51
|
Gasperini D, Howe GA. Phytohormones in a universe of regulatory metabolites: lessons from jasmonate. PLANT PHYSIOLOGY 2024; 195:135-154. [PMID: 38290050 PMCID: PMC11060663 DOI: 10.1093/plphys/kiae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 02/01/2024]
Abstract
Small-molecule phytohormones exert control over plant growth, development, and stress responses by coordinating the patterns of gene expression within and between cells. Increasing evidence indicates that currently recognized plant hormones are part of a larger group of regulatory metabolites that have acquired signaling properties during the evolution of land plants. This rich assortment of chemical signals reflects the tremendous diversity of plant secondary metabolism, which offers evolutionary solutions to the daunting challenges of sessility and other unique aspects of plant biology. A major gap in our current understanding of plant regulatory metabolites is the lack of insight into the direct targets of these compounds. Here, we illustrate the blurred distinction between classical phytohormones and other bioactive metabolites by highlighting the major scientific advances that transformed the view of jasmonate from an interesting floral scent to a potent transcriptional regulator. Lessons from jasmonate research generally apply to other phytohormones and thus may help provide a broad understanding of regulatory metabolite-protein interactions. In providing a framework that links small-molecule diversity to transcriptional plasticity, we hope to stimulate future research to explore the evolution, functions, and mechanisms of perception of a broad range of plant regulatory metabolites.
Collapse
Affiliation(s)
- Debora Gasperini
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle 06120, Germany
| | - Gregg A Howe
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI 42284, USA
| |
Collapse
|
52
|
Li X, Li C, Shi L, Lv G, Li X, Liu Y, Jia X, Liu J, Chen Y, Zhu L, Fu Y. Jasmonate signaling pathway confers salt tolerance through a NUCLEAR FACTOR-Y trimeric transcription factor complex in Arabidopsis. Cell Rep 2024; 43:113825. [PMID: 38386555 DOI: 10.1016/j.celrep.2024.113825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/02/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
Jasmonate (JA) is a well-known phytohormone essential for plant response to biotic stress. Recently, a crucial role of JA signaling in salt resistance has been highlighted; however, the specific regulatory mechanism remains largely unknown. In this study, we found that the NUCLEAR FACTOR-Y (NF-Y) subunits NF-YA1, NF-YB2, and NF-YC9 form a trimeric complex that positively regulates the expression of salinity-responsive genes, whereas JASMONATE-ZIM DOMAIN protein 8 (JAZ8) directly interacts with three subunits and acts as the key repressor to suppress both the assembly of the NF-YA1-YB2-YC9 trimeric complex and the transcriptional activation activity of the complex. When plants encounter high salinity, JA levels are elevated and perceived by the CORONATINE INSENSITIVE (COI) 1 receptor, leading to the degradation of JAZ8 via the 26S proteasome pathway, thereby releasing the activity of the NF-YA1-YB2-YC9 complex, initiating the activation of salinity-responsive genes, such as MYB75, and thus enhancing the salinity tolerance of plants.
Collapse
Affiliation(s)
- Xing Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| | - Changjiang Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China.
| | - Lei Shi
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| | - Gaofeng Lv
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| | - Xi Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| | - Yixuan Liu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| | - Xiaojie Jia
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| | - Jiyuan Liu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| | - Yuqian Chen
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| | - Lei Zhu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| | - Ying Fu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China.
| |
Collapse
|
53
|
Yoshida T, Fernie AR. Hormonal regulation of plant primary metabolism under drought. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1714-1725. [PMID: 37712613 DOI: 10.1093/jxb/erad358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/13/2023] [Indexed: 09/16/2023]
Abstract
Phytohormones are essential signalling molecules globally regulating many processes of plants, including their growth, development, and stress responses. The promotion of growth and the enhancement of stress resistance have to be balanced, especially under adverse conditions such as drought stress, because of limited resources. Plants cope with drought stress via various strategies, including the transcriptional regulation of stress-responsive genes and the adjustment of metabolism, and phytohormones play roles in these processes. Although abscisic acid (ABA) is an important signal under drought, less attention has been paid to other phytohormones. In this review, we summarize progress in the understanding of phytohormone-regulated primary metabolism under water-limited conditions, especially in Arabidopsis thaliana, and highlight recent findings concerning the amino acids associated with ABA metabolism and signalling. We also discuss how phytohormones function antagonistically and synergistically in order to balance growth and stress responses.
Collapse
Affiliation(s)
- Takuya Yoshida
- Lehrstuhl für Botanik, Technische Universität München, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
| |
Collapse
|
54
|
Xie S, Luo H, Huang W, Jin W, Dong Z. Striking a growth-defense balance: Stress regulators that function in maize development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:424-442. [PMID: 37787439 DOI: 10.1111/jipb.13570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/01/2023] [Indexed: 10/04/2023]
Abstract
Maize (Zea mays) cultivation is strongly affected by both abiotic and biotic stress, leading to reduced growth and productivity. It has recently become clear that regulators of plant stress responses, including the phytohormones abscisic acid (ABA), ethylene (ET), and jasmonic acid (JA), together with reactive oxygen species (ROS), shape plant growth and development. Beyond their well established functions in stress responses, these molecules play crucial roles in balancing growth and defense, which must be finely tuned to achieve high yields in crops while maintaining some level of defense. In this review, we provide an in-depth analysis of recent research on the developmental functions of stress regulators, focusing specifically on maize. By unraveling the contributions of these regulators to maize development, we present new avenues for enhancing maize cultivation and growth while highlighting the potential risks associated with manipulating stress regulators to enhance grain yields in the face of environmental challenges.
Collapse
Affiliation(s)
- Shiyi Xie
- Maize Engineering and Technology Research Center of Hunan Province, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Hongbing Luo
- Maize Engineering and Technology Research Center of Hunan Province, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Wei Huang
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Weiwei Jin
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, Fresh Corn Research Center of BTH, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, China
| | - Zhaobin Dong
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
55
|
Huang P, El‐Soda M, Wolinska KW, Zhao K, Davila Olivas NH, van Loon JJA, Dicke M, Aarts MGM. Genome-wide association analysis reveals genes controlling an antagonistic effect of biotic and osmotic stress on Arabidopsis thaliana growth. MOLECULAR PLANT PATHOLOGY 2024; 25:e13436. [PMID: 38460112 PMCID: PMC10924621 DOI: 10.1111/mpp.13436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 03/11/2024]
Abstract
While the response of Arabidopsis thaliana to drought, herbivory or fungal infection has been well-examined, the consequences of exposure to a series of such (a)biotic stresses are not well studied. This work reports on the genetic mechanisms underlying the Arabidopsis response to single osmotic stress, and to combinatorial stress, either fungal infection using Botrytis cinerea or herbivory using Pieris rapae caterpillars followed by an osmotic stress treatment. Several small-effect genetic loci associated with rosette dry weight (DW), rosette water content (WC), and the projected rosette leaf area in response to combinatorial stress were mapped using univariate and multi-environment genome-wide association approaches. A single-nucleotide polymorphism (SNP) associated with DROUGHT-INDUCED 19 (DI19) was identified by both approaches, supporting its potential involvement in the response to combinatorial stress. Several SNPs were found to be in linkage disequilibrium with known stress-responsive genes such as PEROXIDASE 34 (PRX34), BASIC LEUCINE ZIPPER 25 (bZIP25), RESISTANCE METHYLATED GENE 1 (RMG1) and WHITE RUST RESISTANCE 4 (WRR4). An antagonistic effect between biotic and osmotic stress was found for prx34 and arf4 mutants, which suggests PRX34 and ARF4 play an important role in the response to the combinatorial stress.
Collapse
Affiliation(s)
- Pingping Huang
- Laboratory of GeneticsWageningen University & ResearchWageningenNetherlands
- Present address:
Shenzhen SinoPlant Biotech LtdDapeng Marine Organism Industrial Park, Gongye Ave, Dapeng District518000ShenzhenChina.
| | - Mohamed El‐Soda
- Department of Genetics, Faculty of AgricultureCairo UniversityGizaEgypt
| | | | - Kaige Zhao
- Laboratory of GeneticsWageningen University & ResearchWageningenNetherlands
- Present address:
College of Horticulture and ForestryHuazhong Agriculture UniversityNanhu Road, Hongshan District430070WuhanChina.
| | - Nelson H. Davila Olivas
- Laboratory of EntomologyWageningen University & ResearchWageningenNetherlands
- Present address:
BASF Vegetables SeedsNapoleonsweg 152Nunhem6083 ABNetherlands.
| | - Joop J. A. van Loon
- Laboratory of EntomologyWageningen University & ResearchWageningenNetherlands
| | - Marcel Dicke
- Laboratory of EntomologyWageningen University & ResearchWageningenNetherlands
| | - Mark G. M. Aarts
- Laboratory of GeneticsWageningen University & ResearchWageningenNetherlands
| |
Collapse
|
56
|
Palukaitis P, Yoon JY. Defense signaling pathways in resistance to plant viruses: Crosstalk and finger pointing. Adv Virus Res 2024; 118:77-212. [PMID: 38461031 DOI: 10.1016/bs.aivir.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2024]
Abstract
Resistance to infection by plant viruses involves proteins encoded by plant resistance (R) genes, viz., nucleotide-binding leucine-rich repeats (NLRs), immune receptors. These sensor NLRs are activated either directly or indirectly by viral protein effectors, in effector-triggered immunity, leading to induction of defense signaling pathways, resulting in the synthesis of numerous downstream plant effector molecules that inhibit different stages of the infection cycle, as well as the induction of cell death responses mediated by helper NLRs. Early events in this process involve recognition of the activation of the R gene response by various chaperones and the transport of these complexes to the sites of subsequent events. These events include activation of several kinase cascade pathways, and the syntheses of two master transcriptional regulators, EDS1 and NPR1, as well as the phytohormones salicylic acid, jasmonic acid, and ethylene. The phytohormones, which transit from a primed, resting states to active states, regulate the remainder of the defense signaling pathways, both directly and by crosstalk with each other. This regulation results in the turnover of various suppressors of downstream events and the synthesis of various transcription factors that cooperate and/or compete to induce or suppress transcription of either other regulatory proteins, or plant effector molecules. This network of interactions results in the production of defense effectors acting alone or together with cell death in the infected region, with or without the further activation of non-specific, long-distance resistance. Here, we review the current state of knowledge regarding these processes and the components of the local responses, their interactions, regulation, and crosstalk.
Collapse
Affiliation(s)
- Peter Palukaitis
- Graduate School of Plant Protection and Quarantine, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea.
| | - Ju-Yeon Yoon
- Graduate School of Plant Protection and Quarantine, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea.
| |
Collapse
|
57
|
Hu Y, Zhao H, Xue L, Nie N, Zhang H, Zhao N, He S, Liu Q, Gao S, Zhai H. IbMYC2 Contributes to Salt and Drought Stress Tolerance via Modulating Anthocyanin Accumulation and ROS-Scavenging System in Sweet Potato. Int J Mol Sci 2024; 25:2096. [PMID: 38396773 PMCID: PMC10889443 DOI: 10.3390/ijms25042096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Basic helix-loop-helix (bHLH) transcription factors extensively affect various physiological processes in plant metabolism, growth, and abiotic stress. However, the regulation mechanism of bHLH transcription factors in balancing anthocyanin biosynthesis and abiotic stress in sweet potato (Ipomoea batata (L.) Lam.) remains unclear. Previously, transcriptome analysis revealed the genes that were differentially expressed among the purple-fleshed sweet potato cultivar 'Jingshu 6' and its anthocyanin-rich mutant 'JS6-5'. Here, we selected one of these potential genes, IbMYC2, which belongs to the bHLH transcription factor family, for subsequent analyses. The expression of IbMYC2 in the JS6-5 storage roots is almost four-fold higher than Jingshu 6 and significantly induced by hydrogen peroxide (H2O2), methyl jasmonate (MeJA), NaCl, and polyethylene glycol (PEG)6000. Overexpression of IbMYC2 significantly enhances anthocyanin production and exhibits a certain antioxidant capacity, thereby improving salt and drought tolerance. In contrast, reducing IbMYC2 expression increases its susceptibility. Our data showed that IbMYC2 could elevate the expression of anthocyanin synthesis pathway genes by binding to IbCHI and IbDFR promoters. Additionally, overexpressing IbMYC2 activates genes encoding reactive oxygen species (ROS)-scavenging and proline synthesis enzymes under salt and drought conditions. Taken together, these results demonstrate that the IbMYC2 gene exercises a significant impact on crop quality and stress resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Shaopei Gao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China; (Y.H.); (H.Z.); (L.X.); (N.N.); (H.Z.); (N.Z.); (S.H.); (Q.L.)
| | - Hong Zhai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China; (Y.H.); (H.Z.); (L.X.); (N.N.); (H.Z.); (N.Z.); (S.H.); (Q.L.)
| |
Collapse
|
58
|
Im JH, Son S, Kim WC, Kim K, Mitsuda N, Ko JH, Han KH. Jasmonate activates secondary cell wall biosynthesis through MYC2-MYB46 module. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1099-1114. [PMID: 37983636 DOI: 10.1111/tpj.16541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 11/22/2023]
Abstract
Formation of secondary cell wall (SCW) is tightly regulated spatiotemporally by various developmental and environmental signals. Successful fine-tuning of the trade-off between SCW biosynthesis and stress responses requires a better understanding of how plant growth is regulated under environmental stress conditions. However, the current understanding of the interplay between environmental signaling and SCW formation is limited. The lipid-derived plant hormone jasmonate (JA) and its derivatives are important signaling components involved in various physiological processes including plant growth, development, and abiotic/biotic stress responses. Recent studies suggest that JA is involved in SCW formation but the signaling pathway has not been studied for how JA regulates SCW formation. We tested this hypothesis using the transcription factor MYB46, a master switch for SCW biosynthesis, and JA treatments. Both the transcript and protein levels of MYB46, a master switch for SCW formation, were significantly increased by JA treatment, resulting in the upregulation of SCW biosynthesis. We then show that this JA-induced upregulation of MYB46 is mediated by MYC2, a central regulator of JA signaling, which binds to the promoter of MYB46. We conclude that this MYC2-MYB46 module is a key component of the plant response to JA in SCW formation.
Collapse
Affiliation(s)
- Jong Hee Im
- Department of Horticulture, Michigan State University, East Lansing, Michigan, 48824, USA
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, 48824, USA
- Department of Science Education, Jeju National University, Jeju, Republic of Korea
| | - Seungmin Son
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Won-Chan Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Kihwan Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8566, Japan
| | - Jae-Heung Ko
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Kyung-Hwan Han
- Department of Horticulture, Michigan State University, East Lansing, Michigan, 48824, USA
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, 48824, USA
- Department of Forestry, Michigan State University, East Lansing, Michigan, 48824, USA
| |
Collapse
|
59
|
Wang L, Ma C, Wang S, Yang F, Sun Y, Tang J, Luo J, Wu J. Ethylene and jasmonate signaling converge on gibberellin catabolism during thigmomorphogenesis in Arabidopsis. PLANT PHYSIOLOGY 2024; 194:758-773. [PMID: 37847103 DOI: 10.1093/plphys/kiad556] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/07/2023] [Accepted: 09/17/2023] [Indexed: 10/18/2023]
Abstract
Touch induces marked morphological changes in plants, including reduced rosette diameters and delayed flowering, a process called thigmomorphogenesis. Previous studies have revealed that thigmomorphogenesis in Arabidopsis (Arabidopsis thaliana) results from touch-induced accumulation of jasmonic acid (JA) and GIBBERELLIN 2-OXIDASE7 (GA2ox7) transcripts, which encode a gibberellin (GA) catabolism enzyme, leading to reduced levels of active GAs. However, the mechanisms underlying thigmomorphogenesis remain uncharacterized. Here, we showed that touch induces ethylene (ET) production in Arabidopsis. After touch treatment, ET biosynthesis and signaling mutants exhibited even greater thigmomorphogenic changes and more decreased GA4 contents than did wild-type (WT) plants. Biochemical analysis indicated that the transcription factor ETHYLENE INSENSITIVE3 (EIN3) of the ET pathway binds to the promoter of GA2ox8 (encoding another GA 2-oxidase performing the same GA modification as GA2ox7) and represses GA2ox8 transcription. Moreover, MYC2, the master regulator of JA signaling, directly promoted GA2ox7 expression by binding the G-box motif on GA2ox7 promoter. Further genetic analysis suggested that the ET and JA pathways independently control the expression of GA2ox8 and GA2ox7, respectively. This study reveals that the ET pathway is a novel repressor of touch-induced thigmomorphogenesis and highlights that the ET and JA pathways converge on GA catabolism but play opposite roles to fine-tune GA4 content during thigmomorphogenesis.
Collapse
Affiliation(s)
- Lei Wang
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Canrong Ma
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuanghua Wang
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Yang
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Sun
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinxiang Tang
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ji Luo
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianqiang Wu
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Plant Diversity and Prominent Crops, Beijing 100093, China
| |
Collapse
|
60
|
Zu H, Jin G, Kong Y, Li Z, Lou Y, Li R. The N-terminal α2 helix element is critical for the activity of the rice transcription factor MYC2. PLANT MOLECULAR BIOLOGY 2024; 114:2. [PMID: 38189841 DOI: 10.1007/s11103-023-01411-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/21/2023] [Indexed: 01/09/2024]
Abstract
Jasmonates (JAs) are a class of phytohormones that play a crucial role in plant growth, development, and environmental stress responses. Central to JA signaling are the MYC2-type transcription factors, as they activate the expression of JA-responsive genes. We previously used CRISPR-Cas9-based genome editing to engineer rice OsMYC2 and yielded a mutant (myc2-5) with a single amino acid (aa) deletion (75I) outside the known functional domains of the protein. This myc2-5 mutant also showed some JA-deficient phenotypes, promoting us to investigate how 75I deletion affects JA responses. The mutation is found in the α2 helix element at the N-terminal of OsMYC2. The deletion of 75I in OsMYC2 rendered plants deficient in most of the JA responses, including root growth, leaf senescence, spikelet development, and resistance to pathogens and herbivores. Biochemical assays revealed that the 75I deletion markedly reduced OsMYC2 protein accumulation, subsequently diminishing its transcriptional activity. However, the deletion did not influence the protein's subcellular localization, DNA-binding capability, or its interactions with JAZ transcriptional repressors and the Mediator complex subunit MED25. Additionally, the screening of seven other deletions in the α2 helix further reinforces the importance of this protein element. Our results highlight the significance of the α2 helix in the N-terminus for OsMYC2's functionality, primarily through modulating its protein levels. This insight expands our knowledge of JA signaling and opens new avenues for research into the yet-to-be-explored domains of the MYC2 protein, with the potential to tailor JA responses in rice and other plant species.
Collapse
Affiliation(s)
- Hongyue Zu
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Gaochen Jin
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yaze Kong
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhaoyang Li
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yonggen Lou
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ran Li
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China.
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
61
|
Tiwari R, Garg K, Senthil-Kumar M, Bisht NC. XLG2 and CORI3 function additively to regulate plant defense against the necrotrophic pathogen Sclerotinia sclerotiorum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:616-631. [PMID: 37910396 DOI: 10.1111/tpj.16518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/01/2023] [Accepted: 10/13/2023] [Indexed: 11/03/2023]
Abstract
The membrane-bound heterotrimeric G-proteins in plants play a crucial role in defending against a broad range of pathogens. This study emphasizes the significance of Extra-large Gα protein 2 (XLG2), a plant-specific G-protein, in mediating the plant response to Sclerotinia sclerotiorum, which infects over 600 plant species worldwide. Our analysis of Arabidopsis G-protein mutants showed that loss of XLG2 function increased susceptibility to S. sclerotiorum, accompanied by compromised accumulation of jasmonic acid (JA) during pathogen infection. Overexpression of the XLG2 gene in xlg2 mutant plants resulted in higher resistance and increased JA accumulation during S. sclerotiorum infection. Co-immunoprecipitation (co-IP) analysis on S. sclerotiorum infected Col-0 samples, using two different approaches, identified 201 XLG2-interacting proteins. The identified JA-biosynthetic and JA-responsive proteins had compromised transcript expression in the xlg2 mutant during pathogen infection. XLG2 was found to interact physically with a JA-responsive protein, Coronatine induced 1 (CORI3) in Co-IP, and confirmed using split firefly luciferase complementation and bimolecular fluorescent complementation assays. Additionally, genetic analysis revealed an additive effect of XLG2 and CORI3 on resistance against S. sclerotiorum, JA accumulation, and expression of the defense marker genes. Overall, our study reveals two independent pathways involving XLG2 and CORI3 in contributing resistance against S. sclerotiorum.
Collapse
Affiliation(s)
- Ruchi Tiwari
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Kajal Garg
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Muthappa Senthil-Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Naveen C Bisht
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| |
Collapse
|
62
|
Zhang C, Atanasov KE, Murillo E, Vives-Peris V, Zhao J, Deng C, Gómez-Cadenas A, Alcázar R. Spermine deficiency shifts the balance between jasmonic acid and salicylic acid-mediated defence responses in Arabidopsis. PLANT, CELL & ENVIRONMENT 2023; 46:3949-3970. [PMID: 37651604 DOI: 10.1111/pce.14706] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/02/2023]
Abstract
Polyamines are small aliphatic polycations present in all living organisms. In plants, the most abundant polyamines are putrescine (Put), spermidine (Spd) and spermine (Spm). Polyamine levels change in response to different pathogens, including Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). However, the regulation of polyamine metabolism and their specific contributions to defence are not fully understood. Here we report that stimulation of Put biosynthesis by Pst DC3000 is dependent on coronatine (COR) perception and jasmonic acid (JA) signalling, independently of salicylic acid (SA). Conversely, lack of Spm in spermine synthase (spms) mutant stimulated galactolipids and JA biosynthesis, and JA signalling under basal conditions and during Pst DC3000 infection, whereas compromised SA-pathway activation and defence outputs through SA-JA antagonism. The dampening of SA responses correlated with COR and Pst DC3000-inducible deregulation of ANAC019 expression and its key SA-metabolism gene targets. Spm deficiency also led to enhanced disease resistance to the necrotrophic fungal pathogen Botrytis cinerea and stimulated endoplasmic reticulum (ER) stress signalling in response to Pst DC3000. Overall, our findings provide evidence for the integration of polyamine metabolism in JA- and SA-mediated defence responses, as well as the participation of Spm in buffering ER stress during defence.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Kostadin E Atanasov
- Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Ester Murillo
- Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Vicente Vives-Peris
- Departamento de Biología, Bioquímica y Ciencias Naturales, Universitat Jaume I, Castelló de la Plana, Spain
| | - Jiaqi Zhao
- Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Cuiyun Deng
- Plant Synthetic Biology and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Cerdanyola, Barcelona, Spain
| | - Aurelio Gómez-Cadenas
- Departamento de Biología, Bioquímica y Ciencias Naturales, Universitat Jaume I, Castelló de la Plana, Spain
| | - Rubén Alcázar
- Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
63
|
Khan FS, Goher F, Paulsmeyer MN, Hu CG, Zhang JZ. Calcium (Ca 2+ ) sensors and MYC2 are crucial players during jasmonates-mediated abiotic stress tolerance in plants. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:1025-1034. [PMID: 37422725 DOI: 10.1111/plb.13560] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/27/2023] [Indexed: 07/10/2023]
Abstract
Plants evolve stress-specific responses that sense changes in their external environmental conditions and develop various mechanisms for acclimatization and survival. Calcium (Ca2+ ) is an essential stress-sensing secondary messenger in plants. Ca2+ sensors, including calcium-dependent protein kinases (CDPKs), calmodulins (CaMs), CaM-like proteins (CMLs), and calcineurin B-like proteins (CBLs), are involved in jasmonates (JAs) signalling and biosynthesis. Moreover, JAs are phospholipid-derived phytohormones that control plant response to abiotic stresses. The JAs signalling pathway affects hormone-receptor gene transcription by binding to the basic helix-loop-helix (bHLH) transcription factor. MYC2 acts as a master regulator of JAs signalling module assimilated through various genes. The Ca2+ sensor CML regulates MYC2 and is involved in a distinct mechanism mediating JAs signalling during abiotic stresses. This review highlights the pivotal role of the Ca2+ sensors in JAs biosynthesis and MYC2-mediated JAs signalling during abiotic stresses in plants.
Collapse
Affiliation(s)
- F S Khan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - F Goher
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - M N Paulsmeyer
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Vegetable Crops Research Unit, Madison, Wisconsin, USA
| | - C-G Hu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - J-Z Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
64
|
Liu F, Cai S, Ma Z, Yue H, Xing L, Wang Y, Feng S, Wang L, Dai L, Wan H, Gao J, Chen M, Rahman M, Zhou B. RVE2, a new regulatory factor in jasmonic acid pathway, orchestrates resistance to Verticillium wilt. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2507-2524. [PMID: 37553251 PMCID: PMC10651145 DOI: 10.1111/pbi.14149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 07/06/2023] [Accepted: 07/27/2023] [Indexed: 08/10/2023]
Abstract
Verticillium dahliae, one of the most destructive fungal pathogens of several crops, challenges the sustainability of cotton productivity worldwide because very few widely-cultivated Upland cotton varieties are resistant to Verticillium wilt (VW). Here, we report that REVEILLE2 (RVE2), the Myb-like transcription factor, confers the novel function in resistance to VW by regulating the jasmonic acid (JA) pathway in cotton. RVE2 expression was essentially required for the activation of JA-mediated disease-resistance response. RVE2 physically interacted with TPL/TPRs and disturbed JAZ proteins to recruit TPL and TPR1 in NINJA-dependent manner, which regulated JA response by relieving inhibited-MYC2 activity. The MYC2 then bound to RVE2 promoter for the activation of its transcription, forming feedback loop. Interestingly, a unique truncated RVE2 widely existing in D-subgenome (GhRVE2D) of natural Upland cotton represses the ability of the MYC2 to activate GhRVE2A promoter but not GausRVE2 or GbRVE2. The result could partially explain why Gossypium barbadense popularly shows higher resistance than Gossypium hirsutum. Furthermore, disturbing the JA-signalling pathway resulted into the loss of RVE2-mediated disease-resistance in various plants (Arabidopsis, tobacco and cotton). RVE2 overexpression significantly enhanced the resistance to VW. Collectively, we conclude that RVE2, a new regulatory factor, plays a pivotal role in fine-tuning JA-signalling, which would improve our understanding the mechanisms underlying the resistance to VW.
Collapse
Affiliation(s)
- Fujie Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Sheng Cai
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Zhifeng Ma
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Haoran Yue
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Liangshuai Xing
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Yingying Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Shouli Feng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Liang Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Lingjun Dai
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Hui Wan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Jianbo Gao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Mengfei Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Mehboob‐ur‐ Rahman
- Plant Genomics & Mol. Breeding LabNational Institute for Biotechnology & Genetic Engineering (NIBGE)FaisalabadPakistan
| | - Baoliang Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| |
Collapse
|
65
|
Jin X, Li X, Xie Z, Sun Y, Jin L, Hu T, Huang J. Nuclear factor OsNF-YC5 modulates rice seed germination by regulating synergistic hormone signaling. PLANT PHYSIOLOGY 2023; 193:2825-2847. [PMID: 37706533 DOI: 10.1093/plphys/kiad499] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/15/2023] [Accepted: 08/03/2023] [Indexed: 09/15/2023]
Abstract
Regulation of seed dormancy/germination is of great importance for seedling establishment and crop production. Nuclear factor-Y (NF-Y) transcription factors regulate plant growth and development, as well as stress responses; however, their roles in seed germination remain largely unknown. In this study, we reported that NF-Y gene OsNF-YC5 knockout increased, while its overexpression reduced, the seed germination in rice (Oryza sativa L.). ABA-induced seed germination inhibition assays showed that the osnf-yc5 mutant was less sensitive but OsNF-YC5-overexpressing lines were more sensitive to exogenous ABA than the wild type. Meanwhile, MeJA treatment substantially enhanced the ABA sensitivity of OsNF-YC5-overexpressing lines during seed germination. Mechanistic investigations revealed that the interaction of OSMOTIC STRESS/ABA-ACTIVATED PROTEIN KINASE 9 (SAPK9) with OsNF-YC5 enhanced the stability of OsNF-YC5 by protein phosphorylation, while the interaction between JASMONATE ZIM-domain protein 9 (OsJAZ9) and OsNF-YC5 repressed OsNF-YC5 transcriptional activity and promoted its degradation. Furthermore, OsNF-YC5 transcriptionally activated ABA catabolic gene OsABA8ox3, reducing ABA levels in germinating seeds. However, the transcriptional regulation of OsABA8ox3 by OsNF-YC5 was repressed by addition of OsJAZ9. Notably, OsNF-YC5 improved seed germination under salinity conditions. Further investigation showed that OsNF-YC5 activated the high-affinity K+ transporter gene (OsHAK21) expression, and addition of SAPK9 could increase the transcriptional regulation of OsHAK21 by OsNF-YC5, thus substantially reducing the ROS levels to enhance seed germination under salt stress. Our findings establish that OsNF-YC5 integrates ABA and JA signaling during rice seed germination, shedding light on the molecular networks of ABA-JA synergistic interaction.
Collapse
Affiliation(s)
- Xinkai Jin
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Xingxing Li
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Zizhao Xie
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Ying Sun
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Liang Jin
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Tingzhang Hu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Junli Huang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| |
Collapse
|
66
|
Li Z, Tang Y, Lan G, Yu L, Ding S, She X, He Z. Transcriptome and Metabolome Analyses Reveal That Jasmonic Acids May Facilitate the Infection of Cucumber Green Mottle Mosaic Virus in Bottle Gourd. Int J Mol Sci 2023; 24:16566. [PMID: 38068889 PMCID: PMC10706418 DOI: 10.3390/ijms242316566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Cucumber green mottle mosaic virus (CGMMV) is a typical seed-borne tobamovirus that mainly infects cucurbit crops. Due to the rapid growth of international trade, CGMMV has spread worldwide and become a significant threat to cucurbit industry. Despite various studies focusing on the interaction between CGMMV and host plants, the molecular mechanism of CGMMV infection is still unclear. In this study, we utilized transcriptome and metabolome analyses to investigate the antiviral response of bottle gourd (Lagenaria siceraria) under CGMMV stress. The transcriptome analysis revealed that in comparison to mock-inoculated bottle gourd, 1929 differently expressed genes (DEGs) were identified in CGMMV-inoculated bottle gourd. Among them, 1397 genes were upregulated while 532 genes were downregulated. KEGG pathway enrichment indicated that the DEGs were mainly involved in pathways including the metabolic pathway, the biosynthesis of secondary metabolites, plant hormone signal transduction, plant-pathogen interaction, and starch and sucrose metabolism. The metabolome result showed that there were 76 differentially accumulated metabolites (DAMs), of which 69 metabolites were up-accumulated, and 7 metabolites were down-accumulated. These DAMs were clustered into several pathways, including biosynthesis of secondary metabolites, tyrosine metabolism, flavonoid biosynthesis, carbon metabolism, and plant hormone signal transduction. Combining the transcriptome and metabolome results, the genes and metabolites involved in the jasmonic acid and its derivatives (JAs) synthesis pathway were significantly induced upon CGMMV infection. The silencing of the allene oxide synthase (AOS) gene, which is the key gene involved in JAs synthesis, reduced CGMMV accumulation. These findings suggest that JAs may facilitate CGMMV infection in bottle gourd.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaoman She
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Z.L.); (Y.T.); (G.L.); (L.Y.); (S.D.)
| | - Zifu He
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Z.L.); (Y.T.); (G.L.); (L.Y.); (S.D.)
| |
Collapse
|
67
|
Ding C, Gao J, Zhang S, Jiang N, Su D, Huang X, Zhang Z. The Basic/Helix-Loop-Helix Transcription Factor Family Gene RcbHLH112 Is a Susceptibility Gene in Gray Mould Resistance of Rose (Rosa Chinensis). Int J Mol Sci 2023; 24:16305. [PMID: 38003495 PMCID: PMC10671410 DOI: 10.3390/ijms242216305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/05/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
The basic/helix-loop-helix (bHLH) family is a major family of transcription factors in plants. Although it has been reported that bHLH plays a defensive role against pathogen infection in plants, there is no comprehensive study on the bHLH-related defence response in rose (Rosa sp.). In this study, a genome-wide analysis of bHLH family genes (RcbHLHs) in rose was carried out, including their phylogenetic relationships, gene structure, chromosome localization and collinearity analysis. Via phylogenetic analysis, a total of 121 RcbHLH genes in the rose genome were divided into 21 sub-groups. These RcbHLHs are unevenly distributed in all 7 chromosomes of rose. The occurrence of gene duplication events indicates that whole-genome duplication and segmental duplication may play a key role in gene duplication. Ratios of non-synonymous to synonymous mutation frequency (Ka/Ks) analysis showed that the replicated RcbHLH genes mainly underwent purification selection, and their functional differentiation was limited. Gene expression analysis showed that 46 RcbHLHs were differentially expressed in rose petals upon B. cinerea infection. It is speculated that these RcbHLHs are candidate genes that regulate the response of rose plants to B. cinerea infection. Virus-induced gene silencing (VIGS) confirmed that RcbHLH112 in rose is a susceptibility factor for infection with B. cinerea. This study provides useful information for further study of the functions of the rose bHLH gene family.
Collapse
Affiliation(s)
- Chao Ding
- Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, Taiyuan 030031, China
| | - Junzhao Gao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100107, China; (J.G.)
| | - Shiya Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100107, China; (J.G.)
| | - Ning Jiang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100107, China; (J.G.)
| | - Dongtao Su
- Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, Taiyuan 030031, China
| | - Xinzheng Huang
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhao Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100107, China; (J.G.)
| |
Collapse
|
68
|
Kućko A, de Dios Alché J, Tranbarger TJ, Wilmowicz E. Abscisic acid- and ethylene-induced abscission of yellow lupine flowers is mediated by jasmonates. JOURNAL OF PLANT PHYSIOLOGY 2023; 290:154119. [PMID: 37879220 DOI: 10.1016/j.jplph.2023.154119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/28/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023]
Abstract
The appropriate timing of organ abscission determines plant growth, development, reproductive success, and yield in relation to crop species. Among these, yellow lupine is an example of a crop species that loses many fully developed flowers, which limits the formation of pods with high-protein seeds and affects its economic value. Lupine flower abscission, similarly to the separation of other organs, depends on a complex regulatory network functioning in the cells of the abscission zone (AZ). In the present study, genetic, biochemical, and cellular methods were used to highlight the complexity of the interactions among strong hormonal stimulators of abscission, including abscisic acid (ABA), ethylene, and jasmonates (JAs) precisely in the AZ cells, with all results supporting that the JA-related pathway has an important role in the phytohormonal cross-talk leading to flower abscission in yellow lupine. Based on obtained results, we conclude that ABA and ET have positive influence on JAs biosynthesis and signaling pathway in time-dependent manner. Both phytohormones changes lipoxygenase (LOX) gene expression, affects LOX protein abundance, and JA accumulation in AZ cells. We have also shown that the signaling pathway of JA is highly sensitive to ABA and ET, given the accumulation of COI1 receptor and MYC2 transcription factor in response to these phytohormones. The results presented provide novel information about the JAs-dependent separation of organs and provide insight and details about the phytohormone-related mechanisms of lupine flower abscission.
Collapse
Affiliation(s)
- Agata Kućko
- Department of Plant Physiology, Institute of Biology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland.
| | - Juan de Dios Alché
- Plant Reproductive Biology and Advanced Microscopy Laboratory, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Profesor Albareda 1, E-18008, Granada, Spain.
| | - Timothy John Tranbarger
- UMR DIADE, IRD Centre de Montpellier, Institut de Recherche pour le Développement, Université de Montpellier, 911 Avenue Agropolis BP 64501, 34394 CEDEX 5, Montpellier, France.
| | - Emilia Wilmowicz
- Chair of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 1 Lwowska Street, 87-100, Toruń, Poland.
| |
Collapse
|
69
|
Liu Y, Wu S, Lan K, Wang Q, Ye T, Jin H, Hu T, Xie T, Wei Q, Yin X. An Investigation of the JAZ Family and the CwMYC2-like Protein to Reveal Their Regulation Roles in the MeJA-Induced Biosynthesis of β-Elemene in Curcuma wenyujin. Int J Mol Sci 2023; 24:15004. [PMID: 37834452 PMCID: PMC10573570 DOI: 10.3390/ijms241915004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
β-Elemene (C15H24), a sesquiterpenoid compound isolated from the volatile oil of Curcuma wenyujin, has been proven to be effective for multiple cancers and is widely used in clinical treatment. Unfortunately, the β-elemene content in C. wenyujin is very low, which cannot meet market demands. Our previous research showed that methyl jasmonate (MeJA) induced the accumulation of β-elemene in C. wenyujin. However, the regulatory mechanism is unclear. In this study, 20 jasmonate ZIM-domain (JAZ) proteins in C. wenyujin were identified, which are the core regulatory factors of the JA signaling pathway. Then, the conservative domains, motifs composition, and evolutionary relationships of CwJAZs were analyzed comprehensively and systematically. The interaction analysis indicated that CwJAZs can form homodimers or heterodimers. Fifteen out of twenty CwJAZs were significantly induced via MeJA treatment. As the master switch of the JA signaling pathway, the CwMYC2-like protein has also been identified and demonstrated to interact with CwJAZ2/3/4/5/7/15/17/20. Further research found that the overexpression of the CwMYC2-like gene increased the accumulation of β-elemene in C. wenyujin leaves. Simultaneously, the expressions of HMGR, HMGS, DXS, DXR, MCT, HDS, HDR, and FPPS related to β-elemene biosynthesis were also up-regulated by the CwMYC2-like protein. These results indicate that CwJAZs and the CwMYC2-like protein respond to the JA signal to regulate the biosynthesis of β-elemene in C. wenyujin.
Collapse
Affiliation(s)
- Yuyang Liu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (Y.L.); (S.W.); (K.L.); (Q.W.); (T.Y.); (H.J.); (T.H.); (T.X.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Shiyi Wu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (Y.L.); (S.W.); (K.L.); (Q.W.); (T.Y.); (H.J.); (T.H.); (T.X.)
| | - Kaer Lan
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (Y.L.); (S.W.); (K.L.); (Q.W.); (T.Y.); (H.J.); (T.H.); (T.X.)
| | - Qian Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (Y.L.); (S.W.); (K.L.); (Q.W.); (T.Y.); (H.J.); (T.H.); (T.X.)
| | - Tingyu Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (Y.L.); (S.W.); (K.L.); (Q.W.); (T.Y.); (H.J.); (T.H.); (T.X.)
| | - Huanan Jin
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (Y.L.); (S.W.); (K.L.); (Q.W.); (T.Y.); (H.J.); (T.H.); (T.X.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Tianyuan Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (Y.L.); (S.W.); (K.L.); (Q.W.); (T.Y.); (H.J.); (T.H.); (T.X.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (Y.L.); (S.W.); (K.L.); (Q.W.); (T.Y.); (H.J.); (T.H.); (T.X.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Qiuhui Wei
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (Y.L.); (S.W.); (K.L.); (Q.W.); (T.Y.); (H.J.); (T.H.); (T.X.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaopu Yin
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (Y.L.); (S.W.); (K.L.); (Q.W.); (T.Y.); (H.J.); (T.H.); (T.X.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
70
|
Xu J, Zhao J, Liu J, Dong C, Zhao L, Ai N, Xu P, Feng G, Xu Z, Guo Q, Cheng J, Wang Y, Wang X, Wang N, Xiao S. GbCYP72A1 Improves Resistance to Verticillium Wilt via Multiple Signaling Pathways. PLANT DISEASE 2023; 107:3198-3210. [PMID: 36890127 DOI: 10.1094/pdis-01-23-0033-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Verticillium dahliae is a fungal pathogen that causes Verticillium wilt (VW), which seriously reduces the yield of cotton owing to biological stress. The mechanism underlying the resistance of cotton to VW is highly complex, and the resistance breeding of cotton is consequently limited by the lack of in-depth research. Using quantitative trait loci (QTL) mapping, we previously identified a novel cytochrome P450 (CYP) gene on chromosome D4 of Gossypium barbadense that is associated with resistance to the nondefoliated strain of V. dahliae. In this study, the CYP gene on chromosome D4 was cloned together with its homologous gene on chromosome A4 and were denoted as GbCYP72A1d and GbCYP72A1a, respectively, according to their genomic location and protein subfamily classification. The two GbCYP72A1 genes were induced by V. dahliae and phytohormone treatment, and the findings revealed that the VW resistance of the lines with silenced GbCYP72A1 genes decreased significantly. Transcriptome sequencing and pathway enrichment analyses revealed that the GbCYP72A1 genes primarily affected disease resistance via the plant hormone signal transduction, plant-pathogen interaction, and mitogen-activated protein kinase (MAPK) signaling pathways. Interestingly, the findings revealed that although GbCYP72A1d and GbCYP72A1a had high sequence similarity and both genes enhanced the disease resistance of transgenic Arabidopsis, there was a difference between their disease resistance abilities. Protein structure analysis revealed that this difference was potentially attributed to the presence of a synaptic structure in the GbCYP72A1d protein. Altogether, the findings suggested that the GbCYP72A1 genes play an important role in plant response and resistance to VW.
Collapse
Affiliation(s)
- Jianwen Xu
- Key Laboratory of Cotton and Rapeseed, Institute of Industrial Crops, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jun Zhao
- Key Laboratory of Cotton and Rapeseed, Institute of Industrial Crops, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jianguang Liu
- Key Laboratory of Cotton and Rapeseed, Institute of Industrial Crops, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Chengguang Dong
- Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832000, China
| | - Liang Zhao
- Key Laboratory of Cotton and Rapeseed, Institute of Industrial Crops, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Nijiang Ai
- Shihezi Agricultural Science Research Institute, Shihezi 832000, China
| | - Peng Xu
- Key Laboratory of Cotton and Rapeseed, Institute of Industrial Crops, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Guoli Feng
- Shihezi Agricultural Science Research Institute, Shihezi 832000, China
| | - Zhenzhen Xu
- Key Laboratory of Cotton and Rapeseed, Institute of Industrial Crops, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Qi Guo
- Key Laboratory of Cotton and Rapeseed, Institute of Industrial Crops, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Junling Cheng
- College of Agricultural, Xinjiang Agricultural University, Urumqi 830052, China
| | - Yueping Wang
- College of Agricultural, Xinjiang Agricultural University, Urumqi 830052, China
| | - Xin Wang
- Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832000, China
| | - Ningshan Wang
- Shihezi Agricultural Science Research Institute, Shihezi 832000, China
| | - Songhua Xiao
- Key Laboratory of Cotton and Rapeseed, Institute of Industrial Crops, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
71
|
Pantazopoulou CK, Buti S, Nguyen CT, Oskam L, Weits DA, Farmer EE, Kajala K, Pierik R. Mechanodetection of neighbor plants elicits adaptive leaf movements through calcium dynamics. Nat Commun 2023; 14:5827. [PMID: 37730832 PMCID: PMC10511701 DOI: 10.1038/s41467-023-41530-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 09/07/2023] [Indexed: 09/22/2023] Open
Abstract
Plants detect their neighbors via various cues, including reflected light and touching of leaf tips, which elicit upward leaf movement (hyponasty). It is currently unknown how touch is sensed and how the signal is transferred from the leaf tip to the petiole base that drives hyponasty. Here, we show that touch-induced hyponasty involves a signal transduction pathway that is distinct from light-mediated hyponasty. We found that mechanostimulation of the leaf tip upon touching causes cytosolic calcium ([Ca2+]cyt induction in leaf tip trichomes that spreads towards the petiole. Both perturbation of the calcium response and the absence of trichomes reduce touch-induced hyponasty. Finally, using plant competition assays, we show that touch-induced hyponasty is adaptive in dense stands of Arabidopsis. We thus establish a novel, adaptive mechanism regulating hyponastic leaf movement in response to mechanostimulation by neighbors in dense vegetation.
Collapse
Affiliation(s)
- Chrysoula K Pantazopoulou
- Plant-Environment Signaling, Institute of Environment Biology, Utrecht University, Utrecht, The Netherlands.
| | - Sara Buti
- Plant-Environment Signaling, Institute of Environment Biology, Utrecht University, Utrecht, The Netherlands
| | - Chi Tam Nguyen
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Lisa Oskam
- Plant-Environment Signaling, Institute of Environment Biology, Utrecht University, Utrecht, The Netherlands
| | - Daan A Weits
- Plant-Environment Signaling, Institute of Environment Biology, Utrecht University, Utrecht, The Netherlands
| | - Edward E Farmer
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Kaisa Kajala
- Plant-Environment Signaling, Institute of Environment Biology, Utrecht University, Utrecht, The Netherlands
| | - Ronald Pierik
- Plant-Environment Signaling, Institute of Environment Biology, Utrecht University, Utrecht, The Netherlands.
- Laboratory of Molecular Biology, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
72
|
Pullagurla NJ, Shome S, Yadav R, Laha D. ITPK1 Regulates Jasmonate-Controlled Root Development in Arabidopsis thaliana. Biomolecules 2023; 13:1368. [PMID: 37759768 PMCID: PMC10526342 DOI: 10.3390/biom13091368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/26/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Jasmonic acid (JA) is a plant hormone that regulates a plethora of physiological processes including immunity and development and is perceived by the F-Box protein, Coronatine-insensitive protein 1 (COI1). The discovery of inositol phosphates (InsPs) in the COI1 receptor complex highlights their role in JAperception. InsPs are phosphate-rich signaling molecules that control many aspects of plant physiology. Inositol pyrophosphates (PP-InsPs) are diphosphate containing InsP species, of which InsP7 and InsP8 are the best characterized ones. Different InsP and PP-InsP species are linked with JA-related plant immunity. However, role of PP-InsP species in regulating JA-dependent developmental processes are poorly understood. Recent identification of ITPK1 kinase, responsible for the production of 5-InsP7 from InsP6in planta, provides a platform to investigate the possible involvement of ITPK-derived InsP species in JA-related plant development. Here, in this study, we report that ITPK1-defective plants exhibit increased root growth inhibition to bioactive JA treatment. The itpk1 plants also show increased lateral root density when treated with JA. Notably, JA treatment does not increase ITPK1 protein levels. Gene expression analyses revealed that JA-biosynthetic genes are not differentially expressed in ITPK1-deficient plants. We further demonstrate that genes encoding different JAZ repressor proteins are severely down-regulated in ITPK1-defective plants. Taken together, our study highlights the role of ITPK1 in regulating JA-dependent root architecture development through controlling the expression of different JAZ repressor proteins.
Collapse
Affiliation(s)
| | | | | | - Debabrata Laha
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science (IISc), Bengaluru 560012, India; (N.J.P.); (S.S.); (R.Y.)
| |
Collapse
|
73
|
Prusky D, Romanazzi G. Induced Resistance in Fruit and Vegetables: A Host Physiological Response Limiting Postharvest Disease Development. ANNUAL REVIEW OF PHYTOPATHOLOGY 2023; 61:279-300. [PMID: 37201920 DOI: 10.1146/annurev-phyto-021722-035135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Harvested fruit and vegetables are perishable, subject to desiccation, show increased respiration during ripening, and are colonized by postharvest fungal pathogens. Induced resistance is a strategy to control diseases by eliciting biochemical processes in fruits and vegetables. This is accomplished by modulating the progress of ripening and senescence, which maintains the produce in a state of heightened resistance to decay-causing fungi. Utilization of induced resistance to protect produce has been improved by scientific tools that better characterize physiological changes in plants. Induced resistance slows the decline of innate immunity after harvest and increases the production of defensive responses that directly inhibit plant pathogens. This increase in defense response in fruits and vegetables contributes to higher amounts of phenols and antioxidant compounds, improving both the quality and appearance of the produce. This review summarizes mechanisms and treatments that induce resistance in harvested fruits and vegetables to suppress fungal colonization. Moreover, it highlights the importance of host maturity and stage of ripening as limiting conditions for the improved expression of induced-resistance processes.
Collapse
Affiliation(s)
- Dov Prusky
- Department of Postharvest Science, Agricultural Research Organization, The Volcani Institute, Rishon LeZion, Israel;
| | - Gianfranco Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy;
| |
Collapse
|
74
|
Silva RM, Peres ANA, Peres LEP, Olivares FL, Sangi S, Canellas NA, Spaccini R, Cangemi S, Canellas LP. Humic Substances Isolated from Recycled Biomass Trigger Jasmonic Acid Biosynthesis and Signalling. PLANTS (BASEL, SWITZERLAND) 2023; 12:3148. [PMID: 37687394 PMCID: PMC10490330 DOI: 10.3390/plants12173148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023]
Abstract
Intensive agriculture maintains high crop yields through chemical inputs, which are well known for their adverse effects on environmental quality and human health. Innovative technologies are required to reduce the risk generated by the extensive and harmful use of pesticides. The plant biostimulants made from humic substances isolated from recyclable biomass offer an alternative approach to address the need for replacing conventional agrochemicals without compromising the crop yield. The stimulatory effects of humic substances are commonly associated with plant hormones, particularly auxins. However, jasmonic acid (JA) is crucial metabolite in mediating the defence responses and governing plant growth and development. This work aimed to evaluate the changes in the biosynthesis and signalling pathway of JA in tomato seedlings treated with humic acids (HA) isolated from vermicompost. We use the tomato model system cultivar Micro-Tom (MT) harbouring a reporter gene fused to a synthetic promoter that responds to jasmonic acid (JERE::GUS). The transcript levels of genes involved in JA generation and activity were also determined using qRT-PCR. The application of HA promoted plant growth and altered the JA status, as revealed by both GUS and qRT-PCR assays. Both JA enzymatic synthesis (LOX, OPR3) and JA signalling genes (JAZ and JAR) were found in higher transcription levels in plants treated with HA. In addition, ethylene (ETR4) and auxin (ARF6) signalling components were positively modulated by HA, revealing a hormonal cross-talk. Our results prove that the plant defence system linked to JA can be emulated by HA application without growth inhibition.
Collapse
Affiliation(s)
- Rakiely M. Silva
- Núcleo de Desenvolvimento de Insumos Biológicos para Agricultura (NUDIBA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Ave Alberto Lamego 2000, Campos dos Goytacazes 28013-602, Brazil
| | - Alice N. A. Peres
- Departamento de Ciências Biológicas, Escola Superior de Agricultura ‘‘Luiz de Queiroz’’ (ESALQ), Universidade de São Paulo (USP), Piracicaba 05508-090, Brazil
| | - Lázaro E. P. Peres
- Departamento de Ciências Biológicas, Escola Superior de Agricultura ‘‘Luiz de Queiroz’’ (ESALQ), Universidade de São Paulo (USP), Piracicaba 05508-090, Brazil
| | - Fábio L. Olivares
- Núcleo de Desenvolvimento de Insumos Biológicos para Agricultura (NUDIBA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Ave Alberto Lamego 2000, Campos dos Goytacazes 28013-602, Brazil
| | - Sara Sangi
- Núcleo de Desenvolvimento de Insumos Biológicos para Agricultura (NUDIBA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Ave Alberto Lamego 2000, Campos dos Goytacazes 28013-602, Brazil
| | - Natália A. Canellas
- Núcleo de Desenvolvimento de Insumos Biológicos para Agricultura (NUDIBA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Ave Alberto Lamego 2000, Campos dos Goytacazes 28013-602, Brazil
| | - Riccardo Spaccini
- Centro Interdipartimentale di Ricerca CERMANU, Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy
| | - Silvana Cangemi
- Centro Interdipartimentale di Ricerca CERMANU, Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy
| | - Luciano P. Canellas
- Núcleo de Desenvolvimento de Insumos Biológicos para Agricultura (NUDIBA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Ave Alberto Lamego 2000, Campos dos Goytacazes 28013-602, Brazil
| |
Collapse
|
75
|
Hong Y, Zheng Q, Cheng L, Liu P, Xu G, Zhang H, Cao P, Zhou H. Identification and characterization of TMV-induced volatile signals in Nicotiana benthamiana: evidence for JA/ET defense pathway priming in congeneric neighbors via airborne (E)-2-octenal. Funct Integr Genomics 2023; 23:272. [PMID: 37568053 PMCID: PMC10421810 DOI: 10.1007/s10142-023-01203-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023]
Abstract
Plants release a mixture of volatile compounds when subjects to environmental stress, allowing them to transmit information to neighboring plants. Here, we find that Nicotiana benthamiana plants infected with tobacco mosaic virus (TMV) induces defense responses in neighboring congeners. Analytical screening of volatiles from N. benthamiana at 7 days post inoculation (dpi) using an optimized SPME-GC-MS method showed that TMV triggers the release of several volatiles, such as (E)-2-octenal, 6-methyl-5-hepten-2-one, and geranylacetone. Exposure to (E)-2-octenal enhances the resistance of N. benthamiana plants to TMV and triggers the immune system with upregulation of pathogenesis-related genes, such as NbPR1a, NbPR1b, NbPR2, and NbNPR1, which are related to TMV resistance. Furthermore, (E)-2-octenal upregulates jasmonic acid (JA) that levels up to 400-fold in recipient N. benthamiana plants and significantly affects the expression pattern of key genes in the JA/ET signaling pathway, such as NbMYC2, NbERF1, and NbPDF1.2, while the salicylic acid (SA) level is not significantly affected. Our results show for the first time that the volatile (E)-2-octenal primes the JA/ET pathway and then activates immune responses, ultimately leading to enhanced TMV resistance in adjacent N. benthamiana plants. These findings provide new insights into the role of airborne compounds in virus-induced interplant interactions.
Collapse
Affiliation(s)
- Yi Hong
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Qingxia Zheng
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102200, China
| | - Lingtong Cheng
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Pingping Liu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102200, China
| | - Guoyun Xu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102200, China
| | - Hui Zhang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102200, China
| | - Peijian Cao
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China.
- Beijing Life Science Academy, Beijing, 102200, China.
| | - Huina Zhou
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China.
- Beijing Life Science Academy, Beijing, 102200, China.
| |
Collapse
|
76
|
Yang X, Fu T, Yu R, Zhang L, Yang Y, Xiao D, Wang Y, Wang Y, Wang Y. miR159a modulates poplar resistance against different fungi and bacteria. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107899. [PMID: 37494825 DOI: 10.1016/j.plaphy.2023.107899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/14/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
Trees are inevitably attacked by different kinds of pathogens in their life. However, little is known about the regulatory factors in poplar response to different pathogen infections. MicroRNA159 (miR159) is a highly conserved microRNA (miRNA) in plants and regulates plant development and stress responses. Here, transgenic poplar overexpressing pto-miR159a (OX-159) showed antagonistic regulation mode to poplar stem disease caused by fungi Cytospora chrysosperma and bacteria Lonsdalea populi. OX-159 lines exhibited a higher susceptibility after inoculation with bacterium L. populi, whereas enhanced disease resistance to necrotrophic fungi C. chrysosperma compared with wild-type (WT) poplars. Intriguingly, further disease assay found that OX159 line rendered the poplar susceptible to hemi-biotrophic fungi Colletotrichum gloeosporioide, exhibiting larger necrosis and lower ROS accumulation than WT lines. Transcriptome analyses revealed that more down-regulated differentially expressed genes with disease-resistant domains in OX-159 line compared with WT line. Moreover, the central mediator NPR1 of salicylic acid (SA) pathway showed a decrease in expression level, while jasmonic acid/ethylene (JA/ET) signal pathway marker genes ERF, as well as PR3, MPK3, and MPK6 genes showed an increase level in OX159-2 and OX159-5 compared with WT lines. Further spatio-temporal expression analysis revealed JA/ET signaling was involved in the dynamic response process to C. gloeosporioides in WT and OX159 lines. These results demonstrate that overexpression of pto-miR159a resulted in the crosstalk changes of the downstream hub genes, thereby controlling the disease resistance of poplars, which provides clues for understanding pto-miR159a role in coordinating poplar-pathogen interactions.
Collapse
Affiliation(s)
- Xiaoqian Yang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Tiantian Fu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Ruen Yu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Lichun Zhang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China; Forestry Investigation and Planning Institute of Liaoning Province, Liaoning, 110122, China
| | - Yuzhang Yang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Dandan Xiao
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - YuanYuan Wang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Yonglin Wang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Yanwei Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
77
|
Dai Y, Liu D, Guo W, Liu Z, Zhang X, Shi L, Zhou D, Wang L, Kang K, Wang F, Zhao S, Tan Y, Hu T, Chen W, Li P, Zhou Q, Yuan L, Zhang Z, Chen Y, Zhang W, Li J, Yu L, Xiao S. Poaceae-specific β-1,3;1,4-d-glucans link jasmonate signalling to OsLecRK1-mediated defence response during rice-brown planthopper interactions. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1286-1300. [PMID: 36952539 PMCID: PMC10214751 DOI: 10.1111/pbi.14038] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/30/2023] [Accepted: 02/25/2023] [Indexed: 05/27/2023]
Abstract
Brown planthopper (BPH, Nilaparvata lugens), a highly destructive insect pest, poses a serious threat to rice (Oryza sativa) production worldwide. Jasmonates are key phytohormones that regulate plant defences against BPH; however, the molecular link between jasmonates and BPH responses in rice remains largely unknown. Here, we discovered a Poaceae-specific metabolite, mixed-linkage β-1,3;1,4-d-glucan (MLG), which contributes to jasmonate-mediated BPH resistance. MLG levels in rice significantly increased upon BPH attack. Overexpressing OsCslF6, which encodes a glucan synthase that catalyses MLG biosynthesis, significantly enhanced BPH resistance and cell wall thickness in vascular bundles, whereas knockout of OsCslF6 reduced BPH resistance and vascular wall thickness. OsMYC2, a master transcription factor of jasmonate signalling, directly controlled the upregulation of OsCslF6 in response to BPH feeding. The AT-rich domain of the OsCslF6 promoter varies in rice varieties from different locations and natural variants in this domain were associated with BPH resistance. MLG-derived oligosaccharides bound to the plasma membrane-anchored LECTIN RECEPTOR KINASE1 OsLecRK1 and modulated its activity. Thus, our findings suggest that the OsMYC2-OsCslF6 module regulates pest resistance by modulating MLG production to enhance vascular wall thickness and OsLecRK1-mediated defence signalling during rice-BPH interactions.
Collapse
Affiliation(s)
- Yang‐Shuo Dai
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Di Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Wuxiu Guo
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Zhi‐Xuan Liu
- College of AgronomyHunan Agricultural UniversityChangshaChina
| | - Xue Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Li‐Li Shi
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - De‐Mian Zhou
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Ling‐Na Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Kui Kang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Feng‐Zhu Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Shan‐Shan Zhao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Yi‐Fang Tan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Tian Hu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Wu Chen
- College of AgronomyHunan Agricultural UniversityChangshaChina
| | - Peng Li
- College of AgronomyHunan Agricultural UniversityChangshaChina
| | - Qing‐Ming Zhou
- College of AgronomyHunan Agricultural UniversityChangshaChina
| | - Long‐Yu Yuan
- Plant Protection Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Zhenfei Zhang
- Plant Protection Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Yue‐Qin Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Wen‐Qing Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Juan Li
- College of AgronomyHunan Agricultural UniversityChangshaChina
| | - Lu‐Jun Yu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Shi Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
78
|
Nguyen TH, Thiers L, Van Moerkercke A, Bai Y, Fernández-Calvo P, Minne M, Depuydt T, Colinas M, Verstaen K, Van Isterdael G, Nützmann HW, Osbourn A, Saeys Y, De Rybel B, Vandepoele K, Ritter A, Goossens A. A redundant transcription factor network steers spatiotemporal Arabidopsis triterpene synthesis. NATURE PLANTS 2023; 9:926-937. [PMID: 37188853 DOI: 10.1038/s41477-023-01419-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 04/14/2023] [Indexed: 05/17/2023]
Abstract
Plant specialized metabolites modulate developmental and ecological functions and comprise many therapeutic and other high-value compounds. However, the mechanisms determining their cell-specific expression remain unknown. Here we describe the transcriptional regulatory network that underlies cell-specific biosynthesis of triterpenes in Arabidopsis thaliana root tips. Expression of thalianol and marneral biosynthesis pathway genes depends on the phytohormone jasmonate and is limited to outer tissues. We show that this is promoted by the activity of redundant bHLH-type transcription factors from two distinct clades and coactivated by homeodomain factors. Conversely, the DOF-type transcription factor DAG1 and other regulators prevent expression of the triterpene pathway genes in inner tissues. We thus show how precise expression of triterpene biosynthesis genes is determined by a robust network of transactivators, coactivators and counteracting repressors.
Collapse
Affiliation(s)
- Trang Hieu Nguyen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Louis Thiers
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
| | - Alex Van Moerkercke
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Yuechen Bai
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- School of Life Sciences, Fudan University, Shanghai, P.R. China
| | - Patricia Fernández-Calvo
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Misión Biolóxica de Galicia, CSIC, Pontevedra, Spain
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, Madrid, Spain
| | - Max Minne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Thomas Depuydt
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Maite Colinas
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Kevin Verstaen
- VIB Single Cell Core, Ghent-Leuven, Belgium
- VIB Center for Inflammation Research, Data Mining and Modelling for Biomedicine, Ghent, Belgium
| | - Gert Van Isterdael
- VIB Flow Core, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Hans-Wilhelm Nützmann
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, UK
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, Bath, UK
| | - Anne Osbourn
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, UK
| | - Yvan Saeys
- VIB Center for Inflammation Research, Data Mining and Modelling for Biomedicine, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Bert De Rybel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium
| | - Andrés Ritter
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- VIB Center for Plant Systems Biology, Ghent, Belgium.
| |
Collapse
|
79
|
Yi F, Song A, Cheng K, Liu J, Wang C, Shao L, Wu S, Wang P, Zhu J, Liang Z, Chang Y, Chu Z, Cai C, Zhang X, Wang P, Chen A, Xu J, Burritt DJ, Herrera-Estrella L, Tran LSP, Li W, Cai Y. Strigolactones positively regulate Verticillium wilt resistance in cotton via crosstalk with other hormones. PLANT PHYSIOLOGY 2023; 192:945-966. [PMID: 36718522 PMCID: PMC10231467 DOI: 10.1093/plphys/kiad053] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 06/01/2023]
Abstract
Verticillium wilt caused by Verticillium dahliae is a serious vascular disease in cotton (Gossypium spp.). V. dahliae induces the expression of the CAROTENOID CLEAVAGE DIOXYGENASE 7 (GauCCD7) gene involved in strigolactone (SL) biosynthesis in Gossypium australe, suggesting a role for SLs in Verticillium wilt resistance. We found that the SL analog rac-GR24 enhanced while the SL biosynthesis inhibitor TIS108 decreased cotton resistance to Verticillium wilt. Knock-down of GbCCD7 and GbCCD8b genes in island cotton (Gossypium barbadense) decreased resistance, whereas overexpression of GbCCD8b in upland cotton (Gossypium hirsutum) increased resistance to Verticillium wilt. Additionally, Arabidopsis (Arabidopsis thaliana) SL mutants defective in CCD7 and CCD8 putative orthologs were susceptible, whereas both Arabidopsis GbCCD7- and GbCCD8b-overexpressing plants were more resistant to Verticillium wilt than wild-type (WT) plants. Transcriptome analyses showed that several genes related to the jasmonic acid (JA)- and abscisic acid (ABA)-signaling pathways, such as MYELOCYTOMATOSIS 2 (GbMYC2) and ABA-INSENSITIVE 5, respectively, were upregulated in the roots of WT cotton plants in responses to rac-GR24 and V. dahliae infection but downregulated in the roots of both GbCCD7- and GbCCD8b-silenced cotton plants. Furthermore, GbMYC2 suppressed the expression of GbCCD7 and GbCCD8b by binding to their promoters, which might regulate the homeostasis of SLs in cotton through a negative feedback loop. We also found that GbCCD7- and GbCCD8b-silenced cotton plants were impaired in V. dahliae-induced reactive oxygen species (ROS) accumulation. Taken together, our results suggest that SLs positively regulate cotton resistance to Verticillium wilt through crosstalk with the JA- and ABA-signaling pathways and by inducing ROS accumulation.
Collapse
Affiliation(s)
- Feifei Yi
- State Key Laboratory of Cotton Biology, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, School of Mathematics and Statistics, School of Computer and Information Engineering, Henan University, Kaifeng 475004, China
| | - Aosong Song
- State Key Laboratory of Cotton Biology, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, School of Mathematics and Statistics, School of Computer and Information Engineering, Henan University, Kaifeng 475004, China
| | - Kai Cheng
- State Key Laboratory of Cotton Biology, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, School of Mathematics and Statistics, School of Computer and Information Engineering, Henan University, Kaifeng 475004, China
| | - Jinlei Liu
- State Key Laboratory of Cotton Biology, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, School of Mathematics and Statistics, School of Computer and Information Engineering, Henan University, Kaifeng 475004, China
| | - Chenxiao Wang
- State Key Laboratory of Cotton Biology, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, School of Mathematics and Statistics, School of Computer and Information Engineering, Henan University, Kaifeng 475004, China
| | - Lili Shao
- State Key Laboratory of Cotton Biology, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, School of Mathematics and Statistics, School of Computer and Information Engineering, Henan University, Kaifeng 475004, China
| | - Shuang Wu
- State Key Laboratory of Cotton Biology, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, School of Mathematics and Statistics, School of Computer and Information Engineering, Henan University, Kaifeng 475004, China
| | - Ping Wang
- State Key Laboratory of Cotton Biology, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, School of Mathematics and Statistics, School of Computer and Information Engineering, Henan University, Kaifeng 475004, China
| | - Jiaxuan Zhu
- State Key Laboratory of Cotton Biology, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, School of Mathematics and Statistics, School of Computer and Information Engineering, Henan University, Kaifeng 475004, China
| | - Zhilin Liang
- State Key Laboratory of Cotton Biology, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, School of Mathematics and Statistics, School of Computer and Information Engineering, Henan University, Kaifeng 475004, China
| | - Ying Chang
- State Key Laboratory of Cotton Biology, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, School of Mathematics and Statistics, School of Computer and Information Engineering, Henan University, Kaifeng 475004, China
| | - Zongyan Chu
- Cotton Institution, Kaifeng Academy of Agriculture and Forestry, Kaifeng 475000, China
| | - Chaowei Cai
- State Key Laboratory of Cotton Biology, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, School of Mathematics and Statistics, School of Computer and Information Engineering, Henan University, Kaifeng 475004, China
| | - Xuebin Zhang
- State Key Laboratory of Cotton Biology, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, School of Mathematics and Statistics, School of Computer and Information Engineering, Henan University, Kaifeng 475004, China
| | - Pei Wang
- State Key Laboratory of Cotton Biology, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, School of Mathematics and Statistics, School of Computer and Information Engineering, Henan University, Kaifeng 475004, China
| | - Aimin Chen
- State Key Laboratory of Cotton Biology, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, School of Mathematics and Statistics, School of Computer and Information Engineering, Henan University, Kaifeng 475004, China
| | - Jin Xu
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - David J Burritt
- Department of Botany, University of Otago, Dunedin 9054, New Zealand
| | - Luis Herrera-Estrella
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX 79409, USA
- Unidad de Genomica Avanzada, Centro de Investigaciony de Estudios Avanzados del Intituto Politecnico Nacional, Irapuato 36821, Mexico
| | - Lam-Son Phan Tran
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX 79409, USA
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
| | - Weiqiang Li
- State Key Laboratory of Cotton Biology, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, School of Mathematics and Statistics, School of Computer and Information Engineering, Henan University, Kaifeng 475004, China
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Jilin Da’an Agro-ecosystem National Observation Research Station, Changchun 130102, China
| | - Yingfan Cai
- State Key Laboratory of Cotton Biology, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, School of Mathematics and Statistics, School of Computer and Information Engineering, Henan University, Kaifeng 475004, China
| |
Collapse
|
80
|
He K, Du J, Han X, Li H, Kui M, Zhang J, Huang Z, Fu Q, Jiang Y, Hu Y. PHOSPHATE STARVATION RESPONSE1 (PHR1) interacts with JASMONATE ZIM-DOMAIN (JAZ) and MYC2 to modulate phosphate deficiency-induced jasmonate signaling in Arabidopsis. THE PLANT CELL 2023; 35:2132-2156. [PMID: 36856677 PMCID: PMC10226604 DOI: 10.1093/plcell/koad057] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/21/2022] [Accepted: 02/03/2023] [Indexed: 05/30/2023]
Abstract
Phosphorus (P) is a macronutrient necessary for plant growth and development. Inorganic phosphate (Pi) deficiency modulates the signaling pathway of the phytohormone jasmonate in Arabidopsis thaliana, but the underlying molecular mechanism currently remains elusive. Here, we confirmed that jasmonate signaling was enhanced under low Pi conditions, and the CORONATINE INSENSITIVE1 (COI1)-mediated pathway is critical for this process. A mechanistic investigation revealed that several JASMONATE ZIM-DOMAIN (JAZ) repressors physically interacted with the Pi signaling-related core transcription factors PHOSPHATE STARVATION RESPONSE1 (PHR1), PHR1-LIKE2 (PHL2), and PHL3. Phenotypic analyses showed that PHR1 and its homologs positively regulated jasmonate-induced anthocyanin accumulation and root growth inhibition. PHR1 stimulated the expression of several jasmonate-responsive genes, whereas JAZ proteins interfered with its transcriptional function. Furthermore, PHR1 physically associated with the basic helix-loop-helix (bHLH) transcription factors MYC2, MYC3, and MYC4. Genetic analyses and biochemical assays indicated that PHR1 and MYC2 synergistically increased the transcription of downstream jasmonate-responsive genes and enhanced the responses to jasmonate. Collectively, our study reveals the crucial regulatory roles of PHR1 in modulating jasmonate responses and provides a mechanistic understanding of how PHR1 functions together with JAZ and MYC2 to maintain the appropriate level of jasmonate signaling under conditions of Pi deficiency.
Collapse
Affiliation(s)
- Kunrong He
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiancan Du
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xiao Han
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Huiqiong Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Mengyi Kui
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juping Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhichong Huang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Qiantang Fu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yanjuan Jiang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Yanru Hu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
81
|
Degtyaryov E, Pigolev A, Miroshnichenko D, Frolov A, Basnet AT, Gorbach D, Leonova T, Pushin AS, Alekseeva V, Dolgov S, Savchenko T. 12-Oxophytodienoate Reductase Overexpression Compromises Tolerance to Botrytis cinerea in Hexaploid and Tetraploid Wheat. PLANTS (BASEL, SWITZERLAND) 2023; 12:2050. [PMID: 37653967 PMCID: PMC10222670 DOI: 10.3390/plants12102050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 09/02/2023]
Abstract
12-Oxophytodienoate reductase is the enzyme involved in the biosynthesis of phytohormone jasmonates, which are considered to be the major regulators of plant tolerance to biotic challenges, especially necrotrophic pathogens. However, we observe compromised tolerance to the necrotrophic fungal pathogen Botrytis cinerea in transgenic hexaploid bread wheat and tetraploid emmer wheat plants overexpressing 12-OXOPHYTODIENOATE REDUCTASE-3 gene from Arabidopsis thaliana, while in Arabidopsis plants themselves, endogenously produced and exogenously applied jasmonates exert a strong protective effect against B. cinerea. Exogenous application of methyl jasmonate on hexaploid and tetraploid wheat leaves suppresses tolerance to B. cinerea and induces the formation of chlorotic damages. Exogenous treatment with methyl jasmonate in concentrations of 100 µM and higher causes leaf yellowing even in the absence of the pathogen, in agreement with findings on the role of jasmonates in the regulation of leaf senescence. Thereby, the present study demonstrates the negative role of the jasmonate system in hexaploid and tetraploid wheat tolerance to B. cinerea and reveals previously unknown jasmonate-mediated responses.
Collapse
Affiliation(s)
- Evgeny Degtyaryov
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (E.D.); (A.P.); (D.M.)
| | - Alexey Pigolev
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (E.D.); (A.P.); (D.M.)
| | - Dmitry Miroshnichenko
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (E.D.); (A.P.); (D.M.)
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (A.S.P.); (V.A.); (S.D.)
| | - Andrej Frolov
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany; (A.F.); (A.T.B.); (D.G.); (T.L.)
- Laboratory of Analytical Biochemistry and Biotechnology, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia
| | - Adi Ti Basnet
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany; (A.F.); (A.T.B.); (D.G.); (T.L.)
| | - Daria Gorbach
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany; (A.F.); (A.T.B.); (D.G.); (T.L.)
| | - Tatiana Leonova
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany; (A.F.); (A.T.B.); (D.G.); (T.L.)
| | - Alexander S. Pushin
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (A.S.P.); (V.A.); (S.D.)
| | - Valeriya Alekseeva
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (A.S.P.); (V.A.); (S.D.)
| | - Sergey Dolgov
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (A.S.P.); (V.A.); (S.D.)
| | - Tatyana Savchenko
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (E.D.); (A.P.); (D.M.)
| |
Collapse
|
82
|
Yeo IC, de Azevedo Manhaes AME, Liu J, Avila J, He P, Devarenne TP. An unexpected role for tomato threonine deaminase 2 in host defense against bacterial infection. PLANT PHYSIOLOGY 2023; 192:527-545. [PMID: 36530164 PMCID: PMC10152684 DOI: 10.1093/plphys/kiac584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 05/03/2023]
Abstract
The hormones salicylic acid (SA) and jasmonic acid (JA) often act antagonistically in controlling plant defense pathways in response to hemibiotrophs/biotrophs (hemi/biotroph) and herbivores/necrotrophs, respectively. Threonine deaminase (TD) converts threonine to α-ketobutyrate and ammonia as the committed step in isoleucine (Ile) biosynthesis and contributes to JA responses by producing the Ile needed to make the bioactive JA-Ile conjugate. Tomato (Solanum lycopersicum) plants have two TD genes: TD1 and TD2. A defensive role for TD2 against herbivores has been characterized in relation to JA-Ile production. However, it remains unknown whether TD2 is also involved in host defense against bacterial hemi/biotrophic and necrotrophic pathogens. Here, we show that in response to the bacterial pathogen-associated molecular pattern (PAMP) flagellin flg22 peptide, an activator of SA-based defense responses, TD2 activity is compromised, possibly through carboxy-terminal cleavage. TD2 knockdown (KD) plants showed increased resistance to the hemibiotrophic bacterial pathogen Pseudomonas syringae but were more susceptible to the necrotrophic fungal pathogen Botrytis cinerea, suggesting TD2 plays opposite roles in response to hemibiotrophic and necrotrophic pathogens. This TD2 KD plant differential response to different pathogens is consistent with SA- and JA-regulated defense gene expression. flg22-treated TD2 KD plants showed high expression levels of SA-responsive genes, whereas TD2 KD plants treated with the fungal PAMP chitin showed low expression levels of JA-responsive genes. This study indicates TD2 acts negatively in defense against hemibiotrophs and positively against necrotrophs and provides insight into a new TD2 function in the elaborate crosstalk between SA and JA signaling induced by pathogen infection.
Collapse
Affiliation(s)
- In-Cheol Yeo
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA
| | | | - Jun Liu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA
| | - Julian Avila
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA
| | - Ping He
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA
| | - Timothy P Devarenne
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
83
|
Kayani SI, Ma Y, Fu X, Qian S, Li Y, Rahman SU, Peng B, Liu H, Tang K. JA-regulated AaGSW1-AaYABBY5/AaWRKY9 complex regulates artemisinin biosynthesis in Artemisia annua. PLANT & CELL PHYSIOLOGY 2023:pcad035. [PMID: 37098222 DOI: 10.1093/pcp/pcad035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 06/19/2023]
Abstract
Artemisinin, a sesquiterpene lactone from A. annua, is an essential therapeutic against malaria. YABBY family transcription factor; AaYABBY5 is an activator of AaCYP71AV1 (cytochrome P450-dependent hydroxylase) and AaDBR2 (double bond reductase 2); however, the protein-protein interactions of AaYABBY5, as well as the mechanism of its regulation, are not elucidated before. AaWRKY9 protein is a positive regulator of artemisinin biosynthesis that activates AaGSW1 (Glandular trichome specific WRKY1) and AaDBR2 (double bond reductase 2), respectively. In this study, YABBY-WRKY interactions are revealed to indirectly regulate artemisinin production. AaYABBY5 significantly increased the activity of the luciferase (LUC) gene fused to the promoter of AaGSW1. Towards the molecular basis of this regulation, AaYABBY5 interaction with AaWRKY9 protein was found. The combined effectors AaYABBY5 + AaWRKY9 showed synergistic effects toward the activities of AaGSW1, and AaDBR2 promoters, respectively. In AaYABBY5 over-expression plants, the expression of GSW1 was found significantly increase when compared to that of AaYABBY5 antisense or control plants. Secondly, AaGSW1 was seen as an upstream activator of AaYABBY5. Thirdly, it was found that AaJAZ8, a transcriptional repressor of jasmonates signaling, interacted with AaYABBY5 and attenuated its activity. Co-expression of AaYABBY5 and antiAaJAZ8 in A. annua increased the activity of AaYABBY5 towards artemisinin biosynthesis. For the first time, the current study provided the molecular basis of regulation of artemisinin biosynthesis through YABBY-WRKY interactions and its regulation through AaJAZ8. This knowledge provides AaYABBY5 overexpression plants as a powerful genetic resource for artemisinin biosynthesis.
Collapse
Affiliation(s)
- Sadaf-Ilyas Kayani
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Food and Biological Engineering, Jiangsu University
| | - Yanan Ma
- Memorial Sloan Kettering Cancer Center, New York City, United States
| | - Xueqing Fu
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shen Qian
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yongpeng Li
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Saeed-Ur Rahman
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bowen Peng
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hang Liu
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kexuan Tang
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
84
|
Karapetyan S, Mwimba M, Dong X. Circadian redox rhythm gates immune-induced cell death distinctly from the genetic clock. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.21.535069. [PMID: 37131835 PMCID: PMC10153234 DOI: 10.1101/2023.04.21.535069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Organisms use circadian clocks to synchronize physiological processes to anticipate the Earth’s day-night cycles and regulate responses to environmental stresses to gain competitive advantage 1 . While divergent genetic clocks have been studied extensively in bacteria, fungi, plants, and animals, a conserved circadian redox rhythm has only recently been reported and hypothesized to be a more ancient clock 2, 3 . However, it is controversial whether the redox rhythm serves as an independent clock and controls specific biological processes 4 . Here, we uncovered the coexistence of redox and genetic rhythms with distinct period lengths and transcriptional targets through concurrent metabolic and transcriptional time-course measurements in an Arabidopsis long-period clock mutant 5 . Analysis of the target genes indicated regulation of the immune-induced programmed cell death (PCD) by the redox rhythm. Moreover, this time-of-day-sensitive PCD was eliminated by redox perturbation and by blocking the signalling pathway of the plant defence hormones jasmonic acid/ethylene, while remaining intact in a genetic-clock-impaired line. We demonstrate that compared to robust genetic clocks, the more sensitive circadian redox rhythm serves as a signalling hub in regulating incidental energy-intensive processes, such as immune-induced PCD 6 , to provide organisms a flexible strategy to prevent metabolic overload caused by stress, a unique role for the redox oscillator.
Collapse
|
85
|
Méteignier LV. Tanned but not burned: A negative feedback loop controls Citrus fruit coloration. THE PLANT CELL 2023; 35:1163-1164. [PMID: 36680429 PMCID: PMC10052364 DOI: 10.1093/plcell/koad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 06/17/2023]
Affiliation(s)
- Louis-Valentin Méteignier
- Assistant Features Editor, The Plant Cell, American Society of Plant Biologists, USA
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| |
Collapse
|
86
|
Pérez-Llorca M, Pollmann S, Müller M. Ethylene and Jasmonates Signaling Network Mediating Secondary Metabolites under Abiotic Stress. Int J Mol Sci 2023; 24:5990. [PMID: 36983071 PMCID: PMC10051637 DOI: 10.3390/ijms24065990] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Plants are sessile organisms that face environmental threats throughout their life cycle, but increasing global warming poses an even more existential threat. Despite these unfavorable circumstances, plants try to adapt by developing a variety of strategies coordinated by plant hormones, resulting in a stress-specific phenotype. In this context, ethylene and jasmonates (JAs) present a fascinating case of synergism and antagonism. Here, Ethylene Insensitive 3/Ethylene Insensitive-Like Protein1 (EIN3/EIL1) and Jasmonate-Zim Domain (JAZs)-MYC2 of the ethylene and JAs signaling pathways, respectively, appear to act as nodes connecting multiple networks to regulate stress responses, including secondary metabolites. Secondary metabolites are multifunctional organic compounds that play crucial roles in stress acclimation of plants. Plants that exhibit high plasticity in their secondary metabolism, which allows them to generate near-infinite chemical diversity through structural and chemical modifications, are likely to have a selective and adaptive advantage, especially in the face of climate change challenges. In contrast, domestication of crop plants has resulted in change or even loss in diversity of phytochemicals, making them significantly more vulnerable to environmental stresses over time. For this reason, there is a need to advance our understanding of the underlying mechanisms by which plant hormones and secondary metabolites respond to abiotic stress. This knowledge may help to improve the adaptability and resilience of plants to changing climatic conditions without compromising yield and productivity. Our aim in this review was to provide a detailed overview of abiotic stress responses mediated by ethylene and JAs and their impact on secondary metabolites.
Collapse
Affiliation(s)
- Marina Pérez-Llorca
- Department of Biology, Health and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Stephan Pollmann
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC), Universidad Politécnica de Madrid (UPM), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Ali-Mentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| | - Maren Müller
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
87
|
Mei S, Zhang M, Ye J, Du J, Jiang Y, Hu Y. Auxin contributes to jasmonate-mediated regulation of abscisic acid signaling during seed germination in Arabidopsis. THE PLANT CELL 2023; 35:1110-1133. [PMID: 36516412 PMCID: PMC10015168 DOI: 10.1093/plcell/koac362] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 10/21/2022] [Accepted: 12/09/2022] [Indexed: 05/30/2023]
Abstract
Abscisic acid (ABA) represses seed germination and postgerminative growth in Arabidopsis thaliana. Auxin and jasmonic acid (JA) stimulate ABA function; however, the possible synergistic effects of auxin and JA on ABA signaling and the underlying molecular mechanisms remain elusive. Here, we show that exogenous auxin works synergistically with JA to enhance the ABA-induced delay of seed germination. Auxin biosynthesis, perception, and signaling are crucial for JA-promoted ABA responses. The auxin-dependent transcription factors AUXIN RESPONSE FACTOR10 (ARF10) and ARF16 interact with JASMONATE ZIM-DOMAIN (JAZ) repressors of JA signaling. ARF10 and ARF16 positively mediate JA-increased ABA responses, and overaccumulation of ARF16 partially restores the hyposensitive phenotype of JAZ-accumulating plants defective in JA signaling in response to combined ABA and JA treatment. Furthermore, ARF10 and ARF16 physically associate with ABSCISIC ACID INSENSITIVE5 (ABI5), a critical regulator of ABA signaling, and the ability of ARF16 to stimulate JA-mediated ABA responses is mainly dependent on ABI5. ARF10 and ARF16 activate the transcriptional function of ABI5, whereas JAZ repressors antagonize their effects. Collectively, our results demonstrate that auxin contributes to the synergetic modulation of JA on ABA signaling, and explain the mechanism by which ARF10/16 coordinate with JAZ and ABI5 to integrate the auxin, JA, and ABA signaling pathways.
Collapse
Affiliation(s)
- Song Mei
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China
| | - Minghui Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingwen Ye
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Jiancan Du
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yanjuan Jiang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yanru Hu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
88
|
Zhou GD, He P, Tian L, Xu S, Yang B, Liu L, Wang Y, Bai T, Li X, Li S, Zheng SJ. Disentangling the resistant mechanism of Fusarium wilt TR4 interactions with different cultivars and its elicitor application. FRONTIERS IN PLANT SCIENCE 2023; 14:1145837. [PMID: 36938065 PMCID: PMC10018200 DOI: 10.3389/fpls.2023.1145837] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Fusarium wilt of banana, especially Tropical Race 4 (TR4) is a major factor restricting banana production. Developing a resistant cultivar and inducing plant defenses by elicitor application are currently two of the best options to control this disease. Isotianil is a monocarboxylic acid amide that has been used as a fungicide to control rice blast and could potentially induce systemic acquired resistance in plants. To determine the control effect of elicitor isotianil on TR4 in different resistant cultivars, a greenhouse pot experiment was conducted and its results showed that isotianil could significantly alleviate the symptoms of TR4, provide enhanced disease control on the cultivars 'Baxi' and 'Yunjiao No.1' with control effect 50.14% and 56.14%, respectively. We compared the infection processes in 'Baxi' (susceptible cultivars) and 'Yunjiao No.1' (resistant cultivars) two cultivars inoculated with pathogen TR4. The results showed that TR4 hyphae could rapidly penetrate the cortex into the root vascular bundle for colonization, and the colonization capacity in 'Baxi' was significantly higher than that in 'Yunjiao No.1'. The accumulation of a large number of starch grains was observed in corms cells, and further analysis showed that the starch content in 'Yunjiao No. 1' as resistant cultivar was significantly higher than that in 'Baxi' as susceptible cultivar, and isotianil application could significantly increase the starch content in 'Baxi'. Besides, a mass of tyloses were observed in the roots and corms and these tyloses increased after application with isotianil. Furthermore, the total starch and tyloses contents and the control effect in the corms of 'Yunjiao No.1' was higher than that in the 'Baxi'. Moreover, the expression levels of key genes for plant resistance induction and starch synthesis were analyzed, and the results suggested that these genes were significantly upregulated at different time points after the application of isotianil. These results suggest that there are significant differences between cultivars in response to TR4 invasion and plant reactions with respect to starch accumulation, tyloses formation and the expression of plant resistance induction and starch synthesis related genes. Results also indicate that isotianil application may contribute to disease control by inducing host plant defense against TR4 infection and could be potentially used together with resistant cultivar as integrated approach to manage this destructive disease. Further research under field conditions should be included in the next phases of study.
Collapse
Affiliation(s)
- Guang-Dong Zhou
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
- Center For Potato Research, Resource Plant Research Institute, Yunnan University, Kunming, Yunnan, China
| | - Ping He
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Ministry of Education Key Laboratory of Agriculture Biodiversity for Plant Disease Management, College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Libo Tian
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
- Center For Potato Research, Resource Plant Research Institute, Yunnan University, Kunming, Yunnan, China
| | - Shengtao Xu
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Baoming Yang
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Lina Liu
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Yongfen Wang
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
- Institute of Tropical and Subtropical Industry Crops, Yunnan Academy of Agricultural Sciences, Baoshan, China
| | - Tingting Bai
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Xundong Li
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Shu Li
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Si-Jun Zheng
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
- Bioversity International, Kunming, Yunnan, China
| |
Collapse
|
89
|
Han X, Kui M, Xu T, Ye J, Du J, Yang M, Jiang Y, Hu Y. CO interacts with JAZ repressors and bHLH subgroup IIId factors to negatively regulate jasmonate signaling in Arabidopsis seedlings. THE PLANT CELL 2023; 35:852-873. [PMID: 36427252 PMCID: PMC9940882 DOI: 10.1093/plcell/koac331] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/17/2022] [Indexed: 06/01/2023]
Abstract
CONSTANS (CO) is a master flowering-time regulator that integrates photoperiodic and circadian signals in Arabidopsis thaliana. CO is expressed in multiple tissues, including young leaves and seedling roots, but little is known about the roles and underlying mechanisms of CO in mediating physiological responses other than flowering. Here, we show that CO expression is responsive to jasmonate. CO negatively modulated jasmonate-imposed root-growth inhibition and anthocyanin accumulation. Seedlings from co mutants were more sensitive to jasmonate, whereas overexpression of CO resulted in plants with reduced sensitivity to jasmonate. Moreover, CO mediated the diurnal gating of several jasmonate-responsive genes under long-day conditions. We demonstrate that CO interacts with JASMONATE ZIM-DOMAIN (JAZ) repressors of jasmonate signaling. Genetic analyses indicated that CO functions in a CORONATINE INSENSITIVE1 (COI1)-dependent manner to modulate jasmonate responses. Furthermore, CO physically associated with the basic helix-loop-helix (bHLH) subgroup IIId transcription factors bHLH3 and bHLH17. CO acted cooperatively with bHLH17 in suppressing jasmonate signaling, but JAZ proteins interfered with their transcriptional functions and physical interaction. Collectively, our results reveal the crucial regulatory effects of CO on mediating jasmonate responses and explain the mechanism by which CO works together with JAZ and bHLH subgroup IIId factors to fine-tune jasmonate signaling.
Collapse
Affiliation(s)
- Xiao Han
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Mengyi Kui
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingting Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingwen Ye
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Jiancan Du
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Milian Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yanjuan Jiang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yanru Hu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
90
|
Abstract
Jasmonate is a well-known defence hormone for plants, but it is also necessary for growth and development. Indeed, the identification of the COI1 receptor was based on the jasmonate-triggered response of root growth inhibition. In this special issue, a collection of review papers and two research papers discuss the current state of progress in this field, covering areas from seed germination and flowering to the Jasminum sambac genome.
Collapse
|
91
|
Han X, Kui M, He K, Yang M, Du J, Jiang Y, Hu Y. Jasmonate-regulated root growth inhibition and root hair elongation. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:1176-1185. [PMID: 36346644 PMCID: PMC9923215 DOI: 10.1093/jxb/erac441] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/05/2022] [Indexed: 06/01/2023]
Abstract
The phytohormone jasmonate is an essential endogenous signal in the regulation of multiple plant processes for environmental adaptation, such as primary root growth inhibition and root hair elongation. Perception of environmental stresses promotes the accumulation of jasmonate, which is sensed by the CORONATINE INSENSITIVE1 (COI1)-JASMONATE ZIM-DOMAIN (JAZ) co-receptor, triggering the degradation of JAZ repressors and induction of transcriptional reprogramming. The basic helix-loop-helix (bHLH) subgroup IIIe transcription factors MYC2, MYC3, and MYC4 are the most extensively characterized JAZ-binding factors and together stimulate jasmonate-signaled primary root growth inhibition. Conversely, the bHLH subgroup IIId transcription factors (i.e. bHLH3 and bHLH17) physically associate with JAZ proteins and suppress jasmonate-induced root growth inhibition. For root hair development, JAZ proteins interact with and inhibit ROOT HAIR DEFECTIVE 6 (RHD6) and RHD6 LIKE1 (RSL1) transcription factors to modulate jasmonate-enhanced root hair elongation. Moreover, jasmonate also interacts with other signaling pathways (such as ethylene and auxin) to regulate primary root growth and/or root hair elongation. Here, we review recent progress into jasmonate-mediated primary root growth and root hair development.
Collapse
Affiliation(s)
- Xiao Han
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Mengyi Kui
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kunrong He
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Milian Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiancan Du
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yanjuan Jiang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | | |
Collapse
|
92
|
Yuan M, Shu G, Zhou J, He P, Xiang L, Yang C, Chen M, Liao Z, Zhang F. AabHLH113 integrates jasmonic acid and abscisic acid signaling to positively regulate artemisinin biosynthesis in Artemisia annua. THE NEW PHYTOLOGIST 2023; 237:885-899. [PMID: 36271612 DOI: 10.1111/nph.18567] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Artemisinin, a sesquiterpene lactone isolated from Artemisia annua, is in huge market demand due to its efficient antimalarial action, especially after the COVID-19 pandemic. Many researchers have elucidated that phytohormones jasmonic acid (JA) and abscisic acid (ABA) positively regulate artemisinin biosynthesis via types of transcription factors (TFs). However, the crosstalk between JA and ABA in regulating artemisinin biosynthesis remains unclear. Here, we identified a novel ABA- and JA-induced bHLH TF, AabHLH113, which positively regulated artemisinin biosynthesis by directly binding to the promoters of artemisinin biosynthetic genes, DBR2 and ALDH1. The contents of artemisinin and dihydroartemisinic acid increased by 1.71- to 2.06-fold and 1.47- to 2.23-fold, respectively, in AabHLH1113 overexpressed A. annua, whereas they decreased by 14-36% and 26-53%, respectively, in RNAi-AabHLH113 plants. Furthermore, we demonstrated that AabZIP1 and AabHLH112, which, respectively, participate in ABA and JA signaling pathway to regulate artemisinin biosynthesis, directly bind to and activate the promoter of AabHLH113. Collectively, we revealed a complex network in which AabHLH113 plays a key interrelational role to integrate ABA- and JA-mediated regulation of artemisinin biosynthesis.
Collapse
Affiliation(s)
- Mingyuan Yuan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Guoping Shu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jiaheng Zhou
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Ping He
- Chongqing Academy of Science and Technology, Chongqing, 401123, China
| | - Lien Xiang
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637009, Sichuan, China
| | - Chunxian Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Ming Chen
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Zhihua Liao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Chongqing Academy of Science and Technology, Chongqing, 401123, China
| | - Fangyuan Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, School of Life Sciences, Southwest University, Chongqing, 400715, China
| |
Collapse
|
93
|
Yi R, Shan X. Post-translational modifications: emerging regulators manipulating jasmonate biosynthesis and signaling. PLANT CELL REPORTS 2023; 42:215-222. [PMID: 36436084 DOI: 10.1007/s00299-022-02948-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Jasmonate (JA) is one of the key phytohormones essential for plant development and defense processes. The core JA biosynthetic and signaling pathways have been well-characterized. Notably, post-translational modifications (PTMs), which affect the protein structures and functions, have emerged as critical mechanisms to modulate JA output at different spatiotemporal levels. Disruption of PTMs in JA biosynthesis and signaling would cause the dysfunction of vital biological processes. Here, we give an overview of the PTMs that have been identified in JA biosynthetic and signaling pathways, and provide insights into the mechanisms by which PTMs define JA responses.
Collapse
Affiliation(s)
- Rong Yi
- College of Agronomy, Inner Mongolia Agricultural University, Hohhot, China
- Tsinghua-Peking Center for Life Science, and MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaoyi Shan
- Tsinghua-Peking Center for Life Science, and MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
94
|
Ojha M, Verma D, Chakraborty N, Pal A, Bhagat PK, Singh A, Verma N, Sinha AK, Chattopadhyay S. MKKK20 works as an upstream triple-kinase of MKK3-MPK6-MYC2 module in Arabidopsis seedling development. iScience 2023; 26:106049. [PMID: 36818282 PMCID: PMC9929681 DOI: 10.1016/j.isci.2023.106049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/29/2022] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK) cascade is involved in several signal transduction processes in eukaryotes. Here, we report a mechanistic function of MAP kinase kinase kinase 20 (MKKK20) in light signal transduction pathways. We show that MKKK20 acts as a negative regulator of photomorphogenic growth at various wavelengths of light. MKKK20 not only regulates the expression of light signaling pathway regulatory genes but also gets regulated by the same pathway genes. The atmyc2 mkkk20 double mutant analysis shows that MYC2 works downstream to MKKK20 in the regulation of photomorphogenic growth. MYC2 directly binds to the promoter of MKKK20 to modulate its expression. The protein-protein interaction study indicates that MKKK20 physically interacts with MYC2, and this interaction likely suppresses the MYC2-mediated promotion of MKKK20 expression. Further, the protein phosphorylation studies demonstrate that MKKK20 works as the upstream kinase of MKK3-MPK6-MYC2 module in photomorphogenesis.
Collapse
Affiliation(s)
- Madhusmita Ojha
- Department of Biotechnology, National Institute of Technology, Durgapur 713209, India
| | - Deepanjali Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Nibedita Chakraborty
- Department of Biotechnology, National Institute of Technology, Durgapur 713209, India
| | - Abhideep Pal
- Department of Biotechnology, National Institute of Technology, Durgapur 713209, India
| | - Prakash Kumar Bhagat
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Anshuman Singh
- Department of Biotechnology, National Institute of Technology, Durgapur 713209, India
| | - Neetu Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Alok Krishna Sinha
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India,Corresponding author
| | - Sudip Chattopadhyay
- Department of Biotechnology, National Institute of Technology, Durgapur 713209, India
| |
Collapse
|
95
|
Wang N, Shu X, Zhang F, Wang Z. Transcriptome-wide characterization of bHLH transcription factor genes in Lycoris radiata and functional analysis of their response to MeJA. FRONTIERS IN PLANT SCIENCE 2023; 13:975530. [PMID: 36704164 PMCID: PMC9872026 DOI: 10.3389/fpls.2022.975530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 12/12/2022] [Indexed: 06/18/2023]
Abstract
As one of the biggest plant specific transcription factor (TF) families, basic helix-loop-helix (bHLH) protein, plays significant roles in plant growth, development, and abiotic stress responses. However, there has been minimal research about the effects of methyl jasmonate (MeJA) treatment on the bHLH gene family in Lycoris radiata (L'Her.) Herb. In this study, based on transcriptome sequencing data, 50 putative L. radiata bHLH (LrbHLH) genes with complete open reading frames (ORFs), which were divided into 20 bHLH subfamilies, were identified. The protein motif analyses showed that a total of 10 conserved motifs were found in LrbHLH proteins and motif 1 and motif 2 were the most highly conserved motifs. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of LrbHLH genes revealed their involvement in regulation of plant growth, jasmonic acid (JA) mediated signaling pathway, photoperiodism, and flowering. Furthermore, subcellular localization revealed that most LrbHLHs were located in the nucleus. Expression pattern analysis of LrbHLH genes in different tissues and at flower developmental stages suggested that their expression differed across lineages and might be important for plant growth and organ development in Lycoris. In addition, all LrbHLH genes exhibited specific spatial and temporal expression patterns under MeJA treatment. Moreover, protein-protein interaction (PPI) network analysis and yeast two-hybrid assay showed that numerous LrbHLHs could interact with jasmonate ZIM (zinc-finger inflorescence meristem) domain (JAZ) proteins. This research provides a theoretical basis for further investigation of LrbHLHs to find their functions and insights for their regulatory mechanisms involved in JA signaling pathway.
Collapse
|
96
|
Hu S, Yu K, Yan J, Shan X, Xie D. Jasmonate perception: Ligand-receptor interaction, regulation, and evolution. MOLECULAR PLANT 2023; 16:23-42. [PMID: 36056561 DOI: 10.1016/j.molp.2022.08.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/10/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Phytohormones integrate external environmental and developmental signals with internal cellular responses for plant survival and multiplication in changing surroundings. Jasmonate (JA), which might originate from prokaryotes and benefit plant terrestrial adaptation, is a vital phytohormone that regulates diverse developmental processes and defense responses against various environmental stresses. In this review, we first provide an overview of ligand-receptor binding techniques used for the characterization of phytohormone-receptor interactions, then introduce the identification of the receptor COI1 and active JA molecules, and finally summarize recent advances on the regulation of JA perception and its evolution.
Collapse
Affiliation(s)
- Shuai Hu
- MOE Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kaiming Yu
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianbin Yan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Kunpeng Institute of Modern Agriculture at Foshan, Chinese Academy of Agricultural Sciences, Foshan 528200, China.
| | - Xiaoyi Shan
- MOE Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Daoxin Xie
- MOE Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
97
|
Yu D, Dong X, Zou K, Jiang XD, Sun YB, Min Z, Zhang LP, Cui H, Hu JY. A hidden mutation in the seventh WD40-repeat of COP1 determines the early flowering trait in a set of Arabidopsis myc mutants. THE PLANT CELL 2023; 35:345-350. [PMID: 36331342 PMCID: PMC9806556 DOI: 10.1093/plcell/koac319] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/11/2022] [Indexed: 05/19/2023]
Affiliation(s)
- Dongmei Yu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Xue Dong
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Ke Zou
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiao-Dong Jiang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yi-Bo Sun
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Zhijie Min
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Li-Ping Zhang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Haitao Cui
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jin-Yong Hu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| |
Collapse
|
98
|
Zhang M, Zhao R, Huang K, Wei Z, Guo B, Huang S, Li Z, Jiang W, Wu T, Du X. OsWRKY76 positively regulates drought stress via OsbHLH148-mediated jasmonate signaling in rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1168723. [PMID: 37089644 PMCID: PMC10113545 DOI: 10.3389/fpls.2023.1168723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 03/22/2023] [Indexed: 05/03/2023]
Abstract
Drought stress is a major environmental threat that limits plant growth and crop productivity. Therefore, it is necessary to uncover the molecular mechanisms behind drought tolerance in crops. Here, OsWRKY76 positively regulated drought stress in rice. OsWRKY76 expression was induced by PEG treatment, dehydration stress, and exogenous MeJA rather than by no treatment. Notably, OsWRKY76 knockout weakened drought tolerance at the seedling stage and decreased MeJA sensitivity. OsJAZ12 was significantly induced by drought stress, and its expression was significantly higher in OsWRKY76-knockout mutants than in wild-type ZH11 under drought stress. Yeast two-hybrid and bimolecular fluorescence complementation assays showed that OsWRKY76 interacted with OsJAZ12. OsWRKY76 weakened the interaction between OsbHLH148 and OsJAZ12 in yeast cells. The OsJAZ12 protein repressed the transactivation activity of OsbHLH148, and this repression was partly restored by OsWRKY76 in rice protoplasts. Moreover, OsDREB1E expression was lower in OsWRKY76-knockout mutants than in wild-type ZH11 under drought stress, but it was upregulated under normal growth conditions. Yeast one-hybrid, electrophoretic mobility shift, and dual-luciferase assays showed that OsWRKY76 and OsbHLH148 bound directly to the OsDREB1E promoter and activated OsDREB1E expression in response to drought stress. These results suggest that OsWRKY76 confers drought tolerance through OsbHLH148-mediated jasmonate signaling in rice, offering a new clue to uncover the mechanisms behind drought tolerance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Tao Wu
- *Correspondence: Tao Wu, ; Xinglin Du,
| | | |
Collapse
|
99
|
Zhu J, Wang WS, Yan DW, Hong LW, Li TT, Gao X, Yang YH, Ren F, Lu YT, Yuan TT. CK2 promotes jasmonic acid signaling response by phosphorylating MYC2 in Arabidopsis. Nucleic Acids Res 2022; 51:619-630. [PMID: 36546827 PMCID: PMC9881174 DOI: 10.1093/nar/gkac1213] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/19/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Jasmonic acid (JA) signaling plays a pivotal role in plant development and defense. MYC2 is a master transcription factor in JA signaling, and was found to be phosphorylated and negatively regulated by MAP kinase and receptor-like kinase. However, the kinases that positively regulate MYC2 through phosphorylation and promote MYC2-mediated activation of JA response have not been identified. Here, we identified CK2 as a kinase that phosphorylates MYC2 and thus regulates the JA signaling. CK2 holoenzyme can interact with MYC2 using its regulatory subunits and phosphorylate MYC2 at multiple sites with its catalytic subunits. Inhibition of CK2 activity in a dominant-negative plant line, CK2mut, repressed JA response. On the other hand, increasing CK2 activity by overexpression of CKB4, a regulatory subunit gene of CK2, enhanced JA response in a MYC2-dependent manner. Substitution of the Ser and Thr residues at phosphorylation sites of MYC2 by CK2 with Ala impaired MYC2 function in activating JA response. Further investigations evidenced that CK2 facilitated the JA-induced increase of MYC2 binding to the promoters of JA-responsive genes in vivo. Our study demonstrated that CK2 plays a positive role in JA signaling, and reveals a previously undiscovered mechanism that regulates MYC2 function.
Collapse
Affiliation(s)
| | | | - Da-Wei Yan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Li-Wei Hong
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Ting-Ting Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Xiang Gao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Yun-Huang Yang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Feng Ren
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Ying-Tang Lu
- Correspondence may also be addressed to Ying-Tang Lu. Tel: +86 27 68752619; Fax: +86 27 68753551;
| | - Ting-Ting Yuan
- To whom correspondence should be addressed. Tel: +86 27 68752619; Fax: +86 27 68753551;
| |
Collapse
|
100
|
Abstract
Jasmonates are phytohormones that regulate defense and developmental processes in land plants. Despite the chemical diversity of jasmonate ligands in different plant lineages, they are all perceived by COI1/JAZ co-receptor complexes, in which the hormone acts as a molecular glue between the COI1 F-box and a JAZ repressor. It has been shown that COI1 determines ligand specificity based on the receptor crystal structure and the identification of a single COI1 residue, which is responsible for the evolutionary switch in ligand binding. In this work, we show that JAZ proteins contribute to ligand specificity together with COI1. We propose that specific features of JAZ proteins, which are conserved in bryophytes and lycophytes, enable perception of dn-OPDA ligands regardless the size of the COI1 binding pocket. In vascular plant lineages beyond lycophytes, JAZ evolved to limit binding to JA-Ile, thus impeding dn-OPDA recognition by COI1.
Collapse
|