51
|
Koch KG, Chapman K, Louis J, Heng-Moss T, Sarath G. Plant Tolerance: A Unique Approach to Control Hemipteran Pests. FRONTIERS IN PLANT SCIENCE 2016; 7:1363. [PMID: 27679643 PMCID: PMC5020058 DOI: 10.3389/fpls.2016.01363] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/29/2016] [Indexed: 05/20/2023]
Abstract
Plant tolerance to insect pests has been indicated to be a unique category of resistance, however, very little information is available on the mechanism of tolerance against insect pests. Tolerance is distinctive in terms of the plant's ability to withstand or recover from herbivore injury through growth and compensatory physiological processes. Because plant tolerance involves plant compensatory characteristics, the plant is able to harbor large numbers of herbivores without interfering with the insect pest's physiology or behavior. Some studies have observed that tolerant plants can compensate photosynthetically by avoiding feedback inhibition and impaired electron flow through photosystem II that occurs as a result of insect feeding. Similarly, the up-regulation of peroxidases and other oxidative enzymes during insect feeding, in conjunction with elevated levels of phytohormones can play an important role in providing plant tolerance to insect pests. Hemipteran insects comprise some of the most economically important plant pests (e.g., aphids, whiteflies), due to their ability to achieve high population growth and their potential to transmit plant viruses. In this review, results from studies on plant tolerance to hemipterans are summarized, and potential models to understand tolerance are presented.
Collapse
Affiliation(s)
- Kyle G. Koch
- Department of Entomology, University of Nebraska–Lincoln, LincolnNE, USA
| | - Kaitlin Chapman
- Department of Entomology, University of Nebraska–Lincoln, LincolnNE, USA
| | - Joe Louis
- Department of Entomology, University of Nebraska–Lincoln, LincolnNE, USA
- Department of Biochemistry, University of Nebraska–Lincoln, LincolnNE, USA
| | - Tiffany Heng-Moss
- Department of Entomology, University of Nebraska–Lincoln, LincolnNE, USA
| | - Gautam Sarath
- Department of Entomology, University of Nebraska–Lincoln, LincolnNE, USA
- Grain, Forage, and Bioenergy Research Unit, United States Department of Agriculture – Agricultural Research Service, LincolnNE, USA
| |
Collapse
|
52
|
Wang P, Zhang H, Hou H, Wang Q, Li Y, Huang Y, Xie L, Gao F, He S, Li L. Cell cycle arrest induced by inhibitors of epigenetic modifications in maize (Zea mays) seedling leaves: characterization of the process and possible mechanisms involved. THE NEW PHYTOLOGIST 2016; 211:646-657. [PMID: 27040740 DOI: 10.1111/nph.13942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/20/2016] [Indexed: 06/05/2023]
Abstract
Epigenetic modifications play crucial roles in the regulation of chromatin architecture and are involved in cell cycle progression, including mitosis and meiosis. To explore the relationship between epigenetic modifications and the cell cycle, we treated maize (Zea mays) seedlings with six different epigenetic modification-related inhibitors and identified the postsynthetic phase (G2 ) arrest via flow cytometry analysis. Total H4K5ac levels were significantly increased and the distribution of H3S10ph signalling was obviously changed in mitosis under various treatments. Further statistics of the cells in different periods of mitosis confirmed that the cell cycle was arrested at preprophase. Concentrations of hydrogen peroxide were relatively higher in the treated plants and the antioxidant thiourea could negate the influence of the inhibitors. Moreover, all of the treated plants displayed negative results in the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labelling (TUNEL) and γ-H2AX immunostaining assays after exposure for 3 d. Additionally, the expression level of topoisomerase genes in the treated plants was relatively lower than that in the untreated plants. These results suggest that these inhibitors of epigenetic modifications could cause preprophase arrest via reactive oxygen species formation inhibiting the expression of DNA topoisomerase genes, accompanied by changes in the H4K5ac and H3S10ph histone modifications.
Collapse
Affiliation(s)
- Pu Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Hao Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Haoli Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Qing Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yingnan Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yan Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Liangfu Xie
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Fei Gao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Shibin He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Lijia Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
53
|
Liu Y, Wang R, Zhang P, Chen Q, Luo Q, Zhu Y, Xu J. The Nitrification Inhibitor Methyl 3-(4-Hydroxyphenyl)Propionate Modulates Root Development by Interfering with Auxin Signaling via the NO/ROS Pathway. PLANT PHYSIOLOGY 2016; 171:1686-703. [PMID: 27217493 PMCID: PMC4936591 DOI: 10.1104/pp.16.00670] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 05/18/2016] [Indexed: 05/07/2023]
Abstract
Methyl 3-(4-hydroxyphenyl)propionate (MHPP) is a root exudate that functions as a nitrification inhibitor and as a modulator of the root system architecture (RSA) by inhibiting primary root (PR) elongation and promoting lateral root formation. However, the mechanism underlying MHPP-mediated modulation of the RSA remains unclear. Here, we report that MHPP inhibits PR elongation in Arabidopsis (Arabidopsis thaliana) by elevating the levels of auxin expression and signaling. MHPP induces an increase in auxin levels by up-regulating auxin biosynthesis, altering the expression of auxin carriers, and promoting the degradation of the auxin/indole-3-acetic acid family of transcriptional repressors. We found that MHPP-induced nitric oxide (NO) production promoted reactive oxygen species (ROS) accumulation in root tips. Suppressing the accumulation of NO or ROS alleviated the inhibitory effect of MHPP on PR elongation by weakening auxin responses and perception and by affecting meristematic cell division potential. Genetic analysis supported the phenotype described above. Taken together, our results indicate that MHPP modulates RSA remodeling via the NO/ROS-mediated auxin response pathway in Arabidopsis. Our study also revealed that MHPP significantly induced the accumulation of glucosinolates in roots, suggesting the diverse functions of MHPP in modulating plant growth, development, and stress tolerance in plants.
Collapse
Affiliation(s)
- Yangyang Liu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China (Y.L., R.W., P.Z., Q.L., J.X.);Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China (Q.C.); andCollege of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China (Y.Z.)
| | - Ruling Wang
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China (Y.L., R.W., P.Z., Q.L., J.X.);Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China (Q.C.); andCollege of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China (Y.Z.)
| | - Ping Zhang
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China (Y.L., R.W., P.Z., Q.L., J.X.);Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China (Q.C.); andCollege of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China (Y.Z.)
| | - Qi Chen
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China (Y.L., R.W., P.Z., Q.L., J.X.);Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China (Q.C.); andCollege of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China (Y.Z.)
| | - Qiong Luo
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China (Y.L., R.W., P.Z., Q.L., J.X.);Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China (Q.C.); andCollege of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China (Y.Z.)
| | - Yiyong Zhu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China (Y.L., R.W., P.Z., Q.L., J.X.);Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China (Q.C.); andCollege of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China (Y.Z.)
| | - Jin Xu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China (Y.L., R.W., P.Z., Q.L., J.X.);Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China (Q.C.); andCollege of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China (Y.Z.)
| |
Collapse
|
54
|
Kai K, Kasa S, Sakamoto M, Aoki N, Watabe G, Yuasa T, Iwaya-Inoue M, Ishibashi Y. Role of reactive oxygen species produced by NADPH oxidase in gibberellin biosynthesis during barley seed germination. PLANT SIGNALING & BEHAVIOR 2016; 11:e1180492. [PMID: 27110861 PMCID: PMC4977456 DOI: 10.1080/15592324.2016.1180492] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
NADPH oxidase catalyzes the production of the superoxide anion (O2(-)), a reactive oxygen species (ROS), and regulates the germination of barley (Hordeum vulgare L.). Diphenyleneiodonium (DPI) chloride, an NADPH oxidase inhibitor, delayed barley germination, and exogenous H2O2 (an ROS) partially rescued it. Six enzymes, ent-copalyl diphosphate synthase (CPS), ent-kaurene synthase (KS), ent-kaurene oxidase (KO), ent-kaurenoic acid oxidase (KAO), GA20-oxidase (GA20ox) and GA3-oxidase (GA3ox), catalyze the transformation of trans-geranylgeranyl diphosphate to active gibberellin, which promotes germination. Exogenous H2O2 promoted the expressions of HvKAO1 and HvGA3ox1 in barley embryos. These results suggest that ROS produced by NADPH oxidase are involved in gibberellin biosynthesis through the regulation of HvKAO1 and HvGA3ox1.
Collapse
Affiliation(s)
- Kyohei Kai
- Crop Science Laboratory, Faculty of Agriculture, Kyushu University, Hakozaki, Higashi-ku, Fukuoka, Japan
| | - Shinsuke Kasa
- Crop Science Laboratory, Faculty of Agriculture, Kyushu University, Hakozaki, Higashi-ku, Fukuoka, Japan
| | - Masatsugu Sakamoto
- Crop Science Laboratory, Faculty of Agriculture, Kyushu University, Hakozaki, Higashi-ku, Fukuoka, Japan
| | - Nozomi Aoki
- Crop Science Laboratory, Faculty of Agriculture, Kyushu University, Hakozaki, Higashi-ku, Fukuoka, Japan
| | - Gaku Watabe
- Crop Science Laboratory, Faculty of Agriculture, Kyushu University, Hakozaki, Higashi-ku, Fukuoka, Japan
| | - Takashi Yuasa
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Mari Iwaya-Inoue
- Crop Science Laboratory, Faculty of Agriculture, Kyushu University, Hakozaki, Higashi-ku, Fukuoka, Japan
| | - Yushi Ishibashi
- Crop Science Laboratory, Faculty of Agriculture, Kyushu University, Hakozaki, Higashi-ku, Fukuoka, Japan
- Yushi Ishibashi
| |
Collapse
|
55
|
Singh S, Parihar P, Singh R, Singh VP, Prasad SM. Heavy Metal Tolerance in Plants: Role of Transcriptomics, Proteomics, Metabolomics, and Ionomics. FRONTIERS IN PLANT SCIENCE 2016; 6:1143. [PMID: 26904030 PMCID: PMC4744854 DOI: 10.3389/fpls.2015.01143] [Citation(s) in RCA: 465] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 12/02/2015] [Indexed: 05/18/2023]
Abstract
Heavy metal contamination of soil and water causing toxicity/stress has become one important constraint to crop productivity and quality. This situation has further worsened by the increasing population growth and inherent food demand. It has been reported in several studies that counterbalancing toxicity due to heavy metal requires complex mechanisms at molecular, biochemical, physiological, cellular, tissue, and whole plant level, which might manifest in terms of improved crop productivity. Recent advances in various disciplines of biological sciences such as metabolomics, transcriptomics, proteomics, etc., have assisted in the characterization of metabolites, transcription factors, and stress-inducible proteins involved in heavy metal tolerance, which in turn can be utilized for generating heavy metal-tolerant crops. This review summarizes various tolerance strategies of plants under heavy metal toxicity covering the role of metabolites (metabolomics), trace elements (ionomics), transcription factors (transcriptomics), various stress-inducible proteins (proteomics) as well as the role of plant hormones. We also provide a glance of some strategies adopted by metal-accumulating plants, also known as "metallophytes."
Collapse
Affiliation(s)
- Samiksha Singh
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of AllahabadAllahabad, India
| | - Parul Parihar
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of AllahabadAllahabad, India
| | - Rachana Singh
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of AllahabadAllahabad, India
| | - Vijay P. Singh
- Department of Botany, Government Ramanuj Pratap Singhdev Post Graduate College, Sarguja UniversityBaikunthpur, India
| | - Sheo M. Prasad
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of AllahabadAllahabad, India
| |
Collapse
|
56
|
Velada I, Cardoso HG, Ragonezi C, Nogales A, Ferreira A, Valadas V, Arnholdt-Schmitt B. Alternative Oxidase Gene Family in Hypericum perforatum L.: Characterization and Expression at the Post-germinative Phase. FRONTIERS IN PLANT SCIENCE 2016; 7:1043. [PMID: 27563303 PMCID: PMC4980395 DOI: 10.3389/fpls.2016.01043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/04/2016] [Indexed: 05/05/2023]
Abstract
Alternative oxidase (AOX) protein is located in the inner mitochondrial membrane and is encoded in the nuclear genome being involved in plant response upon a diversity of environmental stresses and also in normal plant growth and development. Here we report the characterization of the AOX gene family of Hypericum perforatum L. Two AOX genes were identified, both with a structure of four exons (HpAOX1, acc. KU674355 and HpAOX2, acc. KU674356). High variability was found at the N-terminal region of the protein coincident with the high variability identified at the mitochondrial transit peptide. In silico analysis of regulatory elements located at intronic regions identified putative sequences coding for miRNA precursors and trace elements of a transposon. Simple sequence repeats were also identified. Additionally, the mRNA levels for the HpAOX1 and HpAOX2, along with the ones for the HpGAPA (glyceraldehyde-3-phosphate dehydrogenase A subunit) and the HpCAT1 (catalase 1), were evaluated during the post-germinative development. Gene expression analysis was performed by RT-qPCR with accurate data normalization, pointing out HpHYP1 (chamba phenolic oxidative coupling protein 1) and HpH2A (histone 2A) as the most suitable reference genes (RGs) according to GeNorm algorithm. The HpAOX2 transcript demonstrated larger stability during the process with a slight down-regulation in its expression. Contrarily, HpAOX1 and HpGAPA (the corresponding protein is homolog to the chloroplast isoform involved in the photosynthetic carbon assimilation in other plant species) transcripts showed a marked increase, with a similar expression pattern between them, during the post-germinative development. On the other hand, the HpCAT1 (the corresponding protein is homolog to the major H2O2-scavenging enzyme in other plant species) transcripts showed an opposite behavior with a down-regulation during the process. In summary, our findings, although preliminary, highlight the importance to investigate in more detail the participation of AOX genes during the post-germinative development in H. perforatum, in order to explore their functional role in optimizing photosynthesis and in the control of reactive oxygen species (ROS) levels during the process.
Collapse
Affiliation(s)
- Isabel Velada
- ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Laboratório de Biologia Molecular, Universidade de ÉvoraPólo da Mitra, Évora, Portugal
| | - Hélia G. Cardoso
- ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Laboratório de Biologia Molecular, Universidade de ÉvoraPólo da Mitra, Évora, Portugal
- *Correspondence: Hélia G. Cardoso
| | - Carla Ragonezi
- ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Laboratório de Biologia Molecular, Universidade de ÉvoraPólo da Mitra, Évora, Portugal
| | - Amaia Nogales
- Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia-Universidade de LisboaLisboa, Portugal
| | - Alexandre Ferreira
- ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Laboratório de Biologia Molecular, Universidade de ÉvoraPólo da Mitra, Évora, Portugal
| | - Vera Valadas
- ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Laboratório de Biologia Molecular, Universidade de ÉvoraPólo da Mitra, Évora, Portugal
| | - Birgit Arnholdt-Schmitt
- EU Marie Curie Chair, ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Universidade de ÉvoraPólo da Mitra, Évora, Portugal
- Birgit Arnholdt-Schmitt
| |
Collapse
|
57
|
Carvalho LC, Coito JL, Gonçalves EF, Chaves MM, Amâncio S. Differential physiological response of the grapevine varieties Touriga Nacional and Trincadeira to combined heat, drought and light stresses. PLANT BIOLOGY (STUTTGART, GERMANY) 2016; 18 Suppl 1:101-11. [PMID: 26518605 DOI: 10.1111/plb.12410] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/19/2015] [Indexed: 05/06/2023]
Abstract
Worldwide, extensive agricultural losses are attributed to drought, often in combination with heat in Mediterranean climate regions, where grapevine traditionally grows. The available scenarios for climate change suggest increases in aridity in these regions. Under natural conditions plants are affected by a combination of stresses, triggering synergistic or antagonistic physiological, metabolic or transcriptomic responses unique to the combination. However the study of such stresses in a controlled environment can elucidate important mechanisms by allowing the separation of the effects of individual stresses. To gather those effects, cuttings of two grapevine varieties, Touriga Nacional (TN) and Trincadeira (TR), were grown under controlled conditions and subjected to three abiotic stresses (drought - WS, heat - HS and high light - LS) individually and in combination two-by-two (WSHS, WSLS, HSLS) or all three (WSHSLS). Photosynthesis, water status, contents of H2 O2 , abscisic acid and metabolites of the ascorbate-glutathione cycle were measured in the leaves. Common and distinct response features were identified in the different stress combinations. Photosynthesis was not hindered in TN by LS, while even individual stresses severely affect photosynthesis in TR. Abscisic acid may be implicated in grapevine osmotic responses since it is correlated with tolerance parameters, especially in combined stresses involving drought. Overall, the responses to drought-including treatments were clearly distinct to those without drought. From the specific behaviours of the varieties, it can be concluded that TN shows a higher capacity for heat dissipation and for withstanding high light intensities, indicating better adjustment to warm conditions, provided that water supply is plentiful.
Collapse
Affiliation(s)
- L C Carvalho
- DRAT, LEAF, ISA, Universidade de Lisboa, Lisboa, Portugal
| | - J L Coito
- DRAT, LEAF, ISA, Universidade de Lisboa, Lisboa, Portugal
| | - E F Gonçalves
- DCEB, LEAF, ISA, Universidade de Lisboa, Lisboa, Portugal
| | - M M Chaves
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - S Amâncio
- DRAT, LEAF, ISA, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
58
|
Hou H, Wang P, Zhang H, Wen H, Gao F, Ma N, Wang Q, Li L. Histone Acetylation is Involved in Gibberellin-Regulated sodCp Gene Expression in Maize Aleurone Layers. PLANT & CELL PHYSIOLOGY 2015; 56:2139-49. [PMID: 26374791 DOI: 10.1093/pcp/pcv126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/27/2015] [Indexed: 05/22/2023]
Abstract
The cereal aleurone layer plays an important role in seed germination, and reactive oxygen species (ROS) in aleurone layers act as crucial signal molecules in this progression. Recent studies have revealed that epigenetic modification is involved in plant development and seed germination. However, little is known about a possible relationship between histone modification and the ROS signaling pathway in cereal aleurone layers during seed germination. Here, we found that the expression of both histone acetyltransferases (HATs) and histone deacetylases (HDACs) was increased gradually during seed germination, accompanied by an increase in global acetylation levels of histones H3 and H4 in maize aleurone layers. The acetylation was found to be promoted by GA(3) and suppressed by ABA. However, when the HDAC inhibitor trichostatin A (TSA) was used, the increased H3K9ac and H4K5ac level correlated with an inhibition of the germination. These results indicated that the overall histone acetylation in the aleurone layers is not required for germination. Similarly these two hormones, GA(3) and ABA, exerted opposed effects on the expression of the ROS-related gene sodCp. Furthermore, chromatin immunoprecipitation experiments showed that the promoter region of the sodCp gene was hyperacetylated during germination, and this acetylation was promoted by GA(3) and inhibited by both ABA and TSA. These results suggested that GA(3)-mediated expression of the sodCp gene in aleurone layers is associated with histone hyperacetylation on the promoter and coding region of this gene, consequently leading to an accumulation of H(2)O(2) which regulated production of α-amylase during seed germination.
Collapse
Affiliation(s)
- Haoli Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Pu Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Hao Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Huan Wen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Fei Gao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Ningjie Ma
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Qing Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Lijia Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, China
| |
Collapse
|
59
|
Kolupaev YE, Karpets YV, Dmitriev AP. Signal mediators in plants in response to abiotic stress: Calcium, reactive oxygen and nitrogen species. CYTOL GENET+ 2015. [DOI: 10.3103/s0095452715050047] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
60
|
Pu X, Lv X, Tan T, Fu F, Qin G, Lin H. Roles of mitochondrial energy dissipation systems in plant development and acclimation to stress. ANNALS OF BOTANY 2015; 116:583-600. [PMID: 25987710 PMCID: PMC4577992 DOI: 10.1093/aob/mcv063] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/16/2015] [Accepted: 03/27/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND Plants are sessile organisms that have the ability to integrate external cues into metabolic and developmental signals. The cues initiate specific signal cascades that can enhance the tolerance of plants to stress, and these mechanisms are crucial to the survival and fitness of plants. The adaption of plants to stresses is a complex process that involves decoding stress inputs as energy-deficiency signals. The process functions through vast metabolic and/or transcriptional reprogramming to re-establish the cellular energy balance. Members of the mitochondrial energy dissipation pathway (MEDP), alternative oxidases (AOXs) and uncoupling proteins (UCPs), act as energy mediators and might play crucial roles in the adaption of plants to stresses. However, their roles in plant growth and development have been relatively less explored. SCOPE This review summarizes current knowledge about the role of members of the MEDP in plant development as well as recent advances in identifying molecular components that regulate the expression of AOXs and UCPs. Highlighted in particular is a comparative analysis of the expression, regulation and stress responses between AOXs and UCPs when plants are exposed to stresses, and a possible signal cross-talk that orchestrates the MEDP, reactive oxygen species (ROS), calcium signalling and hormone signalling. CONCLUSIONS The MEDP might act as a cellular energy/metabolic mediator that integrates ROS signalling, energy signalling and hormone signalling with plant development and stress accumulation. However, the regulation of MEDP members is complex and occurs at transcriptional, translational, post-translational and metabolic levels. How this regulation is linked to actual fluxes through the AOX/UCP in vivo remains elusive.
Collapse
Affiliation(s)
- Xiaojun Pu
- Ministry of Education Key Laboratory for Bio-Resource & Eco-Environment and Plant Physiology Laboratory, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Xin Lv
- Ministry of Education Key Laboratory for Bio-Resource & Eco-Environment and Plant Physiology Laboratory, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Tinghong Tan
- Ministry of Education Key Laboratory for Bio-Resource & Eco-Environment and Plant Physiology Laboratory, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Faqiong Fu
- Ministry of Education Key Laboratory for Bio-Resource & Eco-Environment and Plant Physiology Laboratory, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Gongwei Qin
- Ministry of Education Key Laboratory for Bio-Resource & Eco-Environment and Plant Physiology Laboratory, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Honghui Lin
- Ministry of Education Key Laboratory for Bio-Resource & Eco-Environment and Plant Physiology Laboratory, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
61
|
Hyun TK, Albacete A, van der Graaff E, Eom SH, Großkinsky DK, Böhm H, Janschek U, Rim Y, Ali WW, Kim SY, Roitsch T. The Arabidopsis PLAT domain protein1 promotes abiotic stress tolerance and growth in tobacco. Transgenic Res 2015; 24:651-63. [PMID: 25757741 DOI: 10.1007/s11248-015-9868-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 03/04/2015] [Indexed: 11/25/2022]
Abstract
Plant growth and consequently crop yield can be severely compromised by abiotic and biotic stress conditions. Transgenic approaches that resulted in increased tolerance against abiotic stresses often were typically accompanied by adverse effects on plant growth and fitness under optimal growing conditions. Proteins that belong to the PLAT-plant-stress protein family harbour a single PLAT (Polycystin, Lipoxygenase, Alpha-toxin and Triacylglycerol lipase) domain and are ubiquitously present in monocot and dicot plant species. Until now, only limited data is available for PLAT-plant-stress family members, which suggested that these proteins in general could promote tolerance towards stress responses. We studied the function of the Arabidopsis PLAT-plant-stress protein AtPLAT1 employing heterologous gain-of-function analysis in tobacco. AtPLAT1 conferred increased abiotic stress tolerance in tobacco, evident by improved tolerance towards cold, drought and salt stresses, and promoted growth, reflected by a faster development under non-stressed conditions. However, the overexpression of AtPLAT1 in tobacco reduced the tolerance towards biotic stress conditions and, therefore, could be involved in regulating the crosstalk between abiotic and biotic stress responses. Thus, we showed that heterologously expressed AtPLAT1 functions as positive regulator of abiotic stress tolerance and plant growth, which could be an important new asset for strategies to develop plants with improved abiotic stress tolerance, without growth and subsequent yield penalties under optimal growth conditions.
Collapse
Affiliation(s)
- Tae Kyung Hyun
- Institute of Plant Sciences, University of Graz, 8010, Graz, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Szalonek M, Sierpien B, Rymaszewski W, Gieczewska K, Garstka M, Lichocka M, Sass L, Paul K, Vass I, Vankova R, Dobrev P, Szczesny P, Marczewski W, Krusiewicz D, Strzelczyk-Zyta D, Hennig J, Konopka-Postupolska D. Potato Annexin STANN1 Promotes Drought Tolerance and Mitigates Light Stress in Transgenic Solanum tuberosum L. Plants. PLoS One 2015; 10:e0132683. [PMID: 26172952 PMCID: PMC4501783 DOI: 10.1371/journal.pone.0132683] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 06/18/2015] [Indexed: 11/18/2022] Open
Abstract
Annexins are a family of calcium- and membrane-binding proteins that are important for plant tolerance to adverse environmental conditions. Annexins function to counteract oxidative stress, maintain cell redox homeostasis, and enhance drought tolerance. In the present study, an endogenous annexin, STANN1, was overexpressed to determine whether crop yields could be improved in potato (Solanum tuberosum L.) during drought. Nine potential potato annexins were identified and their expression characterized in response to drought treatment. STANN1 mRNA was constitutively expressed at a high level and drought treatment strongly increased transcription levels. Therefore, STANN1 was selected for overexpression analysis. Under drought conditions, transgenic potato plants ectopically expressing STANN1 were more tolerant to water deficit in the root zone, preserved more water in green tissues, maintained chloroplast functions, and had higher accumulation of chlorophyll b and xanthophylls (especially zeaxanthin) than wild type (WT). Drought-induced reductions in the maximum efficiency and the electron transport rate of photosystem II (PSII), as well as the quantum yield of photosynthesis, were less pronounced in transgenic plants overexpressing STANN1 than in the WT. This conferred more efficient non-photochemical energy dissipation in the outer antennae of PSII and probably more efficient protection of reaction centers against photooxidative damage in transgenic plants under drought conditions. Consequently, these plants were able to maintain effective photosynthesis during drought, which resulted in greater productivity than WT plants despite water scarcity. Although the mechanisms underlying this stress protection are not yet clear, annexin-mediated photoprotection is probably linked to protection against light-induced oxidative stress.
Collapse
Affiliation(s)
- Michal Szalonek
- Plant Pathogenesis Lab, Institute of Biochemistry and Biophysics Polish Academy of Science, Warsaw, Poland
| | - Barbara Sierpien
- Plant Pathogenesis Lab, Institute of Biochemistry and Biophysics Polish Academy of Science, Warsaw, Poland
| | - Wojciech Rymaszewski
- Plant Pathogenesis Lab, Institute of Biochemistry and Biophysics Polish Academy of Science, Warsaw, Poland
| | | | - Maciej Garstka
- Department of Metabolic Regulation, University of Warsaw, Warsaw, Poland
| | - Malgorzata Lichocka
- Plant Pathogenesis Lab, Institute of Biochemistry and Biophysics Polish Academy of Science, Warsaw, Poland
| | - Laszlo Sass
- Laboratory of Molecular Stress and Photobiology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Kenny Paul
- Laboratory of Molecular Stress and Photobiology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Imre Vass
- Laboratory of Molecular Stress and Photobiology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Radomira Vankova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany AS CR, Praha, Czech Republic
| | - Peter Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany AS CR, Praha, Czech Republic
| | - Pawel Szczesny
- Plant Pathogenesis Lab, Institute of Biochemistry and Biophysics Polish Academy of Science, Warsaw, Poland
| | - Waldemar Marczewski
- Department of Potato Genetics and Parental Lines, Plant Breeding and Acclimatization Institute—National Research Institute, Mlochow, Poland
| | - Dominika Krusiewicz
- Department of Potato Genetics and Parental Lines, Plant Breeding and Acclimatization Institute—National Research Institute, Mlochow, Poland
| | - Danuta Strzelczyk-Zyta
- Department of Potato Genetics and Parental Lines, Plant Breeding and Acclimatization Institute—National Research Institute, Mlochow, Poland
| | - Jacek Hennig
- Plant Pathogenesis Lab, Institute of Biochemistry and Biophysics Polish Academy of Science, Warsaw, Poland
| | - Dorota Konopka-Postupolska
- Plant Pathogenesis Lab, Institute of Biochemistry and Biophysics Polish Academy of Science, Warsaw, Poland
- * E-mail:
| |
Collapse
|
63
|
Wang P, Zhao L, Hou H, Zhang H, Huang Y, Wang Y, Li H, Gao F, Yan S, Li L. Epigenetic Changes are Associated with Programmed Cell Death Induced by Heat Stress in Seedling Leaves of Zea mays. PLANT & CELL PHYSIOLOGY 2015; 56:965-76. [PMID: 25670712 DOI: 10.1093/pcp/pcv023] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 02/04/2015] [Indexed: 05/21/2023]
Abstract
Histone modification plays a crucial role in regulation of chromatin architecture and function, responding to adverse external stimuli. However, little is known about a possible relationship between epigenetic modification and programmed cell death (PCD) in response to environmental stress. Here, we found that heat stress induced PCD in maize seedling leaves which was characterized by chromatin DNA laddering and DNA strand breaks detected by a terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) test. The activities of the reactive oxygen species (ROS)-related enzymes superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) were progressively increased over time in the heat-treated seedlings. However, the concentration of H2O2 remained at relatively lower levels, while the concentration of superoxide anion ([Formula: see text]) was increased, accompanied by the occurrence of higher ion leakage rates after heat treatment. The total acetylation levels of histones H3K9, H4K5 and H3 were significantly increased, whereas the di-methylation level of histone H3K4 was unchanged and the di-methylation level of histone H3K9 was decreased in the seedling leaves exposed to heat stress compared with the control seedlings, accompanied by increased nucleolus size indicative of chromatin decondensation. Furthermore, treatment of seedlings with trichostatin A (TSA), which always results in genomic histone hyperacetylation, caused an increase in the [Formula: see text] level within the cells. The results suggested that heat stress persistently induced [Formula: see text], leading to PCD in association with histone modification changes in the maize leaves.
Collapse
MESH Headings
- Acetylation/drug effects
- Apoptosis/drug effects
- Apoptosis/genetics
- Blotting, Western
- Chromatin/metabolism
- DNA Damage
- Epigenesis, Genetic/drug effects
- Exons/genetics
- Gene Expression Regulation, Plant/drug effects
- Genes, Plant
- Heat-Shock Response/genetics
- Histones/metabolism
- Hydroxamic Acids/pharmacology
- In Situ Nick-End Labeling
- Ions
- Methylation/drug effects
- Models, Biological
- Plant Leaves/cytology
- Plant Leaves/drug effects
- Plant Leaves/genetics
- Promoter Regions, Genetic/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Reactive Oxygen Species/metabolism
- Real-Time Polymerase Chain Reaction
- Seedlings/cytology
- Seedlings/drug effects
- Seedlings/genetics
- Stress, Physiological/drug effects
- Stress, Physiological/genetics
- Zea mays/drug effects
- Zea mays/enzymology
- Zea mays/genetics
- Zea mays/physiology
Collapse
Affiliation(s)
- Pu Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lin Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Haoli Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hao Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yan Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yapei Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hui Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Fei Gao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Shihan Yan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lijia Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
64
|
Rech KS, Silva CB, Kulik JD, Dias JFG, Zanin SMW, Kerber VA, Ocampos FMM, Dalarmi L, Santos GO, Simionatto E, Lima CP, Miguel OG, Miguel MD. Croton argenteus preparation inhibits initial growth, mitochondrial respiration and increase the oxidative stress from Senna occidentalis seedlings. AN ACAD BRAS CIENC 2015; 87:753-63. [PMID: 25923167 DOI: 10.1590/0001-3765201520140238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/19/2014] [Indexed: 11/21/2022] Open
Abstract
Senna ocidentalis is a weed, native to Brazil, considered to infest crops and plantations, and is responsible for yield losses of several crops, particularly soybean. The aim of this work was to evaluate if the Croton argenteus extract and fractions possess phytotoxic activity on S. ocidentalis. The crude ethanolic extract (CEE) and its hexanic (HF), chloroformic (CLF) and ethyl acetate (EAF) fractions were tested in germination, growth, oxidative stress increase, Adenosine triphosphate, L-malate and succinate synthesis. The crude extract and its fractions slowed down the germination of S. ocidentalis and decreased the final percentage of germination. Oxidative stress was also increased in the seedlings, by an increase of catalase, peroxidase, superoxide dismutase, glutathione reductase and lipid peroxidation; and it became clear that the ethyl acetate fraction was more phytotoxic. The results indicate that the crude extract and fractions of C. argenteus compromise the mitochondrial energy metabolism, by the inhibition of mitochondrial ATP production, with a decrease in the production of L-malate and succinate. The ethyl acetate fraction of C. argenteus showed high activity on germination and growth, and these effects take place by means of mitochondrial metabolism alterations and increase the oxidative stress, leading the seedling death.
Collapse
Affiliation(s)
- Katlin S Rech
- Departamento de Farmácia, Universidade Federal do Paraná, Curitiba, PR, Brasil
| | - Cristiane B Silva
- Departamento de Farmácia, Universidade Federal do Paraná, Curitiba, PR, Brasil
| | - Juliana D Kulik
- Departamento de Farmácia, Universidade Federal do Paraná, Curitiba, PR, Brasil
| | - Josiane F G Dias
- Departamento de Farmácia, Universidade Federal do Paraná, Curitiba, PR, Brasil
| | - Sandra M W Zanin
- Departamento de Farmácia, Universidade Federal do Paraná, Curitiba, PR, Brasil
| | - Vitor A Kerber
- Departamento de Farmácia, Universidade Federal do Paraná, Curitiba, PR, Brasil
| | | | - Luciane Dalarmi
- Departamento de Farmácia, Universidade Federal do Paraná, Curitiba, PR, Brasil
| | - Gedir O Santos
- Departamento de Biologia, Universidade Federal do Paraná, Curitiba, PR, Brasil
| | - Euclésio Simionatto
- Departamento de Química, Universidade Estadual de Mato Grosso do Sul, Naviraí, MS, Brasil
| | - Cristina P Lima
- Departamento de Farmácia, Universidade Federal do Paraná, Curitiba, PR, Brasil
| | - Obdúlio G Miguel
- Departamento de Farmácia, Universidade Federal do Paraná, Curitiba, PR, Brasil
| | - Marilis D Miguel
- Departamento de Farmácia, Universidade Federal do Paraná, Curitiba, PR, Brasil
| |
Collapse
|
65
|
Slade WO, Werth EG, McConnell EW, Alvarez S, Hicks LM. Quantifying reversible oxidation of protein thiols in photosynthetic organisms. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:631-640. [PMID: 25698223 DOI: 10.1007/s13361-014-1073-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/18/2014] [Accepted: 12/18/2014] [Indexed: 06/04/2023]
Abstract
Photosynthetic organisms use dynamic post-translational modifications to survive and adapt, which include reversible oxidative modifications of protein thiols that regulate protein structure, function, and activity. Efforts to quantify thiol modifications on a global scale have relied upon peptide derivatization, typically using isobaric tags such as TMT, ICAT, or iTRAQ that are more expensive, less accurate, and provide less proteome coverage than label-free approaches--suggesting the need for improved experimental designs for studies requiring maximal coverage and precision. Herein, we present the coverage and precision of resin-assisted thiol enrichment coupled to label-free quantitation for the characterization of reversible oxidative modifications on protein thiols. Using C. reinhardtii and Arabidopsis as model systems for algae and plants, we quantified 3662 and 1641 unique cysteinyl peptides, respectively, with median coefficient of variation (CV) of 13% and 16%. Further, our method is extendable for the detection of protein abundance changes and stoichiometries of cysteine oxidation. Finally, we demonstrate proof-of-principle for our method, and reveal that exogenous hydrogen peroxide treatment regulates the C. reinhardtii redox proteome by increasing or decreasing the level of oxidation of 501 or 67 peptides, respectively. As protein activity and function is controlled by oxidative modifications on protein thiols, resin-assisted thiol enrichment coupled to label-free quantitation can reveal how intracellular and environmental stimuli affect plant survival and fitness through oxidative stress.
Collapse
Affiliation(s)
- William O Slade
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | | | | | | | | |
Collapse
|
66
|
Wang L, Zhang X, Zhou Q, Huang X. Effects of terbium (III) on signaling molecules in horseradish. Biol Trace Elem Res 2015; 164:122-9. [PMID: 25534291 DOI: 10.1007/s12011-014-0209-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 12/10/2014] [Indexed: 10/24/2022]
Abstract
Rare earth elements, especially terbium (Tb), are high-valence heavy metal elements that accumulate in the environment, and they show toxic effects on plants. Signaling molecules regulate many physiological and biochemical processes in plants. How rare earth elements affect signaling molecules remains largely unknown. In the present study, the effects of Tb(3+) on some extracellular and intracellular signaling molecules (gibberellic acid, abscisic acid, auxin, H2O2, and Ca(2+)) in horseradish leaves were investigated by using high-performance liquid chromatography, X-ray energy spectrometry, and transmission electron microscopy, and Tb(3+) was sprayed on the surface of leaves. Tb(3+) treatment decreased the auxin and gibberellic acid contents and increased the abscisic acid content. These changes in the contents of phytohormones (gibberellic acid, abscisic acid, and auxin) triggered excessive production of intracellular H2O2. Consequently, the increase in H2O2 content stimulated the influx of extracellular Ca(2+) and the release of Ca(2+) from Ca(2+) stores, leading to Ca(2+) overload and the resulting inhibition of physiological and biochemical processes. The effects outlined above were more evident with increasing the concentration of Tb(3+) sprayed on horseradish leaves. Our data provide a possible underlying mechanism of Tb(3+) action on plants.
Collapse
Affiliation(s)
- Lihong Wang
- State Key Laboratory of Food Science and Technology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | | | | | | |
Collapse
|
67
|
Li N, Sun L, Zhang L, Song Y, Hu P, Li C, Hao FS. AtrbohD and AtrbohF negatively regulate lateral root development by changing the localized accumulation of superoxide in primary roots of Arabidopsis. PLANTA 2015; 241:591-602. [PMID: 25399352 DOI: 10.1007/s00425-014-2204-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 11/04/2014] [Indexed: 05/06/2023]
Abstract
NADPH oxidase AtrbohD an d AtrbohF negatively modulate lateral root development by changing the peroxidase activity and increasing the local generation of superoxide in primary roots of Arabidopsis in an auxin-independent manner. NADPH oxidase subunits AtrbohD and AtrbohF play pivotal roles in regulating growth, development and stress responses in Arabidopsis. However, whether they modulate lateral root (LR) formation has not yet been addressed, and the detailed mechanisms underlying the process remain unanswered. Here, we show that two null double mutants atrbohD1/F1 and atrbohD2/F2, in which both AtrbohD and AtrbohF genes are disrupted, had remarkably higher LR density than wild-type (WT), or the single mutant atrbohD1 and atrbohF1. Compared to WT, the double mutants exhibited early emerged LRs and enhanced density of lateral root primordia (LRP). Unexpectedly, the production of superoxide (O2 (-)), but not hydrogen peroxide, in the mature area of the primary root containing LRs significantly increased in the double mutants relative to that in WT. Further experiments revealed that the local accumulation of O2 (-) led to the enhancement of LR density in the double mutants. Moreover, the deficiency of AtrbohD and AtrbohF caused a marked increase in peroxidase activity in the mature root zone, which contributed to the localized accumulation of O2 (-) and the elevated LR density in the double mutants. Furthermore, the double mutants were not sensitive to exogenous auxin naphthalene acetic acid or auxin transport inhibitor 1-N-naphthylphthalamic acid in terms of LR formation. The auxin response of LRP in vivo in atrbohD1/F1 was also similar to that in WT. Taken together, these results suggest that AtrbohD and AtrbohF negatively modulate LR development by controlling the local generation of superoxide in an auxin-independent manner. These findings provide new insights into the mechanisms of NADPH oxidase-mediated regulation of LR branching in Arabidopsis.
Collapse
Affiliation(s)
- Ning Li
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, College of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, China
| | | | | | | | | | | | | |
Collapse
|
68
|
Abstract
Hemoglobins (Hbs) corresponding to non-symbiotic (nsHb) and truncated (tHb) Hbs have been identified in rice (
Oryza). This review discusses the major findings from the current studies on rice Hbs. At the molecular level, a family of the
nshb genes, consisting of
hb1,
hb2,
hb3,
hb4 and
hb5, and a single copy of the
thb gene exist in
Oryza sativa var. indica and
O.
sativa var. japonica, Hb transcripts coexist in rice organs and Hb polypeptides exist in rice embryonic and vegetative organs and in the cytoplasm of differentiating cells. At the structural level, the crystal structure of rice Hb1 has been elucidated, and the structures of the other rice Hbs have been modeled. Kinetic analysis indicated that rice Hb1 and 2, and possibly rice Hb3 and 4, exhibit a very high affinity for O
2, whereas rice Hb5 and tHb possibly exhibit a low to moderate affinity for O
2. Based on the accumulated information on the properties of rice Hbs and data from the analysis of other plant and non-plant Hbs, it is likely that Hbs play a variety of roles in rice organs, including O
2-transport, O
2-sensing, NO-scavenging and redox-signaling. From an evolutionary perspective, an outline for the evolution of rice Hbs is available. Rice
nshb and
thb genes vertically evolved through different lineages, rice nsHbs evolved into clade I and clade II lineages and rice
nshbs and
thbs evolved under the effect of neutral selection. This review also reveals lacunae in our ability to completely understand rice Hbs. Primary lacunae are the absence of experimental information about the precise functions of rice Hbs, the properties of modeled rice Hbs and the
cis-elements and
trans-acting factors that regulate the expression of rice
hb genes, and the partial understanding of the evolution of rice Hbs.
Collapse
Affiliation(s)
- Raúl Arredondo-Peter
- Laboratorio de Biofísica y Biología Molecular, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, 62210, Mexico
| | - Jose F Moran
- Instituto de Agrobiotecnología, IdAB-CSIC-Universidad Pública de Navarra-Gobierno de Navarra, Navarre, E-31192, Spain
| | - Gautam Sarath
- Grain, Forage and Bioenergy Research Unit, USDA-ARS, University of Nebraska-Lincoln, Lincoln, NE, 68583-0937, USA
| |
Collapse
|
69
|
Cai S, Jiang G, Ye N, Chu Z, Xu X, Zhang J, Zhu G. A key ABA catabolic gene, OsABA8ox3, is involved in drought stress resistance in rice. PLoS One 2015; 10:e0116646. [PMID: 25647508 PMCID: PMC4315402 DOI: 10.1371/journal.pone.0116646] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 12/11/2014] [Indexed: 01/24/2023] Open
Abstract
Expressions of ABA biosynthesis genes and catabolism genes are generally co-regulated in plant development and responses to environmental stress. Up-regulation of OsNCED3 gene, a key gene in ABA biosynthesis, has been suggested as a way to enhance plant drought resistance but little is known for the role of ABA catabolic genes during drought stress. In this study, we found that OsABA8ox3 was the most highly expressed gene of the OsABA8ox family in rice leaves. Expression of OsABA8ox3 was promptly induced by rehydration after PEG-mimic dehydration, a tendency opposite to the changes of ABA level. We therefore constructed rice OsABA8ox3 silencing (RNA interference, RNAi) and overexpression plants. There were no obvious phenotype differences between the transgenic seedlings and wild type under normal condition. However, OsABA8ox3 RNAi lines showed significant improvement in drought stress tolerance while the overexpression seedlings were hypersensitive to drought stress when compared with wild type in terms of plant survival rates after 10 days of unwatering. Enzyme activity analysis indicated that OsABA8ox3 RNAi plants had higher superoxide dismutase (SOD) and catalase (CAT) activities and less malondialdehyde (MDA) content than those of wild type when the plants were exposed to dehydration treatment, indicating a better anti-oxidative stress capability and less membrane damage. DNA microarray and real-time PCR analysis under dehydration treatment revealed that expressions of a group of stress/drought-related genes, i.e. LEA genes, were enhanced with higher transcript levels in OsABA8ox3 RNAi transgenic seedlings. We therefore conclude that that OsABA8ox3 gene plays an important role in controlling ABA level and drought stress resistance in rice.
Collapse
Affiliation(s)
- Shanlan Cai
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Guobin Jiang
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Nenghui Ye
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Zhizhan Chu
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Xuezhong Xu
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Jianhua Zhang
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Guohui Zhu
- College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, China
| |
Collapse
|
70
|
AbdElgawad H, Farfan-Vignolo ER, de Vos D, Asard H. Elevated CO₂ mitigates drought and temperature-induced oxidative stress differently in grasses and legumes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 231:1-10. [PMID: 25575986 DOI: 10.1016/j.plantsci.2014.11.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 10/27/2014] [Accepted: 11/04/2014] [Indexed: 05/24/2023]
Abstract
Increasing atmospheric CO2 will affect plant growth, including mitigation of stress impact. Such effects vary considerably between species-groups. Grasses (Lolium perenne, Poa pratensis) and legumes (Medicago lupulina, Lotus corniculatus) were subjected to drought, elevated temperature and elevated CO2. Drought inhibited plant growth, photosynthesis and stomatal conductance, and induced osmolytes and antioxidants in all species. In contrast, oxidative damage was more strongly induced in the legumes than in the grasses. Warming generally exacerbated drought effects, whereas elevated CO2 reduced stress impact. In the grasses, photosynthesis and chlorophyll levels were more protected by CO2 than in the legumes. Oxidative stress parameters (lipid peroxidation, H2O2 levels), on the other hand, were generally more reduced in the legumes. This is consistent with changes in molecular antioxidants, which were reduced by elevated CO2 in the grasses, but not in the legumes. Antioxidant enzymes decreased similarly in both species-groups. The ascorbate-glutathione cycle was little affected by drought and CO2. Overall, elevated CO2 reduced drought effects in grasses and legumes, and this mitigation was stronger in the legumes. This is possibly explained by stronger reduction in H2O2 generation (photorespiration and NADPH oxidase), and a higher availability of molecular antioxidants. The grass/legume-specificity was supported by principal component analysis.
Collapse
Affiliation(s)
- Hamada AbdElgawad
- Laboratory for Molecular Plant Physiology and Biotechnology, Department of Biology, University of Antwerp, B-2020 Antwerp, Belgium
| | - Evelyn Roxana Farfan-Vignolo
- Laboratory for Molecular Plant Physiology and Biotechnology, Department of Biology, University of Antwerp, B-2020 Antwerp, Belgium
| | - Dirk de Vos
- Laboratory for Molecular Plant Physiology and Biotechnology, Department of Biology, University of Antwerp, B-2020 Antwerp, Belgium; Department of Mathematics and Computer Science, University of Antwerp, B-2020 Antwerp, Belgium
| | - Han Asard
- Laboratory for Molecular Plant Physiology and Biotechnology, Department of Biology, University of Antwerp, B-2020 Antwerp, Belgium.
| |
Collapse
|
71
|
Vodeneev V, Akinchits E, Sukhov V. Variation potential in higher plants: Mechanisms of generation and propagation. PLANT SIGNALING & BEHAVIOR 2015; 10:e1057365. [PMID: 26313506 PMCID: PMC4883923 DOI: 10.1080/15592324.2015.1057365] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/23/2015] [Accepted: 05/27/2015] [Indexed: 05/21/2023]
Abstract
Long-distance intercellular electrical signals, including variation potential (VP) in higher plants, are a potential mechanism of coordinate functional responses in different plant cells under action of stressors. VP, which is caused by damaging factors (e.g., heating, crushing), is transient depolarization with an irregular shape. It can include a long-term depolarization and fast impulse depolarization ('AP-like' spikes). Mechanisms of VP generation and propagation are still under investigation. It is probable that VP is a local electrical response induced by propagation of hydraulic wave and (or) chemical agent. Both hypotheses are based on numerous experimental results but they predict VP velocities which are not in a good accordance with speed of variation potential propagation. Thus combination of hydraulic and chemical signals is the probable mechanism of VP propagation. VP generation is traditionally connected with transient H(+)-ATPase inactivation, but AP-like spikes are also connected with passive ions fluxes. Ca(2+) influx is a probable mechanism which triggers H(+)-ATPase inactivation and ions channels activation at VP.
Collapse
Affiliation(s)
- Vladimir Vodeneev
- Department of Biophysics Lobachevsky State University of Nizhni Novgorod; Nizhni Novgorod, Russia
| | - Elena Akinchits
- Department of Biophysics Lobachevsky State University of Nizhni Novgorod; Nizhni Novgorod, Russia
| | - Vladimir Sukhov
- Department of Biophysics Lobachevsky State University of Nizhni Novgorod; Nizhni Novgorod, Russia
| |
Collapse
|
72
|
Driedonks N, Xu J, Peters JL, Park S, Rieu I. Multi-Level Interactions Between Heat Shock Factors, Heat Shock Proteins, and the Redox System Regulate Acclimation to Heat. FRONTIERS IN PLANT SCIENCE 2015; 6:999. [PMID: 26635827 PMCID: PMC4647109 DOI: 10.3389/fpls.2015.00999] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 10/30/2015] [Indexed: 05/12/2023]
Abstract
High temperature has become a global concern because it seriously affects the growth and reproduction of plants. Exposure of plant cells to high temperatures result in cellular damage and can even lead to cell death. Part of the damage can be ascribed to the action of reactive oxygen species (ROS), which accumulate during abiotic stresses such as heat stress. ROS are toxic and can modify other biomacromolecules including membrane lipids, DNA, and proteins. In order to protect the cells, ROS scavenging is essential. In contrast with their inherent harms, ROS also function as signaling molecules, inducing stress tolerance mechanisms. This review examines the evidence for crosstalk between the classical heat stress response, which consists of heat shock factors (HSFs) and heat shock proteins (HSPs), with the ROS network at multiple levels in the heat response process. Heat stimulates HSF activity directly, but also indirectly via ROS. HSFs in turn stimulate the expression of HSP chaperones and also affect ROS scavenger gene expression. In the short term, HSFs repress expression of superoxide dismutase scavenger genes via induction of miRNA398, while they also activate scavenger gene expression and stabilize scavenger protein activity via HSP induction. We propose that these contrasting effects allow for the boosting of the heat stress response at the very onset of the stress, while preventing subsequent oxidative damage. The described model on HSFs, HSPs, ROS, and ROS scavenger interactions seems applicable to responses to stresses other than heat and may explain the phenomenon of crossacclimation.
Collapse
Affiliation(s)
- Nicky Driedonks
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Jiemeng Xu
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Janny L. Peters
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Sunghun Park
- Department of Horticulture, Forestry and Recreation Resources, Kansas State University, Manhattan, KS, USA
| | - Ivo Rieu
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
- *Correspondence: Ivo Rieu,
| |
Collapse
|
73
|
Li C, Wang Y, Ying P, Ma W, Li J. Genome-wide digital transcript analysis of putative fruitlet abscission related genes regulated by ethephon in litchi. FRONTIERS IN PLANT SCIENCE 2015; 6:502. [PMID: 26217356 PMCID: PMC4493771 DOI: 10.3389/fpls.2015.00502] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The high level of physiological fruitlet abscission in litchi (Litchi chinensis Sonn.) causes severe yield loss. Cell separation occurs at the fruit abscission zone (FAZ) and can be triggered by ethylene. However, a deep knowledge of the molecular events occurring in the FAZ is still unknown. Here, genome-wide digital transcript abundance (DTA) analysis of putative fruit abscission related genes regulated by ethephon in litchi were studied. More than 81 million high quality reads from seven ethephon treated and untreated control libraries were obtained by high-throughput sequencing. Through DTA profile analysis in combination with Gene Ontology and KEGG pathway enrichment analyses, a total of 2730 statistically significant candidate genes were involved in the ethephon-promoted litchi fruitlet abscission. Of these, there were 1867 early-responsive genes whose expressions were up- or down-regulated from 0 to 1 d after treatment. The most affected genes included those related to ethylene biosynthesis and signaling, auxin transport and signaling, transcription factors (TFs), protein ubiquitination, ROS response, calcium signal transduction, and cell wall modification. These genes could be clustered into four groups and 13 subgroups according to their similar expression patterns. qRT-PCR displayed the expression pattern of 41 selected candidate genes, which proved the accuracy of our DTA data. Ethephon treatment significantly increased fruit abscission and ethylene production of fruitlet. The possible molecular events to control the ethephon-promoted litchi fruitlet abscission were prompted out. The increased ethylene evolution in fruitlet would suppress the synthesis and polar transport of auxin and trigger abscission signaling. To the best of our knowledge, it is the first time to monitor the gene expression profile occurring in the FAZ-enriched pedicel during litchi fruit abscission induced by ethephon on the genome-wide level. This study will contribute to a better understanding for the molecular regulatory mechanism of fruit abscission in litchi.
Collapse
Affiliation(s)
- Caiqin Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural UniversityGuangzhou, China
- Physiological Laboratory for South China Fruits, College of Horticulture, South China Agricultural UniversityGuangzhou, China
| | - Yan Wang
- Physiological Laboratory for South China Fruits, College of Horticulture, South China Agricultural UniversityGuangzhou, China
- Bioinformation Department, Beijing Genomics Institute at ShenzhenShenzhen, China
| | - Peiyuan Ying
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural UniversityGuangzhou, China
- Physiological Laboratory for South China Fruits, College of Horticulture, South China Agricultural UniversityGuangzhou, China
| | - Wuqiang Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural UniversityGuangzhou, China
- Physiological Laboratory for South China Fruits, College of Horticulture, South China Agricultural UniversityGuangzhou, China
| | - Jianguo Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural UniversityGuangzhou, China
- Physiological Laboratory for South China Fruits, College of Horticulture, South China Agricultural UniversityGuangzhou, China
- *Correspondence: Jianguo Li, China Litchi Research Center, South China Agricultural University, 483 Wushan Street, Guangzhou, Guangdong 510642, China
| |
Collapse
|
74
|
Bykova NV, Hu J, Ma Z, Igamberdiev AU. The Role of Reactive Oxygen and Nitrogen Species in Bioenergetics, Metabolism, and Signaling During Seed Germination. SIGNALING AND COMMUNICATION IN PLANTS 2015. [DOI: 10.1007/978-3-319-10079-1_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
75
|
Yoshimura K, Ogawa T, Tsujimura M, Ishikawa K, Shigeoka S. Ectopic expression of the human MutT-type Nudix hydrolase, hMTH1, confers enhanced tolerance to oxidative stress in arabidopsis. PLANT & CELL PHYSIOLOGY 2014; 55:1534-1543. [PMID: 24928220 DOI: 10.1093/pcp/pcu083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Oxidized nucleotides produced by oxidative stress cause DNA mutations and the production of abnormal proteins. Thus, mammalian cells have developed multiple MutT-type Nudix hydrolases that exhibit pyrophosphohydrolase activity toward oxidized nucleotides in the cytosol, mitochondria and nucleus. On the other hand, AtNUDX1 is the only MutT-type Nudix hydrolase in the cytosol of Arabidopsis plants. To clarify the physiological significance of the defenses against oxidatively induced DNA damage in plant organelles, we analyzed the effects of the ectopic expression of the human MutT-type Nudix hydrolase, hMTH1, which was localized in the cytosol (cyt-hMTH1), chloroplasts (chl-hMTH1) and mitochondria (mit-hMTH1) of Arabidopsis cells, on tolerance to oxidative stress. Tolerance to oxidative stress caused by heating and paraquat (PQ) treatment was higher in the mit-hMTH1 and chl-hMTH1 plants than in the control and cyt-hMTH1 plants. The accumulation of H2O2 and the frequency of dead cells were lower in the mit-hMTH1 and chl-hMTH1 plants under stressful conditions. The poly(ADP-ribosyl)ation (PAR) reaction, which regulates repair systems for damaged DNA, was activated in the mit-hMTH1 and chl-hMTH1 plants under heat stress and PQ treatment. Furthermore, DNA fragmentation, which caused programmed cell death, was clearly suppressed in the mit-hMTH1 and chl-hMTH1 plants under heat stress. These results demonstrated that the ectopic expression of hMTH1 in the chloroplasts and mitochondria of Arabidopsis enhanced oxidative stress tolerance by activating the PAR reaction and suppressing programmed cell death.
Collapse
Affiliation(s)
- Kazuya Yoshimura
- Department of Food and Nutritional Science, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501 Japan
| | - Takahisa Ogawa
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, Nakamachi, Nara, 631-8505 Japan
| | - Masaki Tsujimura
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, Nakamachi, Nara, 631-8505 Japan
| | - Kazuya Ishikawa
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, Nakamachi, Nara, 631-8505 Japan
| | - Shigeru Shigeoka
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, Nakamachi, Nara, 631-8505 Japan
| |
Collapse
|
76
|
RoGFP1 is a quantitative biosensor in maize cells for cellular redox changes caused by environmental and endogenous stimuli. Biochem Biophys Res Commun 2014; 452:503-8. [DOI: 10.1016/j.bbrc.2014.08.107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 08/20/2014] [Indexed: 11/22/2022]
|
77
|
Jahan AA, Anis M, Aref IM. Relative examination of antioxidative enzymatic activities in plantlets of Cardiospermum halicacabum L. differentiated from hypocotyls in in vivo and ex vitro environment. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2014. [PMID: 28626664 PMCID: PMC5466128 DOI: 10.1016/j.btre.2014.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A plant regeneration protocol was devised for Cardiospermum halicacabum by means of aseptically extracted 7 days old hypocotyls forming adventitious shoots on Murashige and Skoog (MS) medium harmonized with 0.7 μM thidiazuron (TDZ) producing a maximum of 18.20 ± 0.98 number of shoots in 94% cultures following 4 weeks. Subsequent subculturing for five passages, on a medium without plant growth regulators, tempted the highest shoot number (40.00 ± 1.15) with an average shoot length of 6.53 ± 0.49 cm after the fourth subculture. Histological sections confirmed the formation of multiple buds from hypocotyl explants. The expression of antioxidant enzymes like superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase was found to be higher in acclimatized plants than in the in vitro cultured ones suggesting the involvement of these enzymes in shoot differentiation and in growth under external environment partly due to their ability to cope up with oxidative stress.
Collapse
Affiliation(s)
- Anushi A Jahan
- Plant Biotechnology Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Anis
- Plant Biotechnology Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India.,Department of Plant Production, College of Food & Agricultural Sciences, King Saud University, PO Box 2460, Riyadh 11451, Saudi Arabia
| | - Ibrahim M Aref
- Department of Plant Production, College of Food & Agricultural Sciences, King Saud University, PO Box 2460, Riyadh 11451, Saudi Arabia
| |
Collapse
|
78
|
Areco VA, Figueroa S, Cosa MT, Dambolena JS, Zygadlo JA, Zunino MP. Effect of pinene isomers on germination and growth of maize. BIOCHEM SYST ECOL 2014. [DOI: 10.1016/j.bse.2014.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
79
|
Song Z, Yang S, Zhu H, Jin M, Su Y. Heterologous expression of an alligatorweed high-affinity potassium transporter gene enhances salinity tolerance in Arabidopsis thaliana. AMERICAN JOURNAL OF BOTANY 2014; 101:840-850. [PMID: 24824834 DOI: 10.3732/ajb.1400155] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 04/16/2014] [Indexed: 06/03/2023]
Abstract
UNLABELLED • PREMISE OF THE STUDY The potassium cation (K(+)), one of the most abundant cations in cells, improves plant tolerance to various abiotic stresses. Alligatorweed (Alternanthera philoxeroides) is well known for its strong capacity to accumulate K(+) The distinctive K(+) accumulation capability of alligatorweed is linked to a high-affinity K(+) transport facilitated by K(+)-uptake transporters (ApKUPs).• METHODS A putative K(+) transporter gene, ApKUP4, was isolated from alligatorweed using degenerate primers and rapid amplification of cDNA ends (RACE) techniques. Gene expression profiles were performed by quantitative real time PCR and northern blot analysis. Moreover, we introduced ApKUP4 into Arabidopsis to determine its function in improving crop nutrition and NaCl stress tolerance.• KEY RESULTS ApKUP4 was localized throughout the entire alligatorweed plant, and its expression was stimulated in the stems and roots under K(+) deficiency, osmotic stress, and salinity stress. Northern blot analysis revealed that ApKUP4 was present in all tested organs of transgenic Arabidopsis plants. Compared with the wild type, Arabidopsis plants overexpressing ApKUP4 showed improved growth and K(+) homeostasis. Moreover, ApKUP4 overexpression in Arabidopsis plants enhanced plant tolerance to salinity stress, as evidenced by reduced water loss and ROS generation, associated with enhanced photosynthesis, nutritional status, and enzymatic antioxidants.• CONCLUSIONS The present study provides direct evidence that the alligatorweed K(+) transporter gene, ApKUP4, contributes to salinity tolerance in transgenic Arabidopsis seedlings, demonstrating the essentiality of potassium homeostasis for plant salinity tolerance.
Collapse
Affiliation(s)
- Zhizhong Song
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210014, China Institute of Horticulture, Jiangsu Academy of Agricultural Sciences, Nanjing 210008, China
| | - Shunying Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210014, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Zhu
- Institute of Botany, Jiangsu Province and Chinese Academy of Science, Nanjing 210018, China
| | - Man Jin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210014, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanhua Su
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210014, China
| |
Collapse
|
80
|
Aoki N, Ishibashi Y, Kai K, Tomokiyo R, Yuasa T, Iwaya-Inoue M. Programmed cell death in barley aleurone cells is not directly stimulated by reactive oxygen species produced in response to gibberellin. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:615-8. [PMID: 24709153 DOI: 10.1016/j.jplph.2014.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 01/06/2014] [Accepted: 01/07/2014] [Indexed: 05/14/2023]
Abstract
The cereal aleurone layer is a secretory tissue that produces enzymes to hydrolyze the starchy endosperm during germination. We recently demonstrated that reactive oxygen species (ROS), produced in response to gibberellins (GA), promoted GAMyb expression, which induces α-amylase expression in barley aleurone cells. On the other hand, ROS levels increase during programmed cell death (PCD) in barley aleurone cells, and GAMyb is involved in PCD of these cells. In this study, we investigated whether the ROS produced in response to GA regulate PCD directly by using mutants of Slender1 (SLN1), a DELLA protein that negatively regulates GA signaling. The wild-type, the sln1c mutant (which exhibits gibberellin-type signaling even in the absence of GA), and the Sln1d mutant (which is gibberellin-insensitive with respect to α-amylase production) all produced ROS in response to GA, suggesting that ROS production in aleurone cells in response to GA is independent of GA signaling through this DELLA protein. Exogenous GA promoted PCD in the wild-type. PCD in sln1c was induced even without exogenous GA (and so without induction of ROS), whereas PCD in Sln1d was not induced in the presence of exogenous GA, even though the ROS content increased significantly in response to GA. These results suggest that PCD in barley aleurone cells is not directly stimulated by ROS produced in response to GA but is regulated by GA signaling through DELLA protein.
Collapse
Affiliation(s)
- Nozomi Aoki
- Crop Science Laboratory, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Yushi Ishibashi
- Crop Science Laboratory, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.
| | - Kyohei Kai
- Crop Science Laboratory, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Reisa Tomokiyo
- Crop Science Laboratory, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Takashi Yuasa
- Faculty of Agriculture, Miyazaki University, 1-1 Gakuenkibanadai-nishi, Miyazaki, Japan
| | - Mari Iwaya-Inoue
- Crop Science Laboratory, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| |
Collapse
|
81
|
Weeda S, Zhang N, Zhao X, Ndip G, Guo Y, Buck GA, Fu C, Ren S. Arabidopsis transcriptome analysis reveals key roles of melatonin in plant defense systems. PLoS One 2014; 9:e93462. [PMID: 24682084 PMCID: PMC3969325 DOI: 10.1371/journal.pone.0093462] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 03/06/2014] [Indexed: 02/03/2023] Open
Abstract
Melatonin is a ubiquitous molecule and exists across kingdoms including plant species. Studies on melatonin in plants have mainly focused on its physiological influence on growth and development, and on its biosynthesis. Much less attention has been drawn to its affect on genome-wide gene expression. To comprehensively investigate the role(s) of melatonin at the genomics level, we utilized mRNA-seq technology to analyze Arabidopsis plants subjected to a 16-hour 100 pM (low) and 1 mM (high) melatonin treatment. The expression profiles were analyzed to identify differentially expressed genes. 100 pM melatonin treatment significantly affected the expression of only 81 genes with 51 down-regulated and 30 up-regulated. However, 1 mM melatonin significantly altered 1308 genes with 566 up-regulated and 742 down-regulated. Not all genes altered by low melatonin were affected by high melatonin, indicating different roles of melatonin in regulation of plant growth and development under low and high concentrations. Furthermore, a large number of genes altered by melatonin were involved in plant stress defense. Transcript levels for many stress receptors, kinases, and stress-associated calcium signals were up-regulated. The majority of transcription factors identified were also involved in plant stress defense. Additionally, most identified genes in ABA, ET, SA and JA pathways were up-regulated, while genes pertaining to auxin responses and signaling, peroxidases, and those associated with cell wall synthesis and modifications were mostly down-regulated. Our results indicate critical roles of melatonin in plant defense against various environmental stresses, and provide a framework for functional analysis of genes in melatonin-mediated signaling pathways.
Collapse
Affiliation(s)
- Sarah Weeda
- Agriculture Research Station, Virginia State University, Petersburg, Virginia, United States of America
| | - Na Zhang
- College of Agriculture and Biotechnology, China Agricultural University, Beijing, P. R. China
| | - Xiaolei Zhao
- Tianjin Crop Science Institute, Tianjin Academy of Agricultural Science, Tianjin, P. R. China
| | - Grace Ndip
- Department of Chemistry, Virginia State University, Petersburg, Virginia, United States of America
| | - Yangdong Guo
- College of Agriculture and Biotechnology, China Agricultural University, Beijing, P. R. China
| | - Gregory A. Buck
- Center of the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Conggui Fu
- Tianjin Crop Science Institute, Tianjin Academy of Agricultural Science, Tianjin, P. R. China
| | - Shuxin Ren
- Agriculture Research Station, Virginia State University, Petersburg, Virginia, United States of America
| |
Collapse
|
82
|
Livanos P, Galatis B, Apostolakos P. The interplay between ROS and tubulin cytoskeleton in plants. PLANT SIGNALING & BEHAVIOR 2014; 9:e28069. [PMID: 24521945 PMCID: PMC4091245 DOI: 10.4161/psb.28069] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plants have to deal with reactive oxygen species (ROS) production, since it could potentially cause severe damages to different cellular components. On the other hand, ROS functioning as important second messengers are implicated in various developmental processes and are transiently produced during biotic or abiotic stresses. Furthermore, the microtubules (MTs) play a primary role in plant development and appear as potent players in sensing stressful situations and in the subsequent cellular responses. Emerging evidence suggests that ROS affect MTs in multiple ways. The cellular redox status seems to be tightly coupled with MTs. ROS signals regulate the organization of tubulin cytoskeleton and induce tubulin modifications. This review aims at summarizing the signaling mechanisms and the key operators orchestrating the crosstalk between ROS and tubulin cytoskeleton in plant cells. The contribution of several molecules, including microtubule associated proteins, oxidases, kinases, phospholipases, and transcription factors, is highlighted.
Collapse
|
83
|
Zhang N, Zhang HJ, Zhao B, Sun QQ, Cao YY, Li R, Wu XX, Weeda S, Li L, Ren S, Reiter RJ, Guo YD. The RNA-seq approach to discriminate gene expression profiles in response to melatonin on cucumber lateral root formation. J Pineal Res 2014; 56:39-50. [PMID: 24102657 DOI: 10.1111/jpi.12095] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 09/10/2013] [Indexed: 01/18/2023]
Abstract
Cucumber is a model cucurbitaceous plant with a known genome sequence which is important for studying molecular mechanisms of root development. In this study, RNA sequencing was employed to explore the mechanism of melatonin-induced lateral root formation in cucumber under salt stress. Three groups of seeds were examined, that is, seeds primed without melatonin (CK), seeds primed in a solution containing 10 or 500 μmol/L melatonin (M10 and M500, respectively). These seeds were then germinated in NaCl solution. The RNA-seq analysis generated 16,866,670 sequence reads aligned with 17,920 genes, which provided abundant data for the analysis of lateral root formation. A total of 17,552, 17,450, and 17,393 genes were identified from roots of the three treatments (CK, M10 and M500, respectively). The expression of 121 genes was significantly up-regulated, and 196 genes were significantly down-regulated in M500 which showed an obvious increase on the number of lateral roots. These genes were significantly enriched in 57 KEGG pathways and 16 GO terms (M500 versus CK). Based on their expression pattern, peroxidase-related genes were selected as the candidates to be involved in the melatonin response. Several transcription factor families might play important roles in lateral root formation processes. A number of genes related to cell wall formation, carbohydrate metabolic processes, oxidation/reduction processes, and catalytic activity also showed different expression patterns as a result of melatonin treatments. This RNA-sequencing study will enable the scientific community to better define the molecular processes that affect lateral root formation in response to melatonin treatment.
Collapse
Affiliation(s)
- Na Zhang
- College of Agriculture and Biotechnology, China Agricultural University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Jiao Y, Sun L, Song Y, Wang L, Liu L, Zhang L, Liu B, Li N, Miao C, Hao F. AtrbohD and AtrbohF positively regulate abscisic acid-inhibited primary root growth by affecting Ca2+ signalling and auxin response of roots in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4183-92. [PMID: 23963673 DOI: 10.1093/jxb/ert228] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Reactive oxygen species (ROS) originating from the NADPH oxidases AtrbohD and AtrbohF play an important role in abscisic acid (ABA)-inhibited primary root growth in Arabidopsis. However, the mechanisms underlying this process remain elusive. In this study, the double mutant atrbohD1/F1 and atrbohD2/F2, in which both AtrbohD and AtrbohF were disrupted, were less sensitive to ABA suppression of root cell elongation than wild-type (WT) plants. Furthermore, the double mutants showed impaired ABA responses in roots, including ROS generation, cytosolic Ca(2+) increases, and activation of plasma membrane Ca(2+)-permeable channels compared with WT. Exogenous H2O2 can activate the Ca(2+) currents in roots of atrbohD1/F1. In addition, exogenous application of the auxin transport inhibitor naphthylphthalamic acid effectively promoted ABA inhibition of root growth of the mutants relative to that of WT. The ABA-induced decreases in auxin sensitivity of the root tips were more pronounced in WT than in atrbohD1/F1. These findings suggest that both AtrbohD and AtrbohF are essential for ABA-promoted ROS production in roots. ROS activate Ca(2+) signalling and reduce auxin sensitivity of roots, thus positively regulating ABA-inhibited primary root growth in Arabidopsis.
Collapse
Affiliation(s)
- Yiheng Jiao
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, College of Life Sciences, Henan University, Kaifeng 475004, Henan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Diaz-Vivancos P, Barba-Espín G, Hernández JA. Elucidating hormonal/ROS networks during seed germination: insights and perspectives. PLANT CELL REPORTS 2013; 32:1491-502. [PMID: 23812175 DOI: 10.1007/s00299-013-1473-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 06/14/2013] [Accepted: 06/17/2013] [Indexed: 05/04/2023]
Abstract
While authors have traditionally emphasized the deleterious effects of reactive oxygen species (ROS) on seed biology, their role as signaling molecules during seed dormancy alleviation and germination is now the focus of many studies around the world. Over the last few years, studies using "-omics" technologies together with physiological and biochemical approaches have revealed that seed germination is a very complex process that depends on multiple biochemical and molecular variables. The pivotal role of phytohormones in promoting germination now appears to be interdependent with ROS metabolism, involving mitogen-activated protein kinase cascade activation, gene expression and post-translational protein modifications. This review is, thus, an attempt to summarize the new discoveries involving ROS and seed germination. The study of these interactions may supply markers of seed quality that might eventually be used in breeding programs to improve crop yields.
Collapse
Affiliation(s)
- Pedro Diaz-Vivancos
- Group of Fruit Biotechnology, Department of Plant Breeding, CEBAS-CSIC, Campus Universitario de Espinardo, P.O. Box 164, Murcia, 30100, Spain
| | | | | |
Collapse
|
86
|
Pan X, Zhu B, Luo Y, Fu D. Unraveling the protein network of tomato fruit in response to necrotrophic phytopathogenic Rhizopus nigricans. PLoS One 2013; 8:e73034. [PMID: 24023804 PMCID: PMC3759434 DOI: 10.1371/journal.pone.0073034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 07/16/2013] [Indexed: 12/13/2022] Open
Abstract
Plants are endowed with a sophisticated defense mechanism that gives signals to plant cells about the immediate danger from surroundings and protects them from pathogen invasion. In the search for the particular proteins involved in fruit defense responses, we report here a comparative analysis of tomato fruit (Solanum lycopersicum cv. Ailsa Craig) infected by Rhizopus nigricans Ehrenb, which is a significant contributor to postharvest rot disease in fresh tomato fruits. In total, four hundred forty-five tomato proteins were detected in common between the non-infected group and infected tomato fruit of mature green. Forty-nine differentially expressed spots in 2-D gels were identified, and were sorted into fifteen functional groups. Most of these proteins participate directly in the stress response process, while others were found to be involved in several equally important biological processes: protein metabolic process, carbohydrate metabolic process, ethylene biosynthesis, and cell death and so on. These responses occur in different cellular components, both intra- and extracellular spaces. The differentially expressed proteins were integrated into several pathways to show the regulation style existing in tomato fruit host. The composition of the collected proteins populations and the putative functions of the identified proteins argue for their roles in pathogen-plant interactions. Collectively results provide evidence that several regulatory pathways contribute to the resistance of tomato fruit to pathogen.
Collapse
Affiliation(s)
- Xiaoqi Pan
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Benzhong Zhu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Yunbo Luo
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Daqi Fu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| |
Collapse
|
87
|
Jiang C, Belfield EJ, Cao Y, Smith JAC, Harberd NP. An Arabidopsis soil-salinity-tolerance mutation confers ethylene-mediated enhancement of sodium/potassium homeostasis. THE PLANT CELL 2013; 25:3535-52. [PMID: 24064768 PMCID: PMC3809548 DOI: 10.1105/tpc.113.115659] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/28/2013] [Accepted: 09/03/2013] [Indexed: 05/18/2023]
Abstract
High soil Na concentrations damage plants by increasing cellular Na accumulation and K loss. Excess soil Na stimulates ethylene-induced soil-salinity tolerance, the mechanism of which we here define via characterization of an Arabidopsis thaliana mutant displaying transpiration-dependent soil-salinity tolerance. This phenotype is conferred by a loss-of-function allele of ethylene overproducer1 (ETO1; mutant alleles of which cause increased production of ethylene). We show that lack of ETO1 function confers soil-salinity tolerance through improved shoot Na/K homeostasis, effected via the ethylene resistant1-constitutive triple response1 ethylene signaling pathway. Under transpiring conditions, lack of ETO1 function reduces root Na influx and both stelar and xylem sap Na concentrations, thereby restricting root-to-shoot delivery of Na. These effects are associated with increased accumulation of respiratory burst oxidase homolog F (RBOHF)-dependent reactive oxygen species in the root stele. Additionally, lack of ETO1 function leads to significant enhancement of tissue K status by an RBOHF-independent mechanism associated with elevated high-affinity K(+) TRANSPORTER5 transcript levels. We conclude that ethylene promotes soil-salinity tolerance via improved Na/K homeostasis mediated by RBOHF-dependent regulation of Na accumulation and RBOHF-independent regulation of K accumulation.
Collapse
Affiliation(s)
- Caifu Jiang
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - Eric J. Belfield
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - Yi Cao
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - J. Andrew C. Smith
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - Nicholas P. Harberd
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| |
Collapse
|
88
|
Passaia G, Fonini LS, Caverzan A, Jardim-Messeder D, Christoff AP, Gaeta ML, de Araujo Mariath JE, Margis R, Margis-Pinheiro M. The mitochondrial glutathione peroxidase GPX3 is essential for H2O2 homeostasis and root and shoot development in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 208:93-101. [PMID: 23683934 DOI: 10.1016/j.plantsci.2013.03.017] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 03/11/2013] [Accepted: 03/17/2013] [Indexed: 05/23/2023]
Abstract
Glutathione (GSH) peroxidases (GPXs: EC 1.11.1.9 and EC1.11.1.12) are non-heme thiol peroxidases that catalyze the reduction of H2O2 or organic hydroperoxides to water, and they have been identified in almost all kingdoms of life. The rice glutathione peroxidase (OsGPX) gene family is comprised of 5 members spread throughout a range of sub cellular compartments. The OsGPX gene family is induced in response to exogenous H2O2 and cold stress. In contrast, they are down regulated in response to drought and UV-B light treatments. Transgenic rice plants have been generated that lack mitochondrial OsGPX3. These GPX3s plants showed shorter roots and shoots compared to non-transformed (NT) plants, and higher amounts of H2O2 mitochondrial release were observed in the roots of these plants cultivated under normal conditions. This accumulation of H2O2 is positively associated with shorter root length in GPX3s plants compared to NT ones. Moreover, GPX3 promoter analysis indicated that it is mainly expressed in root tissue. These results suggest that silencing the mitochondrial OsGPX3 gene impairs normal plant development and leads to a stress-induced morphogenic response via H2O2 accumulation.
Collapse
Affiliation(s)
- Gisele Passaia
- Department of Genetics, Federal University of Rio Grande do Sul, RS, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Yuan HM, Xu HH, Liu WC, Lu YT. Copper regulates primary root elongation through PIN1-mediated auxin redistribution. PLANT & CELL PHYSIOLOGY 2013; 54:766-78. [PMID: 23396597 DOI: 10.1093/pcp/pct030] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The heavy metal copper (Cu) is an essential microelement required for normal plant growth and development, but it inhibits primary root growth when in excess. The mechanism underlying how excess Cu functions in this process remains to be further elucidated. Here, we report that a higher concentration of CuSO4 inhibited primary root elongation of Arabidopsis seedlings by affecting both the elongation and meristem zones. In the meristem zone, meristematic cell division potential was reduced by excess Cu. Further experiments showed that Cu can modulate auxin distribution, resulting in higher auxin activities in both the elongation and meristem zones of Cu-treated roots based on DR5::GUS expression patterns. This Cu-mediated auxin redistribution was shown to be responsible for Cu-mediated inhibition of primary root elongation. Additional genetic and physiological data demonstrated that it was PINFORMED1 (PIN1), but not PIN2 or AUXIN1 (AUX1), that regulated this process. However, Cu-induced hydrogen peroxide accumulation did not contribute to Cu-induced auxin redistribution for inhibition of root elongation. When the possible role of ethylene in this process was analyzed, Cu had a similar impact on the root elongation of both the wild type and the ein2-1 mutant, implying that Cu-mediated inhibition of primary root elongation was not due to the ethylene signaling pathway.
Collapse
Affiliation(s)
- Hong-Mei Yuan
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | | | | | | |
Collapse
|
90
|
Nie WF, Wang MM, Xia XJ, Zhou YH, Shi K, Chen Z, Yu JQ. Silencing of tomato RBOH1 and MPK2 abolishes brassinosteroid-induced H₂O₂ generation and stress tolerance. PLANT, CELL & ENVIRONMENT 2013; 36:789-803. [PMID: 22994632 DOI: 10.1111/pce.12014] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Brassinosteroids (BRs) are involved in the regulation of plant growth, development and stress responses. While the signalling pathways for BR-regulated plant growth and development are well studied, the mechanisms by which BRs regulate plant stress tolerance remain largely unclear. Here we showed that 24-epibrassinolide (EBR), which induced tolerance to oxidative and heat stress in tomato, was also capable of elevating the transcript levels of RBOH1, MPK1 and MPK2, increasing apoplastic H2 O2 accumulation, and enhancing activation of MPK1/2. Virus-induced gene silencing of RBOH1, MPK1, MPK2 and MPK1/2 resulted in reduced stress tolerance. Silencing of RBOH1 had no effect on the transcripts of MPK1 and MPK2 but inhibited MPK1/2 activation and H2 O2 accumulation. Silencing of either MPK1 or MPK2, on the other hand, reduced RBOH1 transcript, H2 O2 accumulation and MPK1/2 activity. BR-induced tolerance and MPK1/2 activation were compromised in RBOH1-, MPK2- and MPK1/2-silenced plants but not in MPK1-silenced plants. These results suggested that MPK2 played a more critical role than MPK1 in EBR-induced apoplastic H2 O2 accumulation. RBOH1, MPK1 and MPK2 were involved in the stress tolerance and BR-induced stress tolerance likely involved a positive feedback loop among RBOH1, H2 O2 and MPK2, leading to sustained apoplastic accumulation of H2 O2 and related signalling processes.
Collapse
Affiliation(s)
- Wen-Feng Nie
- Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | | | | | | | | | | | | |
Collapse
|
91
|
Jiang YP, Cheng F, Zhou YH, Xia XJ, Mao WH, Shi K, Chen ZX, Yu JQ. Hydrogen peroxide functions as a secondary messenger for brassinosteroids-induced CO2 assimilation and carbohydrate metabolism in Cucumis sativus. J Zhejiang Univ Sci B 2013; 13:811-23. [PMID: 23024048 DOI: 10.1631/jzus.b1200130] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Brassinosteroids (BRs) are potent regulators of photosynthesis and crop yield in agricultural crops; however, the mechanism by which BRs increase photosynthesis is not fully understood. Here, we show that foliar application of 24-epibrassinolide (EBR) resulted in increases in CO(2) assimilation, hydrogen peroxide (H(2)O(2)) accumulation, and leaf area in cucumber. H(2)O(2) treatment induced increases in CO(2) assimilation whilst inhibition of the H(2)O(2) accumulation by its generation inhibitor or scavenger completely abolished EBR-induced CO(2) assimilation. Increases of light harvesting due to larger leaf areas in EBR- and H(2)O(2)-treated plants were accompanied by increases in the photochemical efficiency of photosystem II (Φ(PSII)) and photochemical quenching coefficient (q(P)). EBR and H(2)O(2) both activated carboxylation efficiency of ribulose-1,5-bisphosphate oxygenase/carboxylase (Rubisco) from analysis of CO(2) response curve and in vitro measurement of Rubisco activities. Moreover, EBR and H(2)O(2) increased contents of total soluble sugar, sucrose, hexose, and starch, followed by enhanced activities of sugar metabolism such as sucrose phosphate synthase, sucrose synthase, and invertase. Interestingly, expression of transcripts of enzymes involved in starch and sugar utilization were inhibited by EBR and H(2)O(2). However, the effects of EBR on carbohydrate metabolisms were reversed by the H(2)O(2) generation inhibitor diphenyleneodonium (DPI) or scavenger dimethylthiourea (DMTU) pretreatment. All of these results indicate that H(2)O(2) functions as a secondary messenger for EBR-induced CO(2) assimilation and carbohydrate metabolism in cucumber plants. Our study confirms that H(2)O(2) mediates the regulation of photosynthesis by BRs and suggests that EBR and H(2)O(2) regulate Calvin cycle and sugar metabolism via redox signaling and thus increase the photosynthetic potential and yield of crops.
Collapse
Affiliation(s)
- Yu-ping Jiang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Drerup MM, Schlücking K, Hashimoto K, Manishankar P, Steinhorst L, Kuchitsu K, Kudla J. The Calcineurin B-like calcium sensors CBL1 and CBL9 together with their interacting protein kinase CIPK26 regulate the Arabidopsis NADPH oxidase RBOHF. MOLECULAR PLANT 2013; 6:559-69. [PMID: 23335733 DOI: 10.1093/mp/sst009] [Citation(s) in RCA: 232] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Stimulus-specific accumulation of second messengers like reactive oxygen species (ROS) and Ca(2+) are central to many signaling and regulation processes in plants. However, mechanisms that govern the reciprocal interrelation of Ca(2+) and ROS signaling are only beginning to emerge. NADPH oxidases of the respiratory burst oxidase homolog (RBOH) family are critical components contributing to the generation of ROS while Calcineurin B-like (CBL) Ca(2+) sensor proteins together with their interacting kinases (CIPKs) have been shown to function in many Ca(2+)- signaling processes. In this study, we identify direct functional interactions between both signaling systems. We report that the CBL-interacting protein kinase CIPK26 specifically interacts with the N-terminal domain of RBOHF in yeast two-hybrid analyses and with the full-length RBOHF protein in plant cells. In addition, CIPK26 phosphorylates RBOHF in vitro and co-expression of either CBL1 or CBL9 with CIPK26 strongly enhances ROS production by RBOHF in HEK293T cells. Together, these findings identify a direct interconnection between CBL-CIPK-mediated Ca(2+) signaling and ROS signaling in plants and provide evidence for a synergistic activation of the NADPH oxidase RBOHF by direct Ca(2+)-binding to its EF-hands and Ca(2+)-induced phosphorylation by CBL1/9-CIPK26 complexes.
Collapse
Affiliation(s)
- Maria Magdalena Drerup
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 4, 48149 Münster, Germany
| | | | | | | | | | | | | |
Collapse
|
93
|
Chen YH, Chao YY, Hsu YY, Kao CH. Heme oxygenase is involved in H(2)O (2)-induced lateral root formation in apocynin-treated rice. PLANT CELL REPORTS 2013; 32:219-26. [PMID: 23076168 DOI: 10.1007/s00299-012-1356-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 09/24/2012] [Accepted: 10/07/2012] [Indexed: 05/04/2023]
Abstract
KEY MESSAGE : Apocynin is a natural organic compound structurally related to vanillin. We demonstrated that hydrogen peroxide and heme oxygenase participated in apocynin-induced lateral root formation in rice. Apocynin, also known as acetovanillone, is a natural organic compound structurally related to vanillin. Information concerning the effect of apocynin on plants is limited. In this study, we examined the effect of apocynin on lateral root (LR) formation in rice. Treatment with apocynin induced LR formation and increased H(2)O(2) production, but had no effect on nitric oxide production. Diphenyleneiodonium chloride, an inhibitor of H(2)O(2) generating NADPH oxidase, was effective in reducing apocynin-induced H(2)O(2) production and LR formation. Apocynin treatment also increased superoxide dismutase activity and decreased catalase activity. H(2)O(2) application was able to increase the number of LRs. Moreover, H(2)O(2) production caused by H(2)O(2) and apocynin was localized in the root area corresponding to the LR emergence. Treatment with H(2)O(2) and apocynin also increased heme oxygenase (HO) activity and induced OsHO1 mRNA expression. Lateral root formation and HO activity induced by H(2)O(2) and apocynin were reduced by Zn protoporphyrin IX (the specific inhibitor of HO). Our data suggest that both H(2)O(2) and HO are required for apocynin-induced LR formation in rice.
Collapse
Affiliation(s)
- Yi-Hsuan Chen
- Department of Agronomy, National Taiwan University, Taipei, Taiwan, ROC
| | | | | | | |
Collapse
|
94
|
Bykova NV, Rampitsch C. Modulating protein function through reversible oxidation: Redox-mediated processes in plants revealed through proteomics. Proteomics 2013. [PMID: 23197359 DOI: 10.1002/pmic.201200270] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
It has been clearly demonstrated that plants redox control can be exerted over virtually every cellular metabolic pathway affecting metabolic homeostasis and energy balance. Therefore, a tight link exists between cellular/compartmental steady-state redox level and cellular metabolism. Proteomics offers a powerful new way to characterize the response and regulation of protein oxidation in different cell types and in relation to cellular metabolism. Compelling evidence revealed in proteomics studies suggests the integration of the redox network with other cellular signaling pathways such as Ca(2+) and/or protein phosphorylation, jasmonic, salicylic, abscisic acids, ethylene, and other phytohormones. Here we review progress in using the various proteomics techniques and approaches to answer biological questions arising from redox signaling and from changes in redox status of the cell. The focus is on reversible redox protein modifications and on three main processes, namely oxidative and nitrosative stress, defense against pathogens, cellular redox response and regulation, drawing on examples from plant redox proteomics studies.
Collapse
Affiliation(s)
- Natalia V Bykova
- Cereal Research Centre, Agriculture and AgriFood Canada, 195 Dafoe Road, Winnipeg, Manitoba, Canada.
| | | |
Collapse
|
95
|
Wassim A, Ichrak BR, Saïda A. Putative role of proteins involved in detoxification of reactive oxygen species in the early response to gravitropic stimulation of poplar stems. PLANT SIGNALING & BEHAVIOR 2013; 8:e22411. [PMID: 23104108 PMCID: PMC3745552 DOI: 10.4161/psb.22411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 09/28/2012] [Accepted: 09/29/2012] [Indexed: 06/01/2023]
Abstract
Gravity perception and gravitropic response are essential for plant development. In herbaceous species it is widely accepted that one of the primary events in gravity perception involves the displacement of amyloplasts within specialized cells. However the signaling cascade leading to stem reorientation is not fully known especially in woody species in which primary and secondary growth occur. Several different second messengers and proteins have been suggested to be involved in signal transduction of gravitropism. Reactive oxygen species (ROS) have been implicated as second messengers in several plant hormone responses. It has been shown that ROS are asymmetrically generated in roots by gravistimulation to regions of reduced growth. Proteins involved in detoxification of ROS and defense were identified by mass spectrometry: i.e., Thioredoxin h (Trx h), CuZn superoxide dismutase (CuZn SOD), ascorbate peroxidase (APX2), oxygen evolving enhancer 1 (OEE1), oxygen evolving enhancer 2 (OEE2), and ATP synthase. These differentially accumulated proteins that correspond to detoxification of ROS were analyzed at the mRNA level. The mRNA levels showed different expression patterns than those of the corresponding proteins, and revealed that transcription levels were not completely concomitant with translation. Our data showed that these proteins may play a role in the early response to gravitropic stimulation.
Collapse
|
96
|
Systemic Photooxidative Stress Signalling. LONG-DISTANCE SYSTEMIC SIGNALING AND COMMUNICATION IN PLANTS 2013. [DOI: 10.1007/978-3-642-36470-9_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
97
|
Liptáková L, Bočová B, Huttová J, Mistrík I, Tamás L. Superoxide production induced by short-term exposure of barley roots to cadmium, auxin, alloxan and sodium dodecyl sulfate. PLANT CELL REPORTS 2012; 31:2189-2197. [PMID: 22890373 DOI: 10.1007/s00299-012-1329-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 07/19/2012] [Accepted: 07/25/2012] [Indexed: 05/28/2023]
Abstract
Abiotic stress-induced superoxide generation depending on its localization, level, duration and presumably also on the action of other signals may lead to different stress responses. The purpose of this study was to analyze the alterations in superoxide generation and morphogenesis following short-term Cd, IAA and alloxan treatments, during stress and recovery period in barley root tips. At low Cd concentration the transient accumulation of superoxide in the epidermal cells was accompanied by root growth inhibition and radial expansion of cortical cells in the elongation zone of root tips. These morphological changes were very similar to the externally applied IAA-induced responses. However, the role of superoxide generated in the epidermal cells by low concentration of Cd and IAA is probably alone not sufficient for the induction of these processes. SDS as an activator of NOX activity caused a strong accumulation of superoxide in the epidermal cells along the whole root apex but without any changes in root morphology and growth. On the other hand, higher Cd concentrations as well as alloxan stimulated the generation of superoxide in the cortical tissue of the elongation zone of root tip, which was accompanied by the induction of cell death. Our results suggest that enhanced superoxide generation, depending on its localization, level, duration and presumably also on the action of other signals, may lead to altered root morphology (15 μM Cd or IAA), root growth inhibition (alloxan), transient root growth cessation (30 μM Cd) or to the death of cells/root at higher (60 μM) Cd concentrations.
Collapse
Affiliation(s)
- L'ubica Liptáková
- Institute of Botany, Slovak Academy of Sciences, Dúbravská cesta 9, 84523 Bratislava, Slovak Republic
| | | | | | | | | |
Collapse
|
98
|
Beguerisse-Dıaz M, Hernández-Gómez MC, Lizzul AM, Barahona M, Desikan R. Compound stress response in stomatal closure: a mathematical model of ABA and ethylene interaction in guard cells. BMC SYSTEMS BIOLOGY 2012; 6:146. [PMID: 23176679 PMCID: PMC3564773 DOI: 10.1186/1752-0509-6-146] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 11/01/2012] [Indexed: 11/10/2022]
Abstract
BACKGROUND Stomata are tiny pores in plant leaves that regulate gas and water exchange between the plant and its environment. Abscisic acid and ethylene are two well-known elicitors of stomatal closure when acting independently. However, when stomata are presented with a combination of both signals, they fail to close. RESULTS Toshed light on this unexplained behaviour, we have collected time course measurements of stomatal aperture and hydrogen peroxide production in Arabidopsis thaliana guard cells treated with abscisic acid, ethylene, and a combination of both. Our experiments show that stomatal closure is linked to sustained high levels of hydrogen peroxide in guard cells. When treated with a combined dose of abscisic acid and ethylene, guard cells exhibit increased antioxidant activity that reduces hydrogen peroxide levels and precludes closure. We construct a simplified model of stomatal closure derived from known biochemical pathways that captures the experimentally observed behaviour. CONCLUSIONS Our experiments and modelling results suggest a distinct role for two antioxidant mechanisms during stomatal closure: a slower, delayed response activated by a single stimulus (abscisic acid 'or' ethylene) and another more rapid 'and' mechanism that is only activated when both stimuli are present. Our model indicates that the presence of this rapid 'and' mechanism in the antioxidant response is key to explain the lack of closure under a combined stimulus.
Collapse
Affiliation(s)
- Mariano Beguerisse-Dıaz
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
- Department of Mathematics, Imperial College London, London, SW7 2AZ, UK
| | | | | | - Mauricio Barahona
- Department of Mathematics, Imperial College London, London, SW7 2AZ, UK
| | - Radhika Desikan
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
99
|
Müller K, Linkies A, Leubner-Metzger G, Kermode AR. Role of a respiratory burst oxidase of Lepidium sativum (cress) seedlings in root development and auxin signalling. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:6325-34. [PMID: 23095998 PMCID: PMC3504488 DOI: 10.1093/jxb/ers284] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Reactive oxygen species are increasingly perceived as players in plant development and plant hormone signalling pathways. One of these species, superoxide, is produced in the apoplast by respiratory burst oxidase homologues (rbohs), a family of proteins that is conserved throughout the plant kingdom. Because of the availability of mutants, the focus of research into plant rbohs has been on Arabidopsis thaliana, mainly on AtrbohD and AtrbohF. This study investigates: (i) a different member of the Atrboh family, AtrbohB, and (ii) several rbohs from the close relative of A. thaliana, Lepidium sativum ('cress'). Five cress rbohs (Lesarbohs) were sequenced and it was found that their expression patterns were similar to their Arabidopsis orthologues throughout the life cycle. Cress plants in which LesarbohB expression was knocked down showed a strong seedling root phenotype that resembles phenotypes associated with defective auxin-related genes. These transgenic plants further displayed altered expression of auxin marker genes including those encoding the auxin responsive proteins 14 and 5 (IAA14 and IAA5), and LBD16 (LATERAL ORGAN BOUNDARIES DOMAIN16), an auxin-responsive protein implicated in lateral root initiation. It is speculated that ROS produced by rbohs play a role in root development via auxin signalling.
Collapse
Affiliation(s)
- Kerstin Müller
- Simon Fraser University, Department of Biological Sciences, 8888 University Drive, Burnaby BC, V5A 1S6, Canada
| | - Ada Linkies
- Albert-Ludwigs-University, Institute for Biology II, Faculty of Biology, University of Freiburg, Schänzlestr. 1, D-79104, Freiburg, Germany
| | - Gerhard Leubner-Metzger
- Albert-Ludwigs-University, Institute for Biology II, Faculty of Biology, University of Freiburg, Schänzlestr. 1, D-79104, Freiburg, Germany
- Royal Holloway, University of London, School of Biological Sciences, Egham, Surrey TW20 0ZX, UK
| | - Allison R. Kermode
- Simon Fraser University, Department of Biological Sciences, 8888 University Drive, Burnaby BC, V5A 1S6, Canada
| |
Collapse
|
100
|
Jiang YP, Cheng F, Zhou YH, Xia XJ, Mao WH, Shi K, Chen ZX, Yu JQ. Hydrogen peroxide functions as a secondary messenger for brassinosteroids-induced CO2 assimilation and carbohydrate metabolism in Cucumis sativus. J Zhejiang Univ Sci B 2012. [PMID: 23024048 DOI: 10.1631/jzus.b120013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Brassinosteroids (BRs) are potent regulators of photosynthesis and crop yield in agricultural crops; however, the mechanism by which BRs increase photosynthesis is not fully understood. Here, we show that foliar application of 24-epibrassinolide (EBR) resulted in increases in CO(2) assimilation, hydrogen peroxide (H(2)O(2)) accumulation, and leaf area in cucumber. H(2)O(2) treatment induced increases in CO(2) assimilation whilst inhibition of the H(2)O(2) accumulation by its generation inhibitor or scavenger completely abolished EBR-induced CO(2) assimilation. Increases of light harvesting due to larger leaf areas in EBR- and H(2)O(2)-treated plants were accompanied by increases in the photochemical efficiency of photosystem II (Φ(PSII)) and photochemical quenching coefficient (q(P)). EBR and H(2)O(2) both activated carboxylation efficiency of ribulose-1,5-bisphosphate oxygenase/carboxylase (Rubisco) from analysis of CO(2) response curve and in vitro measurement of Rubisco activities. Moreover, EBR and H(2)O(2) increased contents of total soluble sugar, sucrose, hexose, and starch, followed by enhanced activities of sugar metabolism such as sucrose phosphate synthase, sucrose synthase, and invertase. Interestingly, expression of transcripts of enzymes involved in starch and sugar utilization were inhibited by EBR and H(2)O(2). However, the effects of EBR on carbohydrate metabolisms were reversed by the H(2)O(2) generation inhibitor diphenyleneodonium (DPI) or scavenger dimethylthiourea (DMTU) pretreatment. All of these results indicate that H(2)O(2) functions as a secondary messenger for EBR-induced CO(2) assimilation and carbohydrate metabolism in cucumber plants. Our study confirms that H(2)O(2) mediates the regulation of photosynthesis by BRs and suggests that EBR and H(2)O(2) regulate Calvin cycle and sugar metabolism via redox signaling and thus increase the photosynthetic potential and yield of crops.
Collapse
Affiliation(s)
- Yu-ping Jiang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|