65 (0.87–2.85), and 1.51 (0.77–2.70) per 1000, respectively. Conclusions This study reveals the presence and the geographical distribution of ISFVs, and determines the genetic variation and the infection rate of ISFVs in Shanghai, China. At least, three insect flaviviruses including ISFVs, AEFV, CxFV, and QBV, co-circulate in this area. To our knowledge, this is the first report of AEFV in China. Electronic supplementary material The online version of this article (10.1186/s40249-018-0457-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuan Fang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, Ministry of Health, 207 Rui Jin Er Road, Shanghai, 200025, People's Republic of China
| | - Yi Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, Ministry of Health, 207 Rui Jin Er Road, Shanghai, 200025, People's Republic of China.
| | - Zheng-Bin Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, Ministry of Health, 207 Rui Jin Er Road, Shanghai, 200025, People's Republic of China
| | - Wen-Qi Shi
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, Ministry of Health, 207 Rui Jin Er Road, Shanghai, 200025, People's Republic of China
| | - Shang Xia
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, Ministry of Health, 207 Rui Jin Er Road, Shanghai, 200025, People's Republic of China
| | - Yuan-Yuan Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, Ministry of Health, 207 Rui Jin Er Road, Shanghai, 200025, People's Republic of China
| | - Jia-Tong Wu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, Ministry of Health, 207 Rui Jin Er Road, Shanghai, 200025, People's Republic of China
| | - Qin Liu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, Ministry of Health, 207 Rui Jin Er Road, Shanghai, 200025, People's Republic of China
| | - Guang-Yi Lin
- Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| |
Collapse
|
52
|
Culverwell CL. A report on the mosquitoes of mainland Åland, southwestern Finland and revised list of Finnish mosquitoes. MEDICAL AND VETERINARY ENTOMOLOGY 2018; 32:145-154. [PMID: 29064596 DOI: 10.1111/mve.12272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/09/2017] [Accepted: 08/30/2017] [Indexed: 06/07/2023]
Abstract
To successfully implement surveillance or control strategies for mosquitoes, up-to-date knowledge of regional species composition is vital. The last report regarding mosquitoes (Diptera: Culicidae) in the Åland archipelago, southwestern Finland listed 19 species (Utrio, 1979). To determine the current species diversity, one collection trip was made to mainland Åland in 2015 and three in 2016. Mosquitoes (n = 3286) were collected as both adult and immature life stages from 88 collections within 29 1-km2 areas. Fifteen of the 19 previously reported species were obtained, leaving the current status of four species uncertain. At least 11 species previously not reported from Åland, but confirmed on the Finnish mainland, were collected. Aedes geminus Peus was identified based on examination of the gonostylus, and represents a new species distribution for Finland. Anopheles maculipennis s.s. Meigen was confirmed from cytochrome c oxidase subunit I (COI) and internal transcribed spacer 2 (ITS2) sequence data and is reinstated on the list of Finnish species, along with Ochlerotatus sticticus (Meigen). Dahliana geniculata (Olivier) was found in two locations, in 2 months, indicating that there is an established population in Åland. The present data confirm that at least 27 species inhabit mainland Åland, rising to 31 when historical data are included. The Finnish mosquito fauna is increased from 38 to 41 species.
Collapse
Affiliation(s)
- C L Culverwell
- Medicum, Department of Virology, University of Helsinki, Helsinki, Finland
- The Natural History Museum, London, U.K
| |
Collapse
|
53
|
Lagier JC, Drancourt M, Charrel R, Bittar F, La Scola B, Ranque S, Raoult D. Many More Microbes in Humans: Enlarging the Microbiome Repertoire. Clin Infect Dis 2018; 65:S20-S29. [PMID: 28859350 DOI: 10.1093/cid/cix404] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The proportion of cultured microorganisms is dramatically lower than those predicted to be involved in colonization, acute, or chronic infections. We report our laboratory's contribution to promoting culture methods. As a result of using culturomics in our clinical microbiology laboratories (including amoeba co-culture and shell-vial culture) and through the use of matrix-assisted laser desorption/ionization-time-of-flight and the 16S rRNA gene for identification, we cultured 329 new bacterial species. This is also the first time that 327 of species have been isolated from humans, increasing the known human bacterial repertoire by 29%. We isolated 4 archaeal species for the first time from human, including 2 new species. Of the 100 isolates of giant viruses, we demonstrated the human pathogenicity of Mimivirus in pneumonia and Marseillevirus in diverse clinical situations. From sand flies, we isolated most of the known Phlebovirus strains that potentially cause human infections. Increasing the repertoire of human-associated microorganisms through culture will allow us to test pathogenicity models with viable microorganisms.
Collapse
Affiliation(s)
| | | | - Rémi Charrel
- UMR Emergence des Pathologies Virales, IRD 190, Inserm 1207, EHESP, France Fondation, IHU Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille (AP-HM) Public Hospitals of Marseille
| | | | | | - Stéphane Ranque
- Université Montpellier 1, IRBA, IP-TPT, Aix Marseille Université.,Parasitologie and Mycologie, IHU Méditerranée Infection, Hôpital de la Timone, AP-HM, Marseille, France
| | | |
Collapse
|
54
|
Calisher CH, Higgs S. The Discovery of Arthropod-Specific Viruses in Hematophagous Arthropods: An Open Door to Understanding the Mechanisms of Arbovirus and Arthropod Evolution? ANNUAL REVIEW OF ENTOMOLOGY 2018; 63:87-103. [PMID: 29324047 DOI: 10.1146/annurev-ento-020117-043033] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The discovery of an odd virus from hematophagous arthropods 40 years ago by Stollar and Thomas described cell fusing agent virus in cells derived from Aedes aegypti mosquitoes. Then came the report of Kamiti River virus from Ae. macintoshi in 1999, followed by worldwide reports of the discovery of other viruses of mosquitoes, ticks, and midges that replicate only in arthropods and not in vertebrates or in vertebrate cells. These viruses (now totaling at least 64 published) have genomes analogous to viruses in various families that include arboviruses and nonarboviruses. It is likely that some of these viruses have been insufficiently studied and may yet be shown to infect vertebrates. However, there is no doubt that the vast majority are restricted to arthropods alone and that they represent a recently recognized clade. Their biology, modes of transmission, worldwide distribution (some have been detected in wild-caught mosquitoes in both Asia and the United States, for example), molecular characteristics of their genomes, and potential for becoming vertebrate pathogens, or at least serving as virus reservoirs, are fascinating and may provide evidence useful in understanding virus evolution. Because metagenomics studies of arthropods have shown that arthropod genomes are the sources of arthropod virus genomes, further studies may also provide insights into the evolution of arthropods. More recently, others have published excellent papers that briefly review discoveries of arthropod viruses and that characterize certain genomic peculiarities, but, to now, there have been no reviews that encompass all these facets. We therefore anticipate that this review is published at a time and in a manner that is helpful for both virologists and entomologists to make more sense and understanding of this recently recognized and obviously important virus group. This review focuses specifically on arthropod viruses in hematophagous arthropods.
Collapse
Affiliation(s)
- Charles H Calisher
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523-1690;
| | - Stephen Higgs
- Kansas State University, Manhattan, Kansas 66506-7600;
| |
Collapse
|
55
|
Evaluation of a range of mammalian and mosquito cell lines for use in Chikungunya virus research. Sci Rep 2017; 7:14641. [PMID: 29116243 PMCID: PMC5677012 DOI: 10.1038/s41598-017-15269-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/24/2017] [Indexed: 01/29/2023] Open
Abstract
Chikungunya virus (CHIKV) is becoming an increasing global health issue which has spread across the globe and as far north as southern Europe. There is currently no vaccine or anti-viral treatment available. Although there has been a recent increase in CHIKV research, many of these in vitro studies have used a wide range of cell lines which are not physiologically relevant to CHIKV infection in vivo. In this study, we aimed to evaluate a panel of cell lines to identify a subset that would be both representative of the infectious cycle of CHIKV in vivo, and amenable to in vitro applications such as transfection, luciferase assays, immunofluorescence, western blotting and virus infection. Based on these parameters we selected four mammalian and two mosquito cell lines, and further characterised these as potential tools in CHIKV research.
Collapse
|
56
|
Zhang G, Asad S, Khromykh AA, Asgari S. Cell fusing agent virus and dengue virus mutually interact in Aedes aegypti cell lines. Sci Rep 2017; 7:6935. [PMID: 28761113 PMCID: PMC5537255 DOI: 10.1038/s41598-017-07279-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 06/26/2017] [Indexed: 12/31/2022] Open
Abstract
The genus Flavivirus contains more than 70 single-stranded, positive-sense arthropod-borne RNA viruses. Some flaviviruses are particularly medically important to humans and other vertebrates including dengue virus (DENV), West Nile virus, and yellow fever virus. These viruses are transmitted to vertebrates by mosquitoes and other arthropod species. Mosquitoes are also infected by insect-specific flaviviruses (ISFs) that do not appear to be infective to vertebrates. Cell fusing agent virus (CFAV) was the first described ISF, which was discovered in an Aedes aegypti cell culture. We found that while CFAV infection could be significantly reduced by application of RNAi against the NS5 gene, removal of the treatment led to quick restoration of CFAV replication. Interestingly, we found that CFAV infection significantly enhanced replication of DENV, and vice versa, DENV infection significantly enhanced replication of CFAV in mosquito cells. We have shown that CFAV infection leads to increase in the expression of ribonuclease kappa (RNASEK), which is known to promote infection of viruses that rely on endocytosis and pH-dependent entry. Knockdown of RNASEK by dsRNA resulted in reduced DENV replication. Thus, increased expression of RNASEK induced by CFAV is likely to contribute to enhanced DENV replication in CFAV-infected cells.
Collapse
Affiliation(s)
- Guangmei Zhang
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sultan Asad
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Alexander A Khromykh
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sassan Asgari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
57
|
Contreras-Gutierrez MA, Guzman H, Thangamani S, Vasilakis N, Tesh RB. Experimental Infection with and Maintenance of Cell Fusing Agent Virus ( Flavivirus) in Aedes aegypti. Am J Trop Med Hyg 2017; 97:299-304. [PMID: 28719335 DOI: 10.4269/ajtmh.16-0987] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
During the past two decades, there has been a dramatic increase in the recognition and characterization of novel insect-specific flaviviruses (ISFVs). Some of these agents are closely related to important mosquito-borne flavivirus pathogens. Results of experimental studies suggest that mosquitoes and mosquito cell cultures infected with some ISFVs are refractory to superinfection with related flavivirus pathogens; and it has been proposed that ISFVs potentially could be used to alter the vector competence of mosquitoes and reduce transmission of specific flavivirus pathogens, such as dengue, West Nile, or Zika viruses. In order for an ISFV to be used in such a control strategy, the virus would have to be vertically transmitted at a high rate in the target vector population to insure its continued maintenance. This study compared the vertical transmission rates of an ISFV, cell fusing agent virus (CFAV), in two Aedes aegypti colonies: one naturally infected with CFAV and the other experimentally infected but previously free of the virus. CFAV filial infection rates in progeny of female mosquitoes from both colonies were > 90% after two generations of selection, indicating the feasibility of introducing an ISFV into a mosquito population. This and other considerations for evaluating the feasibility of using ISFVs as an arbovirus control strategy are discussed.
Collapse
Affiliation(s)
- Maria Angelica Contreras-Gutierrez
- Grupo de Investigacion en Sistematica Molecular (GSM), Facultad de Ciencias, Universidad Nacional de Colombia, Medellin, Colombia.,Programa de Estudio y Control de Enfermedades Tropicales (PECET), Sede de Investigacion Universitaria (SIU), Universidad de Antioquia, Medellin, Colombia
| | - Hilda Guzman
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas
| | - Saravanan Thangamani
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas
| | - Nikos Vasilakis
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas
| | - Robert B Tesh
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
58
|
Interaction of Flavivirus with their mosquito vectors and their impact on the human health in the Americas. Biochem Biophys Res Commun 2017; 492:541-547. [PMID: 28499872 DOI: 10.1016/j.bbrc.2017.05.050] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 05/08/2017] [Indexed: 11/24/2022]
Abstract
Some of the major arboviruses with public health importance, such as dengue, yellow fever, Zika and West Nile virus are mosquito-borne or mosquito-transmitted Flavivirus. Their principal vectors are from the family Culicidae, Aedes aegypti and Aedes albopictus being responsible of the urban cycles of dengue, Zika and yellow fever virus. These vectors are highly competent for transmission of many arboviruses. The genetic variability of the vectors, the environment and the viral diversity modulate the vector competence, in this context, it is important to determine which vector species is responsible of an outbreak in areas where many vectors coexist. As some vectors can transmit several flaviviruses and some flaviviruses can be transmitted by different species of vectors, through this review we expose importance of yellow fever, dengue and Zika virus in the world and the Americas, as well as the updated knowledge about these flaviviruses in their interaction with their mosquito vectors, guiding us on what is probably the beginning of a new stage in which the simultaneity of outbreaks will occur more frequently.
Collapse
|
59
|
Hall RA, Bielefeldt-Ohmann H, McLean BJ, O'Brien CA, Colmant AMG, Piyasena TBH, Harrison JJ, Newton ND, Barnard RT, Prow NA, Deerain JM, Mah MGKY, Hobson-Peters J. Commensal Viruses of Mosquitoes: Host Restriction, Transmission, and Interaction with Arboviral Pathogens. Evol Bioinform Online 2017; 12:35-44. [PMID: 28096646 PMCID: PMC5226260 DOI: 10.4137/ebo.s40740] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 01/05/2023] Open
Abstract
Recent advances in virus detection strategies and deep sequencing technologies have enabled the identification of a multitude of new viruses that persistently infect mosquitoes but do not infect vertebrates. These are usually referred to as insect-specific viruses (ISVs). These novel viruses have generated considerable interest in their modes of transmission, persistence in mosquito populations, the mechanisms that restrict their host range to mosquitoes, and their interactions with pathogens transmissible by the same mosquito. In this article, we discuss studies in our laboratory and others that demonstrate that many ISVs are efficiently transmitted directly from the female mosquito to their progeny via infected eggs, and, moreover, that persistent infection of mosquito cell cultures or whole mosquitoes with ISVs can restrict subsequent infection, replication, and transmission of some mosquito-borne viral pathogens. This suggests that some ISVs may act as natural regulators of arboviral transmission. We also discuss viral and host factors that may be responsible for their host restriction.
Collapse
Affiliation(s)
- Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Helle Bielefeldt-Ohmann
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Breeanna J McLean
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Caitlin A O'Brien
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Agathe M G Colmant
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Thisun B H Piyasena
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Jessica J Harrison
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Natalee D Newton
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Ross T Barnard
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Natalie A Prow
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia.; QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Joshua M Deerain
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Marcus G K Y Mah
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia.; QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
60
|
Abstract
Vector mosquitoes are responsible for transmission of the majority of arthropod-borne (arbo-) viruses. Virus replication in these vectors needs to be sufficiently high to permit efficient virus transfer to vertebrate hosts. The mosquito immune response therefore is a key determinant for arbovirus transmission. Mosquito antiviral immunity is primarily mediated by the small interfering RNA pathway. Besides this well-established antiviral machinery, the PIWI-interacting RNA (piRNA) pathway processes viral RNA into piRNAs. In recent years, significant progress has been made in characterizing the biogenesis and function of these viral piRNAs. In this review, we discuss these developments, identify knowledge gaps, and suggest directions for future research.
Collapse
|
61
|
Roundy CM, Azar SR, Rossi SL, Weaver SC, Vasilakis N. Insect-Specific Viruses: A Historical Overview and Recent Developments. Adv Virus Res 2016; 98:119-146. [PMID: 28433051 DOI: 10.1016/bs.aivir.2016.10.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Arthropod-borne viruses (arboviruses) have in recent years become a tremendous global health concern resulting in substantial human morbidity and mortality. With the widespread utilization of molecular technologies such as next-generation sequencing and the advancement of bioinformatics tools, a new age of viral discovery has commenced. Many of the novel agents being discovered in recent years have been isolated from mosquitoes and exhibit a highly restricted host range. Strikingly, these insect-specific viruses have been found to be members of viral families traditionally associated with human arboviral pathogens, including but not limited to the families Flaviviridae, Togaviridae, Reoviridae, and Bunyaviridae. These agents therefore present novel opportunities in the fields of viral evolution and viral/vector interaction and have tremendous potential as agents for biocontrol of vectors and or viruses of medical importance.
Collapse
Affiliation(s)
- Christopher M Roundy
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, United States; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| | - Sasha R Azar
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, United States; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| | - Shannan L Rossi
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States; Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States
| | - Scott C Weaver
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, United States; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States; Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States; University of Texas Medical Branch, Galveston, TX, United States; Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX, United States; University of Texas Medical Branch, Galveston, TX, United States
| | - Nikos Vasilakis
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States; Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States; University of Texas Medical Branch, Galveston, TX, United States.
| |
Collapse
|
62
|
Abstract
INTRODUCTION Zika Virus (ZIKV), previously the cause of only rare and sporadic human infections, is now considered a Public Health Emergency of International Concern. Over the past two years, ZIKV has become a pandemic encompassing much of the Americas. ZIKV is now proven to cause microcephaly and ophthalmic anomalies in the newborn. Hydrops fetalis, developmental delay, and other anomalies are increasingly being attributed to ZIKV infection in fetuses and neonates. Sequelae of congenital infection and rapid spread of ZIKV throughout the Americas has catapulted Zika virus concerns to the forefront of the medical community. Areas covered: This review seeks to consolidate ZIKV epidemiology, diagnostic testing methods, CDC screening recommendations, and preventive strategies including potential vaccines. Expert commentary: Many unknowns still exist regarding ZIKV infections and its long-term effects in neonates. In addition, further studies need to evaluate if genomic differences that have occurred from the African to the Asian lineage of the virus have led to increased virulence of the virus. The authors believe that all pregnant women with fetuses showing microcephaly and/or intracranial calcifications should be tested for ZIKV infection if they cannot recall their sexual partner travel history. This change from the current CDCs recommendations could increase substantially the number of pregnant women and neonates, screened for ZIKV.
Collapse
Affiliation(s)
| | - Lucila Marquez
- b Department of Pediatrics, Section of Infectious Diseases , Baylor College of Medicine , Houston , TX , USA
| | - Mohan Pammi
- c Department of Pediatrics, Section of Neonatology , Baylor College of Medicine , Houston , TX , USA
| |
Collapse
|
63
|
Fauver JR, Grubaugh ND, Krajacich BJ, Weger-Lucarelli J, Lakin SM, Fakoli LS, Bolay FK, Diclaro JW, Dabiré KR, Foy BD, Brackney DE, Ebel GD, Stenglein MD. West African Anopheles gambiae mosquitoes harbor a taxonomically diverse virome including new insect-specific flaviviruses, mononegaviruses, and totiviruses. Virology 2016; 498:288-299. [PMID: 27639161 DOI: 10.1016/j.virol.2016.07.031] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/29/2016] [Accepted: 07/31/2016] [Indexed: 12/19/2022]
Abstract
Anopheles gambiae are a major vector of malaria in sub-Saharan Africa. Viruses that naturally infect these mosquitoes may impact their physiology and ability to transmit pathogens. We therefore used metagenomics sequencing to search for viruses in adult Anopheles mosquitoes collected from Liberia, Senegal, and Burkina Faso. We identified a number of virus and virus-like sequences from mosquito midgut contents, including 14 coding-complete genome segments and 26 partial sequences. The coding-complete sequences define new viruses in the order Mononegavirales, and the families Flaviviridae, and Totiviridae. The identification of a flavivirus infecting Anopheles mosquitoes broadens our understanding of the evolution and host range of this virus family. This study increases our understanding of virus diversity in general, begins to define the virome of a medically important vector in its natural setting, and lays groundwork for future studies examining the potential impact of these viruses on anopheles biology and disease transmission.
Collapse
Affiliation(s)
- Joseph R Fauver
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Nathan D Grubaugh
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Benjamin J Krajacich
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - James Weger-Lucarelli
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Steven M Lakin
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | | | - Fatorma K Bolay
- Liberian Institute for Biomedical Research, Charlesville, Liberia
| | | | | | - Brian D Foy
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Doug E Brackney
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Gregory D Ebel
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA.
| | - Mark D Stenglein
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA.
| |
Collapse
|
64
|
Valentine G, Marquez L, Pammi M. Zika Virus-Associated Microcephaly and Eye Lesions in the Newborn. J Pediatric Infect Dis Soc 2016; 5:323-8. [PMID: 27405738 DOI: 10.1093/jpids/piw037] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/01/2016] [Indexed: 11/14/2022]
Abstract
On February 1, 2016, Zika virus (ZIKV) was designated as a Public Health Emergency of International Concern by the director of the World Health Organization. Zika virus has spread to numerous countries throughout the Americas, affecting up to an estimated 1.3 million people since the first reports from Brazil in early 2015. Although ZIKV infections are self-limiting, fetal microcephaly and ophthalmic anomalies have been associated with ZIKV infection as a possible result of perinatal transmission. The causal link between maternal ZIKV infection and newborn microcephaly and eye lesions has not been proven beyond doubt and is currently debated. We discuss the possibility of causality by ZIKV using Koch's postulates and the more appropriate Bradford Hill criteria. In this review, we summarize and consolidate the current literature on newborn microcephaly and eye lesions associated with ZIKV infection and discuss current perspectives and controversies.
Collapse
Affiliation(s)
| | - Lucila Marquez
- Department of Pediatrics, Section of Infectious Diseases
| | - Mohan Pammi
- Department of Pediatrics, Section of Neonatology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
65
|
Nag DK, Brecher M, Kramer LD. DNA forms of arboviral RNA genomes are generated following infection in mosquito cell cultures. Virology 2016; 498:164-171. [PMID: 27588377 DOI: 10.1016/j.virol.2016.08.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/18/2016] [Accepted: 08/23/2016] [Indexed: 11/19/2022]
Abstract
Although infections of vertebrate hosts by arthropod-borne viruses may lead to pathogenic outcomes, infections of vector mosquitoes result in persistent infections, where the virus replicates in the host without causing apparent pathological effects. It is unclear how persistent infections are established and maintained in mosquitoes. Several reports revealed the presence of flavivirus-like DNA sequences in the mosquito genome, and recent studies have shown that DNA forms of RNA viruses restrict virus replication in Drosophila, suggesting that DNA forms may have a role in developing persistent infections. Here, we sought to investigate whether arboviruses generate DNA forms following infection in mosquitoes. Our results with West Nile, Dengue, and La Crosse viruses demonstrate that DNA forms of the viral RNA genome are generated in mosquito cells; however, not the entire viral genome, but patches of viral RNA in DNA forms can be detected 24h post infection.
Collapse
Affiliation(s)
- Dilip K Nag
- Wadsworth Center, Griffin Laboratory, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY 12159, USA; Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, NY 12201, USA.
| | - Matthew Brecher
- Wadsworth Center, Griffin Laboratory, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY 12159, USA.
| | - Laura D Kramer
- Wadsworth Center, Griffin Laboratory, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY 12159, USA; Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, NY 12201, USA.
| |
Collapse
|
66
|
Villinger J, Mbaya MK, Ouso D, Kipanga PN, Lutomiah J, Masiga DK. Arbovirus and insect-specific virus discovery in Kenya by novel six genera multiplex high-resolution melting analysis. Mol Ecol Resour 2016; 17:466-480. [PMID: 27482633 DOI: 10.1111/1755-0998.12584] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 07/02/2016] [Accepted: 07/05/2016] [Indexed: 02/03/2023]
Abstract
A broad diversity of arthropod-borne viruses (arboviruses) of global health concern are endemic to East Africa, yet most surveillance efforts are limited to just a few key viral pathogens. Additionally, estimates of arbovirus diversity in the tropics are likely to be underestimated as their discovery has lagged significantly over past decades due to limitations in fast and sensitive arbovirus identification methods. Here, we developed a nearly pan-arbovirus detection assay that uses high-resolution melting (HRM) analysis of RT-PCR products from highly multiplexed assays to differentiate broad diversities of arboviruses. We differentiated 15 viral culture controls and seven additional synthetic viral DNA sequence controls, within Flavivirus, Alphavirus, Nairovirus, Phlebovirus, Orthobunyavirus and Thogotovirus genera. Among Bunyamwera, sindbis, dengue and Thogoto virus serial dilutions, detection by multiplex RT-PCR-HRM was comparable to the gold standard Vero cell plaque assays. We applied our low-cost method for enhanced broad-range pathogen surveillance from mosquito samples collected in Kenya and identified diverse insect-specific viruses, including a new clade in anopheline mosquitoes, and Wesselsbron virus, an arbovirus that can cause viral haemorrhagic fever in humans and has not previously been isolated in Kenya, in Culex spp. and Anopheles coustani mosquitoes. Our findings demonstrate how multiplex RT-PCR-HRM can identify novel viral diversities and potential disease threats that may not be included in pathogen detection panels of routine surveillance efforts. This approach can be adapted to other pathogens to enhance disease surveillance and pathogen discovery efforts, as well as the study of pathogen diversity and viral evolutionary ecology.
Collapse
Affiliation(s)
- Jandouwe Villinger
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772, Nairobi, 00100, Kenya
| | - Martin K Mbaya
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772, Nairobi, 00100, Kenya.,Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000, Nairobi, Kenya
| | - Daniel Ouso
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772, Nairobi, 00100, Kenya.,Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000, Nairobi, Kenya
| | - Purity N Kipanga
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772, Nairobi, 00100, Kenya.,Zoological Institute, Katholieke Universiteit, Naamsestraat 59, P.O. Box 3000, Leuven, Belgium
| | - Joel Lutomiah
- Kenya Medical Research Institute (KEMRI), Nairobi, Kenya
| | - Daniel K Masiga
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772, Nairobi, 00100, Kenya
| |
Collapse
|
67
|
Hall-Mendelin S, McLean BJ, Bielefeldt-Ohmann H, Hobson-Peters J, Hall RA, van den Hurk AF. The insect-specific Palm Creek virus modulates West Nile virus infection in and transmission by Australian mosquitoes. Parasit Vectors 2016; 9:414. [PMID: 27457250 PMCID: PMC4960669 DOI: 10.1186/s13071-016-1683-2] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/05/2016] [Indexed: 11/26/2022] Open
Abstract
Background Insect-specific viruses do not replicate in vertebrate cells, but persist in mosquito populations and are highly prevalent in nature. These viruses may naturally regulate the transmission of pathogenic vertebrate-infecting arboviruses in co-infected mosquitoes. Following the isolation of the first Australian insect-specific flavivirus (ISF), Palm Creek virus (PCV), we investigated routes of infection and transmission of this virus in key Australian arbovirus vectors and its impact on replication and transmission of West Nile virus (WNV). Methods Culex annulirostris, Aedes aegypti and Aedes vigilax were exposed to PCV, and infection, replication and transmission rates in individual mosquitoes determined. To test whether the virus could be transmitted vertically, progeny reared from eggs oviposited by PCV-inoculated Cx. annulirostris were analysed for the presence of PCV. To assess whether prior infection of mosquitoes with PCV could also suppress the transmission of pathogenic flaviviruses, PCV positive or negative Cx. annulirostris were subsequently exposed to WNV. Results No PCV-infected Cx. annulirostris were detected 16 days after feeding on an infectious blood meal. However, when intrathoracically inoculated with PCV, Cx. annulirostris infection rates were 100 %. Similar rates of infection were observed in Ae. aegypti (100 %) and Ae. vigilax (95 %). Notably, PCV was not detected in any saliva expectorates collected from any of these species. PCV was not detected in 1038 progeny reared from 59 PCV-infected Cx. annulirostris. After feeding on a blood meal containing 107 infectious units of WNV, significantly fewer PCV-infected Cx. annulirostris were infected or transmitted WNV compared to PCV negative mosquitoes. Immunohistochemistry revealed that PCV localized in the midgut epithelial cells, which are the first site of infection with WNV. Conclusions Our results indicate that PCV cannot infect Cx. annulirostris via the oral route, nor be transmitted in saliva or vertically to progeny. We also provide further evidence that prior infection with insect-specific viruses can regulate the infection and transmission of pathogenic arboviruses.
Collapse
Affiliation(s)
- Sonja Hall-Mendelin
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, PO Box 594, Archerfield, 4108, QLD, Australia
| | - Breeanna J McLean
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, QLD, Australia
| | - Helle Bielefeldt-Ohmann
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, QLD, Australia.,School of Veterinary Science, The University of Queensland, Gatton Campus, Gatton, 4343, QLD, Australia
| | - Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, QLD, Australia
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, QLD, Australia
| | - Andrew F van den Hurk
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, PO Box 594, Archerfield, 4108, QLD, Australia.
| |
Collapse
|
68
|
Fernandes LN, Paula MBD, Araújo AB, Gonçalves EFB, Romano CM, Natal D, Malafronte RDS, Marrelli MT, Levi JE. Detection of Culex flavivirus and Aedes flavivirus nucleotide sequences in mosquitoes from parks in the city of São Paulo, Brazil. Acta Trop 2016; 157:73-83. [PMID: 26829359 DOI: 10.1016/j.actatropica.2016.01.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/22/2016] [Accepted: 01/24/2016] [Indexed: 11/28/2022]
Abstract
The dengue viruses are widespread in Brazil and are a major public health concern. Other flaviviruses also cause diseases in humans, although on a smaller scale. The city of São Paulo is in a highly urbanized area with few green spaces apart from its parks, which are used for recreation and where potential vertebrate hosts and mosquito vectors of pathogenic Flavivirus species can be found. Although this scenario can contribute to the transmission of Flavivirus to humans, little is known about the circulation of members of this genus in these areas. In light of this, the present study sought to identify Flavivirus infection in mosquitoes (Diptera: Culicidae) collected in parks in the city of São Paulo. Seven parks in different sectors of the city were selected. Monthly mosquito collections were carried out in each park from March 2011 to February 2012 using aspiration and traps (Shannon and CD C-CO2). Nucleic acids were extracted from the mosquitoes collected and used for reverse-transcriptase and real-time polymerase chain reactions with genus-specific primers targeting a 200-nucleotide region in the Flavivirus NS5 gene. Positive samples were sequenced, and phylogenetic analyses were performed. Culex and Aedes were the most frequent genera of Culicidae collected. Culex flavivirus (CxFV)-related and Aedes flavivirus (AEFV)- related nucleotide sequences were detected in 17 pools of Culex and two pools of Aedes mosquitoes, respectively, among the 818 pools of non-engorged females analyzed. To the best of our knowledge, this is the first report of CxFV and AEFV in the city of São Paulo and Latin America, respectively. Both viruses are insect- specific flaviviruses, a group known to replicate only in mosquito cells and induce a cytopathic effect in some situations. Hence, our data suggests that CxFV and AEFV are present in Culex and Aedes mosquitoes, respectively, in parks in the city of São Paulo. Even though Flavivirus species of medical importance were not detected, surveillance is recommended in the study areas because of the presence of vertebrates and mosquitoes that could act as amplifying hosts and vectors of flaviviruses, providing the required conditions for circulation of these viruses.
Collapse
|
69
|
Dedkov VG, Lukashev AN, Deviatkin AA, Kuleshov KV, Safonova MV, Poleshchuk EM, Drexler JF, Shipulin GA. Retrospective diagnosis of two rabies cases in humans by high throughput sequencing. J Clin Virol 2016; 78:74-81. [PMID: 26998568 DOI: 10.1016/j.jcv.2016.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 02/27/2016] [Accepted: 03/12/2016] [Indexed: 11/25/2022]
Abstract
BACKGROUND Rabies is prevalent in 150 countries and is definitely found in Russian Federation. The average registered incidence of rabies infection among animals in Russia is 3000 cases per year. At least 500,000 cases of animal bites and scratches are registered in the Russia every year, but only 2-4 cases of rabies infection in humans are reported per year. This relatively low incidence of rabies infection among humans is the result of a well-organized program of rabies surveillance and control as well as the readily available vaccination and immunoglobulin therapies. However, physician awareness of rabies infection in patients with acute encephalopathy is low, and some cases of rabies remain undiagnosed. OBJECTIVES A retrospective study of autopsy materials from patients who died of encephalitis of unknown etiology in the Astrakhan region of Russia in 2003. STUDY DESIGN A broad-range polymerase chain reaction (PCR) analysis followed by high throughput sequencing were used for the diagnosis. RESULTS Two cases of rabies were detected and subsequently confirmed using a fluorescent antibody test, an enzyme-linked immunosorbent assay (ELISA) and a mouse inoculation test. Two strains of rabies virus were isolated and characterized using virological methods. The entire genome of each strain was sequenced.
Collapse
Affiliation(s)
- V G Dedkov
- Federal Budget Institute of Science Central Research Institute for Epidemiology, Russian Inspectorate for Protection of Consumer Right and Human Welfare, Moscow, Russia; RAS Institute of Occupational Health, Moscow, Russia.
| | - A N Lukashev
- Chumakov Institute of Poliomyelitis and Viral Encephalitides, Moscow, Russia; Martsinovsky Institute of Medical Parasitology and Tropical Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - A A Deviatkin
- Federal Budget Institute of Science Central Research Institute for Epidemiology, Russian Inspectorate for Protection of Consumer Right and Human Welfare, Moscow, Russia; RAS Institute of Occupational Health, Moscow, Russia; Chumakov Institute of Poliomyelitis and Viral Encephalitides, Moscow, Russia
| | - K V Kuleshov
- Federal Budget Institute of Science Central Research Institute for Epidemiology, Russian Inspectorate for Protection of Consumer Right and Human Welfare, Moscow, Russia
| | - M V Safonova
- Federal Budget Institute of Science Central Research Institute for Epidemiology, Russian Inspectorate for Protection of Consumer Right and Human Welfare, Moscow, Russia; Chumakov Institute of Poliomyelitis and Viral Encephalitides, Moscow, Russia
| | - E M Poleshchuk
- Omsk Research Institute of Natural Foci Infections, Omsk, Russia
| | - J F Drexler
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany; German Centre for Infection Research, partner site Bonn-Cologne, Germany
| | - G A Shipulin
- Federal Budget Institute of Science Central Research Institute for Epidemiology, Russian Inspectorate for Protection of Consumer Right and Human Welfare, Moscow, Russia
| |
Collapse
|
70
|
Al-Eryani SMA, Kelly-Hope L, Harbach RE, Briscoe AG, Barnish G, Azazy A, McCall PJ. Entomological aspects and the role of human behaviour in malaria transmission in a highland region of the Republic of Yemen. Malar J 2016; 15:130. [PMID: 26932794 PMCID: PMC4774125 DOI: 10.1186/s12936-016-1179-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 02/17/2016] [Indexed: 11/25/2022] Open
Abstract
Background The Republic of Yemen has the highest incidence of malaria in the Arabian Peninsula, yet little is known of its vectors or transmission dynamics. Methods A 24-month study of the vectors and related epidemiological aspects of malaria transmission was conducted in two villages in the Taiz region in 2004–2005. Results Cross-sectional blood film surveys recorded an overall malaria infection rate of 15.3 % (250/1638), with highest rates exceeding 30 % in one village in May and December 2005. With one exception, Plasmodium malariae, all infections were P.falciparum. Seven Anopheles species were identified among 3407 anophelines collected indoors using light traps (LT) and pyrethrum knockdown catches (PKD): Anopheles arabiensis (86.9 %), An. sergentii (9 %), An. azaniae, An. dthali, An. pretoriensis, An. coustani and An. algeriensis. Sequences for the standard barcode region of the mitochondrial COI gene confirmed the presence of two morphological forms of An. azaniae, the typical form and a previously unrecognized form not immediately identifiable as An. azaniae. ELISA detected Plasmodium sporozoites in 0.9 % of 2921 An. arabiensis (23 P. falciparum, two P. vivax) confirming this species as the primary malaria vector in Yemen. Plasmodium falciparum sporozoites were detected in An. sergentii (2/295) and a single female of An. algeriensis, incriminating both species as malaria vectors for the first time in Yemen. A vector in both wet and dry seasons, An. arabiensis was predominantly anthropophilic (human blood index = 0.86) with an entomological inoculation rate of 1.58 infective bites/person/year. Anopheles sergentii fed on cattle (67.3 %) and humans (48.3; 20.7 % mixed both species), but only 14.7 % were found in PKDs, indicating predominantly exophilic behaviour. A GIS analysis of geographic and socio-economic parameters revealed that An. arabiensis were significantly higher (P < 0.001) in houses with televisions, most likely due to the popular evening habit of viewing television collectively in houses with open doors and windows. Conclusions The predominantly indoor human biting vectors recorded in this study could be targeted effectively with LLINs, indoor residual spraying and/or insecticide-treated window/door curtains reinforced by education to instil a perception that effective and affordable malaria prevention is achievable. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1179-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Samira M A Al-Eryani
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK. .,Department of Medical Parasitology, Faculty of Medicine and Health Sciences, University of Yemen, Sana'a, Yemen.
| | - Louise Kelly-Hope
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK.
| | - Ralph E Harbach
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, UK.
| | - Andrew G Briscoe
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, UK.
| | - Guy Barnish
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK.
| | - Ahmed Azazy
- Department of Medical Parasitology, Faculty of Medicine and Health Sciences, University of Yemen, Sana'a, Yemen.
| | - Philip J McCall
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK.
| |
Collapse
|
71
|
Hobson-Peters J, Warrilow D, McLean BJ, Watterson D, Colmant AMG, van den Hurk AF, Hall-Mendelin S, Hastie ML, Gorman JJ, Harrison JJ, Prow NA, Barnard RT, Allcock R, Johansen CA, Hall RA. Discovery and characterisation of a new insect-specific bunyavirus from Culex mosquitoes captured in northern Australia. Virology 2016; 489:269-81. [PMID: 26773387 DOI: 10.1016/j.virol.2015.11.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 09/21/2015] [Accepted: 11/05/2015] [Indexed: 11/25/2022]
Abstract
Insect-specific viruses belonging to significant arboviral families have recently been discovered. These viruses appear to be maintained within the insect population without the requirement for replication in a vertebrate host. Mosquitoes collected from Badu Island in the Torres Strait in 2003 were analysed for insect-specific viruses. A novel bunyavirus was isolated in high prevalence from Culex spp. The new virus, provisionally called Badu virus (BADUV), replicated in mosquito cells of both Culex and Aedes origin, but failed to replicate in vertebrate cells. Genomic sequencing revealed that the virus was distinct from sequenced bunyavirus isolates reported to date, but phylogenetically clustered most closely with recently discovered mosquito-borne, insect-specific bunyaviruses in the newly proposed Goukovirus genus. The detection of a functional furin cleavage motif upstream of the two glycoproteins in the M segment-encoded polyprotein suggests that BADUV may employ a unique strategy to process the virion glycoproteins.
Collapse
Affiliation(s)
- Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, Queensland, Australia.
| | - David Warrilow
- Public Health Virology Forensic and Scientific Services, Department of Health, Queensland Government, PO Box 594, Archerfield, Queensland 4108, Australia
| | - Breeanna J McLean
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Daniel Watterson
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Agathe M G Colmant
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Andrew F van den Hurk
- Public Health Virology Forensic and Scientific Services, Department of Health, Queensland Government, PO Box 594, Archerfield, Queensland 4108, Australia
| | - Sonja Hall-Mendelin
- Public Health Virology Forensic and Scientific Services, Department of Health, Queensland Government, PO Box 594, Archerfield, Queensland 4108, Australia
| | - Marcus L Hastie
- Protein Discovery Centre, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia
| | - Jeffrey J Gorman
- Protein Discovery Centre, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia
| | - Jessica J Harrison
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Natalie A Prow
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Ross T Barnard
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Richard Allcock
- Lottery West State Biomedical Facility - Genomics, School of Pathology and Laboratory Medicine, University of Western Australia, Perth, Western Australia, Australia; Department of Clinical Immunology, Pathwest Laboratory Medicine Western Australia, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Cheryl A Johansen
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, Queensland, Australia.
| |
Collapse
|
72
|
McLean BJ, Hobson-Peters J, Webb CE, Watterson D, Prow NA, Nguyen HD, Hall-Mendelin S, Warrilow D, Johansen CA, Jansen CC, van den Hurk AF, Beebe NW, Schnettler E, Barnard RT, Hall RA. A novel insect-specific flavivirus replicates only in Aedes-derived cells and persists at high prevalence in wild Aedes vigilax populations in Sydney, Australia. Virology 2015; 486:272-83. [PMID: 26519596 DOI: 10.1016/j.virol.2015.07.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 06/16/2015] [Accepted: 07/31/2015] [Indexed: 01/16/2023]
Abstract
To date, insect-specific flaviviruses (ISFs) have only been isolated from mosquitoes and increasing evidence suggests that ISFs may affect the transmission of pathogenic flaviviruses. To investigate the diversity and prevalence of ISFs in Australian mosquitoes, samples from various regions were screened for flaviviruses by ELISA and RT-PCR. Thirty-eight pools of Aedes vigilax from Sydney in 2007 yielded isolates of a novel flavivirus, named Parramatta River virus (PaRV). Sequencing of the viral RNA genome revealed it was closely related to Hanko virus with 62.3% nucleotide identity over the open reading frame. PaRV failed to grow in vertebrate cells, with only Aedes-derived mosquito cell lines permissive to replication, suggesting a narrow host range. 2014 collections revealed that PaRV had persisted in A. vigilax populations in Sydney, with 88% of pools positive. Further investigations into its mode of transmission and potential to influence vector competence of A. vigilax for pathogenic viruses are warranted.
Collapse
Affiliation(s)
- Breeanna J McLean
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Queensland, Australia.
| | - Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Queensland, Australia.
| | - Cameron E Webb
- Medical Entomology, Marie Bashir Institute of Infectious Diseases and Biosecurity, The University of Sydney, NSW, Australia.
| | - Daniel Watterson
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Queensland, Australia.
| | - Natalie A Prow
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Queensland, Australia.
| | - Hong Duyen Nguyen
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Queensland, Australia.
| | - Sonja Hall-Mendelin
- Virology, Public and Environmental Health, Forensic and Scientific Services, Department of Health, Queensland Government, Queensland, Australia.
| | - David Warrilow
- Virology, Public and Environmental Health, Forensic and Scientific Services, Department of Health, Queensland Government, Queensland, Australia.
| | - Cheryl A Johansen
- School of Pathology and Laboratory Medicine, The University of Western Australia, Western Australia, Australia.
| | - Cassie C Jansen
- Virology, Public and Environmental Health, Forensic and Scientific Services, Department of Health, Queensland Government, Queensland, Australia.
| | - Andrew F van den Hurk
- Virology, Public and Environmental Health, Forensic and Scientific Services, Department of Health, Queensland Government, Queensland, Australia.
| | - Nigel W Beebe
- School of Biological Sciences, University of Queensland, Queensland, Australia; CSIRO Biosecurity Flagship, Dutton Park, Queensland, Australia.
| | - Esther Schnettler
- MRC - University of Glasgow Centre for Virus Research, Glasgow, United Kingdom.
| | - Ross T Barnard
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Queensland, Australia.
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Queensland, Australia.
| |
Collapse
|
73
|
Bolling BG, Weaver SC, Tesh RB, Vasilakis N. Insect-Specific Virus Discovery: Significance for the Arbovirus Community. Viruses 2015; 7:4911-28. [PMID: 26378568 PMCID: PMC4584295 DOI: 10.3390/v7092851] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 07/31/2015] [Accepted: 07/31/2015] [Indexed: 01/23/2023] Open
Abstract
Arthropod-borne viruses (arboviruses), especially those transmitted by mosquitoes, are a significant cause of morbidity and mortality in humans and animals worldwide. Recent discoveries indicate that mosquitoes are naturally infected with a wide range of other viruses, many within taxa occupied by arboviruses that are considered insect-specific. Over the past ten years there has been a dramatic increase in the literature describing novel insect-specific virus detection in mosquitoes, which has provided new insights about viral diversity and evolution, including that of arboviruses. It has also raised questions about what effects the mosquito virome has on arbovirus transmission. Additionally, the discovery of these new viruses has generated interest in their potential use as biological control agents as well as novel vaccine platforms. The arbovirus community will benefit from the growing database of knowledge concerning these newly described viral endosymbionts, as their impacts will likely be far reaching.
Collapse
Affiliation(s)
- Bethany G Bolling
- Institute for Human Infections and Immunity, Center for Tropical Diseases, and Department of Pathology,University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Scott C Weaver
- Institute for Human Infections and Immunity, Center for Tropical Diseases, and Department of Pathology,University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Robert B Tesh
- Institute for Human Infections and Immunity, Center for Tropical Diseases, and Department of Pathology,University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Nikos Vasilakis
- Institute for Human Infections and Immunity, Center for Tropical Diseases, and Department of Pathology,University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
74
|
Carrera JP, Guzman H, Beltrán D, Díaz Y, López-Vergès S, Torres-Cosme R, Popov V, Widen SG, Wood TG, Weaver SC, Cáceres-Carrera L, Vasilakis N, Tesh RB. Mercadeo Virus: A Novel Mosquito-Specific Flavivirus from Panama. Am J Trop Med Hyg 2015; 93:1014-9. [PMID: 26304915 DOI: 10.4269/ajtmh.15-0117] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 07/09/2015] [Indexed: 12/20/2022] Open
Abstract
Viruses in the genus Flavivirus (family Flaviviridae) include many arthropod-borne viruses of public health and veterinary importance. However, during the past two decades an explosion of novel insect-specific flaviviruses (ISFs), some closely related to vertebrate pathogens, have been discovered. Although many flavivirus pathogens of vertebrates have been isolated from naturally infected mosquitoes in Panama, ISFs have not previously been reported from the country. This report describes the isolation and characterization of a novel ISF, tentatively named Mercadeo virus (MECDV), obtained from Culex spp. mosquitoes collected in Panama. Two MECDV isolates were sequenced and cluster phylogenetically with cell-fusing agent virus (CFAV) and Nakiwogo virus (NAKV) to form a distinct lineage within the insect-specific group of flaviviruses.
Collapse
Affiliation(s)
- Jean-Paul Carrera
- Department of Virology and Biotechnology Research, Gorgas Memorial Institute of Health Studies, Panama City, Panama; Department of Medical Entomology, Gorgas Memorial Institute of Health Studies, Panama City, Panama; School of Medicine, Columbus University, Panama City, Panama; Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston, Texas; Institute for Human Infectious and Immunity, The University of Texas Medical Branch, Galveston, Texas; Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas
| | - Hilda Guzman
- Department of Virology and Biotechnology Research, Gorgas Memorial Institute of Health Studies, Panama City, Panama; Department of Medical Entomology, Gorgas Memorial Institute of Health Studies, Panama City, Panama; School of Medicine, Columbus University, Panama City, Panama; Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston, Texas; Institute for Human Infectious and Immunity, The University of Texas Medical Branch, Galveston, Texas; Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas
| | - Davis Beltrán
- Department of Virology and Biotechnology Research, Gorgas Memorial Institute of Health Studies, Panama City, Panama; Department of Medical Entomology, Gorgas Memorial Institute of Health Studies, Panama City, Panama; School of Medicine, Columbus University, Panama City, Panama; Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston, Texas; Institute for Human Infectious and Immunity, The University of Texas Medical Branch, Galveston, Texas; Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas
| | - Yamilka Díaz
- Department of Virology and Biotechnology Research, Gorgas Memorial Institute of Health Studies, Panama City, Panama; Department of Medical Entomology, Gorgas Memorial Institute of Health Studies, Panama City, Panama; School of Medicine, Columbus University, Panama City, Panama; Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston, Texas; Institute for Human Infectious and Immunity, The University of Texas Medical Branch, Galveston, Texas; Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas
| | - Sandra López-Vergès
- Department of Virology and Biotechnology Research, Gorgas Memorial Institute of Health Studies, Panama City, Panama; Department of Medical Entomology, Gorgas Memorial Institute of Health Studies, Panama City, Panama; School of Medicine, Columbus University, Panama City, Panama; Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston, Texas; Institute for Human Infectious and Immunity, The University of Texas Medical Branch, Galveston, Texas; Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas
| | - Rolando Torres-Cosme
- Department of Virology and Biotechnology Research, Gorgas Memorial Institute of Health Studies, Panama City, Panama; Department of Medical Entomology, Gorgas Memorial Institute of Health Studies, Panama City, Panama; School of Medicine, Columbus University, Panama City, Panama; Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston, Texas; Institute for Human Infectious and Immunity, The University of Texas Medical Branch, Galveston, Texas; Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas
| | - Vsevolod Popov
- Department of Virology and Biotechnology Research, Gorgas Memorial Institute of Health Studies, Panama City, Panama; Department of Medical Entomology, Gorgas Memorial Institute of Health Studies, Panama City, Panama; School of Medicine, Columbus University, Panama City, Panama; Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston, Texas; Institute for Human Infectious and Immunity, The University of Texas Medical Branch, Galveston, Texas; Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas
| | - Steven G Widen
- Department of Virology and Biotechnology Research, Gorgas Memorial Institute of Health Studies, Panama City, Panama; Department of Medical Entomology, Gorgas Memorial Institute of Health Studies, Panama City, Panama; School of Medicine, Columbus University, Panama City, Panama; Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston, Texas; Institute for Human Infectious and Immunity, The University of Texas Medical Branch, Galveston, Texas; Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas
| | - Thomas G Wood
- Department of Virology and Biotechnology Research, Gorgas Memorial Institute of Health Studies, Panama City, Panama; Department of Medical Entomology, Gorgas Memorial Institute of Health Studies, Panama City, Panama; School of Medicine, Columbus University, Panama City, Panama; Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston, Texas; Institute for Human Infectious and Immunity, The University of Texas Medical Branch, Galveston, Texas; Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas
| | - Scott C Weaver
- Department of Virology and Biotechnology Research, Gorgas Memorial Institute of Health Studies, Panama City, Panama; Department of Medical Entomology, Gorgas Memorial Institute of Health Studies, Panama City, Panama; School of Medicine, Columbus University, Panama City, Panama; Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston, Texas; Institute for Human Infectious and Immunity, The University of Texas Medical Branch, Galveston, Texas; Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas
| | - Lorenzo Cáceres-Carrera
- Department of Virology and Biotechnology Research, Gorgas Memorial Institute of Health Studies, Panama City, Panama; Department of Medical Entomology, Gorgas Memorial Institute of Health Studies, Panama City, Panama; School of Medicine, Columbus University, Panama City, Panama; Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston, Texas; Institute for Human Infectious and Immunity, The University of Texas Medical Branch, Galveston, Texas; Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas
| | - Nikos Vasilakis
- Department of Virology and Biotechnology Research, Gorgas Memorial Institute of Health Studies, Panama City, Panama; Department of Medical Entomology, Gorgas Memorial Institute of Health Studies, Panama City, Panama; School of Medicine, Columbus University, Panama City, Panama; Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston, Texas; Institute for Human Infectious and Immunity, The University of Texas Medical Branch, Galveston, Texas; Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas
| | - Robert B Tesh
- Department of Virology and Biotechnology Research, Gorgas Memorial Institute of Health Studies, Panama City, Panama; Department of Medical Entomology, Gorgas Memorial Institute of Health Studies, Panama City, Panama; School of Medicine, Columbus University, Panama City, Panama; Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston, Texas; Institute for Human Infectious and Immunity, The University of Texas Medical Branch, Galveston, Texas; Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
75
|
Calzolari M, Zé-Zé L, Vázquez A, Sánchez Seco MP, Amaro F, Dottori M. Insect-specific flaviviruses, a worldwide widespread group of viruses only detected in insects. INFECTION GENETICS AND EVOLUTION 2015; 40:381-388. [PMID: 26235844 DOI: 10.1016/j.meegid.2015.07.032] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 07/29/2015] [Accepted: 07/30/2015] [Indexed: 01/06/2023]
Abstract
Several flaviviruses are important pathogens for humans and animals (Dengue viruses, Japanese encephalitis virus, Yellow-fever virus, Tick-borne encephalitis virus, West Nile virus). In recent years, numerous novel and related flaviviruses without known pathogenic capacity have been isolated worldwide in the natural mosquito population. However, phylogenetic studies have shown that genomic sequences of these viruses diverge from other flaviviruses. Moreover, these viruses seem to be exclusive of insects (they do not seem to grow on vertebrate cell lines), and were already defined as mosquito-only flaviviruses or insect-specific flaviviruses. At least eleven of these viruses were isolated worldwide, and sequences ascribable to other eleven putative viruses were detected in several mosquito species. A large part of the cycle of these viruses is not well known, and their persistence in the environment is poorly understood. These viruses are detected in a wide variety of distinct mosquito species and also in sandflies and chironomids worldwide; a single virus, or the genetic material ascribable to a virus, was detected in several mosquito species in different countries, often in different continents. Furthermore, some of these viruses are carried by invasive mosquitoes, and do not seem to have a depressive action on their fitness. The global distribution and the continuous detection of new viruses in this group point out the likely underestimation of their number, and raise interesting issues about their possible interactions with the pathogenic flaviviruses, and their influence on the bionomics of arthropod hosts. Some enigmatic features, as their integration in the mosquito genome, the recognition of their genetic material in DNA forms in field-collected mosquitoes, or the detection of the same virus in both mosquitoes and sandflies, indicate that the cycle of these viruses has unknown characteristics that could be of use to reach a deeper understanding of the cycle of related pathogenic flaviviruses.
Collapse
Affiliation(s)
- Mattia Calzolari
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via Bianchi 9, 25124 Brescia, Italy.
| | - Líbia Zé-Zé
- Centre for Vectors and Infectious Diseases Research, National Institute of Health, Avenida da Liberdade 5, 2965-575 Águas de Moura, Portugal; University of Lisbon, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, Lisbon, Portugal.
| | - Ana Vázquez
- Laboratory of Arbovirus and Imported Viral Diseases, National Center of Microbiology, Institute of Health "Carlos III", Ctra Pozuelo-Majadahonda km 2, 28220 Madrid, Spain.
| | - Mari Paz Sánchez Seco
- Laboratory of Arbovirus and Imported Viral Diseases, National Center of Microbiology, Institute of Health "Carlos III", Ctra Pozuelo-Majadahonda km 2, 28220 Madrid, Spain.
| | - Fátima Amaro
- Centre for Vectors and Infectious Diseases Research, National Institute of Health, Avenida da Liberdade 5, 2965-575 Águas de Moura, Portugal.
| | - Michele Dottori
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via Bianchi 9, 25124 Brescia, Italy.
| |
Collapse
|
76
|
Liang W, He X, Liu G, Zhang S, Fu S, Wang M, Chen W, He Y, Tao X, Jiang H, Lin X, Gao X, Hu W, Liu Y, Feng L, Cao Y, Yang G, Jing C, Liang G, Wang H. Distribution and phylogenetic analysis of Culex flavivirus in mosquitoes in China. Arch Virol 2015; 160:2259-68. [PMID: 26118548 DOI: 10.1007/s00705-015-2492-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 06/10/2015] [Indexed: 12/11/2022]
Abstract
Culex flavivirus (CxFV) is an insect-specific virus of the genus Flavivirus. CxFV strains have been isolated from Cx. pipiens, Cx. quinquefasciatus, and other Cx. species in Asia, Africa, North America, Central America and South America. CxFV was isolated for the first time in China in 2006. As this is a novel flavivirus, we explored the distribution and genetic characteristics of Culex flavivirus in China. A total of 46,649 mosquitoes were collected in seven provinces between 2004 and 2012 and were analysed in 871 pools. 29 CxFV RNAs from Cx. pipiens, Cx. tritaeniorhynchus, Anopheles Sinensis, and Culex spp. tested positive for CxFV in real-time RT-PCR. 6 CxFV strains were isolated from Cx. species collected in Shandong, Henan, and Shaanxi provinces, while no virus or viral RNA was detected in samples from Sichuan, Chongqing, Hubei, and Fujian. Phylogenetic analysis of the envelope gene indicated that Chinese strains formed a robust subgroup of genotype 1, together with viruses from the United States and Japan. This study demonstrates that the geographic distribution of CxFV in China is widespread, but geographical boundaries to spread are apparent. Our findings suggest that CxFV can infect various mosquito species in nature.
Collapse
Affiliation(s)
- Wenkai Liang
- Department to Epidemiology, School of Medicine, Jinan University, Guangzhou, Guangdong, 510000, People's Republic of China,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Blitvich BJ, Firth AE. Insect-specific flaviviruses: a systematic review of their discovery, host range, mode of transmission, superinfection exclusion potential and genomic organization. Viruses 2015; 7:1927-59. [PMID: 25866904 PMCID: PMC4411683 DOI: 10.3390/v7041927] [Citation(s) in RCA: 239] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/30/2015] [Accepted: 04/08/2015] [Indexed: 12/11/2022] Open
Abstract
There has been a dramatic increase in the number of insect-specific flaviviruses (ISFs) discovered in the last decade. Historically, these viruses have generated limited interest due to their inability to infect vertebrate cells. This viewpoint has changed in recent years because some ISFs have been shown to enhance or suppress the replication of medically important flaviviruses in co-infected mosquito cells. Additionally, comparative studies between ISFs and medically important flaviviruses can provide a unique perspective as to why some flaviviruses possess the ability to infect and cause devastating disease in humans while others do not. ISFs have been isolated exclusively from mosquitoes in nature but the detection of ISF-like sequences in sandflies and chironomids indicates that they may also infect other dipterans. ISFs can be divided into two distinct phylogenetic groups. The first group currently consists of approximately 12 viruses and includes cell fusing agent virus, Kamiti River virus and Culex flavivirus. These viruses are phylogenetically distinct from all other known flaviviruses. The second group, which is apparently not monophyletic, currently consists of nine viruses and includes Chaoyang virus, Nounané virus and Lammi virus. These viruses phylogenetically affiliate with mosquito/vertebrate flaviviruses despite their apparent insect-restricted phenotype. This article provides a review of the discovery, host range, mode of transmission, superinfection exclusion ability and genomic organization of ISFs. This article also attempts to clarify the ISF nomenclature because some of these viruses have been assigned more than one name due to their simultaneous discoveries by independent research groups.
Collapse
Affiliation(s)
- Bradley J Blitvich
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA.
| | - Andrew E Firth
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK.
| |
Collapse
|
78
|
Bangs MJ, Taai K, Howard TM, Cook S, Harbach RE. The mosquito Anopheles (Cellia) oreios sp. n., formerly species 6 of the Australasian Anopheles farauti complex, and a critical review of its biology and relation to disease. MEDICAL AND VETERINARY ENTOMOLOGY 2015; 29:68-81. [PMID: 25532420 DOI: 10.1111/mve.12092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/12/2014] [Accepted: 09/23/2014] [Indexed: 06/04/2023]
Abstract
Species 6 of the Australasian Anopheles farauti sibling species complex (Diptera: Culicidae) is described and formally named Anopheles oreios Bangs & Harbach, sp. n. Adult, pupal and fourth-instar larval specimens collected in the Baliem Valley, Papua Province, Indonesia, are characterized and compared with those of Anopheles farauti, Anopheles hinesorum, Anopheles irenicus and Anopheles torresiensis (formerly informally denoted as species 1, 2, 7 and 3, respectively). The variable wings of adult females, the male genitalia, the pupa and the fourth-instar larva of An. oreios are illustrated and DNA sequence data are included for regions coding for sections of the mitochondrial COI and COII genes. The biology of An. oreios and its relation to malaria transmission are discussed in detail and contrasted with the biology and disease relations of some members of the An. farauti and Anopheles punctulatus sibling species complexes.
Collapse
Affiliation(s)
- M J Bangs
- Public Health and Malaria Control Department, International SOS, Kuala Kencana, Indonesia
| | | | | | | | | |
Collapse
|
79
|
Moureau G, Cook S, Lemey P, Nougairede A, Forrester NL, Khasnatinov M, Charrel RN, Firth AE, Gould EA, de Lamballerie X. New insights into flavivirus evolution, taxonomy and biogeographic history, extended by analysis of canonical and alternative coding sequences. PLoS One 2015; 10:e0117849. [PMID: 25719412 PMCID: PMC4342338 DOI: 10.1371/journal.pone.0117849] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 01/02/2015] [Indexed: 12/20/2022] Open
Abstract
To generate the most diverse phylogenetic dataset for the flaviviruses to date, we determined the genomic sequences and phylogenetic relationships of 14 flaviviruses, of which 10 are primarily associated with Culex spp. mosquitoes. We analyze these data, in conjunction with a comprehensive collection of flavivirus genomes, to characterize flavivirus evolutionary and biogeographic history in unprecedented detail and breadth. Based on the presumed introduction of yellow fever virus into the Americas via the transatlantic slave trade, we extrapolated a timescale for a relevant subset of flaviviruses whose evolutionary history, shows that different Culex-spp. associated flaviviruses have been introduced from the Old World to the New World on at least five separate occasions, with 2 different sets of factors likely to have contributed to the dispersal of the different viruses. We also discuss the significance of programmed ribosomal frameshifting in a central region of the polyprotein open reading frame in some mosquito-associated flaviviruses.
Collapse
Affiliation(s)
- Gregory Moureau
- Aix Marseille Université, IRD French Institute of Research for Development, EHESP French School of Public Health, EPV UMR_D 190 Emergence des Pathologies Virales, Marseille, France
| | - Shelley Cook
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom
| | - Philippe Lemey
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Antoine Nougairede
- Aix Marseille Université, IRD French Institute of Research for Development, EHESP French School of Public Health, EPV UMR_D 190 Emergence des Pathologies Virales, Marseille, France
| | - Naomi L. Forrester
- Institute for Human Infections and Immunity and Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, United States of America
| | - Maxim Khasnatinov
- Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh, Gifford, Wallingford, Oxfordshire, OX10, United Kingdom
| | - Remi N. Charrel
- Aix Marseille Université, IRD French Institute of Research for Development, EHESP French School of Public Health, EPV UMR_D 190 Emergence des Pathologies Virales, Marseille, France
| | - Andrew E. Firth
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Ernest A. Gould
- Aix Marseille Université, IRD French Institute of Research for Development, EHESP French School of Public Health, EPV UMR_D 190 Emergence des Pathologies Virales, Marseille, France
| | - Xavier de Lamballerie
- Aix Marseille Université, IRD French Institute of Research for Development, EHESP French School of Public Health, EPV UMR_D 190 Emergence des Pathologies Virales, Marseille, France
| |
Collapse
|
80
|
Grisenti M, Vázquez A, Herrero L, Cuevas L, Perez-Pastrana E, Arnoldi D, Rosà R, Capelli G, Tenorio A, Sánchez-Seco MP, Rizzoli A. Wide detection of Aedes flavivirus in north-eastern Italy – a European hotspot of emerging mosquito-borne diseases. J Gen Virol 2015; 96:420-430. [DOI: 10.1099/vir.0.069625-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Michela Grisenti
- Department of Veterinary Sciences, University of Torino, largo Paolo Braccini 2, 10095 Grugliasco, Torino, Italy
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all’Adige, Trento, Italy
| | - Ana Vázquez
- Laboratory of Arboviruses and Viral Imported Diseases, Institute of Health ‘Carlos III’, Ctra Pozuelo-Majadahonda, Km 2, 28220 Majadahonda, Madrid, Spain
| | - Laura Herrero
- Laboratory of Arboviruses and Viral Imported Diseases, Institute of Health ‘Carlos III’, Ctra Pozuelo-Majadahonda, Km 2, 28220 Majadahonda, Madrid, Spain
| | - Laureano Cuevas
- Electron Microscopy Department, National Center of Microbiology, Institute of Health ‘Carlos III’, Ctra Pozuelo-Majadahonda, Km 2, 28220 Majadahonda, Madrid, Spain
| | - Esperanza Perez-Pastrana
- Electron Microscopy Department, National Center of Microbiology, Institute of Health ‘Carlos III’, Ctra Pozuelo-Majadahonda, Km 2, 28220 Majadahonda, Madrid, Spain
| | - Daniele Arnoldi
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all’Adige, Trento, Italy
| | - Roberto Rosà
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all’Adige, Trento, Italy
| | - Gioia Capelli
- Laboratory of Parasitology, Istituto Zooprofilattico Sperimentale delle Venezie, viale dell’Università 10, 35020 Legnaro, Padova, Italy
| | - Antonio Tenorio
- Laboratory of Arboviruses and Viral Imported Diseases, Institute of Health ‘Carlos III’, Ctra Pozuelo-Majadahonda, Km 2, 28220 Majadahonda, Madrid, Spain
| | - Maria Paz Sánchez-Seco
- Laboratory of Arboviruses and Viral Imported Diseases, Institute of Health ‘Carlos III’, Ctra Pozuelo-Majadahonda, Km 2, 28220 Majadahonda, Madrid, Spain
| | - Annapaola Rizzoli
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all’Adige, Trento, Italy
| |
Collapse
|
81
|
Bolling BG, Vasilakis N, Guzman H, Widen SG, Wood TG, Popov VL, Thangamani S, Tesh RB. Insect-specific viruses detected in laboratory mosquito colonies and their potential implications for experiments evaluating arbovirus vector competence. Am J Trop Med Hyg 2014; 92:422-8. [PMID: 25510714 DOI: 10.4269/ajtmh.14-0330] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Recently, there has been a dramatic increase in the detection and characterization of insect-specific viruses in field-collected mosquitoes. Evidence suggests that these viruses are ubiquitous in nature and that many are maintained by vertical transmission in mosquito populations. Some studies suggest that the presence of insect-specific viruses may inhibit replication of a super-infecting arbovirus, thus altering vector competence of the mosquito host. Accordingly, we screened our laboratory mosquito colonies for insect-specific viruses. Pools of colony mosquitoes were homogenized and inoculated into cultures of Aedes albopictus (C6/36) cells. The infected cells were examined by electron microscopy and deep sequencing was performed on RNA extracts. Electron micrograph images indicated the presence of three different viruses in three of our laboratory mosquito colonies. Potential implications of these findings for vector competence studies are discussed.
Collapse
Affiliation(s)
- Bethany G Bolling
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas
| | - Hilda Guzman
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas
| | - Steven G Widen
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas
| | - Thomas G Wood
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas
| | - Vsevolod L Popov
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas
| | | | - Robert B Tesh
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
82
|
Seixas G, Salgueiro P, Silva AC, Campos M, Spenassatto C, Reyes-Lugo M, Novo MT, Ribolla PEM, Silva Pinto JPSD, Sousa CA. Aedes aegypti on Madeira Island (Portugal): genetic variation of a recently introduced dengue vector. Mem Inst Oswaldo Cruz 2014; 108 Suppl 1:3-10. [PMID: 24473797 PMCID: PMC4109174 DOI: 10.1590/0074-0276130386] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 11/27/2013] [Indexed: 11/22/2022] Open
Abstract
The increasing population of Aedes aegypti mosquitoes on Madeira Island (Portugal) resulted in the first autochthonous dengue outbreak, which occurred in October 2012. Our study establishes the first genetic evaluation based on the mitochondrial DNA (mtDNA) genes [cytochrome oxidase subunit I (COI) and NADH dehydrogenase subunit 4 (ND4)] and knockdown resistance (kdr) mutations exploring the colonisation history and the genetic diversity of this insular vector population. We included mosquito populations from Brazil and Venezuela in the analysis as putative geographic sources. The Ae. aegypti population from Madeira showed extremely low mtDNA genetic variability, with a single haplotype for COI and ND4. We also detected the presence of two important kdr mutations and the quasi-fixation of one of these mutations (F1534C). These results are consistent with a unique recent founder event that occurred on the island of Ae. aegypti mosquitoes that carry kdr mutations associated with insecticide resistance. Finally, we also report the presence of the F1534C kdr mutation in the Brazil and Venezuela populations. To our knowledge, this is the first time this mutation has been found in South American Ae. aegypti mosquitoes. Given the present risk of Ae. aegypti re-invading continental Europe from Madeira and the recent dengue outbreaks on the island, this information is important to plan surveillance and control measures.
Collapse
Affiliation(s)
- Gonçalo Seixas
- Unidade de Ensino e Investigação-Parasitologia Médica, Unidade de Ensino e Investigação-Parasitologia Médica
| | - Patrícia Salgueiro
- Unidade de Ensino e Investigação-Parasitologia Médica, Unidade de Ensino e Investigação-Parasitologia Médica
| | - Ana Clara Silva
- Departamento de Promoção e Proteção da Saúde, Unidade de Engenharia Sanitária, Instituto de Administração da Saúde e Assuntos Sociais, Portugal, FunchalMadeira, Departamento de Promoção e Proteção da Saúde, Unidade de Engenharia Sanitária, Instituto de Administração da Saúde e Assuntos Sociais, Funchal, Madeira, Portugal
| | - Melina Campos
- Departamento de Parasitologia, Instituto de Biociências, Universidade Estadual Paulista, Brasil, BotucatuSão Paulo, Departamento de Parasitologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, São Paulo, Brasil
| | - Carine Spenassatto
- Departamento de Parasitologia, Instituto de Biociências, Universidade Estadual Paulista, Brasil, BotucatuSão Paulo, Departamento de Parasitologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, São Paulo, Brasil
| | - Matías Reyes-Lugo
- Sección Entomología Médica, Instituto de Medicina Tropical, Universidad Central de Venezuela, Venezuela, Caracas, Sección Entomología Médica, Instituto de Medicina Tropical, Universidad Central de Venezuela, Caracas, Venezuela
| | - Maria Teresa Novo
- Unidade de Ensino e Investigação-Parasitologia Médica, Unidade de Ensino e Investigação-Parasitologia Médica
| | - Paulo Eduardo Martins Ribolla
- Departamento de Parasitologia, Instituto de Biociências, Universidade Estadual Paulista, Brasil, BotucatuSão Paulo, Departamento de Parasitologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, São Paulo, Brasil
| | | | - Carla Alexandra Sousa
- Unidade de Ensino e Investigação-Parasitologia Médica, Unidade de Ensino e Investigação-Parasitologia Médica
| |
Collapse
|
83
|
Kenney JL, Brault AC. The role of environmental, virological and vector interactions in dictating biological transmission of arthropod-borne viruses by mosquitoes. Adv Virus Res 2014; 89:39-83. [PMID: 24751194 DOI: 10.1016/b978-0-12-800172-1.00002-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Arthropod-borne viruses (arboviruses) are transmitted between vertebrate hosts and arthropod vectors. An inherently complex interaction among virus, vector, and the environment determines successful transmission of the virus. Once believed to be "flying syringes," recent advances in the field have demonstrated that mosquito genetics, microbiota, salivary components, and mosquito innate immune responses all play important roles in modulating arbovirus transmissibility. The literature on the interaction among virus, mosquito, and environment has expanded dramatically in the preceding decade and the utilization of next-generation sequencing and transgenic vector methodologies assuredly will increase the pace of knowledge acquisition in this field. This chapter outlines the interplay among the three factors in both direct physical and biochemical manners as well as indirectly through superinfection barriers and altered induction of innate immune responses in mosquito vectors. The culmination of the aforementioned interactions and the arms race between the mosquito innate immune response and the capacity of arboviruses to antagonize such a response ultimately results in the subjugation of mosquito cells for viral replication and subsequent transmission.
Collapse
Affiliation(s)
- Joan L Kenney
- Arbovirus Research Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, U.S. Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Aaron C Brault
- Arbovirus Research Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, U.S. Centers for Disease Control and Prevention, Fort Collins, Colorado, USA.
| |
Collapse
|
84
|
Kallies R, Kopp A, Zirkel F, Estrada A, Gillespie TR, Drosten C, Junglen S. Genetic characterization of goutanap virus, a novel virus related to negeviruses, cileviruses and higreviruses. Viruses 2014; 6:4346-57. [PMID: 25398046 PMCID: PMC4246226 DOI: 10.3390/v6114346] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/28/2014] [Accepted: 11/03/2014] [Indexed: 12/12/2022] Open
Abstract
Pools of mosquitoes collected in Côte d’Ivoire and Mexico were tested for cytopathic effects on the mosquito cell line C6/36. Seven pools induced strong cytopathic effects after one to five days post infection and were further investigated by deep sequencing. The genomes of six virus isolates from Côte d’Ivoire showed pairwise nucleotide identities of ~99% among each other and of 56%–60% to Dezidougou virus and Wallerfield virus, two insect-specific viruses belonging to the proposed new taxon Negevirus. The novel virus was tentatively named Goutanap virus. The isolate derived from the Mexican mosquitoes showed 95% pairwise identity to Piura virus and was suggested to be a strain of Piura virus, named C6.7-MX-2008. Phylogenetic inferences based on a concatenated alignment of the methyltransferase, helicase, and RNA-dependent RNA polymerase domains showed that the new taxon Negevirus formed two monophyletic clades, named Nelorpivirus and Sandewavirus after the viruses grouping in these clades. Branch lengths separating these clades were equivalent to those of the related genera Cilevirus, Higrevirus and Blunervirus, as well as to those within the family Virgaviridae. Genetic distances and phylogenetic analyses suggest that Nelorpivirus and Sandewavirus might form taxonomic groups on genus level that may define alone or together with Cilevirus, Higrevirus and Blunervirus a viral family.
Collapse
Affiliation(s)
- René Kallies
- Institute of Virology, Medical Centre, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany.
| | - Anne Kopp
- Institute of Virology, Medical Centre, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany.
| | - Florian Zirkel
- Institute of Virology, Medical Centre, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany.
| | - Alejandro Estrada
- Estación de Biología Tropical Los Tuxtlas, Instituto de Biología, Universidad Nacional Autónoma de México, Apdo 176, San Andres Tuxtla, Veracruz, Mexico.
| | - Thomas R Gillespie
- Department of Environmental Sciences and Program in Population Biology, Ecology and Evolution, Emory University, Atlanta, GA 30322, USA.
| | - Christian Drosten
- Institute of Virology, Medical Centre, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany.
| | - Sandra Junglen
- Institute of Virology, Medical Centre, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany.
| |
Collapse
|
85
|
Osório HC, Zé-Zé L, Amaro F, Alves MJ. Mosquito surveillance for prevention and control of emerging mosquito-borne diseases in Portugal - 2008-2014. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:11583-96. [PMID: 25396768 PMCID: PMC4245631 DOI: 10.3390/ijerph111111583] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/28/2014] [Accepted: 10/29/2014] [Indexed: 12/03/2022]
Abstract
Mosquito surveillance in Europe is essential for early detection of invasive species with public health importance and prevention and control of emerging pathogens. In Portugal, a vector surveillance national program-REVIVE (REde de VIgilância de VEctores)-has been operating since 2008 under the custody of Portuguese Ministry of Health. The REVIVE is responsible for the nationwide surveillance of hematophagous arthropods. Surveillance for West Nile virus (WNV) and other flaviviruses in adult mosquitoes is continuously performed. Adult mosquitoes-collected mainly with Centre for Disease Control light traps baited with CO2-and larvae were systematically collected from a wide range of habitats in 20 subregions (NUTS III). Around 500,000 mosquitoes were trapped in more than 3,000 trap nights and 3,500 positive larvae surveys, in which 24 species were recorded. The viral activity detected in mosquito populations in these years has been limited to insect specific flaviviruses (ISFs) non-pathogenic to humans. Rather than emergency response, REVIVE allows timely detection of changes in abundance and species diversity providing valuable knowledge to health authorities, which may take control measures of vector populations reducing its impact on public health. This work aims to present the REVIVE operation and to expose data regarding mosquito species composition and detected ISFs.
Collapse
Affiliation(s)
- Hugo C Osório
- Centre for Vectors and Infectious Diseases Research, National Institute of Health Dr. Ricardo Jorge, Av. da Liberdade 5, 2965-575 Águas de Moura, Portugal.
| | - Líbia Zé-Zé
- Centre for Vectors and Infectious Diseases Research, National Institute of Health Dr. Ricardo Jorge, Av. da Liberdade 5, 2965-575 Águas de Moura, Portugal.
| | - Fátima Amaro
- Centre for Vectors and Infectious Diseases Research, National Institute of Health Dr. Ricardo Jorge, Av. da Liberdade 5, 2965-575 Águas de Moura, Portugal.
| | - Maria J Alves
- Centre for Vectors and Infectious Diseases Research, National Institute of Health Dr. Ricardo Jorge, Av. da Liberdade 5, 2965-575 Águas de Moura, Portugal.
| |
Collapse
|
86
|
Salyer SJ, Ellis EM, Salomon C, Bron C, Juin S, Hemme RR, Hunsperger E, Jentes ES, Magloire R, Tomashek KM, Desormeaux AM, Muñoz-Jordán JL, Etienne L, Beltran M, Sharp TM, Moffett D, Tappero J, Margolis HS, Katz MA. Dengue virus infections among Haitian and expatriate non-governmental organization workers--Léogane and Port-au-Prince, Haiti, 2012. PLoS Negl Trop Dis 2014; 8:e3269. [PMID: 25356592 PMCID: PMC4214624 DOI: 10.1371/journal.pntd.0003269] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 09/14/2014] [Indexed: 11/30/2022] Open
Abstract
In October 2012, the Haitian Ministry of Health and the US CDC were notified of 25 recent dengue cases, confirmed by rapid diagnostic tests (RDTs), among non-governmental organization (NGO) workers. We conducted a serosurvey among NGO workers in Léogane and Port-au-Prince to determine the extent of and risk factors for dengue virus infection. Of the total 776 staff from targeted NGOs in Léogane and Port-au-Prince, 173 (22%; 52 expatriates and 121 Haitians) participated. Anti-dengue virus (DENV) IgM antibody was detected in 8 (15%) expatriates and 9 (7%) Haitians, and DENV non-structural protein 1 in one expatriate. Anti-DENV IgG antibody was detected in 162 (94%) participants (79% of expatriates; 100% of Haitians), and confirmed by microneutralization testing as DENV-specific in 17/34 (50%) expatriates and 42/42 (100%) Haitians. Of 254 pupae collected from 68 containers, 65% were Aedes aegypti; 27% were Ae. albopictus. Few NGO workers reported undertaking mosquito-avoidance action. Our findings underscore the risk of dengue in expatriate workers in Haiti and Haitians themselves. Dengue is the most common mosquito-borne viral disease in the world, and caused an estimated 390 million infections and 96 million cases in the tropics and subtropics in 2010. Over the last decade, the number of cases of dengue and the severity of dengue virus infections have increased in the Americas, including the Caribbean, yet little is still known about dengue in Haiti. Following an outbreak of dengue in mostly expatriate NGO workers, the investigators of this study took blood samples from expatriate and Haitian NGO workers living in two cities in Haiti and tested them for evidence of current, recent, and past dengue virus infection. They also investigated the amount and kinds of mosquitoes at homes and work sites. The study found recent infections among some Haitians and expatriates and widespread past infections among all Haitians and most expatriates. It also found that many people were not doing basic things to avoid mosquito bites, like applying mosquito repellent multiple times a day and wearing long sleeves or pants. These findings highlight the likely endemicity of dengue virus in Haiti, and the need to improve knowledge and awareness of dengue prevention among expatriates visiting Haiti and local Haitians.
Collapse
Affiliation(s)
- Stephanie J. Salyer
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- * E-mail:
| | - Esther M. Ellis
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Corvil Salomon
- Ministry of Public Health and Population, Port-au-Prince, Haiti
| | - Christophe Bron
- International Federation of Red Cross and Red Crescent Societies, Port-au-Prince, Haiti
| | - Stanley Juin
- Centers for Disease Control and Prevention, Port-au-Prince, Haiti
| | - Ryan R. Hemme
- Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | | | - Emily S. Jentes
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Roc Magloire
- Ministry of Public Health and Population, Port-au-Prince, Haiti
| | - Kay M. Tomashek
- Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | | | | | | | - Manuela Beltran
- Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Tyler M. Sharp
- Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Daphne Moffett
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jordan Tappero
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | | | - Mark A. Katz
- Centers for Disease Control and Prevention, Port-au-Prince, Haiti
| |
Collapse
|
87
|
Méndez-Lázaro P, Muller-Karger FE, Otis D, McCarthy MJ, Peña-Orellana M. Assessing climate variability effects on dengue incidence in San Juan, Puerto Rico. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:9409-28. [PMID: 25216253 PMCID: PMC4199026 DOI: 10.3390/ijerph110909409] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 08/27/2014] [Accepted: 09/01/2014] [Indexed: 11/16/2022]
Abstract
We test the hypothesis that climate and environmental conditions are becoming favorable for dengue transmission in San Juan, Puerto Rico. Sea Level Pressure (SLP), Mean Sea Level (MSL), Wind, Sea Surface Temperature (SST), Air Surface Temperature (AST), Rainfall, and confirmed dengue cases were analyzed. We evaluated the dengue incidence and environmental data with Principal Component Analysis, Pearson correlation coefficient, Mann-Kendall trend test and logistic regressions. Results indicated that dry days are increasing and wet days are decreasing. MSL is increasing, posing higher risk of dengue as the perimeter of the San Juan Bay estuary expands and shorelines move inland. Warming is evident with both SST and AST. Maximum and minimum air surface temperature extremes have increased. Between 1992 and 2011, dengue transmission increased by a factor of 3.4 (95% CI: 1.9-6.1) for each 1 °C increase in SST. For the period 2007-2011 alone, dengue incidence reached a factor of 5.2 (95% CI: 1.9-13.9) for each 1 °C increase in SST. Teenagers are consistently the age group that suffers the most infections in San Juan. Results help understand possible impacts of different climate change scenarios in planning for social adaptation and public health interventions.
Collapse
Affiliation(s)
- Pablo Méndez-Lázaro
- Environmental Health Department, Graduate School of Public Health, University of Puerto Rico, Medical Sciences Campus, P.O. Box 365067, San Juan 00936, Puerto Rico.
| | - Frank E Muller-Karger
- Institute for Marine Remote Sensing, College of Marine Science, University of South Florida, 140 7th Ave. South, St. Petersburg, FL 33701, USA.
| | - Daniel Otis
- Institute for Marine Remote Sensing, College of Marine Science, University of South Florida, 140 7th Ave. South, St. Petersburg, FL 33701, USA.
| | - Matthew J McCarthy
- Institute for Marine Remote Sensing, College of Marine Science, University of South Florida, 140 7th Ave. South, St. Petersburg, FL 33701, USA.
| | - Marisol Peña-Orellana
- Center for Public Health Preparedness, Graduate School of Public Health, University of Puerto Rico, Medical Sciences Campus, P.O. Box 365067, San Juan 00936, Puerto Rico.
| |
Collapse
|
88
|
Carvalho RG, Lourenço-de-Oliveira R, Braga IA. Updating the geographical distribution and frequency of Aedes albopictus in Brazil with remarks regarding its range in the Americas. Mem Inst Oswaldo Cruz 2014; 109:787-96. [PMID: 25317707 PMCID: PMC4238772 DOI: 10.1590/0074-0276140304] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 08/26/2014] [Indexed: 11/28/2022] Open
Abstract
The geographical distribution of Aedes albopictus in Brazil was updated according to the data recorded across the country over the last eight years. Countrywide house indexes (HI) for Ae. albopictus in urban and suburban areas were described for the first time using a sample of Brazilian municipalities. This mosquito is currently present in at least 59% of the Brazilian municipalities and in 24 of the 27 federal units (i.e., 26 states and the Federal District). In 34 Brazilian municipalities, the HI values for Ae. albopictus were higher than those recorded for Ae. aegypti, reaching figures as high as HI = 7.72 in the Southeast Region. Remarks regarding the current range of this mosquito species in the Americas are also presented. Nineteen American countries are currently infested and few mainland American countries have not confirmed the occurrence of Ae. albopictus. The large distribution and high frequency of Ae. albopictus in the Americas may become a critical factor in the spread of arboviruses like chikungunya in the new world.
Collapse
Affiliation(s)
| | | | - Ima Aparecida Braga
- Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, DF,
Brasil
| |
Collapse
|
89
|
Kenney JL, Solberg OD, Langevin SA, Brault AC. Characterization of a novel insect-specific flavivirus from Brazil: potential for inhibition of infection of arthropod cells with medically important flaviviruses. J Gen Virol 2014; 95:2796-2808. [PMID: 25146007 DOI: 10.1099/vir.0.068031-0] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the past decade, there has been an upsurge in the number of newly described insect-specific flaviviruses isolated pan-globally. We recently described the isolation of a novel flavivirus (tentatively designated 'Nhumirim virus'; NHUV) that represents an example of a unique subset of apparently insect-specific viruses that phylogenetically affiliate with dual-host mosquito-borne flaviviruses despite appearing to be limited to replication in mosquito cells. We characterized the in vitro growth potential and 3' untranslated region (UTR) sequence homology with alternative flaviviruses, and evaluated the virus's capacity to suppress replication of representative Culex spp.-vectored pathogenic flaviviruses in mosquito cells. Only mosquito cell lines were found to support NHUV replication, further reinforcing the insect-specific phenotype of this virus. Analysis of the sequence and predicted RNA secondary structures of the 3' UTR indicated NHUV to be most similar to viruses within the yellow fever serogroup and Japanese encephalitis serogroup, and viruses in the tick-borne flavivirus clade. NHUV was found to share the fewest conserved sequence elements when compared with traditional insect-specific flaviviruses. This suggests that, despite apparently being insect specific, this virus probably diverged from an ancestral mosquito-borne flavivirus. Co-infection experiments indicated that prior or concurrent infection of mosquito cells with NHUV resulted in a significant reduction in virus production of West Nile virus (WNV), St Louis encephalitis virus (SLEV) and Japanese encephalitis virus. The inhibitory effect was most effective against WNV and SLEV with over a 10(6)-fold and 10(4)-fold reduction in peak titres, respectively.
Collapse
Affiliation(s)
- Joan L Kenney
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| | | | | | - Aaron C Brault
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| |
Collapse
|
90
|
Huhtamo E, Cook S, Moureau G, Uzcátegui NY, Sironen T, Kuivanen S, Putkuri N, Kurkela S, Harbach RE, Firth AE, Vapalahti O, Gould EA, de Lamballerie X. Novel flaviviruses from mosquitoes: mosquito-specific evolutionary lineages within the phylogenetic group of mosquito-borne flaviviruses. Virology 2014; 464-465:320-329. [PMID: 25108382 PMCID: PMC4170750 DOI: 10.1016/j.virol.2014.07.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 03/07/2014] [Accepted: 07/01/2014] [Indexed: 01/17/2023]
Abstract
Novel flaviviruses that are genetically related to pathogenic mosquito-borne flaviviruses (MBFV) have been isolated from mosquitoes in various geographical locations, including Finland. We isolated and characterized another novel virus of this group from Finnish mosquitoes collected in 2007, designated as Ilomantsi virus (ILOV). Unlike the MBFV that infect both vertebrates and mosquitoes, the MBFV-related viruses appear to be specific to mosquitoes similar to the insect-specific flaviviruses (ISFs). In this overview of MBFV-related viruses we conclude that they differ from the ISFs genetically and antigenically. Phylogenetic analyses separated the MBFV-related viruses isolated in Africa, the Middle East and South America from those isolated in Europe and Asia. Serological cross-reactions of MBFV-related viruses with other flaviviruses and their potential for vector-borne transmission require further characterization. The divergent MBFV-related viruses are probably significantly under sampled to date and provide new information on the variety, properties and evolution of vector-borne flaviviruses. Mosquito-borne flavivirus-related viruses were isolated from Finnish mosquitoes. Isolates were reactive with flavivirus antibodies but appeared mosquito-specific. Sequence analysis identified related viruses from different parts of the world. These viruses represent unique properties among the mosquito-borne flavivirus group.
Collapse
Affiliation(s)
- Eili Huhtamo
- Department of Virology, Haartman Institute, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Shelley Cook
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom
| | - Gregory Moureau
- UMR D 190 "Emergence des Pathologies Virales", Aix Marseille University, IRD French Institute of Research for Development, EHESP French School of Public Health, 27 Boulevard Jean Moulin, Marseille 13005, France
| | - Nathalie Y Uzcátegui
- Department of Virology, Haartman Institute, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tarja Sironen
- Department of Virology, Haartman Institute, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Suvi Kuivanen
- Department of Virology, Haartman Institute, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Niina Putkuri
- Department of Virology, Haartman Institute, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Satu Kurkela
- Department of Virology, Haartman Institute, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Virology and Immunology, Helsinki University Central Hospital Laboratory (HUSLAB), P.O. Box 400, Haartmaninkatu 3, 00029 HUS, Helsinki, Finland
| | - Ralph E Harbach
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom
| | - Andrew E Firth
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Olli Vapalahti
- Department of Virology, Haartman Institute, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Virology and Immunology, Helsinki University Central Hospital Laboratory (HUSLAB), P.O. Box 400, Haartmaninkatu 3, 00029 HUS, Helsinki, Finland; Division of Microbiology and Epidemiology, Department of Basic Veterinary Sciences, University of Helsinki, Helsinki, Finland
| | - Ernest A Gould
- UMR D 190 "Emergence des Pathologies Virales", Aix Marseille University, IRD French Institute of Research for Development, EHESP French School of Public Health, 27 Boulevard Jean Moulin, Marseille 13005, France
| | - Xavier de Lamballerie
- UMR D 190 "Emergence des Pathologies Virales", Aix Marseille University, IRD French Institute of Research for Development, EHESP French School of Public Health, 27 Boulevard Jean Moulin, Marseille 13005, France
| |
Collapse
|
91
|
Bicluster pattern of codon context usages between flavivirus and vector mosquito Aedes aegypti: relevance to infection and transcriptional response of mosquito genes. Mol Genet Genomics 2014; 289:885-94. [PMID: 24838953 DOI: 10.1007/s00438-014-0857-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 04/12/2014] [Indexed: 01/18/2023]
Abstract
The mosquito Aedes aegypti is the primary vector of dengue virus (DENV) infection in most of the subtropical and tropical countries. Besides DENV, yellow fever virus (YFV) is also transmitted by A. aegypti. Susceptibility of A. aegypti to West Nile virus (WNV) has also been confirmed. Although studies have indicated correlation of codon bias between flaviviridae and their animal/insect hosts, it is not clear if codon sequences have any relation to susceptibility of A. aegypti to DENV, YFV and WNV. In the current study, usages of codon context sequences (codon pairs for neighboring amino acids) of the vector (A. aegypti) genome as well as the flaviviral genomes are investigated. We used bioinformatics methods to quantify codon context bias in a genome-wide manner of A. aegypti as well as DENV, WNV and YFV sequences. Mutual information statistics was applied to perform bicluster analysis of codon context bias between vector and flaviviral sequences. Functional relevance of the bicluster pattern was inferred from published microarray data. Our study shows that codon context bias of DENV, WNV and YFV sequences varies in a bicluster manner with that of specific sets of genes of A. aegypti. Many of these mosquito genes are known to be differentially expressed in response to flaviviral infection suggesting that codon context sequences of A. aegypti and the flaviviruses may play a role in the susceptible interaction between flaviviruses and this mosquito. The bias in usages of codon context sequences likely has a functional association with susceptibility of A. aegypti to flaviviral infection. The results from this study will allow us to conduct hypothesis-driven tests to examine the role of codon context bias in evolution of vector-virus interactions at the molecular level.
Collapse
|
92
|
Detection of Quang Binh virus from mosquitoes in China. Virus Res 2013; 180:31-8. [PMID: 24342141 DOI: 10.1016/j.virusres.2013.12.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 11/24/2013] [Accepted: 12/04/2013] [Indexed: 11/24/2022]
Abstract
Flaviviruses present a wide range of genetic diversity and exhibit diverse host relationships. Mosquito-borne flaviviruses have recently been isolated and characterized worldwide. Yunnan Province of China is one of the richest areas of species diversity and is the center of multi-species evolution in mainland Asia, which supports the circulation of numerous arthropod-borne viruses (arboviruses). In a screening program of arboviruses, mosquitoes were collected during the mosquito activity season in the Yunnan Province from 2007 to 2010. Eleven flavivirus strains, named Yunnan Culex flaviviruses (YNCxFVs), were obtained from Culex tritaeniorhynchus and Anopheles sinensis specimens. Sequence analyses based on partial nonstructural protein (NS) 5 gene indicated that the YNCxFVs shared 92.8-99.6% nucleotide identity with each other and were similar to the Culex-related flaviviruses. The complete genome of one representative isolate, LSFlaviV-A20-09, was sequenced. The genome was 10,865 nucleotides long and contained a single, long open reading frame (ORF) of 10,080 nucleotides that encoded a 3360-aa polyprotein. This genome was most closely related to the Quang Binh virus (QBV) VN180 strain, an insect-specific flavivirus isolated from Culex mosquitoes in Vietnam, but only had 83.0% nucleotide and 93.8% amino acid identities for the ORF sequence. The genome has approximately 66.3%-68.5% nucleotide sequence and 69.3-73.3% amino acid sequence identities to other Culex flaviviruses, and only has 47.9-57.9% nucleotide sequence and 38.7-55.1% amino acid sequence identities to Coquillettidia-related, Mansonia-related and Aedes-related flaviviruses. Phylogenetic analyses revealed that the LSFlaviV-A20-09 fell into the Culex-related flavivirus clade. Our discoveries provide more information regarding the heterogeneity of viruses that infect mosquitoes.
Collapse
|
93
|
Vector-virus interactions and transmission dynamics of West Nile virus. Viruses 2013; 5:3021-47. [PMID: 24351794 PMCID: PMC3967159 DOI: 10.3390/v5123021] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 11/04/2013] [Accepted: 11/06/2013] [Indexed: 12/17/2022] Open
Abstract
West Nile virus (WNV; Flavivirus; Flaviviridae) is the cause of the most widespread arthropod-borne viral disease in the world and the largest outbreak of neuroinvasive disease ever observed. Mosquito-borne outbreaks are influenced by intrinsic (e.g., vector and viral genetics, vector and host competence, vector life-history traits) and extrinsic (e.g., temperature, rainfall, human land use) factors that affect virus activity and mosquito biology in complex ways. The concept of vectorial capacity integrates these factors to address interactions of the virus with the arthropod host, leading to a clearer understanding of their complex interrelationships, how they affect transmission of vector-borne disease, and how they impact human health. Vertebrate factors including host competence, population dynamics, and immune status also affect transmission dynamics. The complexity of these interactions are further exacerbated by the fact that not only can divergent hosts differentially alter the virus, but the virus also can affect both vertebrate and invertebrate hosts in ways that significantly alter patterns of virus transmission. This chapter concentrates on selected components of the virus-vector-vertebrate interrelationship, focusing specifically on how interactions between vector, virus, and environment shape the patterns and intensity of WNV transmission.
Collapse
|
94
|
Cook S, Chung BYW, Bass D, Moureau G, Tang S, McAlister E, Culverwell CL, Glücksman E, Wang H, Brown TDK, Gould EA, Harbach RE, de Lamballerie X, Firth AE. Novel virus discovery and genome reconstruction from field RNA samples reveals highly divergent viruses in dipteran hosts. PLoS One 2013; 8:e80720. [PMID: 24260463 PMCID: PMC3832450 DOI: 10.1371/journal.pone.0080720] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 10/07/2013] [Indexed: 12/17/2022] Open
Abstract
We investigated whether small RNA (sRNA) sequenced from field-collected mosquitoes and chironomids (Diptera) can be used as a proxy signature of viral prevalence within a range of species and viral groups, using sRNAs sequenced from wild-caught specimens, to inform total RNA deep sequencing of samples of particular interest. Using this strategy, we sequenced from adult Anopheles maculipennis s.l. mosquitoes the apparently nearly complete genome of one previously undescribed virus related to chronic bee paralysis virus, and, from a pool of Ochlerotatus caspius and Oc. detritus mosquitoes, a nearly complete entomobirnavirus genome. We also reconstructed long sequences (1503-6557 nt) related to at least nine other viruses. Crucially, several of the sequences detected were reconstructed from host organisms highly divergent from those in which related viruses have been previously isolated or discovered. It is clear that viral transmission and maintenance cycles in nature are likely to be significantly more complex and taxonomically diverse than previously expected.
Collapse
Affiliation(s)
- Shelley Cook
- Department of Life Sciences, Natural History Museum, London, United Kingdom
- * E-mail: (SC); (AEF)
| | - Betty Y.-W. Chung
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - David Bass
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Gregory Moureau
- UMR_D 190 "Emergence des Pathologies Virales" (Aix-Marseille Univ. IRD French Institute of Research for Development EHESP French School of Public Health), Marseille, France
| | - Shuoya Tang
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Erica McAlister
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | | | - Edvard Glücksman
- Department of General Botany, University Duisburg-Essen, Essen, Germany
| | - Hui Wang
- Centre for Ecology & Hydrology, Wallingford, Oxfordshire, United Kingdom
| | - T. David K. Brown
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Ernest A. Gould
- UMR_D 190 "Emergence des Pathologies Virales" (Aix-Marseille Univ. IRD French Institute of Research for Development EHESP French School of Public Health), Marseille, France
- Centre for Ecology & Hydrology, Wallingford, Oxfordshire, United Kingdom
| | - Ralph E. Harbach
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Xavier de Lamballerie
- UMR_D 190 "Emergence des Pathologies Virales" (Aix-Marseille Univ. IRD French Institute of Research for Development EHESP French School of Public Health), Marseille, France
| | - Andrew E. Firth
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- * E-mail: (SC); (AEF)
| |
Collapse
|
95
|
Grubaugh ND, McMenamy SS, Turell MJ, Lee JS. Multi-gene detection and identification of mosquito-borne RNA viruses using an oligonucleotide microarray. PLoS Negl Trop Dis 2013; 7:e2349. [PMID: 23967358 PMCID: PMC3744434 DOI: 10.1371/journal.pntd.0002349] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 06/19/2013] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Arthropod-borne viruses are important emerging pathogens world-wide. Viruses transmitted by mosquitoes, such as dengue, yellow fever, and Japanese encephalitis viruses, infect hundreds of millions of people and animals each year. Global surveillance of these viruses in mosquito vectors using molecular based assays is critical for prevention and control of the associated diseases. Here, we report an oligonucleotide DNA microarray design, termed ArboChip5.1, for multi-gene detection and identification of mosquito-borne RNA viruses from the genera Flavivirus (family Flaviviridae), Alphavirus (Togaviridae), Orthobunyavirus (Bunyaviridae), and Phlebovirus (Bunyaviridae). METHODOLOGY/PRINCIPAL FINDINGS The assay utilizes targeted PCR amplification of three genes from each virus genus for electrochemical detection on a portable, field-tested microarray platform. Fifty-two viruses propagated in cell-culture were used to evaluate the specificity of the PCR primer sets and the ArboChip5.1 microarray capture probes. The microarray detected all of the tested viruses and differentiated between many closely related viruses such as members of the dengue, Japanese encephalitis, and Semliki Forest virus clades. Laboratory infected mosquitoes were used to simulate field samples and to determine the limits of detection. Additionally, we identified dengue virus type 3, Japanese encephalitis virus, Tembusu virus, Culex flavivirus, and a Quang Binh-like virus from mosquitoes collected in Thailand in 2011 and 2012. CONCLUSIONS/SIGNIFICANCE We demonstrated that the described assay can be utilized in a comprehensive field surveillance program by the broad-range amplification and specific identification of arboviruses from infected mosquitoes. Furthermore, the microarray platform can be deployed in the field and viral RNA extraction to data analysis can occur in as little as 12 h. The information derived from the ArboChip5.1 microarray can help to establish public health priorities, detect disease outbreaks, and evaluate control programs.
Collapse
Affiliation(s)
- Nathan D Grubaugh
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, United States of America.
| | | | | | | |
Collapse
|
96
|
Ferreira DD, Cook S, Lopes Â, de Matos AP, Esteves A, Abecasis A, de Almeida APG, Piedade J, Parreira R. Characterization of an insect-specific flavivirus (OCFVPT) co-isolated from Ochlerotatus caspius collected in southern Portugal along with a putative new Negev-like virus. Virus Genes 2013; 47:532-45. [PMID: 23877720 DOI: 10.1007/s11262-013-0960-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 07/10/2013] [Indexed: 10/26/2022]
Abstract
We describe the isolation and characterization of an insect-specific flavivirus (ISF) from Ochlerotatus caspius (Pallas, 1771) mosquitoes collected in southern Portugal. The RNA genome of this virus, tentatively designated OCFVPT, for O. caspius flavivirus from Portugal, encodes a polyprotein showing all the features expected for a flavivirus. As frequently observed for ISF, the viral genomes seems to encode a putative Fairly Interesting Flavivirus ORF (FIFO)-like product, the synthesis of which would occur as a result of a -1 translation frameshift event. OCFVPT was isolated in the C6/36 Stegomyia albopicta (= Aedes albopictus) cell line where it replicates rapidly, but failed to replicate in Vero cells in common with other ISFs. Unlike some of the latter, however, the OCFVPT genome does not seem to be integrated in the mosquito cells we tested. Phylogenetic analyses based on partial ISF NS5 nucleotide sequences placed OCFVPT among recently published viral strains documented from mosquitoes collected in the Iberian Peninsula, while analyses of ORF/E/NS3/or NS5 amino acid sequences cluster OCFVPT with HANKV (Hanko virus), an ISF recently isolated from O. caspius mosquitoes collected in Finland. Taking into account the genetic relatedness with this virus, OCFVPT is not expected to be overtly cytopathic to C6/36 cells. The cytopathic effects associated with its presence in culture supernatants are postulated to be the result of the replication of a co-isolated putative new Negev-like virus.
Collapse
Affiliation(s)
- Daniela Duque Ferreira
- Unidade de Microbiologia Médica, Grupo de Virologia, Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Rua da Junqueira 100, 1349-008, Lisbon, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Yamanaka A, Thongrungkiat S, Ramasoota P, Konishi E. Genetic and evolutionary analysis of cell-fusing agent virus based on Thai strains isolated in 2008 and 2012. INFECTION GENETICS AND EVOLUTION 2013; 19:188-94. [PMID: 23871775 DOI: 10.1016/j.meegid.2013.07.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/25/2013] [Accepted: 07/09/2013] [Indexed: 12/30/2022]
Abstract
Increasing attention is being devoted to ecological and evolutionary relationships between insect-specific flaviviruses and globally important human-pathogenic flaviviruses such as dengue viruses. One such insect flavivirus, cell-fusing agent virus (CFAV), remains poorly investigated. In this study, we isolated 13 and 16 CFAV strains from Aedes aegypti mosquitoes collected in Thailand in 2008 and 2012, respectively, and performed genetic and evolutionary analyses based on gene regions encoding the envelope protein (E) and nonstructural proteins 3 (NS3) and 5 (NS5). Consistent with previously reported CFAV strains, E, NS3 and NS5 regions comprised 1,290, 1,761 and 2,664 nucleotides, respectively. Nucleotide and amino acid identities of these three regions were >98% among the 29 isolates, and approximately 95-96% and 96-99%, respectively, between the isolates and previously reported CFAV strains. When amino acid sequences from representative strains of six insect-specific and seven mosquito-borne flaviviruses were compared, average identities of 14.9%, 31.8% and 44.3% were calculated for E, NS3 and NS5 regions, respectively. Phylogenetic analysis based on nucleotide and amino acid data indicated that the Thai CFAV isolates of the current study were distinct from previously reported CFAV strains from Indonesia and Puerto Rico. Analysis of each gene region consistently uncovered a clade made up of nearly the same subset of Thai CFAV isolates; this result, and the isolation of CFAV from mosquitoes reared from larvae, suggest that the virus is maintained by vertical transmission and conserved in a particular environment without considerable evolutionary alteration. The most recent common ancestor of the Thai CFAV isolates in this study was dated to 11-27 years ago, and is estimated to have diverged 46-86 years ago from previously reported CFAV strains. Superinfection with CFAV of Aedes mosquitoes carrying dengue viruses present in Thailand for over 50 years has most likely taken place.
Collapse
Affiliation(s)
- Atsushi Yamanaka
- BIKEN Endowed Department of Dengue Vaccine Development, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchahewi, Bangkok 10440, Thailand.
| | | | | | | |
Collapse
|
98
|
Evangelista J, Cruz C, Guevara C, Astete H, Carey C, Kochel TJ, Morrison AC, Williams M, Halsey ES, Forshey BM. Characterization of a novel flavivirus isolated from Culex (Melanoconion) ocossa mosquitoes from Iquitos, Peru. J Gen Virol 2013; 94:1266-1272. [DOI: 10.1099/vir.0.050575-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We describe the isolation and characterization of a novel flavivirus, isolated from a pool of Culex (Melanoconion) ocossa Dyar and Knab mosquitoes collected in 2009 in an urban area of the Amazon basin city of Iquitos, Peru. Flavivirus infection was detected by indirect immunofluorescent assay of inoculated C6/36 cells using polyclonal flavivirus antibodies (St. Louis encephalitis virus, yellow fever virus and dengue virus type 1) and confirmed by RT-PCR. Based on partial sequencing of the E and NS5 gene regions, the virus isolate was most closely related to the mosquito-borne flaviviruses but divergent from known species, with less than 45 and 71 % pairwise amino acid identity in the E and NS5 gene products, respectively. Phylogenetic analysis of E and NS5 amino acid sequences demonstrated that this flavivirus grouped with mosquito-borne flaviviruses, forming a clade with Nounané virus (NOUV). Like NOUV, no replication was detected in a variety of mammalian cells (Vero-76, Vero-E6, BHK, LLCMK, MDCK, A549 and RD) or in intracerebrally inoculated newborn mice. We tentatively designate this genetically distinct flavivirus as representing a novel species, Nanay virus, after the river near where it was first detected.
Collapse
Affiliation(s)
- Julio Evangelista
- Virology Department, U.S. Naval Medical Research Unit No. 6, Lima and Iquitos, Peru
| | - Cristhopher Cruz
- Virology Department, U.S. Naval Medical Research Unit No. 6, Lima and Iquitos, Peru
| | - Carolina Guevara
- Virology Department, U.S. Naval Medical Research Unit No. 6, Lima and Iquitos, Peru
| | - Helvio Astete
- Virology Department, U.S. Naval Medical Research Unit No. 6, Lima and Iquitos, Peru
| | - Cristiam Carey
- Dirección Regional de Salud de Loreto, Av 28 de Julio, Punchana, Loreto, Peru
| | - Tadeusz J. Kochel
- Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Amy C. Morrison
- Department of Entomology, University of California, One Shields Avenue, Davis, CA 95616, USA
- Virology Department, U.S. Naval Medical Research Unit No. 6, Lima and Iquitos, Peru
| | - Maya Williams
- Virology Department, U.S. Naval Medical Research Unit No. 6, Lima and Iquitos, Peru
| | - Eric S. Halsey
- Virology Department, U.S. Naval Medical Research Unit No. 6, Lima and Iquitos, Peru
| | - Brett M. Forshey
- Virology Department, U.S. Naval Medical Research Unit No. 6, Lima and Iquitos, Peru
| |
Collapse
|
99
|
Morais SA, Almeida FD, Suesdek L, Marrelli MT. Low genetic diversity in Wolbachia-Infected Culex quinquefasciatus (Diptera: Culicidae) from Brazil and Argentina. Rev Inst Med Trop Sao Paulo 2013; 54:325-9. [PMID: 23152317 DOI: 10.1590/s0036-46652012000600007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 06/04/2012] [Indexed: 05/26/2023] Open
Abstract
Culex quinquefasciatus is a vector of human pathogens, including filarial nematodes and several viruses. Although its epidemiological relevance is known to vary across geographical regions, an understanding of its population genetic structure is still incipient. In light of this, we evaluated the genetic diversity of Cx. quinquefasciatus and Cx. pipiens x Cx. quinquefasciatus hybrids collected from nine localities in Brazil and one site in Argentina. We used mitochondrial genes cox1 and nd4, along with the coxA and wsp genes of the maternally-inherited Wolbachia endosymbiont. The nd4 fragment was invariant between samples, whilst cox1 exhibited four haplotypes that separated two types of Cx. quinquefasciatus, one clustered in southern Brazil. Low sequence diversity was generally observed, being discussed. Both Brazilian and Argentinian mosquitoes were infected with a single Wolbachia strain. As reported in previous studies with these populations, cox1 and nd4 diversity is not congruent with the population structure revealed by nuclear markers or alar morphology. Future Cx. quinquefasciatus research should, if possible, evaluate mtDNA diversity in light of other markers.
Collapse
Affiliation(s)
- Sirlei Antunes Morais
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, SP, Brazil.
| | | | | | | |
Collapse
|
100
|
First isolation of Aedes flavivirus in the Western Hemisphere and evidence of vertical transmission in the mosquito Aedes (Stegomyia) albopictus (Diptera: Culicidae). Virology 2013; 440:134-9. [PMID: 23582303 DOI: 10.1016/j.virol.2012.12.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 08/28/2012] [Accepted: 12/11/2012] [Indexed: 11/23/2022]
Abstract
We report here the first evidence of vertical transmission of Aedes flavivirus (AEFV) and its first isolation in the Western Hemisphere. AEFV strain SPFLD-MO-2011-MP6 was isolated in C6/36 cells from a pool of male Aedes albopictus mosquitoes that were reared to adults from larvae collected in southwest Missouri, USA, in 2011. Electron micrographs of the virus showed virions of approximately 45nm in diameter with morphological characteristics associated with flaviviruses. The genomic sequence demonstrated that AEFV-SPFLD-MO-2011-MP6 shares a high degree of nucleotide and amino acid sequence identity with the AEFV Narita-21 strain, isolated in Japan in 2003. Intracerebral inoculation of newborn mice with the virus failed to produce observable illness or death and the virus did not replicate in vertebrate cells, consistent with a lack of vertebrate host range.
Collapse
|