51
|
Sylvestre-Gonon E, Law SR, Schwartz M, Robe K, Keech O, Didierjean C, Dubos C, Rouhier N, Hecker A. Functional, Structural and Biochemical Features of Plant Serinyl-Glutathione Transferases. FRONTIERS IN PLANT SCIENCE 2019; 10:608. [PMID: 31191562 PMCID: PMC6540824 DOI: 10.3389/fpls.2019.00608] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/25/2019] [Indexed: 05/04/2023]
Abstract
Glutathione transferases (GSTs) belong to a ubiquitous multigenic family of enzymes involved in diverse biological processes including xenobiotic detoxification and secondary metabolism. A canonical GST is formed by two domains, the N-terminal one adopting a thioredoxin (TRX) fold and the C-terminal one an all-helical structure. The most recent genomic and phylogenetic analysis based on this domain organization allowed the classification of the GST family into 14 classes in terrestrial plants. These GSTs are further distinguished based on the presence of the ancestral cysteine (Cys-GSTs) present in TRX family proteins or on its substitution by a serine (Ser-GSTs). Cys-GSTs catalyze the reduction of dehydroascorbate and deglutathionylation reactions whereas Ser-GSTs catalyze glutathione conjugation reactions and eventually have peroxidase activity, both activities being important for stress tolerance or herbicide detoxification. Through non-catalytic, so-called ligandin properties, numerous plant GSTs also participate in the binding and transport of small heterocyclic ligands such as flavonoids including anthocyanins, and polyphenols. So far, this function has likely been underestimated compared to the other documented roles of GSTs. In this review, we compiled data concerning the known enzymatic and structural properties as well as the biochemical and physiological functions associated to plant GSTs having a conserved serine in their active site.
Collapse
Affiliation(s)
- Elodie Sylvestre-Gonon
- Interactions Arbres-Microorganismes, Institut National de la Recherche Agronomique, Université de Lorraine, Nancy, France
| | - Simon R. Law
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Mathieu Schwartz
- Centre National de la Recherche Scientifique, Cristallographie, Résonance Magnétique et Modélisations, Université de Lorraine, Nancy, France
| | - Kevin Robe
- Biochimie et Physiologie Moléculaire des Plantes (BPMP), INRA, CNRS, SupAgro-M, Université de Montpellier, Montpellier, France
| | - Olivier Keech
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Claude Didierjean
- Centre National de la Recherche Scientifique, Cristallographie, Résonance Magnétique et Modélisations, Université de Lorraine, Nancy, France
| | - Christian Dubos
- Biochimie et Physiologie Moléculaire des Plantes (BPMP), INRA, CNRS, SupAgro-M, Université de Montpellier, Montpellier, France
| | - Nicolas Rouhier
- Interactions Arbres-Microorganismes, Institut National de la Recherche Agronomique, Université de Lorraine, Nancy, France
- *Correspondence: Nicolas Rouhier, Arnaud Hecker,
| | - Arnaud Hecker
- Interactions Arbres-Microorganismes, Institut National de la Recherche Agronomique, Université de Lorraine, Nancy, France
- *Correspondence: Nicolas Rouhier, Arnaud Hecker,
| |
Collapse
|
52
|
Gallé Á, Czékus Z, Bela K, Horváth E, Csiszár J, Poór P. Diurnal changes in tomato glutathione transferase activity and expression. ACTA BIOLOGICA HUNGARICA 2018; 69:505-509. [PMID: 30587017 DOI: 10.1556/018.69.2018.4.11] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Although the participation of glutathione transferases (GSTs) in light-dependent pathways and the circadian changes in the whole detoxification system have been studied, there are fewer results regarding the exact daily fluctuation of GSTs. In the present study, it was demonstrated that light up-regulated, while dark period decreased the plant GST activity and the expression of the selected tau group GST genes in tomato. These findings provide additional information on our current knowledge on the circadian rhythm of GSTs in plants and could help in further defining detoxification processes.
Collapse
Affiliation(s)
- Ágnes Gallé
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Zalán Czékus
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Krisztina Bela
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Edit Horváth
- Institute of Plant Biology, Biological Research Centre, H-6726 Szeged, Hungary
| | - Jolán Csiszár
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Péter Poór
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| |
Collapse
|
53
|
Agliassa C, Narayana R, Christie JM, Maffei ME. Geomagnetic field impacts on cryptochrome and phytochrome signaling. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 185:32-40. [DOI: 10.1016/j.jphotobiol.2018.05.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/21/2018] [Accepted: 05/25/2018] [Indexed: 11/15/2022]
|
54
|
Liao W, Li S, Lu C, Peng M. Tau GSTs involved in regulation of leaf abscission by comparison the gene profiling of MeGSTs in various abscission-promoting treatments in cassava abscission zones. BMC Genet 2018; 19:45. [PMID: 30005656 PMCID: PMC6043963 DOI: 10.1186/s12863-018-0627-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 06/13/2018] [Indexed: 01/04/2023] Open
Abstract
Background Glutathione S-transferases (GSTs) have been reported to regulate the plant tolerance to environmental stresses. Many plant GSTs exhibited the roles on promoting tolerance to drought stress, oxidative stress and plant hormones. The biological function of GSTs has been well characterized in Arabidopsis thaliana in response to exogenous environmental stresses. However, their regulation function under exogenous environmental stresses regulating leaf abscission in cassava (Manihot esculenta Crantz) remained unknown. Results Here, 83 GSTs were identified from tropical plant cassava. The amino acid motifs and phylogenetic analyses indicated that MeGSTs were divided into 9 classes. The global expression analyses were carried out to analyze the gene expression patterns of MeGST in cassava abscission zones by comparing the MeGST genes expression patterns in both ethylene and drought induced cassava leaf abscission. Totally, 34 GSTs were detected to express in both ethylene and drought induced leaf abscission in cassava abscission zones. Comparison of GST expression profiling between ethylene and drought induced leaf abscission suggested that Tau GST genes showed with the similar expression in both treatments induced leaf abscission in cassava abscission zone. GO annotation indicated that all 17 Tau GST genes participated in the pathway of toxin catabolism (GO: 0009407). The expression levels of 17 Tau MeGST genes were analyzed in two cassava cultivars, ‘SC124’ and ‘Arg7’, the two cultivars exhibit different levels of leaf abscission when suffered from the same environmental stress. Higher expression levels of Tau MeGSTs were detected in the precocious abscission Arg7 cultivar, while lower expression levels in delayed abscission SC124 cultivar. All the results indicated that Tau MeGSTs have the function in regulation the cassava leaf abscission under environmental stresses. Conclusion Analysis of the expression patterns of GSTs in various abscission-promoting treatments in cassava abscission zones helps us to understand the possible roles of GSTs in cassava leaf abscission. Electronic supplementary material The online version of this article (10.1186/s12863-018-0627-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wenbin Liao
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, ITBB, CATAS, Xueyuan Rd No 4, Haikou City, Hainan Province, People's Republic of China, 571101.
| | - Shuxia Li
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, ITBB, CATAS, Xueyuan Rd No 4, Haikou City, Hainan Province, People's Republic of China, 571101
| | - Cheng Lu
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, ITBB, CATAS, Xueyuan Rd No 4, Haikou City, Hainan Province, People's Republic of China, 571101
| | - Ming Peng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, ITBB, CATAS, Xueyuan Rd No 4, Haikou City, Hainan Province, People's Republic of China, 571101.
| |
Collapse
|
55
|
Abdul Kayum M, Nath UK, Park JI, Biswas MK, Choi EK, Song JY, Kim HT, Nou IS. Genome-Wide Identification, Characterization, and Expression Profiling of Glutathione S-Transferase (GST) Family in Pumpkin Reveals Likely Role in Cold-Stress Tolerance. Genes (Basel) 2018; 9:genes9020084. [PMID: 29439434 PMCID: PMC5852580 DOI: 10.3390/genes9020084] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/06/2018] [Accepted: 02/06/2018] [Indexed: 11/16/2022] Open
Abstract
Plant growth and development can be adversely affected by cold stress, limiting productivity. The glutathione S-transferase (GST) family comprises important detoxifying enzymes, which play major roles in biotic and abiotic stress responses by reducing the oxidative damage caused by reactive oxygen species. Pumpkins (Cucurbitamaxima) are widely grown, economically important, and nutritious; however, their yield can be severely affected by cold stress. The identification of putative candidate genes responsible for cold-stress tolerance, including the GST family genes, is therefore vital. For the first time, we identified 32 C. maxima GST (CmaGST) genes using a combination of bioinformatics approaches and characterized them by expression profiling. These CmaGST genes represent seven of the 14 known classes of plant GSTs, with 18 CmaGSTs categorized into the tau class. The CmaGSTs were distributed across 13 of pumpkin's 20 chromosomes, with the highest numbers found on chromosomes 4 and 6. The large number of CmaGST genes resulted from gene duplication; 11 and 5 pairs of CmaGST genes were segmental- and tandem-duplicated, respectively. In addition, all CmaGST genes showed organ-specific expression. The expression of the putative GST genes in pumpkin was examined under cold stress in two lines with contrasting cold tolerance: cold-tolerant CP-1 (C. maxima) and cold-susceptible EP-1 (Cucurbita moschata). Seven genes (CmaGSTU3, CmaGSTU7, CmaGSTU8, CmaGSTU9, CmaGSTU11, CmaGSTU12, and CmaGSTU14) were highly expressed in the cold-tolerant line and are putative candidates for use in breeding cold-tolerant crop varieties. These results increase our understanding of the cold-stress-related functions of the GST family, as well as potentially enhancing pumpkin breeding programs.
Collapse
Affiliation(s)
- Md Abdul Kayum
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922, Korea.
| | - Ujjal Kumar Nath
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922, Korea.
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh.
| | - Jong-In Park
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922, Korea.
| | - Manosh Kumar Biswas
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922, Korea.
| | - Eung Kyoo Choi
- Jangchun Seed Company, 72 Sideok-ro, Yakmokmyeon, Chilgok-gun, Kyeongsangbuk-do 39821, Korea.
| | - Jae-Young Song
- National Institute of Biological Resources, 42, Hwangyeong-ro, Seo-gu, Incheon 22689, Korea.
| | - Hoy-Taek Kim
- University-Industry Cooperation Foundation, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922, Korea.
| | - Ill-Sup Nou
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922, Korea.
| |
Collapse
|
56
|
Islam S, Rahman IA, Islam T, Ghosh A. Genome-wide identification and expression analysis of glutathione S-transferase gene family in tomato: Gaining an insight to their physiological and stress-specific roles. PLoS One 2017; 12:e0187504. [PMID: 29095889 PMCID: PMC5667761 DOI: 10.1371/journal.pone.0187504] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 10/21/2017] [Indexed: 01/18/2023] Open
Abstract
Glutathione S-transferase (GST) refers to one of the major detoxifying enzymes that plays an important role in different abiotic and biotic stress modulation pathways of plant. The present study aimed to a comprehensive genome-wide functional characterization of GST genes and proteins in tomato (Solanum lycopersicum L.). The whole genome sequence analysis revealed the presence of 90 GST genes in tomato, the largest GST gene family reported till date. Eight segmental duplicated gene pairs might contribute significantly to the expansion of SlGST gene family. Based on phylogenetic analysis of tomato, rice, and Arabidopsis GST proteins, GST family members could be further divided into ten classes. Members of each orthologous class showed high conservancy among themselves. Tau and lambda are the major classes of tomato; while tau and phi are the major classes for rice and Arabidopsis. Chromosomal localization revealed highly uneven distribution of SlGST genes in 13 different chromosomes, where chromosome 9 possessed the highest number of genes. Based on publicly available microarray data, expression analysis of 30 available SlGST genes exhibited a differential pattern in all the analyzed tissues and developmental stages. Moreover, most of the members showed highly induced expression in response to multiple biotic and abiotic stress inducers that could be harmonized with the increase in total GST enzyme activity under several stress conditions. Activity of tomato GST could be enhanced further by using some positive modulators (safeners) that have been predicted through molecular docking of SlGSTU5 and ligands. Moreover, tomato GST proteins are predicted to interact with a lot of other glutathione synthesizing and utilizing enzymes such as glutathione peroxidase, glutathione reductase, glutathione synthetase and γ-glutamyltransferase. This comprehensive genome-wide analysis and expression profiling would provide a rational platform and possibility to explore the versatile role of GST genes in crop engineering.
Collapse
Affiliation(s)
- Shiful Islam
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Iffat Ara Rahman
- Plant Breeding and Biotechnology Laboratory, Department of Botany, University of Dhaka, Dhaka, Bangladesh
| | - Tahmina Islam
- Plant Breeding and Biotechnology Laboratory, Department of Botany, University of Dhaka, Dhaka, Bangladesh
| | - Ajit Ghosh
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| |
Collapse
|
57
|
Tognetti VB, Bielach A, Hrtyan M. Redox regulation at the site of primary growth: auxin, cytokinin and ROS crosstalk. PLANT, CELL & ENVIRONMENT 2017; 40:2586-2605. [PMID: 28708264 DOI: 10.1111/pce.13021] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 06/17/2017] [Accepted: 06/24/2017] [Indexed: 05/18/2023]
Abstract
To maintain the activity of meristems is an absolute requirement for plant growth and development, and the role of the plant hormones auxin and cytokinin in apical meristem function is well established. Only little attention has been given, however, to the function of the reactive oxygen species (ROS) gradient along meristematic tissues and its interplay with hormonal regulatory networks. The interdependency between auxin-related, cytokinin-related and ROS-related circuits controls primary growth and development while modulating plant morphology in response to detrimental environmental factors. Because ROS interaction with redox-active compounds significantly affects the cellular redox gradient, the latter constitutes an interface for crosstalk between hormone and ROS signalling pathways. This review focuses on the mechanisms underlying ROS-dependent interactions with redox and hormonal components in shoot and root apical meristems which are crucial for meristems maintenance when plants are exposed to environmental hardships. We also emphasize the importance of cell type and the subcellular compartmentalization of ROS and redox networks to obtain a holistic understanding of how apical meristems adapt to stress.
Collapse
Affiliation(s)
- Vanesa B Tognetti
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Agnieszka Bielach
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Mónika Hrtyan
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| |
Collapse
|
58
|
Ismaiel AA, Papenbrock J. Effect of Patulin from Penicillium vulpinum on the Activity of Glutathione-S-Transferase and Selected Antioxidative Enzymes in Maize. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:E825. [PMID: 28737668 PMCID: PMC5551263 DOI: 10.3390/ijerph14070825] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 07/11/2017] [Accepted: 07/18/2017] [Indexed: 12/20/2022]
Abstract
The mycotoxin patulin (PAT) was purified from Penicillium vulpinum CM1 culture that has been isolated from a soil cultivated with maize. The effect of PAT and of a fungal culture filtrate on the activities of glutathione-S-transferase (GST) and some antioxidant enzymes viz. ascorbate peroxidase (APX), glutathione reductase (GR), dehydroascorbate reductase (DHAR) and monodehydroascorbate reductase (MDHAR) was investigated in roots and shoots of 8-day-old maize seedlings. PAT and culture filtrate caused significant reduction effects in a dose-related manner on the total GST activity. Upon application of the high PAT concentration (25 μg·mL-1) and of the concentrated fungal filtrate (100%, v/v), the reduction in GST activity of roots was 73.8-76.0% and of shoots was 60-61.7%. Conversely, significant increases in the activities of antioxidant enzymes were induced. Application of 25 μg·PAT·mL-1 increased APX, GR, DHAR, and MDHAR activity of root by 2.40-, 2.00-, 1.24-, and 2.16-fold, respectively. In shoots, the enzymatic activity was increased by 1.57-, 1.45-, 1.45-, and 1.61-fold, respectively. Similar induction values of the enzymatic activity were obtained upon application of the concentrated fungal filtrate. This is the first report describing the response of GST and antioxidant enzyme activities of plant cells to PAT toxicity.
Collapse
Affiliation(s)
- Ahmed A Ismaiel
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig 44519, Egypt.
| | - Jutta Papenbrock
- Institut für Botanik, Leibniz Universität Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany.
| |
Collapse
|
59
|
Nianiou-Obeidat I, Madesis P, Kissoudis C, Voulgari G, Chronopoulou E, Tsaftaris A, Labrou NE. Plant glutathione transferase-mediated stress tolerance: functions and biotechnological applications. PLANT CELL REPORTS 2017; 36:791-805. [PMID: 28391528 DOI: 10.1007/s00299-017-2139-7] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/27/2017] [Indexed: 05/07/2023]
Abstract
Plant glutathione transferases (EC 2.5.1.18, GSTs) are an ancient, multimember and diverse enzyme class. Plant GSTs have diverse roles in plant development, endogenous metabolism, stress tolerance, and xenobiotic detoxification. Their study embodies both fundamental aspects and agricultural interest, because of their ability to confer tolerance against biotic and abiotic stresses and to detoxify herbicides. Here we review the biotechnological applications of GSTs towards developing plants that are resistant to biotic and abiotic stresses. We integrate recent discoveries, highlight, and critically discuss the underlying biochemical and molecular pathways involved. We elaborate that the functions of GSTs in abiotic and biotic stress adaptation are potentially a result of both catalytic and non-catalytic functions. These include conjugation of reactive electrophile species with glutathione and the modulation of cellular redox status, biosynthesis, binding, and transport of secondary metabolites and hormones. Their major universal functions under stress underline the potential in developing climate-resilient cultivars through a combination of molecular and conventional breeding programs. We propose that future GST engineering efforts through rational and combinatorial approaches, would lead to the design of improved isoenzymes with purpose-designed catalytic activities and novel functional properties. Concurrent GST-GSH metabolic engineering can incrementally increase the effectiveness of GST biotechnological deployment.
Collapse
Affiliation(s)
- Irini Nianiou-Obeidat
- Laboratory of Genetics and Plant Breeding, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, P.O. Box 261, 54124, Thessaloniki, Greece.
| | - Panagiotis Madesis
- Institute of Applied Biosciences, CERTH, 6th km Charilaou-Thermis Road, Thermi, P.O. Box 361, 57001, Thessaloniki, Greece
| | - Christos Kissoudis
- Laboratory of Genetics and Plant Breeding, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, P.O. Box 261, 54124, Thessaloniki, Greece
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Georgia Voulgari
- Laboratory of Genetics and Plant Breeding, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, P.O. Box 261, 54124, Thessaloniki, Greece
| | - Evangelia Chronopoulou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, 75 Iera Odos Street, 11855, Athens, Greece
| | - Athanasios Tsaftaris
- Laboratory of Genetics and Plant Breeding, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, P.O. Box 261, 54124, Thessaloniki, Greece
- Institute of Applied Biosciences, CERTH, 6th km Charilaou-Thermis Road, Thermi, P.O. Box 361, 57001, Thessaloniki, Greece
| | - Nikolaos E Labrou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, 75 Iera Odos Street, 11855, Athens, Greece
| |
Collapse
|
60
|
Hasanuzzaman M, Nahar K, Anee TI, Fujita M. Glutathione in plants: biosynthesis and physiological role in environmental stress tolerance. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2017; 23:249-268. [PMID: 28461715 PMCID: PMC5391355 DOI: 10.1007/s12298-017-0422-2] [Citation(s) in RCA: 386] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 01/28/2017] [Accepted: 02/10/2017] [Indexed: 05/18/2023]
Abstract
Glutathione (GSH; γ-glutamyl-cysteinyl-glycine) is a small intracellular thiol molecule which is considered as a strong non-enzymatic antioxidant. Glutathione regulates multiple metabolic functions; for example, it protects membranes by maintaining the reduced state of both α-tocopherol and zeaxanthin, it prevents the oxidative denaturation of proteins under stress conditions by protecting their thiol groups, and it serves as a substrate for both glutathione peroxidase and glutathione S-transferase. By acting as a precursor of phytochelatins, GSH helps in the chelating of toxic metals/metalloids which are then transported and sequestered in the vacuole. The glyoxalase pathway (consisting of glyoxalase I and glyoxalase II enzymes) for detoxification of methylglyoxal, a cytotoxic molecule, also requires GSH in the first reaction step. For these reasons, much attention has recently been directed to elucidation of the role of this molecule in conferring tolerance to abiotic stress. Recently, this molecule has drawn much attention because of its interaction with other signaling molecules and phytohormones. In this review, we have discussed the recent progress in GSH biosynthesis, metabolism and its role in abiotic stress tolerance.
Collapse
Affiliation(s)
- Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207 Bangladesh
| | - Kamrun Nahar
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795 Japan
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207 Bangladesh
| | - Taufika Islam Anee
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207 Bangladesh
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795 Japan
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795 Japan
| |
Collapse
|
61
|
Li SW, Leng Y, Shi RF. Transcriptomic profiling provides molecular insights into hydrogen peroxide-induced adventitious rooting in mung bean seedlings. BMC Genomics 2017; 18:188. [PMID: 28212614 PMCID: PMC5316208 DOI: 10.1186/s12864-017-3576-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 02/09/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Hydrogen peroxide (H2O2) has been known to function as a signalling molecule involved in the modulation of various physiological processes in plants. H2O2 has been shown to act as a promoter during adventitious root formation in hypocotyl cuttings. In this study, RNA-Seq was performed to reveal the molecular mechanisms underlying H2O2-induced adventitious rooting. RESULTS RNA-Seq data revealed that H2O2 treatment greatly increased the numbers of clean reads and expressed genes and abundance of gene expression relative to the water treatment. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses indicated that a profound change in gene function occurred in the 6-h H2O2 treatment and that H2O2 mainly enhanced gene expression levels at the 6-h time point but reduced gene expression levels at the 24-h time point compared with the water treatment. In total, 4579 differentially expressed (2-fold change > 2) unigenes (DEGs), of which 78.3% were up-regulated and 21.7% were down-regulated; 3525 DEGs, of which 64.0% were up-regulated and 36.0% were down-regulated; and 7383 DEGs, of which 40.8% were up-regulated and 59.2% were down-regulated were selected in the 6-h, 24-h, and from 6- to 24-h treatments, respectively. The number of DEGs in the 6-h treatment was 29.9% higher than that in the 24-h treatment. The functions of the most highly regulated genes were associated with stress response, cell redox homeostasis and oxidative stress response, cell wall loosening and modification, metabolic processes, and transcription factors (TFs), as well as plant hormone signalling, including auxin, ethylene, cytokinin, gibberellin, and abscisic acid pathways. Notably, a large number of genes encoding for heat shock proteins (HSPs) and heat shock transcription factors (HSFs) were significantly up-regulated during H2O2 treatments. Furthermore, real-time quantitative PCR (qRT-PCR) results showed that, during H2O2 treatments, the expression levels of ARFs, IAAs, AUXs, NACs, RD22, AHKs, MYBs, PIN1, AUX15A, LBD29, LBD41, ADH1b, and QORL were significantly up-regulated at the 6- and/or 24-h time points. In contrast, PER1 and PER2 were significantly down-regulated by H2O2 treatment. These qRT-PCR results strongly correlated with the RNA-Seq data. CONCLUSIONS Using RNA-Seq and qRT-PCR techniques, we analysed the global changes in gene expression and functional profiling during H2O2-induced adventitious rooting in mung bean seedlings. These results strengthen the current understanding of H2O2-induced adventitious rooting and the molecular traits of H2O2 priming in plants.
Collapse
Affiliation(s)
- Shi-Weng Li
- School of Environmental and Municipal Engineering, Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou Jiaotong University, 88 West Anning Road, Lanzhou, 730070 People’s Republic of China
| | - Yan Leng
- School of Environmental and Municipal Engineering, Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou Jiaotong University, 88 West Anning Road, Lanzhou, 730070 People’s Republic of China
| | - Rui-Fang Shi
- School of Environmental and Municipal Engineering, Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou Jiaotong University, 88 West Anning Road, Lanzhou, 730070 People’s Republic of China
| |
Collapse
|
62
|
Islam S, Rahman IA, Islam T, Ghosh A. Genome-wide identification and expression analysis of glutathione S-transferase gene family in tomato: Gaining an insight to their physiological and stress-specific roles. PLoS One 2017. [PMID: 29095889 DOI: 10.1371/journal.pone.01875004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023] Open
Abstract
Glutathione S-transferase (GST) refers to one of the major detoxifying enzymes that plays an important role in different abiotic and biotic stress modulation pathways of plant. The present study aimed to a comprehensive genome-wide functional characterization of GST genes and proteins in tomato (Solanum lycopersicum L.). The whole genome sequence analysis revealed the presence of 90 GST genes in tomato, the largest GST gene family reported till date. Eight segmental duplicated gene pairs might contribute significantly to the expansion of SlGST gene family. Based on phylogenetic analysis of tomato, rice, and Arabidopsis GST proteins, GST family members could be further divided into ten classes. Members of each orthologous class showed high conservancy among themselves. Tau and lambda are the major classes of tomato; while tau and phi are the major classes for rice and Arabidopsis. Chromosomal localization revealed highly uneven distribution of SlGST genes in 13 different chromosomes, where chromosome 9 possessed the highest number of genes. Based on publicly available microarray data, expression analysis of 30 available SlGST genes exhibited a differential pattern in all the analyzed tissues and developmental stages. Moreover, most of the members showed highly induced expression in response to multiple biotic and abiotic stress inducers that could be harmonized with the increase in total GST enzyme activity under several stress conditions. Activity of tomato GST could be enhanced further by using some positive modulators (safeners) that have been predicted through molecular docking of SlGSTU5 and ligands. Moreover, tomato GST proteins are predicted to interact with a lot of other glutathione synthesizing and utilizing enzymes such as glutathione peroxidase, glutathione reductase, glutathione synthetase and γ-glutamyltransferase. This comprehensive genome-wide analysis and expression profiling would provide a rational platform and possibility to explore the versatile role of GST genes in crop engineering.
Collapse
Affiliation(s)
- Shiful Islam
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Iffat Ara Rahman
- Plant Breeding and Biotechnology Laboratory, Department of Botany, University of Dhaka, Dhaka, Bangladesh
| | - Tahmina Islam
- Plant Breeding and Biotechnology Laboratory, Department of Botany, University of Dhaka, Dhaka, Bangladesh
| | - Ajit Ghosh
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| |
Collapse
|
63
|
Kao CW, Bakshi M, Sherameti I, Dong S, Reichelt M, Oelmüller R, Yeh KW. A Chinese cabbage (Brassica campetris subsp. Chinensis) τ-type glutathione-S-transferase stimulates Arabidopsis development and primes against abiotic and biotic stress. PLANT MOLECULAR BIOLOGY 2016; 92:643-659. [PMID: 27796720 DOI: 10.1007/s11103-016-0531-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 08/19/2016] [Indexed: 05/20/2023]
Abstract
The beneficial root-colonizing fungus Piriformospora indica stimulates root development of Chinese cabbage (Brassica campestris subsp. Chinensis) and this is accompanied by the up-regulation of a τ-class glutathione (GSH)-S-transferase gene (BcGSTU) (Lee et al. 2011) in the roots. BcGSTU expression is further promoted by osmotic (salt and PEG) and heat stress. Ectopic expression of BcGSTU in Arabidopsis under the control of the 35S promoter results in the promotion of root and shoot growth as well as better performance of the plants under abiotic (150 mM NaCl, PEG, 42 °C) and biotic (Alternaria brassicae infection) stresses. Higher levels of glutathione, auxin and stress-related (salicylic and jasmonic acid) phytohormones as well as changes in the gene expression profile result in better performance of the BcGSTU expressors upon exposure to stress. Simultaneously the plants are primed against upcoming stresses. We propose that BcGSTU is a target of P. indica in Chinese cabbage roots because the enzyme participates in balancing growth and stress responses, depending on the equilibrium of the symbiotic interaction. A comparable function of BcGST in transgenic Arabidopsis makes the enzyme a valuable tool for agricultural applications.
Collapse
Affiliation(s)
- Chih-Wei Kao
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Madhunita Bakshi
- Institute of Plant Physiology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Irena Sherameti
- Institute of Plant Physiology, Friedrich-Schiller-University Jena, Jena, Germany
| | | | - Michael Reichelt
- Max-Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - Ralf Oelmüller
- Institute of Plant Physiology, Friedrich-Schiller-University Jena, Jena, Germany.
| | - Kai-Wun Yeh
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
64
|
Helwi P, Guillaumie S, Thibon C, Keime C, Habran A, Hilbert G, Gomes E, Darriet P, Delrot S, van Leeuwen C. Vine nitrogen status and volatile thiols and their precursors from plot to transcriptome level. BMC PLANT BIOLOGY 2016; 16:173. [PMID: 27498539 PMCID: PMC4976470 DOI: 10.1186/s12870-016-0836-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/20/2016] [Indexed: 05/29/2023]
Abstract
BACKGROUND Volatile thiols largely contribute to the organoleptic characteristics and typicity of Sauvignon blanc wines. Among this family of odorous compounds, 3-sulfanylhexan-1-ol (3SH) and 4-methyl-4-sulfanylpentan-2-one (4MSP) have a major impact on wine flavor. These thiols are formed during alcoholic fermentation by the yeast from odorless, non-volatile precursors found in the berries and the must. The present study investigates the effects of vine nitrogen (N) status on 3SH and 4MSP content in Sauvignon blanc wine and on the glutathionylated and cysteinylated precursors of 3SH (Glut-3SH and Cys-3SH) in the berries and the must. This is paralleled by a RNA-seq analysis of gene expression in the berries. The impact of N supply on the expression of the glutathione-S-transferase 3 and 4 (VviGST3 and VviGST4) and the γ-glutamyltranspeptidase (VviGGT), considered as key genes in their biosynthesis, was also evaluated. RESULTS N supply (N100 treatment) increased the 3SH content in wine while no effect was noticed on 4MSP level. Furthermore, N supply increased Glut-3SH levels in grape berries at late berry ripening stages, and this effect was highly significant in must at harvest. No significant effect of N addition was noticed on Cys-3SH concentration. The transcript abundance of the glutathione-S-transferases VviGST3 and VviGST4 and the γ-glutamyltranspeptidase (VviGGT), were similar between the control and the N100 treatment. New candidate genes which might be implicated in the biosynthetic pathway of 3SH precursors were identified by whole transcriptome shotgun sequencing (RNA-seq). CONCLUSIONS High vine N status has a positive effect on 3SH content in wine through an increase of Glut-3SH levels in grape berries and must. Candidate GSTs and glutathione-S-conjugates type transporters involved in this stimulation were identified by RNA-seq analysis.
Collapse
Affiliation(s)
- Pierre Helwi
- Univ. de Bordeaux, Institut des Sciences de la Vigne et du Vin (ISVV), Ecophysiologie et Génomique Fonctionnelle de la Vigne (EGFV), UMR 1287, 33140 Villenave d’Ornon, France
- Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin (ISVV), Ecophysiologie et Génomique Fonctionnelle de la Vigne (EGFV), UMR 1287, 33140 Villenave d’Ornon, France
- INRA, Institut des Sciences de la Vigne et du Vin (ISVV), Ecophysiologie et Génomique Fonctionnelle de la Vigne (EGFV), UMR 1287, 33140 Villenave d’Ornon, France
| | - Sabine Guillaumie
- Univ. de Bordeaux, Institut des Sciences de la Vigne et du Vin (ISVV), Ecophysiologie et Génomique Fonctionnelle de la Vigne (EGFV), UMR 1287, 33140 Villenave d’Ornon, France
- INRA, Institut des Sciences de la Vigne et du Vin (ISVV), Ecophysiologie et Génomique Fonctionnelle de la Vigne (EGFV), UMR 1287, 33140 Villenave d’Ornon, France
| | - Cécile Thibon
- Univ. de Bordeaux, Institut des Sciences de la Vigne et du Vin (ISVV), Unité de recherche Œnologie, EA 4577, 33140 Villenave d’Ornon, France
- INRA, Institut des Sciences de la Vigne et du Vin (ISVV), USC 1366 Œnologie, 33140 Villenave d’Ornon, France
| | - Céline Keime
- Univ. de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IBGMC), Institut National de la Santé et de la Recherche Médicale U 964, Centre National de Recherche Scientifique UMR 7104, 67404 Illkirch, France
| | - Aude Habran
- Univ. de Bordeaux, Institut des Sciences de la Vigne et du Vin (ISVV), Ecophysiologie et Génomique Fonctionnelle de la Vigne (EGFV), UMR 1287, 33140 Villenave d’Ornon, France
- INRA, Institut des Sciences de la Vigne et du Vin (ISVV), Ecophysiologie et Génomique Fonctionnelle de la Vigne (EGFV), UMR 1287, 33140 Villenave d’Ornon, France
| | - Ghislaine Hilbert
- Univ. de Bordeaux, Institut des Sciences de la Vigne et du Vin (ISVV), Ecophysiologie et Génomique Fonctionnelle de la Vigne (EGFV), UMR 1287, 33140 Villenave d’Ornon, France
- INRA, Institut des Sciences de la Vigne et du Vin (ISVV), Ecophysiologie et Génomique Fonctionnelle de la Vigne (EGFV), UMR 1287, 33140 Villenave d’Ornon, France
| | - Eric Gomes
- Univ. de Bordeaux, Institut des Sciences de la Vigne et du Vin (ISVV), Ecophysiologie et Génomique Fonctionnelle de la Vigne (EGFV), UMR 1287, 33140 Villenave d’Ornon, France
- INRA, Institut des Sciences de la Vigne et du Vin (ISVV), Ecophysiologie et Génomique Fonctionnelle de la Vigne (EGFV), UMR 1287, 33140 Villenave d’Ornon, France
| | - Philippe Darriet
- Univ. de Bordeaux, Institut des Sciences de la Vigne et du Vin (ISVV), Unité de recherche Œnologie, EA 4577, 33140 Villenave d’Ornon, France
- INRA, Institut des Sciences de la Vigne et du Vin (ISVV), USC 1366 Œnologie, 33140 Villenave d’Ornon, France
| | - Serge Delrot
- Univ. de Bordeaux, Institut des Sciences de la Vigne et du Vin (ISVV), Ecophysiologie et Génomique Fonctionnelle de la Vigne (EGFV), UMR 1287, 33140 Villenave d’Ornon, France
- INRA, Institut des Sciences de la Vigne et du Vin (ISVV), Ecophysiologie et Génomique Fonctionnelle de la Vigne (EGFV), UMR 1287, 33140 Villenave d’Ornon, France
| | - Cornelis van Leeuwen
- Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin (ISVV), Ecophysiologie et Génomique Fonctionnelle de la Vigne (EGFV), UMR 1287, 33140 Villenave d’Ornon, France
| |
Collapse
|
65
|
Jahan MS, Nozulaidi M, Khairi M, Mat N. Light-harvesting complexes in photosystem II regulate glutathione-induced sensitivity of Arabidopsis guard cells to abscisic acid. JOURNAL OF PLANT PHYSIOLOGY 2016; 195:1-8. [PMID: 26970687 DOI: 10.1016/j.jplph.2016.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/26/2016] [Accepted: 03/01/2016] [Indexed: 06/05/2023]
Abstract
Light-harvesting complexes (LHCs) in photosystem II (PSII) regulate glutathione (GSH) functions in plants. To investigate whether LHCs control GSH biosynthesis that modifies guard cell abscisic acid (ABA) sensitivity, we evaluated GSH content, stomatal aperture, reactive oxygen species (ROS), weight loss and plant growth using a ch1-1 mutant that was defective of LHCs and compared this with wild-type (WT) Arabidopsis thaliana plants. Glutathione monoethyl ester (GSHmee) increased but 1-chloro-2,4 dinitrobenzene (CDNB) decreased the GSH content in the guard cells. The guard cells of the ch1-1 mutants accumulated significantly less GSH than the WT plants. The guard cells of the ch1-1 mutants also showed higher sensitivity to ABA than the WT plants. The CDNB treatment increased but the GSHmee treatment decreased the ABA sensitivity of the guard cells without affecting ABA-induced ROS production. Dark and light treatments altered the GSH content and stomatal aperture of the guard cells of ch1-1 and WT plants, irrespective of CDNB and GSHmee. The ch1-1 mutant contained fewer guard cells and displayed poor growth, late flowering and stumpy weight loss compared with the WT plants. This study suggests that defective LHCs reduced the GSH content in the guard cells and increased sensitivity to ABA, resulting in stomatal closure.
Collapse
Affiliation(s)
- Md Sarwar Jahan
- Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, 22200 Besut, Terengganu, Malaysia.
| | - Mohd Nozulaidi
- Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, 22200 Besut, Terengganu, Malaysia
| | - Mohd Khairi
- Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, 22200 Besut, Terengganu, Malaysia
| | - Nashriyah Mat
- Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, 22200 Besut, Terengganu, Malaysia
| |
Collapse
|
66
|
Tiwari V, Patel MK, Chaturvedi AK, Mishra A, Jha B. Functional Characterization of the Tau Class Glutathione-S-Transferases Gene (SbGSTU) Promoter of Salicornia brachiata under Salinity and Osmotic Stress. PLoS One 2016; 11:e0148494. [PMID: 26885663 PMCID: PMC4757536 DOI: 10.1371/journal.pone.0148494] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 01/20/2016] [Indexed: 12/01/2022] Open
Abstract
Reactive oxygen or nitrogen species are generated in the plant cell during the extreme stress condition, which produces toxic compounds after reacting with the organic molecules. The glutathione-S-transferase (GST) enzymes play a significant role to detoxify these toxins and help in excretion or sequestration of them. In the present study, we have cloned 1023 bp long promoter region of tau class GST from an extreme halophyte Salicornia brachiata and functionally characterized using the transgenic approach in tobacco. Computational analysis revealed the presence of abiotic stress responsive cis-elements like ABRE, MYB, MYC, GATA, GT1 etc., phytohormones, pathogen and wound responsive motifs. Three 5'-deletion constructs of 730 (GP2), 509 (GP3) and 348 bp (GP4) were made from 1023 (GP1) promoter fragment and used for tobacco transformation. The single event transgenic plants showed notable GUS reporter protein expression in the leaf tissues of control as well as treated plants. The expression level of the GUS gradually decreases from GP1 to GP4 in leaf tissues, whereas the highest level of expression was detected with the GP2 construct in root and stem under control condition. The GUS expression was found higher in leaves and stems of salinity or osmotic stress treated transgenic plants than that of the control plants, but, lower in roots. An efficient expression level of GUS in transgenic plants suggests that this promoter can be used for both constitutive as well as stress inducible expression of gene(s). And this property, make it as a potential candidate to be used as an alternative promoter for crop genetic engineering.
Collapse
Affiliation(s)
- Vivekanand Tiwari
- Division of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar (Gujarat), India
| | - Manish Kumar Patel
- Division of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar (Gujarat), India
| | - Amit Kumar Chaturvedi
- Division of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar (Gujarat), India
| | - Avinash Mishra
- Division of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar (Gujarat), India
| | - Bhavanath Jha
- Division of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar (Gujarat), India
| |
Collapse
|
67
|
Jia B, Sun M, Sun X, Li R, Wang Z, Wu J, Wei Z, DuanMu H, Xiao J, Zhu Y. Overexpression of GsGSTU13 and SCMRP in Medicago sativa confers increased salt-alkaline tolerance and methionine content. PHYSIOLOGIA PLANTARUM 2016; 156:176-189. [PMID: 26010993 DOI: 10.1111/ppl.12350] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 04/30/2015] [Indexed: 05/03/2023]
Abstract
Tau-class glutathione S-transferases (GSTUs) are ubiquitous proteins encoded by a large gene family in plants, which play important roles in combating different environmental stresses. In previous studies, we constructed a Glycine soja transcriptional profile, and identified three GSTUs (GsGSTU13, GsGSTU14 and GsGSTU19) as potential salt-alkaline stress-responsive genes. Two of them, GsGSTU14 and GsGSTU19, have been shown to positively regulate plant salt-alkaline tolerance. In this study, we further demonstrated the positive function of GsGSTU13 in plant salt-alkaline stress responses by overexpressing it in Medicago sativa. Stress tolerance tests suggested that GsGSTU13 transgenic lines showed better growth and physiological indicators than wild alfalfa (cv. Zhaodong) under alkaline stress. Considering the shortage of methionine in alfalfa, we then co-transformed GsGSTU13 into two main alfalfa cultivars in Heilongjiang Province (cv. Zhaodong and cv. Nongjing No. 1) together with SCMRP, a synthesized gene that could improve the methionine content. We found that GsGSTU13/SCMRP transgenic alfalfa displayed not only higher methionine content but also higher tolerance to alkaline and salt stresses, respectively. Taken together, our results demonstrate that GsGSTU13 acts as a positive regulator in plant responses to salt and alkaline stresses, and can be used as a good candidate for generation of salt-alkaline tolerant crops.
Collapse
Affiliation(s)
- Bowei Jia
- Key Laboratory of Agricultural Biological Functional Gene, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Mingzhe Sun
- Key Laboratory of Agricultural Biological Functional Gene, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Xiaoli Sun
- Agricultural College, Heilongjiang Bayi Agricultural University, Daqing 163319, P.R. China
| | - Rongtian Li
- Key Laboratory of Molecular Biology, College of Heilongjiang Province, Heilongjiang University, Harbin 150080, P.R. China
| | - Zhenyu Wang
- Key Laboratory of Agricultural Biological Functional Gene, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Jing Wu
- Key Laboratory of Agricultural Biological Functional Gene, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Zhengwei Wei
- Key Laboratory of Agricultural Biological Functional Gene, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Huizi DuanMu
- Key Laboratory of Agricultural Biological Functional Gene, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Jialei Xiao
- Key Laboratory of Agricultural Biological Functional Gene, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Yanming Zhu
- Key Laboratory of Agricultural Biological Functional Gene, Northeast Agricultural University, Harbin 150030, P.R. China
| |
Collapse
|
68
|
Li SW, Shi RF, Leng Y, Zhou Y. Transcriptomic analysis reveals the gene expression profile that specifically responds to IBA during adventitious rooting in mung bean seedlings. BMC Genomics 2016; 17:43. [PMID: 26755210 PMCID: PMC4709940 DOI: 10.1186/s12864-016-2372-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 01/06/2016] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Auxin plays a critical role in inducing adventitious rooting in many plants. Indole-3-butyric acid (IBA) is the most widely employed auxin for adventitious rooting. However, the molecular mechanisms by which auxin regulate the process of adventitious rooting are less well known. RESULTS The RNA-Seq data analysis indicated that IBA treatment greatly increased the amount of clean reads and the amount of expressed unigenes by 24.29 % and 27.42 % and by 4.3 % and 5.04 % at two time points, respectively, and significantly increased the numbers of unigenes numbered with RPKM = 10-100 and RPKM = 500-1000 by 13.04 % and 3.12 % and by 24.66 % and 108.2 % at two time points, respectively. Gene Ontology (GO) enrichment analysis indicated that the enrichment of down-regulated GOs was 2.87-fold higher than that of up-regulated GOs at stage 1, suggesting that IBA significantly down-regulated gene expression at 6 h. The GO functional category indicated that IBA significantly up- or down-regulated processes associated with auxin signaling, ribosome assembly and protein synthesis, photosynthesis, oxidoreductase activity and extracellular region, secondary cell wall biogenesis, and the cell wall during the development process. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment indicated that ribosome biogenesis, plant hormone signal transduction, pentose and glucuronate interconversions, photosynthesis, phenylpropanoid biosynthesis, sesquiterpenoid and triterpenoid biosynthesis, ribosome, cutin, flavonoid biosynthesis, and phenylalanine metabolism were the pathways most highly regulated by IBA. A total of 6369 differentially expressed (2-fold change > 2) unigenes (DEGs) with 3693 (58 %) that were up-regulated and 2676 (42 %) down-regulated, 5433 unigenes with 2208 (40.6 %) that were up-regulated and 3225 (59.4 %) down-regulated, and 7664 unigenes with 3187 (41.6 %) that were up-regulated and 4477 (58.4 %) down-regulated were detected at stage 1, stage 2, and between stage 1 and stage 2, respectively, suggesting that IBA treatment increased the number of DEGs. A total of 143 DEGs specifically involved in plant hormone signaling and 345 transcription factor (TF) genes were also regulated by IBA. qRT-PCR validation of the 36 genes with known functions indicated a strong correlation with the RNA-Seq data. CONCLUSIONS The changes in GO functional categories, KEGG pathways, and global DEG profiling during adventitious rooting induced by IBA were analyzed. These results provide valuable information about the molecular traits of IBA regulation of adventitious rooting.
Collapse
Affiliation(s)
- Shi-Weng Li
- School of Environmental and Municipal Engineering, Key Laboratory of Extreme Environmental Microbial Resources and Engineering Gansu Province, Lanzhou Jiaotong University, 88 West Anning Road, Lanzhou, 730070, P. R. China.
| | - Rui-Fang Shi
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, 88 West Anning Road, Lanzhou, 730070, P.R. China.
| | - Yan Leng
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, 88 West Anning Road, Lanzhou, 730070, P.R. China.
| | - Yuan Zhou
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, 88 West Anning Road, Lanzhou, 730070, P.R. China.
| |
Collapse
|
69
|
Tiwari V, Patel MK, Chaturvedi AK, Mishra A, Jha B. Functional Characterization of the Tau Class Glutathione-S-Transferases Gene (SbGSTU) Promoter of Salicornia brachiata under Salinity and Osmotic Stress. PLoS One 2016. [PMID: 26885663 DOI: 10.1371/journal.pone.014894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023] Open
Abstract
Reactive oxygen or nitrogen species are generated in the plant cell during the extreme stress condition, which produces toxic compounds after reacting with the organic molecules. The glutathione-S-transferase (GST) enzymes play a significant role to detoxify these toxins and help in excretion or sequestration of them. In the present study, we have cloned 1023 bp long promoter region of tau class GST from an extreme halophyte Salicornia brachiata and functionally characterized using the transgenic approach in tobacco. Computational analysis revealed the presence of abiotic stress responsive cis-elements like ABRE, MYB, MYC, GATA, GT1 etc., phytohormones, pathogen and wound responsive motifs. Three 5'-deletion constructs of 730 (GP2), 509 (GP3) and 348 bp (GP4) were made from 1023 (GP1) promoter fragment and used for tobacco transformation. The single event transgenic plants showed notable GUS reporter protein expression in the leaf tissues of control as well as treated plants. The expression level of the GUS gradually decreases from GP1 to GP4 in leaf tissues, whereas the highest level of expression was detected with the GP2 construct in root and stem under control condition. The GUS expression was found higher in leaves and stems of salinity or osmotic stress treated transgenic plants than that of the control plants, but, lower in roots. An efficient expression level of GUS in transgenic plants suggests that this promoter can be used for both constitutive as well as stress inducible expression of gene(s). And this property, make it as a potential candidate to be used as an alternative promoter for crop genetic engineering.
Collapse
Affiliation(s)
- Vivekanand Tiwari
- Division of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar (Gujarat), India
| | - Manish Kumar Patel
- Division of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar (Gujarat), India
| | - Amit Kumar Chaturvedi
- Division of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar (Gujarat), India
| | - Avinash Mishra
- Division of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar (Gujarat), India
| | - Bhavanath Jha
- Division of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar (Gujarat), India
| |
Collapse
|
70
|
Xu J, Xing XJ, Tian YS, Peng RH, Xue Y, Zhao W, Yao QH. Transgenic Arabidopsis Plants Expressing Tomato Glutathione S-Transferase Showed Enhanced Resistance to Salt and Drought Stress. PLoS One 2015; 10:e0136960. [PMID: 26327625 PMCID: PMC4556630 DOI: 10.1371/journal.pone.0136960] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 08/11/2015] [Indexed: 11/19/2022] Open
Abstract
Although glutathione S-transferases (GST, EC 2.5.1.18) are involved in response to abiotic stress, limited information is available regarding gene function in tomato. In this study, a GST gene from tomato, designated LeGSTU2, was cloned and functionally characterized. Expression profile analysis results showed that it was expressed in roots and flowers, and the transcription was induced by salt, osmotic, and heat stress. The gene was then introduced to Arabidopsis by Agrobacterium tumefaciens-mediated transformation. Transgenic Arabidopsis plants were normal in terms of growth and maturity compared with wild-type plants. Transgenic plants also showed an enhanced resistance to salt and osmotic stress induced by NaCl and mannitol. The increased tolerance of transgenic plants was correlated with the changes in proline, malondialdehyde and antioxidative emzymes activities. Our results indicated that the gene from tomato plays a positive role in improving tolerance to salinity and drought stresses in Arabidopsis.
Collapse
Affiliation(s)
- Jing Xu
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Xiao-Juan Xing
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Yong-Sheng Tian
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Ri-He Peng
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Yong Xue
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Wei Zhao
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Quan-Hong Yao
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| |
Collapse
|
71
|
Xu XB, Ma XY, Lei HH, Song HM, Ying QC, Xu MJ, Liu SB, Wang HZ. Proteomic analysis reveals the mechanisms of Mycena dendrobii promoting transplantation survival and growth of tissue culture seedlings of Dendrobium officinale. J Appl Microbiol 2015; 118:1444-55. [PMID: 25732577 DOI: 10.1111/jam.12781] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 02/06/2015] [Accepted: 02/17/2015] [Indexed: 01/30/2023]
Abstract
AIMS Dendrobium officinale is an important traditional Chinese medicinal herb. Its seedlings generally show low survival and growth when transferred from in vitro tissue culture to a greenhouse or field environment. In this study, the effect of Mycena dendrobii on the survival and growth of D. officinale tissue culture seedlings and the mechanisms involved was explored. METHODS AND RESULTS Mycena dendrobii were applied underneath the roots of D. officinale tissue culture seedlings. The seedling survival and growth were analysed. The root proteins induced by M. dendrobii were identified using two-dimensional (2-D) electrophoresis and matrix-assisted laser desorption/ionization time-of-flight MS (MALDI-TOF-MS). Mycena dendrobii treatment significantly enhanced survival and growth of D. officinale seedlings. Forty-one proteins induced by M. dendrobii were identified. Among them, 10 were involved in defence and stress response, two were involved in the formation of root or mycorrhizae, and three were related to the biosynthesis of bioactive constituents. CONCLUSIONS These results suggest that enhancing stress tolerance and promoting new root formation induced by M. dendrobii may improve the survival and growth of D. officinale tissue culture seedlings. SIGNIFICANCE AND IMPACT OF THE STUDY This study provides a foundation for future use of M. dendrobii in the large-scale cultivation of Dendrobiums.
Collapse
Affiliation(s)
- X B Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - X Y Ma
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - H H Lei
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - H M Song
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Q C Ying
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - M J Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - S B Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - H Z Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
72
|
Busch AW, Montgomery BL. Interdependence of tetrapyrrole metabolism, the generation of oxidative stress and the mitigative oxidative stress response. Redox Biol 2015; 4:260-71. [PMID: 25618582 PMCID: PMC4315935 DOI: 10.1016/j.redox.2015.01.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/12/2015] [Accepted: 01/14/2015] [Indexed: 01/01/2023] Open
Abstract
Tetrapyrroles are involved in light harvesting and light perception, electron-transfer reactions, and as co-factors for key enzymes and sensory proteins. Under conditions in which cells exhibit stress-induced imbalances of photosynthetic reactions, or light absorption exceeds the ability of the cell to use photoexcitation energy in synthesis reactions, redox imbalance can occur in photosynthetic cells. Such conditions can lead to the generation of reactive oxygen species (ROS) associated with alterations in tetrapyrrole homeostasis. ROS accumulation can result in cellular damage and detrimental effects on organismal fitness, or ROS molecules can serve as signals to induce a protective or damage-mitigating oxidative stress signaling response in cells. Induced oxidative stress responses include tetrapyrrole-dependent and -independent mechanisms for mitigating ROS generation and/or accumulation. Thus, tetrapyrroles can be contributors to oxidative stress, but are also essential in the oxidative stress response to protect cells by contributing to detoxification of ROS. In this review, we highlight the interconnection and interdependence of tetrapyrrole metabolism with the occurrence of oxidative stress and protective oxidative stress signaling responses in photosynthetic organisms. Tetrapyrroles are involved in light sensing and oxidative stress mitigation. Reactive oxygen species (ROS) can form upon light exposure of free tetrapyrroles. Tetrapyrrole homeostasis must be tightly regulated to avoid oxidative stress. ROS can result in cellular damage or oxidative stress signaling in cells.
Collapse
|
73
|
Zuluaga AP, Solé M, Lu H, Góngora-Castillo E, Vaillancourt B, Coll N, Buell CR, Valls M. Transcriptome responses to Ralstonia solanacearum infection in the roots of the wild potato Solanum commersonii. BMC Genomics 2015; 16:246. [PMID: 25880642 PMCID: PMC4391584 DOI: 10.1186/s12864-015-1460-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 03/09/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Solanum commersonii is a wild potato species that exhibits high tolerance to both biotic and abiotic stresses and has been used as a source of genes for introgression into cultivated potato. Among the interesting features of S. commersonii is resistance to the bacterial wilt caused by Ralstonia solanacearum, one of the most devastating bacterial diseases of crops. RESULTS In this study, we used deep sequencing of S. commersonii RNA (RNA-seq) to analyze the below-ground plant transcriptional responses to R. solanacearum. While a majority of S. commersonii RNA-seq reads could be aligned to the Solanum tuberosum Group Phureja DM reference genome sequence, we identified 2,978 S. commersonii novel transcripts through assembly of unaligned S. commersonii RNA-seq reads. We also used RNA-seq to study gene expression in pathogen-challenged roots of S. commersonii accessions resistant (F118) and susceptible (F97) to the pathogen. Expression profiles obtained from read mapping to the S. tuberosum reference genome and the S. commersonii novel transcripts revealed a differential response to the pathogen in the two accessions, with 221 (F118) and 644 (F97) differentially expressed genes including S. commersonii novel transcripts in the resistant and susceptible genotypes. Interestingly, 22.6% of the F118 and 12.8% of the F97 differentially expressed genes had been previously identified as responsive to biotic stresses and half of those up-regulated in both accessions had been involved in plant pathogen responses. Finally, we compared two different methods to eliminate ribosomal RNA from the plant RNA samples in order to allow dual mapping of RNAseq reads to the host and pathogen genomes and provide insights on the advantages and limitations of each technique. CONCLUSIONS Our work catalogues the S. commersonii transcriptome and strengthens the notion that this species encodes specific genes that are differentially expressed to respond to bacterial wilt. In addition, a high proportion of S. commersonii-specific transcripts were altered by R. solanacearum only in F118 accession, while phythormone-related genes were highly induced in F97, suggesting a markedly different response to the pathogen in the two plant accessions studied.
Collapse
Affiliation(s)
- A Paola Zuluaga
- Genetics Department, Universitat de Barcelona and Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB) Edifici CRAG, Campus UAB, Bellaterra, 08193, Catalonia, Spain.
| | - Montserrat Solé
- Genetics Department, Universitat de Barcelona and Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB) Edifici CRAG, Campus UAB, Bellaterra, 08193, Catalonia, Spain.
| | - Haibin Lu
- Genetics Department, Universitat de Barcelona and Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB) Edifici CRAG, Campus UAB, Bellaterra, 08193, Catalonia, Spain.
| | - Elsa Góngora-Castillo
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.
| | - Brieanne Vaillancourt
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.
| | - Nuria Coll
- Genetics Department, Universitat de Barcelona and Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB) Edifici CRAG, Campus UAB, Bellaterra, 08193, Catalonia, Spain.
| | - C Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.
| | - Marc Valls
- Genetics Department, Universitat de Barcelona and Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB) Edifici CRAG, Campus UAB, Bellaterra, 08193, Catalonia, Spain.
| |
Collapse
|
74
|
Involvement of thiol-based mechanisms in plant development. Biochim Biophys Acta Gen Subj 2015; 1850:1479-96. [PMID: 25676896 DOI: 10.1016/j.bbagen.2015.01.023] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 01/08/2015] [Accepted: 01/10/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND Increasing knowledge has been recently gained regarding the redox regulation of plant developmental stages. SCOPE OF VIEW The current state of knowledge concerning the involvement of glutathione, glutaredoxins and thioredoxins in plant development is reviewed. MAJOR CONCLUSIONS The control of the thiol redox status is mainly ensured by glutathione (GSH), a cysteine-containing tripeptide and by reductases sharing redox-active cysteines, glutaredoxins (GRXs) and thioredoxins (TRXs). Indeed, thiol groups present in many regulatory proteins and metabolic enzymes are prone to oxidation, ultimately leading to post-translational modifications such as disulfide bond formation or glutathionylation. This review focuses on the involvement of GSH, GRXs and TRXs in plant development. Recent studies showed that the proper functioning of root and shoot apical meristems depends on glutathione content and redox status, which regulate, among others, cell cycle and hormone-related processes. A critical role of GRXs in the formation of floral organs has been uncovered, likely through the redox regulation of TGA transcription factor activity. TRXs fulfill many functions in plant development via the regulation of embryo formation, the control of cell-to-cell communication, the mobilization of seed reserves, the biogenesis of chloroplastic structures, the metabolism of carbon and the maintenance of cell redox homeostasis. This review also highlights the tight relationships between thiols, hormones and carbon metabolism, allowing a proper development of plants in relation with the varying environment and the energy availability. GENERAL SIGNIFICANCE GSH, GRXs and TRXs play key roles during the whole plant developmental cycle via their antioxidant functions and the redox-regulation of signaling pathways. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation.
Collapse
|
75
|
Wei K, Wang LY, Wu LY, Zhang CC, Li HL, Tan LQ, Cao HL, Cheng H. Transcriptome analysis of indole-3-butyric acid-induced adventitious root formation in nodal cuttings of Camellia sinensis (L.). PLoS One 2014; 9:e107201. [PMID: 25216187 PMCID: PMC4162609 DOI: 10.1371/journal.pone.0107201] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 08/07/2014] [Indexed: 12/28/2022] Open
Abstract
Tea (Camellia sinensis L.) is a popular world beverage, and propagation of tea plants chiefly depends on the formation of adventitious roots in cuttings. To better understand potential mechanisms involved in adventitious root formation, we performed transcriptome analysis of single nodal cuttings of C. sinensis treated with or without indole-3-butyric acid (IBA) using the Illumina sequencing method. Totally 42.5 million RNA-Seq reads were obtained and these were assembled into 59,931 unigenes, with an average length of 732 bp and an N50 of 1292 bp. In addition, 1091 differentially expressed unigenes were identified in the tea cuttings treated with IBA compared to controls, including 656 up- and 435 down-regulated genes. Further real time RT-PCR analysis confirmed RNA-Seq data. Functional annotation analysis showed that many genes were involved in plant hormone signal transduction, secondary metabolism, cell wall organization and glutathione metabolism, indicating potential contributions to adventitious rooting. Our study presents a global view of transcriptome profiles of tea cuttings in response to IBA treatment and provides new insights into the fundamental mechanisms associated with auxin-induced adventitious rooting. Our data will be a valuable resource for genomic research about adventitious root formation in tea cuttings, which can be used to improve rooting for difficult-to-root varieties.
Collapse
Affiliation(s)
- Kang Wei
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Hangzhou, PR China
- National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, PR China
| | - Li-Yuan Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Hangzhou, PR China
- National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, PR China
| | - Li-Yun Wu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Hangzhou, PR China
- National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, PR China
| | - Cheng-Cai Zhang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Hangzhou, PR China
- National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, PR China
| | - Hai-Lin Li
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Hangzhou, PR China
| | - Li-Qiang Tan
- National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, PR China
| | - Hong-Li Cao
- National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, PR China
| | - Hao Cheng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Hangzhou, PR China
- National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, PR China
- * E-mail:
| |
Collapse
|
76
|
Dubey S, Shri M, Misra P, Lakhwani D, Bag SK, Asif MH, Trivedi PK, Tripathi RD, Chakrabarty D. Heavy metals induce oxidative stress and genome-wide modulation in transcriptome of rice root. Funct Integr Genomics 2014; 14:401-417. [PMID: 24553786 DOI: 10.1007/s10142-014-0361-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 12/31/2013] [Accepted: 01/27/2014] [Indexed: 10/25/2022]
Abstract
Industrial growth, ecological disturbances and agricultural practices have contaminated the soil and water with many harmful compounds, including heavy metals. These heavy metals affect growth and development of plants as well as cause severe human health hazards through food chain contamination. In past, studies have been made to identify biochemical and molecular networks associated with heavy metal toxicity and uptake in plants. Studies suggested that most of the physiological and molecular processes affected by different heavy metals are similar to those affected by other abiotic stresses. To identify common and unique responses by different metals, we have studied biochemical and genome-wide modulation in transcriptome of rice (IR-64 cultivar) root after exposure to cadmium (Cd), arsenate [As(V)], lead (Pb) and chromium [Cr(VI)] in hydroponic condition. We observed that root tissue shows variable responses for antioxidant enzyme system for different heavy metals. Genome-wide expression analysis suggests variable number of genes differentially expressed in root in response to As(V), Cd, Pb and Cr(VI) stresses. In addition to unique genes, each heavy metal modulated expression of a large number of common genes. Study also identified cis-acting regions of the promoters which can be determinants for the modulated expression of the genes in response to different heavy metals. Our study advances understanding related to various processes and networks which might be responsible for heavy metal stresses, accumulation and detoxification.
Collapse
Affiliation(s)
- Sonali Dubey
- Council of Scientific and Industrial Research, National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
| | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Gaines TA, Lorentz L, Figge A, Herrmann J, Maiwald F, Ott MC, Han H, Busi R, Yu Q, Powles SB, Beffa R. RNA-Seq transcriptome analysis to identify genes involved in metabolism-based diclofop resistance in Lolium rigidum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:865-76. [PMID: 24654891 DOI: 10.1111/tpj.12514] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 03/10/2014] [Accepted: 03/13/2014] [Indexed: 05/20/2023]
Abstract
Weed control failures due to herbicide resistance are an increasing and worldwide problem that significantly affect crop yields. Metabolism-based herbicide resistance (referred to as metabolic resistance) in weeds is not well characterized at the genetic level. An RNA-Seq transcriptome analysis was used to find candidate genes that conferred metabolic resistance to the herbicide diclofop in a diclofop-resistant population (R) of the major global weed Lolium rigidum. A reference cDNA transcriptome (19 623 contigs) was assembled and assigned putative annotations. Global gene expression was measured using Illumina reads from untreated control, adjuvant-only control, and diclofop treatment of R and susceptible (S). Contigs that showed constitutive expression differences between untreated R and untreated S were selected for further validation analysis, including 11 contigs putatively annotated as cytochrome P450 (CytP450), glutathione transferase (GST), or glucosyltransferase (GT), and 17 additional contigs with annotations related to metabolism or signal transduction. In a forward genetics validation experiment, nine contigs had constitutive up-regulation in R individuals from a segregating F2 population, including three CytP450, one nitronate monooxygenase (NMO), three GST, and one GT. Principal component analysis using these nine contigs differentiated F2 -R from F2 -S individuals. In a physiological validation experiment in which 2,4-D pre-treatment induced diclofop protection in S individuals due to increased metabolism, seven of the nine genetically validated contigs were induced significantly. Four contigs (two CytP450, NMO, and GT) were consistently highly expressed in nine field-evolved metabolic resistant L. rigidum populations. These four contigs were strongly associated with the resistance phenotype and are major candidates for contributing to metabolic diclofop resistance.
Collapse
Affiliation(s)
- Todd A Gaines
- Australian Herbicide Resistance Initiative (AHRI), School of Plant Biology, University of Western Australia, Crawley, 6009, Western Australia, Australia; Bayer CropScience, Weed Resistance Research, 65926, Frankfurt am Main, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Chen F, Li B, Li G, Charron JB, Dai M, Shi X, Deng XW. Arabidopsis Phytochrome A Directly Targets Numerous Promoters for Individualized Modulation of Genes in a Wide Range of Pathways. THE PLANT CELL 2014; 26:1949-1966. [PMID: 24794133 PMCID: PMC4079361 DOI: 10.1105/tpc.114.123950] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 02/06/2014] [Accepted: 04/16/2014] [Indexed: 05/18/2023]
Abstract
The far-red light (FR) photoreceptor phytochrome A (phyA) contains no DNA binding domain but associates with the CHALCONE SYNTHASE promoter through its chaperone FAR-RED ELONGATED HYPOCOTYL1 and transcription factors. Here, we performed a genome-wide identification of phyA targets using a combination of phyA chromatin immunoprecipitation and RNA sequencing methods in Arabidopsis thaliana. Our results indicate that phyA signaling widely affects gene promoters involved in multiple FR-modulated aspects of plant growth. Furthermore, we observed an enrichment of hormone- and stress-responsive elements in the phyA direct target promoters, indicating that a much broader than expected range of transcription factors is involved in the phyA signaling pathway. To verify our hypothesis that phyA regulates genes other than light-responsive ones through the interaction with corresponding transcription factors, we examined the action of phyA on one of its direct target genes, NAC019, which encodes an abscisic acid-dependent transcription factor. The phyA signaling cascade not only targets two G-boxes on the NAC019 promoter for subsequent transcriptional regulation but also positively coordinates with the abscisic acid signaling response for root elongation inhibition under FR. Our study provides new insight into how plants rapidly fine-tune their growth strategy upon changes in the light environment by escorting photoreceptors to the promoters of hormone- or stress-responsive genes for individualized modulation.
Collapse
Affiliation(s)
- Fang Chen
- Peking-Yale Joint Center for Plant Molecular Genetics and Agro-Biotechnology, National Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing 100871, China Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520
| | - Bosheng Li
- Peking-Yale Joint Center for Plant Molecular Genetics and Agro-Biotechnology, National Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing 100871, China Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520
| | - Gang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Jean-Benoit Charron
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada H9X 3V9
| | - Mingqiu Dai
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiarong Shi
- Department of Pharmacology, Yale University, New Haven, Connecticut 06520
| | - Xing Wang Deng
- Peking-Yale Joint Center for Plant Molecular Genetics and Agro-Biotechnology, National Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing 100871, China Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520
| |
Collapse
|
79
|
Csiszár J, Horváth E, Váry Z, Gallé Á, Bela K, Brunner S, Tari I. Glutathione transferase supergene family in tomato: Salt stress-regulated expression of representative genes from distinct GST classes in plants primed with salicylic acid. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 78:15-26. [PMID: 24607575 DOI: 10.1016/j.plaphy.2014.02.010] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 02/10/2014] [Indexed: 05/24/2023]
Abstract
A family tree of the multifunctional proteins, glutathione transferases (GSTs, EC 2.5.1.18) was created in Solanum lycopersicum based on homology to known Arabidopsis GSTs. The involvement of selected SlGSTs was studied in salt stress response of tomato primed with salicylic acid (SA) or in un-primed plants by real-time qPCR. Selected tau GSTs (SlGSTU23, SlGSTU26) were up-regulated in the leaves, while GSTs from lambda, theta, dehydroascorbate reductase and zeta classes (SlGSTL3, SlGSTT2, SlDHAR5, SlGSTZ2) in the root tissues under salt stress. Priming with SA exhibited a concentration dependency; SA mitigated the salt stress injury and caused characteristic changes in the expression pattern of SlGSTs only at 10(-4) M concentration. SlGSTF4 displayed a significant up-regulation in the leaves, while the abundance of SlGSTL3, SlGSTT2 and SlGSTZ2 transcripts were enhanced in the roots of plants primed with high SA concentration. Unexpectedly, under high salinity the SlDHAR2 expression decreased in primed roots as compared to the salt-stressed plants, however, the up-regulation of SlDHAR5 isoenzyme contributed to the maintenance of DHAR activity in roots primed with high SA. The members of lambda, theta and zeta class GSTs have a specific role in salt stress acclimation of tomato, while SlGSTU26 and SlGSTF4, the enzymes with high glutathione conjugating activity, characterize a successful priming in both roots and leaves. In contrast to low concentration, high SA concentration induced those GSTs in primed roots, which were up-regulated under salt stress. Our data indicate that induction of GSTs provide a flexible tool in maintaining redox homeostasis during unfavourable conditions.
Collapse
Affiliation(s)
- Jolán Csiszár
- Department of Plant Biology, Faculty of Sciences, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| | - Edit Horváth
- Department of Plant Biology, Faculty of Sciences, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Zsolt Váry
- Department of Plant Biology, Faculty of Sciences, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Ágnes Gallé
- Department of Plant Biology, Faculty of Sciences, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Krisztina Bela
- Department of Plant Biology, Faculty of Sciences, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Szilvia Brunner
- Department of Plant Biology, Faculty of Sciences, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Irma Tari
- Department of Plant Biology, Faculty of Sciences, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| |
Collapse
|
80
|
Yang Q, Liu YJ, Zeng QY. Biochemical functions of the glutathione transferase supergene family of Larix kaempferi. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 77:99-107. [PMID: 24583343 DOI: 10.1016/j.plaphy.2014.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 02/05/2014] [Indexed: 05/04/2023]
Abstract
Glutathione transferases (GSTs), which are ubiquitous in plants, play a major role in the detoxification of xenobiotics and oxidative stress metabolism. Due to their role in herbicide detoxification, previous studies of plant GSTs have mainly focused on agricultural plants. In contrast, functional information regarding gymnosperm GSTs is scarce. In this study, we cloned 27 full-length GST genes from the deciduous conifer Larix kaempferi, which is widely distributed across the cooler regions of the northern hemisphere. As with the angiosperm GST gene family, Larix GSTs are divided into eight classes, and tau class GSTs are the most numerous. Compared to the other seven classes of GSTs, Larix tau GST genes show substantially more variation in their expression patterns. The purified Larix GST proteins showed different substrate specificities, substrate activities, and kinetic characteristics. The pH and temperature profiles of purified Larix GST proteins showed broad optimum pH and temperature ranges for enzymatic activity, suggesting that Larix GSTs have evolutionary adaptations to various adverse environments. Taken together, this study provides comprehensive insight into the gymnosperm GST gene family.
Collapse
Affiliation(s)
- Qi Yang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan-Jing Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Qing-Yin Zeng
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
81
|
Passaia G, Queval G, Bai J, Margis-Pinheiro M, Foyer CH. The effects of redox controls mediated by glutathione peroxidases on root architecture in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1403-13. [PMID: 24470466 PMCID: PMC3969529 DOI: 10.1093/jxb/ert486] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Glutathione peroxidases (GPXs) fulfil important functions in oxidative signalling and protect against the adverse effects of excessive oxidation. However, there has been no systematic characterization of the functions of the different GPX isoforms in plants. The roles of the different members of the Arabidopsis thaliana GPX gene (AtGPX) family were therefore investigated using gpx1, gpx2, gpx3, gpx4, gpx6, gpx7, and gpx8 T-DNA insertion mutant lines. The shoot phenotypes were largely similar in all genotypes, with small differences from the wild type observed only in the gpx2, gpx3, gpx7, and gpx8 mutants. In contrast, all the mutants showed altered root phenotypes compared with the wild type. The gpx1, gpx4, gpx6, gpx7, and gpx8 mutants had a significantly greater lateral root density (LRD) than the wild type. Conversely, the gpx2 and gpx3 mutants had significantly lower LRD values than the wild type. Auxin increased the LRD in all genotypes, but the effect of auxin was significantly greater in the gpx1, gpx4, and gpx7 mutants than in the wild type. The application of auxin increased GPX4 and GPX7 transcripts, but not GPX1 mRNAs in the roots of wild-type plants. The synthetic strigolactone GR24 and abscisic acid (ABA) decreased LRD to a similar extent in all genotypes, except gpx6, which showed increased sensitivity to ABA. These data not only demonstrate the importance of redox controls mediated by AtGPXs in the control of root architecture but they also show that the plastid-localized GPX1 and GPX7 isoforms are required for the hormone-mediated control of lateral root development.
Collapse
Affiliation(s)
- Gisele Passaia
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
- Depto. Genética, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Prédio 43.312, CEP 91501–970 Porto Alegre, RS, Brazil
| | - Guillaume Queval
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Juan Bai
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
- College of Life Science, Northwest A&F University, Shaanxi 712100, China
| | - Marcia Margis-Pinheiro
- Depto. Genética, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Prédio 43.312, CEP 91501–970 Porto Alegre, RS, Brazil
| | - Christine H. Foyer
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
82
|
Courtois B, Audebert A, Dardou A, Roques S, Ghneim- Herrera T, Droc G, Frouin J, Rouan L, Gozé E, Kilian A, Ahmadi N, Dingkuhn M. Genome-wide association mapping of root traits in a japonica rice panel. PLoS One 2013; 8:e78037. [PMID: 24223758 PMCID: PMC3818351 DOI: 10.1371/journal.pone.0078037] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Accepted: 09/06/2013] [Indexed: 01/20/2023] Open
Abstract
Rice is a crop prone to drought stress in upland and rainfed lowland ecosystems. A deep root system is recognized as the best drought avoidance mechanism. Genome-wide association mapping offers higher resolution for locating quantitative trait loci (QTLs) than QTL mapping in biparental populations. We performed an association mapping study for root traits using a panel of 167 japonica accessions, mostly of tropical origin. The panel was genotyped at an average density of one marker per 22.5 kb using genotyping by sequencing technology. The linkage disequilibrium in the panel was high (r(2)>0.6, on average, for 20 kb mean distances between markers). The plants were grown in transparent 50 cm × 20 cm × 2 cm Plexiglas nailboard sandwiches filled with 1.5 mm glass beads through which a nutrient solution was circulated. Root system architecture and biomass traits were measured in 30-day-old plants. The panel showed a moderate to high diversity in the various traits, particularly for deep (below 30 cm depth) root mass and the number of deep roots. Association analyses were conducted using a mixed model involving both population structure and kinship to control for false positives. Nineteen associations were significant at P<1e-05, and 78 were significant at P<1e-04. The greatest numbers of significant associations were detected for deep root mass and the number of deep roots, whereas no significant associations were found for total root biomass or deep root proportion. Because several QTLs for different traits were co-localized, 51 unique loci were detected; several co-localized with meta-QTLs for root traits, but none co-localized with rice genes known to be involved in root growth. Several likely candidate genes were found in close proximity to these loci. Additional work is necessary to assess whether these markers are relevant in other backgrounds and whether the genes identified are robust candidates.
Collapse
Affiliation(s)
- Brigitte Courtois
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR AGAP, Montpellier, France
| | - Alain Audebert
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR AGAP, Montpellier, France
| | - Audrey Dardou
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR AGAP, Montpellier, France
| | - Sandrine Roques
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR AGAP, Montpellier, France
| | | | - Gaëtan Droc
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR AGAP, Montpellier, France
| | - Julien Frouin
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR AGAP, Montpellier, France
| | - Lauriane Rouan
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR AGAP, Montpellier, France
| | - Eric Gozé
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UPR SCA, Montpellier, France
| | - Andrzej Kilian
- Diversity Arrays Technology Pty Ltd. (DArT P/L), Canberra, Australia
| | - Nourollah Ahmadi
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR AGAP, Montpellier, France
| | - Michael Dingkuhn
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR AGAP, Montpellier, France
| |
Collapse
|
83
|
Hong JH, Seah SW, Xu J. The root of ABA action in environmental stress response. PLANT CELL REPORTS 2013; 32:971-83. [PMID: 23571661 DOI: 10.1007/s00299-013-1439-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/24/2013] [Accepted: 03/26/2013] [Indexed: 05/05/2023]
Abstract
The growth and development of plants are influenced by the integration of diverse endogenous and environmental signals. Acting as a mediator of extrinsic signals, the stress hormone, abscisic acid (ABA), has been shown to regulate many aspects of plant development in response to unfavourable environmental stresses, allowing the plant to cope and survive in adverse conditions, such as drought, low or high temperature, or high salinity. Here, we summarize recent evidence on the roles of ABA in environmental stress responses in the Arabidopsis root; and on how ABA crosstalks with other phytohormones to modulate root development and growth in Arabidopsis. We also review literature findings showing that, in response to environmental stresses, ABA affects the root system architecture in other plant species, such as rice.
Collapse
Affiliation(s)
- Jing Han Hong
- Department of Biological Sciences and NUS Centre for BioImaging Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | | | | |
Collapse
|
84
|
Liu X, Chen CY, Wang KC, Luo M, Tai R, Yuan L, Zhao M, Yang S, Tian G, Cui Y, Hsieh HL, Wu K. PHYTOCHROME INTERACTING FACTOR3 associates with the histone deacetylase HDA15 in repression of chlorophyll biosynthesis and photosynthesis in etiolated Arabidopsis seedlings. THE PLANT CELL 2013; 25:1258-73. [PMID: 23548744 PMCID: PMC3663266 DOI: 10.1105/tpc.113.109710] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 02/22/2013] [Accepted: 03/15/2013] [Indexed: 05/18/2023]
Abstract
PHYTOCHROME INTERACTING FACTOR3 (PIF3) is a key basic helix-loop-helix transcription factor of Arabidopsis thaliana that negatively regulates light responses, repressing chlorophyll biosynthesis, photosynthesis, and photomorphogenesis in the dark. However, the mechanism for the PIF3-mediated transcription regulation remains largely unknown. In this study, we found that the REDUCED POTASSIUM DEPENDENCY3/HISTONE DEACETYLASE1-type histone deacetylase HDA15 directly interacted with PIF3 in vivo and in vitro. Genome-wide transcriptome analysis revealed that HDA15 acts mainly as a transcriptional repressor and negatively regulates chlorophyll biosynthesis and photosynthesis gene expression in etiolated seedlings. HDA15 and PIF3 cotarget to the genes involved in chlorophyll biosynthesis and photosynthesis in the dark and repress gene expression by decreasing the acetylation levels and RNA Polymerase II-associated transcription. The binding of HDA15 to the target genes depends on the presence of PIF3. In addition, PIF3 and HDA15 are dissociated from the target genes upon exposure to red light. Taken together, our results indicate that PIF3 associates with HDA15 to repress chlorophyll biosynthetic and photosynthetic genes in etiolated seedlings.
Collapse
Affiliation(s)
- Xuncheng Liu
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Chia-Yang Chen
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
| | - Ko-Ching Wang
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
| | - Ming Luo
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Ready Tai
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
| | - Lianyu Yuan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Minglei Zhao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Songguang Yang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Gang Tian
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, Ontario N5V 4T3, Canada
| | - Yuhai Cui
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, Ontario N5V 4T3, Canada
| | - Hsu-Liang Hsieh
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
| | - Keqiang Wu
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
- Address correspondence to
| |
Collapse
|
85
|
Kwon YS, Jeong MJ, Cha J, Jeong SW, Park SC, Shin SC, Chung WS, Bae H, Bae DW. Comparative proteomic analysis of plant responses to sound waves in Arabidopsis. ACTA ACUST UNITED AC 2012. [DOI: 10.5010/jpb.2012.39.4.261] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
86
|
Wei K, Wang L, Cheng H, Zhang C, Ma C, Zhang L, Gong W, Wu L. Identification of genes involved in indole-3-butyric acid-induced adventitious root formation in nodal cuttings of Camellia sinensis (L.) by suppression subtractive hybridization. Gene 2012. [PMID: 23201417 DOI: 10.1016/j.gene.2012.11.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The plant hormone auxin plays a key role in adventitious rooting. To increase our understanding of genes involved in adventitious root formation, we identified transcripts differentially expressed in single nodal cuttings of Camellia sinensis treated with or without indole-3-butyric acid (IBA) by suppressive subtractive hybridization (SSH). A total of 77 differentially expressed transcripts, including 70 up-regulated and 7 down-regulated sequences, were identified in tea cuttings under IBA treatment. Seven candidate transcripts were selected and analyzed for their response to IBA, and IAA by real time RT-PCR. All these transcripts were up regulated by at least two folds one day after IBA treatment. Meanwhile, IAA showed less positive effects on the expression of candidate transcripts. The full-length cDNA of a F-box/kelch gene was also isolated and found to be similar to a group of At1g23390 like genes. These unigenes provided a new source for mining genes related to adventitious root formation, which facilitate our understanding of relative fundamental metabolism.
Collapse
Affiliation(s)
- Kang Wei
- National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Hu X, Wu X, Li C, Lu M, Liu T, Wang Y, Wang W. Abscisic acid refines the synthesis of chloroplast proteins in maize (Zea mays) in response to drought and light. PLoS One 2012; 7:e49500. [PMID: 23152915 PMCID: PMC3496715 DOI: 10.1371/journal.pone.0049500] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 10/09/2012] [Indexed: 12/18/2022] Open
Abstract
To better understand abscisic acid (ABA) regulation of the synthesis of chloroplast proteins in maize (Zea mays L.) in response to drought and light, we compared leaf proteome differences between maize ABA-deficient mutant vp5 and corresponding wild-type Vp5 green and etiolated seedlings exposed to drought stress. Proteins extracted from the leaves of Vp5 and vp5 seedlings were used for two-dimensional electrophoresis (2-DE) and subsequent matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). After Coomassie brilliant blue staining, approximately 450 protein spots were reproducibly detected on 2-DE gels. A total of 36 differentially expressed protein spots in response to drought and light were identified using MALDI-TOF MS and their subcellular localization was determined based on the annotation of reviewed accession in UniProt Knowledgebase and the software prediction. As a result, corresponding 13 proteins of the 24 differentially expressed protein spots were definitely localized in chloroplasts and their expression was in an ABA-dependent way, including 6 up-regulated by both drought and light, 5 up-regulated by drought but down-regulated by light, 5 up-regulated by light but down-regulated by drought; 5 proteins down-regulated by drought were mainly those involved in photosynthesis and ATP synthesis. Thus, the results in the present study supported the vital role of ABA in regulating the synthesis of drought- and/or light-induced proteins in maize chloroplasts and would facilitate the functional characterization of ABA-induced chloroplast proteins in C(4) plants.
Collapse
Affiliation(s)
- Xiuli Hu
- Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou, China
- College of Life Science, Henan Agricultural University, Zhengzhou, China
| | - Xiaolin Wu
- College of Life Science, Henan Agricultural University, Zhengzhou, China
| | - Chaohai Li
- Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou, China
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Minghui Lu
- College of Life Science, Henan Agricultural University, Zhengzhou, China
| | - Tianxue Liu
- Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou, China
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Ying Wang
- College of Life Science, Henan Agricultural University, Zhengzhou, China
| | - Wei Wang
- Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou, China
- College of Life Science, Henan Agricultural University, Zhengzhou, China
- * E-mail:
| |
Collapse
|
88
|
Expression profile analysis of genes involved in horizontal gravitropism bending growth in the creeping shoots of ground-cover chrysanthemum by suppression subtractive hybridization. Mol Biol Rep 2012; 40:237-46. [DOI: 10.1007/s11033-012-2054-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Accepted: 10/02/2012] [Indexed: 10/27/2022]
|
89
|
Dubrovsky JG, Forde BG. Quantitative analysis of lateral root development: pitfalls and how to avoid them. THE PLANT CELL 2012; 24:4-14. [PMID: 22227889 PMCID: PMC3289558 DOI: 10.1105/tpc.111.089698] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 10/04/2011] [Accepted: 10/12/2011] [Indexed: 05/17/2023]
Abstract
The advent of the postgenomics era has led to increased interest in exploring the role of gene networks and signaling pathways in controlling plant development. The last two decades have seen a particular increase in the number of studies focusing on the development of the Arabidopsis thaliana root system. However, the investigation of such a seemingly simple system as an Arabidopsis root can lead to problems in quantification and errors in interpretation if knowledge of root organization is lacking. In this article, we identify a number of these problems and give examples of potentially erroneous and correct determinations of lateral root parameters. Our aim is to bring this important issue to the attention of the plant science community and to suggest ways in which the problems inherent in quantifying the process of lateral root development can be avoided.
Collapse
Affiliation(s)
- Joseph G Dubrovsky
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62250 Cuernavaca, Morelos, Mexico.
| | | |
Collapse
|
90
|
Chen JH, Jiang HW, Hsieh EJ, Chen HY, Chien CT, Hsieh HL, Lin TP. Drought and salt stress tolerance of an Arabidopsis glutathione S-transferase U17 knockout mutant are attributed to the combined effect of glutathione and abscisic acid. PLANT PHYSIOLOGY 2012; 158:340-51. [PMID: 22095046 PMCID: PMC3252094 DOI: 10.1104/pp.111.181875] [Citation(s) in RCA: 199] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 11/12/2011] [Indexed: 05/18/2023]
Abstract
Although glutathione S-transferases (GSTs) are thought to play major roles in oxidative stress metabolism, little is known about the regulatory functions of GSTs. We have reported that Arabidopsis (Arabidopsis thaliana) GLUTATHIONE S-TRANSFERASE U17 (AtGSTU17; At1g10370) participates in light signaling and might modulate various aspects of development by affecting glutathione (GSH) pools via a coordinated regulation with phytochrome A. Here, we provide further evidence to support a negative role of AtGSTU17 in drought and salt stress tolerance. When AtGSTU17 was mutated, plants were more tolerant to drought and salt stresses compared with wild-type plants. In addition, atgstu17 accumulated higher levels of GSH and abscisic acid (ABA) and exhibited hyposensitivity to ABA during seed germination, smaller stomatal apertures, a lower transpiration rate, better development of primary and lateral root systems, and longer vegetative growth. To explore how atgstu17 accumulated higher ABA content, we grew wild-type plants in the solution containing GSH and found that they accumulated ABA to a higher extent than plants grown in the absence of GSH, and they also exhibited the atgstu17 phenotypes. Wild-type plants treated with GSH also demonstrated more tolerance to drought and salt stresses. Furthermore, the effect of GSH on root patterning and drought tolerance was confirmed by growing the atgstu17 in solution containing l-buthionine-(S,R)-sulfoximine, a specific inhibitor of GSH biosynthesis. In conclusion, the atgstu17 phenotype can be explained by the combined effect of GSH and ABA. We propose a role of AtGSTU17 in adaptive responses to drought and salt stresses by functioning as a negative component of stress-mediated signal transduction pathways.
Collapse
|