51
|
Parsons LM, Bouwman KM, Azurmendi H, de Vries RP, Cipollo JF, Verheije MH. Glycosylation of the viral attachment protein of avian coronavirus is essential for host cell and receptor binding. J Biol Chem 2019; 294:7797-7809. [PMID: 30902814 PMCID: PMC6514631 DOI: 10.1074/jbc.ra119.007532] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/01/2019] [Indexed: 12/16/2022] Open
Abstract
Avian coronaviruses, including infectious bronchitis virus (IBV), are important
respiratory pathogens of poultry. The heavily glycosylated IBV spike protein is
responsible for binding to host tissues. Glycosylation sites in the spike
protein are highly conserved across viral genotypes, suggesting an important
role for this modification in the virus life cycle. Here, we analyzed the
N-glycosylation of the receptor-binding domain (RBD) of IBV
strain M41 spike protein and assessed the role of this modification in host
receptor binding. Ten single Asn–to–Ala substitutions at the
predicted N-glycosylation sites of the M41–RBD were
evaluated along with two control Val–to–Ala substitutions. CD
analysis revealed that the secondary structure of all variants was retained
compared with the unmodified M41–RBD construct. Six of the 10
glycosylation variants lost binding to chicken trachea tissue and an
ELISA-presented α2,3-linked sialic acid oligosaccharide ligand.
LC/MSE glycomics analysis revealed that glycosylation sites have
specific proportions of N-glycan subtypes. Overall, the
glycosylation patterns of most variant RBDs were highly similar to those of the
unmodified M41–RBD construct. In silico docking
experiments with the recently published cryo-EM structure of the M41 IBV spike
protein and our glycosylation results revealed a potential ligand receptor site
that is ringed by four glycosylation sites that dramatically impact ligand
binding. Combined with the results of previous array studies, the glycosylation
and mutational analyses presented here suggest a unique glycosylation-dependent
binding modality for the M41 spike protein.
Collapse
Affiliation(s)
- Lisa M Parsons
- From the Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993
| | - Kim M Bouwman
- the Division of Pathology, Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands, and
| | - Hugo Azurmendi
- From the Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993
| | - Robert P de Vries
- the Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3512 JE Utrecht, The Netherlands
| | - John F Cipollo
- From the Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993,
| | - Monique H Verheije
- the Division of Pathology, Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands, and
| |
Collapse
|
52
|
Xu L, Ren M, Sheng J, Ma T, Han Z, Zhao Y, Sun J, Liu S. Genetic and biological characteristics of four novel recombinant avian infectious bronchitis viruses isolated in China. Virus Res 2019; 263:87-97. [PMID: 30641197 PMCID: PMC7185608 DOI: 10.1016/j.virusres.2019.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/29/2018] [Accepted: 01/10/2019] [Indexed: 01/22/2023]
Abstract
Two IBV strains were proved to be originated from multiple recombination events. Viruses with very similar S1 gene sequences showed varying biological features. Point mutations were observed in the RBD and HVRs of the recombinant viruses. Point mutations likely have an effect on these differences in biological characteristics.
Infectious bronchitis viruses (IBVs) of GI-13 (793/B) and GI-19 (QX/LX4) lineages have been frequently detected in China in recent years. Naturally recombinant IBVs originating from the GI-13 and GI-19 lineages have also been isolated from chicken flocks with respiratory and renal problems in China. Thorough genetic and biological investigations of these recombinant viruses have led to speculation regarding their origin, evolution, and control. In order to confirm the previous results and further extend our understanding about the characteristics of the four recombinant IBV strains we had previously identified (I0718/17, I0722/17, I0724/17, and I0737/17), we conducted phylogenetic analysis by comparing their complete S1 gene sequences with those of 71 reference strains of different genotypes and lineages. We identified a close relationship between the S1 sequences of the four strains and those of GI-13 strains. The results of complete genome sequence analysis confirmed the previously identified recombination events in the four IBV strains and revealed additional recombination events in different genomic regions of strains I0718/17 and I0724/17, suggesting that the two strains originated from multiple recombination events between 4/91-like and YX10-like viruses. We comparatively evaluated the antigenicity, pathogenicity, and affinity of the four recombinant viruses and their deduced parental strains in the trachea and kidneys. Some of the strains showed comparable antigenic relatedness, pathogenicity, and affinity for the trachea and kidneys among each other and with their parental viruses; however, some of them showed varying biological characteristics. Point mutations observed in the receptor-binding domain and hypervariable region of the S1 subunit of the spike protein likely have an effect on these differences in biological characteristics, although the influence of other factors—such as host innate-immune responses and changes in genomic regions beyond the S1 protein—might also be responsible for such changes.
Collapse
Affiliation(s)
- Liwen Xu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150001, People's Republic of China
| | - Mengting Ren
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150001, People's Republic of China
| | - Jie Sheng
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150001, People's Republic of China
| | - Tianxin Ma
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150001, People's Republic of China
| | - Zongxi Han
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150001, People's Republic of China
| | - Yan Zhao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150001, People's Republic of China
| | - Junfeng Sun
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150001, People's Republic of China
| | - Shengwang Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150001, People's Republic of China.
| |
Collapse
|
53
|
Wang H, Yuan X, Sun Y, Mao X, Meng C, Tan L, Song C, Qiu X, Ding C, Liao Y. Infectious bronchitis virus entry mainly depends on clathrin mediated endocytosis and requires classical endosomal/lysosomal system. Virology 2018; 528:118-136. [PMID: 30597347 PMCID: PMC7111473 DOI: 10.1016/j.virol.2018.12.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 12/27/2022]
Abstract
Although several reports suggest that the entry of infectious bronchitis virus (IBV) depends on lipid rafts and low pH, the endocytic route and intracellular trafficking are unclear. In this study, we aimed to shed greater light on early steps in IBV infection. By using chemical inhibitors, RNA interference, and dominant negative mutants, we observed that lipid rafts and low pH was indeed required for virus entry; IBV mainly utilized the clathrin mediated endocytosis (CME) for entry; GTPase dynamin 1 was involved in virus containing vesicle scission; and the penetration of IBV into cells led to active cytoskeleton rearrangement. By using R18 labeled virus, we found that virus particles moved along with the classical endosome/lysosome track. Functional inactivation of Rab5 and Rab7 significantly inhibited IBV infection. Finally, by using dual R18/DiOC labeled IBV, we observed that membrane fusion was induced after 1 h.p.i. in late endosome/lysosome. Intact lipid rafts is involved in IBV entry. Low pH in intracyplasmic vesicles is required for IBV entry. IBV penetrates cells via clathrin mediated endocytosis. IBV moves along with the classical endosome/lysosome track, finally fuses with late endosome/lysosome.
Collapse
Affiliation(s)
- Huan Wang
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Xiao Yuan
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Yingjie Sun
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Xiang Mao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Chunchun Meng
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Lei Tan
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Cuiping Song
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Xusheng Qiu
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Chan Ding
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China.
| | - Ying Liao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China.
| |
Collapse
|
54
|
Bickerton E, Maier HJ, Stevenson-Leggett P, Armesto M, Britton P. The S2 Subunit of Infectious Bronchitis Virus Beaudette Is a Determinant of Cellular Tropism. J Virol 2018; 92:e01044-18. [PMID: 30021894 PMCID: PMC6146808 DOI: 10.1128/jvi.01044-18] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 07/10/2018] [Indexed: 12/17/2022] Open
Abstract
The spike (S) glycoprotein of the avian gammacoronavirus infectious bronchitis virus (IBV) is comprised of two subunits (S1 and S2), has a role in virulence in vivo, and is responsible for cellular tropism in vitro We have previously demonstrated that replacement of the S glycoprotein ectodomain from the avirulent Beaudette strain of IBV with the corresponding region from the virulent M41-CK strain resulted in a recombinant virus, BeauR-M41(S), with the in vitro cell tropism of M41-CK. The IBV Beaudette strain is able to replicate in both primary chick kidney cells and Vero cells, whereas the IBV M41-CK strain replicates in primary cells only. In order to investigate the region of the IBV S responsible for growth in Vero cells, we generated a series of recombinant IBVs expressing chimeric S glycoproteins, consisting of regions from the Beaudette and M41-CK S gene sequences, within the genomic background of Beaudette. The S2, but not the S1, subunit of the Beaudette S was found to confer the ability to grow in Vero cells. Various combinations of Beaudette-specific amino acids were introduced into the S2 subunit of M41 to determine the minimum requirement to confer tropism for growth in Vero cells. The ability of IBV to grow and produce infectious progeny virus in Vero cells was subsequently narrowed down to just 3 amino acids surrounding the S2' cleavage site. Conversely, swapping of the 3 Beaudette-associated amino acids with the corresponding ones from M41 was sufficient to abolish Beaudette growth in Vero cells.IMPORTANCE Infectious bronchitis remains a major problem in the global poultry industry, despite the existence of many different vaccines. IBV vaccines, both live attenuated and inactivated, are currently grown on embryonated hen's eggs, a cumbersome and expensive process due to the fact that most IBV strains do not grow in cultured cells. The reverse genetics system for IBV creates the opportunity for generating rationally designed and more effective vaccines. The observation that IBV Beaudette has the additional tropism for growth on Vero cells also invokes the possibility of generating IBV vaccines produced from cultured cells rather than by the use of embryonated eggs. The regions of the IBV Beaudette S glycoprotein involved in the determination of extended cellular tropism were identified in this study. This information will enable the rational design of a future generation of IBV vaccines that may be grown on Vero cells.
Collapse
|
55
|
Aouini R, Laamiri N, Ghram A. Viral interference between low pathogenic avian influenza H9N2 and avian infectious bronchitis viruses in vitro and in ovo. J Virol Methods 2018; 259:92-99. [PMID: 29940196 PMCID: PMC7119724 DOI: 10.1016/j.jviromet.2018.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Low pathogenic avian influenza (LPAI) H9N2 and infectious bronchitis virus (IBV) are important pathogens of poultry, causing important economic losses for the sector. Replication interference between these two viruses was described using cell cultures (CC) and embryonated chicken eggs (ECE). Chicken embryo lung (CEL) and ECE were simultaneously or sequentially infected with IBV vaccine strain (H120) and LPAIV-H9N2 (A/Ck/TUN/145/2012) to evaluate viral interactionsin vitro and in ovo, respectively. Real-time RT-PCR was developed to specifically quantify both AIV and IBV genomes as well as viral gene copy numbers during mixed infections. The amount of IL-1 beta, in supernatants of co-infected cell cultures, was determined using an ELISA assay. RESULTS Quantitative results of AIV and IBV co-infection showed that interferences between the two viruses yielded decreased viral growth. However, in the case of super-infection, the second virus, either AIV or IBV, induced a decrease in the growth of the first inoculated virus. CONCLUSION It appears that either AIV or IBV has a negative impact on the other virus growth when they are inoculated simultaneously or sequentially. The ELISA results showed that higher level of secreted IL-1beta varies, depending on the viral interference conditions between both viruses, during mixed infections.
Collapse
Affiliation(s)
- Rim Aouini
- University Tunis El Manar, Institut Pasteur de Tunis, Laboratory of Epidemiology and Veterinary Microbiology, 13 Place Pasteur, Tunis, Belvedere, 1002, Tunisia; University of Carthage, Faculty of Sciences of Bizerte, 7021, Zarzouna, Bizerte, Tunisia.
| | - Nacira Laamiri
- University Tunis El Manar, Institut Pasteur de Tunis, Laboratory of Epidemiology and Veterinary Microbiology, 13 Place Pasteur, Tunis, Belvedere, 1002, Tunisia; University of Carthage, Faculty of Sciences of Bizerte, 7021, Zarzouna, Bizerte, Tunisia.
| | - Abdeljelil Ghram
- University Tunis El Manar, Institut Pasteur de Tunis, Laboratory of Epidemiology and Veterinary Microbiology, 13 Place Pasteur, Tunis, Belvedere, 1002, Tunisia.
| |
Collapse
|
56
|
Broad receptor engagement of an emerging global coronavirus may potentiate its diverse cross-species transmissibility. Proc Natl Acad Sci U S A 2018; 115:E5135-E5143. [PMID: 29760102 DOI: 10.1073/pnas.1802879115] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Porcine deltacoronavirus (PDCoV), identified in 2012, is a common enteropathogen of swine with worldwide distribution. The source and evolutionary history of this virus is, however, unknown. PDCoV belongs to the Deltacoronavirus genus that comprises predominantly avian CoV. Phylogenetic analysis suggests that PDCoV originated relatively recently from a host-switching event between birds and mammals. Insight into receptor engagement by PDCoV may shed light into such an exceptional phenomenon. Here we report that PDCoV employs host aminopeptidase N (APN) as an entry receptor and interacts with APN via domain B of its spike (S) protein. Infection of porcine cells with PDCoV was drastically reduced by APN knockout and rescued after reconstitution of APN expression. In addition, we observed that PDCoV efficiently infects cells of unusual broad species range, including human and chicken. Accordingly, PDCoV S was found to target the phylogenetically conserved catalytic domain of APN. Moreover, transient expression of porcine, feline, human, and chicken APN renders cells susceptible to PDCoV infection. Binding of PDCoV to an interspecies conserved site on APN may facilitate direct transmission of PDCoV to nonreservoir species, including humans, potentially reflecting the mechanism that enabled a virus, ancestral to PDCoV, to breach the species barrier between birds and mammals. The APN cell surface protein is also used by several members of the Alphacoronavirus genus. Hence, our data constitute the second identification of CoVs from different genera that use the same receptor, implying that CoV receptor selection is subjected to specific restrictions that are still poorly understood.
Collapse
|
57
|
Jaimes JA, Whittaker GR. Feline coronavirus: Insights into viral pathogenesis based on the spike protein structure and function. Virology 2018; 517:108-121. [PMID: 29329682 PMCID: PMC7112122 DOI: 10.1016/j.virol.2017.12.027] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/22/2017] [Accepted: 12/23/2017] [Indexed: 12/20/2022]
Abstract
Feline coronavirus (FCoV) is an etiological agent that causes a benign enteric illness and the fatal systemic disease feline infectious peritonitis (FIP). The FCoV spike (S) protein is considered the viral regulator for binding and entry to the cell. This protein is also involved in FCoV tropism and virulence, as well as in the switch from enteric disease to FIP. This regulation is carried out by spike's major functions: receptor binding and virus-cell membrane fusion. In this review, we address important aspects in FCoV genetics, replication and pathogenesis, focusing on the role of S. To better understand this, FCoV S protein models were constructed, based on the human coronavirus NL63 (HCoV-NL63) S structure. We describe the specific structural characteristics of the FCoV S, in comparison with other coronavirus spikes. We also revise the biochemical events needed for FCoV S activation and its relation to the structural features of the protein.
Collapse
Affiliation(s)
- Javier A Jaimes
- Department of Microbiology, College of Agricultural and Life Sciences, Cornell University, 930 Campus Rd. VMC C4-133, Ithaca, NY 14853, USA.
| | - Gary R Whittaker
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, VMC C4-127, Ithaca, NY 14853, USA.
| |
Collapse
|
58
|
Identification of sialic acid-binding function for the Middle East respiratory syndrome coronavirus spike glycoprotein. Proc Natl Acad Sci U S A 2017; 114:E8508-E8517. [PMID: 28923942 DOI: 10.1073/pnas.1712592114] [Citation(s) in RCA: 264] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) targets the epithelial cells of the respiratory tract both in humans and in its natural host, the dromedary camel. Virion attachment to host cells is mediated by 20-nm-long homotrimers of spike envelope protein S. The N-terminal subunit of each S protomer, called S1, folds into four distinct domains designated S1A through S1D Binding of MERS-CoV to the cell surface entry receptor dipeptidyl peptidase 4 (DPP4) occurs via S1B We now demonstrate that in addition to DPP4, MERS-CoV binds to sialic acid (Sia). Initially demonstrated by hemagglutination assay with human erythrocytes and intact virus, MERS-CoV Sia-binding activity was assigned to S subdomain S1A When multivalently displayed on nanoparticles, S1 or S1A bound to human erythrocytes and to human mucin in a strictly Sia-dependent fashion. Glycan array analysis revealed a preference for α2,3-linked Sias over α2,6-linked Sias, which correlates with the differential distribution of α2,3-linked Sias and the predominant sites of MERS-CoV replication in the upper and lower respiratory tracts of camels and humans, respectively. Binding is hampered by Sia modifications such as 5-N-glycolylation and (7,)9-O-acetylation. Depletion of cell surface Sia by neuraminidase treatment inhibited MERS-CoV entry of Calu-3 human airway cells, thus providing direct evidence that virus-Sia interactions may aid in virion attachment. The combined observations lead us to propose that high-specificity, low-affinity attachment of MERS-CoV to sialoglycans during the preattachment or early attachment phase may form another determinant governing the host range and tissue tropism of this zoonotic pathogen.
Collapse
|
59
|
Santos Fernando F, Coelho Kasmanas T, Diniz Lopes P, da Silva Montassier MDF, Zanella Mores MA, Casagrande Mariguela V, Pavani C, Moreira Dos Santos R, Assayag MS, Montassier HJ. Assessment of molecular and genetic evolution, antigenicity and virulence properties during the persistence of the infectious bronchitis virus in broiler breeders. J Gen Virol 2017; 98:2470-2481. [PMID: 28895517 DOI: 10.1099/jgv.0.000893] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The infectious bronchitis virus (IBV) causes a highly contagious disease [infectious bronchitis (IB)] that results in substantial economic losses to the poultry industry worldwide. We conducted a molecular and phylogenetic analysis of the S1 gene of Brazilian (BR) IBV isolates from a routinely vaccinated commercial flock of broiler breeders, obtained from clinical IB episodes that occurred in 24-, 46- and 62-week-old chickens. We also characterized the antigenicity, pathogenesis, tissue tropism and spreading of three IBV isolates by experimental infection of specific pathogen-free (SPF) chickens and contact sentinel birds. The results reveal that the three IBV isolates mainly exhibited mutations in the hypervariable regions (HVRs) of the S1 gene and protein, but were phylogenetically and serologically closely related, belonging to lineage 11 of the GI genotype, the former BR genotype I. All three isolates caused persistent infection in broiler breeders reared in the field, despite high systemic anti-IBV antibody titres, and exhibited tropism and pathogenicity for the trachea and kidney after experimental infection in SPF chickens and contact birds. In conclusion, BR genotype I isolates of IBV evolve continuously during the productive cycle of persistently infected broiler breeders, causing outbreaks that are not impaired by the current vaccination programme with Massachusetts vaccine strains. In addition, the genetic alterations in the S1 gene of these isolates were not able to change their tissue tropism and pathogenicity, but did seem to negatively influence the effectiveness of the host immune responses against these viruses, and favour viral persistence.
Collapse
Affiliation(s)
- Filipe Santos Fernando
- Department of Veterinary Pathology, Laboratory of Virology and Immunology, Universidade Estadual Paulista Júlio de Mesquita Filho (FCAV- UNESP), Jaboticabal, SP 14884-900, Brazil
| | - Thaiane Coelho Kasmanas
- Department of Veterinary Pathology, Laboratory of Virology and Immunology, Universidade Estadual Paulista Júlio de Mesquita Filho (FCAV- UNESP), Jaboticabal, SP 14884-900, Brazil
| | - Priscila Diniz Lopes
- Department of Veterinary Pathology, Laboratory of Virology and Immunology, Universidade Estadual Paulista Júlio de Mesquita Filho (FCAV- UNESP), Jaboticabal, SP 14884-900, Brazil
| | - Maria de Fátima da Silva Montassier
- Department of Veterinary Pathology, Laboratory of Virology and Immunology, Universidade Estadual Paulista Júlio de Mesquita Filho (FCAV- UNESP), Jaboticabal, SP 14884-900, Brazil
| | | | - Viviane Casagrande Mariguela
- Department of Veterinary Pathology, Laboratory of Virology and Immunology, Universidade Estadual Paulista Júlio de Mesquita Filho (FCAV- UNESP), Jaboticabal, SP 14884-900, Brazil
| | - Caren Pavani
- Department of Veterinary Pathology, Laboratory of Virology and Immunology, Universidade Estadual Paulista Júlio de Mesquita Filho (FCAV- UNESP), Jaboticabal, SP 14884-900, Brazil
| | - Romeu Moreira Dos Santos
- Department of Veterinary Pathology, Laboratory of Virology and Immunology, Universidade Estadual Paulista Júlio de Mesquita Filho (FCAV- UNESP), Jaboticabal, SP 14884-900, Brazil
| | - Mário Sérgio Assayag
- Department of Veterinary Pathology, Laboratory of Virology and Immunology, Universidade Estadual Paulista Júlio de Mesquita Filho (FCAV- UNESP), Jaboticabal, SP 14884-900, Brazil
| | - Helio José Montassier
- Department of Veterinary Pathology, Laboratory of Virology and Immunology, Universidade Estadual Paulista Júlio de Mesquita Filho (FCAV- UNESP), Jaboticabal, SP 14884-900, Brazil
| |
Collapse
|
60
|
van Beurden SJ, Berends AJ, Krämer-Kühl A, Spekreijse D, Chénard G, Philipp HC, Mundt E, Rottier PJM, Verheije MH. A reverse genetics system for avian coronavirus infectious bronchitis virus based on targeted RNA recombination. Virol J 2017; 14:109. [PMID: 28606144 PMCID: PMC5468965 DOI: 10.1186/s12985-017-0775-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 06/01/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Avian coronavirus infectious bronchitis virus (IBV) is a respiratory pathogen of chickens that causes severe economic losses in the poultry industry worldwide. Major advances in the study of the molecular biology of IBV have resulted from the development of reverse genetics systems for the highly attenuated, cell culture-adapted, IBV strain Beaudette. However, most IBV strains, amongst them virulent field isolates, can only be propagated in embryonated chicken eggs, and not in continuous cell lines. METHODS We established a reverse genetics system for the IBV strain H52, based on targeted RNA recombination in a two-step process. First, a genomic and a chimeric synthetic, modified IBV RNA were co-transfected into non-susceptible cells to generate a recombinant chimeric murinized (m) IBV intermediate (mIBV). Herein, the genomic part coding for the spike glycoprotein ectodomain was replaced by that of the coronavirus mouse hepatitis virus (MHV), allowing for the selection and propagation of recombinant mIBV in murine cells. In the second step, mIBV was used as the recipient. To this end a recombination with synthetic RNA comprising the 3'-end of the IBV genome was performed by introducing the complete IBV spike gene, allowing for the rescue and selection of candidate recombinants in embryonated chicken eggs. RESULTS Targeted RNA recombination allowed for the modification of the 3'-end of the IBV genome, encoding all structural and accessory genes. A wild-type recombinant IBV was constructed, containing several synonymous marker mutations. The in ovo growth kinetics and in vivo characteristics of the recombinant virus were similar to those of the parental IBV strain H52. CONCLUSIONS Targeted RNA recombination allows for the generation of recombinant IBV strains that are not able to infect and propagate in continuous cell lines. The ability to introduce specific mutations holds promise for the development of rationally designed live-attenuated IBV vaccines and for studies into the biology of IBV in general.
Collapse
Affiliation(s)
- Steven J van Beurden
- Faculty of Veterinary Medicine, Department of Pathobiology, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| | - Alinda J Berends
- Faculty of Veterinary Medicine, Department of Pathobiology, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| | - Annika Krämer-Kühl
- Boehringer Ingelheim Veterinary Research Center GmbH & Co. KG, Bemeroder Str. 31, 30559, Hannover, Germany
| | - Dieuwertje Spekreijse
- Boehringer Ingelheim Animal Health Operations, C.J. van Houtenlaan 36, 1381 CP, Weesp, The Netherlands
| | - Gilles Chénard
- Boehringer Ingelheim Animal Health Operations, C.J. van Houtenlaan 36, 1381 CP, Weesp, The Netherlands
| | - Hans-Christian Philipp
- Boehringer Ingelheim Veterinary Research Center GmbH & Co. KG, Bemeroder Str. 31, 30559, Hannover, Germany
| | - Egbert Mundt
- Boehringer Ingelheim Veterinary Research Center GmbH & Co. KG, Bemeroder Str. 31, 30559, Hannover, Germany
| | - Peter J M Rottier
- Faculty of Veterinary Medicine, Department of Pathobiology, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| | - M Hélène Verheije
- Faculty of Veterinary Medicine, Department of Pathobiology, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands.
| |
Collapse
|
61
|
Insights from molecular structure predictions of the infectious bronchitis virus S1 spike glycoprotein. INFECTION GENETICS AND EVOLUTION 2016; 46:124-129. [PMID: 27836775 PMCID: PMC7106061 DOI: 10.1016/j.meegid.2016.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 11/04/2016] [Accepted: 11/06/2016] [Indexed: 12/19/2022]
Abstract
Infectious bronchitis virus is an important respiratory pathogen in chickens. The IBV S1 spike is a viral structural protein that is responsible for attachment to host receptors and is a major target for neutralizing antibodies. To date, there is no experimentally determined structure for the IBV S1 spike. In this study, we sought to find a predicted tertiary structure for IBV S1 using I-TASSER, which is an automated homology modeling platform. We found that the predicted structures obtained were robust and consistent with experimental data. For instance, we observed that all four residues (38, 43, 63, and 68) that have been shown to be critical for binding to host tissues, were found at the surface of the predicted structure of Massachusetts (Mass) S1 spike. Together with antigenicity index analysis, we were also able to show that Ma5 vaccine has higher antigenicity indices at residues close to the receptor-binding region than M41 vaccine, thereby providing a possible mechanism on how Ma5 achieves better protection against challenge. Examination of the predicted structure of the Arkansas IBV S1 spike also gave insights on the effect of polymorphisms at position 43 on the surface availability of receptor binding residues. This study showcases advancements in protein structure prediction and contributes useful, inexpensive tools to provide insights into the biology of IBV. Tertiary structure of the S1 spike glycoprotein of IBV was predicted using I-TASSER. Putative receptor binding residues were mapped on S1 predicted tertiary structure. Mapping of important regions in S1 offer insights on outcomes of IBV vaccination.
Collapse
|
62
|
Distribution of infectious bronchitis virus strains in different organs and evidence of vertical transmission in natural infection. Arch Virol 2016; 161:3355-3363. [PMID: 27586414 PMCID: PMC7087270 DOI: 10.1007/s00705-016-3030-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/22/2016] [Indexed: 01/12/2023]
Abstract
On the basis of partial sequencing of the infectious bronchitis virus (IBV) S1 gene, this study investigated the molecular diversity of the virus in two life periods of a batch of breeding hens at the field level. The chicks were vaccinated against IBV on the second day of life with the vaccine Ma5, but at the age of 18 days, they exhibited clinical signs and macroscopic lesions compatible with avian infectious bronchitis (IB). In the clinical disease stage, the Ma5 vaccine strain was detected in the trachea, lungs, and small intestine of the chicks, while IBV variants were detected in the bursa of Fabricius and kidneys. Subsequently, new samples were collected from the same batch at the end of the production cycle. In this phase, the Ma5 vaccine strain was detected in the kidneys, small intestine, and oviduct of the hens. However, a previously unidentified IBV variant was found in the cecal tonsils. Additionally, a fragment of viral RNA with that was completely identical to the corresponding region of the Ma5 vaccine was detected in the allantoic fluid of viable embryos from the hens under study after 18 days of incubation. These findings suggest that, in addition to the Ma5 vaccine, other strains of IBV variants can coexist, seeming to establish a chronic infection in the chickens, and that they can potentially be transmitted vertically. These results may assist in immunoprophylaxis control programs against IBV.
Collapse
|
63
|
Pathogenesis and Diagnostic Approaches of Avian Infectious Bronchitis. Adv Virol 2016; 2016:4621659. [PMID: 26955391 PMCID: PMC4756178 DOI: 10.1155/2016/4621659] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/05/2016] [Indexed: 02/06/2023] Open
Abstract
Infectious bronchitis (IB) is one of the major economically important poultry diseases distributed worldwide. It is caused by infectious bronchitis virus (IBV) and affects both galliform and nongalliform birds. Its economic impact includes decreased egg production and poor egg quality in layers, stunted growth, poor carcass weight, and mortality in broiler chickens. Although primarily affecting the respiratory tract, IBV demonstrates a wide range of tissues tropism, including the renal and reproductive systems. Thus, disease outcome may be influenced by the organ or tissue involved as well as pathotypes or strain of the infecting virus. Knowledge on the epidemiology of the prevalent IBV strains in a particular region is therefore important to guide control and preventions. Meanwhile previous diagnostic methods such as serology and virus isolations are less sensitive and time consuming, respectively; current methods, such as reverse transcription polymerase chain reaction (RT-PCR), Restriction Fragment Length Polymorphism (RFLP), and sequencing, offer highly sensitive, rapid, and accurate diagnostic results, thus enabling the genotyping of new viral strains within the shortest possible time. This review discusses aspects on pathogenesis and diagnostic methods for IBV infection.
Collapse
|
64
|
Animal Coronaviruses: A Brief Introduction. SPRINGER PROTOCOLS HANDBOOKS 2016. [PMCID: PMC7120424 DOI: 10.1007/978-1-4939-3414-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/29/2022]
|
65
|
Protein histochemistry using coronaviral spike proteins: studying binding profiles and sialic acid requirements for attachment to tissues. Methods Mol Biol 2015; 1282:155-63. [PMID: 25720479 PMCID: PMC7121471 DOI: 10.1007/978-1-4939-2438-7_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Protein histochemistry is a tissue-based technique that enables the analysis of viral attachment patterns as well as the identification of specific viral and host determinants involved in the first step in the infection of a host cell by a virus. Applying recombinantly expressed spike proteins of infectious bronchitis virus onto formalin-fixed tissues allows us to profile the binding characteristics of these viral attachment proteins to tissues of various avian species. In particular, sialic acid-mediated tissue binding of spike proteins can be analyzed by pretreating tissues with various neuraminidases or by blocking the binding of the viral proteins with specific lectins. Our assay is particularly convenient to elucidate critical virus–host interactions for viruses for which infection models are limited.
Collapse
|
66
|
Novel Receptor Specificity of Avian Gammacoronaviruses That Cause Enteritis. J Virol 2015; 89:8783-92. [PMID: 26063435 DOI: 10.1128/jvi.00745-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/07/2015] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Viruses exploit molecules on the target membrane as receptors for attachment and entry into host cells. Thus, receptor expression patterns can define viral tissue tropism and might to some extent predict the susceptibility of a host to a particular virus. Previously, others and we have shown that respiratory pathogens of the genus Gammacoronavirus, including chicken infectious bronchitis virus (IBV), require specific α2,3-linked sialylated glycans for attachment and entry. Here, we studied determinants of binding of enterotropic avian gammacoronaviruses, including turkey coronavirus (TCoV), guineafowl coronavirus (GfCoV), and quail coronavirus (QCoV), which are evolutionarily distant from respiratory avian coronaviruses based on the viral attachment protein spike (S1). We profiled the binding of recombinantly expressed S1 proteins of TCoV, GfCoV, and QCoV to tissues of their respective hosts. Protein histochemistry showed that the tissue binding specificity of S1 proteins of turkey, quail, and guineafowl CoVs was limited to intestinal tissues of each particular host, in accordance with the reported pathogenicity of these viruses in vivo. Glycan array analyses revealed that, in contrast to the S1 protein of IBV, S1 proteins of enteric gammacoronaviruses recognize a unique set of nonsialylated type 2 poly-N-acetyl-lactosamines. Lectin histochemistry as well as tissue binding patterns of TCoV S1 further indicated that these complex N-glycans are prominently expressed on the intestinal tract of various avian species. In conclusion, our data demonstrate not only that enteric gammacoronaviruses recognize a novel glycan receptor but also that enterotropism may be correlated with the high specificity of spike proteins for such glycans expressed in the intestines of the avian host. IMPORTANCE Avian coronaviruses are economically important viruses for the poultry industry. While infectious bronchitis virus (IBV), a respiratory pathogen of chickens, is rather well known, other viruses of the genus Gammacoronavirus, including those causing enteric disease, are hardly studied. In turkey, guineafowl, and quail, coronaviruses have been reported to be the major causative agent of enteric diseases. Specifically, turkey coronavirus outbreaks have been reported in North America, Europe, and Australia for several decades. Recently, a gammacoronavirus was isolated from guineafowl with fulminating disease. To date, it is not clear why these avian coronaviruses are enteropathogenic, whereas other closely related avian coronaviruses like IBV cause respiratory disease. A comprehensive understanding of the tropism and pathogenicity of these viruses explained by their receptor specificity and receptor expression on tissues was therefore needed. Here, we identify a novel glycan receptor for enteric avian coronaviruses, which will further support the development of vaccines.
Collapse
|
67
|
Host tissue and glycan binding specificities of avian viral attachment proteins using novel avian tissue microarrays. PLoS One 2015; 10:e0128893. [PMID: 26035584 PMCID: PMC4452732 DOI: 10.1371/journal.pone.0128893] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 05/03/2015] [Indexed: 01/06/2023] Open
Abstract
The initial interaction between viral attachment proteins and the host cell is a critical determinant for the susceptibility of a host for a particular virus. To increase our understanding of avian pathogens and the susceptibility of poultry species, we developed novel avian tissue microarrays (TMAs). Tissue binding profiles of avian viral attachment proteins were studied by performing histochemistry on multi-species TMA, comprising of selected tissues from ten avian species, and single-species TMAs, grouping organ systems of each species together. The attachment pattern of the hemagglutinin protein was in line with the reported tropism of influenza virus H5N1, confirming the validity of TMAs in profiling the initial virus-host interaction. The previously believed chicken-specific coronavirus (CoV) M41 spike (S1) protein displayed a broad attachment pattern to respiratory tissues of various avian species, albeit with lower affinity than hemagglutinin, suggesting that other avian species might be susceptible for chicken CoV. When comparing tissue-specific binding patterns of various avian coronaviral S1 proteins on the single-species TMAs, chicken and partridge CoV S1 had predominant affinity for the trachea, while pigeon CoV S1 showed marked preference for lung of their respective hosts. Binding of all coronaviral S1 proteins was dependent on sialic acids; however, while chicken CoV S1 preferred sialic acids type I lactosamine (Gal(1-3)GlcNAc) over type II (Gal(1-4)GlcNAc), the fine glycan specificities of pigeon and partridge CoVs were different, as chicken CoV S1-specific sialylglycopolymers could not block their binding to tissues. Taken together, TMAs provide a novel platform in the field of infectious diseases to allow identification of binding specificities of viral attachment proteins and are helpful to gain insight into the susceptibility of host and organ for avian pathogens.
Collapse
|
68
|
Abstract
Carbohydrates are the most abundant biopolymers on earth and part of every living creature. Glycans are essential as materials for nutrition and for information transfer in biological processes. To date, in few cases a detailed correlation between glycan structure and glycan function has been established. A molecular understanding of glycan function will require pure glycans for biological, immunological, and structural studies. Given the immense structural complexity of glycans found in living organisms and the lack of amplification methods or expression systems, chemical synthesis is the only means to access usable quantities of pure glycan molecules. While the solid-phase synthesis of DNA and peptides has become routine for decades, access to glycans has been technically difficult, time-consuming and confined to a few expert laboratories. In this Account, the development of a comprehensive approach to the automated synthesis of all classes of mammalian glycans, including glycosaminoglycans and glycosylphosphatidyl inositol (GPI) anchors, as well as bacterial and plant carbohydrates is described. A conceptual advance concerning the logic of glycan assembly was required in order to enable automated execution of the synthetic process. Based on the central glycosidic bond forming reaction, a general concept for the protecting groups and leaving groups has been developed. Building blocks that can be procured on large scale, are stable for prolonged periods of time, but upon activation result in high yields and selectivities were identified. A coupling-capping and deprotection cycle was invented that can be executed by an automated synthesis instrument. Straightforward postsynthetic protocols for cleavage from the solid support as well as purification of conjugation-ready oligosaccharides have been established. Introduction of methods to install selectively a wide variety of glycosidic linkages has enabled the rapid assembly of linear and branched oligo- and polysaccharides as large as 30-mers. Fast, reliable access to defined glycans that are ready for conjugation has given rise to glycan arrays, glycan probes, and synthetic glycoconjugate vaccines. While an ever increasing variety of glycans are accessible by automated synthesis, further methodological advances in carbohydrate chemistry are needed to make all possible glycans found in nature. These tools begin to fundamentally impact the medical but also materials aspects of the glycosciences.
Collapse
Affiliation(s)
- Peter H. Seeberger
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
69
|
Wickramasinghe INA, van Beurden SJ, Weerts EAWS, Verheije MH. The avian coronavirus spike protein. Virus Res 2014; 194:37-48. [PMID: 25451062 PMCID: PMC7114429 DOI: 10.1016/j.virusres.2014.10.009] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/06/2014] [Accepted: 10/07/2014] [Indexed: 02/07/2023]
Abstract
Avian coronaviruses of the genus Gammacoronavirus are represented by infectious bronchitis virus (IBV), the coronavirus of chicken. IBV causes a highly contagious disease affecting the respiratory tract and, depending on the strain, other tissues including the reproductive and urogenital tract. The control of IBV in the field is hampered by the many different strains circulating worldwide and the limited protection across strains due to serotype diversity. This diversity is believed to be due to the amino acid variation in the S1 domain of the major viral attachment protein spike. In the last years, much effort has been undertaken to address the role of the avian coronavirus spike protein in the various steps of the virus' live cycle. Various models have successfully been developed to elucidate the contribution of the spike in binding of the virus to cells, entry of cell culture cells and organ explants, and the in vivo tropism and pathogenesis. This review will give an overview of the literature on avian coronavirus spike proteins with particular focus on our recent studies on binding of recombinant soluble spike protein to chicken tissues. With this, we aim to summarize the current understanding on the avian coronavirus spike's contribution to host and tissue predilections, pathogenesis, as well as its role in therapeutic and protective interventions.
Collapse
Affiliation(s)
- I N Ambepitiya Wickramasinghe
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584CL Utrecht, The Netherlands
| | - S J van Beurden
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584CL Utrecht, The Netherlands
| | - E A W S Weerts
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584CL Utrecht, The Netherlands
| | - M H Verheije
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584CL Utrecht, The Netherlands.
| |
Collapse
|
70
|
Mork AK, Hesse M, Abd El Rahman S, Rautenschlein S, Herrler G, Winter C. Differences in the tissue tropism to chicken oviduct epithelial cells between avian coronavirus IBV strains QX and B1648 are not related to the sialic acid binding properties of their spike proteins. Vet Res 2014; 45:67. [PMID: 24928425 PMCID: PMC4076756 DOI: 10.1186/1297-9716-45-67] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 06/02/2014] [Indexed: 11/10/2022] Open
Abstract
The avian coronavirus (AvCoV) infectious bronchitis virus (IBV) is a major poultry pathogen. A characteristic feature of IBV is the occurrence of many different strains belonging to different serotypes, which makes a complete control of the disease by vaccinations a challenging task. Reasons for differences in the tissue tropism and pathogenicity between IBV strains, e.g. a predilection for the kidneys or the oviduct are still an open question. Strains of the QX genotype have been major pathogens in poultry flocks in Asia, Europe and other parts of the world. They are the cause of severe problems with kidney disease and reproductive tract disorders. We analysed infectivity and binding properties of the QX strain and compared them with those of the nephropathogenic strain B1648. As most IBV strains do not infect permanent cell lines and show infection only in primary chicken cells of the target organs, we developed a culture system for chicken oviduct explants. The epithelial cells of the oviduct showed a high susceptibility to infection by the QX strain and were almost resistant to infection by the nephropathogenic B1648 strain. Binding tests with isolated primary oviduct epithelial cells and soluble S1 proteins revealed that S1 proteins of two IBV strains bound with the same efficiency to oviduct epithelial cells. This attachment was sialic acid dependent, indicating that the sugar binding property of IBV spike proteins is not the limiting factor for differences in infection efficiency for the oviduct of the corresponding viruses.
Collapse
Affiliation(s)
| | | | | | | | | | - Christine Winter
- Institute of Virology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany.
| |
Collapse
|
71
|
Desmarets LMB, Theuns S, Roukaerts IDM, Acar DD, Nauwynck HJ. Role of sialic acids in feline enteric coronavirus infections. J Gen Virol 2014; 95:1911-1918. [PMID: 24876305 DOI: 10.1099/vir.0.064717-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
To initiate infections, many coronaviruses use sialic acids, either as receptor determinants or as attachment factors helping the virus find its receptor underneath the heavily glycosylated mucus layer. In the present study, the role of sialic acids in serotype I feline enteric coronavirus (FECV) infections was studied in feline intestinal epithelial cell cultures. Treatment of cells with neuraminidase (NA) enhanced infection efficiency, showing that terminal sialic acid residues on the cell surface were not receptor determinants and even hampered efficient virus-receptor engagement. Knowing that NA treatment of coronaviruses can unmask viral sialic acid binding activity, replication of untreated and NA-treated viruses was compared, showing that NA treatment of the virus enhanced infectivity in untreated cells, but was detrimental in NA-treated cells. By using sialylated compounds as competitive inhibitors, it was demonstrated that sialyllactose (2,6-α-linked over 2,3-α-linked) notably reduced infectivity of NA-treated viruses, whereas bovine submaxillary mucin inhibited both treated and untreated viruses. In desialylated cells, however, viruses were less prone to competitive inhibition with sialylated compounds. In conclusion, this study demonstrated that FECV had a sialic acid binding capacity, which was partially masked by virus-associated sialic acids, and that attachment to sialylated compounds could facilitate enterocyte infections. However, sialic acid binding was not a prerequisite for the initiation of infection and virus-receptor engagement was even more efficient after desialylation of cells, indicating that FECV requires sialidases for efficient enterocyte infections.
Collapse
Affiliation(s)
- Lowiese M B Desmarets
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Sebastiaan Theuns
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Inge D M Roukaerts
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Delphine D Acar
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Hans J Nauwynck
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
72
|
Characterization of the sialic acid binding activity of influenza A viruses using soluble variants of the H7 and H9 hemagglutinins. PLoS One 2014; 9:e89529. [PMID: 24586849 PMCID: PMC3931807 DOI: 10.1371/journal.pone.0089529] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 01/22/2014] [Indexed: 12/25/2022] Open
Abstract
Binding of influenza viruses to target cells is mediated by the viral surface protein hemagglutinin. To determine the presence of binding sites for influenza A viruses on cells and tissues, soluble hemagglutinins of the H7 and H9 subtype were generated by connecting the hemagglutinin ectodomain to the Fc portion of human immunoglobulin G (H7Fc and H9Fc). Both chimeric proteins bound to different cells and tissues in a sialic acid-dependent manner. Pronounced differences were observed between H7Fc and H9Fc, in the binding both to different mammalian and avian cultured cells and to cryosections of the respiratory epithelium of different virus host species (turkey, chicken and pig). Binding of the soluble hemagglutinins was similar to the binding of virus particles, but showed differences in the binding pattern when compared to two sialic acid-specific plant lectins. These findings were substantiated by a comparative glycan array analysis revealing a very narrow recognition of sialoglycoconjugates by the plant lectins that does not reflect the glycan structures preferentially recognized by H7Fc and H9Fc. Thus, soluble hemagglutinins may serve as sialic acid-specific lectins and are a more reliable indicator of the presence of binding sites for influenza virus HA than the commonly used plant lectins.
Collapse
|
73
|
Promkuntod N, van Eijndhoven REW, de Vrieze G, Gröne A, Verheije MH. Mapping of the receptor-binding domain and amino acids critical for attachment in the spike protein of avian coronavirus infectious bronchitis virus. Virology 2013; 448:26-32. [PMID: 24314633 PMCID: PMC7111965 DOI: 10.1016/j.virol.2013.09.018] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 08/21/2013] [Accepted: 09/19/2013] [Indexed: 01/03/2023]
Abstract
The infection of the avian coronavirus infectious bronchitis virus (IBV) is initiated by the binding of the spike glycoprotein S to sialic acids on the chicken host cell. In this study we identified the receptor-binding domain (RBD) of the spike of the prototype IBV strain M41. By analyzing the ability of recombinantly expressed chimeric and truncated spike proteins to bind to chicken tissues, we demonstrate that the N-terminal 253 amino acids of the spike are both required and sufficient for binding to chicken respiratory tract in an α-2,3-sialic acid-dependent manner. Critical amino acids for attachment of M41 spike are present within the N-terminal residues 19-69, which overlap with a hypervariable region in the S1 gene. Our results may help to understand the differences between IBV S1 genotypes and the ultimate pathogenesis of IBV in chickens.
Collapse
Affiliation(s)
- N Promkuntod
- Pathology Division, Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584CL Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
74
|
Promkuntod N, Wickramasinghe INA, de Vrieze G, Gröne A, Verheije MH. Contributions of the S2 spike ectodomain to attachment and host range of infectious bronchitis virus. Virus Res 2013; 177:127-37. [PMID: 24041648 PMCID: PMC7114508 DOI: 10.1016/j.virusres.2013.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/03/2013] [Accepted: 09/04/2013] [Indexed: 12/11/2022]
Abstract
The spike protein is the major viral attachment protein of the avian coronavirus infectious bronchitis virus (IBV) and ultimately determines viral tropism. The S1 subunit of the spike is assumed to be required for virus attachment. However, we have previously shown that this domain of the embryo- and cell culture adapted Beaudette strain, in contrast to that of the virulent M41 strain, is not sufficient for binding to chicken trachea (Wickramasinghe et al., 2011). In the present study, we demonstrated that the lack of binding of Beaudette S1 was not due to absence of virus receptors on this tissue nor due to the production of S1 from mammalian cells, as S1 proteins expressed from chicken cells also lacked the ability to bind IBV-susceptible embryonic tissue. Subsequently, we addressed the contribution of the S2 subunit of the spike in IBV attachment. Recombinant IBV Beaudette spike ectodomains, comprising the entire S1 domain and the S2 ectodomain, were expressed and analyzed for binding to susceptible embryonic chorio-allantoic membrane (CAM) in our previously developed spike histochemistry assay. We observed that extension of the S1 domain with the S2 subunit of the Beaudette spike was sufficient to gain binding to CAM. A previously suggested heparin sulfate binding site in Beaudette S2 was not required for the observed binding to CAM, while sialic acids on the host tissues were essential for the attachment. To further elucidate the role of S2 the spike ectodomains of virulent IBV M41 and chimeras of M41 and Beaudette were analyzed for their binding to CAM, chicken trachea and mammalian cell lines. While the M41 spike ectodomain showed increased attachment to both CAM and chicken trachea, no binding to mammalian cells was observed. In contrast, Beaudette spike ectodomain had relatively weak ability to bind to chicken trachea, but displayed marked extended host range to mammalian cells. Binding patterns of chimeric spike ectodomains to these tissues and cells indicate that S2 subunits most likely do not contain an additional independent receptor-binding site. Rather, the interplay between S1 and S2 subunits of spikes from the same viral origin might finally determine the avidity and specificity of virus attachment and thus viral host range.
Collapse
Affiliation(s)
- N Promkuntod
- Pathology Division, Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
75
|
Hoffmann M, Müller MA, Drexler JF, Glende J, Erdt M, Gützkow T, Losemann C, Binger T, Deng H, Schwegmann-Weßels C, Esser KH, Drosten C, Herrler G. Differential sensitivity of bat cells to infection by enveloped RNA viruses: coronaviruses, paramyxoviruses, filoviruses, and influenza viruses. PLoS One 2013; 8:e72942. [PMID: 24023659 PMCID: PMC3758312 DOI: 10.1371/journal.pone.0072942] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 07/16/2013] [Indexed: 11/19/2022] Open
Abstract
Bats (Chiroptera) host major human pathogenic viruses including corona-, paramyxo, rhabdo- and filoviruses. We analyzed six different cell lines from either Yinpterochiroptera (including African flying foxes and a rhinolophid bat) or Yangochiroptera (genera Carollia and Tadarida) for susceptibility to infection by different enveloped RNA viruses. None of the cells were sensitive to infection by transmissible gastroenteritis virus (TGEV), a porcine coronavirus, or to infection mediated by the Spike (S) protein of SARS-coronavirus (SARS-CoV) incorporated into pseudotypes based on vesicular stomatitis virus (VSV). The resistance to infection was overcome if cells were transfected to express the respective cellular receptor, porcine aminopeptidase N for TGEV or angiotensin-converting enzyme 2 for SARS-CoV. VSV pseudotypes containing the S proteins of two bat SARS-related CoV (Bg08 and Rp3) were unable to infect any of the six tested bat cell lines. By contrast, viral pseudotypes containing the surface protein GP of Marburg virus from the family Filoviridae infected all six cell lines though at different efficiency. Notably, all cells were sensitive to infection by two paramyxoviruses (Sendai virus and bovine respiratory syncytial virus) and three influenza viruses from different subtypes. These results indicate that bat cells are more resistant to infection by coronaviruses than to infection by paramyxoviruses, filoviruses and influenza viruses. Furthermore, these results show a receptor-dependent restriction of the infection of bat cells by CoV. The implications for the isolation of coronaviruses from bats are discussed.
Collapse
Affiliation(s)
- Markus Hoffmann
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Jan Felix Drexler
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
| | - Jörg Glende
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Meike Erdt
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Tim Gützkow
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Christoph Losemann
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Tabea Binger
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
| | - Hongkui Deng
- Department of Cell Biology and Genetics, College of Life Sciences, Peking University, Beijing, P. R. China
| | | | - Karl-Heinz Esser
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Christian Drosten
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
| | - Georg Herrler
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
76
|
Sialic acid binding properties of soluble coronavirus spike (S1) proteins: differences between infectious bronchitis virus and transmissible gastroenteritis virus. Viruses 2013; 5:1924-33. [PMID: 23896748 PMCID: PMC3761233 DOI: 10.3390/v5081924] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 07/08/2013] [Accepted: 07/23/2013] [Indexed: 01/02/2023] Open
Abstract
The spike proteins of a number of coronaviruses are able to bind to sialic acids present on the cell surface. The importance of this sialic acid binding ability during infection is, however, quite different. We compared the spike protein of transmissible gastroenteritis virus (TGEV) and the spike protein of infectious bronchitis virus (IBV). Whereas sialic acid is the only receptor determinant known so far for IBV, TGEV requires interaction with its receptor aminopeptidase N to initiate infection of cells. Binding tests with soluble spike proteins carrying an IgG Fc-tag revealed pronounced differences between these two viral proteins. Binding of the IBV spike protein to host cells was in all experiments sialic acid dependent, whereas the soluble TGEV spike showed binding to APN but had no detectable sialic acid binding activity. Our results underline the different ways in which binding to sialoglycoconjugates is mediated by coronavirus spike proteins.
Collapse
|
77
|
Abstract
Sialic acid linked to glycoproteins and gangliosides is used by many viruses as a receptor for cell entry. These viruses include important human and animal pathogens, such as influenza, parainfluenza, mumps, corona, noro, rota, and DNA tumor viruses. Attachment to sialic acid is mediated by receptor binding proteins that are constituents of viral envelopes or exposed at the surface of non-enveloped viruses. Some of these viruses are also equipped with a neuraminidase or a sialyl-O-acetyl-esterase. These receptor-destroying enzymes promote virus release from infected cells and neutralize sialic acid-containing soluble proteins interfering with cell surface binding of the virus. Variations in the receptor specificity are important determinants for host range, tissue tropism, pathogenicity, and transmissibility of these viruses.
Collapse
Affiliation(s)
| | - Philippe Delannoy
- Lille University of Science and Technology, Villeneuve d'Ascq Cedex, France
| | - Mark von Itzstein
- Institute for Glycomics, Griffith University, Southport, Queensland Australia
| |
Collapse
|
78
|
Esposito D, Hurevich M, Castagner B, Wang CC, Seeberger PH. Automated synthesis of sialylated oligosaccharides. Beilstein J Org Chem 2012; 8:1601-9. [PMID: 23209492 PMCID: PMC3510992 DOI: 10.3762/bjoc.8.183] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 08/16/2012] [Indexed: 12/14/2022] Open
Abstract
Sialic acid-containing glycans play a major role in cell-surface interactions with external partners such as cells and viruses. Straightforward access to sialosides is required in order to study their biological functions on a molecular level. Here, automated oligosaccharide synthesis was used to facilitate the preparation of this class of biomolecules. Our strategy relies on novel sialyl α-(2→3) and α-(2→6) galactosyl imidates, which, used in combination with the automated platform, provided rapid access to a small library of conjugation-ready sialosides of biological relevance.
Collapse
Affiliation(s)
- Davide Esposito
- Max-Planck-Institute of Colloids and Interfaces, Department of Biomolecular Systems, Am Mühlenberg 1, 14476 Potsdam, Germany
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Arnimallee 22, 14195 Berlin, Germany
| | - Mattan Hurevich
- Max-Planck-Institute of Colloids and Interfaces, Department of Biomolecular Systems, Am Mühlenberg 1, 14476 Potsdam, Germany
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Arnimallee 22, 14195 Berlin, Germany
| | - Bastien Castagner
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland
| | | | - Peter H Seeberger
- Max-Planck-Institute of Colloids and Interfaces, Department of Biomolecular Systems, Am Mühlenberg 1, 14476 Potsdam, Germany
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
79
|
Tay FPL, Huang M, Wang L, Yamada Y, Liu DX. Characterization of cellular furin content as a potential factor determining the susceptibility of cultured human and animal cells to coronavirus infectious bronchitis virus infection. Virology 2012; 433:421-30. [PMID: 22995191 PMCID: PMC7111921 DOI: 10.1016/j.virol.2012.08.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 06/25/2012] [Accepted: 08/27/2012] [Indexed: 11/21/2022]
Abstract
In previous studies, the Beaudette strain of coronavirus infectious bronchitis virus (IBV) was adapted from chicken embryo to Vero, a monkey kidney cell line, by serial propagation for 65 passages. To characterize the susceptibility of other human and animal cells to IBV, 15 human and animal cell lines were infected with the Vero-adapted IBV and productive infection was observed in four human cell lines: H1299, HepG2, Hep3B and Huh7. In other cell lines, the virus cannot be propagated beyond passage 5. Interestingly, cellular furin abundance in five human cell lines was shown to be strongly correlated with productive IBV infection. Cleavage of IBV spike protein by furin may contribute to the productive IBV infection in these cells. The findings that IBV could productively infect multiple human and animal cells of diverse tissue and organ origins would provide a useful system for studying the pathogenesis of coronavirus.
Collapse
Affiliation(s)
- Felicia P L Tay
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | | | | | | | | |
Collapse
|
80
|
Expression of the C-type lectins DC-SIGN or L-SIGN alters host cell susceptibility for the avian coronavirus, infectious bronchitis virus. Vet Microbiol 2012; 157:285-93. [PMID: 22340967 PMCID: PMC3600652 DOI: 10.1016/j.vetmic.2012.01.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 12/22/2011] [Accepted: 01/10/2012] [Indexed: 11/26/2022]
Abstract
Infectious bronchitis virus (IBV), an avian coronavirus, is a cause of great economic loss in the poultry industry. The virus mainly infects respiratory epithelium, but can be also detected in other organs. The functional receptor for the virus has not been found and field strains of IBV do not infect conventional cell lines. Recently, it has been shown that the C-type lectins DC-SIGN/L-SIGN can promote entry of several coronaviruses. Here we examine whether DC-SIGN/L-SIGN are entry determinants for IBV. We show that by introducing human DC-SIGN/L-SIGN into non-permissive cells, infection by the IBV is dramatically increased. DC-SIGN mediated infection was inhibited by mannan and anti-lectin antibodies, and was independent of sialic acid levels on the cell. Enhancement of IBV infection also occurred for different serotypes of IBV. Our findings demonstrated that even in the absence of avian-specific receptor, DC-SIGN-like lectins are capable of mediating efficient IBV infection.
Collapse
|
81
|
Schwegmann-Wessels C, Bauer S, Winter C, Enjuanes L, Laude H, Herrler G. The sialic acid binding activity of the S protein facilitates infection by porcine transmissible gastroenteritis coronavirus. Virol J 2011; 8:435. [PMID: 21910859 PMCID: PMC3184106 DOI: 10.1186/1743-422x-8-435] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 09/12/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transmissible gastroenteritis virus (TGEV) has a sialic acid binding activity that is believed to be important for enteropathogenicity, but that has so far appeared to be dispensable for infection of cultured cells. The aims of this study were to determine the effect of sialic acid binding for the infection of cultured cells under unfavorable conditions, and comparison of TGEV strains and mutants, as well as the avian coronavirus IBV concerning their dependence on the sialic acid binding activity. METHODS The infectivity of different viruses was analyzed by a plaque assay after adsorption times of 5, 20, and 60 min. Prior to infection, cultured cells were either treated with neuraminidase to deplete sialic acids from the cell surface, or mock-treated. In a second approach, pre-treatment of the virus with porcine intestinal mucin was performed, followed by the plaque assay after a 5 min adsorption time. A student's t-test was used to verify the significance of the results. RESULTS Desialylation of cells only had a minor effect on the infection by TGEV strain Purdue 46 when an adsorption period of 60 min was allowed for initiation of infection. However, when the adsorption time was reduced to 5 min the infectivity on desialylated cells decreased by more than 60%. A TGEV PUR46 mutant (HAD3) deficient in sialic acid binding showed a 77% lower titer than the parental virus after a 5 min adsorption time. After an adsorption time of 60 min the titer of HAD3 was 58% lower than that of TGEV PUR46. Another TGEV strain, TGEV Miller, and IBV Beaudette showed a reduction in infectivity after neuraminidase treatment of the cultured cells irrespective of the virion adsorption time. CONCLUSIONS Our results suggest that the sialic acid binding activity facilitates the infection by TGEV under unfavorable environmental conditions. The dependence on the sialic acid binding activity for an efficient infection differs in the analyzed TGEV strains.
Collapse
|
82
|
Binding of avian coronavirus spike proteins to host factors reflects virus tropism and pathogenicity. J Virol 2011; 85:8903-12. [PMID: 21697468 DOI: 10.1128/jvi.05112-11] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The binding of viruses to host cells is the first step in determining tropism and pathogenicity. While avian infectious bronchitis coronavirus (IBV) infection and avian influenza A virus (IAV) infection both depend on α2,3-linked sialic acids, the host tropism of IBV is restricted compared to that of IAV. Here we investigated whether the interaction between the viral attachment proteins and the host could explain these differences by using recombinant spike domains (S1) of IBV strains with different pathogenicities, as well as the hemagglutinin (HA) protein of IAV H5N1. Protein histochemistry showed that S1 of IBV strain M41 and HA of IAV subtype H5N1 displayed sialic acid-dependent binding to chicken respiratory tract tissue. However, while HA bound with high avidity to a broad range of α2,3-linked sialylated glycans, M41 S1 recognized only one particular α2,3-linked disialoside in a glycan array. When comparing the binding of recombinant IBV S1 proteins derived from IBV strains with known differences in tissue tropism and pathogenicity, we observed that while M41 S1 displayed binding to cilia and goblet cells of the chicken respiratory tract, S1 derived from the vaccine strain H120 or the nonvirulent Beaudette strain had reduced or no binding to chicken tissues, respectively, in agreement with the reduced abilities of these viruses to replicate in vivo. While the S1 protein derived from the nephropathogenic IBV strain B1648 also hardly displayed binding to respiratory tract cells, distinct binding to kidney cells was observed, but only after the removal of sialic acid from S1. In conclusion, our data demonstrate that the attachment patterns of the IBV S proteins correlate with the tropisms and pathogenicities of the corresponding viruses.
Collapse
|
83
|
Histopathological and immunohistochemical study of air sac lesions induced by two strains of infectious bronchitis virus. J Comp Pathol 2011; 145:319-26. [PMID: 21420689 PMCID: PMC7094305 DOI: 10.1016/j.jcpa.2011.01.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 10/13/2010] [Accepted: 01/25/2011] [Indexed: 11/22/2022]
Abstract
Infectious bronchitis virus (IBV) is a highly contagious respiratory coronavirus of domestic chickens. Although mortality is low, infection with IBV results in substantial losses for the egg and meat chicken industries. Despite the economic importance of IBV and decades of research into the pathogenesis of infection, significant gaps in our knowledge exist. The aim of this study was to compare the early progression of air sac lesions in birds receiving a vaccine strain of the virus or a more virulent field strain. The air sacs are lined by different types of epithelia and are relatively isolated from the environment, so they represent a unique tissue in which to study virus-induced lesions. Both the pathogenic and vaccine strains of the virus produced significant lesions; however, the lesions progressed more rapidly in the birds receiving the pathogenic strain. Immunohistochemistry demonstrated that in birds infected with the pathogenic strain of virus, IBV spike protein is detected first in the ciliated cells lining the air sac. These preliminary data provide important clues regarding potential mechanisms for IBV tissue tropism and spread and show that the nature of the virus isolate influences the early progression of IBV infection.
Collapse
|
84
|
Differential sensitivity of well-differentiated avian respiratory epithelial cells to infection by different strains of infectious bronchitis virus. J Virol 2010; 84:8949-52. [PMID: 20538853 DOI: 10.1128/jvi.00463-10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infectious bronchitis virus (IBV) is an avian coronavirus affecting the respiratory tract of chickens. To analyze IBV infection of the lower respiratory tract, we applied a technique that uses precision-cut lung slices (PCLSs). This method allows infection of bronchial cells within their natural tissue composition under in vitro conditions. We demonstrate that IBV strains 4/91, Italy02, and QX infect ciliated and mucus-producing cells of the bronchial epithelium, whereas cells of the parabronchial tissue are resistant to infection. This is the first study, using PCLSs of chicken origin, to analyze virus infection. PCLSs should also be a valuable tool for investigation of other respiratory pathogens, such as avian influenza viruses.
Collapse
|
85
|
Recombination, reservoirs, and the modular spike: mechanisms of coronavirus cross-species transmission. J Virol 2009; 84:3134-46. [PMID: 19906932 DOI: 10.1128/jvi.01394-09] [Citation(s) in RCA: 493] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Over the past 30 years, several cross-species transmission events, as well as changes in virus tropism, have mediated significant animal and human diseases. Most notable is severe acute respiratory syndrome (SARS), a lower respiratory tract disease of humans that was first reported in late 2002 in Guangdong Province, China. The disease, which quickly spread worldwide over a period of 4 months spanning late 2002 and early 2003, infected over 8,000 individuals and killed nearly 800 before it was successfully contained by aggressive public health intervention strategies. A coronavirus (SARS-CoV) was identified as the etiological agent of SARS, and initial assessments determined that the virus crossed to human hosts from zoonotic reservoirs, including bats, Himalayan palm civets (Paguma larvata), and raccoon dogs (Nyctereutes procyonoides), sold in exotic animal markets in Guangdong Province. In this review, we discuss the molecular mechanisms that govern coronavirus cross-species transmission both in vitro and in vivo, using the emergence of SARS-CoV as a model. We pay particular attention to how changes in the Spike attachment protein, both within and outside of the receptor binding domain, mediate the emergence of coronaviruses in new host populations.
Collapse
|
86
|
Shen CI, Wang CH, Liao JW, Hsu TW, Kuo SM, Su HL. The infection of primary avian tracheal epithelial cells with infectious bronchitis virus. Vet Res 2009; 41:6. [PMID: 19793537 PMCID: PMC2769550 DOI: 10.1051/vetres/2009054] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2009] [Accepted: 09/24/2009] [Indexed: 11/15/2022] Open
Abstract
Here we introduce a culture system for the isolation, passaging and amplification of avian tracheal epithelial (ATE) cells. The ATE medium, which contains chicken embryo extract and fetal bovine serum, supports the growth of ciliated cells, goblet cells and basal cells from chicken tracheas on fibronectin- or matrigel-coated dishes. Non-epithelial cells make up less than 10% of the total population. We further show that ATE cells support the replication and spread of infectious bronchitis virus (IBV). Interestingly, immunocytostaining revealed that basal cells are resistant to IBV infection. We also demonstrate that glycosaminoglycan had no effect on infection of the cells by IBV. Taken together, these findings suggest that primary ATE cells provide a novel cell culture system for the amplification of IBV and the in vitro characterization of viral cytopathogenesis.
Collapse
Affiliation(s)
- Ching-I Shen
- Department of Veterinary Medicine, National Chung-Hsing University, 250 Kuo-Kuang Rd., Taichung 402, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
87
|
Yamada Y, Liu XB, Fang SG, Tay FPL, Liu DX. Acquisition of cell-cell fusion activity by amino acid substitutions in spike protein determines the infectivity of a coronavirus in cultured cells. PLoS One 2009; 4:e6130. [PMID: 19572016 PMCID: PMC2700284 DOI: 10.1371/journal.pone.0006130] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 06/03/2009] [Indexed: 12/30/2022] Open
Abstract
Coronavirus host and cell specificities are determined by specific interactions between the viral spike (S) protein and host cell receptor(s). Avian coronavirus infectious bronchitis (IBV) has been adapted to embryonated chicken eggs, primary chicken kidney (CK) cells, monkey kidney cell line Vero, and other human and animal cells. Here we report that acquisition of the cell–cell fusion activity by amino acid mutations in the S protein determines the infectivity of IBV in cultured cells. Expression of S protein derived from Vero- and CK-adapted strains showed efficient induction of membrane fusion. However, expression of S protein cloned from the third passage of IBV in chicken embryo (EP3) did not show apparent syncytia formation. By construction of chimeric S constructs and site-directed mutagenesis, a point mutation (L857-F) at amino acid position 857 in the heptad repeat 1 region of S protein was shown to be responsible for its acquisition of the cell–cell fusion activity. Furthermore, a G405-D point mutation in the S1 domain, which was acquired during further propagation of Vero-adapted IBV in Vero cells, could enhance the cell–cell fusion activity of the protein. Re-introduction of L857 back to the S gene of Vero-adapted IBV allowed recovery of variants that contain the introduced L857. However, compensatory mutations in S1 and some distant regions of S2 were required for restoration of the cell–cell fusion activity of S protein carrying L857 and for the infectivity of the recovered variants in cultured cells. This study demonstrates that acquisition of the cell–cell fusion activity in S protein determines the selection and/or adaptation of a coronavirus from chicken embryo to cultured cells of human and animal origins.
Collapse
Affiliation(s)
- Yoshiyuki Yamada
- Institute of Molecular and Cell Biology, Proteos, Singapore, Singapore
| | - Xiao Bo Liu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Shou Guo Fang
- Institute of Molecular and Cell Biology, Proteos, Singapore, Singapore
| | - Felicia P. L. Tay
- Institute of Molecular and Cell Biology, Proteos, Singapore, Singapore
| | - Ding Xiang Liu
- Institute of Molecular and Cell Biology, Proteos, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- * E-mail:
| |
Collapse
|
88
|
Proteolytic activation of the spike protein at a novel RRRR/S motif is implicated in furin-dependent entry, syncytium formation, and infectivity of coronavirus infectious bronchitis virus in cultured cells. J Virol 2009; 83:8744-58. [PMID: 19553314 DOI: 10.1128/jvi.00613-09] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The spike (S) protein of the coronavirus (CoV) infectious bronchitis virus (IBV) is cleaved into S1 and S2 subunits at the furin consensus motif RRFRR(537)/S in virus-infected cells. In this study, we observe that the S2 subunit of the IBV Beaudette strain is additionally cleaved at the second furin site (RRRR(690)/S) in cells expressing S constructs and in virus-infected cells. Detailed time course experiments showed that a peptide furin inhibitor, decanoyl-Arg-Val-Lys-Arg-chloromethylketone, blocked both viral entry and syncytium formation. Site-directed mutagenesis studies revealed that the S1/S2 cleavage by furin was not necessary for, but could promote, syncytium formation by and infectivity of IBV in Vero cells. In contrast, the second site is involved in the furin dependence of viral entry and syncytium formation. Mutations of the second site from furin-cleavable RRRR/S to non-furin-cleavable PRRRS and AAARS, respectively, abrogated the furin dependence of IBV entry. Instead, a yet-to-be-identified serine protease(s) was involved, as revealed by protease inhibitor studies. Furthermore, sequence analysis of CoV S proteins by multiple alignments showed conservation of an XXXR/S motif, cleavable by either furin or other trypsin-like proteases, at a position equivalent to the second IBV furin site. Taken together, these results suggest that proteolysis at a novel XXXR/S motif in the S2 subunit might be a common mechanism for the entry of CoV into cells.
Collapse
|
89
|
Abd El Rahman S, El-Kenawy AA, Neumann U, Herrler G, Winter C. Comparative analysis of the sialic acid binding activity and the tropism for the respiratory epithelium of four different strains of avian infectious bronchitis virus. Avian Pathol 2009; 38:41-5. [PMID: 19156578 DOI: 10.1080/03079450802632049] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Avian infectious bronchitis virus (IBV) is a major pathogen in commercial poultry flocks. We recently demonstrated that sialic acid serves as a receptor determinant for IBV on the tracheal epithelium. Here we compared the IBV strains Beaudette, 4/91, Italy02, and QX for their sialic acid-binding properties. We demonstrate that sialic acid binding is important for the infection of primary chicken kidney cells and the tracheal epithelium by all four strains. There were only slight differences between the four strains, indicating the universal usage of sialic acids as receptor determinants by IBV. In addition, we analysed the primary target cells in the respiratory epithelium of the four different strains and found that all of them infected ciliated cells and goblet cells.
Collapse
Affiliation(s)
- S Abd El Rahman
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | | | | | | |
Collapse
|
90
|
Abdel-Moneim AS, Zlotowski P, Veits J, Keil GM, Teifke JP. Immunohistochemistry for detection of avian infectious bronchitis virus strain M41 in the proventriculus and nervous system of experimentally infected chicken embryos. Virol J 2009; 6:15. [PMID: 19196466 PMCID: PMC2657138 DOI: 10.1186/1743-422x-6-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 02/05/2009] [Indexed: 11/26/2022] Open
Abstract
Background Infectious bronchitis virus primarily induces a disease of the respiratory system, different IBV strains may show variable tissue tropisms and also affect the oviduct and the kidneys. Proventriculitis was also associated with some new IBV strains. Aim of this study was to investigate by immunohistochemistry (IHC) the tissue tropism of avian infectious bronchitis virus (IBV) strain M41 in experimentally infected chicken embryos. Results To this end chicken embryos were inoculated in the allantoic sac with 103 EID50 of IBV M41 at 10 days of age. At 48, 72, and 120 h postinoculation (PI), embryos and chorioallantoic membranes (CAM) were sampled, fixed, and paraffin-wax embedded. Allantoic fluid was also collected and titrated in chicken embryo kidney cells (CEK). The sensitivity of IHC in detecting IBV antigens in the CAM of inoculated eggs matched the virus reisolation and detection in CEK. Using IHC, antigens of IBV were detected in nasal epithelium, trachea, lung, spleen, myocardial vasculature, liver, gastrointestinal tract, kidney, skin, sclera of the eye, spinal cord, as well as in brain neurons of the inoculated embryos. These results were consistent with virus isolation and denote the wide tissue tropism of IBV M41 in the chicken embryo. Most importantly, we found infection of vasculature and smooth muscle of the proventriculus which has not seen before with IBV strain M41. Conclusion IHC can be an additional useful tool for diagnosis of IBV infection in chickens and allows further studies to foster a deeper understanding of the pathogenesis of infections with IBV strains of different virulence. Moreover, these results underline that embryonic tissues in addition to CAM could be also used as possible source to generate IBV antigens for diagnostic purposes.
Collapse
Affiliation(s)
- Ahmed S Abdel-Moneim
- Virology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt.
| | | | | | | | | |
Collapse
|
91
|
Importance of cholesterol for infection of cells by transmissible gastroenteritis virus. Virus Res 2008; 137:220-4. [PMID: 18727942 PMCID: PMC7114513 DOI: 10.1016/j.virusres.2008.07.023] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 07/11/2008] [Accepted: 07/16/2008] [Indexed: 12/31/2022]
Abstract
In this study, we addressed the question whether cholesterol is important for transmissible gastroenteritis virus (TGEV), a porcine coronavirus, in the initiation of an infection. We found that cholesterol depletion from the cellular membrane by methyl-β-cyclodextrin (MβCD) significantly impaired the efficiency of TGEV infection. Infectivity was also reduced after depleting cholesterol from the viral envelope. This finding is surprising because coronaviruses bud from a pre-Golgi compartment which is expected to be low in cholesterol compared to the plasma membrane. Addition of exogenous cholesterol resulted in a restoration of the infectivity confirming our conclusion that efficient TGEV infection requires cholesterol in both the viral and the cellular membranes. Our data raise the possibility that the viral and cellular proteins involved in the entry process may be associated with cholesterol-rich membrane microdomains.
Collapse
|
92
|
Huang CP, Liu YT, Nakatsuji T, Shi Y, Gallo RR, Lin SB, Huang CM. Proteomics integrated with Escherichia coli vector-based vaccines and antigen microarrays reveals the immunogenicity of a surface sialidase-like protein of Propionibacterium acnes. Proteomics Clin Appl 2008; 2:1234-45. [PMID: 21136919 DOI: 10.1002/prca.200780103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Indexed: 11/06/2022]
Abstract
Proteomics is a powerful tool for the identification of proteins, which provides a basis for rational vaccine design. However, it is still a highly technical and time-consuming task to examine a protein's immunogenicity utilizing traditional approaches. Here, we present a platform for effectively evaluating protein immunogenicity and antibody detection. A tetanus toxin C fragment (Tet-c) was used as a representative antigen to establish this platform. A cell wall-anchoring sialidase-like protein (SLP) of Propionibacterium acnes was utilized to assess the efficacy of this platform. We constructed an Escherichia coli vector-based vaccine by overexpressing Tet-c or SLP in E. coli and utilized an intact particle of E. coli itself as a vaccine (E. coli Tet-c or SLP vector). After ultraviolet (UV) irradiation, the E. coli vector-based vaccines were administered intranasally into imprinting control region mice without adding exogenous adjuvants. For antibody detection, we fabricated antigen microarrays by printing with purified recombinant proteins including Tet-c and SLP. Our results demonstrated that detectable antibodies were elicited in mice 6 weeks after intranasal administration of UV-irradiated E. coli vector-based vaccines. The antibody production of Tet-c and SLP was significantly elevated after boosting. Notably, the platform with main benefits of using E. coli itself as a vaccine carrier provides a critical template for applied proteomics aimed at screening novel vaccine targets. In addition, the novel immunogenic SLP potentially serves as an antigen candidate for the development of vaccines targeting P. acnes-associated diseases.
Collapse
Affiliation(s)
- Cheng-Po Huang
- Moores Cancer Center, University of California, San Diego, CA, USA; Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taiwan
| | | | | | | | | | | | | |
Collapse
|
93
|
Nakatsuji T, Liu YT, Huang CP, Gallo RL, Huang CM. Vaccination targeting a surface sialidase of P. acnes: implication for new treatment of acne vulgaris. PLoS One 2008; 3:e1551. [PMID: 18253498 PMCID: PMC2212713 DOI: 10.1371/journal.pone.0001551] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Accepted: 01/02/2008] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Acne vulgaris afflicts more than fifty million people in the United State and the severity of this disorder is associated with the immune response to Propionibacterium acnes (P. acnes). Systemic therapies for acne target P. acnes using antibiotics, or target the follicle with retinoids such as isotretinoin. The latter systemic treatment is highly effective but also carries a risk of side effects including immune imbalance, hyperlipidemia, and teratogenicity. Despite substantial research into potential new therapies for this common disease, vaccines against acne vulgaris are not yet available. METHODS AND FINDINGS Here we create an acne vaccine targeting a cell wall-anchored sialidase of P. acnes. The importance of sialidase to disease pathogenesis is shown by treatment of a human sebocyte cell line with recombinant sialidase that increased susceptibility to P. acnes cytotoxicity and adhesion. Mice immunized with sialidase elicit a detectable antibody; the anti-sialidase serum effectively neutralized the cytotoxicity of P. acnes in vitro and P. acnes-induced interleukin-8 (IL-8) production in human sebocytes. Furthermore, the sialidase-immunized mice provided protective immunity against P. acnes in vivo as this treatment blocked an increase in ear thickness and release of pro-inflammatory macrophage inflammatory protein (MIP-2) cytokine. CONCLUSIONS Results indicated that acne vaccines open novel therapeutic avenues for acne vulgaris and other P. acnes-associated diseases.
Collapse
Affiliation(s)
- Teruaki Nakatsuji
- Division of Dermatology, Department of Medicine, University of California San Diego, San Diego, California, United States of America
- Veterans Affairs (VA) San Diego Healthcare Center, San Diego, California, United States of America
| | - Yu-Tsueng Liu
- Moores Cancer Center, University of California San Diego, San Diego, California, United States of America
| | - Cheng-Po Huang
- Veterans Affairs (VA) San Diego Healthcare Center, San Diego, California, United States of America
- Moores Cancer Center, University of California San Diego, San Diego, California, United States of America
| | - Richard L. Gallo
- Division of Dermatology, Department of Medicine, University of California San Diego, San Diego, California, United States of America
- Veterans Affairs (VA) San Diego Healthcare Center, San Diego, California, United States of America
| | - Chun-Ming Huang
- Division of Dermatology, Department of Medicine, University of California San Diego, San Diego, California, United States of America
- Veterans Affairs (VA) San Diego Healthcare Center, San Diego, California, United States of America
- Moores Cancer Center, University of California San Diego, San Diego, California, United States of America
- La Jolla Institute for Molecular Medicine, San Diego, California, United States of America
- *E-mail:
| |
Collapse
|
94
|
Infection of the tracheal epithelium by infectious bronchitis virus is sialic acid dependent. Microbes Infect 2007; 10:367-73. [PMID: 18396435 PMCID: PMC7110564 DOI: 10.1016/j.micinf.2007.12.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 12/05/2007] [Accepted: 12/19/2007] [Indexed: 11/25/2022]
Abstract
Avian Infectious bronchitis virus (IBV) is a coronavirus that infects chickens via the respiratory epithelium as primary target cells. The binding of coronaviruses to the cell surface is mediated by the viral surface protein S. Recently we demonstrated that α2,3-linked sialic acid serves as a receptor determinant for IBV on Vero cells and primary chicken embryo kidney cells. Here we analyze the importance of the sialic acid binding activity for the infection of tracheal organ cultures (TOCs) by different IBV strains. Our results show that α2,3-linked sialic acid also serves as a receptor determinant on chicken TOCs. Infection of TOCs by IBV results in ciliostasis. Desialylation induced by neuraminidase treatment of tracheal organ cultures prior to infection by IBV delayed the ciliostatic effect or resulted in partial loss of ciliary activity. This effect was observed with both respiratory and nephropathogenic strains. Inhibition of ciliostasis was also observed when TOCs were pretreated with an α2,3-specific neuraminidase. Analysis of the tracheal epithelium for reactivity with lectins revealed that the susceptible cells in the epithelium abundantly express α2,3-linked sialic acid. These results indicate that α2,3-linked sialic acid plays an important role for infection of the respiratory epithelium by IBV.
Collapse
|
95
|
The spike protein of infectious bronchitis virus is retained intracellularly by a tyrosine motif. J Virol 2007; 82:2765-71. [PMID: 18094153 DOI: 10.1128/jvi.02064-07] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We have analyzed the intracellular transport of the spike (S) protein of infectious bronchitis virus (IBV), an avian coronavirus. Surface expression was analyzed by immunofluorescence microscopy, by surface biotinylation, and by syncytium formation by S-expressing cells. By applying these methods, the S protein was found to be retained intracellularly. Tyr1143 in the cytoplasmic tail was shown to be a crucial component of the retention signal. Deletion of a dilysine motif that has previously been suggested to function as a retrieval signal did not abolish intracellular retention. Treatment of the S proteins with endoglycosidases did not reveal any differences between the parental and the mutant proteins. Furthermore, all S proteins analyzed were posttranslationally cleaved into the subunits S1 and S2. In coexpression experiments, the S protein was found to colocalize with a Golgi marker. Taken together, these results indicate that the S protein of IBV is retained at a late Golgi compartment. Therefore, this viral surface protein differs from the S proteins of transmissible gastroenteritis virus and severe acute respiratory syndrome coronavirus, which are retained at a pre-Golgi compartment or transported to the cell surface, respectively. The implications of these differences are discussed.
Collapse
|
96
|
Chen HY, Guo AZ, Peng B, Zhang MF, Guo HY, Chen HC. Infection of HeLa cells by avian infectious bronchitis virus is dependent on cell status. Avian Pathol 2007; 36:269-74. [PMID: 17620171 DOI: 10.1080/03079450701447291] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
To investigate the adaptation of avian infectious bronchitis virus (IBV) in a human cell line may be beneficial to understanding the potential mechanisms of coronavirus interspecies infection. The current study addressed the poor replication of IBV in the HeLa human cell line demonstrated in previous reports. We showed that IBV strains M41, H52, H120 and Gray could be propagated in HeLa cells with distinct cytopathic effect. The virus titre in freshly dispersed HeLa cells was 1000-fold higher than in cell monolayers. Trypsin was not the determinant for the viral replication, suggesting that the restriction of IBV replication in HeLa cells is the result of intracellular events rather than the binding to or fusion with host cells. These IBV strains replicated to an average titre of 10(3.4+/-0.2)/0.1 ml median tissue culture infectious doses in freshly dispersed HeLa cells and maintained this titre for the first 12 passages. Then an approximately 10-fold increase (10(4.20+/-0.19)/0.1 ml) occurred in passage 13, which was maintained to passage 16, after which there was another, bigger rise to 10(6.6+/-0.3)/0.1 ml in passage 17. This titre was maintained until passage 24 when the experiment was terminated. The IBV M41 S1 gene was amplified and sequenced for passages 0, 5 and 21. There was only one amino acid replacement in the S1 protein, in passage 21. The presence of sialic acid on HeLa cells contributed to efficient virus replication, while human aminopeptidase N was not involved in the infection. Haemagglutinin activity gradually reduced with increased passages. These results indicated that the virus adaptation would probably be determined by host cell modification such as receptor glycosylation and different receptor utilization instead of viral gene mutation.
Collapse
Affiliation(s)
- H Y Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | | | | | | | | | | |
Collapse
|
97
|
Madu IG, Chu VC, Lee H, Regan AD, Bauman BE, Whittaker GR. Heparan sulfate is a selective attachment factor for the avian coronavirus infectious bronchitis virus Beaudette. Avian Dis 2007; 51:45-51. [PMID: 17461266 DOI: 10.1637/0005-2086(2007)051[0045:hsiasa]2.0.co;2] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The avian coronavirus infectious bronchitis virus (IBV) strain Beaudette is an embryo-adapted virus that has extended species tropism in cell culture. In order to understand the acquired tropism of the Beaudette strain, we compared the S protein sequences of several IBV strains. The Beaudette strain was found to contain a putative heparan sulfate (HS)-binding site, indicating that the Beaudette virus may use HS as a selective receptor. To ascertain the requirements of cell-surface HS for Beaudette infectivity, we assayed for infectivity in the presence of soluble heparin as a competitor and determined infectivity in mutant cell lines with no HS or glycosaminoglycan expression. Our results indicate that HS plays a role as an attachment factor for IBV, working in concert with other factors like sialic acid to mediate virus binding to cells, and may explain in part the extended tropism of IBV Beaudette.
Collapse
Affiliation(s)
- Ikenna G Madu
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
98
|
Stuart AD, Brown TDK. Alpha2,6-linked sialic acid acts as a receptor for Feline calicivirus. J Gen Virol 2007; 88:177-186. [PMID: 17170450 DOI: 10.1099/vir.0.82158-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Feline calicivirus (FCV) is a major causative agent of respiratory disease in cats. It is also one of the few cultivatable members of the family Caliciviridae. It has recently been reported that FCV binding is in part due to interaction with junction adhesion molecule-A. This report describes the characterization of additional receptor components for FCV. Chemical treatment of cells with sodium periodate showed that FCV recognized carbohydrate moieties on the surface of permissive cells. Enzymic treatment with Vibrio cholerae neuraminidase demonstrated that sialic acid was a major determinant of virus binding. Further characterization using linkage-specific lectins from Maackia amurensis and Sambucus nigra revealed that FCV recognized sialic acid with an alpha2,6 linkage. Using various proteases and metabolic inhibitors, it was shown that alpha2,6-linked sialic acid recognized by FCV is present on an N-linked glycoprotein.
Collapse
Affiliation(s)
- Amanda D Stuart
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - T David K Brown
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| |
Collapse
|
99
|
Chu VC, McElroy LJ, Aronson JM, Oura TJ, Harbison CE, Bauman BE, Whittaker GR. Feline aminopeptidase N is not a functional receptor for avian infectious bronchitis virus. Virol J 2007; 4:20. [PMID: 17324273 PMCID: PMC1810517 DOI: 10.1186/1743-422x-4-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Accepted: 02/26/2007] [Indexed: 12/31/2022] Open
Abstract
Background Coronaviruses are an important cause of infectious diseases in humans, including severe acute respiratory syndrome (SARS), and have the continued potential for emergence from animal species. A major factor in the host range of a coronavirus is its receptor utilization on host cells. In many cases, coronavirus-receptor interactions are well understood. However, a notable exception is the receptor utilization by group 3 coronaviruses, including avian infectious bronchitis virus (IBV). Feline aminopeptidase N (fAPN) serves as a functional receptor for most group 1 coronaviruses including feline infectious peritonitis virus (FIPV), canine coronavirus, transmissible gastroenteritis virus (TGEV), and human coronavirus 229E (HCoV-229E). A recent report has also suggested a role for fAPN during IBV entry (Miguel B, Pharr GT, Wang C: The role of feline aminopeptidase N as a receptor for infectious bronchitis virus. Brief review. Arch Virol 2002, 147:2047–2056. Results Here we show that, whereas both transient transfection and constitutive expression of fAPN on BHK-21 cells can rescue FIPV and TGEV infection in non-permissive BHK cells, fAPN expression does not rescue infection by the prototype IBV strain Mass41. To account for the previous suggestion that fAPN could serve as an IBV receptor, we show that feline cells can be infected with the prototype strain of IBV (Mass 41), but with low susceptibility compared to primary chick kidney cells. We also show that BHK-21 cells are slightly susceptible to certain IBV strains, including Ark99, Ark_DPI, CA99, and Iowa97 (<0.01% efficiency), but this level of infection is not increased by fAPN expression. Conclusion We conclude that fAPN is not a functional receptor for IBV, the identity of which is currently under investigation.
Collapse
Affiliation(s)
- Victor C Chu
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Lisa J McElroy
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Jed M Aronson
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Trisha J Oura
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Carole E Harbison
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Beverley E Bauman
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Gary R Whittaker
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
100
|
Cavanagh D. Coronavirus avian infectious bronchitis virus. Vet Res 2007; 38:281-97. [PMID: 17296157 DOI: 10.1051/vetres:2006055] [Citation(s) in RCA: 687] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Accepted: 09/22/2006] [Indexed: 01/05/2023] Open
Abstract
Infectious bronchitis virus (IBV), the coronavirus of the chicken (Gallus gallus), is one of the foremost causes of economic loss within the poultry industry, affecting the performance of both meat-type and egg-laying birds. The virus replicates not only in the epithelium of upper and lower respiratory tract tissues, but also in many tissues along the alimentary tract and elsewhere e.g. kidney, oviduct and testes. It can be detected in both respiratory and faecal material. There is increasing evidence that IBV can infect species of bird other than the chicken. Interestingly breeds of chicken vary with respect to the severity of infection with IBV, which may be related to the immune response. Probably the major reason for the high profile of IBV is the existence of a very large number of serotypes. Both live and inactivated IB vaccines are used extensively, the latter requiring priming by the former. Their effectiveness is diminished by poor cross-protection. The nature of the protective immune response to IBV is poorly understood. What is known is that the surface spike protein, indeed the amino-terminal S1 half, is sufficient to induce good protective immunity. There is increasing evidence that only a few amino acid differences amongst S proteins are sufficient to have a detrimental impact on cross-protection. Experimental vector IB vaccines and genetically manipulated IBVs--with heterologous spike protein genes--have produced promising results, including in the context of in ovo vaccination.
Collapse
Affiliation(s)
- Dave Cavanagh
- Institute for Animal Health, Compton Laboratory, Compton, Newbury, Berkshire RG20 7NN, United Kingdom.
| |
Collapse
|