51
|
Nan GL, Teng C, Fernandes J, O'Connor L, Meyers BC, Walbot V. A cascade of bHLH-regulated pathways programs maize anther development. THE PLANT CELL 2022; 34:1207-1225. [PMID: 35018475 PMCID: PMC8972316 DOI: 10.1093/plcell/koac007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 12/20/2021] [Indexed: 05/15/2023]
Abstract
The spatiotemporal development of somatic tissues of the anther lobe is necessary for successful fertile pollen production. This process is mediated by many transcription factors acting through complex, multi-layered networks. Here, our analysis of functional knockout mutants of interacting basic helix-loop-helix genes Ms23, Ms32, basic helix-loop-helix 122 (bHLH122), and bHLH51 in maize (Zea mays) established that male fertility requires all four genes, expressed sequentially in the tapetum (TP). Not only do they regulate each other, but also they encode proteins that form heterodimers that act collaboratively to guide many cellular processes at specific developmental stages. MS23 is confirmed to be the master factor, as the ms23 mutant showed the earliest developmental defect, cytologically visible in the TP, with the most drastic alterations in premeiotic gene expression observed in ms23 anthers. Notably, the male-sterile ms23, ms32, and bhlh122-1 mutants lack 24-nt phased secondary small interfering RNAs (phasiRNAs) and the precursor transcripts from the corresponding 24-PHAS loci, while the bhlh51-1 mutant has wild-type levels of both precursors and small RNA products. Multiple lines of evidence suggest that 24-nt phasiRNA biogenesis primarily occurs downstream of MS23 and MS32, both of which directly activate Dcl5 and are required for most 24-PHAS transcription, with bHLH122 playing a distinct role in 24-PHAS transcription.
Collapse
Affiliation(s)
- Guo-Ling Nan
- Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Chong Teng
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
| | - John Fernandes
- Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Lily O'Connor
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
- Department of Biology, Washington University, St Louis, Missouri 63130, USA
| | - Blake C Meyers
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
- The Division of Plant Science and Technology, University of Missouri–Columbia, Columbia, Missouri 65211, USA
- Authors for correspondence: (V.W.) and (B.C.M.)
| | - Virginia Walbot
- Department of Biology, Stanford University, Stanford, California 94305, USA
- Authors for correspondence: (V.W.) and (B.C.M.)
| |
Collapse
|
52
|
Lewandowska D, Orr J, Schreiber M, Colas I, Ramsay L, Zhang R, Waugh R. The proteome of developing barley anthers during meiotic prophase I. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1464-1482. [PMID: 34758083 PMCID: PMC8890616 DOI: 10.1093/jxb/erab494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/08/2021] [Indexed: 05/11/2023]
Abstract
Flowering plants reproduce sexually by combining a haploid male and female gametophyte during fertilization. Male gametophytes are localized in the anthers, each containing reproductive (meiocyte) and non-reproductive tissue necessary for anther development and maturation. Meiosis, where chromosomes pair and exchange their genetic material during a process called recombination, is one of the most important and sensitive stages in breeding, ensuring genetic diversity. Most anther development studies have focused on transcript variation, but very few have been correlated with protein abundance. Taking advantage of a recently published barley anther transcriptomic (BAnTr) dataset and a newly developed sensitive mass spectrometry-based approach to analyse the barley anther proteome, we conducted high-resolution mass spectrometry analysis of barley anthers, collected at six time points and representing their development from pre-meiosis to metaphase. Each time point was carefully staged using immunocytology, providing a robust and accurate staging mirroring our previous BAnTr dataset. We identified >6100 non-redundant proteins including 82 known and putative meiotic proteins. Although the protein abundance was relatively stable throughout prophase I, we were able to quantify the dynamic variation of 336 proteins. We present the first quantitative comparative proteomics study of barley anther development during meiotic prophase I when the important process of homologous recombination is taking place.
Collapse
Affiliation(s)
- Dominika Lewandowska
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Jamie Orr
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Miriam Schreiber
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Isabelle Colas
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Luke Ramsay
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Runxuan Zhang
- Information and Computational Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Robbie Waugh
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
- Division of Plant Sciences, University of Dundee, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Waite Research Precinct, Glen Osmond, SA 5064, Australia
- Correspondence:
| |
Collapse
|
53
|
Zhou D, Chen C, Jin Z, Chen J, Lin S, Lyu T, Liu D, Xiong X, Cao J, Huang L. Transcript Profiling Analysis and ncRNAs' Identification of Male-Sterile Systems of Brassica campestris Reveal New Insights Into the Mechanism Underlying Anther and Pollen Development. FRONTIERS IN PLANT SCIENCE 2022; 13:806865. [PMID: 35211139 PMCID: PMC8861278 DOI: 10.3389/fpls.2022.806865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Male-sterile mutants are useful materials to study the anther and pollen development. Here, whole transcriptome sequencing was performed for inflorescences in three sterile lines of Chinese cabbage (Brassica campestris L. ssp. chinensis Makino, syn. B. rapa ssp. chinensis), the genic male-sterile line (A line), the Polima cytoplasmic male-sterile (CMS) line (P line), and the Ogura CMS line (O line) along with their maintainer line (B line). In total, 7,136 differentially expressed genes (DEGs), 361 differentially expressed long non-coding RNAs (lncRNAs) (DELs), 56 differentially expressed microRNAs (miRNAs) (DEMs) were selected out. Specific regulatory networks related to anther cell differentiation, meiosis cytokinesis, pollen wall formation, and tapetum development were constructed based on the abortion characteristics of male-sterile lines. Candidate genes and lncRNAs related to cell differentiation were identified in sporocyteless P line, sixteen of which were common to the DEGs in Arabidopsis spl/nzz mutant. Genes and lncRNAs concerning cell plate formation were selected in A line that is defected in meiosis cytokinesis. Also, the orthologs of pollen wall formation and tapetum development genes in Arabidopsis showed distinct expression patterns in the three different sterile lines. Among 361 DELs, 35 were predicted to interact with miRNAs, including 28 targets, 47 endogenous target mimics, and five precursors for miRNAs. Two lncRNAs were further proved to be functional precursors for bra-miR156 and bra-miR5718, respectively. Overexpression of bra-miR5718HG in B. campestris slowed down the growth of pollen tubes, caused shorter pollen tubes, and ultimately affected the seed set. Our study provides new insights into molecular regulation especially the ncRNA interaction during pollen development in Brassica crops.
Collapse
Affiliation(s)
- Dong Zhou
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Caizhi Chen
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Zongmin Jin
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Jingwen Chen
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Sue Lin
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Tao Lyu
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Dandan Liu
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Xinpeng Xiong
- College of Bioengineering, Jingchu University of Technology, Jingmen, China
| | - Jiashu Cao
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Li Huang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| |
Collapse
|
54
|
Xie DL, Zheng XL, Zhou CY, Kanwar MK, Zhou J. Functions of Redox Signaling in Pollen Development and Stress Response. Antioxidants (Basel) 2022; 11:antiox11020287. [PMID: 35204170 PMCID: PMC8868224 DOI: 10.3390/antiox11020287] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 02/01/2023] Open
Abstract
Cellular redox homeostasis is crucial for normal plant growth and development. Each developmental stage of plants has a specific redox mode and is maintained by various environmental cues, oxidants, and antioxidants. Reactive oxygen species (ROS) and reactive nitrogen species are the chief oxidants in plant cells and participate in cell signal transduction and redox balance. The production and removal of oxidants are in a dynamic balance, which is necessary for plant growth. Especially during reproductive development, pollen development depends on ROS-mediated tapetal programmed cell death to provide nutrients and other essential substances. The deviation of the redox state in any period will lead to microspore abortion and pollen sterility. Meanwhile, pollens are highly sensitive to environmental stress, in particular to cell oxidative burst due to its peculiar structure and function. In this regard, plants have evolved a series of complex mechanisms to deal with redox imbalance and oxidative stress damage. This review summarizes the functions of the main redox components in different stages of pollen development, and highlights various redox protection mechanisms of pollen in response to environmental stimuli. In continuation, we also discuss the potential applications of plant growth regulators and antioxidants for improving pollen vigor and fertility in sustaining better agriculture practices.
Collapse
Affiliation(s)
- Dong-Ling Xie
- Department of Horticulture, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China; (D.-L.X.); (X.-L.Z.); (C.-Y.Z.); (M.K.K.)
| | - Xue-Lian Zheng
- Department of Horticulture, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China; (D.-L.X.); (X.-L.Z.); (C.-Y.Z.); (M.K.K.)
| | - Can-Yu Zhou
- Department of Horticulture, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China; (D.-L.X.); (X.-L.Z.); (C.-Y.Z.); (M.K.K.)
| | - Mukesh Kumar Kanwar
- Department of Horticulture, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China; (D.-L.X.); (X.-L.Z.); (C.-Y.Z.); (M.K.K.)
| | - Jie Zhou
- Department of Horticulture, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China; (D.-L.X.); (X.-L.Z.); (C.-Y.Z.); (M.K.K.)
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Yuhangtang Road 866, Hangzhou 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
- Correspondence:
| |
Collapse
|
55
|
Liu X, Zhang S, Jiang Y, Yan T, Fang C, Hou Q, Wu S, Xie K, An X, Wan X. Use of CRISPR/Cas9-Based Gene Editing to Simultaneously Mutate Multiple Homologous Genes Required for Pollen Development and Male Fertility in Maize. Cells 2022; 11:cells11030439. [PMID: 35159251 PMCID: PMC8834288 DOI: 10.3390/cells11030439] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 12/21/2022] Open
Abstract
Male sterility represents an important trait for hybrid breeding and seed production in crops. Although the genes required for male fertility have been widely studied and characterized in many plant species, most of them are single genic male-sterility (GMS) genes. To investigate the role of multiple homologous genes in anther and pollen developments of maize, we established the CRISPR/Cas9-based gene editing method to simultaneously mutate the homologs in several putative GMS gene families. By using the integrated strategies of multi-gene editing vectors, maize genetic transformation, mutation-site analysis of T0 and F1 plants, and genotyping and phenotyping of F2 progenies, we further confirmed gene functions of every member in ZmTGA9-1/-2/-3 family, and identified the functions of ZmDFR1, ZmDFR2, ZmACOS5-1, and ZmACOS5-2 in controlling maize male fertility. Single and double homozygous gene mutants of ZmTGA9-1/-2/-3 did not affect anther and pollen development, while triple homozygous gene mutant resulted in complete male sterility. Two single-gene mutants of ZmDFR1/2 displayed partial male sterility, but the double-gene mutant showed complete male sterility. Additionally, only the ZmACOS5-2 single gene was required for anther and pollen development, while ZmACOS5-1 had no effect on male fertility. Our results show that the CRISPR/Cas9 gene editing system is a highly efficient and convenient tool for identifying multiple homologous GMS genes. These findings enrich GMS genes and mutant resources for breeding of maize GMS lines and promote deep understanding of the gene family underlying pollen development and male fertility in maize.
Collapse
Affiliation(s)
- Xinze Liu
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing (USTB), Beijing 100024, China; (X.L.); (S.Z.); (Y.J.); (T.Y.); (C.F.); (Q.H.); (S.W.); (K.X.)
| | - Shaowei Zhang
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing (USTB), Beijing 100024, China; (X.L.); (S.Z.); (Y.J.); (T.Y.); (C.F.); (Q.H.); (S.W.); (K.X.)
| | - Yilin Jiang
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing (USTB), Beijing 100024, China; (X.L.); (S.Z.); (Y.J.); (T.Y.); (C.F.); (Q.H.); (S.W.); (K.X.)
| | - Tingwei Yan
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing (USTB), Beijing 100024, China; (X.L.); (S.Z.); (Y.J.); (T.Y.); (C.F.); (Q.H.); (S.W.); (K.X.)
| | - Chaowei Fang
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing (USTB), Beijing 100024, China; (X.L.); (S.Z.); (Y.J.); (T.Y.); (C.F.); (Q.H.); (S.W.); (K.X.)
| | - Quancan Hou
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing (USTB), Beijing 100024, China; (X.L.); (S.Z.); (Y.J.); (T.Y.); (C.F.); (Q.H.); (S.W.); (K.X.)
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co., Ltd., Beijing 100192, China
| | - Suowei Wu
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing (USTB), Beijing 100024, China; (X.L.); (S.Z.); (Y.J.); (T.Y.); (C.F.); (Q.H.); (S.W.); (K.X.)
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co., Ltd., Beijing 100192, China
| | - Ke Xie
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing (USTB), Beijing 100024, China; (X.L.); (S.Z.); (Y.J.); (T.Y.); (C.F.); (Q.H.); (S.W.); (K.X.)
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co., Ltd., Beijing 100192, China
| | - Xueli An
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing (USTB), Beijing 100024, China; (X.L.); (S.Z.); (Y.J.); (T.Y.); (C.F.); (Q.H.); (S.W.); (K.X.)
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co., Ltd., Beijing 100192, China
- Correspondence: (X.A.); (X.W.); Tel.: +86-137-1768-5330 (X.A.); +86-186-0056-1850 (X.W.)
| | - Xiangyuan Wan
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing (USTB), Beijing 100024, China; (X.L.); (S.Z.); (Y.J.); (T.Y.); (C.F.); (Q.H.); (S.W.); (K.X.)
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co., Ltd., Beijing 100192, China
- Correspondence: (X.A.); (X.W.); Tel.: +86-137-1768-5330 (X.A.); +86-186-0056-1850 (X.W.)
| |
Collapse
|
56
|
Hao M, Yang W, Li T, Shoaib M, Sun J, Liu D, Li X, Nie Y, Tian X, Zhang A. Combined Transcriptome and Proteome Analysis of Anthers of AL-type Cytoplasmic Male Sterile Line and Its Maintainer Line Reveals New Insights into Mechanism of Male Sterility in Common Wheat. Front Genet 2022; 12:762332. [PMID: 34976010 PMCID: PMC8718765 DOI: 10.3389/fgene.2021.762332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022] Open
Abstract
Cytoplasmic male sterility (CMS) plays an essential role in hybrid seeds production. In wheat, orf279 was reported as a CMS gene of AL-type male sterile line (AL18A), but its sterility mechanism is still unclear. Therefore, transcriptomic and proteomic analyses of the anthers of AL18A and its maintainer line (AL18B) were performed to interpret the sterility mechanism. Results showed that the electron transport chain and ROS scavenging enzyme expression levels changed in the early stages of the anther development. Biological processes, i.e., fatty acid synthesis, lipid transport, and polysaccharide metabolism, were abnormal, resulting in pollen abortion in AL18A. In addition, we identified several critical regulatory genes related to anther development through combined analysis of transcriptome and proteome. Most of the genes were enzymes or transcription factors, and 63 were partially homologous to the reported genic male sterile (GMS) genes. This study provides a new perspective of the sterility mechanism of AL18A and lays a foundation to study the functional genes of anther development.
Collapse
Affiliation(s)
- Miaomiao Hao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wenlong Yang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tingdong Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Muhammad Shoaib
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jiazhu Sun
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Dongcheng Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Xin Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yingbin Nie
- Institute of Crop Research, Xinjiang Academy of Agri-Reclamation Sciences, Shihezi, China
| | - Xiaoming Tian
- Institute of Crop Research, Xinjiang Academy of Agri-Reclamation Sciences, Shihezi, China
| | - Aimin Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
57
|
Hamza R, Roque E, Gómez-Mena C, Madueño F, Beltrán JP, Cañas LA. PsEND1 Is a Key Player in Pea Pollen Development Through the Modulation of Redox Homeostasis. FRONTIERS IN PLANT SCIENCE 2021; 12:765277. [PMID: 34777450 PMCID: PMC8586548 DOI: 10.3389/fpls.2021.765277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Redox homeostasis has been linked to proper anther and pollen development. Accordingly, plant cells have developed several Reactive Oxygen Species (ROS)-scavenging mechanisms to maintain the redox balance. Hemopexins constitute one of these mechanisms preventing heme-associated oxidative stress in animals, fungi, and plants. Pisum sativum ENDOTHECIUM 1 (PsEND1) is a pea anther-specific gene that encodes a protein containing four hemopexin domains. We report the functional characterization of PsEND1 and the identification in its promoter region of cis-regulatory elements that are essential for the specific expression in anthers. PsEND1 promoter deletion analysis revealed that a putative CArG-like regulatory motif is necessary to confer promoter activity in developing anthers. Our data suggest that PsEND1 might be a hemopexin regulated by a MADS-box protein. PsEND1 gene silencing in pea, and its overexpression in heterologous systems, result in similar defects in the anthers consisting of precocious tapetum degradation and the impairment of pollen development. Such alterations were associated to the production of superoxide anion and altered activity of ROS-scavenging enzymes. Our findings demonstrate that PsEND1 is essential for pollen development by modulating ROS levels during the differentiation of the anther tissues surrounding the microsporocytes.
Collapse
|
58
|
Jiang H, Gu S, Li K, Gai J. Two TGA Transcription Factor Members from Hyper-Susceptible Soybean Exhibiting Significant Basal Resistance to Soybean mosaic virus. Int J Mol Sci 2021; 22:11329. [PMID: 34768757 PMCID: PMC8583413 DOI: 10.3390/ijms222111329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 12/11/2022] Open
Abstract
TGA transcription factors (TFs) exhibit basal resistance in Arabidopsis, but susceptibility to a pathogen attack in tomatoes; however, their roles in soybean (Glycine max) to Soybean mosaic virus (SMV) are unknown. In this study, 27 TGA genes were isolated from a SMV hyper-susceptible soybean NN1138-2, designated GmTGA1~GmTGA27, which were clustered into seven phylogenetic groups. The expression profiles of GmTGAs showed that the highly expressed genes were mainly in Groups I, II, and VII under non-induction conditions, while out of the 27 GmTGAs, 19 responded to SMV-induction. Interestingly, in further transient N. benthamiana-SMV pathosystem assay, all the 19 GmTGAs overexpressed did not promote SMV infection in inoculated leaves, but they exhibited basal resistance except one without function. Among the 18 functional ones, GmTGA8 and GmTGA19, with similar motif distribution, nuclear localization sequence and interaction proteins, showed a rapid response to SMV infection and performed better than the others in inhibiting SMV multiplication. This finding suggested that GmTGA TFs may support basal resistance to SMV even from a hyper-susceptible source. What the mechanism of the genes (GmTGA8, GmTGA19, etc.) with basal resistance to SMV is and what their potential for the future improvement of resistance to SMV in soybeans is, are to be explored.
Collapse
Affiliation(s)
- Hua Jiang
- Soybean Research Institute, Nanjing Agricultural University, Nanjing 210095, China; (H.J.); (S.G.); (K.L.)
- MOA National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China
- MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Shengyu Gu
- Soybean Research Institute, Nanjing Agricultural University, Nanjing 210095, China; (H.J.); (S.G.); (K.L.)
- MOA National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China
- MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Kai Li
- Soybean Research Institute, Nanjing Agricultural University, Nanjing 210095, China; (H.J.); (S.G.); (K.L.)
- MOA National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China
- MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Junyi Gai
- Soybean Research Institute, Nanjing Agricultural University, Nanjing 210095, China; (H.J.); (S.G.); (K.L.)
- MOA National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China
- MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
59
|
Jiang Y, An X, Li Z, Yan T, Zhu T, Xie K, Liu S, Hou Q, Zhao L, Wu S, Liu X, Zhang S, He W, Li F, Li J, Wan X. CRISPR/Cas9-based discovery of maize transcription factors regulating male sterility and their functional conservation in plants. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1769-1784. [PMID: 33772993 PMCID: PMC8428822 DOI: 10.1111/pbi.13590] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/09/2021] [Accepted: 03/17/2021] [Indexed: 05/12/2023]
Abstract
Identifying genic male-sterility (GMS) genes and elucidating their roles are important to unveil plant male reproduction and promote their application in crop breeding. However, compared with Arabidopsis and rice, relatively fewer maize GMS genes have been discovered and little is known about their regulatory pathways underlying anther and pollen development. Here, by sequencing and analysing anther transcriptomes at 11 developmental stages in maize B73, Zheng58 and M6007 inbred lines, 1100 transcription factor (TF) genes were identified to be stably differentially expressed among different developmental stages. Among them, 14 maize TF genes (9 types belonging to five TF families) were selected and performed CRISPR/Cas9-mediated gene mutagenesis, and then, 12 genes in eight types, including ZmbHLH51, ZmbHLH122, ZmTGA9-1/-2/-3, ZmTGA10, ZmMYB84, ZmMYB33-1/-2, ZmPHD11 and ZmLBD10/27, were identified as maize new GMS genes by using DNA sequencing, phenotypic and cytological analyses. Notably, ZmTGA9-1/-2/-3 triple-gene mutants and ZmMYB33-1/-2 double-gene mutants displayed complete male sterility, but their double- or single-gene mutants showed male fertility. Similarly, ZmLBD10/27 double-gene mutant displayed partial male sterility with 32.18% of aborted pollen grains. In addition, ZmbHLH51 was transcriptionally activated by ZmbHLH122 and their proteins were physically interacted. Molecular markers co-segregating with these GMS mutations were developed to facilitate their application in maize breeding. Finally, all 14-type maize GMS TF genes identified here and reported previously were compared on functional conservation and diversification among maize, rice and Arabidopsis. These findings enrich GMS gene and mutant resources for deeply understanding the regulatory network underlying male fertility and for creating male-sterility lines in maize.
Collapse
Affiliation(s)
- Yilin Jiang
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTBUniversity of Science and Technology Beijing (USTB)BeijingChina
| | - Xueli An
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTBUniversity of Science and Technology Beijing (USTB)BeijingChina
- Beijing Engineering Laboratory of Main Crop Bio‐Tech BreedingBeijing International Science and Technology Cooperation Base of Bio‐Tech BreedingBeijing Solidwill Sci‐Tech Co. LtdBeijingChina
| | - Ziwen Li
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTBUniversity of Science and Technology Beijing (USTB)BeijingChina
- Beijing Engineering Laboratory of Main Crop Bio‐Tech BreedingBeijing International Science and Technology Cooperation Base of Bio‐Tech BreedingBeijing Solidwill Sci‐Tech Co. LtdBeijingChina
| | - Tingwei Yan
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTBUniversity of Science and Technology Beijing (USTB)BeijingChina
| | - Taotao Zhu
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTBUniversity of Science and Technology Beijing (USTB)BeijingChina
| | - Ke Xie
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTBUniversity of Science and Technology Beijing (USTB)BeijingChina
- Beijing Engineering Laboratory of Main Crop Bio‐Tech BreedingBeijing International Science and Technology Cooperation Base of Bio‐Tech BreedingBeijing Solidwill Sci‐Tech Co. LtdBeijingChina
| | - Shuangshuang Liu
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTBUniversity of Science and Technology Beijing (USTB)BeijingChina
- Beijing Engineering Laboratory of Main Crop Bio‐Tech BreedingBeijing International Science and Technology Cooperation Base of Bio‐Tech BreedingBeijing Solidwill Sci‐Tech Co. LtdBeijingChina
| | - Quancan Hou
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTBUniversity of Science and Technology Beijing (USTB)BeijingChina
- Beijing Engineering Laboratory of Main Crop Bio‐Tech BreedingBeijing International Science and Technology Cooperation Base of Bio‐Tech BreedingBeijing Solidwill Sci‐Tech Co. LtdBeijingChina
| | - Lina Zhao
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTBUniversity of Science and Technology Beijing (USTB)BeijingChina
- Beijing Engineering Laboratory of Main Crop Bio‐Tech BreedingBeijing International Science and Technology Cooperation Base of Bio‐Tech BreedingBeijing Solidwill Sci‐Tech Co. LtdBeijingChina
| | - Suowei Wu
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTBUniversity of Science and Technology Beijing (USTB)BeijingChina
- Beijing Engineering Laboratory of Main Crop Bio‐Tech BreedingBeijing International Science and Technology Cooperation Base of Bio‐Tech BreedingBeijing Solidwill Sci‐Tech Co. LtdBeijingChina
| | - Xinze Liu
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTBUniversity of Science and Technology Beijing (USTB)BeijingChina
| | - Shaowei Zhang
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTBUniversity of Science and Technology Beijing (USTB)BeijingChina
| | - Wei He
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTBUniversity of Science and Technology Beijing (USTB)BeijingChina
| | - Fan Li
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTBUniversity of Science and Technology Beijing (USTB)BeijingChina
| | - Jinping Li
- Beijing Engineering Laboratory of Main Crop Bio‐Tech BreedingBeijing International Science and Technology Cooperation Base of Bio‐Tech BreedingBeijing Solidwill Sci‐Tech Co. LtdBeijingChina
| | - Xiangyuan Wan
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTBUniversity of Science and Technology Beijing (USTB)BeijingChina
- Beijing Engineering Laboratory of Main Crop Bio‐Tech BreedingBeijing International Science and Technology Cooperation Base of Bio‐Tech BreedingBeijing Solidwill Sci‐Tech Co. LtdBeijingChina
| |
Collapse
|
60
|
Hao J, Wang D, Wu Y, Huang K, Duan P, Li N, Xu R, Zeng D, Dong G, Zhang B, Zhang L, Inzé D, Qian Q, Li Y. The GW2-WG1-OsbZIP47 pathway controls grain size and weight in rice. MOLECULAR PLANT 2021; 14:1266-1280. [PMID: 33930509 DOI: 10.1016/j.molp.2021.04.011] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 03/05/2021] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
Regulation of seed size is a key strategy for improving crop yield and is also a basic biological question. However, the molecular mechanisms by which plants determine their seed size remain elusive. Here, we report that the GW2-WG1-OsbZIP47 regulatory module controls grain width and weight in rice. WG1, which encodes a glutaredoxin protein, promotes grain growth by increasing cell proliferation. Interestingly, WG1 interacts with the transcription factor OsbZIP47 and represses its transcriptional activity by associating with the transcriptional co-repressor ASP1, indicating that WG1 may act as an adaptor protein to recruit the transcriptional co-repressor. In contrary, OsbZIP47 restricts grain growth by decreasing cell proliferation. Further studies reveal that the E3 ubiquitin ligase GW2 ubiquitinates WG1 and targets it for degradation. Genetic analyses confirm that GW2, WG1, and OsbZIP47 function in a common pathway to control grain growth. Taken together, our findings reveal a genetic and molecular framework for the control of grain size and weight by the GW2-WG1-OsbZIP47 regulatory module, providing new targets for improving seed size and weight in crops.
Collapse
Affiliation(s)
- Jianqin Hao
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Dekai Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yingbao Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Ke Huang
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Penggen Duan
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Na Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Ran Xu
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Dali Zeng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Guojun Dong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Baolan Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Limin Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Dirk Inzé
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Yunhai Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| |
Collapse
|
61
|
Ferguson JN, Tidy AC, Murchie EH, Wilson ZA. The potential of resilient carbon dynamics for stabilizing crop reproductive development and productivity during heat stress. PLANT, CELL & ENVIRONMENT 2021; 44:2066-2089. [PMID: 33538010 DOI: 10.1111/pce.14015] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 05/20/2023]
Abstract
Impaired carbon metabolism and reproductive development constrain crop productivity during heat stress. Reproductive development is energy intensive, and its requirement for respiratory substrates rises as associated metabolism increases with temperature. Understanding how these processes are integrated and the extent to which they contribute to the maintenance of yield during and following periods of elevated temperatures is important for developing climate-resilient crops. Recent studies are beginning to demonstrate links between processes underlying carbon dynamics and reproduction during heat stress, consequently a summation of research that has been reported thus far and an evaluation of purported associations are needed to guide and stimulate future research. To this end, we review recent studies relating to source-sink dynamics, non-foliar photosynthesis and net carbon gain as pivotal in understanding how to improve reproductive development and crop productivity during heat stress. Rapid and precise phenotyping during narrow phenological windows will be important for understanding mechanisms underlying these processes, thus we discuss the development of relevant high-throughput phenotyping approaches that will allow for more informed decision-making regarding future crop improvement.
Collapse
Affiliation(s)
- John N Ferguson
- Division of Plant & Crop Science, University of Nottingham, Leicestershire, UK
- Future Food Beacon of Excellence, School of Biosciences, University of Nottingham, Leicestershire, UK
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Alison C Tidy
- Division of Plant & Crop Science, University of Nottingham, Leicestershire, UK
| | - Erik H Murchie
- Division of Plant & Crop Science, University of Nottingham, Leicestershire, UK
| | - Zoe A Wilson
- Division of Plant & Crop Science, University of Nottingham, Leicestershire, UK
| |
Collapse
|
62
|
Safi A, Medici A, Szponarski W, Martin F, Clément-Vidal A, Marshall-Colon A, Ruffel S, Gaymard F, Rouached H, Leclercq J, Coruzzi G, Lacombe B, Krouk G. GARP transcription factors repress Arabidopsis nitrogen starvation response via ROS-dependent and -independent pathways. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3881-3901. [PMID: 33758916 PMCID: PMC8096604 DOI: 10.1093/jxb/erab114] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/22/2021] [Indexed: 05/04/2023]
Abstract
Plants need to cope with strong variations of nitrogen availability in the soil. Although many molecular players are being discovered concerning how plants perceive NO3- provision, it is less clear how plants recognize a lack of nitrogen. Following nitrogen removal, plants activate their nitrogen starvation response (NSR), which is characterized by the activation of very high-affinity nitrate transport systems (NRT2.4 and NRT2.5) and other sentinel genes involved in N remobilization such as GDH3. Using a combination of functional genomics via transcription factor perturbation and molecular physiology studies, we show that the transcription factors belonging to the HHO subfamily are important regulators of NSR through two potential mechanisms. First, HHOs directly repress the high-affinity nitrate transporters, NRT2.4 and NRT2.5. hho mutants display increased high-affinity nitrate transport activity, opening up promising perspectives for biotechnological applications. Second, we show that reactive oxygen species (ROS) are important to control NSR in wild-type plants and that HRS1 and HHO1 overexpressors and mutants are affected in their ROS content, defining a potential feed-forward branch of the signaling pathway. Taken together, our results define the relationships of two types of molecular players controlling the NSR, namely ROS and the HHO transcription factors. This work (i) up opens perspectives on a poorly understood nutrient-related signaling pathway and (ii) defines targets for molecular breeding of plants with enhanced NO3- uptake.
Collapse
Affiliation(s)
- Alaeddine Safi
- BPMP, Univ Montpellier, CNRS, INRA, SupAgro, Montpellier, France
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Correspondence: or
| | - Anna Medici
- BPMP, Univ Montpellier, CNRS, INRA, SupAgro, Montpellier, France
| | | | - Florence Martin
- CIRAD, AGAP Institut, Montpellier, France
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Anne Clément-Vidal
- CIRAD, AGAP Institut, Montpellier, France
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Amy Marshall-Colon
- New York University, Department of Biology, Center for Genomics & Systems Biology, New York, NY, USA
- Present address: Department of Plant Biology, University of Illinois at Urbana -Champaign, Urbana, IL, USA
| | - Sandrine Ruffel
- BPMP, Univ Montpellier, CNRS, INRA, SupAgro, Montpellier, France
| | - Frédéric Gaymard
- BPMP, Univ Montpellier, CNRS, INRA, SupAgro, Montpellier, France
| | - Hatem Rouached
- BPMP, Univ Montpellier, CNRS, INRA, SupAgro, Montpellier, France
- Department of Plant, Soil, and Microbial Sciences, and Plant Resilience Institute, Michigan State University, East Lansing, MI, USA
| | - Julie Leclercq
- CIRAD, AGAP Institut, Montpellier, France
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Gloria Coruzzi
- New York University, Department of Biology, Center for Genomics & Systems Biology, New York, NY, USA
| | - Benoît Lacombe
- BPMP, Univ Montpellier, CNRS, INRA, SupAgro, Montpellier, France
| | - Gabriel Krouk
- BPMP, Univ Montpellier, CNRS, INRA, SupAgro, Montpellier, France
- Correspondence: or
| |
Collapse
|
63
|
Zhao K, Chen S, Yao W, Cheng Z, Zhou B, Jiang T. Genome-wide analysis and expression profile of the bZIP gene family in poplar. BMC PLANT BIOLOGY 2021; 21:122. [PMID: 33648455 PMCID: PMC7919096 DOI: 10.1186/s12870-021-02879-w] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/04/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND The bZIP gene family, which is widely present in plants, participates in varied biological processes including growth and development and stress responses. How do the genes regulate such biological processes? Systems biology is powerful for mechanistic understanding of gene functions. However, such studies have not yet been reported in poplar. RESULTS In this study, we identified 86 poplar bZIP transcription factors and described their conserved domains. According to the results of phylogenetic tree, we divided these members into 12 groups with specific gene structures and motif compositions. The corresponding genes that harbor a large number of segmental duplication events are unevenly distributed on the 17 poplar chromosomes. In addition, we further examined collinearity between these genes and the related genes from six other species. Evidence from transcriptomic data indicated that the bZIP genes in poplar displayed different expression patterns in roots, stems, and leaves. Furthermore, we identified 45 bZIP genes that respond to salt stress in the three tissues. We performed co-expression analysis on the representative genes, followed by gene set enrichment analysis. The results demonstrated that tissue differentially expressed genes, especially the co-expressing genes, are mainly involved in secondary metabolic and secondary metabolite biosynthetic processes. However, salt stress responsive genes and their co-expressing genes mainly participate in the regulation of metal ion transport, and methionine biosynthetic. CONCLUSIONS Using comparative genomics and systems biology approaches, we, for the first time, systematically explore the structures and functions of the bZIP gene family in poplar. It appears that the bZIP gene family plays significant roles in regulation of poplar development and growth and salt stress responses through differential gene networks or biological processes. These findings provide the foundation for genetic breeding by engineering target regulators and corresponding gene networks into poplar lines.
Collapse
Affiliation(s)
- Kai Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin, 150040, China
| | - Song Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin, 150040, China
| | - Wenjing Yao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin, 150040, China
- Co-Innovation Center for Sustainable Forestry in Southern China/Bamboo Research Institute, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Zihan Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin, 150040, China
| | - Boru Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin, 150040, China.
| | - Tingbo Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin, 150040, China.
| |
Collapse
|
64
|
Dukowic-Schulze S, van der Linde K. Oxygen, secreted proteins and small RNAs: mobile elements that govern anther development. PLANT REPRODUCTION 2021; 34:1-19. [PMID: 33492519 PMCID: PMC7902584 DOI: 10.1007/s00497-020-00401-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/24/2020] [Indexed: 05/24/2023]
Abstract
Correct anther development is essential for male fertility and subsequently agricultural yield. Defects in anther development range from the early stage of stamen formation until the late stage of tapetum degeneration. In particular, the specification of the four distinct somatic layers and the inner sporogenous cells need perfect orchestration relying on precise cell-cell communication. Up to now, several signals, which coordinate the anther´s developmental program, have been identified. Among the known signals are phytohormones, environmental conditions sensed via glutaredoxins, several receptor-like kinases triggered by ligands like MAC1, and small RNAs such as miRNAs and the monocot-prevalent reproductive phasiRNAs. Rather than giving a full review on anther development, here we discuss anther development with an emphasis on mobile elements like ROS/oxygen, secreted proteins and small RNAs (only briefly touching on phytohormones), how they might act and interact, and what the future of this research area might reveal.
Collapse
Affiliation(s)
- Stefanie Dukowic-Schulze
- Department of Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany.
| | - Karina van der Linde
- Department of Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
65
|
Insight into the bZIP Gene Family in Solanum tuberosum: Genome and Transcriptome Analysis to Understand the Roles of Gene Diversification in Spatiotemporal Gene Expression and Function. Int J Mol Sci 2020; 22:ijms22010253. [PMID: 33383823 PMCID: PMC7796262 DOI: 10.3390/ijms22010253] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/18/2022] Open
Abstract
The basic region-leucine zipper (bZIP) transcription factors (TFs) form homodimers and heterodimers via the coil–coil region. The bZIP dimerization network influences gene expression across plant development and in response to a range of environmental stresses. The recent release of the most comprehensive potato reference genome was used to identify 80 StbZIP genes and to characterize their gene structure, phylogenetic relationships, and gene expression profiles. The StbZIP genes have undergone 22 segmental and one tandem duplication events. Ka/Ks analysis suggested that most duplications experienced purifying selection. Amino acid sequence alignments and phylogenetic comparisons made with the Arabidopsis bZIP family were used to assign the StbZIP genes to functional groups based on the Arabidopsis orthologs. The patterns of introns and exons were conserved within the assigned functional groups which are supportive of the phylogeny and evidence of a common progenitor. Inspection of the leucine repeat heptads within the bZIP domains identified a pattern of attractive pairs favoring homodimerization, and repulsive pairs favoring heterodimerization. These patterns of attractive and repulsive heptads were similar within each functional group for Arabidopsis and S. tuberosum orthologs. High-throughput RNA-seq data indicated the most highly expressed and repressed genes that might play significant roles in tissue growth and development, abiotic stress response, and response to pathogens including Potato virus X. These data provide useful information for further functional analysis of the StbZIP gene family and their potential applications in crop improvement.
Collapse
|
66
|
Li N, Meng Z, Tao M, Wang Y, Zhang Y, Li S, Gao W, Deng C. Comparative transcriptome analysis of male and female flowers in Spinacia oleracea L. BMC Genomics 2020; 21:850. [PMID: 33256615 PMCID: PMC7708156 DOI: 10.1186/s12864-020-07277-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/24/2020] [Indexed: 12/30/2022] Open
Abstract
Background Dioecious spinach (Spinacia oleracea L.), a commercial and nutritional vegetable crop, serves as a model for studying the mechanisms of sex determination and differentiation in plants. However, this mechanism is still unclear. Herein, based on PacBio Iso-seq and Illumina RNA-seq data, comparative transcriptome analysis of male and female flowers were performed to explore the sex differentiation mechanism in spinach. Results Compared with published genome of spinach, 10,800 transcripts were newly annotated; alternative splicing, alternative polyadenylation and lncRNA were analyzed for the first time, increasing the diversity of spinach transcriptome. A total of 2965 differentially expressed genes were identified between female and male flowers at three early development stages. The differential expression of RNA splicing-related genes, polyadenylation-related genes and lncRNAs suggested the involvement of alternative splicing, alternative polyadenylation and lncRNA in sex differentiation. Moreover, 1946 male-biased genes and 961 female-biased genes were found and several candidate genes related to gender development were identified, providing new clues to reveal the mechanism of sex differentiation. In addition, weighted gene co-expression network analysis showed that auxin and gibberellin were the common crucial factors in regulating female or male flower development; however, the closely co-expressed genes of these two factors were different between male and female flower, which may result in spinach sex differentiation. Conclusions In this study, 10,800 transcripts were newly annotated, and the alternative splicing, alternative polyadenylation and long-noncoding RNA were comprehensively analyzed for the first time in spinach, providing valuable information for functional genome study. Moreover, candidate genes related to gender development were identified, shedding new insight on studying the mechanism of sex determination and differentiation in plant. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07277-4.
Collapse
Affiliation(s)
- Ning Li
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Ziwei Meng
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Minjie Tao
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Yueyuan Wang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Yulan Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Shufen Li
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Wujun Gao
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Chuanliang Deng
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|
67
|
Zhang Y, Gao W, Li H, Wang Y, Li D, Xue C, Liu Z, Liu M, Zhao J. Genome-wide analysis of the bZIP gene family in Chinese jujube (Ziziphus jujuba Mill.). BMC Genomics 2020; 21:483. [PMID: 32664853 PMCID: PMC7362662 DOI: 10.1186/s12864-020-06890-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 07/07/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Among several TF families unique to eukaryotes, the basic leucine zipper (bZIP) family is one of the most important. Chinese jujube (Ziziphus jujuba Mill.) is a popular fruit tree species in Asia, and its fruits are rich in sugar, vitamin C and so on. Analysis of the bZIP gene family of jujube has not yet been reported. In this study, ZjbZIPs were identified firstly, their expression patterns were further studied in different tissues and in response to various abiotic and phytoplasma stresses, and their protein-protein interactions were also analyzed. RESULTS At the whole genome level, 45 ZjbZIPs were identified and classified into 14 classes. The members of each class of bZIP subfamily contain a specific conserved domain in addition to the core bZIP conserved domain, which may be related to its biological function. Relative Synonymous Codon Usage (RSCU) analysis displayed low values of NTA and NCG codons in ZjbZIPs, which would be beneficial to increase the protein production and also indicated that ZjbZIPs were at a relative high methylation level. The paralogous and orthologous events occurred during the evolutionary process of ZjbZIPs. Thirty-four ZjbZIPs were mapped to but not evenly distributed among 10 pseudo- chromosomes. 30 of ZjbZIP genes showed diverse tissue-specific expression in jujube and wild jujube trees, indicating that these genes may have multiple functions. Some ZjbZIP genes were specifically analyzed and found to play important roles in the early stage of fruit development. Moreover, some ZjbZIPs that respond to phytoplasma invasion and abiotic stress environmental conditions, such as salt and low temperature, were found. Based on homology comparisons, prediction analysis and yeast two-hybrid, a protein interaction network including 42 ZjbZIPs was constructed. CONCLUSIONS The bioinformatics analyses of 45 ZjbZIPs were implemented systematically, and their expression profiles in jujube and wild jujube showed that many genes might play crucial roles during fruit ripening and in the response to phytoplasma and abiotic stresses. The protein interaction networks among ZjbZIPs could provide useful information for further functional studies.
Collapse
Affiliation(s)
- Yao Zhang
- College of Life Science, Hebei Agricultural University, Baoding, China.,Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
| | - Weilin Gao
- College of Life Science, Hebei Agricultural University, Baoding, China.,Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
| | - Hongtai Li
- College of Life Science, Hebei Agricultural University, Baoding, China.,Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
| | - Yongkang Wang
- Pomology Institute, Shanxi Academy of Agricultural Sciences, Taigu, China
| | - Dengke Li
- Pomology Institute, Shanxi Academy of Agricultural Sciences, Taigu, China
| | - Chaoling Xue
- College of Life Science, Hebei Agricultural University, Baoding, China.,Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
| | - Zhiguo Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, China
| | - Mengjun Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, China
| | - Jin Zhao
- College of Life Science, Hebei Agricultural University, Baoding, China. .,Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China.
| |
Collapse
|
68
|
Abstract
The laurel family within the Magnoliids has attracted attentions owing to its scents, variable inflorescences, and controversial phylogenetic position. Here, we present a chromosome-level assembly of the Litsea cubeba genome, together with low-coverage genomic and transcriptomic data for many other Lauraceae. Phylogenomic analyses show phylogenetic discordance at the position of Magnoliids, suggesting incomplete lineage sorting during the divergence of monocots, eudicots, and Magnoliids. An ancient whole-genome duplication (WGD) event occurred just before the divergence of Laurales and Magnoliales; subsequently, independent WGDs occurred almost simultaneously in the three Lauralean lineages. The phylogenetic relationships within Lauraceae correspond to the divergence of inflorescences, as evidenced by the phylogeny of FUWA, a conserved gene involved in determining panicle architecture in Lauraceae. Monoterpene synthases responsible for production of specific volatile compounds in Lauraceae are functionally verified. Our work sheds light on the evolution of the Lauraceae, the genetic basis for floral evolution and specific scents. Litsea cubeba belongs to the Lauraceae family within the Magnoliids clade. Here, the authors assemble its genome and reveal divergence of inflorescence and sexual differentiation, the phylogenetic relationships across the Lauraceae and related species, and biosynthetic genes related to essential oil synthesis.
Collapse
|
69
|
Tan Y, Barnbrook M, Wilson Y, Molnár A, Bukys A, Hudson A. Shared Mutations in a Novel Glutaredoxin Repressor of Multicellular Trichome Fate Underlie Parallel Evolution of Antirrhinum Species. Curr Biol 2020; 30:1357-1366.e4. [DOI: 10.1016/j.cub.2020.01.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/25/2019] [Accepted: 01/17/2020] [Indexed: 01/24/2023]
|
70
|
Choudhary A, Kumar A, Kaur N. ROS and oxidative burst: Roots in plant development. PLANT DIVERSITY 2020; 42:33-43. [PMID: 32140635 PMCID: PMC7046507 DOI: 10.1016/j.pld.2019.10.002] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 09/02/2019] [Accepted: 10/10/2019] [Indexed: 05/03/2023]
Abstract
Reactive oxygen species (ROS) are widely generated in various redox reactions in plants. In earlier studies, ROS were considered toxic byproducts of aerobic metabolism. In recent years, it has become clear that ROS act as plant signaling molecules that participate in various processes such as growth and development. Several studies have elucidated the roles of ROS from seed germination to senescence. However, there is much to discover about the diverse roles of ROS as signaling molecules and their mechanisms of sensing and response. ROS may provide possible benefits to plant physiological processes by supporting cellular proliferation in cells that maintain basal levels prior to oxidative effects. Although ROS are largely perceived as either negative by-products of aerobic metabolism or makers for plant stress, elucidating the range of functions that ROS play in growth and development still require attention.
Collapse
|
71
|
Lei X, Liu B. Tapetum-Dependent Male Meiosis Progression in Plants: Increasing Evidence Emerges. FRONTIERS IN PLANT SCIENCE 2020; 10:1667. [PMID: 32010157 PMCID: PMC6979054 DOI: 10.3389/fpls.2019.01667] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/27/2019] [Indexed: 05/28/2023]
Abstract
In higher plants, male meiosis is a key process during microsporogenesis and is crucial for male fertility and seed set. Meiosis involves a highly dynamic organization of chromosomes and cytoskeleton and specifically takes place within sexual cells. However, studies in multiple plant species have suggested that the normal development of tapetum, the somatic cell layer surrounding the developing male meiocytes, is indispensable for the completion of the male meiotic cell cycle. Disrupted tapetum development causes alterations in the expression of a large range of genes involved in male reproduction. Moreover, recent experiments suggest that small RNAs (sRNAs) present in the anthers, including microRNAs (miRNAs) and phased, secondary, small interfering RNAs (phasiRNAs), play a potential but important role in controlling male meiosis, either by influencing the expression of meiotic genes in the meiocytes or through other unclear mechanisms, supporting the hypothesis that male meiosis is non-cell autonomously regulated. In this mini review, we summarize the recorded meiotic defects that occur in plants with defective tapetum development in both Arabidopsis and crops. Thereafter, we outline the latest understanding on the molecular mechanisms that potentially underpin the tapetum-dependent regulation of male meiosis, and we especially discuss the regulatory role of sRNAs. At the end, we propose several outstanding questions that should be addressed in future studies.
Collapse
Affiliation(s)
- Xiaoning Lei
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
| | - Bing Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
- Key Laboratory for Biotechnology of the State Ethnic Affairs Commission, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
72
|
Xu Z, Wang Y, Chen Y, Yin H, Wu L, Zhao Y, Wang M, Gao M. A Model of Hormonal Regulation of Stamen Abortion during Pre-Meiosis of Litsea cubeba. Genes (Basel) 2019; 11:genes11010048. [PMID: 31906074 PMCID: PMC7017044 DOI: 10.3390/genes11010048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/16/2019] [Accepted: 12/27/2019] [Indexed: 12/19/2022] Open
Abstract
Litsea cubeba (Lour.) Pers., a popular essential oil plant, is a dioecious species with degenerative sexual organs in both male and female individuals. Yet, the mechanism of degenerative organs development in male and female flowers is poorly understood. Here, we analyzed the morphological characters of degenerative organ development by morphological and histological observations, and determined the critical stage of abortion that occurs at pre-meiosis in male and female flowers. We also conducted RNA sequencing (RNA-seq) to understand the genetic basis of stamen abortion in female flowers. The differentially expressed genes (DEGs) were identified during the staminode development in female flowers; functional enrichment analysis revealed some important biological pathways involved the regulation of stamen abortion, including plant hormone signal transduction, phenylpropanoid biosynthesis, flavonoid biosynthesis and monoterpenoid biosynthesis. Furthermore, 15 DEGs involved in the hormone pathways were found to regulate stamen development. By HPLC-MS/MS analysis, there were a salicylic acid (SA) content peak and the gibberellin (GA) content lowest point in the abortion processes in female flowers, suggesting a vital function of hormonal processes. Co-expression network analysis further identified several hub genes that potentially played significant roles in the stamen abortion of L. cubeba. Taken together, we proposed a model involved in plant hormones pathways underlying stamen abortion during pre-meiosis in female flowers of L. cubeba.
Collapse
Affiliation(s)
- Zilong Xu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (Z.X.); (Y.W.); (Y.C.); (H.Y.); (L.W.); (Y.Z.); (M.W.)
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Yangdong Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (Z.X.); (Y.W.); (Y.C.); (H.Y.); (L.W.); (Y.Z.); (M.W.)
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Yicun Chen
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (Z.X.); (Y.W.); (Y.C.); (H.Y.); (L.W.); (Y.Z.); (M.W.)
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Hengfu Yin
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (Z.X.); (Y.W.); (Y.C.); (H.Y.); (L.W.); (Y.Z.); (M.W.)
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Liwen Wu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (Z.X.); (Y.W.); (Y.C.); (H.Y.); (L.W.); (Y.Z.); (M.W.)
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Yunxiao Zhao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (Z.X.); (Y.W.); (Y.C.); (H.Y.); (L.W.); (Y.Z.); (M.W.)
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Minyan Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (Z.X.); (Y.W.); (Y.C.); (H.Y.); (L.W.); (Y.Z.); (M.W.)
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Ming Gao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (Z.X.); (Y.W.); (Y.C.); (H.Y.); (L.W.); (Y.Z.); (M.W.)
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- Correspondence: ; Tel.: +86-571-6332-7982
| |
Collapse
|
73
|
Khadka J, Yadav NS, Guy M, Grafi G, Golan-Goldhirsh A. Epigenetic aspects of floral homeotic genes in relation to sexual dimorphism in the dioecious plant Mercurialis annua. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6245-6259. [PMID: 31504768 PMCID: PMC6859717 DOI: 10.1093/jxb/erz379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/08/2019] [Indexed: 05/26/2023]
Abstract
In plants, dioecy characterizes species that carry male and female flowers on separate plants and it occurs in about 6% of angiosperms; however, the molecular mechanisms that underlie dioecy are essentially unknown. The ability for sex-reversal by hormone application raises the hypothesis that the genes required for the expression of both sexes are potentially functional but are regulated by epigenetic means. In this study, proteomic analysis of nuclear proteins isolated from flower buds of females, males, and feminized males of the dioecious plant Mercurialis annua revealed differential expression of nuclear proteins that are implicated in chromatin structure and function, including floral homeotic proteins. Focusing on floral genes, we found that class B genes were mainly expressed in male flowers, while class D genes, as well as SUPERMAN-like genes, were mainly expressed in female flowers. Cytokinin-induced feminization of male plants was associated with down-regulation of male-specific genes concomitantly with up-regulation of female-specific genes. No correlation was found between the expression of class B and D genes and the changes in DNA methylation or chromatin conformation of these genes. Thus, we could not confirm DNA methylation or chromatin conformation of floral genes to be the major determinant regulating sexual dimorphisms. Instead, determination of sex in M. annua might be controlled upstream of floral genes by one or more sex-specific factors that affect hormonal homeostasis. A comprehensive model is proposed for sex-determination in M. annua.
Collapse
Affiliation(s)
- Janardan Khadka
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, Israel
| | | | - Micha Guy
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, Israel
| | | | | |
Collapse
|
74
|
Sánchez-Vicente I, Fernández-Espinosa MG, Lorenzo O. Nitric oxide molecular targets: reprogramming plant development upon stress. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4441-4460. [PMID: 31327004 PMCID: PMC6736187 DOI: 10.1093/jxb/erz339] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 07/18/2019] [Indexed: 05/09/2023]
Abstract
Plants are sessile organisms that need to complete their life cycle by the integration of different abiotic and biotic environmental signals, tailoring developmental cues and defense concomitantly. Commonly, stress responses are detrimental to plant growth and, despite the fact that intensive efforts have been made to understand both plant development and defense separately, most of the molecular basis of this trade-off remains elusive. To cope with such a diverse range of processes, plants have developed several strategies including the precise balance of key plant growth and stress regulators [i.e. phytohormones, reactive nitrogen species (RNS), and reactive oxygen species (ROS)]. Among RNS, nitric oxide (NO) is a ubiquitous gasotransmitter involved in redox homeostasis that regulates specific checkpoints to control the switch between development and stress, mainly by post-translational protein modifications comprising S-nitrosation of cysteine residues and metals, and nitration of tyrosine residues. In this review, we have sought to compile those known NO molecular targets able to balance the crossroads between plant development and stress, with special emphasis on the metabolism, perception, and signaling of the phytohormones abscisic acid and salicylic acid during abiotic and biotic stress responses.
Collapse
Affiliation(s)
- Inmaculada Sánchez-Vicente
- Departamento de Botánica y Fisiología Vegetal, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - María Guadalupe Fernández-Espinosa
- Departamento de Botánica y Fisiología Vegetal, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - Oscar Lorenzo
- Departamento de Botánica y Fisiología Vegetal, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
- Correspondence:
| |
Collapse
|
75
|
Ullah I, Magdy M, Wang L, Liu M, Li X. Genome-wide identification and evolutionary analysis of TGA transcription factors in soybean. Sci Rep 2019; 9:11186. [PMID: 31371739 PMCID: PMC6672012 DOI: 10.1038/s41598-019-47316-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/27/2019] [Indexed: 01/29/2023] Open
Abstract
The gain of function in genes and gene families is a continuous process and is a key factor in understanding gene and genome evolution in plants. TGACG-Binding (TGA) transcription factors (TFs) have long been known for their essential roles in plant defence in Arabidopsis, but their roles in legume symbiosis are yet to be explored. Here, we identified a total of 25 TGA (named GmTGA1-GmTGA25) genes in soybean. Through phylogenetic analysis, we discovered a clade of GmTGA proteins that appear to be legume-specific. Among them, two GmTGAs were unique by possessing the autophagy sequence in their proteins, while the third one was an orphan gene in soybean. GmTGAs were structurally different from AtTGAs, and their expression patterns also differed with the dominant expression of AtTGAs and GmTGAs in aerial and underground parts, respectively. Moreover, twenty-five GmTGAs showed a strong correlation among the gene expression in roots, nodules, and root hairs. The qRT-PCR analysis results revealed that among 15 tested GmTGAs, six were induced and four were suppressed by rhizobia inoculation, while 11 of these GmTGAs were induced by high nitrate. Our findings suggested the important roles of GmTGAs in symbiotic nodulation and in response to nitrogen availability in soybean.
Collapse
Affiliation(s)
- Ihteram Ullah
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Agriculture Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Mahmoud Magdy
- Key laboratory of horticulture, plant biology, Huazhong Agricultural University, Wuhan, China
- Genetics Department, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Lixiang Wang
- State Key Laboratory of Agriculture Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
- School of biological and chemical engineering, Panzhihua University, Panzhihua, China
| | - Mengyu Liu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Xia Li
- State Key Laboratory of Agriculture Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| |
Collapse
|
76
|
Zaffagnini M, Fermani S, Marchand CH, Costa A, Sparla F, Rouhier N, Geigenberger P, Lemaire SD, Trost P. Redox Homeostasis in Photosynthetic Organisms: Novel and Established Thiol-Based Molecular Mechanisms. Antioxid Redox Signal 2019; 31:155-210. [PMID: 30499304 DOI: 10.1089/ars.2018.7617] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Significance: Redox homeostasis consists of an intricate network of reactions in which reactive molecular species, redox modifications, and redox proteins act in concert to allow both physiological responses and adaptation to stress conditions. Recent Advances: This review highlights established and novel thiol-based regulatory pathways underlying the functional facets and significance of redox biology in photosynthetic organisms. In the last decades, the field of redox regulation has largely expanded and this work is aimed at giving the right credit to the importance of thiol-based regulatory and signaling mechanisms in plants. Critical Issues: This cannot be all-encompassing, but is intended to provide a comprehensive overview on the structural/molecular mechanisms governing the most relevant thiol switching modifications with emphasis on the large genetic and functional diversity of redox controllers (i.e., redoxins). We also summarize the different proteomic-based approaches aimed at investigating the dynamics of redox modifications and the recent evidence that extends the possibility to monitor the cellular redox state in vivo. The physiological relevance of redox transitions is discussed based on reverse genetic studies confirming the importance of redox homeostasis in plant growth, development, and stress responses. Future Directions: In conclusion, we can firmly assume that redox biology has acquired an established significance that virtually infiltrates all aspects of plant physiology.
Collapse
Affiliation(s)
- Mirko Zaffagnini
- 1 Department of Pharmacy and Biotechnology and University of Bologna, Bologna, Italy
| | - Simona Fermani
- 2 Department of Chemistry Giacomo Ciamician, University of Bologna, Bologna, Italy
| | - Christophe H Marchand
- 3 Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, UMR8226, Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Sorbonne Université, Paris, France
| | - Alex Costa
- 4 Department of Biosciences, University of Milan, Milan, Italy
| | - Francesca Sparla
- 1 Department of Pharmacy and Biotechnology and University of Bologna, Bologna, Italy
| | | | - Peter Geigenberger
- 6 Department Biologie I, Ludwig-Maximilians-Universität München, LMU Biozentrum, Martinsried, Germany
| | - Stéphane D Lemaire
- 3 Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, UMR8226, Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Sorbonne Université, Paris, France
| | - Paolo Trost
- 1 Department of Pharmacy and Biotechnology and University of Bologna, Bologna, Italy
| |
Collapse
|
77
|
Yoon MY, Kim MY, Ha J, Lee T, Kim KD, Lee SH. QTL Analysis of Resistance to High-Intensity UV-B Irradiation in Soybean ( Glycine max [L.] Merr.). Int J Mol Sci 2019; 20:E3287. [PMID: 31277435 PMCID: PMC6651677 DOI: 10.3390/ijms20133287] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/01/2019] [Accepted: 07/03/2019] [Indexed: 11/17/2022] Open
Abstract
High-intensity ultraviolet-B (UV-B) irradiation is a complex abiotic stressor resulting in excessive light exposure, heat, and dehydration, thereby affecting crop yields. In the present study, we identified quantitative trait loci (QTLs) for resistance to high-intensity UV-B irradiation in soybean (Glycine max [L.]). We used a genotyping-by-sequencing approach using an F6 recombinant inbred line (RIL) population derived from a cross between Cheongja 3 (UV-B sensitive) and Buseok (UV-B resistant). We evaluated the degree of leaf damage by high-intensity UV-B radiation in the RIL population and identified four QTLs, UVBR12-1, 6-1, 10-1, and 14-1, for UV-B stress resistance, together explaining 20% of the observed phenotypic variation. The genomic regions containing UVBR12-1 and UVBR6-1 and their syntenic blocks included other known biotic and abiotic stress-related QTLs. The QTL with the highest logarithm of odds (LOD) score of 3.76 was UVBR12-1 on Chromosome 12, containing two genes encoding spectrin beta chain, brain (SPTBN, Glyma.12g088600) and bZIP transcription factor21/TGACG motif-binding 9 (bZIP TF21/TGA9, Glyma.12g088700). Their amino acid sequences did not differ between the mapping parents, but both genes were significantly upregulated by UV-B stress in Buseok but not in Cheongja 3. Among five genes in UVBR6-1 on Chromosome 6, Glyma.06g319700 (encoding a leucine-rich repeat family protein) had two nonsynonymous single nucleotide polymorphisms differentiating the parental lines. Our findings offer powerful genetic resources for efficient and precise breeding programs aimed at developing resistant soybean cultivars to multiple stresses. Furthermore, functional validation of the candidate genes will improve our understanding of UV-B stress defense mechanisms.
Collapse
Affiliation(s)
- Min Young Yoon
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Moon Young Kim
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
| | - Jungmin Ha
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
| | - Taeyoung Lee
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | | | - Suk-Ha Lee
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
78
|
Yu J, Zhang D. Molecular Control of Redox Homoeostasis in Specifying the Cell Identity of Tapetal and Microsporocyte Cells in Rice. RICE (NEW YORK, N.Y.) 2019; 12:42. [PMID: 31214893 PMCID: PMC6582093 DOI: 10.1186/s12284-019-0300-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 05/24/2019] [Indexed: 05/18/2023]
Abstract
In flowering plants, male reproduction occurs within the male organ anther with a series of complex biological events including de novo specification of germinal cells and somatic cells, male meiosis, and pollen development and maturation. Particularly, unlike other tissue, anther lacks a meristem, therefore, both germinal and somatic cell types are derived from floral stem cells within anther lobes. Here, we review the molecular mechanism specifying the identity of somatic cells and reproductive microsporocytes by redox homoeostasis during rice anther development. Factors such as glutaredoxins (GRXs), TGA transcription factors, receptor-like protein kinase signaling pathway, and glutamyl-tRNA synthetase maintaining the redox status are discussed. We also conceive the conserved and divergent aspect of cell identity specification of anther cells in plants via changing redox status.
Collapse
Affiliation(s)
- Jing Yu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, People's Republic of China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, People's Republic of China.
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia.
| |
Collapse
|
79
|
Wang Y, Salasini BC, Khan M, Devi B, Bush M, Subramaniam R, Hepworth SR. Clade I TGACG-Motif Binding Basic Leucine Zipper Transcription Factors Mediate BLADE-ON-PETIOLE-Dependent Regulation of Development. PLANT PHYSIOLOGY 2019; 180:937-951. [PMID: 30923069 PMCID: PMC6548253 DOI: 10.1104/pp.18.00805] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 03/12/2019] [Indexed: 05/13/2023]
Abstract
Lateral organs formed by the shoot apical meristem (SAM) are separated from surrounding stem cells by regions of low growth called boundaries. Arabidopsis (Arabidopsis thaliana) BLADE-ON-PETIOLE1 (BOP1) and BOP2 represent a class of genes important for boundary patterning in land plants. Members of this family lack a DNA-binding domain and interact with TGACG-motif binding (TGA) basic Leu zipper (bZIP) transcription factors for recruitment to DNA. Here, we show that clade I bZIP transcription factors TGA1 and TGA4, previously associated with plant defense, are essential cofactors in BOP-dependent regulation of development. TGA1 and TGA4 are expressed at organ boundaries and function in the same genetic pathways as BOP1 and BOP2 required for SAM maintenance, flowering, and inflorescence architecture. Further, we show that clade I TGAs interact constitutively with BOP1 and BOP2, contributing to activation of ARABIDOPSIS THALIANA HOMEOBOX GENE1, which is needed for boundary establishment. These studies expand the functional repertoire of clade I TGA factors in development and defense.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Brenda C Salasini
- Department of Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Madiha Khan
- Department of Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Bhaswati Devi
- Department of Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Michael Bush
- Department of Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Rajagopal Subramaniam
- Department of Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6
- Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada K1A 0C6
| | - Shelley R Hepworth
- Department of Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| |
Collapse
|
80
|
Wang P, Nolan TM, Yin Y, Bassham DC. Identification of transcription factors that regulate ATG8 expression and autophagy in Arabidopsis. Autophagy 2019; 16:123-139. [PMID: 30909785 DOI: 10.1080/15548627.2019.1598753] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Autophagy is a conserved catabolic process in eukaryotes that contributes to cell survival in response to multiple stresses and is important for organism fitness. In Arabidopsis thaliana, the core machinery of autophagy is well defined, but its transcriptional regulation is largely unknown. The ATG8 (autophagy-related 8) protein plays central roles in decorating autophagosomes and binding to specific cargo receptors to recruit cargo to autophagosomes. We propose that the transcriptional control of ATG8 genes is important during the formation of autophagosomes and therefore contributes to survival during stress. Here, we describe a yeast one-hybrid (Y1H) screen for transcription factors (TFs) that regulate ATG8 gene expression in Arabidopsis, using the promoters of 4 ATG8 genes. We identified a total of 225 TFs from 35 families that bind these promoters. The TF-ATG8 promoter interactions revealed a wide array of diverse TF families for different promoters, as well as enrichment for families of TFs that bound to specific fragments. These TFs are not only involved in plant developmental processes but also in the response to environmental stresses. TGA9 (TGACG (TGA) motif-binding protein 9)/AT1G08320 was confirmed as a positive regulator of autophagy. TGA9 overexpression activated autophagy under both control and stress conditions and transcriptionally up-regulated expression of ATG8B, ATG8E and additional ATG genes via binding to their promoters. Our results provide a comprehensive resource of TFs that regulate ATG8 gene expression and lay a foundation for understanding the transcriptional regulation of plant autophagy.Abbreviations: ABRC: Arabidopsis biological resource center; AP2-EREBP: APETALA2/Ethylene-responsive element binding protein; ARF: auxin response factor; ATF4: activating transcription factor 4; ATG: autophagy-related; ChIP: chromatin immunoprecipitation; DAP-seq: DNA affinity purification sequencing; FOXO: forkhead box O; GFP: green fluorescent protein; GO: gene ontologies; HB: homeobox; LD: long-day; LUC: firefly luciferase; MAP1LC3: microtubule associated protein 1 light chain 3; MDC: monodansylcadaverine; 3-MA: 3-methyladenine; OE: overexpressing; PCD: programmed cell death; qPCR: quantitative polymerase chain reaction; REN: renilla luciferase; RT: room temperature; SD: standard deviation; TF: transcription factor; TFEB: transcription factor EB; TGA: TGACG motif; TOR: target of rapamycin; TSS: transcription start site; WT: wild-type; Y1H: yeast one-hybrid.
Collapse
Affiliation(s)
- Ping Wang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA.,State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Trevor M Nolan
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Yanhai Yin
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
81
|
Wan X, Wu S, Li Z, Dong Z, An X, Ma B, Tian Y, Li J. Maize Genic Male-Sterility Genes and Their Applications in Hybrid Breeding: Progress and Perspectives. MOLECULAR PLANT 2019; 12:321-342. [PMID: 30690174 DOI: 10.1016/j.molp.2019.01.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/10/2019] [Accepted: 01/10/2019] [Indexed: 05/06/2023]
Abstract
As one of the most important crops, maize not only has been a source of the food, feed, and industrial feedstock for biofuel and bioproducts, but also became a model plant system for addressing fundamental questions in genetics. Male sterility is a very useful trait for hybrid vigor utilization and hybrid seed production. The identification and characterization of genic male-sterility (GMS) genes in maize and other plants have deepened our understanding of the molecular mechanisms controlling anther and pollen development, and enabled the development and efficient use of many biotechnology-based male-sterility (BMS) systems for crop hybrid breeding. In this review, we summarize main advances on the identification and characterization of GMS genes in maize, and construct a putative regulatory network controlling maize anther and pollen development by comparative genomic analysis of GMS genes in maize, Arabidopsis, and rice. Furthermore, we discuss and appraise the features of more than a dozen BMS systems for propagating male-sterile lines and producing hybrid seeds in maize and other plants. Finally, we provide our perspectives on the studies of GMS genes and the development of novel BMS systems in maize and other plants. The continuous exploration of GMS genes and BMS systems will enhance our understanding of molecular regulatory networks controlling male fertility and greatly facilitate hybrid vigor utilization in breeding and field production of maize and other crops.
Collapse
Affiliation(s)
- Xiangyuan Wan
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China.
| | - Suowei Wu
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Ziwen Li
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Zhenying Dong
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Xueli An
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Biao Ma
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Youhui Tian
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Jinping Li
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| |
Collapse
|
82
|
Li N, Muthreich M, Huang LJ, Thurow C, Sun T, Zhang Y, Gatz C. TGACG-BINDING FACTORs (TGAs) and TGA-interacting CC-type glutaredoxins modulate hyponastic growth in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2019; 221:1906-1918. [PMID: 30252136 DOI: 10.1111/nph.15496] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/13/2018] [Indexed: 06/08/2023]
Abstract
TGACG-BINDING FACTORs (TGAs) control the developmental or defense-related processes. In Arabidopsis thaliana, the functions of at least TGA2 and PERIANTHIA (PAN) can be repressed by interacting with CC-type glutaredoxins, which have the potential to control the redox state of target proteins. As TGA1 can be redox modulated in planta, we analyzed whether some of the 21 CC-type glutaredoxins (ROXYs) encoded in the Arabidopsis genome can influence TGA1 activity in planta and whether the redox active cysteines of TGA1 are functionally important. We show that the tga1 tga4 mutant and plants ectopically expressing ROXY8 or ROXY9 are impaired in hyponastic growth. As expression of ROXY8 and ROXY9 is activated upon transfer of plants from hyponasty-inducing low light to normal light, they might interfere with the growth-promoting function of TGA1/TGA4 to facilitate reversal of hyponastic growth. The redox-sensitive cysteines of TGA1 are not required for induction or reversal of hyponastic growth. TGA1 and TGA4 interact with ROXYs 8, 9, 18, and 19/GRX480, but ectopically expressed ROXY18 and ROXY19/GRX480 do not interfere with hyponastic growth. Our results therefore demonstrate functional specificities of individual ROXYs for distinct TGAs despite promiscuous protein-protein interactions and point to different repression mechanisms, depending on the TGA/ROXY combination.
Collapse
Affiliation(s)
- Ning Li
- Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen, Germany
| | - Martin Muthreich
- Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen, Germany
| | - Li-Jun Huang
- Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen, Germany
| | - Corinna Thurow
- Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen, Germany
| | - Tongjun Sun
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Christiane Gatz
- Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen, Germany
| |
Collapse
|
83
|
Sun Y, Fan M, He Y. Transcriptome Analysis of Watermelon Leaves Reveals Candidate Genes Responsive to Cucumber green mottle mosaic virus Infection. Int J Mol Sci 2019; 20:ijms20030610. [PMID: 30708960 PMCID: PMC6387395 DOI: 10.3390/ijms20030610] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 01/02/2023] Open
Abstract
Cucumber green mottle mosaic virus (CGMMV) is a member of the genus Tobamovirus, which cause diseases in cucurbits, especially watermelon. In watermelon, symptoms develop on the whole plant, including leaves, stems, peduncles, and fruit. To better understand the molecular mechanisms of watermelon early responses to CGMMV infection, a comparative transcriptome analysis of 24 h CGMMV-infected and mock-inoculated watermelon leaves was performed. A total of 1641 differently expressed genes (DEGs) were identified, with 886 DEGs upregulated and 755 DEGs downregulated after CGMMV infection. A functional analysis indicated that the DEGs were involved in photosynthesis, plant⁻pathogen interactions, secondary metabolism, and plant hormone signal transduction. In addition, a few transcription factor families, including WRKY, MYB, HLH, bZIP and NAC, were responsive to the CGMMV-induced stress. To confirm the high-throughput sequencing results, 15 DEGs were validated by qRT-PCR analysis. The results provide insights into the identification of candidate genes or pathways involved in the responses of watermelon leaves to CGMMV infection.
Collapse
Affiliation(s)
- Yuyan Sun
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Min Fan
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Yanjun He
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
84
|
Li B, Liu Y, Cui XY, Fu JD, Zhou YB, Zheng WJ, Lan JH, Jin LG, Chen M, Ma YZ, Xu ZS, Min DH. Genome-Wide Characterization and Expression Analysis of Soybean TGA Transcription Factors Identified a Novel TGA Gene Involved in Drought and Salt Tolerance. FRONTIERS IN PLANT SCIENCE 2019; 10:549. [PMID: 31156656 PMCID: PMC6531876 DOI: 10.3389/fpls.2019.00549] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 04/10/2019] [Indexed: 05/19/2023]
Abstract
The TGA transcription factors, a subfamily of bZIP group D, play crucial roles in various biological processes, including the regulation of growth and development as well as responses to pathogens and abiotic stress. In this study, 27 TGA genes were identified in the soybean genome. The expression patterns of GmTGA genes showed that several GmTGA genes are differentially expressed under drought and salt stress conditions. Among them, GmTGA17 was strongly induced by both stress, which were verificated by the promoter-GUS fusion assay. GmTGA17 encodes a nuclear-localized protein with transcriptional activation activity. Heterologous and homologous overexpression of GmTGA17 enhanced tolerance to drought and salt stress in both transgeinc Arabidopsis plants and soybean hairy roots. However, RNAi hairy roots silenced for GmTGA17 exhibited an increased sensitivity to drought and salt stress. In response to drought or salt stress, transgenic Arabidopsis plants had an increased chlorophyll and proline contents, a higher ABA content, a decreased MDA content, a reduced water loss rate, and an altered expression of ABA- responsive marker genes compared with WT plants. In addition, transgenic Arabidopsis plants were more sensitive to ABA in stomatal closure. Similarly, measurement of physiological parameters showed an increase in chlorophyll and proline contents, with a decrease in MDA content in soybean seedlings with overexpression hairy roots after drought and salt stress treatments. The opposite results for each measurement were observed in RNAi lines. This study provides new insights for functional analysis of soybean TGA transcription factors in abiotic stress.
Collapse
Affiliation(s)
- Bo Li
- College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Ying Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Xi-Yan Cui
- College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Jin-Dong Fu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Yong-Bin Zhou
- College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Wei-Jun Zheng
- College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
| | - Jin-Hao Lan
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Long-Guo Jin
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
- *Correspondence: Zhao-Shi Xu, Dong-Hong Min,
| | - Dong-Hong Min
- College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
- *Correspondence: Zhao-Shi Xu, Dong-Hong Min,
| |
Collapse
|
85
|
Kumar P, Mishra A, Sharma H, Sharma D, Rahim MS, Sharma M, Parveen A, Jain P, Verma SK, Rishi V, Roy J. Pivotal role of bZIPs in amylose biosynthesis by genome survey and transcriptome analysis in wheat (Triticum aestivum L.) mutants. Sci Rep 2018; 8:17240. [PMID: 30467374 PMCID: PMC6250691 DOI: 10.1038/s41598-018-35366-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 10/31/2018] [Indexed: 11/09/2022] Open
Abstract
Starch makes up 70% of the wheat grain, and is an important source of calories for humans, however, the overconsumption of wheat starch may contribute to nutrition-associated health problems. The challenge is to develop resistant starch including high amylose wheat varieties with health benefits. Adapting advance genomic approaches in EMS-induced mutant lines differing in amylose content, basic leucine zipper (bZIP) regulatory factors that may play role in controlling amylose biosynthesis were identified in wheat. bZIP transcription factors are key regulators of starch biosynthesis genes in rice and maize, but their role in regulating these genes in wheat is poorly understood. A genome-wide survey identified 370 wheat bZIPs, clustered in 11 groups, showing variations in amino acids composition and predicted physicochemical properties. Three approaches namely, whole transcriptome sequencing, qRT-PCR, and correlation analysis in contrasting high and low amylose mutants and their parent line identified 24 candidate bZIP (positive and negative regulators), suggesting bZIPs role in high amylose biosynthesis. bZIPs positive role in high amylose biosynthesis is not known. In silico interactome studies of candidate wheat bZIP homologs in Arabidopsis and rice identified their putative functional role. The identified bZIPs are involved in stress-related pathways, flower and seed development, and starch biosynthesis. An in-depth analysis of molecular mechanism of novel candidate bZIPs may help in raising and improving high amylose wheat varieties.
Collapse
Affiliation(s)
- Pankaj Kumar
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, 140306, Punjab, India
- Department of Biotechnology, Panjab University, Chandigarh, 160014, India
| | - Ankita Mishra
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, 140306, Punjab, India
- Department of Biotechnology, Panjab University, Chandigarh, 160014, India
| | - Himanshu Sharma
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, 140306, Punjab, India
| | - Dixit Sharma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Kangra, 176206, Himachal Pradesh, India
| | - Mohammed Saba Rahim
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, 140306, Punjab, India
- Department of Plant Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151001, India
| | - Monica Sharma
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, 140306, Punjab, India
| | - Afsana Parveen
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, 140306, Punjab, India
- Department of Biotechnology, Panjab University, Chandigarh, 160014, India
| | - Prateek Jain
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, 140306, Punjab, India
- Department of Biotechnology, Panjab University, Chandigarh, 160014, India
| | - Shailender Kumar Verma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Kangra, 176206, Himachal Pradesh, India
| | - Vikas Rishi
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, 140306, Punjab, India
| | - Joy Roy
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, 140306, Punjab, India.
| |
Collapse
|
86
|
Dreyer A, Dietz KJ. Reactive Oxygen Species and the Redox-Regulatory Network in Cold Stress Acclimation. Antioxidants (Basel) 2018; 7:E169. [PMID: 30469375 PMCID: PMC6262571 DOI: 10.3390/antiox7110169] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 01/08/2023] Open
Abstract
Cold temperatures restrict plant growth, geographical extension of plant species, and agricultural practices. This review deals with cold stress above freezing temperatures often defined as chilling stress. It focuses on the redox regulatory network of the cell under cold temperature conditions. Reactive oxygen species (ROS) function as the final electron sink in this network which consists of redox input elements, transmitters, targets, and sensors. Following an introduction to the critical network components which include nicotinamide adenine dinucleotide phosphate (NADPH)-dependent thioredoxin reductases, thioredoxins, and peroxiredoxins, typical laboratory experiments for cold stress investigations will be described. Short term transcriptome and metabolome analyses allow for dissecting the early responses of network components and complement the vast data sets dealing with changes in the antioxidant system and ROS. This review gives examples of how such information may be integrated to advance our knowledge on the response and function of the redox regulatory network in cold stress acclimation. It will be exemplarily shown that targeting the redox network might be beneficial and supportive to improve cold stress acclimation and plant yield in cold climate.
Collapse
Affiliation(s)
- Anna Dreyer
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany.
| | - Karl-Josef Dietz
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany.
| |
Collapse
|
87
|
Jung JY, Ahn JH, Schachtman DP. CC-type glutaredoxins mediate plant response and signaling under nitrate starvation in Arabidopsis. BMC PLANT BIOLOGY 2018; 18:281. [PMID: 30424734 PMCID: PMC6234535 DOI: 10.1186/s12870-018-1512-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/30/2018] [Indexed: 05/05/2023]
Abstract
BACKGROUND Nitrogen is an essential nutrient in plants. Despite the importance of nitrogen for plant growth and agricultural productivity, signal transduction pathways in response to nitrate starvation have not been fully elucidated in plants. RESULTS Gene expression analysis and ectopic expression were used to discover that many CC-type glutaredoxins (ROXYs) are differentially expressed in response to nitrate deprivation. A gain-of-function approach showed that ROXYs may play a role in nutrient sensing through the regulation of chlorophyll content, root hair growth, and transcription of nitrate-related genes such as NRT2.1 under low or high nitrate conditions. Reactive oxygen species (ROS) were produced in plant roots under nitrate starvation and H2O2 treatment differentially regulated the expression of the ROXYs, suggesting the involvement of ROS in signaling pathways under nitrate deficiency. CONCLUSION This work adds to what is known about nitrogen sensing and signaling through the findings that the ROXYs and ROS are likely to be involved in the nitrate deprivation signaling pathway.
Collapse
Affiliation(s)
- Ji-Yul Jung
- Department of Life Sciences, Korea University, Seoul, 02841 South Korea
| | - Ji Hoon Ahn
- Department of Life Sciences, Korea University, Seoul, 02841 South Korea
| | - Daniel P. Schachtman
- Department of Agronomy and Horticulture, Center for Biotechnology, University of Nebraska Lincoln, Lincoln, NE 68588 USA
| |
Collapse
|
88
|
Abstract
Reactive oxygen species (ROS) are produced by metabolic pathways in almost all cells. As signaling components, ROS are best known for their roles in abiotic and biotic stress-related events. However, recent studies have revealed that they are also involved in numerous processes throughout the plant life cycle, from seed development and germination, through to root, shoot and flower development. Here, we provide an overview of ROS production and signaling in the context of plant growth and development, highlighting the key functions of ROS and their interactions with plant phytohormonal networks.
Collapse
Affiliation(s)
- Amna Mhamdi
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium, and Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium, and Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| |
Collapse
|
89
|
Noctor G, Reichheld JP, Foyer CH. ROS-related redox regulation and signaling in plants. Semin Cell Dev Biol 2018; 80:3-12. [DOI: 10.1016/j.semcdb.2017.07.013] [Citation(s) in RCA: 329] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/10/2017] [Accepted: 07/13/2017] [Indexed: 12/14/2022]
|
90
|
Cai W, Zhang D. The role of receptor-like kinases in regulating plant male reproduction. PLANT REPRODUCTION 2018; 31:77-87. [PMID: 29508076 DOI: 10.1007/s00497-018-0332-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/19/2018] [Indexed: 05/21/2023]
Abstract
RLKs in anther development. The cell-to-cell communication is essential for specifying different cell types during plant growth, development and adaption to the ever-changing environment. Plant male reproduction, in particular, requires the exquisitely synchronized development of different cell layers within the male tissue, the anther. Receptor-like kinases (RLKs) belong to a large group of kinases localized on the cell surfaces, perceiving extracellular signals and thereafter regulating intracellular processes. Here we update the role of RLKs in early anther development by defining the cell fate and anther patterning, responding to the changing environment and controlling anther carbohydrate metabolism. We provide speculation of the poorly characterized ligands and substrates of these RLKs. The conserved and diversified aspects underlying the function of RLKs in anther development are discussed.
Collapse
Affiliation(s)
- Wenguo Cai
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, 5064, Australia.
| |
Collapse
|
91
|
Zhang H, Zhang TT, Liu H, Shi DY, Wang M, Bie XM, Li XG, Zhang XS. Thioredoxin-Mediated ROS Homeostasis Explains Natural Variation in Plant Regeneration. PLANT PHYSIOLOGY 2018; 176:2231-2250. [PMID: 28724620 PMCID: PMC5841725 DOI: 10.1104/pp.17.00633] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 07/17/2017] [Indexed: 05/18/2023]
Abstract
Plant regeneration is fundamental to basic research and agricultural applications. The regeneration capacity of plants varies largely in different genotypes, but the reason for this variation remains elusive. Here, we identified a novel thioredoxin DCC1 in determining the capacity of shoot regeneration among Arabidopsis (Arabidopsis thaliana) natural variation. Loss of function of DCC1 resulted in inhibited shoot regeneration. DCC1 was expressed mainly in the inner tissues of the callus and encoded a functional thioredoxin that was localized in the mitochondria. DCC1 protein interacted directly with CARBONIC ANHYDRASE2 (CA2), which is an essential subunit of the respiratory chain NADH dehydrogenase complex (Complex I). DCC1 regulated Complex I activity via redox modification of CA2 protein. Mutation of DCC1 or CA2 led to reduced Complex I activity and triggered mitochondrial reactive oxygen species (ROS) production. The increased ROS level regulated shoot regeneration by repressing expression of the genes involved in multiple pathways. Furthermore, linkage disequilibrium analysis indicated that DCC1 was a major determinant of the natural variation in shoot regeneration among Arabidopsis ecotypes. Thus, our study uncovers a novel regulatory mechanism by which thioredoxin-dependent redox modification regulates de novo shoot initiation via the modulation of ROS homeostasis and provides new insights into improving the capacity of plant regeneration.
Collapse
Affiliation(s)
- Hui Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Ting Ting Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Hui Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - De Ying Shi
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Meng Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Xiao Min Bie
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Xing Guo Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Xian Sheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
92
|
Chen ZS, Liu XF, Wang DH, Chen R, Zhang XL, Xu ZH, Bai SN. Transcription Factor OsTGA10 Is a Target of the MADS Protein OsMADS8 and Is Required for Tapetum Development. PLANT PHYSIOLOGY 2018; 176:819-835. [PMID: 29158333 PMCID: PMC5761795 DOI: 10.1104/pp.17.01419] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/16/2017] [Indexed: 05/10/2023]
Abstract
This study aimed at elucidating regulatory components behind floral organ identity determination and tissue development. It remains unclear how organ identity proteins facilitate development of organ primordia into tissues with a determined identity, even though it has long been accepted that floral organ identity is genetically determined by interaction of identity genes according to the ABC model. Using the chromatin immunoprecipitation sequencing technique, we identified OsTGA10, encoding a bZIP transcription factor, as a target of the MADS box protein OsMADS8, which is annotated as an E-class organ identity protein. We characterized the function of OsTGA10 using genetic and molecular analyses. OsTGA10 was preferentially expressed during stamen development, and mutation of OsTGA10 resulted in male sterility. OsTGA10 was required for tapetum development and functioned by interacting with known tapetum genes. In addition, in ostga10 stamens, the hallmark cell wall thickening of the endothecium was defective. Our findings suggest that OsTGA10 plays a mediator role between organ identity determination and tapetum development in rice stamen development, between tapetum development and microspore development, and between various regulatory components required for tapetum development. Furthermore, the defective endothecium in ostga10 implies that cell wall thickening of endothecium is dependent on tapetum development.
Collapse
Affiliation(s)
- Zhi-Shan Chen
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Xiao-Feng Liu
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Dong-Hui Wang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Rui Chen
- Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37212
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, Tennessee 37212
| | - Xiao-Lan Zhang
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Zhi-Hong Xu
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Shu-Nong Bai
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
93
|
Martins L, Trujillo-Hernandez JA, Reichheld JP. Thiol Based Redox Signaling in Plant Nucleus. FRONTIERS IN PLANT SCIENCE 2018; 9:705. [PMID: 29892308 PMCID: PMC5985474 DOI: 10.3389/fpls.2018.00705] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/09/2018] [Indexed: 05/18/2023]
Abstract
Reactive oxygen species (ROS) are well-described by-products of cellular metabolic activities, acting as signaling molecules and regulating the redox state of proteins. Solvent exposed thiol residues like cysteines are particularly sensitive to oxidation and their redox state affects structural and biochemical capacities of many proteins. While thiol redox regulation has been largely studied in several cell compartments like in the plant chloroplast, little is known about redox sensitive proteins in the nucleus. Recent works have revealed that proteins with oxidizable thiols are important for the regulation of many nuclear functions, including gene expression, transcription, epigenetics, and chromatin remodeling. Moreover, thiol reducing molecules like glutathione and specific isoforms of thiols reductases, thioredoxins and glutaredoxins were found in different nuclear subcompartments, further supporting that thiol-dependent systems are active in the nucleus. This mini-review aims to discuss recent progress in plant thiol redox field, taking examples of redox regulated nuclear proteins and focusing on major thiol redox systems acting in the nucleus.
Collapse
Affiliation(s)
- Laura Martins
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, Perpignan, France
- Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, Perpignan, France
| | - José Abraham Trujillo-Hernandez
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, Perpignan, France
- Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, Perpignan, France
| | - Jean-Philippe Reichheld
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, Perpignan, France
- Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, Perpignan, France
- *Correspondence: Jean-Philippe Reichheld,
| |
Collapse
|
94
|
Tognetti VB, Bielach A, Hrtyan M. Redox regulation at the site of primary growth: auxin, cytokinin and ROS crosstalk. PLANT, CELL & ENVIRONMENT 2017; 40:2586-2605. [PMID: 28708264 DOI: 10.1111/pce.13021] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 06/17/2017] [Accepted: 06/24/2017] [Indexed: 05/18/2023]
Abstract
To maintain the activity of meristems is an absolute requirement for plant growth and development, and the role of the plant hormones auxin and cytokinin in apical meristem function is well established. Only little attention has been given, however, to the function of the reactive oxygen species (ROS) gradient along meristematic tissues and its interplay with hormonal regulatory networks. The interdependency between auxin-related, cytokinin-related and ROS-related circuits controls primary growth and development while modulating plant morphology in response to detrimental environmental factors. Because ROS interaction with redox-active compounds significantly affects the cellular redox gradient, the latter constitutes an interface for crosstalk between hormone and ROS signalling pathways. This review focuses on the mechanisms underlying ROS-dependent interactions with redox and hormonal components in shoot and root apical meristems which are crucial for meristems maintenance when plants are exposed to environmental hardships. We also emphasize the importance of cell type and the subcellular compartmentalization of ROS and redox networks to obtain a holistic understanding of how apical meristems adapt to stress.
Collapse
Affiliation(s)
- Vanesa B Tognetti
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Agnieszka Bielach
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Mónika Hrtyan
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| |
Collapse
|
95
|
Noman A, Liu Z, Aqeel M, Zainab M, Khan MI, Hussain A, Ashraf MF, Li X, Weng Y, He S. Basic leucine zipper domain transcription factors: the vanguards in plant immunity. Biotechnol Lett 2017; 39:1779-1791. [DOI: 10.1007/s10529-017-2431-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/31/2017] [Indexed: 01/05/2023]
|
96
|
Quon T, Lampugnani ER, Smyth DR. PETAL LOSS and ROXY1 Interact to Limit Growth Within and between Sepals But to Promote Petal Initiation in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2017; 8:152. [PMID: 28228771 PMCID: PMC5296375 DOI: 10.3389/fpls.2017.00152] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/25/2017] [Indexed: 05/28/2023]
Abstract
The activity of genes controlling organ development may be associated with the redox state of subregions within the meristem. Glutaredoxins react to the level of oxidative potential and can reduce cysteine dithiols, in some cases to activate specific transcription factors. In Arabidopsis, loss of function of the glutaredoxin ROXY1 or the trihelix transcription factor PETAL LOSS (PTL) each results in reduced numbers of petals. Here, genetic studies have revealed that loss of petals in ptl mutant plants depends on ROXY1 function. The two genes also act together to restrain stamen-identifying C function from entering the outer whorls. On the other hand, they suppress growth between sepals and in sepal margins, with ROXY1 action partially redundant to that of PTL. Genetic interactions with aux1 mutations indicate that auxin activity is reduced in the petal whorl of roxy1 mutants as in ptl mutants. However, it is apparently increased in the sepal whorl of triple mutants associated with the ectopic outgrowth of sepal margins, and of finger-like extensions of inter-sepal zones that in 20% of cases are topped with bunches of ectopic sepals. These interactions may be indirect, although PTL and ROXY1 proteins can interact directly when co-expressed in a transient assay. Changes of conserved cysteines within PTL to similar amino acids that cannot be oxidized did not block its function. It may be in some cases that under reducing conditions ROXY1 binds PTL and activates it by reducing specific conserved cysteines, thus resulting in growth suppression.
Collapse
|
97
|
Uhrig JF, Huang LJ, Barghahn S, Willmer M, Thurow C, Gatz C. CC-type glutaredoxins recruit the transcriptional co-repressor TOPLESS to TGA-dependent target promoters in Arabidopsis thaliana. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:218-226. [DOI: 10.1016/j.bbagrm.2016.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 10/28/2016] [Accepted: 11/08/2016] [Indexed: 01/13/2023]
|
98
|
Zaidi MA, O'Leary SJB, Wu S, Chabot D, Gleddie S, Laroche A, Eudes F, Robert LS. Investigating Triticeae anther gene promoter activity in transgenic Brachypodium distachyon. PLANTA 2017; 245:385-396. [PMID: 27787603 DOI: 10.1007/s00425-016-2612-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 10/18/2016] [Indexed: 06/06/2023]
Abstract
In this report, we demonstrate that Brachypodium distachyon could serve as a relatively high throughput in planta functional assay system for Triticeae anther-specific gene promoters. There remains a vast gap in our knowledge of the promoter cis-acting elements responsible for the transcriptional regulation of Triticeae anther-specific genes. In an attempt to identify conserved cis-elements, 14 pollen-specific and 8 tapetum-specific Triticeae putative promoter sequences were analyzed using different promoter sequence analysis tools. Several cis-elements were found to be enriched in these sequences and their possible role in gene expression regulation in the anther is discussed. Despite the fact that potential cis-acting elements can be identified within putative promoter sequence datasets, determining whether particular promoter sequences can in fact direct proper tissue-specific and developmental gene expression still needs to be confirmed via functional assays preferably performed in closely related plants. Transgenic functional assays with Triticeae species remain challenging and Brachypodium distachyon may represent a suitable alternative. The promoters of the triticale pollen-specific genes group 3 pollen allergen (PAL3) and group 4 pollen allergen (PAL4), as well as the tapetum-specific genes chalcone synthase-like 1 (CHSL1), from wheat and cysteine-rich protein 1 (CRP1) from triticale were fused to the green fluorescent protein gene (GFP) and analyzed in transgenic Brachypodium. This report demonstrates that this model species could serve to accelerate the functional analysis of Triticeae anther-specific gene promoters.
Collapse
Affiliation(s)
- Mohsin A Zaidi
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
| | - Stephen J B O'Leary
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
- National Research Council of Canada, Aquatic and Crop Resource Development, 1411 Oxford Street, Halifax, NS, B3H 3Z1, Canada
| | - Shaobo Wu
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
- Beijing YouAn Hospital, Capital Medical University, Beijing Institute of Hepatology, No. 8 Xi Tou Tiao, You An Men Wai, Fengtai District, Beijing, 100069, People's Republic of China
| | - Denise Chabot
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
| | - Steve Gleddie
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
| | - André Laroche
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, T1J 4B1, Canada
| | - François Eudes
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, T1J 4B1, Canada
| | - Laurian S Robert
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada.
| |
Collapse
|
99
|
Khosa JS, Lee R, Bräuning S, Lord J, Pither-Joyce M, McCallum J, Macknight RC. Doubled Haploid 'CUDH2107' as a Reference for Bulb Onion (Allium cepa L.) Research: Development of a Transcriptome Catalogue and Identification of Transcripts Associated with Male Fertility. PLoS One 2016; 11:e0166568. [PMID: 27861615 PMCID: PMC5115759 DOI: 10.1371/journal.pone.0166568] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/31/2016] [Indexed: 11/21/2022] Open
Abstract
Researchers working on model plants have derived great benefit from developing genomic and genetic resources using ‘reference’ genotypes. Onion has a large and highly heterozygous genome making the sharing of germplasm and analysis of sequencing data complicated. To simplify the discovery and analysis of genes underlying important onion traits, we are promoting the use of the homozygous double haploid line ‘CUDH2107’ by the onion research community. In the present investigation, we performed transcriptome sequencing on vegetative and reproductive tissues of CUDH2107 to develop a multi-organ reference transcriptome catalogue. A total of 396 million 100 base pair paired reads was assembled using the Trinity pipeline, resulting in 271,665 transcript contigs. This dataset was analysed for gene ontology and transcripts were classified on the basis of putative biological processes, molecular function and cellular localization. Significant differences were observed in transcript expression profiles between different tissues. To demonstrate the utility of our CUDH2107 transcriptome catalogue for understanding the genetic and molecular basis of various traits, we identified orthologues of rice genes involved in male fertility and flower development. These genes provide an excellent starting point for studying the molecular regulation, and the engineering of reproductive traits.
Collapse
Affiliation(s)
| | - Robyn Lee
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Sophia Bräuning
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
- Department of Botany, University of Otago, Dunedin, New Zealand
| | - Janice Lord
- Department of Botany, University of Otago, Dunedin, New Zealand
| | | | - John McCallum
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
- New Zealand Institute for Plant & Food Research, Lincoln, New Zealand
| | - Richard C. Macknight
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
- New Zealand Institute for Plant & Food Research, Lincoln, New Zealand
- * E-mail:
| |
Collapse
|
100
|
Noshi M, Mori D, Tanabe N, Maruta T, Shigeoka S. Arabidopsis clade IV TGA transcription factors, TGA10 and TGA9, are involved in ROS-mediated responses to bacterial PAMP flg22. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 252:12-21. [PMID: 27717447 DOI: 10.1016/j.plantsci.2016.06.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 06/15/2016] [Accepted: 06/27/2016] [Indexed: 05/22/2023]
Abstract
Reactive oxygen species (ROS) produced in chloroplasts have been proposed to act as signaling molecules for plant immunity through pathogen-associated molecular patterns (PAMPs), such as flg22. To elucidate this process, we herein conducted genetic screening of flg22-sensitive mutants from T-DNA insertion lines lacking chloroplastic H2O2-responsive genes. The results obtained showed that knockout mutants lacking a clade IV TGA transcription factor, TGA10, were more sensitive to the flg22 treatment than wild-type plants. Furthermore, although no flg22-sensitive phenotype was detected in the knockout mutant of another clade IV TGA9, double knockout tga9 tga10 mutants showed more sensitivity to flg22 than single knockout mutants. Transcripts of TGA10 and TGA9 were strongly induced by flg22 in leaves, and this was facilitated by the double knockout of stromal and thylakoid-bound ascorbate peroxidases (APX), which are major H2O2 scavengers in chloroplasts. The flg22-induced H2O2 accumulation was maintained at high level in these APXs mutants, indicating the clade IV TGAs may be induced by the ROS. Furthermore, TGA10 was required for the complete activation of the expression of several flg22-responsive genes in plants treated with this PAMP. These have provided a new insight into the relationship between the TGA transcription factors and ROS-mediated signaling in PAMPs responses.
Collapse
Affiliation(s)
- Masahiro Noshi
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, Nakamachi, Nara 631-8505, Japan.
| | - Daisuke Mori
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, Nakamachi, Nara 631-8505, Japan.
| | - Noriaki Tanabe
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, Nakamachi, Nara 631-8505, Japan.
| | - Takanori Maruta
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan.
| | - Shigeru Shigeoka
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, Nakamachi, Nara 631-8505, Japan.
| |
Collapse
|