51
|
Sanderson ML, Hassold TJ, Carrell DT. Proteins involved in meiotic recombination: a role in male infertility? Syst Biol Reprod Med 2008; 54:57-74. [PMID: 18446647 DOI: 10.1080/19396360701881922] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Meiotic recombination results in the formation of crossovers, by which genetic information is exchanged between homologous chromosomes during prophase I of meiosis. Recombination is a complex process involving many proteins. Alterations in the genes involved in recombination may result in infertility. Molecular studies have improved our understanding of the roles and mechanisms of the proteins and protein complexes involved in recombination, some of which have function in mitotic cells as well as meiotic cells. Human gene sequencing studies have been performed for some of these genes and have provided further information on the phenotypes observed in some infertile individuals. However, further studies are needed to help elucidate the particular role(s) of a given protein and to increase our understanding of these protein systems. This review will focus on our current understanding of proteins involved in meiotic recombination from a genomic perspective, summarizing our current understanding of known mutations and single nucleotide polymorphisms that may affect male fertility by altering meiotic recombination.
Collapse
Affiliation(s)
- Matthew L Sanderson
- Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | | | | |
Collapse
|
52
|
Abstract
DNA mismatch repair (MMR) is a highly conserved biological pathway that plays a key role in maintaining genomic stability. The specificity of MMR is primarily for base-base mismatches and insertion/deletion mispairs generated during DNA replication and recombination. MMR also suppresses homeologous recombination and was recently shown to play a role in DNA damage signaling in eukaryotic cells. Escherichia coli MutS and MutL and their eukaryotic homologs, MutSalpha and MutLalpha, respectively, are key players in MMR-associated genome maintenance. Many other protein components that participate in various DNA metabolic pathways, such as PCNA and RPA, are also essential for MMR. Defects in MMR are associated with genome-wide instability, predisposition to certain types of cancer including hereditary non-polyposis colorectal cancer, resistance to certain chemotherapeutic agents, and abnormalities in meiosis and sterility in mammalian systems.
Collapse
|
53
|
Snowden T, Shim KS, Schmutte C, Acharya S, Fishel R. hMSH4-hMSH5 adenosine nucleotide processing and interactions with homologous recombination machinery. J Biol Chem 2007; 283:145-154. [PMID: 17977839 DOI: 10.1074/jbc.m704060200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We have previously demonstrated that the human heterodimeric meiosis-specific MutS homologs, hMSH4-hMSH5, bind uniquely to a Holliday Junction and its developmental progenitor (Snowden, T., Acharya, S., Butz, C., Berardini, M., and Fishel, R. (2004) Mol. Cell 15, 437-451). ATP binding by hMSH4-hMSH5 resulted in the formation of a sliding clamp that dissociated from the Holliday Junction crossover region embracing two duplex DNA arms. The loading of multiple hMSH4-hMSH5 sliding clamps was anticipated to stabilize the interaction between parental chromosomes during meiosis double-stranded break repair. Here we have identified the interaction region between the individual subunits of hMSH4-hMSH5 that are likely involved in clamp formation and show that each subunit of the heterodimer binds ATP. We have determined that ADP-->ATP exchange is uniquely provoked by Holliday Junction recognition. Moreover, the hydrolysis of ATP by hMSH4-hMSH5 appears to occur after the complex transits the open ends of model Holliday Junction oligonucleotides. Finally, we have identified several components of the double-stranded break repair machinery that strongly interact with hMSH4-hMSH5. These results further underline the function(s) and interactors of hMSH4-hMSH5 that ensure accurate chromosomal repair and segregation during meiosis.
Collapse
Affiliation(s)
- Timothy Snowden
- Genetics and Molecular Biology Program, Kimmel Cancer Center, Philadelphia, Pennsylvania 19107
| | - Kang-Sup Shim
- Molecular Virology, Immunology, and Medical Genetics, Human Cancer Genetics, The Ohio State University School of Medicine and Public Health, Columbus, Ohio 43210
| | - Christoph Schmutte
- Molecular Virology, Immunology, and Medical Genetics, Human Cancer Genetics, The Ohio State University School of Medicine and Public Health, Columbus, Ohio 43210
| | - Samir Acharya
- Molecular Virology, Immunology, and Medical Genetics, Human Cancer Genetics, The Ohio State University School of Medicine and Public Health, Columbus, Ohio 43210
| | - Richard Fishel
- Molecular Virology, Immunology, and Medical Genetics, Human Cancer Genetics, The Ohio State University School of Medicine and Public Health, Columbus, Ohio 43210.
| |
Collapse
|
54
|
Abstract
The term Hereditary Non-Polyposis Colorectal Cancer (HNPCC) is a poor descriptor of the syndrome described by Lynch. Over the last decade, the term has been applied to heterogeneous groups of families meeting limited clinical criteria, for example the Amsterdam criteria. It is now apparent that not all Amsterdam criteria-positive families have the Lynch syndrome. The term HNPCC has also been applied to clinical scenarios in which CRCs with DNA microsatellite instability are diagnosed but in which there is no vertical transmission of an altered DNA mismatch repair (MMR) gene. A term that has multiple, mutually incompatible meanings is highly problematic, particularly when it may influence the management of an individual family. The Lynch syndrome is best understood as a hereditary predisposition to malignancy that is explained by a germline mutation in a DNA MMR gene. The diagnosis does not depend in an absolute sense on any particular family pedigree structure or age of onset of malignancy. Families with a strong family history of colorectal cancer that do not have Lynch syndrome have been grouped as ‘Familial Colorectal Cancer Type-X’. The first step in characterizing these cancer families is to distinguish them from Lynch syndrome. The term HNPCC no longer serves any useful purpose and should be phased out.
Collapse
Affiliation(s)
- Jeremy R Jass
- Department of Pathology, McGill University, Montreal, Quebec H3A 2B4, Canada.
| |
Collapse
|
55
|
Shim KS, Tombline G, Heinen CD, Charbonneau N, Schmutte C, Fishel R. Magnesium influences the discrimination and release of ADP by human RAD51. DNA Repair (Amst) 2006; 5:704-17. [PMID: 16624636 DOI: 10.1016/j.dnarep.2006.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 03/09/2006] [Accepted: 03/10/2006] [Indexed: 10/24/2022]
Abstract
hRAD51 lacks cooperative DNA-dependent ATPase activity and appears to function with 5-10-fold less Mg2+ compared to RecA. We have further explored the effect of Mg2+ on adenosine nucleotide binding, ATPase, and DNA strand exchange activities. hRAD51 was saturated with the poorly hydrolyzable analog of ATP, ATPgammaS, at approximately 0.08 mM Mg2+. In contrast, > 0.5 mM Mg2+ was required to saturate hRAD51 with ADP. We found ADP to be a significantly less effective competitive inhibitor of the hRAD51 ATPase at low Mg2+ concentrations (0.08 mM). Mg2+ did not appear to affect the ability of ATPgammaS to competitively inhibit the hRAD51 ATPase. Low Mg2+ (0.08-0.12 mM) enhanced the steady-state ATPase of hRAD51 while higher Mg2+ concentration (> 0.3 mM) was inhibitory. At low Mg2+, hRAD51 appeared capable of nearly complete hydrolysis of available ATP, suggesting a lack of ADP product inhibition. There was a strong correlation between the amount of Mg2+ required for stable ADP binding and the inhibition of hRad51 strand exchange activity. Simultaneous inclusion of exogenous ATP and chelation of Mg2+ with EDTA significantly enhanced ADP-->ATP exchange by hRAD51. These studies are consistent with the hypothesis that Mg2+ influences the discrimination and release of ADP, which may sequentially impose an important regulatory step in the hRAD51 ATPase cycle.
Collapse
Affiliation(s)
- Kang-Sup Shim
- Department of Molecular Virology, Immunology, and Medical Genetics, Human Cancer, Genetics, The Ohio State University College of Medicine, The Ohio State University, Comprehensive Cancer Center, Columbus, OH 43102, USA.
| | | | | | | | | | | |
Collapse
|
56
|
Kontogeorgos G, Horvath E, Kovacs K, Coire C, Lloyd RV, Scheithauer BW, Smyth HS. Morphologic changes of prolactin-producing pituitary adenomas after short treatment with dopamine agonists. Acta Neuropathol 2006; 111:46-52. [PMID: 16328513 DOI: 10.1007/s00401-005-1111-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Revised: 09/13/2005] [Accepted: 09/14/2005] [Indexed: 10/25/2022]
Abstract
Treatment of patients with prolactin (PRL)-producing pituitary adenomas with dopamine agonists has proved successful for most cases. Dopamine agonists inhibit PRL secretion, suppress cell proliferation, and may induce apoptosis to adenoma cells. Dopamine agonists induce striking morphologic changes in the majority of treated PRL-producing adenomas. To date, these morphologic effects have been primarily described only after long-term treatment. To the best of our knowledge, no similar studies have investigated apoptotic alterations induced after short-term therapy. The purpose of this report is to describe the morphologic changes seen in PRL-producing adenomas after short-term dopamine agonist treatment. We present two cases of PRL-producing macroadenomas, both from male patients who received treatment with dopamine agonists, the first for 5 and the second for 8 days. In contrast to long-term treatment, no striking reduction of PRL immunoreactivity was noted. Slight stromal fibrosis was noted in case 1, which contained several cells all in late phase of apoptosis. In addition to typical apoptotic cells, numerous "dark" cells representing another common form of cell death were also noted. These novel findings represent characteristic features of short-term dopamine agonist treatment, which are not seen in long-term treatment.
Collapse
Affiliation(s)
- George Kontogeorgos
- Department of Pathology, G. Gennimatas Athens General Hospital, KOFKA Bldg., 1st Floor, 154 Messogion Avenue, 115 27, Athens, Greece.
| | | | | | | | | | | | | |
Collapse
|
57
|
Joseph N, Duppatla V, Rao DN. Prokaryotic DNA Mismatch Repair. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2006; 81:1-49. [PMID: 16891168 DOI: 10.1016/s0079-6603(06)81001-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nimesh Joseph
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | | |
Collapse
|
58
|
Plotz G, Piiper A, Wormek M, Zeuzem S, Raedle J. Analysis of the human MutLalpha.MutSalpha complex. Biochem Biophys Res Commun 2005; 340:852-9. [PMID: 16403449 DOI: 10.1016/j.bbrc.2005.12.096] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Accepted: 12/14/2005] [Indexed: 11/23/2022]
Abstract
Human DNA mismatch repair is initiated by MutSalpha which ATP-dependently recruits MutLalpha. Analysis of this complex is difficult due to its transient and dynamic nature. We have optimized conditions for investigation of MutLalpha.MutSalpha complexes using a DNA pulldown assay. Non-specific DNA end-binding, which frequently interfered with analysis of the interaction, did not occur under the applied conditions. MutSalpha had significantly higher affinity to DNA mispairs, but its interaction with MutLalpha did not require a mismatch. Complex formation was best supported by low magnesium concentration and low temperature at physiological pH and salt concentration. Complex formation was delayed by the slowly hydrolyzable ATP analog ATPgammaS, undetectable with the non-hydrolyzable analog AMP-PNP, and occurred weakly with a combination of AMP-PNP and ADP, confirming that hydrolysis was required. The described conditions likely capture an intermediate of the repair reaction which has bound ATP and ADP in the two nucleotide-binding sites of MutSalpha.
Collapse
Affiliation(s)
- Guido Plotz
- University of the Saarland, Klinik für Innere Medizin II, Homburg/Saar, Germany.
| | | | | | | | | |
Collapse
|
59
|
Peterson-Roth E, Reynolds M, Quievryn G, Zhitkovich A. Mismatch repair proteins are activators of toxic responses to chromium-DNA damage. Mol Cell Biol 2005; 25:3596-607. [PMID: 15831465 PMCID: PMC1084304 DOI: 10.1128/mcb.25.9.3596-3607.2005] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chromium(VI) is a toxic and carcinogenic metal that causes the formation of DNA phosphate-based adducts. Cr-DNA adducts are genotoxic in human cells, although they do not block replication in vitro. Here, we report that induction of cytotoxicity in Cr(VI)-treated human colon cells and mouse embryonic fibroblasts requires the presence of all major mismatch repair (MMR) proteins. Cr-DNA adducts lost their ability to block replication of Cr-modified plasmids in human colon cells lacking MLH1 protein. The presence of functional mismatch repair caused induction of p53-independent apoptosis associated with activation of caspases 2 and 7. Processing of Cr-DNA damage by mismatch repair resulted in the extensive formation of gamma-H2AX foci in G(2) phase, indicating generation of double-stranded breaks as secondary toxic lesions. Induction of gamma-H2AX foci was observed at 6 to 12 h postexposure, which was followed by activation of apoptosis in the absence of significant G(2) arrest. Our results demonstrate that mismatch repair system triggers toxic responses to Cr-DNA backbone modifications through stress mechanisms that are significantly different from those for other forms of DNA damage. Selection for Cr(VI) resistant, MMR-deficient cells may explain the very high frequency of lung cancers with microsatellite instability among chromate workers.
Collapse
Affiliation(s)
- Elizabeth Peterson-Roth
- Pathology and Laboratory Medicine, Brown University, 70 Ship St., Box G-E507, Providence, RI 02912, USA
| | | | | | | |
Collapse
|
60
|
Meyers M, Wagner MW, Mazurek A, Schmutte C, Fishel R, Boothman DA. DNA mismatch repair-dependent response to fluoropyrimidine-generated damage. J Biol Chem 2004; 280:5516-26. [PMID: 15611052 DOI: 10.1074/jbc.m412105200] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Previous studies from our laboratory indicated that expression of the MLH1 DNA mismatch repair (MMR) gene was necessary to restore cytotoxicity and an efficient G(2) arrest in HCT116 human colon cancer cells, as well as Mlh1(-/-) murine embryonic fibroblasts, after treatment with 5-fluoro-2'-deoxyuridine (FdUrd). Here, we show that an identical phenomenon occurred when expression of MSH2, the other major MMR gene, was restored in HEC59 human endometrial carcinoma cells or was present in adenovirus E1A-immortalized Msh2(+/+) (compared with isogenic Msh2(-/-)) murine embryonic stem cells. Because MMR status had little effect on cellular responses (i.e. G(2) arrest and lethality) to the thymidylate synthase inhibitor, Tomudex, and a greater level of [(3)H]FdUrd incorporation into DNA was found in MMR-deficient cells, we concluded that the differential FdUrd cytotoxicity between MMR-competent and MMR-deficient cells was mediated at the level of DNA incorporation. Analyses of ATPase activation suggested that the hMSH2-hMSH6 heterodimer only recognized FdUrd moieties (as the base 5-fluorouracil (FU) in DNA) when mispaired with guanine, but not paired with adenine. Furthermore, analyses of incorporated FdUrd using methyl-CpG-binding domain 4 glycosylase indicated that there was more misincorporated FU:Gua in the DNA of MMR-deficient HCT116 cells. Our data provide the first demonstration that MMR specifically detects FU:Gua (in the first round of DNA replication), signaling a sustained G(2) arrest and lethality.
Collapse
Affiliation(s)
- Mark Meyers
- Department of Radiation Oncology and Case Comprehensive Cancer Center, Laboratory of Molecular Stress Responses, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | |
Collapse
|
61
|
Dzierzbicki P, Koprowski P, Fikus MU, Malc E, Ciesla Z. Repair of oxidative damage in mitochondrial DNA of Saccharomyces cerevisiae: involvement of the MSH1-dependent pathway. DNA Repair (Amst) 2004; 3:403-11. [PMID: 15010316 DOI: 10.1016/j.dnarep.2003.12.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2003] [Revised: 12/18/2003] [Accepted: 12/22/2003] [Indexed: 10/26/2022]
Abstract
Mitochondrial DNA (mtDNA) is located close to the respiratory chain, a major source of reactive oxygen species (ROS). This proximity makes mtDNA more vulnerable than nuclear DNA to damage by ROS. Therefore, the efficient repair of oxidative lesions in mtDNA is essential for maintaining the stability of the mitochondrial genome. A series of genetic and biochemical studies has indicated that eukaryotic cells, including the model organism Saccharomyces cerevisiae, use several alternative strategies to prevent mutagenesis induced by endogenous oxidative damage to nuclear DNA. However, apart from base excision repair (BER), no other pathways involved in the repair of oxidative damage in mtDNA have been identified. In this study, we have examined mitochondrial mutagenesis in S. cerevisiae cells which lack the activity of the Ogg1 glycosylase, an enzyme playing a crucial role in the removal of 8-oxoG, the most abundant oxidative lesion of DNA. We show that the overall frequency of the mitochondrial oligomycin-resistant (Olir) mutants is increased in the ogg1 strain by about one order of magnitude compared to that of the wild-type strain. Noteworthy, in the mitochondrial oli1 gene, G:C to T:A transversions are generated approximately 50-fold more frequently in the ogg1 mutant relative to the wild-type strain. We also demonstrate that the increased frequency of Olir mutants in the ogg1 strain is markedly reduced by the presence of plasmids encoding Msh1p, a homologue of the bacterial mismatch protein MutS, which specifically functions in mitochondria. This suppression of the mitochondrial mutator phenotype of the ogg1 strain seems to be specific, since overexpression of the mutant allele msh1-R813W failed to exert this effect. Finally, we also show that the increased frequency of Olir mutants arising in an msh1/MSH1 heterozygote grown in glucose-containing medium is further enhanced if the cells are cultivated in glycerol-containing medium, i.e. under conditions when the respiratory chain is fully active. Taken together, these results strongly suggest that MSH1-dependent repair represents a significant back-up to mtBER in the repair of oxidative damage in mtDNA.
Collapse
Affiliation(s)
- Piotr Dzierzbicki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | | | | | | | | |
Collapse
|
62
|
Tajima A, Hess MT, Cabrera BL, Kolodner RD, Carethers JM. The mismatch repair complex hMutS alpha recognizes 5-fluorouracil-modified DNA: implications for chemosensitivity and resistance. Gastroenterology 2004; 127:1678-84. [PMID: 15578504 DOI: 10.1053/j.gastro.2004.10.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Recent evidence suggests that patients with advanced microsatellite unstable (MSI) colorectal cancers lack a survival benefit with 5-fluorouracil (5-FU)-based chemotherapy. Additionally, tumor cells with MSI (caused by defective DNA mismatch repair) are more resistant to 5-FU in culture compared with microsatellite stable cells, despite similar amounts of 5-FU incorporation into the cell's DNA. We examined whether the component of the DNA mismatch repair (MMR) system that normally recognizes single base pair mismatches could specifically recognize 5-FU incorporated into DNA as a potential mechanism for chemosensitivity. METHODS We synthesized oligonucleotides with and without incorporated 5-FU and created oligonucleotides with a single base pair mismatch (as a positive control) to perform electromobility gel shift assays (EMSA) with a purified, baculovirus-synthesized hMutS alpha MMR complex. We also utilized surface plasmon resonance to measure relative binding differences between the oligonucleotides and hMutS alpha in real time. RESULTS Using EMSA, we demonstrate that hMutS alpha recognizes and binds 5-FU-modified DNA. The reaction is specific as added ATP dissociates the hMutS alpha complex from the 5-FU-modified strand. Using surface plasmon resonance, we demonstrate greater binding between hMutS alpha and 5-FU-modified DNA compared with complementary DNA or DNA containing a C/T mismatch. CONCLUSIONS The MMR complex hMutS alpha specifically recognizes and binds to 5-FU-modified DNA. Because MMR components are required for the induction of apoptosis by many DNA-damaging agents, the chemosensitivity of 5-FU for patients with advanced colorectal cancer may be in part due to recognition of 5-FU incorporated into tumor DNA by the MMR proteins.
Collapse
Affiliation(s)
- Akihiro Tajima
- Department of Medicine, University of California, La Jolla, California, USA
| | | | | | | | | |
Collapse
|
63
|
Snowden T, Acharya S, Butz C, Berardini M, Fishel R. hMSH4-hMSH5 Recognizes Holliday Junctions and Forms a Meiosis-Specific Sliding Clamp that Embraces Homologous Chromosomes. Mol Cell 2004; 15:437-51. [PMID: 15304223 DOI: 10.1016/j.molcel.2004.06.040] [Citation(s) in RCA: 299] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Revised: 05/17/2004] [Accepted: 05/28/2004] [Indexed: 11/22/2022]
Abstract
Five MutS homologs (MSH), which form three heterodimeric protein complexes, have been identified in eukaryotes. While the human hMSH2-hMSH3 and hMSH2-hMSH6 heterodimers operate primarily in mitotic mismatch repair (MMR), the biochemical function(s) of the meiosis-specific hMSH4-hMSH5 heterodimer is unknown. Here, we demonstrate that purified hMSH4-hMSH5 binds uniquely to Holliday Junctions. Holliday Junctions stimulate the hMSH4-hMSH5 ATP hydrolysis (ATPase) activity, which is controlled by Holliday Junction-provoked ADP-->ATP exchange. ATP binding by hMSH4-hMSH5 induces the formation of a hydrolysis-independent sliding clamp that dissociates from the Holliday Junction crossover region, embracing two homologous duplex DNA arms. Fundamental differences between hMSH2-hMSH6 and hMSH4-hMSH5 Holliday Junction recognition are detailed. Our results support the attractive possibility that hMSH4-hMSH5 stabilizes and preserves a meiotic bimolecular double-strand break repair (DSBR) intermediate.
Collapse
Affiliation(s)
- Timothy Snowden
- Genetics and Molecular Biology Program, Kimmel Cancer Center, BLSB 933, 233 South 10th Street, Philadelphia, PA 19107, USA
| | | | | | | | | |
Collapse
|
64
|
Lei X, Zhu Y, Tomkinson A, Sun L. Measurement of DNA mismatch repair activity in live cells. Nucleic Acids Res 2004; 32:e100. [PMID: 15249596 PMCID: PMC484197 DOI: 10.1093/nar/gnh098] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Loss of DNA mismatch repair (MMR) function leads to the development and progression of certain cancers. Currently, assays for DNA MMR activity involve the use of cell extracts and are technically challenging and costly. Here, we report a rapid, less labor-intensive method that can quantitatively measure MMR activity in live cells. A G-G or T-G mismatch was introduced into the ATG start codon of the enhanced green fluorescent protein (EGFP) gene. Repair of the G-G or T-G mismatch to G-C or T-A, respectively, in the heteroduplex plasmid generates a functional EGFP gene expression. The heteroduplex plasmid and a similarly constructed homoduplex plasmid were transfected in parallel into the same cell line and the number of green cells counted by flow cytometry. Relative EGFP expression was calculated as the total fluorescence intensity of cells transfected with the heteroduplex construct divided by that of cells transfected with the homoduplex construct. We have tested several cell lines from both MMR-deficient and MMR-proficient groups using this method, including a colon carcinoma cell line HCT116 with defective hMLH1 gene and a derivative complemented by transient transfection with hMLH1 cDNA. Results show that MMR-proficient cells have significantly higher EGFP expression than MMR-deficient cells, and that transient expression of hMLH1 alone can elevate MMR activity in HCT116 cells. This method is potentially useful in comparing and monitoring MMR activity in live cells under various growth conditions.
Collapse
Affiliation(s)
- Xiufen Lei
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | | | | | | |
Collapse
|
65
|
Cohen MM. Molecular dimensions of gastrointestinal tumors: some thoughts for digestion. Am J Med Genet A 2004; 122A:303-14. [PMID: 14518068 DOI: 10.1002/ajmg.a.20473] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Topics discussed here include PTEN mutations and colonic polyps; WNT signaling, APC, beta-catenin, and gastrointestinal neoplasms; mismatch-repair genes (MLH1, MSH2, PMS1, MSH6) and hereditary nonpolyposis colorectal cancer; MYH mutations and autosomal recessive colorectal tumors; STK11 mutations and Peutz-Jeghers syndrome; TGFbeta and gastrointestinal cancer; BMPR1A mutations and juvenile polyposis; FGF/FGFR alterations in gastrointestinal neoplasms; PTCH mutations and gastrointestinal neoplasms; RUNX3 expression and gastric cancer; role of mucins in gastric carcinogenesis; KIT, PDGFRalpha, and gastrointestinal stromal tumors; intestinal neurofibromatosis; and gastrointestinal tumors in other disorders.
Collapse
Affiliation(s)
- M Michael Cohen
- Department of Oral & Maxillofacial Sciences, Pediatrics, Community Health & Epidemiology, Health Services Administration, and Sociology & Social Anthropology, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
66
|
Stojic L, Mojas N, Cejka P, Di Pietro M, Ferrari S, Marra G, Jiricny J. Mismatch repair-dependent G2 checkpoint induced by low doses of SN1 type methylating agents requires the ATR kinase. Genes Dev 2004; 18:1331-44. [PMID: 15175264 PMCID: PMC420358 DOI: 10.1101/gad.294404] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2003] [Accepted: 04/06/2004] [Indexed: 11/25/2022]
Abstract
S(N)1-type alkylating agents represent an important class of chemotherapeutics, but the molecular mechanisms underlying their cytotoxicity are unknown. Thus, although these substances modify predominantly purine nitrogen atoms, their toxicity appears to result from the processing of O(6)-methylguanine ((6Me)G)-containing mispairs by the mismatch repair (MMR) system, because cells with defective MMR are highly resistant to killing by these agents. In an attempt to understand the role of the MMR system in the molecular transactions underlying the toxicity of alkylating agents, we studied the response of human MMR-proficient and MMR-deficient cells to low concentrations of the prototypic methylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). We now show that MNNG treatment induced a cell cycle arrest that was absolutely dependent on functional MMR. Unusually, the cells arrested only in the second G(2) phase after treatment. Downstream targets of both ATM (Ataxia telangiectasia mutated) and ATR (ATM and Rad3-related) kinases were modified, but only the ablation of ATR, or the inhibition of CHK1, attenuated the arrest. The checkpoint activation was accompanied by the formation of nuclear foci containing the signaling and repair proteins ATR, the S(*)/T(*)Q substrate, gamma-H2AX, and replication protein A (RPA). The persistence of these foci implied that they may represent sites of irreparable damage.
Collapse
Affiliation(s)
- Lovorka Stojic
- Institute of Molecular Cancer Research, University of Zurich, CH-8008 Zurich
| | | | | | | | | | | | | |
Collapse
|
67
|
Shim KS, Schmutte C, Tombline G, Heinen CD, Fishel R. hXRCC2 enhances ADP/ATP processing and strand exchange by hRAD51. J Biol Chem 2004; 279:30385-94. [PMID: 15123651 DOI: 10.1074/jbc.m306066200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The assembly of bacterial RecA, and its human homolog hRAD51, into an operational ADP/ATP-regulated DNA-protein (nucleoprotein) filament is essential for homologous recombination repair (HRR). Yet hRAD51 lacks the coordinated ADP/ATP processing exhibited by RecA and is less efficient in HRR reactions in vitro. In this study, we demonstrate that hXRCC2, one of five other poorly understood non-redundant human mitotic RecA homologs (hRAD51B, hRAD51C, hRAD51D, hXRCC2, and hXRCC3), stimulates hRAD51 ATP processing. hXRCC2 also increases hRAD51-mediated DNA unwinding and strand exchange activities that are integral for HRR. Although there does not seem to be a long-lived interaction between hXRCC2 and hRAD51, we detail a strong adenosine nucleotide-regulated interaction between the hXRCC2-hRAD51D heterodimer and hRAD51. These observations begin to elucidate the separate and specialized functions of the human mitotic RecA homologs that enable an efficient nucleoprotein filament required for HRR.
Collapse
Affiliation(s)
- Kang Sup Shim
- Genetics and Molecular Biology Program, Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | |
Collapse
|
68
|
Smania AM, Segura I, Pezza RJ, Becerra C, Albesa I, Argaraña CE. Emergence of phenotypic variants upon mismatch repair disruption in Pseudomonas aeruginosa. Microbiology (Reading) 2004; 150:1327-1338. [PMID: 15133095 DOI: 10.1099/mic.0.26751-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
MutS is part of the bacterial mismatch repair system that corrects point mutations and small insertions/deletions that fail to be proof-read by DNA polymerase activity. In this work it is shown that the disruption of theP. aeruginosa mutSgene generates the emergence of diverse colony morphologies in contrast with its parental wild-type strain that displayed monomorphic colonies. Interestingly, two of themutSmorphotypes emerged at a high frequency and in a reproducible way and were selected for subsequent characterization. One of them displayed a nearly wild-type morphology while the other notably showed, compared with the wild-type strain, increased production of pyocyanin and pyoverdin, lower excretion of LasB protease and novel motility characteristics, mainly related to swarming. Furthermore, it was reproducibly observed that, after prolonged incubation in liquid culture, the pigmented variant consistently emerged from themutSwild-type-like variant displaying a reproducible event. It is also shown that theseP. aeruginosa mutSmorphotypes not only displayed an increase in the frequency of antibiotic-resistant mutants, as described for clinicalP. aeruginosamutator isolates, but also generated mutants whose antibiotic-resistant levels were higher than those measured from spontaneous resistant mutants derived from wild-type cells. It was also found that both morphotypes showed a decreased cytotoxic capacity compared to the wild-type strain, leading to the emergence of invasive variants. By using mutated versions of a tetracycline resistance gene, themutSmutant showed a 70-fold increase in the reversion frequency of a +1 frameshift mutation with respect to its parental wild-type strain, allowing the suggestion that the phenotypical diversity generated in themutSpopulation could be produced in part by frameshift mutations. Finally, since morphotypical diversification has also been described in clinical isolates, the possibility that thismutSdiversification was related to the high frequency hypermutability observed inP. aeruginosaCF isolates is discussed.
Collapse
Affiliation(s)
- Andrea M Smania
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Ignacio Segura
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Roberto J Pezza
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Cecilia Becerra
- Departamento de Farmacia, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | - Inés Albesa
- Departamento de Farmacia, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | - Carlos E Argaraña
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
| |
Collapse
|
69
|
Wu J, Zhu BB, Yu J, Zhu H, Qiu L, Kindy MS, Gu L, Seidel A, Li GM. In vitro and in vivo modulations of benzo[c]phenanthrene-DNA adducts by DNA mismatch repair system. Nucleic Acids Res 2004; 31:6428-34. [PMID: 14602900 PMCID: PMC275569 DOI: 10.1093/nar/gkg875] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Benzo[c]phenanthrene dihydrodiol epoxide (B[c] PhDE) is well known as an important environmental chemical carcinogen that preferentially modifies DNA in adenine residues. However, the molecular mechanism by which B[c]PhDE induces tumorigenesis is not fully understood. In this report, we demonstrate that DNA mismatch repair (MMR), a genome maintenance system, plays an important role in B[c]PhDE-induced carcinogensis by promoting apoptosis in cells treated with B[c]PhDE. We show that purified human MMR recognition proteins, MutS(alpha) and MutSbeta, specifically recognized B[c]PhDE-DNA adducts. Cell lines proficient in MMR exhibited several-fold more sensitivity to killing than cell lines defective in either MutS(alpha) or MutL(alpha) by B[c]PhDE; the nature of this sensitivity was shown to be due to increased apoptosis. Additionally, wild-type mice exposed to B[c]PhDE had intestinal crypt cells that underwent apoptosis significantly more often than intestinal crypt cells found in B[c]PhDE-treated Msh2(-/-) or Mlh1(-/-) mice. These findings, combined with previous studies, suggest that the MMR system may serve as a general sensor for chemical-caused DNA damage to prevent damaged cells from mutagenesis and carcinogenesis by promoting apoptosis.
Collapse
Affiliation(s)
- Jianxin Wu
- Markey Cancer Center and Department of Pathology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Roca AI, Singleton SF. Direct evaluation of a mechanism for activation of the RecA nucleoprotein filament. J Am Chem Soc 2004; 125:15366-75. [PMID: 14664581 DOI: 10.1021/ja0270165] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The RecA protein of Escherichia coli controls the SOS response for DNA damage tolerance and plays a crucial role in recombinational DNA repair. The formation of a RecA.ATP.ssDNA complex initiates all RecA activities, and yet this process is not understood at the molecular level. An analysis of RecA.DNA interactions was performed using both a mutant RecA protein containing a tryptophan (Trp) reporter and oligodeoxyribonucleotides (ODNs) containing a fluorescent guanine analogue, 6-methylisoxanthopterin (6MI). Experiments using fluorescent ODNs allowed structurally distinct nucleoprotein filaments, formed in the absence and presence of ATPgammaS (a slowly hydrolyzed analogue of ATP), to be differentiated directly. Stopped-flow spectrofluorometry, combined with presteady-state kinetic analyses, revealed unexpected differences in the rates of RecA.ODN and RecA.ATPgammaS.ODN complex assembly. This is the first demonstration that such intrinsically fluorescent synthetic DNAs can be used to characterize definitively the real-time assembly and activation of RecA.ssDNA complexes. Surprisingly, the ssDNA binding event is almost 50-fold slower in the presence of the activating ATPgammaS cofactor. Furthermore, a combination of time-dependent emission changes from 6MI and Trp allowed the first direct chemical test of whether an inactive filament can isomerize to the active state. The results revealed that, unlike the hexameric motor proteins, the inactive RecA filament cannot directly convert to the active state upon ATPgammaS binding. These results have implications for understanding how a coincidence of functions--an ATP-communicated signal-like activity and an ATP-driven motorlike activity--are resolved within a single protein molecule.
Collapse
Affiliation(s)
- Alberto I Roca
- Department of Chemistry, Rice University, P.O. Box 1892 MS 65, Houston, TX 77251-1892, USA
| | | |
Collapse
|
71
|
Meyers M, Hwang A, Wagner MW, Boothman DA. Role of DNA mismatch repair in apoptotic responses to therapeutic agents. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2004; 44:249-264. [PMID: 15468331 DOI: 10.1002/em.20056] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Deficiencies in DNA mismatch repair (MMR) have been found in both hereditary cancer (i.e., hereditary nonpolyposis colorectal cancer) and sporadic cancers of various tissues. In addition to its primary roles in the correction of DNA replication errors and suppression of recombination, research in the last 10 years has shown that MMR is involved in many other processes, such as interaction with other DNA repair pathways, cell cycle checkpoint regulation, and apoptosis. Indeed, a cell's MMR status can influence its response to a wide variety of chemotherapeutic agents, such as temozolomide (and many other methylating agents), 6-thioguanine, cisplatin, ionizing radiation, etoposide, and 5-fluorouracil. For this reason, identification of a tumor's MMR deficiency (as indicated by the presence of microsatellite instability) is being utilized more and more as a prognostic indicator in the clinic. Here, we describe the basic mechanisms of MMR and apoptosis and investigate the literature examining the influence of MMR status on the apoptotic response following treatment with various therapeutic agents. Furthermore, using isogenic MMR-deficient (HCT116) and MMR-proficient (HCT116 3-6) cells, we demonstrate that there is no enhanced apoptosis in MMR-proficient cells following treatment with 5-fluoro-2'-deoxyuridine. In fact, apoptosis accounts for only a small portion of the induced cell death response.
Collapse
Affiliation(s)
- Mark Meyers
- Department of Radiation Oncology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|
72
|
Abstract
The human genome, comprising three billion base pairs coding for 30000-40000 genes, is constantly attacked by endogenous reactive metabolites, therapeutic drugs and a plethora of environmental mutagens that impact its integrity. Thus it is obvious that the stability of the genome must be under continuous surveillance. This is accomplished by DNA repair mechanisms, which have evolved to remove or to tolerate pre-cytotoxic, pre-mutagenic and pre-clastogenic DNA lesions in an error-free, or in some cases, error-prone way. Defects in DNA repair give rise to hypersensitivity to DNA-damaging agents, accumulation of mutations in the genome and finally to the development of cancer and various metabolic disorders. The importance of DNA repair is illustrated by DNA repair deficiency and genomic instability syndromes, which are characterised by increased cancer incidence and multiple metabolic alterations. Up to 130 genes have been identified in humans that are associated with DNA repair. This review is aimed at updating our current knowledge of the various repair pathways by providing an overview of DNA-repair genes and the corresponding proteins, participating either directly in DNA repair, or in checkpoint control and signaling of DNA damage.
Collapse
Affiliation(s)
- Markus Christmann
- Division of Applied Toxicology, Institute of Toxicology, University of Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| | | | | | | |
Collapse
|
73
|
Meyers M, Hwang A, Wagner MW, Bruening AJ, Veigl ML, Sedwick WD, Boothman DA. A role for DNA mismatch repair in sensing and responding to fluoropyrimidine damage. Oncogene 2003; 22:7376-88. [PMID: 14576845 DOI: 10.1038/sj.onc.1206941] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The phenomenon of damage tolerance, whereby cells incur DNA lesions that are nonlethal, largely ignored, but highly mutagenic, appears to play a key role in carcinogenesis. Typically, these lesions are generated by alkylation of DNA or incorporation of base analogues. This tolerance is usually a result of the loss of specific DNA repair processes, most often DNA mismatch repair (MMR). The availability of genetically matched MMR-deficient and -corrected cell systems allows dissection of the consequences of this unrepaired damage in carcinogenesis as well as the elucidation of cell cycle checkpoint responses and cell death consequences. Recent data indicate that MMR plays an important role in detecting damage caused by fluorinated pyrimidines (FPs) and represents a repair system that is probably not the primary system for detecting damage caused by these agents, but may be an important system for correcting key mutagenic lesions that could initiate carcinogenesis. In fact, clinical studies have shown that there is no benefit of FP-based adjuvant chemotherapy in colon cancer patients exhibiting microsatellite instability, a hallmark of MMR deficiency. MMR-mediated damage tolerance and futile cycle repair processes are discussed, as well as possible strategies using FPs to exploit these systems for improved anticancer therapy.
Collapse
Affiliation(s)
- Mark Meyers
- Laboratory of Molecular Stress Responses, Department of Radiation Oncology, Case Western Reserve University, Biomedical Research Building 326-East, 2109 Adelbert Road, Cleveland, OH 44106-4942, USA
| | | | | | | | | | | | | |
Collapse
|
74
|
Yuan Z, Sotsky Kent T, Weber TK. Differential expression of DOC-1 in microsatellite-unstable human colorectal cancer. Oncogene 2003; 22:6304-10. [PMID: 13679870 DOI: 10.1038/sj.onc.1206609] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The precise genetic mechanism of malignant transformation in DNA mismatch repair deficient, microsatellite-unstable colorectal cancer (CRC) has yet to be elucidated. We employed cDNA microarray to identify patterns of gene expression among CRC cell lines and to compare directly lines with and without microsatellite instability. This study was undertaken to test the hypothesis that microsatellite-unstable CRC cell lines demonstrate specific patterns of gene expression that differ significantly from those observed among microsatellite-stable CRC. Multiple differential expression patterns were identified. Genes demonstrating differential expression included deleted-in-oral-cancer-1 (DOC-1), a highly conserved growth suppressor. DOC-1 expression correlated with microsatellite status, with significantly decreased expression in microsatellite-unstable cell lines and constitutive expression in microsatellite-stable cell lines. We also observed alterations in the biologic behavior of p12(DOC-1)-deficient cell lines, with increased S phase and decreased apoptosis compared to microsatellite-stable (DOC-1+) cell lines. Transfection of p12(DOC-1) into SW48, which lacks p12(DOC-1) expression, resulted in cell cycle and apoptosis profiles similar to other p12(DOC-1)+ cell lines. These results support the hypothesis that microsatellite-unstable CRC is characterized by novel patterns of gene expression different from those associated with microsatellite-stable CRC, and demonstrate that p12(DOC-1) has tumor suppressor potential in colon epithelial cells.
Collapse
Affiliation(s)
- Ziqiang Yuan
- Department of Molecular Genetics, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Ullmann 1219, Bronx, NY 10461, USA
| | | | | |
Collapse
|
75
|
Criswell T, Leskov K, Miyamoto S, Luo G, Boothman DA. Transcription factors activated in mammalian cells after clinically relevant doses of ionizing radiation. Oncogene 2003; 22:5813-27. [PMID: 12947388 DOI: 10.1038/sj.onc.1206680] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Over the past 15 years, a wealth of information has been published on transcripts and proteins 'induced' (requiring new protein synthesis) in mammalian cells after ionizing radiation (IR) exposure. Many of these studies have also attempted to elucidate the transcription factors that are 'activated' (i.e., not requiring de novo synthesis) in specific cells by IR. Unfortunately, all too often this information has been obtained using supralethal doses of IR, with investigators assuming that induction of these proteins, or activation of corresponding transcription factors, can be 'extrapolated' to low-dose IR exposures. This review focuses on what is known at the molecular level about transcription factors induced at clinically relevant (< or =2 Gy) doses of IR. A review of the literature demonstrates that extrapolation from high doses of IR to low doses of IR is inaccurate for most transcription factors and most IR-inducible transcripts/proteins, and that induction of transactivating proteins at low doses must be empirically derived. The signal transduction pathways stimulated after high versus low doses of IR, which act to transactivate certain transcription factors in the cell, will be discussed. To date, only three transcription factors appear to be responsive (i.e. activated) after physiological doses (doses wherein cells survive or recover) of IR. These are p53, nuclear factor kappa B(NF-kappaB), and the SP1-related retinoblastoma control proteins (RCPs). Clearly, more information on transcription factors and proteins induced in mammalian cells at clinically or environmentally relevant doses of IR is needed to understand the role of these stress responses in cancer susceptibility/resistance and radio-sensitivity/resistance mechanisms.
Collapse
Affiliation(s)
- Tracy Criswell
- Department of Radiation Oncology and Program in Molecular Basis of Disease, Laboratory of Molecular Stress Responses, Ireland Comprehensive Cancer Center, Case Western Reserve University and University Hospitals of Cleveland, OH 44106-4942, USA
| | | | | | | | | |
Collapse
|
76
|
Arnold CN, Goel A, Boland CR. Role of hMLH1 promoter hypermethylation in drug resistance to 5-fluorouracil in colorectal cancer cell lines. Int J Cancer 2003; 106:66-73. [PMID: 12794758 DOI: 10.1002/ijc.11176] [Citation(s) in RCA: 209] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Loss of DNA mismatch repair (MMR) occurs in 10-15% of sporadic colorectal cancer, is usually caused by hMLH1 hypermethylation, and has been shown to confer resistance to various chemotherapeutic reagents, including 5-fluorouracil (5-FU). We tested the hypothesis that demethylation of the hMLH1 promoter in hypermethylated colorectal cancer cells would restore MMR proficiency and drug sensitivity to 5-FU. We used the MMR-deficient cell lines SW48, HCT116, HCT116+chr2 and the -proficient cell line HCT116+chr3. After treatment with the demethylating agent 5-Aza-2'-deoxycytidine (5 aza-dC), hMLH1 mRNA and protein expression were determined by RT-PCR and immunoblots. The methylation status for hMLH1 was investigated by methylation-specific PCR. Cells were subsequently treated with 5-FU and the growth characteristics ascertained by clonogenic assays. hMLH1 hypermethylation was reverted in SW48 cells 24 hr after treatment with 5 aza-dC and was accompanied by hMLH1 mRNA and protein reexpression. While 5 aza-dC alone did not affect the growth of SW48 cells, all other cell lines responded with a pronounced growth inhibition. 5-FU treatment strongly reduced the colony formation of HCT116+chr3 cells. These effects were significantly less in the MMR-deficient cells. Combined treatment of SW48 cells resulted in a similar growth pattern as seen in 5-FU only treated HCT116+chr3 cells. We demonstrate that in vitro resistance to 5-FU can be overcome by reexpression of hMLH1 protein through 5 aza-dC-induced demethylation in hypermethylated cell lines. Induction of the expression of methylated tumor suppressor or MMR genes could have a significant impact on the development of future chemotherapy strategies.
Collapse
Affiliation(s)
- Christian N Arnold
- Department of Medicine, University of California at San Diego, San Diego, CA, USA
| | | | | |
Collapse
|
77
|
Koprowski P, Fikus MU, Dzierzbicki P, Mieczkowski P, Lazowska J, Ciesla Z. Enhanced expression of the DNA damage-inducible gene DIN7 results in increased mutagenesis of mitochondrial DNA in Saccharomyces cerevisiae. Mol Genet Genomics 2003; 269:632-9. [PMID: 12827502 DOI: 10.1007/s00438-003-0873-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2003] [Accepted: 05/30/2003] [Indexed: 11/26/2022]
Abstract
We reported previously that the product of DIN7, a DNA damage-inducible gene of Saccharomyces cerevisiae, belongs to the XPG family of proteins, which are involved in DNA repair and replication. This family includes the S. cerevisiae protein Rad2p and its human homolog XPGC, Rad27p and its mammalian homolog FEN-1, and Exonuclease I (Exo I). Interestingly, Din7p is the only member of the XPG family which specifically functions in mitochondria. We reported previously that overexpression of DIN7 results in a mitochondrial mutator phenotype. In the present study we wished to test the hypothesis that this phenotype is dependent on the nuclease activity of Din7p. For this purpose, we constructed two alleles, din7-D78A and din7-D173A, which encode proteins in which highly conserved aspartates important for the nuclease activity of the XPG proteins have been replaced by alanines. Here, we report that overexpression of the mutant alleles, in contrast to DIN7, fails to increase the frequency of mitochondrial petite mutants or erythromycin-resistant (Er) mutants. Also, overproduction of din7-D78Ap does not result in destabilization of poly GT tracts in mitochondrial DNA (mtDNA), the phenotype observed in cells that overexpress Din7p. We also show that petite mutants induced by enhanced synthesis of wild-type Din7p exhibit gross rearrangements of mtDNA, and that this correlates with enhanced recombination within the mitochondrial cyt b gene. These results suggest that the stability of the mitochondrial genome of S. cerevisiae is modulated by the level of the nuclease Din7p.
Collapse
Affiliation(s)
- P Koprowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 5A Pawinskiego St., 02-106 Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
78
|
Acharya S, Foster PL, Brooks P, Fishel R. The coordinated functions of the E. coli MutS and MutL proteins in mismatch repair. Mol Cell 2003; 12:233-46. [PMID: 12887908 DOI: 10.1016/s1097-2765(03)00219-3] [Citation(s) in RCA: 228] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The Escherichia coli MutS and MutL proteins have been conserved throughout evolution, although their combined functions in mismatch repair (MMR) are poorly understood. We have used biochemical and genetic studies to ascertain a physiologically relevant mechanism for MMR. The MutS protein functions as a regional lesion sensor. ADP-bound MutS specifically recognizes a mismatch. Repetitive rounds of mismatch-provoked ADP-->ATP exchange results in the loading of multiple MutS hydrolysis-independent sliding clamps onto the adjoining duplex DNA. MutL can only associate with ATP-bound MutS sliding clamps. Interaction of the MutS-MutL sliding clamp complex with MutH triggers ATP binding by MutL that enhances the endonuclease activity of MutH. Additionally, MutL promotes ATP binding-independent turnover of idle MutS sliding clamps. These results support a model of MMR that relies on two dynamic and redundant ATP-regulated molecular switches.
Collapse
Affiliation(s)
- Samir Acharya
- Genetics and Molecular Biology Program, Kimmel Cancer Center - BLSB 933, 233 S. 10th Street, Philadelphia, PA 19107, USA.
| | | | | | | |
Collapse
|
79
|
Fishel R, Acharya S, Berardini M, Bocker T, Charbonneau N, Cranston A, Gradia S, Guerrette S, Heinen CD, Mazurek A, Snowden T, Schmutte C, Shim KS, Tombline G, Wilson T. Signaling mismatch repair: the mechanics of an adenosine-nucleotide molecular switch. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 65:217-24. [PMID: 12760035 DOI: 10.1101/sqb.2000.65.217] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- R Fishel
- Genetics and Molecular Biology Program, Department of Microbiology and Immunology, Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Plotz G, Raedle J, Brieger A, Trojan J, Zeuzem S. N-terminus of hMLH1 confers interaction of hMutLalpha and hMutLbeta with hMutSalpha. Nucleic Acids Res 2003; 31:3217-26. [PMID: 12799449 PMCID: PMC162253 DOI: 10.1093/nar/gkg420] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mismatch repair is a highly conserved system that ensures replication fidelity by repairing mispairs after DNA synthesis. In humans, the two protein heterodimers hMutSalpha (hMSH2-hMSH6) and hMutLalpha (hMLH1-hPMS2) constitute the centre of the repair reaction. After recognising a DNA replication error, hMutSalpha recruits hMutLalpha, which then is thought to transduce the repair signal to the excision machinery. We have expressed an ATPase mutant of hMutLalpha as well as its individual subunits hMLH1 and hPMS2 and fragments of hMLH1, followed by examination of their interaction properties with hMutSalpha using a novel interaction assay. We show that, although the interaction requires ATP, hMutLalpha does not need to hydrolyse this nucleotide to join hMutSalpha on DNA, suggesting that ATP hydrolysis by hMutLalpha happens downstream of complex formation. The analysis of the individual subunits of hMutLalpha demonstrated that the hMutSalpha-hMutLalpha interaction is predominantly conferred by hMLH1. Further experiments revealed that only the N-terminus of hMLH1 confers this interaction. In contrast, only the C-terminus stabilised and co-immunoprecipitated hPMS2 when both proteins were co-expressed in 293T cells, indicating that dimerisation and stabilisation are mediated by the C-terminal part of hMLH1. We also examined another human homologue of bacterial MutL, hMutLbeta (hMLH1-hPMS1). We show that hMutLbeta interacts as efficiently with hMutSalpha as hMutLalpha, and that it predominantly binds to hMutSalpha via hMLH1 as well.
Collapse
Affiliation(s)
- Guido Plotz
- 2nd Department of Medicine, University of the Saarland, Kirrberger Strasse, D-66421 Homburg/Saar, Germany
| | | | | | | | | |
Collapse
|
81
|
Drake AC, Campbell H, Porteous MEM, Dunlop MG. The contribution of DNA mismatch repair gene defects to the burden of gynecological cancer. Int J Gynecol Cancer 2003; 13:262-77. [PMID: 12801255 DOI: 10.1046/j.1525-1438.2003.13194.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- A C Drake
- University of Edinburgh, Edinburgh, United Kingdom.
| | | | | | | |
Collapse
|
82
|
Pavlov YI, Mian IM, Kunkel TA. Evidence for preferential mismatch repair of lagging strand DNA replication errors in yeast. Curr Biol 2003; 13:744-8. [PMID: 12725731 DOI: 10.1016/s0960-9822(03)00284-7] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Duplex DNA is replicated in the 5'-3' direction by coordinated copying of leading and lagging strand templates with somewhat different proteins and mechanics, providing the potential for differences in the fidelity of replication of the two strands. We previously showed that in Saccharomyces cerevisiae, active replication origins establish a strand bias in the rate of base substitutions resulting from replication of unrepaired 8-oxo-guanine (GO) in DNA. Lower mutagenesis was associated with replicating lagging strand templates. Here, we test the hypothesis that this bias is due to more efficient repair of lagging stand mismatches by measuring mutation rates in ogg1 strains with a reporter allele in two orientations at loci on opposite sides of a replication origin on chromosome III. We compare a MMR-proficient strain to strains deleted for the MMR genes MSH2, MSH6, MLH1, or EXOI. Loss of MMR reduces the strand bias by preferentially increasing mutagenesis for lagging strand replication. We conclude that GO-A mismatches generated during lagging strand replication are more efficiently repaired. This is consistent with the hypothesis that 5' ends of Okazaki fragments and PCNA, present at high density during lagging strand replication, are used as strand discrimination signals for mismatch repair in vivo.
Collapse
Affiliation(s)
- Youri I Pavlov
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Department of Health and Human Services, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | |
Collapse
|
83
|
Blanchard JM. [Oncogenes and mitotic regulators: a change in perspective of our view of neoplastic processes]. Med Sci (Paris) 2003; 19:187-99. [PMID: 12836613 DOI: 10.1051/medsci/2003192187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Our vision of the cancer cell has dramatically changed since the discovery of proto-oncogenes, whose deregulation was proposed to mimic normal growth signalling. This notion, linking cancer to cell signalling pathways, has progressively led the way to the concept of the mutator phenotype, in which genetic instability plays an essential role in the onset of cancer. This then transformed cancer into a DNA repair disease. However, as foreseen decades ago by cytogeneticists, point mutations are not sufficient to give a full picture of the whole process. As a result, aneuploidy, rather than gene mutation, has been proposed as the explanation for the complex changes observed in cancer cells. The culprits were found among genes involved in the control of the cell division cycle, and work aimed at understanding the regulation of S phase and mitosis have yielded new insights into our understanding of cancer.
Collapse
Affiliation(s)
- Jean-Marie Blanchard
- Institut de Génétique Moléculaire, Cnrs UMR 5535, IFR24, Equipe labellisée La Ligue, 1919, route de Mende, 34293 Montpellier, France.
| |
Collapse
|
84
|
Alabyev B, Manser T. Bcl-2 rescues the germinal center response but does not alter the V gene somatic hypermutation spectrum in MSH2-deficient mice. THE JOURNAL OF IMMUNOLOGY 2002; 169:3819-24. [PMID: 12244177 DOI: 10.4049/jimmunol.169.7.3819] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ab V genes in mice deficient for the postreplication mismatch repair factor MutS homolog (MSH2) have been reported to display an abnormal bias for hypermutations at G and C nucleotides and hotspots. We previously showed that the germinal center (GC) response is severely attenuated in MSH2-deficient mice. This suggested that premature death of GC B cells might preclude multiple rounds of hypermutation necessary to generate a normal spectrum of base changes. To test this hypothesis, we created MSH2-deficient mice in which Bcl-2 expression was driven in B cells from a transgene. In such mice, the elevated levels of intra-GC apoptosis and untimely GC dissolution characteristic of MSH2-deficient mice are suppressed. However, the spectrum of hypermutation is unchanged. These data indicate that the effects of MSH2 deficiency on GC B cell viability and the hypermutation process are distinct.
Collapse
Affiliation(s)
- Boris Alabyev
- Kimmel Cancer Center and Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University Philadelphia, PA 19107, USA
| | | |
Collapse
|
85
|
Abstract
An understanding of the mechanisms that explain the initiation and early evolution of colorectal cancer should facilitate the development of new approaches to effective prevention and intervention. This review highlights deficiencies in the current model for colorectal neoplasia in which APC mutation is placed at the point of initiation. Other genes implicated in the regulation of apoptosis and DNA repair may underlie the early development of colorectal cancer. Inactivation of these genes may occur not by mutation or loss but through silencing mediated by methylation of the gene's promoter region. hMLH1 and MGMT are examples of DNA repair genes that are silenced by methylation. Loss of expression of hMLH1 and MGMT protein has been demonstrated immunohistochemically in serrated polyps. Multiple lines of evidence point to a "serrated" pathway of neoplasia that is driven by inhibition of apoptosis and the subsequent inactivation of DNA repair genes by promoter methylation. The earliest lesions in this pathway are aberrant crypt foci (ACF). These may develop into hyperplastic polyps or transform while still of microscopic size into admixed polyps, serrated adenomas, or traditional adenomas. Cancers developing from these lesions may show high- or low-level microsatellite instability (MSI-H and MSI-L, respectively) or may be microsatellite stable (MSS). The suggested clinical model for this alternative pathway is the condition hyperplastic polyposis. If colorectal cancer is a heterogeneous disease comprising discrete subsets that evolve through different pathways, it is evident that these subsets will need to be studied individually in the future.
Collapse
Affiliation(s)
- Jeremy R Jass
- Department of Molecular and Cellular Pathology, University of Queensland Medical School, Australia.
| | | | | | | |
Collapse
|
86
|
Abstract
Research over the past decade has established that the progression from normal colonic epithelium to colon cancer is in every case a step-wise process in which specific pathologic and molecular markers can be identified for study and clinical therapy. Genetic and epigenetic instability appears fundamentally important to this process. We have now determined that this neoplastic progression occurs along a limited set of pathways, in which specific tumor suppressors are inactivated or oncogenes activated in a defined order. Although incomplete, our new understanding of the process of carcinogenesis in the colon has already significantly impacted patient care and will continue to do so for the foreseeable future. Increasingly rapid research developments and technologic advances will transform the way we prevent, diagnose, and treat this common and deadly form of cancer.
Collapse
Affiliation(s)
- John P Lynch
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, 415 Curie, Boulevard, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
87
|
Kim JJ, Tao H, Carloni E, Leung WK, Graham DY, Sepulveda AR. Helicobacter pylori impairs DNA mismatch repair in gastric epithelial cells. Gastroenterology 2002; 123:542-53. [PMID: 12145807 DOI: 10.1053/gast.2002.34751] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Helicobacter pylori infection is a major gastric cancer risk factor. H. pylori gastritis occurs more frequently in individuals with microsatellite instability-positive than those with microsatellite instability-negative gastric cancers, raising the possibility that H. pylori infection affects DNA mismatch repair (MMR). The aim of this study was to determine the effect of H. pylori on the expression of DNA MMR proteins and RNA in gastric epithelial cells. METHODS Gastric cancer cell lines were cocultured with H. pylori, bacterial extracts, and Campylobacter jejuni or Escherichia coli. MutS (hMSH2 and hMSH6) and MutL (hMLH1, hPMS2, and hPMS1) DNA MMR protein and RNA levels were determined. RESULTS All cell lines examined showed decreased levels of MutS and MutL DNA MMR proteins in a dose-dependent manner after coculture with H. pylori strains. The reduction in DNA MMR protein levels was caused by heat-sensitive H. pylori products. The levels of DNA MMR proteins were affected by C. jejuni but not by E. coli. RNA levels of hMSH2 and hMSH6 were also reduced after exposure to H. pylori. CONCLUSIONS H. pylori infection of gastric epithelial cells leads to a decrease in DNA MMR proteins that is at least in part related to an H. pylori-induced decrease in messenger RNA levels of repair genes. These data suggest that H. pylori infection might lead to a deficiency of DNA MMR in gastric epithelial cells that may increase the risk of mutation accumulation in gastric mucosa cells and the risk of gastric cancer during chronic H. pylori infection.
Collapse
Affiliation(s)
- Jae J Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
88
|
Hess MT, Gupta RD, Kolodner RD. Dominant Saccharomyces cerevisiae msh6 mutations cause increased mispair binding and decreased dissociation from mispairs by Msh2-Msh6 in the presence of ATP. J Biol Chem 2002; 277:25545-53. [PMID: 11986324 DOI: 10.1074/jbc.m202282200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A previous study described four dominant msh6 mutations that interfere with both the Msh2-Msh6 and Msh2-Msh3 mismatch recognition complexes (Das Gupta, R., and Kolodner, R. D. (2000) Nat. Genet. 24, 53-56). Modeling predicted that two of the amino acid substitutions (G1067D and G1142D) interfere with protein-protein interactions at the ATP-binding site-associated dimer interface, one (S1036P) similarly interferes with protein-protein interactions and affects the Msh2 ATP-binding site, and one (H1096A) affects the Msh6 ATP-binding site. The ATPase activity of the Msh2-Msh6-G1067D and Msh2-Msh6-G1142D complexes was inhibited by GT, +A, and +AT mispairs, and these complexes showed increased binding to GT and +A mispairs in the presence of ATP. The ATPase activity of the Msh2-Msh6-S1036P complex was inhibited by a GT mispair, and it bound the GT mispair in the presence of ATP, whereas its interaction with insertion mispairs was unchanged compared with the wild-type complex. The ATPase activity of the Msh2-Msh6-H1096A complex was generally attenuated, and its mispair-binding behavior was unaffected. These results are in contrast to those obtained with the wild-type Msh2-Msh6 complex, which showed mispair-stimulated ATPase activity and ATP inhibition of mispair binding. These results indicate that the dominant msh6 mutations cause more stable binding to mispairs and suggest that there may be differences in how base base and insertion mispairs are recognized.
Collapse
Affiliation(s)
- Martin T Hess
- Ludwig Institute for Cancer Research, Cancer Center, and Department of Medicine, University of California San Diego School of Medicine, La Jolla 92093-0660, USA
| | | | | |
Collapse
|
89
|
Heinen CD, Wilson T, Mazurek A, Berardini M, Butz C, Fishel R. HNPCC mutations in hMSH2 result in reduced hMSH2-hMSH6 molecular switch functions. Cancer Cell 2002; 1:469-78. [PMID: 12124176 DOI: 10.1016/s1535-6108(02)00073-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Mutations in the human mismatch repair (MMR) gene hMSH2 have been linked to approximately 40% of hereditary nonpolyposis colorectal cancers (HNPCC). While the consequences of deletion or truncating mutations of hMSH2 would appear clear, the detailed functional defects associated with missense alterations are unknown. We have examined the effect of seven single amino acid substitutions associated with HNPCC that cover the structural subdomains of the hMSH2 protein. We show that alterations which produced a known cancer-causing phenotype affected the mismatch-dependent molecular switch function of the biologically relevant hMSH2-hMSH6 heterodimer. Our observations demonstrate that amino acid substitutions within hMSH2 that are distant from known functional regions significantly alter biochemical activity and the ability of hMSH2-hMSH6 to form a sliding clamp.
Collapse
Affiliation(s)
- Christopher D Heinen
- Genetics and Molecular Biology Program, Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | |
Collapse
|
90
|
Bhagwat AS, Lieb M. Cooperation and competition in mismatch repair: very short-patch repair and methyl-directed mismatch repair in Escherichia coli. Mol Microbiol 2002; 44:1421-8. [PMID: 12067333 DOI: 10.1046/j.1365-2958.2002.02989.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Escherichia coli and related enteric bacteria, repair of base-base mismatches is performed by two overlapping biochemical processes, methyl-directed mismatch repair (MMR) and very short-patch (VSP) repair. While MMR repairs replication errors, VSP repair corrects to C*G mispairs created by 5-methylcytosine deamination to T. The efficiency of the two pathways changes during the bacterial life cycle; MMR is more efficient during exponential growth and VSP repair is more efficient during the stationary phase. VSP repair and MMR share two proteins, MutS and MutL, and although the two repair pathways are not equally dependent on these proteins, their dual use creates a competition within the cells between the repair processes. The structural and biochemical data on the endonuclease that initiates VSP repair, Vsr, suggest that this protein plays a role similar to MutH (also an endonuclease) in MMR. Biochemical and genetic studies of the two repair pathways have helped eliminate certain models for MMR and put restrictions on models that can be developed regarding either repair process. We review here recent information about the biochemistry of both repair processes and describe the balancing act performed by cells to optimize the competing processes during different phases of the bacterial life cycle.
Collapse
Affiliation(s)
- Ashok S Bhagwat
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
| | | |
Collapse
|
91
|
Tombline G, Shim KS, Fishel R. Biochemical characterization of the human RAD51 protein. II. Adenosine nucleotide binding and competition. J Biol Chem 2002; 277:14426-33. [PMID: 11839740 DOI: 10.1074/jbc.m109916200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RecA mediated homologous recombination requires cooperative ATP binding and hydrolysis to assume and maintain an active, extended DNA-protein (nucleoprotein) filament. Human RAD51 protein (hRAD51) lacks the magnitude of ATP-induced cooperativity and catalytic efficiency displayed by RecA. Here, we examined hRAD51 binding and ATPase inhibition pattern by ADP and ATP/adenosine 5'-O-(thiotriphosphate) (ATPgammaS). hRAD51 fully saturates with ATP/ATPgammaS regardless of DNA cofactor (K(D) approximately 5 microm; 1 ATP/1 hRAD51). The binding of ADP to hRAD51 appeared bimodal. The first mode was identical to ATP/ATPgammaS binding (K(app1) approximately 3 microm; 1 ADP/1 hRAD51), while a second mode occurred at elevated ADP concentrations (K(app2) > or = 125 microm; >1 ADP/1 hRAD51). We could detect ADP --> ATP exchange in the high affinity ADP binding mode (K(app1)) but not the low affinity binding mode (K(app2)). At low ATP concentrations (<0.3 mm), ADP and ATPgammaS competitively inhibit the hRAD51 ATPase (K(m)((app)) > K(m)). However, at high ATP (>0.3 mm), the hRAD51 ATPase was stimulated by concentrations of ATPgammaS that were 20-fold above the K(D). Ammonium sulfate plus spermidine decreased the affinity of hRAD51 for ADP substantially ( approximately 10-fold) and ATP modestly ( approximately 3-fold). Our results suggest that ATP binding is not rate-limiting but that the inability to sustain an active nucleoprotein filament probably restricts the hRAD51 ATPase.
Collapse
Affiliation(s)
- Gregory Tombline
- Genetics and Molecular Biology Program, Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | |
Collapse
|
92
|
Abstract
Unpaired and mispaired bases in DNA can arise by replication errors, spontaneous or induced base modifications, and during recombination. The major pathway for correction of mismatches arising during replication is the MutHLS pathway of Escherichia coli and related pathways in other organisms. MutS initiates repair by binding to the mismatch, and activates together with MutL the MutH endonuclease, which incises at hemimethylated dam sites and thereby mediates strand discrimination. Multiple MutS and MutL homologues exist in eukaryotes, which play different roles in the mismatch repair (MMR) pathway or in recombination. No MutH homologues have been identified in eukaryotes, suggesting that strand discrimination is different to E. coli. Repair can be initiated by the heterodimers MSH2-MSH6 (MutSalpha) and MSH2-MSH3 (MutSbeta). Interestingly, MSH3 (and thus MutSbeta) is missing in some genomes, as for example in Drosophila, or is present as in Schizosaccharomyces pombe but appears to play no role in MMR. MLH1-PMS1 (MutLalpha) is the major MutL homologous heterodimer. Again some, but not all, eukaryotes have additional MutL homologues, which all form a heterodimer with MLH1 and which play a minor role in MMR. Additional factors with a possible function in eukaryotic MMR are PCNA, EXO1, and the DNA polymerases delta and epsilon. MMR-independent pathways or factors that can process some types of mismatches in DNA are nucleotide-excision repair (NER), some base excision repair (BER) glycosylases, and the flap endonuclease FEN-1. A pathway has been identified in Saccharomyces cerevisiae and human that corrects loops with about 16 to several hundreds of unpaired nucleotides. Such large loops cannot be processed by MMR.
Collapse
Affiliation(s)
- Thomas M Marti
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | | | | |
Collapse
|
93
|
Mazurek A, Berardini M, Fishel R. Activation of human MutS homologs by 8-oxo-guanine DNA damage. J Biol Chem 2002; 277:8260-6. [PMID: 11756455 DOI: 10.1074/jbc.m111269200] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The DNA lesion 8-oxo-guanine (8-oxo-G) is a highly mutagenic product of the interaction between reactive oxygen species and DNA. To maintain genomic integrity, cells have evolved mechanisms capable of removing this frequently arising oxidative lesion. Mismatch repair (MMR) appears to be one pathway associated with the repair of 8-oxo-G lesions (DeWeese, T. L., Shipman, J. M., Larrier, N. A., Buckley, N. M., Kidd, L. R., Groopman, J. D., Cutler, R. G., te Riele, H., and Nelson, W. G. (1998) Proc. Natl. Acad. Sci. U.S.A. 95, 11915-11920; Ni, T. T., Marsischky, G. T., and Kolodner, R. D. (1999) Mol. Cell 4, 439-444). Here we report the effect of double-stranded DNA oligonucleotides containing a single 8-oxo-G on the DNA binding affinity, ATPase, and ADP right arrow ATP exchange activities of hMSH2-hMSH6 and hMSH2-hMSH3. We found that hMSH2-hMSH6 binds the oligonucleotide DNA substrates with the following affinities: 8-oxo-G/T > 8-oxo-G/G > 8-oxo-G/A > 8-oxo-G/C approximately G/C. A similar trend was observed for DNA-stimulated ATPase and ADP --> ATP exchange activities of hMSH2-hMSH6. In contrast, hMSH2-hMSH3 did not appear to bind any of the 8-oxo-G containing DNA substrates nor was there enhanced ATPase or ADP --> ATP exchange activities. These results suggest that only hMSH2-hMSH6 is activated by recognition of 8-oxo-G lesions. Our data are consistent with the notion that post-replication MMR only participates in the repair of mismatched 8-oxo-G lesions.
Collapse
Affiliation(s)
- Anthony Mazurek
- Genetics and Molecular Biology Program, Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | |
Collapse
|
94
|
Plotz G, Raedle J, Brieger A, Trojan J, Zeuzem S. hMutSalpha forms an ATP-dependent complex with hMutLalpha and hMutLbeta on DNA. Nucleic Acids Res 2002; 30:711-8. [PMID: 11809883 PMCID: PMC100294 DOI: 10.1093/nar/30.3.711] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The DNA binding properties of hMutSalpha and hMutLalpha and complex formation of hMutSalpha with hMutLalpha and hMutLbeta were investigated using binding experiments on magnetic bead-coupled DNA substrates with nuclear extracts as well as purified proteins. hMutSalpha binding to homoduplex DNA was disrupted by lower NaCl concentrations than hMutSalpha binding to a mismatch. ATP markedly reduced the salt resistance of hMutSalpha binding but hMutSalpha still retained affinity for heteroduplexes. hMutSalpha formed a complex with hMutLalpha and hMutLbeta on DNA in the presence of ATP. This complex only formed on 81mer and not 32mer DNA substrates. Complex formation was enhanced by a mismatch in the DNA substrate, and hMutLalpha and hMutLbeta were shown to enter the complex at different ATP concentrations. Purified hMutLalpha showed an intrinsic affinity for DNA, with a preference for single-stranded over double-stranded DNA.
Collapse
Affiliation(s)
- Guido Plotz
- Second Department of Medicine, Johann Wolfgang Goethe-University, Theodor Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
95
|
Pezza RJ, Smania AM, Barra JL, Argaraña CE. Nucleotides and heteroduplex DNA preserve the active conformation of Pseudomonas aeruginosa MutS by preventing protein oligomerization. Biochem J 2002; 361:87-95. [PMID: 11742532 PMCID: PMC1222282 DOI: 10.1042/0264-6021:3610087] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
MutS, a component of the mismatch repair system begins the DNA reparation process by recognizing base/base mismatches or small insertion/deletion loops. We have cloned the mutS gene from the human opportunistic pathogen Pseudomonas aeruginosa and analysed the biochemical properties of the encoded protein. Complementation of the hypermutator phenotype of a P. aeruginosa mutS mutant strain indicated that the isolated gene was functional. When purified MutS was incubated at 37 degrees C in the absence of ligands, a rapid inactivation of the oligonucleotide binding capability and ATPase activity occurred. However, the presence of ATP, ADP or heteroduplex oligonucleotides, but not homoduplex oligonucleotides, prevented the protein from being inactivated. The analysis of the protein by native PAGE indicated that the active conformation state correlates with the presence of MutS dimer. Analysis by gel-filtration chromatography showed that the inactive protein formed by incubation at 37 degrees C in the absence of ligands corresponds to the formation of a high molecular mass oligomer. The kinetic analysis of the oligomer formation showed that the extent of the reaction was markedly dependent on the temperature and the presence of MutS ligands. However, the protein inactivation apparently occurred before the maximum extent of MutS oligomerization. Further analysis of the MutS oligomers by electron microscopy showed the presence of regular structures consisting of four subunits, with each subunit probably representing a MutS homodimer. It is concluded that MutS possesses an intrinsic propensity to form oligomeric structures and that the presence of physiological ligands, such as nucleotides or heteroduplex DNA, but not homoduplex DNA, plays an important role in keeping the protein in an active conformation by preventing protein oligomerization.
Collapse
Affiliation(s)
- Roberto J Pezza
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | | | | | | |
Collapse
|
96
|
Bellacosa A. Functional interactions and signaling properties of mammalian DNA mismatch repair proteins. Cell Death Differ 2001; 8:1076-92. [PMID: 11687886 DOI: 10.1038/sj.cdd.4400948] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2000] [Revised: 07/11/2001] [Accepted: 08/30/2001] [Indexed: 12/15/2022] Open
Abstract
The mismatch repair (MMR) system promotes genomic fidelity by repairing base-base mismatches, insertion-deletion loops and heterologies generated during DNA replication and recombination. This function is critically dependent on the assembling of multimeric complexes involved in mismatch recognition and signal transduction to downstream repair events. In addition, MMR proteins coordinate a complex network of physical and functional interactions that mediate other DNA transactions, such as transcription-coupled repair, base excision repair and recombination. MMR proteins are also involved in activation of cell cycle checkpoint and induction of apoptosis when DNA damage overwhelms a critical threshold. For this reason, they play a role in cell death by alkylating agents and other chemotherapeutic drugs, including cisplatin. Inactivation of MMR genes in hereditary and sporadic cancer is associated with a mutator phenotype and inhibition of apoptosis. In the future, a deeper understanding of the molecular mechanisms and functional interactions of MMR proteins will lead to the development of more effective cancer prevention and treatment strategies.
Collapse
Affiliation(s)
- A Bellacosa
- Human Genetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|
97
|
Abstract
Colorectal cancer arises through a gradual series of histological changes, each of which is accompanied by a specific genetic alteration. In general, an intestinal cell needs to comply with two essential requirements to develop into a cancer: it must acquire selective advantage to allow for the initial clonal expansion, and genetic instability to allow for multiple hits in other genes that are responsible for tumour progression and malignant transformation. Inactivation of APC--the gene responsible for most cases of colorectal cancer--might fulfil both requirements.
Collapse
Affiliation(s)
- R Fodde
- Department of Human and Clinical Genetics, and Center for Biomedical Genetics, Leiden University Medical Center, The Netherlands.
| | | | | |
Collapse
|
98
|
Schmutte C, Sadoff MM, Shim KS, Acharya S, Fishel R. The interaction of DNA mismatch repair proteins with human exonuclease I. J Biol Chem 2001; 276:33011-8. [PMID: 11427529 DOI: 10.1074/jbc.m102670200] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Exonucleolytic degradation of DNA is an essential part of many DNA metabolic processes including DNA mismatch repair (MMR) and recombination. Human exonuclease I (hExoI) is a member of a family of conserved 5' --> 3' exonucleases, which are implicated in these processes by genetic studies. Here, we demonstrate that hExoI binds strongly to hMLH1, and we describe interaction regions between hExoI and the MMR proteins hMSH2, hMSH3, and hMLH1. In addition, hExoI forms an immunoprecipitable complex with hMLH1/hPMS2 in vivo. The study of interaction regions suggests a biochemical mechanism of the involvement of hExoI as a downstream effector in MMR and/or DNA recombination.
Collapse
Affiliation(s)
- C Schmutte
- Genetics and Molecular Biology Program, Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | | | | | | | |
Collapse
|
99
|
Wang Q, Zhang H, Guerrette S, Chen J, Mazurek A, Wilson T, Slupianek A, Skorski T, Fishel R, Greene MI. Adenosine nucleotide modulates the physical interaction between hMSH2 and BRCA1. Oncogene 2001; 20:4640-9. [PMID: 11498787 DOI: 10.1038/sj.onc.1204625] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2001] [Revised: 04/26/2001] [Accepted: 05/24/2001] [Indexed: 12/15/2022]
Abstract
We have identified the physical interaction between the Breast Cancer susceptibility gene product BRCA1 and the Hereditary Non-Polyposis Colorectal Cancer (HNPCC) and DNA mismatch repair (MMR) gene product hMSH2, both in vitro and in vivo. The BRCA1-hMSH2 association involved several well-defined regions of both proteins which include the adenosine nucleotide binding domain of hMSH2. Moreover, the interaction of BRCA1 with purified hMSH2-hMSH6 appears to be modulated by adenosine nucleotide much like G protein downstream interaction/signaling is modulated by guanosine nucleotide. BARD1, another BRCA1-interacting protein, was also found to interact with hMSH2. In addition, BRCA1 was found to associate with both hMSH3 and hMSH6, the heterodimeric partners of hMSH2. These observations implicate BRCA1/BARD1 as downstream effectors of the adenosine nucleotide-activated hMSH2-hMSH6 signaling complex, and suggest a global role for BRCA1 in DNA damage processing. The functional interaction between BRCA1 and hMSH2 may provide a partial explanation for the background of gynecological and colorectal cancer in both HNPCC and BRCA1 kindreds, respectively.
Collapse
Affiliation(s)
- Q Wang
- Department of Pathology and Laboratory Medicine, The Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, PA 19104, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Hussein MR, Roggero E, Sudilovsky EC, Tuthill RJ, Wood GS, Sudilovsky O. Alterations of mismatch repair protein expression in benign melanocytic nevi, melanocytic dysplastic nevi, and cutaneous malignant melanomas. Am J Dermatopathol 2001; 23:308-14. [PMID: 11481522 DOI: 10.1097/00000372-200108000-00006] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Immunoperoxidase-staining methods were used to examine the expression of hMLH1, hMSH2, and hMSH6 mismatch repair (MMR) proteins in 50 melanocytic lesions. Microsatellite instability (MSI), screened previously in these lesions by polymerase chain reaction-based microsatellite assay, showed low-level microsatellite instability (MSI-L) in 11 of 22 melanocytic dysplastic nevi (MDN) and two of nine primary cutaneous malignant melanomas (CMMs) but not in the benign melanocytic nevi (BN). Mismatch repair proteins were widely expressed in the epidermis and adnexal structures. All lesions showed positive immunoreactivity with a gradual decrease in the MMR staining values during the progression from BN to MDN to CMMs. The average percentage of positively (PP) stained cells for hMLH1, hMSH2, and hMSH6 in BN was 85.50 +/- 1.95, 77.90 +/- 4.50, and 87.11 +/- 1.85, respectively. The PP cell values in CMMs were significantly reduced as compared with BN (75.22 +/- 3.57, p= 0.01; 56.11 +/- 8.73, p= 0.02; 65.22 +/- 6.47, p = 0.0002 for hMLH1, hMSH2, and hMSH6, respectively). No comparable significant difference was found between microsatellite stable and MSI-L lesions (p = 0.173, p = 0.458, and p = 0.385), suggesting a lack of correlation between MMR expression and MMR function. There was a direct correlation between PP cell values of hMSH2 and hMSH6 (R = 0.39, p = 0.008), implying that their expression could be regulated by a common mechanism. Thus, an important finding of these studies was the reduction of MMR protein levels in CMMs; whether this reflects underlying genetic or epigenetic mechanisms is still to be determined.
Collapse
Affiliation(s)
- M R Hussein
- Institute of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | |
Collapse
|