51
|
Rahaman M, Mamidi S, Rahman M. Genome-wide association study of heat stress-tolerance traits in spring-type Brassica napus L. under controlled conditions. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.cj.2017.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
52
|
Housset JM, Nadeau S, Isabel N, Depardieu C, Duchesne I, Lenz P, Girardin MP. Tree rings provide a new class of phenotypes for genetic associations that foster insights into adaptation of conifers to climate change. THE NEW PHYTOLOGIST 2018; 218:630-645. [PMID: 29314017 PMCID: PMC6079641 DOI: 10.1111/nph.14968] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/21/2017] [Indexed: 05/20/2023]
Abstract
Local adaptation in tree species has been documented through a long history of common garden experiments where functional traits (height, bud phenology) are used as proxies for fitness. However, the ability to identify genes or genomic regions related to adaptation to climate requires the evaluation of traits that precisely reflect how and when climate exerts selective constraints. We combine dendroecology with association genetics to establish a link between genotypes, phenotypes and interannual climatic fluctuations. We illustrate this approach by examining individual tree responses embedded in the annual rings of 233 Pinus strobus trees growing in a common garden experiment representing 38 populations from the majority of its range. We found that interannual variability in growth was affected by low temperatures during spring and autumn, and by summer heat and drought. Among-population variation in climatic sensitivity was significantly correlated with the mean annual temperature of the provenance, suggesting local adaptation. Genotype-phenotype associations using these new tree-ring phenotypes validated nine candidate genes identified in a previous genetic-environment association study. Combining dendroecology with association genetics allowed us to assess tree vulnerability to past climate at fine temporal scales and provides avenues for future genomic studies on functional adaptation in forest trees.
Collapse
Affiliation(s)
- Johann M. Housset
- Natural Resources CanadaCanadian Forest ServiceLaurentian Forestry Centre1055 du P.E.P.S, PO Box 10380, Stn. Sainte‐FoyQuébecQCG1V 4C7Canada
- Natural Resources CanadaCanadian Wood Fibre Centre1055 du P.E.P.S, PO Box 10380, Stn. Sainte‐FoyQuébecQCG1V 4C7Canada
- Centre d’étude de la forêtUniversité du Québec à MontréalC.P. 8888, succ. Centre‐villeMontréalQCH3C 3P8Canada
| | - Simon Nadeau
- Natural Resources CanadaCanadian Forest ServiceLaurentian Forestry Centre1055 du P.E.P.S, PO Box 10380, Stn. Sainte‐FoyQuébecQCG1V 4C7Canada
- Natural Resources CanadaCanadian Wood Fibre Centre1055 du P.E.P.S, PO Box 10380, Stn. Sainte‐FoyQuébecQCG1V 4C7Canada
| | - Nathalie Isabel
- Natural Resources CanadaCanadian Forest ServiceLaurentian Forestry Centre1055 du P.E.P.S, PO Box 10380, Stn. Sainte‐FoyQuébecQCG1V 4C7Canada
- Chaire de Recherche du Canada en Génomique ForestièreFaculté de Foresteriede Géographie et de GéomatiqueUniversité LavalQuébecQCG1V 0A6Canada
| | - Claire Depardieu
- Natural Resources CanadaCanadian Forest ServiceLaurentian Forestry Centre1055 du P.E.P.S, PO Box 10380, Stn. Sainte‐FoyQuébecQCG1V 4C7Canada
- Chaire de Recherche du Canada en Génomique ForestièreFaculté de Foresteriede Géographie et de GéomatiqueUniversité LavalQuébecQCG1V 0A6Canada
| | - Isabelle Duchesne
- Natural Resources CanadaCanadian Wood Fibre Centre1055 du P.E.P.S, PO Box 10380, Stn. Sainte‐FoyQuébecQCG1V 4C7Canada
| | - Patrick Lenz
- Natural Resources CanadaCanadian Wood Fibre Centre1055 du P.E.P.S, PO Box 10380, Stn. Sainte‐FoyQuébecQCG1V 4C7Canada
- Chaire de Recherche du Canada en Génomique ForestièreFaculté de Foresteriede Géographie et de GéomatiqueUniversité LavalQuébecQCG1V 0A6Canada
| | - Martin P. Girardin
- Natural Resources CanadaCanadian Forest ServiceLaurentian Forestry Centre1055 du P.E.P.S, PO Box 10380, Stn. Sainte‐FoyQuébecQCG1V 4C7Canada
- Centre d’étude de la forêtUniversité du Québec à MontréalC.P. 8888, succ. Centre‐villeMontréalQCH3C 3P8Canada
| |
Collapse
|
53
|
Borah P, Khurana JP. The OsFBK1 E3 Ligase Subunit Affects Anther and Root Secondary Cell Wall Thickenings by Mediating Turnover of a Cinnamoyl-CoA Reductase. PLANT PHYSIOLOGY 2018; 176:2148-2165. [PMID: 29295941 PMCID: PMC5841686 DOI: 10.1104/pp.17.01733] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 12/29/2017] [Indexed: 05/20/2023]
Abstract
Regulated proteolysis by the ubiquitin-26S proteasome system challenges transcription and phosphorylation in magnitude and is one of the most important regulatory mechanisms in plants. This article describes the characterization of a rice (Oryza sativa) auxin-responsive Kelch-domain-containing F-box protein, OsFBK1, found to be a component of an SCF E3 ligase by interaction studies in yeast. Rice transgenics of OsFBK1 displayed variations in anther and root secondary cell wall content; it could be corroborated by electron/confocal microscopy and lignification studies, with no apparent changes in auxin content/signaling pathway. The presence of U-shaped secondary wall thickenings (or lignin) in the anthers were remarkably less pronounced in plants overexpressing OsFBK1 as compared to wild-type and knockdown transgenics. The roots of the transgenics also displayed differential accumulation of lignin. Yeast two-hybrid anther library screening identified an OsCCR that is a homolog of the well-studied Arabidopsis (Arabidopsis thaliana) IRX4; OsFBK1-OsCCR interaction was confirmed by fluorescence and immunoprecipitation studies. Degradation of OsCCR mediated by SCFOsFBK1 and the 26S proteasome pathway was validated by cell-free experiments in the absence of auxin, indicating that the phenotype observed is due to the direct interaction between OsFBK1 and OsCCR. Interestingly, the OsCCR knockdown transgenics also displayed a decrease in root and anther lignin depositions, suggesting that OsFBK1 plays a role in the development of rice anthers and roots by regulating the cellular levels of a key enzyme controlling lignification.
Collapse
Affiliation(s)
- Pratikshya Borah
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Jitendra P Khurana
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| |
Collapse
|
54
|
Liu B, De Storme N, Geelen D. Cold-Induced Male Meiotic Restitution in Arabidopsis thaliana Is Not Mediated by GA-DELLA Signaling. FRONTIERS IN PLANT SCIENCE 2018; 9:91. [PMID: 29459879 PMCID: PMC5807348 DOI: 10.3389/fpls.2018.00091] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/17/2018] [Indexed: 05/20/2023]
Abstract
Short periods of cold stress induce male meiotic restitution and diploid pollen formation in Arabidopsis thaliana by specifically interfering with male meiotic cytokinesis. Similar alterations in male meiotic cell division and gametophytic ploidy stability occur when gibberellic acid (GA) signaling is perturbed in developing anthers. In this study, we found that exogenous application of GA primarily induces second division restitution (SDR)-type pollen in Arabidopsis, similar to what cold does. Driven by the close similarity in cellular defects, we tested the hypothesis that cold-induced meiotic restitution is mediated by GA-DELLA signaling. Using a combination of chemical, genetic and cytological approaches, however, we found that both exogenously and endogenously altered GA signaling do not affect the cold sensitivity of male meiotic cytokinesis. Moreover, in vivo localization study using a GFP-tagged version of RGA protein revealed that cold does not affect the expression pattern and abundance of DELLA in Arabidopsis anthers at tetrad stage. Expression study found that transcript of RGA appears enhanced in cold-stressed young flower buds. Since our previous work demonstrated that loss of function of DELLA causes irregular male meiotic cytokinesis, we here conclude that cold-induced meiotic restitution is not mediated by DELLA-dependent GA signaling.
Collapse
Affiliation(s)
- Bing Liu
- Department of Plant Production, Faculty of Bioscience Engineering, University of Ghent, Ghent, Belgium
- School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Nico De Storme
- Department of Plant Production, Faculty of Bioscience Engineering, University of Ghent, Ghent, Belgium
| | - Danny Geelen
- Department of Plant Production, Faculty of Bioscience Engineering, University of Ghent, Ghent, Belgium
- *Correspondence: Danny Geelen,
| |
Collapse
|
55
|
Lv L, Huo X, Wen L, Gao Z, Khalil-ur-Rehman M. Isolation and Role of PmRGL2 in GA-mediated Floral Bud Dormancy Release in Japanese Apricot ( Prunus mume Siebold et Zucc.). FRONTIERS IN PLANT SCIENCE 2018; 9:27. [PMID: 29434610 PMCID: PMC5790987 DOI: 10.3389/fpls.2018.00027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/08/2018] [Indexed: 05/13/2023]
Abstract
Bud dormancy release is regulated by gibberellins (GAs). DELLA proteins are highly conserved and act as negative regulators in GA signaling pathway. The present study established a relationship between PmRGL2 in Japanese apricot and GA4 levels during dormancy release of floral buds. Overexpression of PmRGL2 in poplar delayed the onset of bud dormancy and resulted in dwarf plants, relative to wild-type trees. PmRGL2 exhibited higher expression during ecodormancy and relatively lower expression during endodormancy. The relative level of GA4 exhibited an increasing trend at the transition from endodormancy to ecodormancy and displayed a similar expression pattern of genes related to GA metabolism, PmGA20ox2, PmGA3ox1, PmGID1b, in both Japanese apricot and transgenic poplar. These results suggests that PmRGL2 acts as an integrator and negative regulator of dormancy via a GA-signaling pathway. Moreover, an interaction between RGL2 and SLY1 in a yeast two hybrid (Y2H) system further suggests that SCF E3 ubiquitin ligases, such as SLY1, may be a critical factor in the regulation of RGL2 through an SCF SLY1 -proteasome pathway. Our study demonstrated that PmRGL2 plays a negative role in bud dormancy release by regulating the GA biosynthetic enzymes, GA20ox and GA3ox1 and the GA receptor, GID1b.
Collapse
|
56
|
Nelson SK, Ariizumi T, Steber CM. Biology in the Dry Seed: Transcriptome Changes Associated with Dry Seed Dormancy and Dormancy Loss in the Arabidopsis GA-Insensitive sleepy1-2 Mutant. FRONTIERS IN PLANT SCIENCE 2017; 8:2158. [PMID: 29312402 PMCID: PMC5744475 DOI: 10.3389/fpls.2017.02158] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/06/2017] [Indexed: 05/25/2023]
Abstract
Plant embryos can survive years in a desiccated, quiescent state within seeds. In many species, seeds are dormant and unable to germinate at maturity. They acquire the capacity to germinate through a period of dry storage called after-ripening (AR), a biological process that occurs at 5-15% moisture when most metabolic processes cease. Because stored transcripts are among the first proteins translated upon water uptake, they likely impact germination potential. Transcriptome changes associated with the increased seed dormancy of the GA-insensitive sly1-2 mutant, and with dormancy loss through long sly1-2 after-ripening (19 months) were characterized in dry seeds. The SLY1 gene was needed for proper down-regulation of translation-associated genes in mature dry seeds, and for AR up-regulation of these genes in germinating seeds. Thus, sly1-2 seed dormancy may result partly from failure to properly regulate protein translation, and partly from observed differences in transcription factor mRNA levels. Two positive regulators of seed dormancy, DELLA GAI (GA-INSENSITIVE) and the histone deacetylase HDA6/SIL1 (MODIFIERS OF SILENCING1) were strongly AR-down-regulated. These transcriptional changes appeared to be functionally relevant since loss of GAI function and application of a histone deacetylase inhibitor led to decreased sly1-2 seed dormancy. Thus, after-ripening may increase germination potential over time by reducing dormancy-promoting stored transcript levels. Differences in transcript accumulation with after-ripening correlated to differences in transcript stability, such that stable mRNAs appeared AR-up-regulated, and unstable transcripts AR-down-regulated. Thus, relative transcript levels may change with dry after-ripening partly as a consequence of differences in mRNA turnover.
Collapse
Affiliation(s)
- Sven K. Nelson
- Molecular Plant Sciences Program, Washington State University, Pullman, WA, United States
| | - Tohru Ariizumi
- Department of Crop and Soil Science, Washington State University, Pullman, WA, United States
| | - Camille M. Steber
- Molecular Plant Sciences Program, Washington State University, Pullman, WA, United States
- Department of Crop and Soil Science, Washington State University, Pullman, WA, United States
- Wheat Health, Genetics, and Quality Research Unit, United States Department of Agriculture–Agricultural Research Service, Pullman, WA, United States
| |
Collapse
|
57
|
Lantzouni O, Klermund C, Schwechheimer C. Largely additive effects of gibberellin and strigolactone on gene expression in Arabidopsis thaliana seedlings. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:924-938. [PMID: 28977719 DOI: 10.1111/tpj.13729] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/01/2017] [Accepted: 09/27/2017] [Indexed: 05/22/2023]
Abstract
The phytohormones gibberellin (GA) and strigolactone (SL) are involved in essential processes in plant development. Both GA and SL signal transduction mechanisms employ α/β-hydrolase-derived receptors that confer E3 ubiquitin ligase-mediated protein degradation processes. This suggests a common evolutionary origin of these pathways and possibly a molecular interaction between them. One such indication stems from rice, where the DELLA protein of the GA pathway was reported to interact with the SL receptor. Here, we examine the physiological interaction between both pathways through the analysis of GA (ga1) and SL biosynthesis (max1 and max3) mutants. In ga1 max double mutants, we find indications only for additive interactions when examining several phenotypic readouts. We further identify short-term transcriptional responses to GA and the synthetic SL rac-GR24 through next-generation sequencing of poly-adenylated RNAs (RNA-seq) in ga1 max1. Remarkably, both hormones lead to predominantly additive transcriptional changes of a largely overlapping set of genes. The expression of only a few genes was altered in a synergistic manner but, interestingly, these include the genes encoding the GA catabolic enzyme GA2 OXIDASE2 (GA2ox2) as well as the SL pathway regulators BRANCHED1 (BRC1) and SUPPRESSOR OF max2 1-LIKE8 (SMXL8). We conclude that GA and rac-GR24 signaling in Arabidopsis seedlings converge at the level of transcription of a common gene-set.
Collapse
Affiliation(s)
- Ourania Lantzouni
- Plant Systems Biology, Technische Universität München, Emil-Ramann-Straße 8, 85354, Freising, Germany
| | - Carina Klermund
- Plant Systems Biology, Technische Universität München, Emil-Ramann-Straße 8, 85354, Freising, Germany
| | - Claus Schwechheimer
- Plant Systems Biology, Technische Universität München, Emil-Ramann-Straße 8, 85354, Freising, Germany
| |
Collapse
|
58
|
He R, Li X, Zhong M, Yan J, Ji R, Li X, Wang Q, Wu D, Sun M, Tang D, Lin J, Li H, Liu B, Liu H, Liu X, Zhao X, Lin C. A photo-responsive F-box protein FOF2 regulates floral initiation by promoting FLC expression in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:788-801. [PMID: 28608936 DOI: 10.1111/tpj.13607] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/08/2017] [Accepted: 05/13/2017] [Indexed: 05/09/2023]
Abstract
Floral initiation is regulated by various genetic pathways in response to light, temperature, hormones and developmental status; however, the molecular mechanisms underlying the interactions between different genetic pathways are not fully understood. Here, we show that the photoresponsive gene FOF2 (F-box of flowering 2) negatively regulates flowering. FOF2 encodes a putative F-box protein that interacts specifically with ASK14, and its overexpression results in later flowering under both long-day and short-day photoperiods. Conversely, transgenic plants expressing the F-box domain deletion mutant of FOF2 (FOF2ΔF), or double loss of function mutant of FOF2 and FOL1 (FOF2-LIKE 1) present early flowering phenotypes. The late flowering phenotype of the FOF2 overexpression lines is suppressed by the flc-3 loss-of-function mutation. Furthermore, FOF2 mRNA expression is regulated by autonomous pathway gene FCA, and the repressive effect of FOF2 in flowering can be overcome by vernalization. Interestingly, FOF2 expression is regulated by light. The protein level of FOF2 accumulates in response to light, whereas it is degraded under dark conditions via the 26S proteasome pathway. Our findings suggest a possible mechanistic link between light conditions and the autonomous floral promotion pathway in Arabidopsis.
Collapse
Affiliation(s)
- Reqing He
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
| | - Xinmei Li
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
| | - Ming Zhong
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
| | - Jindong Yan
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
| | - Ronghuan Ji
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xu Li
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Qin Wang
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Dan Wu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
| | - Mengsi Sun
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
| | - Dongying Tang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
| | - Jianzhong Lin
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
| | - Hongyu Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Bin Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongtao Liu
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xuanming Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
| | - Xiaoying Zhao
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
| | - Chentao Lin
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
59
|
Nelson SK, Steber CM. Transcriptional mechanisms associated with seed dormancy and dormancy loss in the gibberellin-insensitive sly1-2 mutant of Arabidopsis thaliana. PLoS One 2017. [PMID: 28628628 PMCID: PMC5476249 DOI: 10.1371/journal.pone.0179143] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
While widespread transcriptome changes were previously observed with seed dormancy loss, this study specifically characterized transcriptional changes associated with the increased seed dormancy and dormancy loss of the gibberellin (GA) hormone-insensitive sleepy1-2 (sly1-2) mutant. The SLY1 gene encodes the F-box subunit of an SCF E3 ubiquitin ligase needed for GA-triggered proteolysis of DELLA repressors of seed germination. DELLA overaccumulation in sly1-2 seeds leads to increased dormancy that can be rescued without DELLA protein destruction either by overexpression of the GA receptor, GA-INSENSITIVE DWARF1b (GID1b-OE) (74% germination) or by extended dry after-ripening (11 months, 51% germination). After-ripening of sly1 resulted in different transcriptional changes in early versus late Phase II of germination that were consistent with the processes known to occur. Approximately half of the transcriptome changes with after-ripening appear to depend on SLY1-triggered DELLA proteolysis. Given that many of these SLY1/GA-dependent changes are genes involved in protein translation, it appears that GA signaling increases germination capacity in part by activating translation. While sly1-2 after-ripening was associated with transcript-level changes in 4594 genes over two imbibition timepoints, rescue of sly1-2 germination by GID1b-OE was associated with changes in only 23 genes. Thus, a big change in sly1-2 germination phenotype can occur with relatively little change in the global pattern of gene expression during the process of germination. Most GID1b-OE-responsive transcripts showed similar changes with after-ripening in early Phase II of imbibition, but opposite changes with after-ripening by late Phase II. This suggests that GID1b-OE stimulates germination early in imbibition, but may later trigger negative feedback regulation.
Collapse
Affiliation(s)
- Sven K. Nelson
- Molecular Plant Sciences Program, Washington State University, Pullman, Washington, United States of America
| | - Camille M. Steber
- Molecular Plant Sciences Program, Washington State University, Pullman, Washington, United States of America
- USDA-ARS, Wheat Health, Genetics, and Quality Research Unit, Pullman, Washington, United States of America
- Department of Crop and Soil Science, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| |
Collapse
|
60
|
Miyakawa T, Tanokura M. Structural basis for the regulation of phytohormone receptors. Biosci Biotechnol Biochem 2017; 81:1261-1273. [PMID: 28417669 DOI: 10.1080/09168451.2017.1313696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Phytohormones are central players in diverse plant physiological events, such as plant growth, development, and environmental stress and defense responses. The elucidation of their regulatory mechanisms through phytohormone receptors could facilitate the generation of transgenic crops with cultivation advantages and the rational design of growth control chemicals. During the last decade, accumulated structural data on phytohormone receptors have provided critical insights into the molecular mechanisms of phytohormone perception and signal transduction. Here, we review the structural bases of phytohormone recognition and receptor activation. As a common feature, phytohormones regulate the interaction between the receptors and their respective target proteins (also called co-receptors) by two types of regulatory mechanisms, acting as either "molecular glue" or an "allosteric regulator." However, individual phytohormone receptors adopt specific structural features that are essential for activation. In addition, recent studies have focused on the molecular diversity of redundant phytohormone receptors.
Collapse
Affiliation(s)
- Takuya Miyakawa
- a Department of Applied Biological Chemistry , Graduate School of Agricultural and Life Sciences, The University of Tokyo , Tokyo , Japan
| | - Masaru Tanokura
- a Department of Applied Biological Chemistry , Graduate School of Agricultural and Life Sciences, The University of Tokyo , Tokyo , Japan
| |
Collapse
|
61
|
Zhao B, Li H, Li J, Wang B, Dai C, Wang J, Liu K. Brassica napus DS-3, encoding a DELLA protein, negatively regulates stem elongation through gibberellin signaling pathway. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:727-741. [PMID: 28093630 DOI: 10.1007/s00122-016-2846-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 12/22/2016] [Indexed: 05/20/2023]
Abstract
Identification and characterization of a semi-dwarfing gene ds-3 encoding a mutant DELLA protein regulating plant height through gibberellin signaling pathway. Lodging is one of the most important factors causing severe yield loss in oilseed rape. Utilization of semi-dwarf varieties has been proved the most effective way to increase lodging resistance and yield in many crops. To develop semi-dwarf germplasm in oilseed rape, we identified a semi-dwarf mutant ds-3 which showed a reduced response to phytohormones gibberellins (GAs). Genetic analysis indicated the dwarfism was controlled by a single semi-dominant gene, ds-3. The DS-3 gene was mapped to a genomic region on chromosome C07, which is syntenic to the region of a previously identified semi-dwarf gene ds-1 (BnaA06.RGA). In this region, DS-3 (BnaC07.RGA) gene was identified to encode a DELLA protein that functions as a repressor in GA signaling pathway. A substitution of proline to leucine was identified in ds-3 in the conserved VHYNP motif, which is essential for GA-dependent interaction between gibberellin receptor GID1 and DELLA proteins. Segregation analysis in the F2 population derived from the cross between ds-1 and ds-3 demonstrated that BnaA06.RGA displayed a stronger effect on plant height than BnaC07.RGA, indicating that different RGA genes may play different roles in stem elongation. In addition to BnaA06.RGA and BnaC07.RGA, two more RGA genes (BnaA09.RGA and BnaC09.RGA) were identified in the Brassica napus (B. napus) genome. Reverse-transcription polymerase chain reaction (RT-PCR) and yeast two-hybrid (Y2H) assays suggest that both BnaA09.RGA and BnaC09.RGA are transcribed in leaves and stems and can mediate GA signaling in vivo. These genes represent potential targets for screening ideal semi-dwarfing alleles for oilseed rape breeding.
Collapse
Affiliation(s)
- Bo Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haitao Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Juanjuan Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bo Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kede Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
62
|
Duong S, Vonapartis E, Li CY, Patel S, Gazzarrini S. The E3 ligase ABI3-INTERACTING PROTEIN2 negatively regulates FUSCA3 and plays a role in cotyledon development in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1555-1567. [PMID: 28369580 PMCID: PMC5441903 DOI: 10.1093/jxb/erx046] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
FUSCA3 (FUS3) is a short-lived B3-domain transcription factor that regulates seed development and phase transitions in Arabidopsis thaliana. The mechanisms controlling FUS3 levels are currently poorly understood. Here we show that FUS3 interacts with the RING E3 ligase ABI3-INTERACTING PROTEIN2 (AIP2). AIP2-green fluorescent protein (GFP) is preferentially expressed in the protoderm during early embryogenesis, similarly to FUS3, suggesting that their interaction is biologically relevant. FUS3 degradation is delayed in the aip2-1 mutant and FUS3-GFP fluorescence is increased in aip2-1, but only during mid-embryogenesis, suggesting that FUS3 is negatively regulated by AIP2 at a specific time during embryogenesis. aip2-1 shows delayed flowering and therefore also functions post-embryonically to regulate developmental phase transitions. Plants overexpressing FUS3 post-embryonically in the L1 layer (ML1p:FUS3) show late flowering and other developmental phenotypes that can be rescued by ML1p:AIP2, further supporting a negative role for AIP2 in FUS3 accumulation. However, additional factors regulate FUS3 levels during embryogenesis, as ML1:AIP2 seeds do not resemble fus3-3. Lastly, targeted expression of a RING-inactive AIP2 variant to the protoderm/L1 layer causes FUS3 and ABI3 overexpression phenotypes and defects in cotyledon development. Taken together, these results indicate that AIP2 targets FUS3 for degradation and plays a role in cotyledon development and flowering time in Arabidopsis.
Collapse
Affiliation(s)
- Simon Duong
- Department of Biological Sciences, University of Toronto Scarborough, Toronto M1C 1A4, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto M5S 3G5, Canada
| | - Eliana Vonapartis
- Department of Biological Sciences, University of Toronto Scarborough, Toronto M1C 1A4, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto M5S 3G5, Canada
| | - Cheuk-Yan Li
- Department of Biological Sciences, University of Toronto Scarborough, Toronto M1C 1A4, Canada
| | - Sajedabanu Patel
- Department of Biological Sciences, University of Toronto Scarborough, Toronto M1C 1A4, Canada
| | - Sonia Gazzarrini
- Department of Biological Sciences, University of Toronto Scarborough, Toronto M1C 1A4, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto M5S 3G5, Canada
| |
Collapse
|
63
|
Chiu RS, Pan S, Zhao R, Gazzarrini S. ABA-dependent inhibition of the ubiquitin proteasome system during germination at high temperature in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:749-761. [PMID: 27496613 DOI: 10.1111/tpj.13293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/07/2016] [Accepted: 07/29/2016] [Indexed: 05/09/2023]
Abstract
During germination, endogenous and environmental factors trigger changes in the transcriptome, translatome and proteome to break dormancy. In Arabidopsis thaliana, the ubiquitin proteasome system (UPS) degrades proteins that promote dormancy to allow germination. While research on the UPS has focused on the identification of proteasomal substrates, little information is known about the regulation of its activity. Here we characterized the activity of the UPS during dormancy release and maintenance by monitoring protein ubiquitination and degradation of two proteasomal substrates: Suc-LLVY-AMC, a well characterized synthetic substrate, and FUSCA3 (FUS3), a dormancy-promoting transcription factor degraded by the 26S proteasome. Our data indicate that proteasome activity and protein ubiquitination increase during imbibition at optimal temperature (21°C), and are required for seed germination. However, abscisic acid (ABA) and supraoptimal temperature (32°C) inhibit germination by dampening both protein ubiquitination and proteasome activity. Inhibition of UPS function by high temperature is reduced by the ABA biosynthesis inhibitor, fluridone, and in ABA biosynthetic mutants, suggesting that it is ABA dependent. Accordingly, inhibition of FUS3 degradation at 32°C is also dependent on ABA. Native gels show that inhibition of proteasome activity is caused by interference with the 26S/30S ratio as well as free 19S and 20S levels, impacting the proteasome degradation cycle. Transfer experiments show that ABA-mediated inhibition of proteasome activity at 21°C is restricted to the first 2 days of germination, a time window corresponding to seed sensitivity to environmental and ABA-mediated growth inhibition. Our data show that ABA and high temperature inhibit germination under unfavourable growth conditions by repressing the UPS.
Collapse
Affiliation(s)
- Rex Shun Chiu
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| | - Shiyue Pan
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Rongmin Zhao
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| | - Sonia Gazzarrini
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| |
Collapse
|
64
|
Liu Q, Guo X, Chen G, Zhu Z, Yin W, Hu Z. Silencing SlGID2, a putative F-box protein gene, generates a dwarf plant and dark-green leaves in tomato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 109:491-501. [PMID: 27835847 DOI: 10.1016/j.plaphy.2016.10.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/31/2016] [Accepted: 10/31/2016] [Indexed: 06/06/2023]
Abstract
In plant, F-box protein participates in various signal transduction systems and plays an important role in signaling pathways. Here, a putative F-box protein, namely SlGID2, was isolated from tomato (Solanum lycopersicum). Bioinformatics analyses suggested that SlGID2 shows high identity with F-box proteins from other plant species. Expression pattern analysis showed that SlGID2 gene is ubiquitously expressed in tomato tissues. To study the function of SlGID2 in tomato, SlGID2-silenced (SlGID2i) tomato by RNA interference (RNAi) was generated and displayed a dwarf plant and dark-green leaf phenotypes. The defective stem elongation of SlGID2i lines was not rescued by exogenous GA and its endogenous GA level was higher than wild type, further supporting the observation that SlGID2i transgenic plants are GA insensitive. Furthermore, SlGAST1, the downstream gene of GA signaling, and some cell expansion, division related genes (SlCycB1;1, SlCycD2;1, SlCycA3;1, SlXTH2, SlEXP2, SlKRP4) were down-regulated by SlGID2 silencing. In addition, the expression levels of SlDELLA (a negative regulator of GA signaling) and SlGA2ox1 were decreased, while SlGA3ox1 and SlGA20ox2 transcripts were increased in SlGID2i lines. Thus, we conclude that SlGID2 may be a positive regulator of GA signaling and promotes the GA signal pathway.
Collapse
Affiliation(s)
- Qin Liu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400044, PR China
| | - Xuhu Guo
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400044, PR China
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400044, PR China
| | - Zhiguo Zhu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400044, PR China
| | - Wencheng Yin
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400044, PR China
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400044, PR China.
| |
Collapse
|
65
|
Identification and Functional Analysis of microRNAs Involved in the Anther Development in Cotton Genic Male Sterile Line Yu98-8A. Int J Mol Sci 2016; 17:ijms17101677. [PMID: 27739413 PMCID: PMC5085710 DOI: 10.3390/ijms17101677] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 01/20/2023] Open
Abstract
Hybrid vigor contributes in a large way to the yield and quality of cotton (Gossypium hirsutum) fiber. Although microRNAs play essential regulatory roles in flower induction and development, it is still unclear if microRNAs are involved in male sterility, as the regulatory molecular mechanisms of male sterility in cotton need to be better defined. In this study, two independent small RNA libraries were constructed and sequenced from the young buds collected from the sporogenous cell formation to the meiosis stage of the male sterile line Yu98-8A and the near-isogenic line. Sequencing revealed 1588 and 1536 known microRNAs and 347 and 351 novel miRNAs from male sterile and male fertile libraries, respectively. MicroRNA expression profiles revealed that 49 conserved and 51 novel miRNAs were differentially expressed. Bioinformatic and degradome analysis indicated the regulatory complexity of microRNAs during flower induction and development. Further RT-qPCR and physiological analysis indicated that, among the different Kyoto Encyclopedia Gene and Genomes pathways, indole-3-acetic acid and gibberellic acid signaling transduction pathways may play pivotal regulatory functions in male sterility.
Collapse
|
66
|
Simm S, Scharf KD, Jegadeesan S, Chiusano ML, Firon N, Schleiff E. Survey of Genes Involved in Biosynthesis, Transport, and Signaling of Phytohormones with Focus on Solanum lycopersicum. Bioinform Biol Insights 2016; 10:185-207. [PMID: 27695302 PMCID: PMC5038615 DOI: 10.4137/bbi.s38425] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/15/2016] [Accepted: 08/16/2016] [Indexed: 12/19/2022] Open
Abstract
Phytohormones control the development and growth of plants, as well as their response to biotic and abiotic stress. The seven most well-studied phytohormone classes defined today are as follows: auxins, ethylene, cytokinin, abscisic acid, jasmonic acid, gibberellins, and brassinosteroids. The basic principle of hormone regulation is conserved in all plants, but recent results suggest adaptations of synthesis, transport, or signaling pathways to the architecture and growth environment of different plant species. Thus, we aimed to define the extent to which information from the model plant Arabidopsis thaliana is transferable to other plants such as Solanum lycopersicum. We extracted the co-orthologues of genes coding for major pathway enzymes in A. thaliana from the translated genomes of 12 species from the clade Viridiplantae. Based on predicted domain architecture and localization of the identified proteins from all 13 species, we inspected the conservation of phytohormone pathways. The comparison was complemented by expression analysis of (co-) orthologous genes in S. lycopersicum. Altogether, this information allowed the assignment of putative functional equivalents between A. thaliana and S. lycopersicum but also pointed to some variations between the pathways in eudicots, monocots, mosses, and green algae. These results provide first insights into the conservation of the various phytohormone pathways between the model system A. thaliana and crop plants such as tomato. We conclude that orthologue prediction in combination with analysis of functional domain architecture and intracellular localization and expression studies are sufficient tools to transfer information from model plants to other plant species. Our results support the notion that hormone synthesis, transport, and response for most part of the pathways are conserved, and species-specific variations can be found.
Collapse
Affiliation(s)
- Stefan Simm
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany.; Cluster of Excellence Macromolecular Complexes, Institute for Molecular Cell Biology of Plants, Frankfurt am Main, Germany
| | - Klaus-Dieter Scharf
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany.; Cluster of Excellence Macromolecular Complexes, Institute for Molecular Cell Biology of Plants, Frankfurt am Main, Germany
| | - Sridharan Jegadeesan
- Department of Vegetable Research, Institute for Plant Sciences, Agricultural Research Organization, Volcani Centre, Bet Dagan, Israel.; The Robert H. Smith Faculty of Agriculture, Food and Environment, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Maria Luisa Chiusano
- Department of Soil, Plants Environmental and Animal Production Sciences, Laboratory of Computer Aided Biosciences, University of Studies of Naples Federico II, Portici, Naples, Italy
| | - Nurit Firon
- Department of Vegetable Research, Institute for Plant Sciences, Agricultural Research Organization, Volcani Centre, Bet Dagan, Israel
| | - Enrico Schleiff
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany.; Cluster of Excellence Macromolecular Complexes, Institute for Molecular Cell Biology of Plants, Frankfurt am Main, Germany
| |
Collapse
|
67
|
Oracz K, Stawska M. Cellular Recycling of Proteins in Seed Dormancy Alleviation and Germination. FRONTIERS IN PLANT SCIENCE 2016; 7:1128. [PMID: 27512405 PMCID: PMC4961694 DOI: 10.3389/fpls.2016.01128] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 07/15/2016] [Indexed: 05/24/2023]
Abstract
Each step of the seed-to-seed cycle of plant development including seed germination is characterized by a specific set of proteins. The continual renewal and/or replacement of these biomolecules are crucial for optimal plant adaptation. As proteins are the main effectors inside the cells, their levels need to be tightly regulated. This is partially achieved by specific proteolytic pathways via multicatalytic protease complexes defined as 20S and 26S proteasomes. In plants, the 20S proteasome is responsible for degradation of carbonylated proteins, while the 26S being a part of ubiquitin-proteasome pathway is known to be involved in proteolysis of phytohormone signaling regulators. On the other hand, the role of translational control of plant development is also well-documented, especially in the context of pollen tube growth and light signaling. Despite the current progress that has been made in seed biology, the sequence of cellular events that determine if the seed can germinate or not are still far from complete understanding. The role and mechanisms of regulation of proteome composition during processes occurring in the plant's photosynthetic tissues have been well-characterized since many years, but in non-photosynthetic seeds it has emerged as a tempting research task only since the last decade. This review discusses the recent discoveries providing insights into the role of protein turnover in seed dormancy alleviation, and germination, with a focus on the control of translation and proteasomal proteolysis. The presented novel data of translatome profiling in seeds highlighted that post-transcriptional regulation of germination results from a timely regulated initiation of translation. In addition, the importance of 26S proteasome in the degradation of regulatory elements of cellular signaling and that of the 20S complex in proteolysis of specific carbonylated proteins in hormonal- and light-dependent processes occurring in seeds is discussed. Based on the current knowledge the model of cellular recycling of proteins in germinating seeds is also proposed.
Collapse
|
68
|
Lou X, Li X, Li A, Pu M, Shoaib M, Liu D, Sun J, Zhang A, Yang W. Molecular Characterization of Three GIBBERELLIN-INSENSITIVE DWARF2 Homologous Genes in Common Wheat. PLoS One 2016; 11:e0157642. [PMID: 27327160 PMCID: PMC4915692 DOI: 10.1371/journal.pone.0157642] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/02/2016] [Indexed: 01/01/2023] Open
Abstract
F-box protein is a core component of the ubiquitin E3 ligase SCF complex and is involved in the gibberellin (GA) signaling pathway. To elucidate the molecular mechanism of GA signaling in wheat, three homologous GIBBERELLIN-INSENSITIVE DWARF2 genes, TaGID2s, were isolated from the Chinese Spring wheat variety. A subcellular localization assay in onion epidermal cells and Arabidopsis mesophyll protoplasts showed that TaGID2s are localized in the nuclei. The expression profiles using quantitative real-time polymerase chain reaction showed that TaGID2s were downregulated by GA3. The interaction between TaGID2s and TSK1 (homologous to ASK1) in yeast indicated that TaGID2s might function as a component of an E3 ubiquitin-ligase SCF complex. Yeast two-hybrid assays showed that a GA-independent interaction occurred between three TaGID2s and RHT-A1a, RHT-B1a, and RHT-D1a. Furthermore, TaGID2s interact with most RHT-1s, such as RHT-B1h, RHT-B1i, RHT-D1e, RHT-D1f, etc., but cannot interact with RHT-B1b or RHT-B1e, which have a stop codon in the DELLA motif, resulting in a lack of a GRAS domain. In addition, RHT-B1k has a frame-shift mutation in the VHIID motif leading to loss of the LHRII motif in the GRAS domain and RHT-D1h has a missense mutation in the LHRII motif. These results indicate that TaGID2s, novel positive regulators of the GA response, recognize RHT-1s in the LHRII motif resulting in poly-ubiquitination and degradation of the DELLA protein.
Collapse
Affiliation(s)
- XueYuan Lou
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- Graduate University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Li
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - AiXia Li
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- Graduate University of Chinese Academy of Sciences, Beijing, 100049, China
| | - MingYu Pu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- Graduate University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Muhammad Shoaib
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - DongCheng Liu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - JiaZhu Sun
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - AiMin Zhang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- The Collaborative Innovation Center for Grain crops in Henan, Henan Agricultural University, Zhengzhou, 450002, China
| | - WenLong Yang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
69
|
Cui K, Wang H, Liao S, Tang Q, Li L, Cui Y, He Y. Transcriptome Sequencing and Analysis for Culm Elongation of the World's Largest Bamboo (Dendrocalamus sinicus). PLoS One 2016; 11:e0157362. [PMID: 27304219 PMCID: PMC4909198 DOI: 10.1371/journal.pone.0157362] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 05/27/2016] [Indexed: 12/29/2022] Open
Abstract
Dendrocalamus sinicus is the world’s largest bamboo species with strong woody culms, and known for its fast-growing culms. As an economic bamboo species, it was popularized for multi-functional applications including furniture, construction, and industrial paper pulp. To comprehensively elucidate the molecular processes involved in its culm elongation, Illumina paired-end sequencing was conducted. About 65.08 million high-quality reads were produced, and assembled into 81,744 unigenes with an average length of 723 bp. A total of 64,338 (79%) unigenes were annotated for their functions, of which, 56,587 were annotated in the NCBI non-redundant protein database and 35,262 were annotated in the Swiss-Prot database. Also, 42,508 and 21,009 annotated unigenes were allocated to gene ontology (GO) categories and clusters of orthologous groups (COG), respectively. By searching against the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG), 33,920 unigenes were assigned to 128 KEGG pathways. Meanwhile, 8,553 simple sequence repeats (SSRs) and 81,534 single-nucleotide polymorphism (SNPs) were identified, respectively. Additionally, 388 transcripts encoding lignin biosynthesis were detected, among which, 27 transcripts encoding Shikimate O-hydroxycinnamoyltransferase (HCT) specifically expressed in D. sinicus when compared to other bamboo species and rice. The phylogenetic relationship between D. sinicus and other plants was analyzed, suggesting functional diversity of HCT unigenes in D. sinicus. We conjectured that HCT might lead to the high lignin content and giant culm. Given that the leaves are not yet formed and culm is covered with sheaths during culm elongation, the existence of photosynthesis of bamboo culm is usually neglected. Surprisedly, 109 transcripts encoding photosynthesis were identified, including photosystem I and II, cytochrome b6/f complex, photosynthetic electron transport and F-type ATPase, and 24 transcripts were characterized as antenna proteins that regarded as the main tool for capturing light of plants, implying stem photosynthesis plays a key role during culm elongation due to the unavailability of its leaf. By real-time quantitative PCR, the expression level of 6 unigenes was detected. The results showed the expression level of all genes accorded with the transcriptome data, which confirm the reliability of the transcriptome data. As we know, this is the first study underline the D. sinicus transcriptome, which will deepen the understanding of the molecular mechanisms of culm development. The results may help variety improvement and resource utilization of bamboos.
Collapse
Affiliation(s)
- Kai Cui
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming, 650224, People’s Republic of China
| | - Haiying Wang
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming, 650224, People’s Republic of China
| | - Shengxi Liao
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming, 650224, People’s Republic of China
- * E-mail:
| | - Qi Tang
- Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultral University, Changsha, 410128, People’s Republic of China
| | - Li Li
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming, 650224, People’s Republic of China
| | - Yongzhong Cui
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming, 650224, People’s Republic of China
| | - Yuan He
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming, 650224, People’s Republic of China
| |
Collapse
|
70
|
Abstract
Gibberellins (GAs) are phytohormones that regulate growth and development. DELLA proteins repress GA responses. GA binding to its receptor triggers a series of events that culminate in the destruction of DELLA proteins by the 26S proteasome, which removes the repression of GA signalling. DELLA proteins are transcription co-activators that induce the expression of genes which encode products that inhibit GA responses. In addition to repressing GA responses, DELLA proteins influence the activity of other signalling pathways and serve as a central hub from which other pathways influence GA signalling. In this role, DELLA proteins bind to and inhibit proteins, including transcription factors that act in the signalling pathways of other hormones and light. The binding of these proteins to DELLA proteins also inhibits DELLA activity. GA signalling is subject to homoeostatic regulation through GA-induced repression of GA biosynthesis gene expression, and increased production of the GA receptor and enzymes that catabolize bioactive GAs. This review also discusses the nature of mutant DELLA alleles that are used to produce high-yielding 'Green Revolution' cereal varieties, and highlights important gaps in our knowledge of GA signalling.
Collapse
|
71
|
Wallner ES, López-Salmerón V, Greb T. Strigolactone versus gibberellin signaling: reemerging concepts? PLANTA 2016; 243:1339-50. [PMID: 26898553 PMCID: PMC4875939 DOI: 10.1007/s00425-016-2478-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/22/2016] [Indexed: 05/05/2023]
Abstract
MAIN CONCLUSION In this review, we compare knowledge about the recently discovered strigolactone signaling pathway and the well established gibberellin signaling pathway to identify gaps of knowledge and putative research directions in strigolactone biology. Communication between and inside cells is integral for the vitality of living organisms. Hormonal signaling cascades form a large part of this communication and an understanding of both their complexity and interactive nature is only beginning to emerge. In plants, the strigolactone (SL) signaling pathway is the most recent addition to the classically acting group of hormones and, although fundamental insights have been made, knowledge about the nature and impact of SL signaling is still cursory. This narrow understanding is in spite of the fact that SLs influence a specific spectrum of processes, which includes shoot branching and root system architecture in response, partly, to environmental stimuli. This makes these hormones ideal tools for understanding the coordination of plant growth processes, mechanisms of long-distance communication and developmental plasticity. Here, we summarize current knowledge about SL signaling and employ the well-characterized gibberellin (GA) signaling pathway as a scaffold to highlight emerging features as well as gaps in our knowledge in this context. GA signaling is particularly suitable for this comparison because both signaling cascades share key features of hormone perception and of immediate downstream events. Therefore, our comparative view demonstrates the possible level of complexity and regulatory interfaces of SL signaling.
Collapse
Affiliation(s)
- Eva-Sophie Wallner
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Vadir López-Salmerón
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Thomas Greb
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany.
| |
Collapse
|
72
|
Moubayidin L, Salvi E, Giustini L, Terpstra I, Heidstra R, Costantino P, Sabatini S. A SCARECROW-based regulatory circuit controls Arabidopsis thaliana meristem size from the root endodermis. PLANTA 2016; 243:1159-68. [PMID: 26848984 PMCID: PMC4837209 DOI: 10.1007/s00425-016-2471-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/19/2016] [Indexed: 05/20/2023]
Abstract
SCARECROW controls Arabidopsis root meristem size from the root endodermis tissue by regulating the DELLA protein RGA that in turn mediates the regulation of ARR1 levels at the transition zone. Coherent organ growth requires a fine balance between cell division and cell differentiation. Intriguingly, plants continuously develop organs post-embryonically thanks to the activity of meristems that allow growth and environmental plasticity. In Arabidopsis thaliana, continued root growth is assured when division of the distal stem cell and their daughters is balanced with cell differentiation at the meristematic transition zone (TZ). We have previously shown that at the TZ, the cytokinin-dependent transcription factor ARR1 controls the rate of differentiation commitment of meristematic cells and that its activities are coordinated with those of the distal stem cells by the gene SCARECROW (SCR). In the stem cell organizer (the quiescent center, QC), SCR directly suppresses ARR1 both sustaining stem cell activities and titrating non-autonomously the ARR1 transcript levels at the TZ via auxin. Here, we show that SCR also exerts a fine control on ARR1 levels at the TZ from the endodermis by sustaining gibberellin signals. From the endodermis, SCR controls the RGA REPRESSOR OF ga1-3 (RGA) DELLA protein stability throughout the root meristem, thus controlling ARR1 transcriptional activation at the TZ. This guarantees robustness and fineness to the control of ARR1 levels necessary to balance cell division to cell differentiation in sustaining coherent root growth. Therefore, this work advances the state of the art in the field of root meristem development by integrating the activity of three hormones, auxin, gibberellin, and cytokinin, under the control of different tissue-specific activities of a single root key regulator, SCR.
Collapse
Affiliation(s)
- Laila Moubayidin
- />Laboratory of Functional Genomics and Proteomics of Model Systems, Dipartimento di Biologia e Biotecnologie, Università La Sapienza, P.le Aldo Moro, 5, 00185 Rome, Italy
- />Crop Genetics Department, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| | - Elena Salvi
- />Laboratory of Functional Genomics and Proteomics of Model Systems, Dipartimento di Biologia e Biotecnologie, Università La Sapienza, P.le Aldo Moro, 5, 00185 Rome, Italy
| | - Leonardo Giustini
- />Laboratory of Functional Genomics and Proteomics of Model Systems, Dipartimento di Biologia e Biotecnologie, Università La Sapienza, P.le Aldo Moro, 5, 00185 Rome, Italy
| | - Inez Terpstra
- />Section Molecular Genetics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- />Faculty of Science, SILS, University of Amsterdam, POSTBUS 94215, 1090 GE Amsterdam, The Netherlands
| | - Renze Heidstra
- />Section Molecular Genetics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- />Plant Developmental Biology, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Paolo Costantino
- />Laboratory of Functional Genomics and Proteomics of Model Systems, Dipartimento di Biologia e Biotecnologie, Università La Sapienza, P.le Aldo Moro, 5, 00185 Rome, Italy
| | - Sabrina Sabatini
- />Laboratory of Functional Genomics and Proteomics of Model Systems, Dipartimento di Biologia e Biotecnologie, Università La Sapienza, P.le Aldo Moro, 5, 00185 Rome, Italy
| |
Collapse
|
73
|
Massange-Sanchez JA, Palmeros-Suarez PA, Martinez-Gallardo NA, Castrillon-Arbelaez PA, Avilés-Arnaut H, Alatorre-Cobos F, Tiessen A, Délano-Frier JP. The novel and taxonomically restricted Ah24 gene from grain amaranth (Amaranthus hypochondriacus) has a dual role in development and defense. FRONTIERS IN PLANT SCIENCE 2015; 6:602. [PMID: 26300899 PMCID: PMC4524895 DOI: 10.3389/fpls.2015.00602] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 07/21/2015] [Indexed: 05/03/2023]
Abstract
Grain amaranths tolerate stress and produce highly nutritious seeds. We have identified several (a)biotic stress-responsive genes of unknown function in Amaranthus hypochondriacus, including the so-called Ah24 gene. Ah24 was expressed in young or developing tissues; it was also strongly induced by mechanical damage, insect herbivory and methyl jasmonate and in meristems and newly emerging leaves of severely defoliated plants. Interestingly, an in silico analysis of its 1304 bp promoter region showed a predominance of regulatory boxes involved in development, but not in defense. The Ah24 cDNA encodes a predicted cytosolic protein of 164 amino acids, the localization of which was confirmed by confocal microscopy. Additional in silico analysis identified several other Ah24 homologs, present almost exclusively in plants belonging to the Caryophyllales. The possible function of this gene in planta was examined in transgenic Ah24 overexpressing Arabidopsis thaliana and Nicotiana tabacum plants. Transformed Arabidopsis showed enhanced vegetative growth and increased leaf number with no penalty in one fitness component, such as seed yield, in experimental conditions. Transgenic tobacco plants, which grew and reproduced normally, had increased insect herbivory resistance. Modified vegetative growth in transgenic Arabidopsis coincided with significant changes in the expression of genes controlling phytohormone synthesis or signaling, whereas increased resistance to insect herbivory in transgenic tobacco coincided with higher jasmonic acid and proteinase inhibitor activity levels, plus the accumulation of nicotine and several other putative defense-related metabolites. It is proposed that the primary role of the Ah24 gene in A. hypochondriacus is to contribute to a rapid recovery post-wounding or defoliation, although its participation in defense against insect herbivory is also plausible.
Collapse
Affiliation(s)
- Julio A. Massange-Sanchez
- Biotechnology and Biochemistry Department, Centro de Investigación y de Estudios Avanzados del I. P. N., Unidad IrapuatoIrapuato, México
| | - Paola A. Palmeros-Suarez
- Biotechnology and Biochemistry Department, Centro de Investigación y de Estudios Avanzados del I. P. N., Unidad IrapuatoIrapuato, México
| | - Norma A. Martinez-Gallardo
- Biotechnology and Biochemistry Department, Centro de Investigación y de Estudios Avanzados del I. P. N., Unidad IrapuatoIrapuato, México
| | - Paula A. Castrillon-Arbelaez
- Biotechnology and Biochemistry Department, Centro de Investigación y de Estudios Avanzados del I. P. N., Unidad IrapuatoIrapuato, México
| | - Hamlet Avilés-Arnaut
- Facultad de Ciencias Biológicas, Instituto de Biotecnología, Universidad Autónoma de Nuevo LeónSan Nicolás de los Garza, México
| | | | - Axel Tiessen
- Biotechnology and Biochemistry Department, Centro de Investigación y de Estudios Avanzados del I. P. N., Unidad IrapuatoIrapuato, México
| | - John P. Délano-Frier
- Biotechnology and Biochemistry Department, Centro de Investigación y de Estudios Avanzados del I. P. N., Unidad IrapuatoIrapuato, México
| |
Collapse
|
74
|
Sun P, Li S, Lu D, Williams JS, Kao TH. Pollen S-locus F-box proteins of Petunia involved in S-RNase-based self-incompatibility are themselves subject to ubiquitin-mediated degradation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:213-223. [PMID: 25990372 DOI: 10.1111/tpj.12880] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/05/2015] [Accepted: 04/24/2015] [Indexed: 06/04/2023]
Abstract
Many flowering plants show self-incompatibility, an intra-specific reproductive barrier by which pistils reject self-pollen to prevent inbreeding and accept non-self pollen to promote out-crossing. In Petunia, the polymorphic S-locus determines self/non-self recognition. The locus contains a gene encoding an S-RNase, which controls pistil specificity, and multiple S-locus F-box (SLF) genes that collectively control pollen specificity. Each SLF is a component of an SCF (Skp1/Cullin/F-box) complex that is responsible for mediating degradation of non-self S-RNase(s), with which the SLF interacts, via the ubiquitin-26S proteasome pathway. A complete set of SLFs is required to detoxify all non-self S-RNases to allow cross-compatible pollination. Here, we show that SLF1 of Petunia inflata is itself subject to degradation via the ubiquitin-26S proteasome pathway, and identify an 18 amino acid sequence in the C-terminal region of S2 -SLF1 (SLF1 of S2 haplotype) that contains a degradation motif. Seven of the 18 amino acids are conserved among all 17 SLF proteins of S2 haplotype and S3 haplotype involved in pollen specificity, suggesting that all SLF proteins are probably subject to similar degradation. Deleting the 18 amino acid sequence from S2 -SLF1 stabilized the protein but abolished its function in self-incompatibility, suggesting that dynamic cycling of SLF proteins is an integral part of their function in self-incompatibility.
Collapse
Affiliation(s)
- Penglin Sun
- Intercollege Graduate Degree Program in Plant Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Shu Li
- Intercollege Graduate Degree Program in Plant Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Dihong Lu
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Justin S Williams
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Teh-Hui Kao
- Intercollege Graduate Degree Program in Plant Biology, Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
75
|
E3 SUMO ligase AtSIZ1 positively regulates SLY1-mediated GA signalling and plant development. Biochem J 2015; 469:299-314. [PMID: 26008766 DOI: 10.1042/bj20141302] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 05/26/2015] [Indexed: 11/17/2022]
Abstract
Gibberellins affect various plant development processes including germination, cell division and elongation, and flowering. A large number of studies have been carried out to address the molecular mechanisms that mediate gibberellin signalling effects on plant growth. However, such studies have been limited to DELLA protein degradation; the regulatory mechanisms controlling how the stability and function of SLEEPY1 (SLY1), a protein that interacts with target DELLA proteins as components of the Skp, Cullin, F-box (SCF)(SLY1) complex, are modulated at the post-translational level have not been addressed. In the present study, we show that the E3 SUMO (small ubiquitin-related modifier) ligase AtSIZ1 regulates gibberellic acid signalling in Arabidopsis species by sumoylating SLY1. SLY1 was less abundant in siz1-2 mutants than in wild-type plants, but the DELLA protein repressor of ga1-3 (RGA) was more abundant in siz1-2 mutants than in wild-type plants. SLY1 also accumulated to a high level in the SUMO protease mutant esd4. Transgenic sly1-13 mutants over-expressing SLY1 were phenotypically similar to wild-type plants; however, sly1-13 plants over-expressing a mutated mSLY1 protein (K122R, a mutation at the sumoylation site) retained the mutant dwarfing phenotype. Over-expression of SLY1 in sly1-13 mutants resulted in a return of RGA levels to wild-type levels, but RGA accumulated to high levels in mutants over-expressing mSLY1. RGA was clearly detected in Arabidopsis co-expressing AtSIZ1 and mSLY1, but not in plants co-expressing AtSIZ1 and SLY1. In addition, sumoylated SLY1 interacted with RGA and SLY1 sumoylation was significantly increased by GA. Taken together, our results indicate that, in Arabidopsis, AtSIZ1 positively controls GA signalling through SLY1 sumoylation.
Collapse
|
76
|
Genome-wide characterization and analysis of F-box protein-encoding genes in the Malus domestica genome. Mol Genet Genomics 2015; 290:1435-46. [PMID: 25855485 DOI: 10.1007/s00438-015-1004-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 01/29/2015] [Indexed: 10/24/2022]
Abstract
The F-box protein family is a large family that is characterized by conserved F-box domains of approximately 40-50 amino acids in the N-terminus. F-box proteins participate in diverse cellular processes, such as development of floral organs, signal transduction and response to stress, primarily as a component of the Skp1-cullin-F-box (SCF) complex. In this study, using a global search of the apple genome, 517 F-box protein-encoding genes (F-box genes for short) were identified and further subdivided into 12 groups according to the characterization of known functional domains, which suggests the different potential functions or processes that they were involved in. Among these domains, the galactose oxidase domain was analyzed for the first time in plants, and this domain was present with or without the Kelch domain. The F-box genes were distributed in all 17 apple chromosomes with various densities and tended to form gene clusters. Spatial expression profile analysis revealed that F-box genes have organ-specific expression and are widely expressed in all organs. Proteins that contained the galactose oxidase domain were highly expressed in leaves, flowers and seeds. From a fruit ripening expression profile, 166 F-box genes were identified. The expressions of most of these genes changed little during maturation, but five of them increased significantly. Using qRT-PCR to examine the expression of F-box genes encoding proteins with domains related to stress, the results revealed that F-box proteins were up- or down-regulated, which suggests that F-box genes were involved in abiotic stress. The results of this study helped to elucidate the functions of F-box proteins, especially in Rosaceae plants.
Collapse
|
77
|
Liu L, Zinkgraf M, Petzold HE, Beers EP, Filkov V, Groover A. The Populus ARBORKNOX1 homeodomain transcription factor regulates woody growth through binding to evolutionarily conserved target genes of diverse function. THE NEW PHYTOLOGIST 2015; 205:682-94. [PMID: 25377848 DOI: 10.1111/nph.13151] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 10/01/2014] [Indexed: 05/28/2023]
Abstract
The class I KNOX homeodomain transcription factor ARBORKNOX1 (ARK1) is a key regulator of vascular cambium maintenance and cell differentiation in Populus. Currently, basic information is lacking concerning the distribution, functional characteristics, and evolution of ARK1 binding in the Populus genome. Here, we used chromatin immunoprecipitation sequencing (ChIP-seq) technology to identify ARK1 binding loci genome-wide in Populus. Computational analyses evaluated the distribution of ARK1 binding loci, the function of genes associated with bound loci, the effect of ARK1 binding on transcript levels, and evolutionary conservation of ARK1 binding loci. ARK1 binds to thousands of loci which are highly enriched proximal to the transcriptional start sites of genes of diverse functions. ARK1 target genes are significantly enriched in paralogs derived from the whole-genome salicoid duplication event. Both ARK1 and a maize (Zea mays) homolog, KNOTTED1, preferentially target evolutionarily conserved genes. However, only a small portion of ARK1 target genes are significantly differentially expressed in an ARK1 over-expression mutant. This study describes the functional characteristics and evolution of DNA binding by a transcription factor in an undomesticated tree, revealing complexities similar to those shown for transcription factors in model animal species.
Collapse
Affiliation(s)
- Lijun Liu
- Pacific Southwest Research Station, USDA Forest Service, Davis, CA, 95618, USA
| | | | | | | | | | | |
Collapse
|
78
|
Xu H, Liu Q, Yao T, Fu X. Shedding light on integrative GA signaling. CURRENT OPINION IN PLANT BIOLOGY 2014; 21:89-95. [PMID: 25061896 DOI: 10.1016/j.pbi.2014.06.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 06/23/2014] [Accepted: 06/30/2014] [Indexed: 05/21/2023]
Abstract
Gibberellic acid (GA) regulates a diversity of processes associated with plant growth and development. The DELLA proteins act as repressors of GA signaling, and are destabilized by GA. Although it is known that GA signaling integrates various endogenous and environmental signals, the molecular basis of their modulation of plant growth and development is only now beginning to be understood. The current suggestion is that the DELLA proteins act as one possible quantitative modulator of plant growth, achieved by integrating multiple environmental and hormonal signals via protein-protein interactions. This review discusses recent elaborations of the de-repression model proposed to describe the GA response, and focuses on integrative networks thought to regulate plant growth, development and the adaptation to a fluctuating environment.
Collapse
Affiliation(s)
- Hao Xu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Qian Liu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Tao Yao
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Xiangdong Fu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China.
| |
Collapse
|
79
|
Zhao J, Wang T, Wang M, Liu Y, Yuan S, Gao Y, Yin L, Sun W, Peng L, Zhang W, Wan J, Li X. DWARF3 Participates in an SCF Complex and Associates with DWARF14 to Suppress Rice Shoot Branching. ACTA ACUST UNITED AC 2014; 55:1096-109. [DOI: 10.1093/pcp/pcu045] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
80
|
Regulatory Networks Acted Upon by the GID1–DELLA System After Perceiving Gibberellin. SIGNALING PATHWAYS IN PLANTS 2014; 35:1-25. [DOI: 10.1016/b978-0-12-801922-1.00001-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
81
|
Hauvermale AL, Ariizumi T, Steber CM. The roles of the GA receptors GID1a, GID1b, and GID1c in sly1-independent GA signaling. PLANT SIGNALING & BEHAVIOR 2014; 9:e28030. [PMID: 24521922 PMCID: PMC4091331 DOI: 10.4161/psb.28030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 01/28/2014] [Accepted: 01/28/2014] [Indexed: 05/20/2023]
Abstract
Gibberellin (GA) hormone signaling occurs through proteolytic and non-proteolytic mechanisms. GA binding to the GA receptor GID1 (GA-INSENSITIVE DWARF1) enables GID1 to bind negative regulators of GA responses called DELLA proteins. In proteolytic GA signaling, the SLEEPY1 (SLY1) F-box protein targets DELLA proteins in the GID1-GA-DELLA complex for destruction through the ubiquitin-proteasome pathway. Non-proteolytic GA signaling in sly1 mutants where GA cannot target DELLA proteins for destruction, requires GA and GID1 gene function. Based on comparison of gid1 multiple mutants to sly1 gid1 mutants, GID1a is the primary GA receptor stimulating stem elongation in proteolytic and non-proteolytic signaling, and stimulating fertility in proteolytic GA signaling. GID1b plays the primary role in fertility, and a secondary role in elongation during non-proteolytic GA signaling. The stronger role of GID1b in non-proteolytic GA signaling may result from the fact that GID1b has higher affinity for DELLA protein than GID1a and GID1c.
Collapse
Affiliation(s)
- Amber L Hauvermale
- Department of Crop and Soil Science; Washington State University; Pullman, WA USA
| | - Tohru Ariizumi
- Department of Crop and Soil Science; Washington State University; Pullman, WA USA
| | - Camille M Steber
- Department of Crop and Soil Science; Washington State University; Pullman, WA USA
- USDA-ARS; Wheat Genetics; Quality Physiology and Disease Research Unit; Pullman, WA USA
- Correspondence to: Camille M Steber,
| |
Collapse
|
82
|
Choi CM, Gray WM, Mooney S, Hellmann H. Composition, roles, and regulation of cullin-based ubiquitin e3 ligases. THE ARABIDOPSIS BOOK 2014; 12:e0175. [PMID: 25505853 PMCID: PMC4262284 DOI: 10.1199/tab.0175] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Due to their sessile nature, plants depend on flexible regulatory systems that allow them to adequately regulate developmental and physiological processes in context with environmental cues. The ubiquitin proteasome pathway, which targets a great number of proteins for degradation, is cellular tool that provides the necessary flexibility to accomplish this task. Ubiquitin E3 ligases provide the needed specificity to the pathway by selectively binding to particular substrates and facilitating their ubiquitylation. The largest group of E3 ligases known in plants is represented by CULLIN-REALLY INTERESTING NEW GENE (RING) E3 ligases (CRLs). In recent years, a great amount of knowledge has been generated to reveal the critical roles of these enzymes across all aspects of plant life. This review provides an overview of the different classes of CRLs in plants, their specific complex compositions, the variety of biological processes they control, and the regulatory steps that can affect their activities.
Collapse
Affiliation(s)
| | | | | | - Hanjo Hellmann
- Washington State University, Pullman, Washington
- Address correspondence to
| |
Collapse
|
83
|
Peng Z, Zhang C, Zhang Y, Hu T, Mu S, Li X, Gao J. Transcriptome sequencing and analysis of the fast growing shoots of moso bamboo (Phyllostachys edulis). PLoS One 2013; 8:e78944. [PMID: 24244391 PMCID: PMC3820679 DOI: 10.1371/journal.pone.0078944] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/17/2013] [Indexed: 01/23/2023] Open
Abstract
Background The moso bamboo, a large woody bamboo with the highest ecological, economic, and cultural value of all bamboos, has one of the highest growth speeds in the world. Genetic research into moso bamboo has been scarce, partly because of the lack of previous genomic resources. In the present study, for the first time, we performed de novo transcriptome sequencing and mapped to the moso bamboo genomic resources (reference genome and genes) to produce a comprehensive dataset for the fast growing shoots of moso bamboo. Results The fast growing shoots mixed with six different heights and culms after leaf expansion of moso bamboo transcriptome were sequenced using the Illumina HiSeq™ 2000 sequencing platform, respectively. More than 80 million reads including 65,045,670 and 68,431,884 clean reads were produced in the two libraries. More than 81% of the reads were matched to the reference genome, and nearly 50% of the reads were matched to the reference genes. The genes with log 2 ratio > 2 or < −2 (P<0.001) were characterized as the most differentially expressed genes. 6,076 up-regulated and 4,613 down-regulated genes were classified into functional categories. Candidate genes which mainly involved transcript factors, plant hormones, cell cycle regulation, cell wall metabolism and cell morphogenesis genes were further analyzed and they may form a network that regulates the fast growth of moso bamboo shoots. Conclusion Firstly, our data provides the most comprehensive transcriptomic resource for moso bamboo to date. Candidate genes have been identified and they are potentially involved in the growth and development of moso bamboo. The results give a better insight into the mechanisms of moso bamboo shoots rapid growth and provide gene resources for improving plant growth.
Collapse
Affiliation(s)
- Zhenhua Peng
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China
| | - Chunling Zhang
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China
| | - Ying Zhang
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China
| | - Tao Hu
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China
| | - Shaohua Mu
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China
| | - Xueping Li
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China
| | - Jian Gao
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China
- * E-mail:
| |
Collapse
|
84
|
Abstract
E3 ligases comprise a highly diverse and important group of enzymes that act within the 26S ubiquitin proteasome pathway. They facilitate the transfer of ubiquitin moieties to substrate proteins which may be marked for degradation by this step. As such, they serve as central regulators in many cellular and physiological processes in plants. The review provides an update on the multitude of different E3 ligases currently known in plants, and illustrates the central role in plant biology of specific examples.
Collapse
Affiliation(s)
- Liyuan Chen
- Plant Stress Physiology, School of Biological Sciences, Abelson 435, PO Box 644236, Washington State University, Pullman, WA 99164-4236, USA
| | | |
Collapse
|
85
|
Ariizumi T, Hauvermale AL, Nelson SK, Hanada A, Yamaguchi S, Steber CM. Lifting della repression of Arabidopsis seed germination by nonproteolytic gibberellin signaling. PLANT PHYSIOLOGY 2013; 162:2125-39. [PMID: 23818171 PMCID: PMC3729787 DOI: 10.1104/pp.113.219451] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
DELLA repression of Arabidopsis (Arabidopsis thaliana) seed germination can be lifted either through DELLA proteolysis by the ubiquitin-proteasome pathway or through proteolysis-independent gibberellin (GA) hormone signaling. GA binding to the GIBBERELLIN-INSENSITIVE DWARF1 (GID1) GA receptors stimulates GID1-GA-DELLA complex formation, which in turn triggers DELLA protein ubiquitination and proteolysis via the SCF(SLY1) E3 ubiquitin ligase and 26S proteasome. Although DELLA cannot be destroyed in the sleepy1-2 (sly1-2) F-box mutant, long dry after-ripening and GID1 overexpression can relieve the strong sly1-2 seed dormancy phenotype. It appears that sly1-2 seed dormancy results from abscisic acid (ABA) signaling downstream of DELLA, since dormant sly1-2 seeds accumulate high levels of ABA hormone and loss of ABA sensitivity rescues sly1-2 seed germination. DELLA positively regulates the expression of XERICO, an inducer of ABA biosynthesis. GID1b overexpression rescues sly1-2 germination through proteolysis-independent DELLA down-regulation associated with increased expression of GA-inducible genes and decreased ABA accumulation, apparently as a result of decreased XERICO messenger RNA levels. Higher levels of GID1 overexpression are associated with more efficient sly1 germination and increased GID1-GA-DELLA complex formation, suggesting that GID1 down-regulates DELLA through protein binding. After-ripening results in increased GA accumulation and GID1a-dependent GA signaling, suggesting that after-ripening triggers GA-stimulated GID1-GA-DELLA protein complex formation, which in turn blocks DELLA transcriptional activation of the XERICO inhibitor of seed germination.
Collapse
|
86
|
Locascio A, Blázquez MA, Alabadí D. Genomic analysis of DELLA protein activity. PLANT & CELL PHYSIOLOGY 2013; 54:1229-37. [PMID: 23784221 DOI: 10.1093/pcp/pct082] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Changes in gene expression are the main outcome of hormone signaling cascades that widely control plant physiology. In the case of the hormones gibberellins, the transcriptional control is exerted through the activity of the DELLA proteins, which act as negative regulators in the signaling pathway. This review focuses on recent transcriptomic approaches in the context of gibberellin signaling, which have provided useful information on new processes regulated by these hormones such as the regulation of photosynthesis and gravitropism. Moreover, the enrichment of specific cis-elements among DELLA primary targets has also helped extend the view that DELLA proteins regulate gene expression through the interaction with multiple transcription factors from different families.
Collapse
Affiliation(s)
- Antonella Locascio
- Instituto de Biología Molecular y Celular de Plantas-CSIC-U. Politécnica de Valencia, Valencia, Spain
| | | | | |
Collapse
|
87
|
Ma X, Song L, Yang Y, Liu D. A gain-of-function mutation in the ROC1 gene alters plant architecture in Arabidopsis. THE NEW PHYTOLOGIST 2013; 197:751-762. [PMID: 23206262 DOI: 10.1111/nph.12056] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 10/21/2012] [Indexed: 05/20/2023]
Abstract
Plant architecture is an important agronomic trait and is useful for identification of plant species. The molecular basis of plant architecture, however, is largely unknown. Forward genetics was used to identify an Arabidopsis mutant with altered plant architecture. Using genetic and molecular approaches, we analyzed the roles of a mutated cyclophilin in the control of plant architecture. The Arabidopsis mutant roc1 has reduced stem elongation and increased shoot branching, and the mutant phenotypes are strongly affected by temperature and photoperiod. Map-based cloning and transgenic experiments demonstrated that the roc1 mutant phenotypes are caused by a gain-of-function mutation in a cyclophilin gene, ROC1. Besides, application of the plant hormone gibberellic acid (GA) further suppresses stem elongation in the mutant. GA treatment enhances the accumulation of mutated but not of wildtype (WT) ROC1 proteins. The roc1 mutation does not seem to interfere with GA biosynthesis or signaling. GA signaling, however, antagonizes the effect of the roc1 mutation on stem elongation. The altered plant architecture may result from the activation of an R gene by the roc1 protein. We also present a working model for the interaction between the roc1 mutation and GA signaling in regulating stem elongation.
Collapse
Affiliation(s)
- Xiqing Ma
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- School of Life Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Li Song
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yaxuan Yang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Dong Liu
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
88
|
Di Giacomo E, Serino G, Frugis G. Emerging role of the ubiquitin proteasome system in the control of shoot apical meristem function(f). JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:7-20. [PMID: 23164365 DOI: 10.1111/jipb.12010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The shoot apical meristem (SAM) is a population of undifferentiated cells at the tip of the shoot axis that establishes early during plant embryogenesis and gives rise to all shoot organs throughout the plant's life. A plethora of different families of transcription factors (TFs) play a key role in establishing the equilibrium between cell differentiation and stem cell maintenance in the SAM. Fine tuning of these regulatory proteins is crucial for a proper and fast SAM response to environmental and hormonal cues, and for development progression. One effective way to rapidly inactivate TFs involves regulated proteolysis by the ubiquitin/26S proteasome system (UPS). However, a possible role of UPS-dependent protein degradation in the regulation of key SAM TFs has not been thoroughly investigated. Here, we summarize recent evidence supporting a role for the UPS in SAM maintenance and function. We integrate this survey with an in silico analysis of publicly-available microarray databases which identified ubiquitin ligases that are expressed in specific areas within the SAM, suggesting that they may regulate or act downstream of meristem-specific factors.
Collapse
Affiliation(s)
- Elisabetta Di Giacomo
- Istituto di Biologia e Biotecnologia Agraria, UOS Roma, Consiglio Nazionale delle Ricerche, Monterotondo Scalo, Roma 00015, Italy
| | | | | |
Collapse
|
89
|
Liu W, Sun L, Zhong M, Zhou Q, Gong Z, Li P, Tai P, Li X. Cadmium-induced DNA damage and mutations in Arabidopsis plantlet shoots identified by DNA fingerprinting. CHEMOSPHERE 2012; 89:1048-55. [PMID: 22717160 DOI: 10.1016/j.chemosphere.2012.05.068] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 05/11/2012] [Accepted: 05/16/2012] [Indexed: 05/03/2023]
Abstract
Random amplified polymorphic DNA (RAPD) test is a feasible method to evaluate the toxicity of environmental pollutants on vegetal organisms. Herein, Arabidopsis thaliana (Arabidopsis) plantlets following Cadmium (Cd) treatment for 26 d were screened for DNA genetic alterations by DNA fingerprinting. Four primers amplified 20-23 mutated RAPD fragments in 0.125-3.0 mg L(-1) Cd-treated Arabidopsis plantlets, respectively. Cloning and sequencing analysis of eight randomly selected mutated fragments revealed 99-100% homology with the genes of VARICOSE-Related, SLEEPY1 F-box, 40S ribosomal protein S3, phosphoglucomutase, and noncoding regions in Arabidopsis genome correspondingly. The results show the ability of RAPD analysis to detect significant genetic alterations in Cd-exposed seedlings. Although the exact functional importance of the other mutated bands is unknown, the presence of mutated loci in Cd-treated seedlings, prior to the onset of significant physiological effects, suggests that these altered loci are the early events in Cd-treated Arabidopsis seedlings and would greatly improve environmental risk assessment.
Collapse
Affiliation(s)
- Wan Liu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Liu M, Qiao G, Jiang J, Yang H, Xie L, Xie J, Zhuo R. Transcriptome sequencing and de novo analysis for Ma bamboo (Dendrocalamus latiflorus Munro) using the Illumina platform. PLoS One 2012; 7:e46766. [PMID: 23056442 PMCID: PMC3463524 DOI: 10.1371/journal.pone.0046766] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 09/05/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Bamboo occupies an important phylogenetic node in the grass family with remarkable sizes, woodiness and a striking life history. However, limited genetic research has focused on bamboo partially because of the lack of genomic resources. The advent of high-throughput sequencing technologies enables generation of genomic resources in a short time and at a minimal cost, and therefore provides a turning point for bamboo research. In the present study, we performed de novo transcriptome sequencing for the first time to produce a comprehensive dataset for the Ma bamboo (Dendrocalamus latiflorus Munro). RESULTS The Ma bamboo transcriptome was sequenced using the Illumina paired-end sequencing technology. We produced 15,138,726 reads and assembled them into 103,354 scaffolds. A total of 68,229 unigenes were identified, among which 46,087 were annotated in the NCBI non-redundant protein database and 28,165 were annotated in the Swiss-Prot database. Of these annotated unigenes, 11,921 and 10,147 unigenes were assigned to gene ontology categories and clusters of orthologous groups, respectively. We could map 45,649 unigenes onto 292 pathways using the Kyoto Encyclopedia of Genes and Genomes Pathway database. The annotated unigenes were compared against Moso bamboo, rice and millet. Unigenes that did not match any of those three sequence datasets are considered to be Ma bamboo unique. We predicted 105 unigenes encoding eight key enzymes involved in lignin biosynthesis. In addition, 621 simple sequence repeats (SSRs) were detected. CONCLUSION Our data provide the most comprehensive transcriptomic resource currently available for D. latiflorus Munro. Candidate genes potentially involved in growth and development were identified, and those predicted to be unique to Ma bamboo are expected to give a better insight on Ma bamboo gene diversity. Numerous SSRs characterized contributed to marker development. These data constitute a new valuable resource for genomic studies on D. latiflorus Munro and, more generally, bamboo.
Collapse
Affiliation(s)
- Mingying Liu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, People’s Republic of China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, People’s Republic of China
| | - Guirong Qiao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, People’s Republic of China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, People’s Republic of China
| | - Jing Jiang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, People’s Republic of China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, People’s Republic of China
| | - Huiqin Yang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, People’s Republic of China
- College of Life Science and Technology, Xinjiang University, Urumqi, People’s Republic of China
| | - Lihua Xie
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, People’s Republic of China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, People’s Republic of China
| | - Jinzhong Xie
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, People’s Republic of China
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, People’s Republic of China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, People’s Republic of China
| |
Collapse
|
91
|
Hauvermale AL, Ariizumi T, Steber CM. Gibberellin signaling: a theme and variations on DELLA repression. PLANT PHYSIOLOGY 2012; 160:83-92. [PMID: 22843665 PMCID: PMC3440232 DOI: 10.1104/pp.112.200956] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 07/24/2012] [Indexed: 05/17/2023]
|
92
|
Claeys H, Skirycz A, Maleux K, Inzé D. DELLA signaling mediates stress-induced cell differentiation in Arabidopsis leaves through modulation of anaphase-promoting complex/cyclosome activity. PLANT PHYSIOLOGY 2012; 159:739-47. [PMID: 22535421 PMCID: PMC3375938 DOI: 10.1104/pp.112.195032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Drought is responsible for considerable yield losses in agriculture due to its detrimental effects on growth. Drought responses have been extensively studied, but mostly on the level of complete plants or mature tissues. However, stress responses were shown to be highly tissue and developmental stage specific, and dividing tissues have developed unique mechanisms to respond to stress. Previously, we studied the effects of osmotic stress on dividing leaf cells in Arabidopsis (Arabidopsis thaliana) and found that stress causes early mitotic exit, in which cells end their mitotic division and start endoreduplication earlier. In this study, we analyzed this phenomenon in more detail. Osmotic stress induces changes in gibberellin metabolism, resulting in the stabilization of DELLAs, which are responsible for mitotic exit and earlier onset of endoreduplication. Consequently, this response is absent in mutants with altered gibberellin levels or DELLA activity. Mitotic exit and onset of endoreduplication do not correlate with an up-regulation of known cell cycle inhibitors but are the result of reduced levels of DP-E2F-LIKE1/E2Fe and UV-B-INSENSITIVE4, both inhibitors of the developmental transition from mitosis to endoreduplication by modulating anaphase-promoting complex/cyclosome activity, which are down-regulated rapidly after DELLA stabilization. This work fits into an emerging view of DELLAs as regulators of cell division by regulating the transition to endoreduplication and differentiation.
Collapse
|
93
|
Shan X, Yan J, Xie D. Comparison of phytohormone signaling mechanisms. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:84-91. [PMID: 22001935 DOI: 10.1016/j.pbi.2011.09.006] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 09/15/2011] [Accepted: 09/20/2011] [Indexed: 05/31/2023]
Abstract
Plant hormones are crucial signaling molecules that coordinate all aspects of plant growth, development and defense. A great deal of attention has been attracted from biologists to study the molecular mechanisms for perception and signal transduction of plant hormones during the last two decades. Tremendous progress has been made in identifying receptors and key signaling components of plant hormones. The holistic picture of hormone signaling pathways is extremely complicated, this review will give a general overview of perception and signal transduction mechanisms of auxin, gibberellin, cytokinin, abscisic acid, ethylene, brassinosteroid, and jasmonate.
Collapse
Affiliation(s)
- Xiaoyi Shan
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | | | | |
Collapse
|
94
|
Schwechheimer C. Gibberellin signaling in plants - the extended version. FRONTIERS IN PLANT SCIENCE 2012; 2:107. [PMID: 22645560 PMCID: PMC3355746 DOI: 10.3389/fpls.2011.00107] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 12/13/2011] [Indexed: 05/23/2023]
Abstract
The plant hormone gibberellin (GA) controls major aspects of plant growth such as germination, elongation growth, flower development, and flowering time. In recent years, a number of studies have revealed less apparent roles for GA in a surprisingly broad set of developmental as well as cell biological processes. The identification of GA receptor proteins on the one end of the signaling cascade, DELLA proteins as central repressors of the pathway and transcription regulators such as the phytochrome interacting factors and the GATA-type transcription factors GNC and CGA1/GNL on the current other end of the signaling cascade have extended our knowledge about how GA and DELLAs regulate a diverse set of plant responses.
Collapse
Affiliation(s)
- Claus Schwechheimer
- Plant Systems Biology, Center for Life and Food Sciences Weihenstephan, Technische Universität MünchenFreising, Germany
| |
Collapse
|
95
|
Plackett ARG, Thomas SG, Wilson ZA, Hedden P. Gibberellin control of stamen development: a fertile field. TRENDS IN PLANT SCIENCE 2011; 16:568-78. [PMID: 21824801 DOI: 10.1016/j.tplants.2011.06.007] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 06/24/2011] [Accepted: 06/30/2011] [Indexed: 05/04/2023]
Abstract
Stamen development is governed by a conserved genetic pathway, within which the role of hormones has been the subject of considerable recent research. Our understanding of the involvement of gibberellin (GA) signalling in this developmental process is further advanced than for the other phytohormones, and here we review recent experimental results in rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana) that have provided insight into the timing and mechanisms of GA regulation of stamen development, identifying the tapetum and developing pollen as major targets. GA signalling governs both tapetum secretory functions and entry into programmed cell death via the GAMYB class of transcription factor, the targets of which integrate with the established genetic framework for the regulation of tapetum function at multiple hierarchical levels.
Collapse
|
96
|
Gao XH, Xiao SL, Yao QF, Wang YJ, Fu XD. An updated GA signaling 'relief of repression' regulatory model. MOLECULAR PLANT 2011; 4:601-6. [PMID: 21690205 DOI: 10.1093/mp/ssr046] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Gibberellic acid (GA) regulates many aspects of plant growth and development. The DELLA proteins act to restrain plant growth, and GA relieves this repression by promoting their degradation via the 26S proteasome pathway. The elucidation of the crystalline structure of the GA soluble receptor GID1 protein represents an important breakthrough for understanding the way in which GA is perceived and how it induces the destabilization of the DELLA proteins. Recent advances have revealed that the DELLA proteins are involved in protein-protein interactions within various environmental and hormone signaling pathways. In this review, we highlight our current understanding of the 'relief of repression' model that aims to explain the role of GA and the function of the DELLA proteins, incorporating the many aspects of cross-talk shown to exist in the control of plant development and the response to stress.
Collapse
Affiliation(s)
- Xiu-Hua Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | | | | | | | | |
Collapse
|
97
|
Ariizumi T, Steber CM. Mutations in the F-box gene SNEEZY result in decreased Arabidopsis GA signaling. PLANT SIGNALING & BEHAVIOR 2011; 6:831-3. [PMID: 21455025 PMCID: PMC3218480 DOI: 10.4161/psb.6.6.15164] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 02/15/2011] [Indexed: 05/19/2023]
Abstract
We previously reported that the SLEEPY1 (SLY1) homolog, F-box gene SNEEZY/SLEEPY2 (SNE/SLY2), can partly replace SLY1 in gibberellin (GA) hormone signaling through interaction with DELLAs RGA and GAI. To determine whether SNE normally functions in GA signaling, we characterized the phenotypes of two T-DNA alleles, sne-t2 and sne-t3. These mutations result in no apparent vegetative phenotypes, but do result in increased ABA sensitivity in seed germination. Double mutants sly1-t2 sne-t2 and sly1-t2 sne-t3 result in a significant decrease in plant fertility and final plant height compared to sly1-t2. The fact that sne mutations have an additive effect with sly1 suggests that SNE normally functions as a redundant positive regulator of GA signaling.
Collapse
Affiliation(s)
- Tohru Ariizumi
- USDA-ARS, Wheat Genetics; Quality Physiology and Disease Research Unit, Washington State University, Pullman, WA, USA
| | | |
Collapse
|
98
|
Sun TP. The Molecular Mechanism and Evolution of the GA–GID1–DELLA Signaling Module in Plants. Curr Biol 2011; 21:R338-45. [DOI: 10.1016/j.cub.2011.02.036] [Citation(s) in RCA: 375] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
99
|
Feurtado JA, Huang D, Wicki-Stordeur L, Hemstock LE, Potentier MS, Tsang EW, Cutler AJ. The Arabidopsis C2H2 zinc finger INDETERMINATE DOMAIN1/ENHYDROUS promotes the transition to germination by regulating light and hormonal signaling during seed maturation. THE PLANT CELL 2011; 23:1772-94. [PMID: 21571950 PMCID: PMC3123948 DOI: 10.1105/tpc.111.085134] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 03/15/2011] [Accepted: 04/25/2011] [Indexed: 05/20/2023]
Abstract
Seed development ends with a maturation phase that imparts desiccation tolerance, nutrient reserves, and dormancy degree. Here, we report the functional analysis of an Arabidopsis thaliana C2H2 zinc finger protein INDETERMINATE DOMAIN1 (IDD1)/ENHYDROUS (ENY). Ectopic expression of IDD1/ENY (2x35S:ENY) disrupted seed development, delaying endosperm depletion and testa senescence, resulting in an abbreviated maturation program. Consequently, mature 2x35S:ENY seeds had increased endosperm-specific fatty acids, starch retention, and defective mucilage extrusion. Using RAB18 promoter ENY lines (RAB18:ENY) to confine expression to maturation, when native ENY expression increased and peaked, resulted in mature seed with lower abscisic acid (ABA) content and decreased germination sensitivity to applied ABA. Furthermore, results of far-red and red light treatments of 2x35S:ENY and RAB18:ENY germinating seeds, and of artificial microRNA knockdown lines, suggest that ENY acts to promote germination. After using RAB18:ENY seedlings to induce ENY during ABA application, key genes in gibberellin (GA) metabolism and signaling were differentially regulated in a manner suggesting negative feedback regulation. Furthermore, GA treatment resulted in a skotomorphogenic-like phenotype in light-grown 2x35S:ENY and RAB18:ENY seedlings. The physical interaction of ENY with DELLAs and an ENY-triggered accumulation of DELLA transcripts during maturation support the conclusion that ENY mediates GA effects to balance ABA-promoted maturation during late seed development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Adrian J. Cutler
- Plant Biotechnology Institute, National Research Council Canada, Saskatoon, Saskatchewan, Canada S7N 0W9
| |
Collapse
|
100
|
Abstract
The posttranslational addition of ubiquitin (Ub) helps control the half-life, localization, and action of many intracellular plant proteins. A primary function is the degradation of ubiquitylated proteins by the 26S proteasome, which in turn plays important housekeeping and regulatory roles by removing aberrant polypeptides and various normal short-lived regulators. Strikingly, both genetic and genomic studies reveal that Ub conjugation is extraordinarily complex in plants, with more than 1500 Ub-protein ligases (or E3s) possible that could direct the final transfer of the Ub moiety to an equally large number of targets. The cullin-RING ligases (CRLs) are a highly polymorphic E3 collection composed of a cullin backbone onto which binds carriers of activated Ub and a diverse assortment of adaptors that recruit appropriate substrates for ubiquitylation. Here, we review our current understanding of the organization and structure of CRLs in plants and their dynamics, substrates, potential functions, and evolution. The importance of CRLs is exemplified by their ability to serve as sensors of hormones and light; their essential participation in various signaling pathways; their control of the cell cycle, transcription, the stress response, self-incompatibility, and pathogen defense; and their dramatically divergent evolutionary histories in many plant lineages. Given both their organizational complexities and their critical influences, CRLs likely impact most, if not all, aspects of plant biology.
Collapse
Affiliation(s)
- Zhihua Hua
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706-1574, USA.
| | | |
Collapse
|