51
|
Zhang J, Scarcelli G. Mapping mechanical properties of biological materials via an add-on Brillouin module to confocal microscopes. Nat Protoc 2021; 16:1251-1275. [PMID: 33452504 PMCID: PMC8218248 DOI: 10.1038/s41596-020-00457-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/04/2020] [Indexed: 01/29/2023]
Abstract
Several techniques have been developed over the past few decades to assess the mechanical properties of biological samples, which has fueled a rapid growth in the fields of biophysics, bioengineering, and mechanobiology. In this context, Brillouin optical spectroscopy has long been known as an intriguing modality for noncontact material characterization. However, limited by speed and sample damage, it had not translated into a viable imaging modality for biomedically relevant materials. Recently, based on a novel spectroscopy strategy that substantially improves the speed of Brillouin measurement, confocal Brillouin microscopy has emerged as a unique complementary tool to traditional methods as it allows noncontact, nonperturbative, label-free measurements of material mechanical properties. The feasibility and potential of this innovative technique at both the cell and tissue level have been extensively demonstrated over the past decade. As Brillouin technology is rapidly recognized, a standard approach for building and operating Brillouin microscopes is required to facilitate the widespread adoption of this technology. In this protocol, we aim to establish a robust approach for instrumentation, and data acquisition and analysis. By carefully following this protocol, we expect that a Brillouin instrument can be built in 5-9 days by a person with basic optics knowledge and alignment experience; the data acquisition as well as postprocessing can be accomplished within 2-8 h.
Collapse
Affiliation(s)
- Jitao Zhang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
| | - Giuliano Scarcelli
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
| |
Collapse
|
52
|
Nowak J, Eng RC, Matz T, Waack M, Persson S, Sampathkumar A, Nikoloski Z. A network-based framework for shape analysis enables accurate characterization of leaf epidermal cells. Nat Commun 2021; 12:458. [PMID: 33469016 PMCID: PMC7815848 DOI: 10.1038/s41467-020-20730-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 12/17/2020] [Indexed: 01/29/2023] Open
Abstract
Cell shape is crucial for the function and development of organisms. Yet, versatile frameworks for cell shape quantification, comparison, and classification remain underdeveloped. Here, we introduce a visibility graph representation of shapes that facilitates network-driven characterization and analyses across shapes encountered in different domains. Using the example of complex shape of leaf pavement cells, we show that our framework accurately quantifies cell protrusions and invaginations and provides additional functionality in comparison to the contending approaches. We further show that structural properties of the visibility graphs can be used to quantify pavement cell shape complexity and allow for classification of plants into their respective phylogenetic clades. Therefore, the visibility graphs provide a robust and unique framework to accurately quantify and classify the shape of different objects.
Collapse
Affiliation(s)
- Jacqueline Nowak
- School of Biosciences, University of Melbourne, Parkville, VIC, 3010, Australia
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
- Systems Biology and Mathematical Modelling, Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Ryan Christopher Eng
- Plant Cell Biology and Microscopy, Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Timon Matz
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
- Systems Biology and Mathematical Modelling, Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Matti Waack
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
- Systems Biology and Mathematical Modelling, Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Staffan Persson
- School of Biosciences, University of Melbourne, Parkville, VIC, 3010, Australia
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Department for Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark
- Copenhagen Plant Science Center, University of Copenhagen, 1871, Frederiksberg C, Denmark
| | - Arun Sampathkumar
- Plant Cell Biology and Microscopy, Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Zoran Nikoloski
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany.
- Systems Biology and Mathematical Modelling, Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany.
| |
Collapse
|
53
|
Higaki T, Mizuno H. Four-dimensional imaging with virtual reality to quantitatively explore jigsaw puzzle-like morphogenesis of Arabidopsis cotyledon pavement cells. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2020; 37:429-435. [PMID: 33850430 PMCID: PMC8034702 DOI: 10.5511/plantbiotechnology.20.0605a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/05/2020] [Indexed: 05/25/2023]
Abstract
In most dicotyledonous plants, leaf pavement cells exhibit complex jigsaw puzzle-like cell morphogenesis during leaf expansion. Although detailed molecular biological information and mathematical modeling of this jigsaw puzzle-like cell morphogenesis are now available, a full understanding of this process remains elusive. Recent reports have highlighted the importance of three-dimensional (3D) structures (i.e., anticlinal and periclinal cell wall) in understanding the mechanical models that describe this morphogenetic process. We believe that it is important to acquire 3D shapes of pavement cells over time, i.e., acquire and analyze four-dimensional (4D) information when studying the relationship between mechanical modeling and simulations and the actual cell shape. In this report, we have developed a framework to capture and analyze 4D morphological information of Arabidopsis thaliana cotyledon pavement cells by using both direct water immersion observations and computational image analyses, including segmentation, surface modeling, virtual reality and morphometry. The 4D cell models allowed us to perform time-lapse 3D morphometrical analysis, providing detailed quantitative information about changes in cell growth rate and shape, with cellular complexity observed to increase during cell growth. The framework should enable analysis of various phenotypes (e.g., mutants) in greater detail, especially in the 3D deformation of the cotyledon surface, and evaluation of theoretical models that describe pavement cell morphogenesis using computational simulations. Additionally, our accurate and high-throughput acquisition of growing cell structures should be suitable for use in generating in silico model cell structures.
Collapse
Affiliation(s)
- Takumi Higaki
- International Research Organization for Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Hidenobu Mizuno
- International Research Center for Medical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| |
Collapse
|
54
|
Lin W, Yang Z. Unlocking the mechanisms behind the formation of interlocking pavement cells. CURRENT OPINION IN PLANT BIOLOGY 2020; 57:142-154. [PMID: 33128897 DOI: 10.1016/j.pbi.2020.09.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/30/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
The leaf epidermal pavement cells with the puzzle-piece shape offer an attractive system for studying the mechanisms underpinning cell morphogenesis in a plant tissue. The formation of the interdigitated lobes and indentations in these interlocking cells relies on the integration of chemical and mechanical signals and cell-to-cell signals to establish interdigitated polar sites defining lobes and indentations. Recent computational and experimental studies have suggested new roles of cell walls, their interplay with mechanical signals, cell polarity signaling regulated by auxin and brassinosteriods, and the cytoskeleton in the regulation of pavement cell morphogenesis. This review summarizes the current state of knowledge on these regulatory mechanisms behind pavement cell morphogenesis in plants and discusses how they could be integrated spatiotemporally to generate the interdigitated polarity patterns and the interlocking shape in pavement cells.
Collapse
Affiliation(s)
- Wenwei Lin
- Institute for Integrative Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Zhenbiao Yang
- Institute for Integrative Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA, USA.
| |
Collapse
|
55
|
Du F, Jiao Y. Mechanical control of plant morphogenesis: concepts and progress. CURRENT OPINION IN PLANT BIOLOGY 2020; 57:16-23. [PMID: 32619966 DOI: 10.1016/j.pbi.2020.05.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/07/2020] [Accepted: 05/23/2020] [Indexed: 05/27/2023]
Abstract
Understanding how the genome encodes organismal shape is fundamental to biology. Extensive molecular genetic studies have uncovered genes regulating morphogenesis, that is, the generation of shape, however, such genes do not directly determine cell and tissue shape. Recent studies have started to elucidate how mechanical cues mediate the physical shaping of cells and tissues. In particular, the mechanical force generated during cell and tissue growth coordinates deformation at the tissue and organ scale. In this review, we summarize the recent progress of mechanical regulation of plant development. We focus our discussion on how patterns of mechanical stresses are formed, how mechanical cues are perceived, and how they guide cell and organ morphogenesis.
Collapse
Affiliation(s)
- Fei Du
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuling Jiao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
56
|
Riglet L, Rozier F, Kodera C, Bovio S, Sechet J, Fobis-Loisy I, Gaude T. KATANIN-dependent mechanical properties of the stigmatic cell wall mediate the pollen tube path in Arabidopsis. eLife 2020; 9:57282. [PMID: 32867920 PMCID: PMC7462616 DOI: 10.7554/elife.57282] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/27/2020] [Indexed: 01/03/2023] Open
Abstract
Successful fertilization in angiosperms depends on the proper trajectory of pollen tubes through the pistil tissues to reach the ovules. Pollen tubes first grow within the cell wall of the papilla cells, applying pressure to the cell. Mechanical forces are known to play a major role in plant cell shape by controlling the orientation of cortical microtubules (CMTs), which in turn mediate deposition of cellulose microfibrils (CMFs). Here, by combining imaging, genetic and chemical approaches, we show that isotropic reorientation of CMTs and CMFs in aged Col-0 and katanin1-5 (ktn1-5) papilla cells is accompanied by a tendency of pollen tubes to coil around the papillae. We show that this coiled phenotype is associated with specific mechanical properties of the cell walls that provide less resistance to pollen tube growth. Our results reveal an unexpected role for KTN1 in pollen tube guidance on the stigma by ensuring mechanical anisotropy of the papilla cell wall. Flowering plants produce small particles known as pollen that – with the help of the wind, bees and other animals – carry male sex cells (sperm) to female sex cells (eggs) contained within flowers. When a grain of pollen lands on the female organ of a flower, called the pistil, it gives rise to a tube that grows through the pistil towards the egg cells at the base. The surface of the pistil is covered in a layer of long cells named papillae. Like most plant cells, the papillae are surrounded by a rigid structure known as the cell wall, which is mainly composed of strands known as microfibrils. The pollen tube exerts pressure on a papilla to allow it to grow through the cell wall towards the base of the pistil. Previous studies have shown that the pistil produces signals that guide pollen tubes to the eggs. However, it remains unclear how pollen tubes orient themselves on the surface of papillae to grow in the right direction through the pistil. Riglet et al. combined microscopy, genetic and chemical approaches to study how pollen tubes grow through the surface of the pistils of a small weed known as Arabidopsis thaliana. The experiments showed that an enzyme called KATANIN conferred mechanical properties to the cell walls of papillae that allowed pollen tubes to grow towards the egg cells, and also altered the orientation of the microfibrils in these cell walls. In A. thaliana plants that were genetically modified to lack KATANIN the pollen tubes coiled around the papillae and sometimes grew in the opposite direction to where the eggs were. KATANIN is known to cut structural filaments inside the cells of plants, animals and most other living things. By revealing an additional role for KATANIN in regulating the mechanical properties of the papilla cell wall, these findings indicate this enzyme may also regulate the mechanical properties of cells involved in other biological processes.
Collapse
Affiliation(s)
- Lucie Riglet
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, Allée d'Italie, France
| | - Frédérique Rozier
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, Allée d'Italie, France
| | - Chie Kodera
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, Allée d'Italie, France
| | - Simone Bovio
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, Allée d'Italie, France
| | - Julien Sechet
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Isabelle Fobis-Loisy
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, Allée d'Italie, France
| | - Thierry Gaude
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, Allée d'Italie, France
| |
Collapse
|
57
|
Sampathkumar A. Mechanical feedback-loop regulation of morphogenesis in plants. Development 2020; 147:147/16/dev177964. [PMID: 32817056 DOI: 10.1242/dev.177964] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Morphogenesis is a highly controlled biological process that is crucial for organisms to develop cells and organs of a particular shape. Plants have the remarkable ability to adapt to changing environmental conditions, despite being sessile organisms with their cells affixed to each other by their cell wall. It is therefore evident that morphogenesis in plants requires the existence of robust sensing machineries at different scales. In this Review, I provide an overview on how mechanical forces are generated, sensed and transduced in plant cells. I then focus on how such forces regulate growth and form of plant cells and tissues.
Collapse
Affiliation(s)
- Arun Sampathkumar
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
58
|
Zhang D, Zhang B. Pectin Drives Cell Wall Morphogenesis without Turgor Pressure. TRENDS IN PLANT SCIENCE 2020; 25:719-722. [PMID: 32513584 DOI: 10.1016/j.tplants.2020.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 05/21/2023]
Abstract
How the plant cell wall expands and forms shapes is a long-standing mystery. Traditional thought is that turgor pressure drives these processes. However, a recent study by Haas and colleagues shows for the first time that the expansion of pectin homogalacturonan nanofilaments drives morphogenesis without turgor pressure in plant epidermal cells.
Collapse
Affiliation(s)
- Dangquan Zhang
- Henan Province Engineering Research Center for Forest Biomass Value-Added Products, College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China.
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
59
|
Palacio-Lopez K, Sun L, Reed R, Kang E, Sørensen I, Rose JKC, Domozych DS. Experimental Manipulation of Pectin Architecture in the Cell Wall of the Unicellular Charophyte, Penium Margaritaceum. FRONTIERS IN PLANT SCIENCE 2020; 11:1032. [PMID: 32733522 PMCID: PMC7360812 DOI: 10.3389/fpls.2020.01032] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/23/2020] [Indexed: 05/21/2023]
Abstract
Pectins represent one of the main components of the plant primary cell wall. These polymers have critical roles in cell expansion, cell-cell adhesion and response to biotic stress. We present a comprehensive screening of pectin architecture of the unicellular streptophyte, Penium margaritaceum. Penium possesses a distinct cell wall whose outer layer consists of a lattice of pectin-rich fibers and projections. In this study, cells were exposed to a variety of physical, chemical and enzymatic treatments that directly affect the cell wall, especially the pectin lattice. Correlative analyses of pectin lattice perturbation using field emission scanning electron microscopy, confocal laser scanning microscopy, and transmission electron microscopy demonstrate that pectin lattice microarchitecture is both highly sensitive and malleable.
Collapse
Affiliation(s)
| | - Li Sun
- Department of Biology, Skidmore College, Saratoga Springs, NY, United States
| | - Reagan Reed
- Department of Biology, Skidmore College, Saratoga Springs, NY, United States
| | - Eric Kang
- Department of Biology, Skidmore College, Saratoga Springs, NY, United States
| | - Iben Sørensen
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Jocelyn K. C. Rose
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - David S. Domozych
- Department of Biology, Skidmore College, Saratoga Springs, NY, United States
| |
Collapse
|
60
|
Abstract
Development encapsulates the morphogenesis of an organism from a single fertilized cell to a functional adult. A critical part of development is the specification of organ forms. Beyond the molecular control of morphogenesis, shape in essence entails structural constraints and thus mechanics. Revisiting recent results in biophysics and development, and comparing animal and plant model systems, we derive key overarching principles behind the formation of organs across kingdoms. In particular, we highlight how growing organs are active rather than passive systems and how such behavior plays a role in shaping the organ. We discuss the importance of considering different scales in understanding how organs form. Such an integrative view of organ development generates new questions while calling for more cross-fertilization between scientific fields and model system communities.
Collapse
Affiliation(s)
- O Hamant
- Laboratoire de Reproduction et Développement des Plantes, École normale supérieure (ENS) de Lyon, Université Claude Bernard Lyon (UCBL), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), CNRS, Université de Lyon, 69364 Lyon, France;
| | - T E Saunders
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, Singapore 117411; .,Institute of Molecular and Cell Biology, A*Star, Proteos, Singapore 138673
| |
Collapse
|
61
|
Seerangan K, van Spoordonk R, Sampathkumar A, Eng RC. Long-term live-cell imaging techniques for visualizing pavement cell morphogenesis. Methods Cell Biol 2020; 160:365-380. [PMID: 32896328 DOI: 10.1016/bs.mcb.2020.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recent advancements in microscopy and biological technologies have allowed scientists to study dynamic plant developmental processes with high temporal and spatial resolution. Pavement cells, epidermal cells found on leaf tissue, form complex shapes with alternating regions of indentations and outgrowths that are postulated to be driven by the microtubule cytoskeleton. Given their complex shapes, pavement cells and the microtubule contribution towards morphogenesis have been of great interest in the field of developmental biology. Here, we focus on two live-cell imaging methods that allow for early and long-term imaging of the cotyledon (embryonic leaf-like tissue) and leaf epidermis with minimal invasiveness in order to study microtubules throughout pavement cell morphogenesis. The methods described in this chapter can be applied to studying other developmental processes associated with cotyledon and leaf tissue.
Collapse
Affiliation(s)
- Kumar Seerangan
- Plant Cell Biology & Microscopy, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Ruben van Spoordonk
- Plant Cell Biology & Microscopy, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Arun Sampathkumar
- Plant Cell Biology & Microscopy, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany.
| | - Ryan Christopher Eng
- Plant Cell Biology & Microscopy, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany.
| |
Collapse
|
62
|
Haas KT, Wightman R, Meyerowitz EM, Peaucelle A. Pectin homogalacturonan nanofilament expansion drives morphogenesis in plant epidermal cells. Science 2020; 367:1003-1007. [PMID: 32108107 PMCID: PMC7932746 DOI: 10.1126/science.aaz5103] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 01/24/2020] [Indexed: 12/18/2022]
Abstract
The process by which plant cells expand and gain shape has presented a challenge for researchers. Current models propose that these processes are driven by turgor pressure acting on the cell wall. Using nanoimaging, we show that the cell wall contains pectin nanofilaments that possess an intrinsic expansion capacity. Additionally, we use growth models containing such structures to show that a complex plant cell shape can derive from chemically induced local and polarized expansion of the pectin nanofilaments without turgor-driven growth. Thus, the plant cell wall, outside of the cell itself, is an active participant in shaping plant cells. Extracellular matrix function may similarly guide cell shape in other kingdoms, including Animalia.
Collapse
Affiliation(s)
- Kalina T Haas
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK. .,Laboratoire Matière et Systèmes Complexes, Université Paris Diderot and CNRS UMR7057, 10 rue Alice Domon et Léonie Duquet, 75013 Paris, France
| | - Raymond Wightman
- Microscopy Core Facility, Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Elliot M Meyerowitz
- Howard Hughes Medical Institute and Division of Biology and Biological Engineering 156-29, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125, USA
| | - Alexis Peaucelle
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France.
| |
Collapse
|
63
|
Lamport DTA, Tan L, Held M, Kieliszewski MJ. Phyllotaxis Turns Over a New Leaf-A New Hypothesis. Int J Mol Sci 2020; 21:E1145. [PMID: 32050457 PMCID: PMC7037126 DOI: 10.3390/ijms21031145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/30/2020] [Accepted: 02/05/2020] [Indexed: 12/30/2022] Open
Abstract
Phyllotaxis describes the periodic arrangement of plant organs most conspicuously floral. Oscillators generally underlie periodic phenomena. A hypothetical algorithm generates phyllotaxis regulated by the Hechtian growth oscillator of the stem apical meristem (SAM) protoderm. The oscillator integrates biochemical and mechanical force that regulate morphogenetic gradients of three ionic species, auxin, protons and Ca2+. Hechtian adhesion between cell wall and plasma membrane transduces wall stress that opens Ca2+ channels and reorients auxin efflux "PIN" proteins; they control the auxin-activated proton pump that dissociates Ca2+ bound by periplasmic arabinogalactan proteins (AGP-Ca2+) hence the source of cytosolic Ca2+ waves that activate exocytosis of wall precursors, AGPs and PIN proteins essential for morphogenesis. This novel approach identifies the critical determinants of an algorithm that generates phyllotaxis spiral and Fibonaccian symmetry: these determinants in order of their relative contribution are: (1) size of the apical meristem and the AGP-Ca2+ capacitor; (2) proton pump activity; (3) auxin efflux proteins; (4) Ca2+ channel activity; (5) Hechtian adhesion that mediates the cell wall stress vector. Arguably, AGPs and the AGP-Ca2+ capacitor plays a decisive role in phyllotaxis periodicity and its evolutionary origins.
Collapse
Affiliation(s)
| | - Li Tan
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA;
| | - Michael Held
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA; (M.H.); (M.J.K.)
| | - Marcia J. Kieliszewski
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA; (M.H.); (M.J.K.)
| |
Collapse
|
64
|
ROBINSON SARAH, DURAND‐SMET PAULINE. Combining tensile testing and microscopy to address a diverse range of questions. J Microsc 2020; 278:145-153. [DOI: 10.1111/jmi.12863] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/20/2019] [Accepted: 01/08/2020] [Indexed: 12/23/2022]
Affiliation(s)
- SARAH ROBINSON
- The Sainsbury Laboratory Cambridge University Bateman Street Cambridge UK
| | | |
Collapse
|
65
|
Sede AR, Wengier DL, Borassi C, Estevez JM, Muschietti JP. Imaging and Analysis of the Content of Callose, Pectin, and Cellulose in the Cell Wall of Arabidopsis Pollen Tubes Grown In Vitro. Methods Mol Biol 2020; 2160:233-242. [PMID: 32529441 DOI: 10.1007/978-1-0716-0672-8_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
To achieve fertilization, pollen tubes have to protect and properly deliver sperm cells through the pistil to the ovules. Pollen tube growth is a representative example of polarized growth where new components of the cell wall and plasma membrane are continuously deposited at the tip of the growing cell. The integrity of the cell wall is of fundamental importance to maintain apical growth. For this reason, pollen tube growth has become an excellent model to study the role of polysaccharides and structural cell wall proteins involved in polar cell expansion. However, quantification of structural polysaccharides at the pollen tube cell wall has been challenging due to technical complexity and the difficulty of finding specific dyes. Here, we propose simple methods for imaging and quantification of callose, pectin , and cellulose using specific dyes such as Aniline Blue, Propidium Iodide, and Pontamine Fast Scarlet 4B.
Collapse
Affiliation(s)
- Ana R Sede
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Hector Torres" (INGEBI-CONICET), Buenos Aires, Argentina
| | - Diego L Wengier
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Hector Torres" (INGEBI-CONICET), Buenos Aires, Argentina
| | - Cecilia Borassi
- Fundación Instituto Leloir (FIL-IIBBA-CONICET), Buenos Aires, Argentina
| | - José M Estevez
- Fundación Instituto Leloir (FIL-IIBBA-CONICET), Buenos Aires, Argentina
- Centro de Biotecnología Vegetal (CBV), Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Jorge P Muschietti
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Hector Torres" (INGEBI-CONICET), Buenos Aires, Argentina.
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
66
|
Cifrová P, Oulehlová D, Kollárová E, Martinek J, Rosero A, Žárský V, Schwarzerová K, Cvrčková F. Division of Labor Between Two Actin Nucleators-the Formin FH1 and the ARP2/3 Complex-in Arabidopsis Epidermal Cell Morphogenesis. FRONTIERS IN PLANT SCIENCE 2020; 11:148. [PMID: 32194585 PMCID: PMC7061858 DOI: 10.3389/fpls.2020.00148] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/30/2020] [Indexed: 05/11/2023]
Abstract
The ARP2/3 complex and formins are the only known plant actin nucleators. Besides their actin-related functions, both systems also modulate microtubule organization and dynamics. Loss of the main housekeeping Arabidopsis thaliana Class I membrane-targeted formin FH1 (At3g25500) is known to increase cotyledon pavement cell lobing, while mutations affecting ARP2/3 subunits exhibit an opposite effect. Here we examine the role of FH1 and the ARP2/3 complex subunit ARPC5 (At4g01710) in epidermal cell morphogenesis with focus on pavement cells and trichomes using a model system of single fh1 and arpc5, as well as double fh1 arpc5 mutants. While cotyledon pavement cell shape in double mutants mostly resembled single arpc5 mutants, analysis of true leaf epidermal morphology, as well as actin and microtubule organization and dynamics, revealed a more complex relationship between the two systems and similar, rather than antagonistic, effects on some parameters. Both fh1 and arpc5 mutations increased actin network density and increased cell shape complexity in pavement cells and trichomes of first true leaves, in contrast to cotyledons. Thus, while the two actin nucleation systems have complementary roles in some aspects of cell morphogenesis in cotyledon pavement cells, they may act in parallel in other cell types and developmental stages.
Collapse
Affiliation(s)
- Petra Cifrová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Denisa Oulehlová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Eva Kollárová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Jan Martinek
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Amparo Rosero
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Viktor Žárský
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Kateřina Schwarzerová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Fatima Cvrčková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
- *Correspondence: Fatima Cvrčková,
| |
Collapse
|
67
|
Zhang T, Tang H, Vavylonis D, Cosgrove DJ. Disentangling loosening from softening: insights into primary cell wall structure. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:1101-1117. [PMID: 31469935 DOI: 10.1111/tpj.14519] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/08/2019] [Accepted: 08/19/2019] [Indexed: 05/13/2023]
Abstract
How cell wall elasticity, plasticity, and time-dependent extension (creep) relate to one another, to plant cell wall structure and to cell growth remain unsettled topics. To examine these issues without the complexities of living tissues, we treated cell-free strips of onion epidermal walls with various enzymes and other agents to assess which polysaccharides bear mechanical forces in-plane and out-of-plane of the cell wall. This information is critical for integrating concepts of wall structure, wall material properties, tissue mechanics and mechanisms of cell growth. With atomic force microscopy we also monitored real-time changes in the wall surface during treatments. Driselase, a potent cocktail of wall-degrading enzymes, removed cellulose microfibrils in superficial lamellae sequentially, layer-by-layer, and softened the wall (reduced its mechanical stiffness), yet did not induce wall loosening (creep). In contrast Cel12A, a bifunctional xyloglucanase/cellulase, induced creep with only subtle changes in wall appearance. Both Driselase and Cel12A increased the tensile compliance, but differently for elastic and plastic components. Homogalacturonan solubilization by pectate lyase and calcium chelation greatly increased the indentation compliance without changing tensile compliances. Acidic buffer induced rapid cell wall creep via endogenous α-expansins, with negligible effects on wall compliances. We conclude that these various wall properties are not tightly coupled and therefore reflect distinctive aspects of wall structure. Cross-lamellate networks of cellulose microfibrils influenced creep and tensile stiffness whereas homogalacturonan influenced indentation mechanics. This information is crucial for constructing realistic molecular models that define how wall mechanics and growth depend on primary cell wall structure.
Collapse
Affiliation(s)
- Tian Zhang
- Department of Biology and Center for Lignocellulose Structure and Formation, 208 Mueller Laboratory, Pennsylvania State University, University Park, State College, Pennsylvania, 16802, USA
| | - Haosu Tang
- Department of Physics, Lehigh University, Bethlehem, Pennsylvania, 18015, USA
| | - Dimitrios Vavylonis
- Department of Physics, Lehigh University, Bethlehem, Pennsylvania, 18015, USA
| | - Daniel J Cosgrove
- Department of Biology and Center for Lignocellulose Structure and Formation, 208 Mueller Laboratory, Pennsylvania State University, University Park, State College, Pennsylvania, 16802, USA
| |
Collapse
|
68
|
Wong JH, Kato T, Belteton SA, Shimizu R, Kinoshita N, Higaki T, Sakumura Y, Szymanski DB, Hashimoto T. Basic Proline-Rich Protein-Mediated Microtubules Are Essential for Lobe Growth and Flattened Cell Geometry. PLANT PHYSIOLOGY 2019; 181:1535-1551. [PMID: 31601644 PMCID: PMC6878025 DOI: 10.1104/pp.19.00811] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/30/2019] [Indexed: 05/09/2023]
Abstract
Complex cell shapes are generated first by breaking symmetry, and subsequent polar growth. Localized bending of anticlinal walls initiates lobe formation in the epidermal pavement cells of cotyledons and leaves, but how the microtubule cytoskeleton mediates local cell growth, and how plant pavement cells benefit from adopting jigsaw puzzle-like shapes, are poorly understood. In Arabidopsis (Arabidopsis thaliana), the basic Pro-rich protein (BPP) microtubule-associated protein family comprises seven members. We analyzed lobe morphogenesis in cotyledon pavement cells of a BPP1;BPP2;BPP5 triple knockout mutant. New image analysis methods (MtCurv and BQuant) showed that anticlinal microtubule bundles were significantly reduced and cortical microtubules that fan out radially across the periclinal wall did not enrich at the convex side of developing lobes. Despite these microtubule defects, new lobes were initiated at the same frequency as in wild-type cells, but they did not expand into well-defined protrusions. Eventually, mutant cells formed nearly polygonal shapes and adopted concentric microtubule patterns. The mutant periclinal cell wall bulged outward. The radius of the calculated inscribed circle of the pavement cells, a proposed proxy for maximal stress in the cell wall, was consistently larger in the mutant cells during cotyledon development, and correlated with an increase in cell height. These bpp mutant phenotypes provide genetic and cell biological evidence that initiation and growth of lobes are distinct morphogenetic processes, and that interdigitated cell geometry effectively suppresses large outward bulging of pavement cells.
Collapse
Affiliation(s)
- Jeh Haur Wong
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Takehide Kato
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Samuel A Belteton
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| | - Rie Shimizu
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Nene Kinoshita
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Takumi Higaki
- International Research Organization for Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Yuichi Sakumura
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Daniel B Szymanski
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | - Takashi Hashimoto
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
69
|
Yang Y, Huang W, Wu E, Lin C, Chen B, Lin D. Cortical Microtubule Organization during Petal Morphogenesis in Arabidopsis. Int J Mol Sci 2019; 20:E4913. [PMID: 31623377 PMCID: PMC6801907 DOI: 10.3390/ijms20194913] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/27/2019] [Accepted: 10/01/2019] [Indexed: 12/31/2022] Open
Abstract
Cortical microtubules guide the direction and deposition of cellulose microfibrils to build the cell wall, which in turn influences cell expansion and plant morphogenesis. In the model plant Arabidopsis thaliana (Arabidopsis), petal is a relatively simple organ that contains distinct epidermal cells, such as specialized conical cells in the adaxial epidermis and relatively flat cells with several lobes in the abaxial epidermis. In the past two decades, the Arabidopsis petal has become a model experimental system for studying cell expansion and organ morphogenesis, because petals are dispensable for plant growth and reproduction. Recent advances have expanded the role of microtubule organization in modulating petal anisotropic shape formation and conical cell shaping during petal morphogenesis. Here, we summarize recent studies showing that in Arabidopsis, several genes, such as SPIKE1, Rho of plant (ROP) GTPases, and IPGA1, play critical roles in microtubule organization and cell expansion in the abaxial epidermis during petal morphogenesis. Moreover, we summarize the live-confocal imaging studies of Arabidopsis conical cells in the adaxial epidermis, which have emerged as a new cellular model. We discuss the microtubule organization pattern during conical cell shaping. Finally, we propose future directions regarding the study of petal morphogenesis and conical cell shaping.
Collapse
Affiliation(s)
- Yanqiu Yang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Weihong Huang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Endian Wu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Chentao Lin
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Binqing Chen
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Deshu Lin
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
70
|
Shaw SL. Seeing the Cell Wall in a New Light. PLANT PHYSIOLOGY 2019; 181:9-11. [PMID: 31467140 PMCID: PMC6716248 DOI: 10.1104/pp.19.00776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Sidney L Shaw
- Departments of Biology and Physics, Indiana University, Bloomington, Indiana 47405
| |
Collapse
|