51
|
Yamamoto T, Shomura S, Mino M. Cell physiology of mortality and immortality in a Nicotiana interspecific F 1 hybrid complies with the quantitative balance between reactive oxygen and nitric oxide. JOURNAL OF PLANT PHYSIOLOGY 2017; 210:72-83. [PMID: 28113127 DOI: 10.1016/j.jplph.2017.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 01/06/2017] [Accepted: 01/06/2017] [Indexed: 06/06/2023]
Abstract
The cultured cell line, GTH4, of an interspecific F1 hybrid between Nicotiana gossei Domin and N. tabacum L. died after a shift in temperature from 37°C to 26°C. Fluctuations in the cellular amounts of reactive oxygen species (ROS) and nitric oxide (NO) were detected in GTH4 after the temperature shift, but not in the mutant, GTH4S, which did not die at 26°C presumably due to the lack of genetic factors involved in cell death. The removal of ROS or NO suppressed cell death in GTH4, suggesting that ROS and NO both acted as mediators of cell death. However, excess amounts of the superoxide anion (O2-) or NO alleviated cell death. A series of experiments using generators and scavengers of ROS and NO showed that O2- affected the cellular levels of NO, and vice versa, indicating that a quantitative balance between O2- and NO was important for hybrid cell death. The combination of NO and hydrogen peroxide (H2O2) was necessary and sufficient to initiate cell death in GTH4 and GTH4S. Hypoxia, which suppressed cell death in GTH4 at 26°C, reduced the generation of H2O2 and NO, but allowed for the production of O2-, which acted as a suppressor and/or modulator of cell death. The activation of MAPK was involved in the generation of H2O2 in GTG4 cells under normoxic conditions, but promoted O2- generation under hypoxic conditions. More protective cellular conditions against ROS, as estimated by the expression levels of genes for ROS-scavenging enzymes, may be involved in the mechanisms responsible for the low cell death rate of GTH4 under hypoxic conditions.
Collapse
Affiliation(s)
- Takumi Yamamoto
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Sachiko Shomura
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Masanobu Mino
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan.
| |
Collapse
|
52
|
Li J, Cao L, Staiger CJ. Capping Protein Modulates Actin Remodeling in Response to Reactive Oxygen Species during Plant Innate Immunity. PLANT PHYSIOLOGY 2017; 173:1125-1136. [PMID: 27909046 PMCID: PMC5291016 DOI: 10.1104/pp.16.00992] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 11/30/2016] [Indexed: 05/06/2023]
Abstract
Plants perceive microbe-associated molecular patterns and damage-associated molecular patterns to activate innate immune signaling events, such as bursts of reactive oxygen species (ROS). The actin cytoskeleton remodels during the first 5 min of innate immune signaling in Arabidopsis (Arabidopsis thaliana) epidermal cells; however, the immune signals that impinge on actin cytoskeleton and its response regulators remain largely unknown. Here, we demonstrate that rapid actin remodeling upon elicitation with diverse microbe-associated molecular patterns and damage-associated molecular patterns represent a conserved plant immune response. Actin remodeling requires ROS generated by the defense-associated NADPH oxidase, RBOHD. Moreover, perception of flg22 by its cognate receptor complex triggers actin remodeling through the activation of RBOHD-dependent ROS production. Our genetic studies reveal that the ubiquitous heterodimeric capping protein transduces ROS signaling to the actin cytoskeleton during innate immunity. Additionally, we uncover a negative feedback loop between actin remodeling and flg22-induced ROS production.
Collapse
Affiliation(s)
- Jiejie Li
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-2064 (J.L., L.C., C.J.S.); and
- The Bindley Bioscience Center and Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907 (C.J.S.)
| | - Lingyan Cao
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-2064 (J.L., L.C., C.J.S.); and
- The Bindley Bioscience Center and Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907 (C.J.S.)
| | - Christopher J Staiger
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-2064 (J.L., L.C., C.J.S.); and
- The Bindley Bioscience Center and Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907 (C.J.S.)
| |
Collapse
|
53
|
Liu Y, He C. A review of redox signaling and the control of MAP kinase pathway in plants. Redox Biol 2016; 11:192-204. [PMID: 27984790 PMCID: PMC5157795 DOI: 10.1016/j.redox.2016.12.009] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/08/2016] [Indexed: 02/02/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades are evolutionarily conserved modules among eukaryotic species that range from yeast, plants, flies to mammals. In eukaryotic cells, reactive oxygen species (ROS) has both physiological and toxic effects. Both MAPK cascades and ROS signaling are involved in plant response to various biotic and abiotic stresses. It has been observed that not only can ROS induce MAPK activation, but also that disturbing MAPK cascades can modulate ROS production and responses. This review will discuss the potential mechanisms by which ROS may activate and/or regulate MAPK cascades in plants. The role of MAPK cascades and ROS signaling in regulating gene expression, stomatal function, and programmed cell death (PCD) is also discussed. In addition, the relationship between Rboh-dependent ROS production and MAPK activation in PAMP-triggered immunity will be reviewed.
Collapse
Affiliation(s)
- Yukun Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, College of Forestry, Southwest Forestry University, 300 Bailong Si, Kunming 650224, Yunnan, People's Republic of China; Key Laboratory for Forest Genetic and Tree Improvement & Propagation in Universities of Yunnan Province, College of Forestry, Southwest Forestry University, 300 Bailong Si, Kunming 650224, Yunnan, People's Republic of China.
| | - Chengzhong He
- Key Laboratory for Forest Genetic and Tree Improvement & Propagation in Universities of Yunnan Province, College of Forestry, Southwest Forestry University, 300 Bailong Si, Kunming 650224, Yunnan, People's Republic of China
| |
Collapse
|
54
|
Ueno N, Nihei S, Miyakawa N, Hirasawa T, Kanekatsu M, Marubashi W, van Doorn WG, Yamada T. Time course of programmed cell death, which included autophagic features, in hybrid tobacco cells expressing hybrid lethality. PLANT CELL REPORTS 2016; 35:2475-2488. [PMID: 27585575 DOI: 10.1007/s00299-016-2048-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/27/2016] [Indexed: 06/06/2023]
Abstract
KEY MESSAGE PCD with features of vacuolar cell death including autophagy-related features were detected in hybrid tobacco cells, and detailed time course of features of vacuolar cell death were established. A type of interspecific Nicotiana hybrid, Nicotiana suaveolens × N. tabacum exhibits temperature-sensitive lethality. This lethality results from programmed cell death (PCD) in hybrid seedlings, but this PCD occurs only in seedlings and suspension-cultured cells grown at 28 °C, not those grown at 36 °C. Plant PCD can be classified as vacuolar cell death or necrotic cell death. Induction of autophagy, vacuolar membrane collapse and actin disorganization are each known features of vacuolar cell death, but observed cases of PCD showing all these features simultaneously are rare. In this study, these features of vacuolar cell death were evident in hybrid tobacco cells expressing hybrid lethality. Ion leakage, plasma membrane disruption, increased activity of vacuolar processing enzyme, vacuolar membrane collapse, and formation of punctate F-actin foci were each evident in these cells. Transmission electron microscopy revealed that macroautophagic structures formed and tonoplasts ruptured in these cells. The number of cells that contained monodansylcadaverine (MDC)-stained structures and the abundance of nine autophagy-related gene transcripts increased just before cell death at 28 °C; these features were not evident at 36 °C. We assessed whether an autophagic inhibitor, wortmannin (WM), influenced lethality in hybrid cells. After the hybrid cell began to die, WM suppressed increases in ion leakage and cell deaths, and it decreased the number of cells containing MDC-stained structures. These results showed that several features indicative of autophagy and vacuolar cell death were evident in the hybrid tobacco cells subject to lethality. In addition, we documented a detailed time course of these vacuolar cell death features.
Collapse
Affiliation(s)
- Naoya Ueno
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Saori Nihei
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Naoto Miyakawa
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Tadashi Hirasawa
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Global Innovation Research Organization, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Motoki Kanekatsu
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Wataru Marubashi
- Faculty of Agricultural Science, Meiji University, Kanagawa, Japan
| | - Wouter G van Doorn
- Mann Laboratory, Department of Plant Sciences, University of California, Davis, CA, USA
- Global Innovation Research Organization, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Tetsuya Yamada
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan.
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan.
- Global Innovation Research Organization, Tokyo University of Agriculture and Technology, Tokyo, Japan.
| |
Collapse
|
55
|
Ortega-Villasante C, Burén S, Barón-Sola Á, Martínez F, Hernández LE. In vivo ROS and redox potential fluorescent detection in plants: Present approaches and future perspectives. Methods 2016; 109:92-104. [DOI: 10.1016/j.ymeth.2016.07.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 11/16/2022] Open
|
56
|
Bircheneder S, Dresselhaus T. Why cellular communication during plant reproduction is particularly mediated by CRP signalling. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4849-61. [PMID: 27382112 DOI: 10.1093/jxb/erw271] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Secreted cysteine-rich peptides (CRPs) represent one of the main classes of signalling peptides in plants. Whereas post-translationally modified small non-CRP peptides (psNCRPs) are mostly involved in signalling events during vegetative development and interactions with the environment, CRPs are overrepresented in reproductive processes including pollen germination and growth, self-incompatibility, gamete activation and fusion as well as seed development. In this opinion paper we compare the involvement of both types of peptides in vegetative and reproductive phases of the plant lifecycle. Besides their conserved cysteine pattern defining structural features, CRPs exhibit hypervariable primary sequences and a rapid evolution rate. As a result, CRPs represent a pool of highly polymorphic signalling peptides involved in species-specific functions during reproduction and thus likely represent key players to trigger speciation in plants by supporting reproductive isolation. In contrast, precursers of psNCRPs are proteolytically processed into small functional domains with high sequence conservation and act in more general processes. We discuss parallels in downstream processes of CRP signalling in both reproduction and defence against pathogenic fungi and alien pollen tubes, with special emphasis on the role of ROS and ion channels. In conclusion we suggest that CRP signalling during reproduction in plants has evolved from ancient defence mechanisms.
Collapse
Affiliation(s)
- Susanne Bircheneder
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, 93053 Regensburg, Germany
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
57
|
Gao XQ, Liu CZ, Li DD, Zhao TT, Li F, Jia XN, Zhao XY, Zhang XS. The Arabidopsis KINβγ Subunit of the SnRK1 Complex Regulates Pollen Hydration on the Stigma by Mediating the Level of Reactive Oxygen Species in Pollen. PLoS Genet 2016; 12:e1006228. [PMID: 27472382 PMCID: PMC4966946 DOI: 10.1371/journal.pgen.1006228] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 07/08/2016] [Indexed: 12/25/2022] Open
Abstract
Pollen–stigma interactions are essential for pollen germination. The highly regulated process of pollen germination includes pollen adhesion, hydration, and germination on the stigma. However, the internal signaling of pollen that regulates pollen–stigma interactions is poorly understood. KINβγ is a plant-specific subunit of the SNF1-related protein kinase 1 complex which plays important roles in the regulation of plant development. Here, we showed that KINβγ was a cytoplasm- and nucleus-localized protein in the vegetative cells of pollen grains in Arabidopsis. The pollen of the Arabidopsis kinβγ mutant could not germinate on stigma, although it germinated normally in vitro. Further analysis revealed the hydration of kinβγ mutant pollen on the stigma was compromised. However, adding water to the stigma promoted the germination of the mutant pollen in vivo, suggesting that the compromised hydration of the mutant pollen led to its defective germination. In kinβγ mutant pollen, the structure of the mitochondria and peroxisomes was destroyed, and their numbers were significantly reduced compared with those in the wild type. Furthermore, we found that the kinβγ mutant exhibited reduced levels of reactive oxygen species (ROS) in pollen. The addition of H2O2in vitro partially compensated for the reduced water absorption of the mutant pollen, and reducing ROS levels in pollen by overexpressing Arabidopsis CATALASE 3 resulted in compromised hydration of pollen on the stigma. These results indicate that Arabidopsis KINβγ is critical for the regulation of ROS levels by mediating the biogenesis of mitochondria and peroxisomes in pollen, which is required for pollen–stigma interactions during pollination. After landing on the stigma, pollen grains germinate and create pollen tubes following adhesion and hydration processes, during which pollen–stigma interactions determine whether the pollen grains can germinate on the stigma. In recent years, the interaction mechanisms between the pollen and stigma have been studied extensively at the cellular and molecular level in self-incompatibility systems. However, few studies have focused on pollen–stigma interactions during self-compatible pollination. Arabidopsis thaliana provides an excellent system to study the interaction mechanisms between the pollen and stigma during self-compatible pollination. KINβγ is a plant-specific subunit of the SNF1-related protein kinase 1 complex. In this study, we identified an Arabidopsis kinβγ mutant showing defective pollen germination on the surface of the stigma but not on the culture medium, which resulted from the compromised hydration of pollen on the stigma. Further analysis revealed that the biogenesis of mitochondria and peroxisomes was impaired in this mutant, which reduced the levels of reactive oxygen species (ROS) in pollen. Application of H2O2 recovered the capability of pollen to undergo hydration in vitro. These results suggest that ROS signaling is involved in the regulation of pollen–stigma interactions during pollination. This study provides new insights into the mechanism underlying pollen–stigma interactions in self-compatible plant species.
Collapse
Affiliation(s)
- Xin-Qi Gao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Chang Zhen Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Dan Dan Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Ting Ting Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Fei Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Xiao Na Jia
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Xin-Ying Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Xian Sheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
- * E-mail:
| |
Collapse
|
58
|
Zhang CC, Wang LY, Wei K, Wu LY, Li HL, Zhang F, Cheng H, Ni DJ. Transcriptome analysis reveals self-incompatibility in the tea plant (Camellia sinensis) might be under gametophytic control. BMC Genomics 2016; 17:359. [PMID: 27183979 PMCID: PMC4869358 DOI: 10.1186/s12864-016-2703-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 05/06/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Self-incompatibility (SI) is under genetic control and prevents inbreeding depression in angiosperms. SI mechanisms are quite complicated and still poorly understood in many plants. Tea (Camellia sinensis L.) belonging to the family of Theaceae, exhibits high levels of SI and high heterozygosity. Uncovering the molecular basis of SI of the tea plant may enhance breeding and simplify genomics research for the whole family. RESULTS The growth of pollen tubes following selfing and crossing was observed using fluorescence microscopy. Self-pollen tubes grew slower than cross treatments from 24 h to 72 h after pollination. RNA-seq was employed to explore the molecular mechanisms of SI and to identify SI-related genes in C. sinensis. Self and cross-pollinated styles were collected at 24 h, 48 h and 72 h after pollination. Six RNA-seq libraries (SP24, SP48, SP72, CP24 CP48 and CP72; SP = self-pollinated, CP = cross-pollinated) were constructed and separately sequenced. In total, 299.327 million raw reads were generated. Following assembly, 63,762 unigenes were identified, and 27,264 (42.76 %) unigenes were annotated in five public databases: NR, KOG, KEGG, Swiss-Port and GO. To identify SI-related genes, the fragments per kb per million mapped reads (FPKM) values of each unigene were evaluated. Comparisons of CP24 vs. SP24, CP48 vs. SP48 and CP72 vs. SP72 revealed differential expression of 3,182, 3,575 and 3,709 genes, respectively. Consequently, several ubiquitin-mediated proteolysis, Ca(2+) signaling, apoptosis and defense-associated genes were obtained. The temporal expression pattern of genes following CP and SP was analyzed; 6 peroxidase, 1 polyphenol oxidase and 7 salicylic acid biosynthetic process-related genes were identified. The RNA-seq data were validated by qRT-PCR of 15 unigenes. Finally, a unigene (CL25983Contig1) with strong homology to the S-RNase was analyzed. It was mainly expressed in styles, with dramatically higher expression in self-pollinated versus cross-pollinated tissues at 24 h post-pollination. CONCLUSIONS The present study reports the transcriptome of styles after cross- and self-pollination in tea and offers novel insights into the molecular mechanism behind SI in C. sinensis. We believe that this RNA-seq dataset will be useful for improvement in C. sinensis as well as other plants in the Theaceae family.
Collapse
Affiliation(s)
- Cheng-Cai Zhang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, 310008, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, Hubei Province, 430070, China
| | - Li-Yuan Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, 310008, China
| | - Kang Wei
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, 310008, China
| | - Li-Yun Wu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, 310008, China
| | - Hai-Lin Li
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, 310008, China
| | - Fen Zhang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, 310008, China
| | - Hao Cheng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, 310008, China.
| | - De-Jiang Ni
- College of Horticulture and Forestry Science, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, Hubei Province, 430070, China.
| |
Collapse
|
59
|
Shevchenko G, Kordyum E. Organization of microfilaments in roots of water-terrestrial Sium latifolium (Apiaceae) and Alisma plantago-aquatica (Alismataceae) plants in the process of aerenchyma formation. UKRAINIAN BOTANICAL JOURNAL 2016. [DOI: 10.15407/ukrbotj73.02.185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
60
|
Wang W, Sheng X, Shu Z, Li D, Pan J, Ye X, Chang P, Li X, Wang Y. Combined Cytological and Transcriptomic Analysis Reveals a Nitric Oxide Signaling Pathway Involved in Cold-Inhibited Camellia sinensis Pollen Tube Growth. FRONTIERS IN PLANT SCIENCE 2016; 7:456. [PMID: 27148289 PMCID: PMC4830839 DOI: 10.3389/fpls.2016.00456] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/24/2016] [Indexed: 05/05/2023]
Abstract
Nitric oxide (NO) as a signaling molecule plays crucial roles in many abiotic stresses in plant development processes, including pollen tube growth. Here, the signaling networks dominated by NO during cold stress that inhibited Camellia sinensis pollen tube growth are investigated in vitro. Cytological analysis show that cold-induced NO is involved in the inhibition of pollen tube growth along with disruption of the cytoplasmic Ca(2+) gradient, increase in ROS content, acidification of cytoplasmic pH and abnormalities in organelle ultrastructure and cell wall component distribution in the pollen tube tip. Furthermore, differentially expressed genes (DEGs)-related to signaling pathway, such as NO synthesis, cGMP, Ca(2+), ROS, pH, actin, cell wall, and MAPK cascade signal pathways, are identified and quantified using transcriptomic analyses and qRT-PCR, which indicate a potential molecular mechanism for the above cytological results. Taken together, these findings suggest that a complex signaling network dominated by NO, including Ca(2+), ROS, pH, RACs signaling and the crosstalk among them, is stimulated in the C. sinensis pollen tube in response to cold stress, which further causes secondary and tertiary alterations, such as ultrastructural abnormalities in organelles and cell wall construction, ultimately resulting in perturbed pollen tube extension.
Collapse
Affiliation(s)
- Weidong Wang
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Xianyong Sheng
- College of Life Sciences, Capital Normal UniversityBeijing, China
| | - Zaifa Shu
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Dongqin Li
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Junting Pan
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Xiaoli Ye
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Pinpin Chang
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Xinghui Li
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Yuhua Wang
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| |
Collapse
|
61
|
Van Durme M, Nowack MK. Mechanisms of developmentally controlled cell death in plants. CURRENT OPINION IN PLANT BIOLOGY 2016; 29:29-37. [PMID: 26658336 DOI: 10.1016/j.pbi.2015.10.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/26/2015] [Accepted: 10/28/2015] [Indexed: 05/22/2023]
Abstract
During plant development various forms of programmed cell death (PCD) are implemented by a number of cell types as inherent part of their differentiation programmes. Differentiation-induced developmental PCD is gradually prepared in concert with the other cell differentiation processes. As precocious or delayed PCD can have detrimental consequences for plant development, the actual execution of PCD has to be tightly controlled. Once triggered, PCD is irrevocably and rapidly executed accompanied by the breakdown of cellular compartments. In most developmental PCD forms, cell death is followed by cell corpse clearance. Devoid of phagocytic mechanisms, dying plant cells have to prepare their own demise in a cell-autonomous fashion before their deaths, ensuring the completion of cell clearance post mortem. Depending on the cell type, cell clearance can be complete or rather selective, and persistent corpses of particular cells accomplish vital functions in the plant body. The present review attempts to give an update on the molecular mechanisms that coordinate differentiation-induced PCD as vital part of plant development.
Collapse
Affiliation(s)
- Matthias Van Durme
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Moritz K Nowack
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium.
| |
Collapse
|
62
|
Singh R, Singh S, Parihar P, Mishra RK, Tripathi DK, Singh VP, Chauhan DK, Prasad SM. Reactive Oxygen Species (ROS): Beneficial Companions of Plants' Developmental Processes. FRONTIERS IN PLANT SCIENCE 2016; 7:1299. [PMID: 27729914 PMCID: PMC5037240 DOI: 10.3389/fpls.2016.01299] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 08/15/2016] [Indexed: 05/20/2023]
Abstract
Reactive oxygen species (ROS) are generated inevitably in the redox reactions of plants, including respiration and photosynthesis. In earlier studies, ROS were considered as toxic by-products of aerobic pathways of the metabolism. But in recent years, concept about ROS has changed because they also participate in developmental processes of plants by acting as signaling molecules. In plants, ROS regulate many developmental processes such as cell proliferation and differentiation, programmed cell death, seed germination, gravitropism, root hair growth and pollen tube development, senescence, etc. Despite much progress, a comprehensive update of advances in the understanding of the mechanisms evoked by ROS that mediate in cell proliferation and development are fragmentry and the matter of ROS perception and the signaling cascade remains open. Therefore, keeping in view the above facts, an attempt has been made in this article to summarize the recent findings regarding updates made in the regulatory action of ROS at various plant developmental stages, which are still not well-known.
Collapse
Affiliation(s)
- Rachana Singh
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of AllahabadAllahabad, India
| | - Samiksha Singh
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of AllahabadAllahabad, India
| | - Parul Parihar
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of AllahabadAllahabad, India
| | - Rohit K. Mishra
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of AllahabadAllahabad, India
| | - Durgesh K. Tripathi
- DD Pant Interdisciplinary Research Laboratory, Department of Botany, University of AllahabadAllahabad, India
| | - Vijay P. Singh
- Government Ramanuj Pratap Singhdev Post Graduate CollegeBaikunthpur, India
- *Correspondence: Vijay P. Singh, Sheo M. Prasad,
| | - Devendra K. Chauhan
- DD Pant Interdisciplinary Research Laboratory, Department of Botany, University of AllahabadAllahabad, India
| | - Sheo M. Prasad
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of AllahabadAllahabad, India
- *Correspondence: Vijay P. Singh, Sheo M. Prasad,
| |
Collapse
|
63
|
Jiménez-Quesada MJ, Traverso JÁ, Alché JDD. NADPH Oxidase-Dependent Superoxide Production in Plant Reproductive Tissues. FRONTIERS IN PLANT SCIENCE 2016; 7:359. [PMID: 27066025 PMCID: PMC4815025 DOI: 10.3389/fpls.2016.00359] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 03/07/2016] [Indexed: 05/02/2023]
Abstract
In the life cycle of a flowering plant, the male gametophyte (pollen grain) produced in the anther reaches the stigmatic surface and initiates the pollen-pistil interaction, an important step in plant reproduction, which ultimately leads to the delivery of two sperm cells to the female gametophyte (embryo sac) inside the ovule. The pollen tube undergoes a strictly apical expansion characterized by a high growth rate, whose targeting should be tightly regulated. A continuous exchange of signals therefore takes place between the haploid pollen and diploid tissue of the pistil until fertilization. In compatible interactions, theses processes result in double fertilization to form a zygote (2n) and the triploid endosperm. Among the large number of signaling mechanisms involved, the redox network appears to be particularly important. Respiratory burst oxidase homologs (Rbohs) are superoxide-producing enzymes involved in a broad range of processes in plant physiology. In this study, we review the latest findings on understanding Rboh activity in sexual plant reproduction, with a particular focus on the male gametophyte from the anther development stages to the crowning point of fertilization. Rboh isoforms have been identified in both the male and female gametophyte and have proven to be tightly regulated. Their role at crucial points such as proper growth of pollen tube, self-incompatibility response and eventual fertilization is discussed.
Collapse
Affiliation(s)
- María J. Jiménez-Quesada
- Plant Reproductive Biology Laboratory, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC)Granada, Spain
| | - José Á. Traverso
- Department of Cell Biology, Faculty of Sciences, University of GranadaGranada, Spain
| | - Juan de Dios Alché
- Plant Reproductive Biology Laboratory, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC)Granada, Spain
- *Correspondence: Juan de Dios Alché,
| |
Collapse
|
64
|
Duan Q, Kita D, Johnson EA, Aggarwal M, Gates L, Wu HM, Cheung AY. Reactive oxygen species mediate pollen tube rupture to release sperm for fertilization in Arabidopsis. Nat Commun 2015; 5:3129. [PMID: 24451849 DOI: 10.1038/ncomms4129] [Citation(s) in RCA: 224] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 12/17/2013] [Indexed: 11/09/2022] Open
Abstract
In flowering plants, sperm are transported inside pollen tubes to the female gametophyte for fertilization. The female gametophyte induces rupture of the penetrating pollen tube, resulting in sperm release and rendering them available for fertilization. Here we utilize the Arabidopsis FERONIA (FER) receptor kinase mutants, whose female gametophytes fail to induce pollen tube rupture, to decipher the molecular mechanism of this critical male-female interactive step. We show that FER controls the production of high levels of reactive oxygen species at the entrance to the female gametophyte to induce pollen tube rupture and sperm release. Pollen tube growth assays in vitro and in the pistil demonstrate that hydroxyl free radicals are likely the most reactive oxygen molecules, and they induce pollen tube rupture in a Ca(2+)-dependent process involving Ca(2+) channel activation. Our results provide evidence for a RHO GTPase-based signalling mechanism to mediate sperm release for fertilization in plants.
Collapse
Affiliation(s)
- Qiaohong Duan
- 1] Department of Biochemistry and Molecular Biology, University of Massachusetts, 710N. Pleasant Street, Lederle Graduate Research Tower, Amherst, Massachusetts 01003, USA [2]
| | - Daniel Kita
- 1] Department of Biochemistry and Molecular Biology, University of Massachusetts, 710N. Pleasant Street, Lederle Graduate Research Tower, Amherst, Massachusetts 01003, USA [2] Molecular Cell Biology Program, University of Massachusetts, 710N. Pleasant Street, Lederle Graduate Research Tower, Amherst, Massachusetts 01003, USA [3] [4]
| | - Eric A Johnson
- 1] Department of Biochemistry and Molecular Biology, University of Massachusetts, 710N. Pleasant Street, Lederle Graduate Research Tower, Amherst, Massachusetts 01003, USA [2] Molecular Cell Biology Program, University of Massachusetts, 710N. Pleasant Street, Lederle Graduate Research Tower, Amherst, Massachusetts 01003, USA
| | - Mini Aggarwal
- 1] Department of Biochemistry and Molecular Biology, University of Massachusetts, 710N. Pleasant Street, Lederle Graduate Research Tower, Amherst, Massachusetts 01003, USA [2] Plant Biology Graduate Program, University of Massachusetts, 710N. Pleasant Street, Lederle Graduate Research Tower, Amherst, Massachusetts 01003, USA
| | - Laura Gates
- 1] Department of Biochemistry and Molecular Biology, University of Massachusetts, 710N. Pleasant Street, Lederle Graduate Research Tower, Amherst, Massachusetts 01003, USA [2]
| | - Hen-Ming Wu
- 1] Department of Biochemistry and Molecular Biology, University of Massachusetts, 710N. Pleasant Street, Lederle Graduate Research Tower, Amherst, Massachusetts 01003, USA [2] Molecular Cell Biology Program, University of Massachusetts, 710N. Pleasant Street, Lederle Graduate Research Tower, Amherst, Massachusetts 01003, USA
| | - Alice Y Cheung
- 1] Department of Biochemistry and Molecular Biology, University of Massachusetts, 710N. Pleasant Street, Lederle Graduate Research Tower, Amherst, Massachusetts 01003, USA [2] Molecular Cell Biology Program, University of Massachusetts, 710N. Pleasant Street, Lederle Graduate Research Tower, Amherst, Massachusetts 01003, USA [3] Plant Biology Graduate Program, University of Massachusetts, 710N. Pleasant Street, Lederle Graduate Research Tower, Amherst, Massachusetts 01003, USA
| |
Collapse
|
65
|
Serrano I, Romero-Puertas MC, Sandalio LM, Olmedilla A. The role of reactive oxygen species and nitric oxide in programmed cell death associated with self-incompatibility. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2869-76. [PMID: 25750430 DOI: 10.1093/jxb/erv083] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Successful sexual reproduction often relies on the ability of plants to recognize self- or genetically-related pollen and prevent pollen tube growth soon after germination in order to avoid self-fertilization. Angiosperms have developed different reproductive barriers, one of the most extended being self-incompatibility (SI). With SI, pistils are able to reject self or genetically-related pollen thus promoting genetic variability. There are basically two distinct systems of SI: gametophytic (GSI) and sporophytic (SSI) based on their different molecular and genetic control mechanisms. In both types of SI, programmed cell death (PCD) has been found to play an important role in the rejection of self-incompatible pollen. Although reactive oxygen species (ROS) were initially recognized as toxic metabolic products, in recent years, a new role for ROS has become apparent: the control and regulation of biological processes such as growth, development, response to biotic and abiotic environmental stimuli, and PCD. Together with ROS, nitric oxide (NO) has become recognized as a key regulator of PCD. PCD is an important mechanism for the controlled elimination of targeted cells in both animals and plants. The major focus of this review is to discuss how ROS and NO control male-female cross-talk during fertilization in order to trigger PCD in self-incompatible pollen, providing a highly effective way to prevent self-fertilization.
Collapse
Affiliation(s)
- Irene Serrano
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, E-18008 Granada, Spain
| | - María C Romero-Puertas
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, E-18008 Granada, Spain
| | - Luisa M Sandalio
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, E-18008 Granada, Spain
| | - Adela Olmedilla
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, E-18008 Granada, Spain
| |
Collapse
|
66
|
Domingos P, Prado AM, Wong A, Gehring C, Feijo JA. Nitric oxide: a multitasked signaling gas in plants. MOLECULAR PLANT 2015; 8:506-20. [PMID: 25680232 DOI: 10.1016/j.molp.2014.12.010] [Citation(s) in RCA: 256] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/11/2014] [Accepted: 12/14/2014] [Indexed: 05/20/2023]
Abstract
Nitric oxide (NO) is a gaseous reactive oxygen species (ROS) that has evolved as a signaling hormone in many physiological processes in animals. In plants it has been demonstrated to be a crucial regulator of development, acting as a signaling molecule present at each step of the plant life cycle. NO has also been implicated as a signal in biotic and abiotic responses of plants to the environment. Remarkably, despite this plethora of effects and functional relationships, the fundamental knowledge of NO production, sensing, and transduction in plants remains largely unknown or inadequately characterized. In this review we cover the current understanding of NO production, perception, and action in different physiological scenarios. We especially address the issues of enzymatic and chemical generation of NO in plants, NO sensing and downstream signaling, namely the putative cGMP and Ca(2+) pathways, ion-channel activity modulation, gene expression regulation, and the interface with other ROS, which can have a profound effect on both NO accumulation and function. We also focus on the importance of NO in cell-cell communication during developmental processes and sexual reproduction, namely in pollen tube guidance and embryo sac fertilization, pathogen defense, and responses to abiotic stress.
Collapse
Affiliation(s)
| | | | - Aloysius Wong
- Division of Biological and Environmental Sciences and Engineering, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Christoph Gehring
- Division of Biological and Environmental Sciences and Engineering, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jose A Feijo
- Instituto Gulbenkian de Ciência, P-2780-156 Oeiras, Portugal; Department of Cell Biology and Molecular Genetics, University of Maryland, 0118 BioScience Research Building, College Park, MD 20742-5815, USA.
| |
Collapse
|
67
|
Wilkins KA, Bosch M, Haque T, Teng N, Poulter NS, Franklin-Tong VE. Self-incompatibility-induced programmed cell death in field poppy pollen involves dramatic acidification of the incompatible pollen tube cytosol. PLANT PHYSIOLOGY 2015; 167:766-79. [PMID: 25630437 PMCID: PMC4347735 DOI: 10.1104/pp.114.252742] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/27/2015] [Indexed: 05/20/2023]
Abstract
Self-incompatibility (SI) is an important genetically controlled mechanism to prevent inbreeding in higher plants. SI involves highly specific interactions during pollination, resulting in the rejection of incompatible (self) pollen. Programmed cell death (PCD) is an important mechanism for destroying cells in a precisely regulated manner. SI in field poppy (Papaver rhoeas) triggers PCD in incompatible pollen. During SI-induced PCD, we previously observed a major acidification of the pollen cytosol. Here, we present measurements of temporal alterations in cytosolic pH ([pH]cyt); they were surprisingly rapid, reaching pH 6.4 within 10 min of SI induction and stabilizing by 60 min at pH 5.5. By manipulating the [pH]cyt of the pollen tubes in vivo, we show that [pH]cyt acidification is an integral and essential event for SI-induced PCD. Here, we provide evidence showing the physiological relevance of the cytosolic acidification and identify key targets of this major physiological alteration. A small drop in [pH]cyt inhibits the activity of a soluble inorganic pyrophosphatase required for pollen tube growth. We also show that [pH]cyt acidification is necessary and sufficient for triggering several key hallmark features of the SI PCD signaling pathway, notably activation of a DEVDase/caspase-3-like activity and formation of SI-induced punctate actin foci. Importantly, the actin binding proteins Cyclase-Associated Protein and Actin-Depolymerizing Factor are identified as key downstream targets. Thus, we have shown the biological relevance of an extreme but physiologically relevant alteration in [pH]cyt and its effect on several components in the context of SI-induced events and PCD.
Collapse
Affiliation(s)
- Katie A Wilkins
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Maurice Bosch
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Tamanna Haque
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Nianjun Teng
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Natalie S Poulter
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | | |
Collapse
|
68
|
Van Hautegem T, Waters AJ, Goodrich J, Nowack MK. Only in dying, life: programmed cell death during plant development. TRENDS IN PLANT SCIENCE 2015; 20:102-13. [PMID: 25457111 DOI: 10.1016/j.tplants.2014.10.003] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 09/26/2014] [Accepted: 10/03/2014] [Indexed: 05/21/2023]
Abstract
Programmed cell death (PCD) is a fundamental process of life. During the evolution of multicellular organisms, the actively controlled demise of cells has been recruited to fulfil a multitude of functions in development, differentiation, tissue homeostasis, and immune systems. In this review we discuss some of the multiple cases of PCD that occur as integral parts of plant development in a remarkable variety of cell types, tissues, and organs. Although research in the last decade has discovered a number of PCD regulators, mediators, and executers, we are still only beginning to understand the mechanistic complexity that tightly controls preparation, initiation, and execution of PCD as a process that is indispensable for successful vegetative and reproductive development of plants.
Collapse
Affiliation(s)
- Tom Van Hautegem
- Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Andrew J Waters
- Institute of Molecular Plant Sciences, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JH, UK
| | - Justin Goodrich
- Institute of Molecular Plant Sciences, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JH, UK
| | - Moritz K Nowack
- Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium.
| |
Collapse
|
69
|
Zhang F, Wang Z, Dong W, Sun C, Wang H, Song A, He L, Fang W, Chen F, Teng N. Transcriptomic and proteomic analysis reveals mechanisms of embryo abortion during chrysanthemum cross breeding. Sci Rep 2014; 4:6536. [PMID: 25288482 PMCID: PMC4187010 DOI: 10.1038/srep06536] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 08/26/2014] [Indexed: 12/25/2022] Open
Abstract
Embryo abortion is the main cause of failure in chrysanthemum cross breeding, and the genes and proteins associated with embryo abortion are poorly understood. Here, we applied RNA sequencing and isobaric tags for relative and absolute quantitation (iTRAQ) to analyse transcriptomic and proteomic profiles of normal and abortive embryos. More than 68,000 annotated unigenes and 700 proteins were obtained from normal and abortive embryos. Functional analysis showed that 140 differentially expressed genes (DEGs) and 41 differentially expressed proteins (DEPs) were involved in embryo abortion. Most DEGs and DEPs associated with cell death, protein degradation, reactive oxygen species scavenging, and stress-response transcriptional factors were significantly up-regulated in abortive embryos relative to normal embryos. In contrast, most genes and proteins related to cell division and expansion, the cytoskeleton, protein synthesis and energy metabolism were significantly down-regulated in abortive embryos. Furthermore, abortive embryos had the highest activity of three executioner caspase-like enzymes. These results indicate that embryo abortion may be related to programmed cell death and the senescence- or death-associated genes or proteins contribute to embryo abortion. This adds to our understanding of embryo abortion and will aid in the cross breeding of chrysanthemum and other crops in the future.
Collapse
Affiliation(s)
- Fengjiao Zhang
- 1] College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China [2] Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology &Equipment, Nanjing 210095, China
| | - Zhiquan Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wen Dong
- China Rural Technology Development Center, Beijing 100045, China
| | - Chunqing Sun
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Haibin Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Aiping Song
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Lizhong He
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Weimin Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fadi Chen
- 1] College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China [2] Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology &Equipment, Nanjing 210095, China
| | - Nianjun Teng
- 1] College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China [2] Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology &Equipment, Nanjing 210095, China
| |
Collapse
|
70
|
Rodríguez-Serrano M, Pazmiño DM, Sparkes I, Rochetti A, Hawes C, Romero-Puertas MC, Sandalio LM. 2,4-Dichlorophenoxyacetic acid promotes S-nitrosylation and oxidation of actin affecting cytoskeleton and peroxisomal dynamics. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4783-93. [PMID: 24913628 PMCID: PMC4144765 DOI: 10.1093/jxb/eru237] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
2,4-Dichlorophenoxyacetic acid (2,4-D) is a synthetic auxin used as a herbicide to control weeds in agriculture. A high concentration of 2,4-D promotes leaf epinasty and cell death. In this work, the molecular mechanisms involved in the toxicity of this herbicide are studied by analysing in Arabidopsis plants the accumulation of reactive oxygen species (ROS) and nitric oxide (NO), and their effect on cytoskeleton structure and peroxisome dynamics. 2,4-D (23 mM) promotes leaf epinasty, whereas this process was prevented by EDTA, which can reduce ·OH accumulation. The analysis of ROS accumulation by confocal microscopy showed a 2,4-D-dependent increase in both H2O2 and O2·(-), whereas total NO was not affected by the treatment. The herbicide promotes disturbances on the actin cytoskeleton structure as a result of post-translational modification of actin by oxidation and S-nitrosylation, which could disturb actin polymerization, as suggested by the reduction of the F-actin/G-actin ratio. These effects were reduced by EDTA, and the reduction of ROS production in Arabidopsis mutants deficient in xanthine dehydrogenase (Atxdh) gave rise to a reduction in actin oxidation. Also, 2,4-D alters the dynamics of the peroxisome, slowing the speed and shortening the distances by which these organelles are displaced. It is concluded that 2,4-D promotes oxidative and nitrosative stress, causing disturbances in the actin cytoskeleton, thereby affecting the dynamics of peroxisomes and some other organelles such as the mitochondria, with xanthine dehydrogenase being involved in ROS production under these conditions. These structural changes in turn appear to be responsible for the leaf epinasty.
Collapse
Affiliation(s)
- M Rodríguez-Serrano
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Apartado 419, 18080 Granada, Spain
| | - D M Pazmiño
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Apartado 419, 18080 Granada, Spain
| | - I Sparkes
- School of Biological & Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - A Rochetti
- School of Biological & Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - C Hawes
- School of Biological & Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - M C Romero-Puertas
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Apartado 419, 18080 Granada, Spain
| | - L M Sandalio
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Apartado 419, 18080 Granada, Spain
| |
Collapse
|
71
|
Mugnai S, Pandolfi C, Masi E, Azzarello E, Monetti E, Comparini D, Voigt B, Volkmann D, Mancuso S. Oxidative stress and NO signalling in the root apex as an early response to changes in gravity conditions. BIOMED RESEARCH INTERNATIONAL 2014; 2014:834134. [PMID: 25197662 PMCID: PMC4150467 DOI: 10.1155/2014/834134] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/16/2014] [Indexed: 01/02/2023]
Abstract
Oxygen influx showed an asymmetry in the transition zone of the root apex when roots were placed horizontally on ground. The influx increased only in the upper side, while no changes were detected in the division and in the elongation zone. Nitric oxide (NO) was also monitored after gravistimulation, revealing a sudden burst only in the transition zone. In order to confirm these results in real microgravity conditions, experiments have been set up by using parabolic flights and drop tower. The production of reactive oxygen species (ROS) was also monitored. Oxygen, NO, and ROS were continuously monitored during normal and hyper- and microgravity conditions in roots of maize seedlings. A distinct signal in oxygen and NO fluxes was clearly detected only in the apex zone during microgravity, with no significant changes in normal and in hypergravity conditions. The same results were obtained by ROS measurement. The detrimental effect of D'orenone, disrupting the polarised auxin transport, on the onset of the oxygen peaks during the microgravity period was also evaluated. Results indicates an active role of NO and ROS as messengers during the gravitropic response, with probable implications in the auxin redistribution.
Collapse
Affiliation(s)
- Sergio Mugnai
- DISPAA, University of Florence, Viale delle Idee 30, 50019 Sesto Fiorentino, Italy
- HSO-USB, ESTEC, European Space Agency, Keplerlaan 1, 2200 AG Noordwijk, The Netherlands
| | - Camilla Pandolfi
- DISPAA, University of Florence, Viale delle Idee 30, 50019 Sesto Fiorentino, Italy
| | - Elisa Masi
- DISPAA, University of Florence, Viale delle Idee 30, 50019 Sesto Fiorentino, Italy
| | - Elisa Azzarello
- DISPAA, University of Florence, Viale delle Idee 30, 50019 Sesto Fiorentino, Italy
| | - Emanuela Monetti
- DISPAA, University of Florence, Viale delle Idee 30, 50019 Sesto Fiorentino, Italy
| | - Diego Comparini
- DISPAA, University of Florence, Viale delle Idee 30, 50019 Sesto Fiorentino, Italy
| | - Boris Voigt
- IZMB, University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Dieter Volkmann
- IZMB, University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Stefano Mancuso
- DISPAA, University of Florence, Viale delle Idee 30, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
72
|
Serrazina S, Dias FV, Malhó R. Characterization of FAB1 phosphatidylinositol kinases in Arabidopsis pollen tube growth and fertilization. THE NEW PHYTOLOGIST 2014; 203:784-93. [PMID: 24807078 DOI: 10.1111/nph.12836] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/06/2014] [Indexed: 05/23/2023]
Abstract
In yeast and animal cells, phosphatidylinositol-3-monophosphate 5-kinases produce phosphatidylinositol (3,5)-bisphosphate (PtdIns(3,5)P2) and have been implicated in endomembrane trafficking and pH control in the vacuole. In plants, PtdIns(3,5)P2 is synthesized by the Fab1 family, four orthologs of which exist in Arabidopsis: FAB1A and FAB1B, both from the PIKfyve/Fab1 family; FAB1C and FAB1D, both without a PIKfyve domain and of unclear role. Using a reverse genetics and cell biology approach, we investigated the function of the Arabidopsis genes encoding FAB1B and FAB1D, both highly expressed in pollen. Pollen viability, germination and tube morphology were not significantly affected in homozygous mutant plants. In vivo, mutant pollen fertilized ovules leading to normal seeds and siliques. The same result was obtained when mutant ovules were fertilized with wild-type pollen. Double mutant pollen for the two genes was able to fertilize and develop plants no different from the wild-type. At the cellular level, fab1b and fab1d pollen tubes were found to exhibit perturbations in membrane recycling, vacuolar acidification and decreased production of reactive oxygen species (ROS). Subcellular imaging of FAB1B-GFP revealed that the protein localized to the endomembrane compartment, whereas FAB1D-GFP localized mostly to the cytosol and sperm cells. These results were discussed considering possible complementary roles of FAB1B and FAB1D.
Collapse
Affiliation(s)
- Susana Serrazina
- Faculdade de Ciências de Lisboa, BioFIG, Universidade de Lisboa, 1749-016, Lisbon, Portugal
| | | | | |
Collapse
|
73
|
Li X, Li JH, Wang W, Chen NZ, Ma TS, Xi YN, Zhang XL, Lin HF, Bai Y, Huang SJ, Chen YL. ARP2/3 complex-mediated actin dynamics is required for hydrogen peroxide-induced stomatal closure in Arabidopsis. PLANT, CELL & ENVIRONMENT 2014; 37:1548-60. [PMID: 24372484 DOI: 10.1111/pce.12259] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 11/21/2013] [Accepted: 12/08/2013] [Indexed: 05/03/2023]
Abstract
Multiple cellular events like dynamic actin reorganization and hydrogen peroxide (H(2)O(2)) production were demonstrated to be involved in abscisic acid (ABA)-induced stomatal closure. However, the relationship between them as well as the underlying mechanisms remains poorly understood. Here, we showed that H(2)O(2) generation is indispensable for ABA induction of actin reorganization in guard cells of Arabidopsis that requires the presence of ARP2/3 complex. H(2)O(2) -induced stomatal closure was delayed in the mutants of arpc4 and arpc5, and the rate of actin reorganization was slowed down in arpc4 and arpc5 in response to H(2)O(2), suggesting that ARP2/3-mediated actin nucleation is required for H(2)O(2) -induced actin cytoskeleton remodelling. Furthermore, the expression of H(2)O(2) biosynthetic related gene AtrbohD and the accumulation of H(2)O(2) was delayed in response to ABA in arpc4 and arpc5, demonstrating that misregulated actin dynamics affects H(2)O(2) production upon ABA treatment. These results support a possible causal relation between the production of H(2)O(2) and actin dynamics in ABA-mediated guard cell signalling: ABA triggers H(2)O(2) generation that causes the reorganization of the actin cytoskeleton partially mediated by ARP2/3 complex, and ARP2/3 complex-mediated actin dynamics may feedback regulate H(2)O(2) production.
Collapse
Affiliation(s)
- Xin Li
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China; Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Xie Y, Mao Y, Zhang W, Lai D, Wang Q, Shen W. Reactive Oxygen Species-Dependent Nitric Oxide Production Contributes to Hydrogen-Promoted Stomatal Closure in Arabidopsis. PLANT PHYSIOLOGY 2014; 165:759-773. [PMID: 24733882 PMCID: PMC4044830 DOI: 10.1104/pp.114.237925] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 04/12/2014] [Indexed: 05/20/2023]
Abstract
The signaling role of hydrogen gas (H2) has attracted increasing attention from animals to plants. However, the physiological significance and molecular mechanism of H2 in drought tolerance are still largely unexplored. In this article, we report that abscisic acid (ABA) induced stomatal closure in Arabidopsis (Arabidopsis thaliana) by triggering intracellular signaling events involving H2, reactive oxygen species (ROS), nitric oxide (NO), and the guard cell outward-rectifying K+ channel (GORK). ABA elicited a rapid and sustained H2 release and production in Arabidopsis. Exogenous hydrogen-rich water (HRW) effectively led to an increase of intracellular H2 production, a reduction in the stomatal aperture, and enhanced drought tolerance. Subsequent results revealed that HRW stimulated significant inductions of NO and ROS synthesis associated with stomatal closure in the wild type, which were individually abolished in the nitric reductase mutant nitrate reductase1/2 (nia1/2) or the NADPH oxidase-deficient mutant rbohF (for respiratory burst oxidase homolog). Furthermore, we demonstrate that the HRW-promoted NO generation is dependent on ROS production. The rbohF mutant had impaired NO synthesis and stomatal closure in response to HRW, while these changes were rescued by exogenous application of NO. In addition, both HRW and hydrogen peroxide failed to induce NO production or stomatal closure in the nia1/2 mutant, while HRW-promoted ROS accumulation was not impaired. In the GORK-null mutant, stomatal closure induced by ABA, HRW, NO, or hydrogen peroxide was partially suppressed. Together, these results define a main branch of H2-regulated stomatal movement involved in the ABA signaling cascade in which RbohF-dependent ROS and nitric reductase-associated NO production, and subsequent GORK activation, were causally involved.
Collapse
Affiliation(s)
- Yanjie Xie
- College of Life Sciences (Y.X., Y.M., W.Z., D.L., W.S.) and Laboratory Center of Life Sciences (Q.W.), Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Mao
- College of Life Sciences (Y.X., Y.M., W.Z., D.L., W.S.) and Laboratory Center of Life Sciences (Q.W.), Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Zhang
- College of Life Sciences (Y.X., Y.M., W.Z., D.L., W.S.) and Laboratory Center of Life Sciences (Q.W.), Nanjing Agricultural University, Nanjing 210095, China
| | - Diwen Lai
- College of Life Sciences (Y.X., Y.M., W.Z., D.L., W.S.) and Laboratory Center of Life Sciences (Q.W.), Nanjing Agricultural University, Nanjing 210095, China
| | - Qingya Wang
- College of Life Sciences (Y.X., Y.M., W.Z., D.L., W.S.) and Laboratory Center of Life Sciences (Q.W.), Nanjing Agricultural University, Nanjing 210095, China
| | - Wenbiao Shen
- College of Life Sciences (Y.X., Y.M., W.Z., D.L., W.S.) and Laboratory Center of Life Sciences (Q.W.), Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
75
|
Adamakis IDS, Panteris E, Eleftheriou EP. The nitrate reductase inhibitor, tungsten, disrupts actin microfilaments in Zea mays L. PROTOPLASMA 2014; 251:567-574. [PMID: 24091895 DOI: 10.1007/s00709-013-0556-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 09/22/2013] [Indexed: 06/02/2023]
Abstract
Tungsten is a widely used inhibitor of nitrate reductase, applied to diminish the nitric oxide levels in plants. It was recently shown that tungsten also has heavy metal attributes. Since information about the toxic effects of tungsten on actin is limited, and considering that actin microfilaments are involved in the entry of tungsten inside plant cells, the effects of tungsten on them were studied in Zea mays seedlings. Treatments with sodium tungstate for 3, 6, 12 or 24 h were performed on intact seedlings and seedlings with truncated roots. Afterwards, actin microfilaments in meristematic root and leaf tissues were stained with fluorescent phalloidin, and the specimens were examined by confocal laser scanning microscopy. While the actin microfilament network was well organized in untreated seedlings, in tungstate-treated ones it was disrupted in a time-dependent manner. In protodermal root cells, the effects of tungsten were stronger as cortical microfilaments were almost completely depolymerized and the intracellular ones appeared highly bundled. Fluorescence intensity measurements confirmed the above results. In the meristematic leaf tissue of intact seedlings, no depolymerization of actin microfilaments was noticed. However, when root tips were severed prior to tungstate application, both cortical and endoplasmic actin networks of leaf cells were disrupted and bundled after 24 h of treatment. The differential response of root and leaf tissues to tungsten toxicity may be due to differential penetration and absorption, while the effects on actin microfilaments could not be attributed to the nitric oxide depletion by tungsten.
Collapse
|
76
|
Wang L, Guo Y, Jia L, Chu H, Zhou S, Chen K, Wu D, Zhao L. Hydrogen peroxide acts upstream of nitric oxide in the heat shock pathway in Arabidopsis seedlings. PLANT PHYSIOLOGY 2014; 164:2184-96. [PMID: 24510762 PMCID: PMC3982771 DOI: 10.1104/pp.113.229369] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 02/04/2014] [Indexed: 05/18/2023]
Abstract
We previously reported that nitric oxide (NO) functions as a signal in thermotolerance. To illustrate its relationship with hydrogen peroxide (H₂O₂) in the tolerance of Arabidopsis (Arabidopsis thaliana) to heat shock (HS), we investigated the effects of heat on Arabidopsis seedlings of the following types: the wild type; three NADPH oxidase-defective mutants that exhibit reduced endogenous H₂O₂ levels (atrbohB, atrbohD, and atrbohB/D); and a mutant that is resistant to inhibition by fosmidomycin (noa1, for nitric oxide-associated protein1). After HS, the NO levels in atrbohB, atrbohD, and atrbohB/D seedlings were lower than that in wild-type seedlings. Treatment of the seedlings with sodium nitroprusside or S-nitroso-N-acetylpenicillamine partially rescued their heat sensitivity, suggesting that NO is involved in H₂O₂ signaling as a downstream factor. This point was verified by phenotypic analyses and thermotolerance testing of transgenic seedlings that overexpressed Nitrate reductase2 and NOA1, respectively, in an atrbohB/D background. Electrophoretic mobility shift assays, western blotting, and real-time reverse transcription-polymerase chain reaction demonstrated that NO stimulated the DNA-binding activity of HS factors and the accumulation of HS proteins through H₂O₂. These data indicate that H₂O₂ acts upstream of NO in thermotolerance, which requires increased HS factor DNA-binding activity and HS protein accumulation.
Collapse
Affiliation(s)
| | | | - Lixiu Jia
- Institute of Molecular Cell Biology, School of Life Sciences, and Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang 050024, China (L.W., Y.G., L.J., H.C., S.Z., D.W., L.Z.); and
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest Agriculture and Forestry University, Yangling 712100, China (K.C.)
| | - Hongye Chu
- Institute of Molecular Cell Biology, School of Life Sciences, and Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang 050024, China (L.W., Y.G., L.J., H.C., S.Z., D.W., L.Z.); and
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest Agriculture and Forestry University, Yangling 712100, China (K.C.)
| | - Shuo Zhou
- Institute of Molecular Cell Biology, School of Life Sciences, and Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang 050024, China (L.W., Y.G., L.J., H.C., S.Z., D.W., L.Z.); and
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest Agriculture and Forestry University, Yangling 712100, China (K.C.)
| | - Kunming Chen
- Institute of Molecular Cell Biology, School of Life Sciences, and Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang 050024, China (L.W., Y.G., L.J., H.C., S.Z., D.W., L.Z.); and
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest Agriculture and Forestry University, Yangling 712100, China (K.C.)
| | - Dan Wu
- Institute of Molecular Cell Biology, School of Life Sciences, and Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang 050024, China (L.W., Y.G., L.J., H.C., S.Z., D.W., L.Z.); and
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest Agriculture and Forestry University, Yangling 712100, China (K.C.)
| | | |
Collapse
|
77
|
Self-incompatibility in Papaver: advances in integrating the signalling network. Biochem Soc Trans 2014; 42:370-6. [DOI: 10.1042/bst20130248] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Self-fertilization, which results in reduced fitness of offspring, is a common problem in hermaphrodite angiosperms. To prevent this, many plants utilize SI (self-incompatibility), which is determined by the multi-allelic S-locus, that allows discrimination between self (incompatible) and non-self (compatible) pollen by the pistil. In poppy (Papaver rhoeas), the pistil S-determinant (PrsS) is a small secreted protein which interacts with the pollen S-determinant PrpS, a ~20 kDa novel transmembrane protein. Interaction of matching pollen and pistil S-determinants results in self-recognition, initiating a Ca2+-dependent signalling network in incompatible pollen. This triggers several downstream events, including alterations to the cytoskeleton, phosphorylation of sPPases (soluble inorganic pyrophosphatases) and an MAPK (mitogen-activated protein kinase), increases in ROS (reactive oxygen species) and nitric oxide (NO), and activation of several caspase-like activities. This results in the inhibition of pollen tube growth, prevention of self-fertilization and ultimately PCD (programmed cell death) in incompatible pollen. The present review focuses on our current understanding of the integration of these signals with their targets in the SI/PCD network. We also discuss our recent functional expression of PrpS in Arabidopsis thaliana pollen.
Collapse
|
78
|
Supergenes and their role in evolution. Heredity (Edinb) 2014; 113:1-8. [PMID: 24642887 DOI: 10.1038/hdy.2014.20] [Citation(s) in RCA: 222] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 11/08/2013] [Accepted: 01/23/2014] [Indexed: 02/03/2023] Open
Abstract
Adaptation is commonly a multidimensional problem, with changes in multiple traits required to match a complex environment. This is epitomized by balanced polymorphisms in which multiple phenotypes co-exist and are maintained in a population by a balance of selective forces. Consideration of such polymorphisms led to the concept of the supergene, where alternative phenotypes in a balanced polymorphism segregate as if controlled by a single genetic locus, resulting from tight genetic linkage between multiple functional loci. Recently, the molecular basis for several supergenes has been resolved. Thus, major chromosomal inversions have been shown to be associated with polymorphisms in butterflies, ants and birds, offering a mechanism for localised reduction in recombination. In several examples of plant self-incompatibility, the functional role of multiple elements within the supergene architecture has been demonstrated, conclusively showing that balanced polymorphism can be maintained at multiple coadapted and tightly linked elements. Despite recent criticism, we argue that the supergene concept remains relevant and is more testable than ever with modern molecular methods.
Collapse
|
79
|
Kaya H, Nakajima R, Iwano M, Kanaoka MM, Kimura S, Takeda S, Kawarazaki T, Senzaki E, Hamamura Y, Higashiyama T, Takayama S, Abe M, Kuchitsu K. Ca2+-activated reactive oxygen species production by Arabidopsis RbohH and RbohJ is essential for proper pollen tube tip growth. THE PLANT CELL 2014; 26:1069-80. [PMID: 24610725 PMCID: PMC4001369 DOI: 10.1105/tpc.113.120642] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 02/03/2014] [Accepted: 02/17/2014] [Indexed: 05/17/2023]
Abstract
In flowering plants, pollen germinates on the stigma and pollen tubes grow through the style to fertilize the ovules. Enzymatic production of reactive oxygen species (ROS) has been suggested to be involved in pollen tube tip growth. Here, we characterized the function and regulation of the NADPH oxidases RbohH and RbohJ (Respiratory burst oxidase homolog H and J) in pollen tubes in Arabidopsis thaliana. In the rbohH and rbohJ single mutants, pollen tube tip growth was comparable to that of the wild type; however, tip growth was severely impaired in the double mutant. In vivo imaging showed that ROS accumulation in the pollen tube was impaired in the double mutant. Both RbohH and RbohJ, which contain Ca(2+) binding EF-hand motifs, possessed Ca(2+)-induced ROS-producing activity and localized at the plasma membrane of the pollen tube tip. Point mutations in the EF-hand motifs impaired Ca(2+)-induced ROS production and complementation of the double mutant phenotype. We also showed that a protein phosphatase inhibitor enhanced the Ca(2+)-induced ROS-producing activity of RbohH and RbohJ, suggesting their synergistic activation by protein phosphorylation and Ca(2+). Our results suggest that ROS production by RbohH and RbohJ is essential for proper pollen tube tip growth, and furthermore, that Ca(2+)-induced ROS positive feedback regulation is conserved in the polarized cell growth to shape the long tubular cell.
Collapse
Affiliation(s)
- Hidetaka Kaya
- Department of Applied Biological Science, Tokyo
University of Science, Noda, Chiba 278-8510, Japan
- Department of Biological Science, Graduate School of
Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ryo Nakajima
- Department of Applied Biological Science, Tokyo
University of Science, Noda, Chiba 278-8510, Japan
| | - Megumi Iwano
- Graduate School of Biological Sciences, Nara Institute of
Science and Technology, Ikoma, Nara 630-0101, Japan
| | - Masahiro M. Kanaoka
- Division of Biological Science, Graduate School of
Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
- Institute of Transformative Bio-Molecules, Nagoya
University, Nagoya, Aichi 464-8602, Japan
| | - Sachie Kimura
- Department of Applied Biological Science, Tokyo
University of Science, Noda, Chiba 278-8510, Japan
| | - Seiji Takeda
- Graduate School of Life and Environmental Sciences, Kyoto
Prefectural University, Soraku-gun, Kyoto 619-0244, Japan
| | - Tomoko Kawarazaki
- Department of Applied Biological Science, Tokyo
University of Science, Noda, Chiba 278-8510, Japan
| | - Eriko Senzaki
- Department of Applied Biological Science, Tokyo
University of Science, Noda, Chiba 278-8510, Japan
| | - Yuki Hamamura
- Division of Biological Science, Graduate School of
Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Tetsuya Higashiyama
- Division of Biological Science, Graduate School of
Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
- Institute of Transformative Bio-Molecules, Nagoya
University, Nagoya, Aichi 464-8602, Japan
- JST, ERATO, Higashiyama Live-Holonics Project, Nagoya
University, Nagoya, Aichi 464-8602, Japan
| | - Seiji Takayama
- Graduate School of Biological Sciences, Nara Institute of
Science and Technology, Ikoma, Nara 630-0101, Japan
| | - Mitsutomo Abe
- Department of Biological Science, Graduate School of
Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazuyuki Kuchitsu
- Department of Applied Biological Science, Tokyo
University of Science, Noda, Chiba 278-8510, Japan
- Address correspondence to
| |
Collapse
|
80
|
Wilkins KA, Poulter NS, Franklin-Tong VE. Taking one for the team: self-recognition and cell suicide in pollen. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1331-42. [PMID: 24449385 DOI: 10.1093/jxb/ert468] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Self-incompatibility (SI) is an important genetically controlled mechanism used by many angiosperms to prevent self-fertilization and inbreeding. A multiallelic S-locus allows discrimination between 'self' (incompatible) pollen from 'nonself' pollen at the pistil. Interaction of matching pollen and pistil S-determinants allows 'self' recognition and triggers rejection of incompatible pollen. The S-determinants for Papaver rhoeas (poppy) are PrsS and PrpS. PrsS is a small secreted protein that acts as a signalling ligand to interact with its cognate pollen S-determinant PrpS, a small novel transmembrane protein. Interaction of PrsS with incompatible pollen stimulates increases in cytosolic free Ca(2+) and involves influx of Ca(2+) and K(+). Data implicate involvement of reactive oxygen species and nitric oxide signalling in the SI response. Downstream targets include the cytoskeleton, a soluble inorganic pyrophosphatase, Pr-p26.1, and a MAP kinase, PrMPK9-1. A major focus for SI-induced signalling is to initiate programmed cell death (PCD). In this review we provide an overview of our understanding of SI, with focus on how the signals and components are integrated, in particular, how reactive oxygen species, nitric oxide, and the actin cytoskeleton feed into a PCD network. We also discuss our recent functional expression of PrpS in Arabidopsis thaliana pollen in the context of understanding how PCD signalling systems may have evolved.
Collapse
Affiliation(s)
- Katie A Wilkins
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | | | | |
Collapse
|
81
|
Jiang X, Gao Y, Zhou H, Chen J, Wu J, Zhang S. Apoplastic calmodulin promotes self-incompatibility pollen tube growth by enhancing calcium influx and reactive oxygen species concentration in Pyrus pyrifolia. PLANT CELL REPORTS 2014; 33:255-63. [PMID: 24145911 DOI: 10.1007/s00299-013-1526-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 10/03/2013] [Accepted: 10/09/2013] [Indexed: 05/17/2023]
Abstract
Calmodulin (CaM) has been associated with various physiological and developmental processes in plants, including pollen tube growth. In this study, we showed that CaM regulated the pear pollen tube growth in a concentration-dependent bi-phasic response. Using a whole-cell patch-clamp configuration, we showed that apoplastic CaM induced a hyperpolarization-activated calcium ion (Ca²⁺) current, and anti-CaM largely inhibited this type of Ca²⁺ current. Moreover, upon anti-CaM treatment, the reactive oxygen species (ROS) concentration decreased and actin filaments depolymerized in the pollen tube. Interestingly, CaM could partially rescue the inhibition of self-incompatible pear pollen tube growth. This phenotype could be mediated by CaM-enhanced pollen plasma membrane Ca²⁺ current, tip-localized ROS concentration and stabilized actin filaments. These data indicated that Ca²⁺, ROS and actin filaments were involved with CaM in regulating pollen tube growth and provide a potential way for overcoming pear self-incompatibility.
Collapse
Affiliation(s)
- Xueting Jiang
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, No 6. Tongwei Road, Nanjing, 210095, China
| | | | | | | | | | | |
Collapse
|
82
|
Igamberdiev AU, Stasolla C, Hill RD. Low Oxygen Stress, Nonsymbiotic Hemoglobins, NO, and Programmed Cell Death. LOW-OXYGEN STRESS IN PLANTS 2014. [DOI: 10.1007/978-3-7091-1254-0_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
83
|
Rejón JD, Delalande F, Schaeffer-Reiss C, Carapito C, Zienkiewicz K, de Dios Alché J, Rodríguez-García MI, Van Dorsselaer A, Castro AJ. Proteomics profiling reveals novel proteins and functions of the plant stigma exudate. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:5695-705. [PMID: 24151302 PMCID: PMC3871823 DOI: 10.1093/jxb/ert345] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Proteomic analysis of the stigmatic exudate of Lilium longiflorum and Olea europaea led to the identification of 51 and 57 proteins, respectively, most of which are described for the first time in this secreted fluid. These results indicate that the stigmatic exudate is an extracellular environment metabolically active, participating in at least 80 different biological processes and 97 molecular functions. The stigma exudate showed a markedly catabolic profile and appeared to possess the enzyme machinery necessary to degrade large polysaccharides and lipids secreted by papillae to smaller units, allowing their incorporation into the pollen tube during pollination. It may also regulate pollen-tube growth in the pistil through the selective degradation of tube-wall components. Furthermore, some secreted proteins were involved in pollen-tube adhesion and orientation, as well as in programmed cell death of the papillae cells in response to either compatible pollination or incompatible pollen rejection. Finally, the results also revealed a putative cross-talk between genetic programmes regulating stress/defence and pollination responses in the stigma.
Collapse
Affiliation(s)
- Juan David Rejón
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín (C.S.I.C.), C/ Profesor Albareda 1,18008 Granada, Spain
- These authors contributed equally to this work
| | - François Delalande
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC-DSA, UdS, CNRS, UMR 7178, 25 rue Becquerel, 67087 Strasbourg, France
- These authors contributed equally to this work
| | - Christine Schaeffer-Reiss
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC-DSA, UdS, CNRS, UMR 7178, 25 rue Becquerel, 67087 Strasbourg, France
| | - Christine Carapito
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC-DSA, UdS, CNRS, UMR 7178, 25 rue Becquerel, 67087 Strasbourg, France
| | - Krzysztof Zienkiewicz
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín (C.S.I.C.), C/ Profesor Albareda 1,18008 Granada, Spain
- Department of Cell Biology, Institute of General and Molecular Biology, Nicolaus Copernicus University, Gargarina 9, 87–100 Toruń, Poland
| | - Juan de Dios Alché
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín (C.S.I.C.), C/ Profesor Albareda 1,18008 Granada, Spain
| | - María Isabel Rodríguez-García
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín (C.S.I.C.), C/ Profesor Albareda 1,18008 Granada, Spain
| | - Alain Van Dorsselaer
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC-DSA, UdS, CNRS, UMR 7178, 25 rue Becquerel, 67087 Strasbourg, France
| | - Antonio Jesús Castro
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín (C.S.I.C.), C/ Profesor Albareda 1,18008 Granada, Spain
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
84
|
Dresselhaus T, Franklin-Tong N. Male-female crosstalk during pollen germination, tube growth and guidance, and double fertilization. MOLECULAR PLANT 2013; 6:1018-36. [PMID: 23571489 DOI: 10.1093/mp/sst061] [Citation(s) in RCA: 212] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Sperm cells of flowering plants are non-motile and thus require transportation to the egg apparatus via the pollen tube to execute double fertilization. During its journey, the pollen tube interacts with various sporophytic cell types that support its growth and guide it towards the surface of the ovule. The final steps of tube guidance and sperm delivery are controlled by the cells of the female gametophyte. During fertilization, cell-cell communication events take place to achieve and maximize reproductive success. Additional layers of crosstalk exist, including self-recognition and specialized processes to prevent self-fertilization and consequent inbreeding. In this review, we focus on intercellular communication between the pollen grain/pollen tube including the sperm cells with the various sporophytic maternal tissues and the cells of the female gametophyte. Polymorphic-secreted peptides and small proteins, especially those belonging to various subclasses of small cysteine-rich proteins (CRPs), reactive oxygen species (ROS)/NO signaling, and the second messenger Ca(2+), play center stage in most of these processes.
Collapse
Affiliation(s)
- Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Universitätsstraβe 31, D-93053 Regensburg, Germany.
| | | |
Collapse
|
85
|
Krause C, Richter S, Knöll C, Jürgens G. Plant secretome - from cellular process to biological activity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2429-41. [PMID: 23557863 DOI: 10.1016/j.bbapap.2013.03.024] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 03/19/2013] [Accepted: 03/25/2013] [Indexed: 10/27/2022]
Abstract
Recent studies suggest that plants secrete a large number of proteins and peptides into the extracellular space. Secreted proteins play a crucial role in stress response, communication and development of organisms. Here we review the current knowledge of the secretome of more than ten plant species, studied in natural conditions or during (a)biotic stress. This review not only deals with the classical secretory route via endoplasmic reticulum and Golgi followed by proteins containing a known N-terminal signal peptide, but also covers new findings about unconventional secretion of leaderless proteins. We describe alternative secretion pathways and the involved compartments like the recently discovered EXPO. The well characterized secreted peptides that function as ligands of receptor proteins exemplify the biological significance and activity of the secretome. This article is part of a Special Issue entitled: An Updated Secretome.
Collapse
Affiliation(s)
- Cornelia Krause
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 3, 72076 Tübingen, Germany
| | | | | | | |
Collapse
|
86
|
Guan X, Buchholz G, Nick P. The cytoskeleton is disrupted by the bacterial effector HrpZ, but not by the bacterial PAMP flg22, in tobacco BY-2 cells. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:1805-16. [PMID: 23408828 PMCID: PMC3638817 DOI: 10.1093/jxb/ert042] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plant innate immunity is composed of two layers. Basal immunity is triggered by pathogen-associated molecular patterns (PAMPs) such as the flagellin-peptide flg22 and is termed PAMP-triggered immunity (PTI). In addition, effector-triggered immunity (ETI) linked with programmed cell death and cytoskeletal reorganization can be induced by pathogen-derived factors, such as the Harpin proteins originating from phytopathogenic bacteria. To get insight into the link between cytoskeleton and PTI or ETI, this study followed the responses of actin filaments and microtubules to flg22 and HrpZ in vivo by spinning-disc confocal microscopy in GFP-tagged marker lines of tobacco BY-2. At a concentration that clearly impairs mitosis, flg22 can induce only subtle cytoskeletal responses. In contrast, HrpZ causes a rapid and massive bundling of actin microfilaments (completed in ~20 min, i.e. almost simultaneously with extracellular alkalinization), which is followed by progressive disintegration of actin cables and cytoplasmic microtubules, a loss of cytoplasmic structure, and vacuolar disintegration. Cytoskeletal disruption is proposed as an early event that discriminates HrpZ-triggered ETI-like defence from flg22-triggered PTI.
Collapse
Affiliation(s)
- Xin Guan
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Kaiserstr. 2, D-76128 Karlsruhe, Germany.
| | | | | |
Collapse
|
87
|
He JM, Ma XG, Zhang Y, Sun TF, Xu FF, Chen YP, Liu X, Yue M. Role and interrelationship of Gα protein, hydrogen peroxide, and nitric oxide in ultraviolet B-induced stomatal closure in Arabidopsis leaves. PLANT PHYSIOLOGY 2013; 161:1570-83. [PMID: 23341360 PMCID: PMC3585617 DOI: 10.1104/pp.112.211623] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 01/18/2013] [Indexed: 05/18/2023]
Abstract
Heterotrimeric G proteins have been shown to transmit ultraviolet B (UV-B) signals in mammalian cells, but whether they also transmit UV-B signals in plant cells is not clear. In this paper, we report that 0.5 W m(-2) UV-B induces stomatal closure in Arabidopsis (Arabidopsis thaliana) by eliciting a cascade of intracellular signaling events including Gα protein, hydrogen peroxide (H2O2), and nitric oxide (NO). UV-B triggered a significant increase in H2O2 or NO levels associated with stomatal closure in the wild type, but these effects were abolished in the single and double mutants of AtrbohD and AtrbohF or in the Nia1 mutants, respectively. Furthermore, we found that UV-B-mediated H2O2 and NO generation are regulated by GPA1, the Gα-subunit of heterotrimeric G proteins. UV-B-dependent H2O2 and NO accumulation were nullified in gpa1 knockout mutants but enhanced by overexpression of a constitutively active form of GPA1 (cGα). In addition, exogenously applied H2O2 or NO rescued the defect in UV-B-mediated stomatal closure in gpa1 mutants, whereas cGα AtrbohD/AtrbohF and cGα nia1 constructs exhibited a similar response to AtrbohD/AtrbohF and Nia1, respectively. Finally, we demonstrated that Gα activation of NO production depends on H2O2. The mutants of AtrbohD and AtrbohF had impaired NO generation in response to UV-B, but UV-B-induced H2O2 accumulation was not impaired in Nia1. Moreover, exogenously applied NO rescued the defect in UV-B-mediated stomatal closure in the mutants of AtrbohD and AtrbohF. These findings establish a signaling pathway leading to UV-B-induced stomatal closure that involves GPA1-dependent activation of H2O2 production and subsequent Nia1-dependent NO accumulation.
Collapse
Affiliation(s)
- Jun-Min He
- School of Life Sciences, Shaanxi Normal University, Xi'an 710062, China.
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Hernández-Barrera A, Quinto C, Johnson EA, Wu HM, Cheung AY, Cárdenas L. Using hyper as a molecular probe to visualize hydrogen peroxide in living plant cells: a method with virtually unlimited potential in plant biology. Methods Enzymol 2013; 527:275-90. [PMID: 23830637 DOI: 10.1016/b978-0-12-405882-8.00015-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Reactive oxygen species (ROS) are highly reactive reduced oxygen molecules that play a myriad of roles in animal and plant cells. In plant cells, the production of ROS occurs as a result of aerobic metabolism during respiration and photosynthesis. Therefore mitochondria, chloroplasts, and peroxisomes constitute an important source of ROS. However, they can be produced in response to many physiological stimuli such as pathogen attack, hormone signaling, abiotic stresses, or during cell wall organization and plant morphogenesis. Monitoring ROS in plant cells has been limited to biochemical assays and use of fluorescent probes, however, the irreversible oxidation of the fluorescent dyes make it impossible to visualize dynamic changes of ROS. Hyper is a recently developed live cell probe for H2O2 and consists of a circularly permutated YFP (cpYFP) inserted into the regulatory domain of the Escherichia coli hydrogen peroxide (H2O2) sensor OxyR rendering it a H2O2 specific ratiometric, and therefore quantitative probe. Herein, we describe a protocol for using Hyper as a dynamic probe for H2O2 in Arabidopsis with virtually unlimited potential to detect H2O2 throughout the plant and under a broad range of developmental and environmental conditions.
Collapse
|
89
|
Ye Y, Li Z, Xing D. Nitric oxide promotes MPK6-mediated caspase-3-like activation in cadmium-induced Arabidopsis thaliana programmed cell death. PLANT, CELL & ENVIRONMENT 2013; 36:1-15. [PMID: 22621159 DOI: 10.1111/j.1365-3040.2012.02543.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nitric oxide (NO), a vital cell-signalling molecule, has been reported to regulate toxic metal responses in plants. This work investigated the effects of NO and the relationship between NO and mitogen-activated protein kinase (MAPK) in Arabidopsis (Arabidopsis thaliana) programmed cell death (PCD) induced by cadmium (Cd(2+) ) exposure. With fluorescence resonance energy transfer (FRET) analysis, caspase-3-like protease activation was detected after Cd(2+) treatment. This was further confirmed with a caspase-3 substrate assay. Cd(2+) -induced caspase-3-like activity was inhibited in the presence of the NO-specific scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO), suggesting that NO mediated caspase-3-like protease activation under Cd(2+) stress conditions. Pretreatment with cPTIO effectively inhibited Cd(2+) -induced MAPK activation, indicating that NO also affected the MAPK pathway. Interestingly, Cd(2+) -induced caspase-3-like activity was significantly suppressed in the mpk6 mutant, suggesting that MPK6 was required for caspase-3-like protease activation. To our knowledge, this is the first demonstration that NO promotes Cd(2+) -induced Arabidopsis PCD by promoting MPK6-mediated caspase-3-like activation.
Collapse
Affiliation(s)
- Yun Ye
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | | | | |
Collapse
|
90
|
Wang Y, Loake GJ, Chu C. Cross-talk of nitric oxide and reactive oxygen species in plant programed cell death. FRONTIERS IN PLANT SCIENCE 2013; 4:314. [PMID: 23967004 PMCID: PMC3744911 DOI: 10.3389/fpls.2013.00314] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 07/26/2013] [Indexed: 05/03/2023]
Abstract
In plants, programed cell death (PCD) is an important mechanism to regulate multiple aspects of growth and development, as well as to remove damaged or infected cells during responses to environmental stresses and pathogen attacks. Under biotic and abiotic stresses, plant cells exhibit a rapid synthesis of nitric oxide (NO) and a parallel accumulation of reactive oxygen species (ROS). Frequently, these responses trigger a PCD process leading to an intrinsic execution of plant cells. The accumulating evidence suggests that both NO and ROS play key roles in PCD. These redox active small molecules can trigger cell death either independently or synergistically. Here we summarize the recent progress on the cross-talk of NO and ROS signals in the hypersensitive response, leaf senescence, and other kinds of plant PCD caused by diverse cues.
Collapse
Affiliation(s)
- Yiqin Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, People’s Republic of China
| | - Gary J. Loake
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of EdinburghEdinburgh, UK
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, People’s Republic of China
- *Correspondence: Chengcai Chu, State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang, Beijing 100101, People’s Republic of China e-mail:
| |
Collapse
|
91
|
Traverso JA, Pulido A, Rodríguez-García MI, Alché JD. Thiol-based redox regulation in sexual plant reproduction: new insights and perspectives. FRONTIERS IN PLANT SCIENCE 2013; 4:465. [PMID: 24294217 PMCID: PMC3827552 DOI: 10.3389/fpls.2013.00465] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 10/28/2013] [Indexed: 05/19/2023]
Abstract
The success of sexual reproduction in plants involves (i) the proper formation of the plant gametophytes (pollen and embryo sac) containing the gametes, (ii) the accomplishment of specific interactions between pollen grains and the stigma, which subsequently lead to (iii) the fusion of the gametes and eventually to (iv) the seed setting. Owing to the lack of mobility, plants have developed specific regulatory mechanisms to control all developmental events underlying the sexual plant reproduction according to environmental challenges. Over the last decade, redox regulation and signaling have come into sight as crucial mechanisms able to manage critical stages during sexual plant reproduction. This regulation involves a complex redox network which includes reactive oxygen species (ROS), reactive nitrogen species (RNS), glutathione and other classic buffer molecules or antioxidant proteins, and some thiol/disulphide-containing proteins belonging to the thioredoxin superfamily, like glutaredoxins (GRXs) or thioredoxins (TRXs). These proteins participate as critical elements not only in the switch between the mitotic to the meiotic cycle but also at further developmental stages of microsporogenesis. They are also implicated in the regulation of pollen rejection as the result of self-incompatibility. In addition, they display precise space-temporal patterns of expression and are present in specific localizations like the stigmatic papillae or the mature pollen, although their functions and subcellular localizations are not clear yet. In this review we summarize insights and perspectives about the presence of thiol/disulphide-containing proteins in plant reproduction, taking into account the general context of the cell redox network.
Collapse
Affiliation(s)
- Jose A. Traverso
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - Amada Pulido
- Departamento de Fisiología Vegetal, Universidad de GranadaGranada, Spain
| | | | - Juan D. Alché
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
- *Correspondence: Juan D. Alché, Plant Reproductive Biology Group, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish Council for Scientific Research, Profesor Albareda 1, 18008 Granada, Spain e-mail:
| |
Collapse
|
92
|
Nitric oxide participates in cold-inhibited Camellia sinensis pollen germination and tube growth partly via cGMP in vitro. PLoS One 2012; 7:e52436. [PMID: 23272244 PMCID: PMC3525538 DOI: 10.1371/journal.pone.0052436] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Accepted: 11/13/2012] [Indexed: 11/26/2022] Open
Abstract
Nitric oxide (NO) plays essential roles in many biotic and abiotic stresses in plant development procedures, including pollen tube growth. Here, effects of NO on cold stress inhibited pollen germination and tube growth in Camellia sinensis were investigated in vitro. The NO production, NO synthase (NOS)-like activity, cGMP content and proline (Pro) accumulation upon treatment with NO scavenger cPTIO, NOS inhibitor L-NNA, NO donor DEA NONOate, guanylate cyclase (GC) inhibitor ODQ or phosphodiesterase (PDE) inhibitor Viagra at 25°C (control) or 4°C were analyzed. Exposure to 4°C for 2 h reduced pollen germination and tube growth along with increase of NOS-like activity, NO production and cGMP content in pollen tubes. DEA NONOate treatment inhibited pollen germination and tube growth in a dose-dependent manner under control and reinforced the inhibition under cold stress, during which NO production and cGMP content promoted in pollen tubes. L-NNA and cPTIO markedly reduced the generation of NO induced by cold or NO donor along with partly reverse of cold- or NO donor-inhibited pollen germination and tube growth. Furthermore, ODQ reduced the cGMP content under cold stress and NO donor treatment in pollen tubes. Meanwhile, ODQ disrupted the reinforcement of NO donor on the inhibition of pollen germination and tube growth under cold condition. Additionally, Pro accumulation of pollen tubes was reduced by ODQ compared with that receiving NO donor under cold or control condition. Effects of cPTIO and L-NNA in improving cold-treated pollen germination and pollen tube growth could be lowered by Viagra. Moreover, the inhibitory effects of cPTIO and L-NNA on Pro accumulation were partly reversed by Viagra. These data suggest that NO production from NOS-like enzyme reaction decreased the cold-responsive pollen germination, inhibited tube growth and reduced Pro accumulation, partly via cGMP signaling pathway in C. sinensis.
Collapse
|
93
|
Roldán JA, Rojas HJ, Goldraij A. Disorganization of F-actin cytoskeleton precedes vacuolar disruption in pollen tubes during the in vivo self-incompatibility response in Nicotiana alata. ANNALS OF BOTANY 2012; 110:787-95. [PMID: 22782242 PMCID: PMC3423811 DOI: 10.1093/aob/mcs153] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Accepted: 05/03/2012] [Indexed: 05/23/2023]
Abstract
BACKGROUND AND AIMS The integrity of actin filaments (F-actin) is essential for pollen-tube growth. In S-RNase-based self-incompatibility (SI), incompatible pollen tubes are inhibited in the style. Consequently, research efforts have focused on the alterations of pollen F-actin cytoskeleton during the SI response. However, so far, these studies were carried out in in vitro-grown pollen tubes. This study aimed to assess the timing of in vivo changes of pollen F-actin cytoskeleton taking place after compatible and incompatible pollinations in Nicotiana alata. To our knowledge, this is the first report of the in vivo F-actin alterations occurring during pollen rejection in the S-RNase-based SI system. METHODS The F-actin cytoskeleton and the vacuolar endomembrane system were fluorescently labelled in compatibly and incompatibly pollinated pistils at different times after pollination. The alterations induced by the SI reaction in pollen tubes were visualized by confocal laser scanning microscopy. KEY RESULTS Early after pollination, about 70 % of both compatible and incompatible pollen tubes showed an organized pattern of F-actin cables along the main axis of the cell. While in compatible pollinations this percentage was unchanged until pollen tubes reached the ovary, pollen tubes of incompatible pollinations underwent gradual and progressive F-actin disorganization. Colocalization of the F-actin cytoskeleton and the vacuolar endomembrane system, where S-RNases are compartmentalized, revealed that by day 6 after incompatible pollination, when the pollen-tube growth was already arrested, about 80 % of pollen tubes showed disrupted F-actin but a similar percentage had intact vacuolar compartments. CONCLUSIONS The results indicate that during the SI response in Nicotiana, disruption of the F-actin cytoskeleton precedes vacuolar membrane breakdown. Thus, incompatible pollen tubes undergo a sequential disorganization process of major subcellular structures. Results also suggest that the large pool of S-RNases released from vacuoles acts late in pollen rejection, after significant subcellular changes in incompatible pollen tubes.
Collapse
Affiliation(s)
| | | | - Ariel Goldraij
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC–CONICET), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina
| |
Collapse
|
94
|
Serrano I, Romero-Puertas MC, Rodríguez Serrano M, Sandalio LM, Olmedilla A. Role of peroxynitrite in programmed cell death induced in self-incompatible pollen. PLANT SIGNALING & BEHAVIOR 2012; 7:779-81. [PMID: 22751302 PMCID: PMC3583962 DOI: 10.4161/psb.20570] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Reactive oxygen species and NO are involved in the signaling pathway of programmed cell death (PCD). Information concerning the role of these molecules in self-incompatible pollination is scarce especially in non-model species studied in vivo. We recently reported that in the olive tree, compatible and self-incompatible pollen have different levels of reactive oxygen and nitrogen species and that PCD is induced in self-incompatible pollen. Levels of O 2 (.-) and NO are higher in pollen after self-incompatible pollination than after compatible pollination. The presence of these reactive species was concomitant with the presence of peroxynitrite. Similar results were obtained on pollen-germination experiments both in vivo and in vitro. These data, together with observations made after treating pollinated flowers with scavengers, suggest that peroxynitrite plays a role in PCD induced after self-incompatible pollination and we propose here a model to describe the way in which it might work.
Collapse
Affiliation(s)
- Irene Serrano
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Granada, Spain.
| | | | | | | | | |
Collapse
|
95
|
Liu SG, Zhu DZ, Chen GH, Gao XQ, Zhang XS. Disrupted actin dynamics trigger an increment in the reactive oxygen species levels in the Arabidopsis root under salt stress. PLANT CELL REPORTS 2012; 31:1219-26. [PMID: 22383108 DOI: 10.1007/s00299-012-1242-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 02/02/2012] [Accepted: 02/17/2012] [Indexed: 05/11/2023]
Abstract
UNLABELLED Changes in actin dynamics represent the primary response of the plant cell to extracellular signaling. Recent studies have now revealed that actin remodeling is involved in abiotic stress tolerance in plants. In our current study, the relationship between the changes in actin dynamics and the reactive oxygen species (ROS) level at the initial stages of salt stress was investigated in the elongation zone of the Arabidopsis root tip. We found that a 200 mM NaCl treatment disrupted the dynamics of the actin filaments within 10 min and increased the ROS levels in the elongation zone cells of the Arabidopsis root tip. We further found that the NADPH oxidase activity inhibitor, diphenyleneiodonium, treatment blocked this ROS increase under salt stress conditions. The roles of actin dynamics and the NADPH oxidases in ROS generation were further analyzed using the actin-specific agents, latrunculin B (Lat-B) and jasplakinolide (Jasp), and mutants of Arabidopsis NADPH oxidase AtrbohC. Lat-B and Jasp promote actin depolymerization and polymerization, respectively, and both were found to enhance the ROS levels following NaCl treatment. However, this response was abolished in the atrbohC mutants. Our present results thus demonstrate that actin dynamics are involved in regulating the ROS level in Arabidopsis root under salt stress conditions. KEY MESSAGE Salt stress disrupts the dynamics of the actin filaments in Arabidopsis in the short term which are involved in regulating the ROS levels that arise under salt stress conditions via the actions of the AtrbohC.
Collapse
Affiliation(s)
- Shang Gang Liu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, Shandong, China
| | | | | | | | | |
Collapse
|
96
|
Serrano I, Romero-Puertas MC, Rodríguez-Serrano M, Sandalio LM, Olmedilla A. Peroxynitrite mediates programmed cell death both in papillar cells and in self-incompatible pollen in the olive (Olea europaea L.). JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1479-93. [PMID: 22140239 PMCID: PMC3276107 DOI: 10.1093/jxb/err392] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 10/12/2011] [Accepted: 11/07/2011] [Indexed: 05/05/2023]
Abstract
Programmed cell death (PCD) has been found to be induced after pollination both in papillar cells and in self-incompatible pollen in the olive (Olea europaea L.). Reactive oxygen species (ROS) and nitric oxide (NO) are known to be produced in the pistil and pollen during pollination but their contribution to PCD has so far remained elusive. The possible role of ROS and NO was investigated in olive pollen-pistil interaction during free and controlled pollination and it was found that bidirectional interaction appears to exist between the pollen and the stigma, which seems to regulate ROS and NO production. Biochemical evidence strongly suggesting that both O(2)(-) and NO are essential for triggering PCD in self-incompatibility processes was also obtained. It was observed for the first time that peroxynitrite, a powerful oxidizing and nitrating agent generated during a rapid reaction between O(2)(-) and NO, is produced during pollination and that this is related to an increase in protein nitration which, in turn, is strongly associated with PCD. It may be concluded that peroxynitrite mediates PCD during pollen-pistil interaction in Olea europaea L. both in self-incompatible pollen and papillar cells.
Collapse
Affiliation(s)
| | | | | | | | - Adela Olmedilla
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, E-18008 Granada, Spain
| |
Collapse
|
97
|
Hill RD. Non-symbiotic haemoglobins-What's happening beyond nitric oxide scavenging? AOB PLANTS 2012; 2012:pls004. [PMID: 22479675 PMCID: PMC3292739 DOI: 10.1093/aobpla/pls004] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 01/25/2012] [Indexed: 05/19/2023]
Abstract
BACKGROUND AND AIMS Non-symbiotic haemoglobins have been an active research topic for over 30 years, during which time a considerable portfolio of knowledge has accumulated relative to their chemical and molecular properties, and their presence and mode of induction in plants. While progress has been made towards understanding their physiological role, there remain a number of unanswered questions with respect to their biological function. This review attempts to update recent progress in this area and to introduce a hypothesis as to how non-symbiotic haemoglobins might participate in regulating hormone signal transduction. PRINCIPAL RESULTS Advances have been made towards understanding the structural nuances that explain some of the differences in ligand association characteristics of class 1 and class 2 non-symbiotic haemoglobins. Non-symbiotic haemoglobins have been found to function in seed development and germination, flowering, root development and differentiation, abiotic stress responses, pathogen invasion and symbiotic bacterial associations. Microarray analyses under various stress conditions yield uneven results relative to non-symbiotic haemoglobin expression. Increasing evidence of the role of nitric oxide (NO) in hormone responses and the known involvement of non-symbiotic haemoglobins in scavenging NO provide opportunities for fruitful research, particularly at the cellular level. CONCLUSIONS Circumstantial evidence suggests that non-symbiotic haemoglobins may have a critical function in the signal transduction pathways of auxin, ethylene, jasmonic acid, salicylic acid, cytokinin and abscisic acid. There is a strong need for research on haemoglobin gene expression at the cellular level relative to hormone signal transduction.
Collapse
|
98
|
Control of Programmed Cell Death During Plant Reproductive Development. BIOCOMMUNICATION OF PLANTS 2012. [DOI: 10.1007/978-3-642-23524-5_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
99
|
Wojtera-Kwiczor J, Groß F, Leffers HM, Kang M, Schneider M, Scheibe R. Transfer of a Redox-Signal through the Cytosol by Redox-Dependent Microcompartmentation of Glycolytic Enzymes at Mitochondria and Actin Cytoskeleton. FRONTIERS IN PLANT SCIENCE 2012; 3:284. [PMID: 23316205 PMCID: PMC3540817 DOI: 10.3389/fpls.2012.00284] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 11/30/2012] [Indexed: 05/03/2023]
Abstract
The cytosolic glyceraldehyde-3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12, GapC) plays an important role in glycolysis by providing the cell with ATP and NADH. Interestingly, despite its glycolytic function in the cytosol, GAPDH was reported to possess additional non-glycolytic activities, correlating with its nuclear, or cytoskeletal localization in animal cells. In transiently transformed mesophyll protoplasts from Arabidopsis thaliana colocalization and interaction of the glycolytic enzymes with the mitochondria and with the actin cytoskeleton was visualized by confocal laser scanning microscopy (cLSM) using fluorescent protein fusions and by bimolecular fluorescence complementation, respectively. Yeast two-hybrid screens, dot-blot overlay assays, and co-sedimentation assays were used to identify potential protein-protein interactions between two cytosolic GAPDH isoforms (GapC1, At3g04120; GapC2, At1g13440) from A. thaliana with the neighboring glycolytic enzyme, fructose 1,6-bisphosphate aldolase (FBA6, At2g36460), the mitochondrial porin (VDAC3; At5g15090), and actin in vitro. From these experiments, a mitochondrial association is suggested for both glycolytic enzymes, GAPDH and aldolase, which appear to bind to the outer mitochondrial membrane, in a redox-dependent manner. In addition, both glycolytic enzymes were found to bind to F-actin in co-sedimentation assays, and lead to bundling of purified rabbit actin, as visualized by cLSM. Actin-binding and bundling occurred reversibly under oxidizing conditions. We speculate that such dynamic formation of microcompartments is part of a redox-dependent retrograde signal transduction network for adaptation upon oxidative stress.
Collapse
Affiliation(s)
- Joanna Wojtera-Kwiczor
- Department of Plant Physiology, Faculty of Biology and Chemistry, University of OsnabrueckOsnabrueck, Germany
| | - Felicitas Groß
- Department of Plant Physiology, Faculty of Biology and Chemistry, University of OsnabrueckOsnabrueck, Germany
| | - Hans-Martin Leffers
- Department of Plant Physiology, Faculty of Biology and Chemistry, University of OsnabrueckOsnabrueck, Germany
| | - Minhee Kang
- Department of Plant Physiology, Faculty of Biology and Chemistry, University of OsnabrueckOsnabrueck, Germany
| | - Markus Schneider
- Department of Plant Physiology, Faculty of Biology and Chemistry, University of OsnabrueckOsnabrueck, Germany
| | - Renate Scheibe
- Department of Plant Physiology, Faculty of Biology and Chemistry, University of OsnabrueckOsnabrueck, Germany
- *Correspondence: Renate Scheibe, Department of Plant Physiology, Faculty of Biology and Chemistry, University of Osnabrueck, D-49069 Osnabrueck, Germany. e-mail:
| |
Collapse
|
100
|
de Graaf BHJ, Vatovec S, Juárez-Díaz JA, Chai L, Kooblall K, Wilkins KA, Zou H, Forbes T, Franklin FCH, Franklin-Tong VE. The Papaver self-incompatibility pollen S-determinant, PrpS, functions in Arabidopsis thaliana. Curr Biol 2011; 22:154-9. [PMID: 22209529 PMCID: PMC3695568 DOI: 10.1016/j.cub.2011.12.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Revised: 11/24/2011] [Accepted: 11/28/2011] [Indexed: 11/30/2022]
Abstract
Many angiosperms use specific interactions between pollen and pistil proteins as "self" recognition and/or rejection mechanisms to prevent self-fertilization. Self-incompatibility (SI) is encoded by a multiallelic S locus, comprising pollen and pistil S-determinants. In Papaver rhoeas, cognate pistil and pollen S-determinants, PrpS, a pollen-expressed transmembrane protein, and PrsS, a pistil-expressed secreted protein, interact to trigger a Ca(2+)-dependent signaling network, resulting in inhibition of pollen tube growth, cytoskeletal alterations, and programmed cell death (PCD) in incompatible pollen. We introduced the PrpS gene into Arabidopsis thaliana, a self-compatible model plant. Exposing transgenic A. thaliana pollen to recombinant Papaver PrsS protein triggered remarkably similar responses to those observed in incompatible Papaver pollen: S-specific inhibition and hallmark features of Papaver SI. Our findings demonstrate that Papaver PrpS is functional in a species with no SI system that diverged ~140 million years ago. This suggests that the Papaver SI system uses cellular targets that are, perhaps, common to all eudicots and that endogenous signaling components can be recruited to elicit a response that most likely never operated in this species. This will be of interest to biologists interested in the evolution of signaling networks in higher plants.
Collapse
Affiliation(s)
- Barend H J de Graaf
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|