51
|
Page D, Gouble B, Valot B, Bouchet JP, Callot C, Kretzschmar A, Causse M, Renard CMCG, Faurobert M. Protective proteins are differentially expressed in tomato genotypes differing for their tolerance to low-temperature storage. PLANTA 2010; 232:483-500. [PMID: 20480178 DOI: 10.1007/s00425-010-1184-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 04/22/2010] [Indexed: 05/29/2023]
Abstract
When stored at low temperature, tomato fruits exhibit chilling injury symptoms, such as rubbery texture and irregular ripening. To identify proteins related to chilling tolerance, we compared two tomato near isogenic lines differing for their texture phenotype at harvest in a fruit-storage trial including two temperatures (4 and 20 degrees C) along several days of conservation. Fruit evolution was followed by assessing fruit color, ethylene emission and texture parameters. The most contrasted samples were submitted to proteomic analysis including two-dimensional electrophoresis and mass spectrometry of protein spots to identify the proteins, whose expression varied according to the genotype or the storage conditions. Unexpectedly, the most firm genotype at harvest was the most sensitive to cold storage. The other genotype exhibited a delay in fruit firmness loss leading to the texture differences observed after 20 days of 4 degrees C storage. The proteome analysis of these contrasted fruits identified 85 proteins whose quantities varied with temperature or genotype. As expected, cold storage decreased the expression of proteins related to maturation process, such as acidic invertase, possibly controlled post-translational regulation of polygalacturonase and up-regulated proteins related to freezing tolerance. However, the study point out proteins involved in the differential resistance to chilling conditions of the two lines. This includes specific isoforms among the large family of small heat shocked proteins, and a set of proteins involved in the defense against of the reticulum endoplasmic stress.
Collapse
Affiliation(s)
- D Page
- INRA, Université d'Avignon et des Pays de Vaucluse, UMR408, 84000, Avignon, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Niemes S, Labs M, Scheuring D, Krueger F, Langhans M, Jesenofsky B, Robinson DG, Pimpl P. Sorting of plant vacuolar proteins is initiated in the ER. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 62:601-14. [PMID: 20149141 DOI: 10.1111/j.1365-313x.2010.04171.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Transport of soluble cargo molecules to the lytic vacuole of plants requires vacuolar sorting receptors (VSRs) to divert transport of vacuolar cargo from the default secretory route to the cell surface. Just as important is the trafficking of the VSRs themselves, a process that encompasses anterograde transport of receptor-ligand complexes from a donor compartment, dissociation of these complexes upon arrival at the target compartment, and recycling of the receptor back to the donor compartment for a further round of ligand transport. We have previously shown that retromer-mediated recycling of the plant VSR BP80 starts at the trans-Golgi network (TGN). Here we demonstrate that inhibition of retromer function by either RNAi knockdown of sorting nexins (SNXs) or co-expression of mutants of SNX1/2a specifically inhibits the ER export of VSRs as well as soluble vacuolar cargo molecules, but does not influence cargo molecules destined for the COPII-mediated transport route. Retention of soluble cargo despite ongoing COPII-mediated bulk flow can only be explained by an interaction with membrane-bound proteins. Therefore, we examined whether VSRs are capable of binding their ligands in the lumen of the ER by expressing ER-anchored VSR derivatives. These experiments resulted in drastic accumulation of soluble vacuolar cargo molecules in the ER. This demonstrates that the ER, rather than the TGN, is the location of the initial VSR-ligand interaction. It also implies that the retromer-mediated recycling route for the VSRs leads from the TGN back to the ER.
Collapse
Affiliation(s)
- Silke Niemes
- Department of Cell Biology, Heidelberg Institute for Plant Sciences, University of Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Marshall RS, Frigerio L, Roberts LM. Disulfide formation in plant storage vacuoles permits assembly of a multimeric lectin. Biochem J 2010; 427:513-21. [PMID: 20180780 DOI: 10.1042/bj20091878] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The ER (endoplasmic reticulum) has long been considered the plant cell compartment within which protein disulfide bond formation occurs. Members of the ER-located PDI (protein disulfide isomerase) family are responsible for oxidizing, reducing and isomerizing disulfide bonds, as well as functioning as chaperones to newly synthesized proteins. In the present study we demonstrate that an abundant 7S lectin of the castor oil seed protein storage vacuole, RCA (Ricinus communis agglutinin 1), is folded in the ER as disulfide bonded A-B dimers in both vegetative cells of tobacco leaf and in castor oil seed endosperm, but that these assemble into (A-B)2 disulfide-bonded tetramers only after Golgi-mediated delivery to the storage vacuoles in the producing endosperm tissue. These observations reveal an alternative and novel site conducive for disulfide bond formation in plant cells.
Collapse
|
54
|
Viotti C, Bubeck J, Stierhof YD, Krebs M, Langhans M, van den Berg W, van Dongen W, Richter S, Geldner N, Takano J, Jürgens G, de Vries SC, Robinson DG, Schumacher K. Endocytic and secretory traffic in Arabidopsis merge in the trans-Golgi network/early endosome, an independent and highly dynamic organelle. THE PLANT CELL 2010; 22:1344-57. [PMID: 20435907 PMCID: PMC2879741 DOI: 10.1105/tpc.109.072637] [Citation(s) in RCA: 367] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 03/22/2010] [Accepted: 04/09/2010] [Indexed: 05/17/2023]
Abstract
Plants constantly adjust their repertoire of plasma membrane proteins that mediates transduction of environmental and developmental signals as well as transport of ions, nutrients, and hormones. The importance of regulated secretory and endocytic trafficking is becoming increasingly clear; however, our knowledge of the compartments and molecular machinery involved is still fragmentary. We used immunogold electron microscopy and confocal laser scanning microscopy to trace the route of cargo molecules, including the BRASSINOSTEROID INSENSITIVE1 receptor and the REQUIRES HIGH BORON1 boron exporter, throughout the plant endomembrane system. Our results provide evidence that both endocytic and secretory cargo pass through the trans-Golgi network/early endosome (TGN/EE) and demonstrate that cargo in late endosomes/multivesicular bodies is destined for vacuolar degradation. Moreover, using spinning disc microscopy, we show that TGN/EEs move independently and are only transiently associated with an individual Golgi stack.
Collapse
Affiliation(s)
- Corrado Viotti
- Department of Cell Biology, Heidelberg Institute for Plant Sciences, University of Heidelberg, 69120 Heidelberg, Germany
| | - Julia Bubeck
- Department of Developmental Biology, Heidelberg Institute for Plant Sciences, University of Heidelberg, 69120 Heidelberg, Germany
| | - York-Dieter Stierhof
- Microscopy Unit, Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Melanie Krebs
- Department of Developmental Biology, Heidelberg Institute for Plant Sciences, University of Heidelberg, 69120 Heidelberg, Germany
| | - Markus Langhans
- Department of Cell Biology, Heidelberg Institute for Plant Sciences, University of Heidelberg, 69120 Heidelberg, Germany
| | - Willy van den Berg
- Laboratory of Biochemistry, Wageningen University, 6703 HA Wageningen, The Netherlands
| | - Walter van Dongen
- Laboratory of Biochemistry, Wageningen University, 6703 HA Wageningen, The Netherlands
| | - Sandra Richter
- Developmental Genetics, Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Niko Geldner
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Junpei Takano
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Gerd Jürgens
- Developmental Genetics, Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Sacco C. de Vries
- Laboratory of Biochemistry, Wageningen University, 6703 HA Wageningen, The Netherlands
| | - David G. Robinson
- Department of Cell Biology, Heidelberg Institute for Plant Sciences, University of Heidelberg, 69120 Heidelberg, Germany
| | - Karin Schumacher
- Department of Developmental Biology, Heidelberg Institute for Plant Sciences, University of Heidelberg, 69120 Heidelberg, Germany
- Address correspondence to
| |
Collapse
|
55
|
Van Loock B, Markakis MN, Verbelen JP, Vissenberg K. High-throughput transient transformation of Arabidopsis roots enables systematic colocalization analysis of GFP-tagged proteins. PLANT SIGNALING & BEHAVIOR 2010; 5:261-3. [PMID: 20023426 PMCID: PMC2881272 DOI: 10.4161/psb.5.3.10575] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Determination of the subcellular localization of an unknown protein is a major step towards the elucidation of its function. Lately, the expression of proteins fused to fluorescent markers has been very popular and many approaches have been proposed to express these proteins. Stable transformation using Agrobacterium tumefaciens generates stable lines for downstream experiments, but is time-consuming. If only colocalization is required, transient techniques save time and effort. Several methods for transient assays have been described including protoplast transfection, biolistic bombardment, Agrobacterium tumefaciens cocultivation and infiltration. In general colocalizations are preferentially performed in intact tissues of the same species, resembling the native situation. High transformation rates were described for cotyledons of Arabidopsis, but never for roots. Here we report that it is possible to transform Arabidopsis root epidermal cells with an efficiency that is sufficient for colocalization purposes.
Collapse
Affiliation(s)
- Bram Van Loock
- Biology Department, University of Antwerp, Antwerpen, Belgium
| | | | | | | |
Collapse
|
56
|
Niemes S, Langhans M, Viotti C, Scheuring D, San Wan Yan M, Jiang L, Hillmer S, Robinson DG, Pimpl P. Retromer recycles vacuolar sorting receptors from the trans-Golgi network. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 61:107-21. [PMID: 19796370 DOI: 10.1111/j.1365-313x.2009.04034.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Receptor-mediated sorting processes in the secretory pathway of eukaryotic cells rely on mechanisms to recycle the receptors after completion of transport. Based on this principle, plant vacuolar sorting receptors (VSRs) are thought to recycle after dissociating of receptor-ligand complexes in a pre-vacuolar compartment. This recycling is mediated by retromer, a cytosolic coat complex that comprises sorting nexins and a large heterotrimeric subunit. To analyse retromer-mediated VSR recycling, we have used a combination of immunoelectron and fluorescence microscopy to localize the retromer components sorting nexin 1 (SNX1) and sorting nexin 2a (SNX2a) and the vacuolar sorting protein VPS29p. All retromer components localize to the trans-Golgi network (TGN), which is considered to represent the early endosome of plants. In addition, we show that inhibition of retromer function in vivo by expression of SNX1 or SNX2a mutants as well as transient RNAi knockdown of all sorting nexins led to accumulation of the VSR BP80 at the TGN. Quantitative protein transport studies and live-cell imaging using fluorescent vacuolar cargo molecules revealed that arrival of these VSR ligands at the vacuole is not affected under these conditions. Based on these findings, we propose that the TGN is the location of retromer-mediated recycling of VSRs, and that transport towards the lytic vacuole downstream of the TGN is receptor-independent and occurs via maturation, similar to transition of the early endosome into the late endosome in mammalian cells.
Collapse
Affiliation(s)
- Silke Niemes
- Department of Cell Biology, Heidelberg Institute for Plant Sciences, University of Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Osterrieder A, Hummel E, Carvalho CM, Hawes C. Golgi membrane dynamics after induction of a dominant-negative mutant Sar1 GTPase in tobacco. JOURNAL OF EXPERIMENTAL BOTANY 2009; 61:405-22. [PMID: 19861656 DOI: 10.1093/jxb/erp315] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
An inducible system has been established in Nicotiana tabacum plants allowing controlled expression of Sar1-GTP and thus the investigation of protein dynamics after inhibition of endoplasmic reticulum (ER) to Golgi transport. Complete Golgi disassembly and redistribution of Golgi markers into the ER was observed within 18-24h after induction. At the ultrastructural level Sar1-GTP expression led to a decrease in Golgi stack size followed by Golgi fragmentation and accumulation of vesicle remnants. Induction of Sar1-GTP resulted in redistribution of the green fluorescent protein (GFP)-tagged Arabidopsis golgins AtCASP and GC1 (golgin candidate 1, an Arabidopsis golgin 84 isoform) into the ER or cytoplasm, respectively. Additionally, both fusion proteins were observed in punctate structures, which co-located with a yellow fluorescent protein (YFP)-tagged version of Sar1-GTP. The Sar1-GTP-inducible system is compared with constitutive Sar1-GTP expression and brefeldin A treatment, and its potential for the study of the composition of ER exit sites and early cis-Golgi structures is discussed.
Collapse
Affiliation(s)
- Anne Osterrieder
- School of Life Sciences, Oxford Brookes University, Headington, Oxford, UK
| | | | | | | |
Collapse
|
58
|
Luo J, Ning T, Sun Y, Zhu J, Zhu Y, Lin Q, Yang D. Proteomic analysis of rice endosperm cells in response to expression of hGM-CSF. J Proteome Res 2009; 8:829-37. [PMID: 18778094 DOI: 10.1021/pr8002968] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The accumulation of significant levels of transgenic products in plant cells is required not only for crop improvement, but also for molecular pharming. However, knowledge about the fate of transgenic products and endogenous proteins in grain cells is lacking. Here, we utilized a quantitative mass spectrometry-based proteomic approach for comparative analysis of expression profiles of transgenic rice endosperm cells in response to expression of a recombinant pharmaceutical protein, human granulocyte-macrophage colony stimulation factor (hGM-CSF). This study provided the first available evidence concerning the fate of exogenous and endogenous proteins in grain cells. Among 1883 identified proteins with a false positive rate of 5%, 103 displayed significant changes (p-value < 0.05) between the transgenic and the wild-type endosperm cells. Notably, endogenous storage proteins and most carbohydrate metabolism-related proteins were down-regulated, while 26S proteasome-related proteins and chaperones were up-regulated in the transgenic rice endosperm. Furthermore, it was observed that expression of hGM-CSF induced endoplasmic reticulum stress and activated the ubiquitin/26S-proteasome pathway, which led to ubiquitination of this foreign gene product in the transgenic rice endosperm.
Collapse
Affiliation(s)
- Junling Luo
- Department of Genetics, College of Life Sciences, Wuhan University, 430072, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
59
|
Torrent M, Llop-Tous I, Ludevid MD. Protein body induction: a new tool to produce and recover recombinant proteins in plants. Methods Mol Biol 2009; 483:193-208. [PMID: 19183900 DOI: 10.1007/978-1-59745-407-0_11] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Stable accumulation of storage proteins, lipids and carbohydrates is a hallmark of the plant seed, and is a characteristic that is typically deficient in existing platforms for recombinant protein manufacture. One of the biological sequestration mechanisms that facilitate the folding, assembly and stabilization of plant seed storage proteins involve the de novo formation of unique intracellular organelles, the endoplasmic reticulum (ER)-derived protein bodies (PBs). In cereals, such as maize, PBs are formed directly in the lumen of the ER of endosperm cells and contain zeins, a group of polypeptides, which account for more than half of the total seed protein mass. The 27 kD gamma zein protein localizes to the periphery of the PBs surrounding aggregates of other zeins (including a zein and delta zein). Heterologous expression of gamma zein has been shown to result in the formation of PB-like structures, and the N-terminal proline-rich domain of gamma zein (Zera), containing eight PPPVHL repeats and a Pro-X sequence is by itself capable of directing ER retention and PB formation in non-seed tissues. We present a novel approach to produce recombinant proteins in plants based on the ability of gamma zein-Zera domain to store recombinant proteins inside PBs. Zera domain fused to several proteins, including a enhanced cyan fluorescent protein (ECFP), calcitonin (Ct) and epidermal growth factor (EGF), were cloned into vectors for transient or stable transformation of tobacco plants. In tobacco leaves, we observed the formation of dense, ER-localized structures containing high concentrations of the respective target proteins. The intact synthetic organelles containing Zera fusions were readily isolated from cellular material using density-based separation methods.
Collapse
|
60
|
Hong Z, Jin H, Tzfira T, Li J. Multiple mechanism-mediated retention of a defective brassinosteroid receptor in the endoplasmic reticulum of Arabidopsis. THE PLANT CELL 2008; 20:3418-29. [PMID: 19060110 PMCID: PMC2630446 DOI: 10.1105/tpc.108.061879] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 09/24/2008] [Accepted: 11/17/2008] [Indexed: 05/18/2023]
Abstract
Endoplasmic reticulum-mediated quality control (ERQC) is a well-studied process in yeast and mammals that retains and disposes misfolded/unassembled polypeptides. By contrast, how plants exert quality control over their secretory proteins is less clear. Here, we report that a mutated brassinosteroid receptor, bri1-5, that carries a Cys69Tyr mutation, is retained in the ER by an overvigilant ERQC system involving three different retention mechanisms. We demonstrate that bri1-5 interacts with two ER chaperones, calnexin and binding protein (BiP), and is degraded by a proteasome-independent endoplasmic reticulum-associated degradation (ERAD). Mutations in components of the calnexin/calreticulin cycle had little effect on the fidelity of the Arabidopsis thaliana ERQC for bri1-5 retention. By contrast, overexpression of bri1-5, treatment with an ERAD inhibitor, RNA interference-mediated BiP silencing, or simultaneous mutations of Cys-69 and its partner Cys-62 can mitigate this quality control, resulting in significant suppression of the bri1-5 phenotype. Thus, bri1-5 is an excellent model protein to investigate plant ERQC/ERAD in a model organism.
Collapse
Affiliation(s)
- Zhi Hong
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, An Arbor, Michigan 48109-1048, USA
| | | | | | | |
Collapse
|
61
|
Chamberlain KL, Marshall RS, Jolliffe NA, Frigerio L, Ceriotti A, Lord JM, Roberts LM. Ricin B chain targeted to the endoplasmic reticulum of tobacco protoplasts is degraded by a CDC48- and vacuole-independent mechanism. J Biol Chem 2008; 283:33276-86. [PMID: 18832379 PMCID: PMC2586253 DOI: 10.1074/jbc.m805222200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 09/19/2008] [Indexed: 12/04/2022] Open
Abstract
The B chain of ricin was expressed and delivered to the endoplasmic reticulum of tobacco protoplasts where it disappeared with time in a manner consistent with degradation. This turnover did not occur in the vacuoles or upon secretion. Indeed, several lines of evidence indicate that, in contrast to the turnover of endoplasmic reticulum-targeted ricin A chain in the cytosol, the bulk of expressed ricin B chain was degraded in the secretory pathway.
Collapse
Affiliation(s)
- Kerry L Chamberlain
- Department of Biological Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
62
|
Xie T, Qiu Q, Zhang W, Ning T, Yang W, Zheng C, Wang C, Zhu Y, Yang D. A biologically active rhIGF-1 fusion accumulated in transgenic rice seeds can reduce blood glucose in diabetic mice via oral delivery. Peptides 2008; 29:1862-70. [PMID: 18708105 DOI: 10.1016/j.peptides.2008.07.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 06/30/2008] [Accepted: 07/07/2008] [Indexed: 11/27/2022]
Abstract
Human insulin-like growth factor 1(hIGF-1) is essential for cell proliferation and used therapeutically in treating various diseases including diabetes mellitus. Here, we present that a recombinant hIGF-1(rhIGF-1) was expressed fused with the C-terminus of a rice luminal binding protein and accumulated highly in rice seeds, reaching 6.8+/-0.5% of total seed protein. The rhIGF-1 fusion was demonstrated to possess biological activity to stimulate cell proliferation. Importantly, the unprocessed transgenic seeds could significantly increase plasma rhIGF-1 level and reduce blood glucose of diabetic mice via oral delivery. Further studies suggested that transgenic seeds reduced blood glucose of diabetic mice by enhancing islet cells survival and increasing insulin secretion rather than increasing insulin sensitivity. These results indicated the potential of the novel fusion expression system in production and oral delivery of biologically active small peptides for diseases.
Collapse
Affiliation(s)
- Tingting Xie
- Center of Engineering and Research of the Ministry of Education for Plant Biotechnology and Germplasm Utilization, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Foresti O, De Marchis F, de Virgilio M, Klein EM, Arcioni S, Bellucci M, Vitale A. Protein domains involved in assembly in the endoplasmic reticulum promote vacuolar delivery when fused to secretory GFP, indicating a protein quality control pathway for degradation in the plant vacuole. MOLECULAR PLANT 2008; 1:1067-76. [PMID: 19825604 DOI: 10.1093/mp/ssn066] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The correct folding and assembly of newly synthesized secretory proteins are monitored by the protein quality control system of the endoplasmic reticulum (ER). Through interactions with chaperones such as the binding protein (BiP) and other folding helpers, quality control favors productive folding and sorts for degradation defective proteins. A major route for quality control degradation identified in yeast, plants, and animals is constituted by retrotranslocation from the ER to the cytosol and subsequent disposal by the ubiquitin/proteasome system, but alternative routes involving the vacuole have been identified in yeast. In this study, we have studied the destiny of sGFP418, a fusion between a secretory form of GFP and a domain of the vacuolar protein phaseolin that is involved in the correct assembly of phaseolin and in BiP recognition of unassembled subunits. We show that sGFP418, despite lacking the phaseolin vacuolar sorting signal, is delivered to the vacuole and fragmented, in a process that is inhibited by the secretory traffic inhibitor brefeldin A. Moreover, a fusion between GFP and a domain of the maize storage protein gamma-zein involved in zein polymerization also undergoes post-translational fragmentation similar to that of sGFP418. These results show that defective secretory proteins with permanently exposed sequences normally involved in oligomerization can be delivered to the vacuole by secretory traffic. This strongly suggests the existence of a plant vacuolar sorting mechanism devoted to the disposal of defective secretory proteins.
Collapse
Affiliation(s)
- Ombretta Foresti
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, via Bassini 15, 20133 Milano, Italy, EU
| | | | | | | | | | | | | |
Collapse
|
64
|
Irons SL, Nuttall J, Floss DM, Frigerio L, Kotzer AM, Hawes C. Fluorescent protein fusions to a human immunodeficiency virus monoclonal antibody reveal its intracellular transport through the plant endomembrane system. PLANT BIOTECHNOLOGY JOURNAL 2008; 6:649-62. [PMID: 18489536 DOI: 10.1111/j.1467-7652.2008.00348.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
SUMMARY In order to further understand the production and intracellular trafficking of pharmaceutical proteins in plants, the light and heavy chains (LC and HC) of the human immunodeficiency virus neutralizing monoclonal antibody 2G12 were fused to fluorescent proteins [Venus and monomeric red fluorescent protein (mRFP)] to enable the visualization of their passage through the plant cell. Co-expression of LC and HC with various markers of the endomembrane system demonstrated that LC fusions were found in mobile punctate structures, which are likely to be pre-vacuolar compartments (PVCs) as a proportion of the LC fusions were found to be located in the vacuole. In addition, apoplast labelling was also observed with a 2G12LC-RFP fusion. The HC fusion expressed alone was found only in the endoplasmic reticulum (ER). When the LC and HC fusions were expressed together, they were found to co-locate to larger punctate structures, which were morphologically distinct from any observed on expression of LC or HC alone. These structures appeared to be in close association with the ER and their labelling partially overlapped with PVC marker fluorescence, but no increase in apoplast labelling was observed. Co-immunoprecipitation data demonstrated that the presence of the fluorescent proteins did not affect the assembly of the antibody, and also showed the association of BiP with the antibody chains. The antigen-binding activity of the Venus-fused 2G12 antibody was confirmed by enzyme-linked immunosorbent assay.
Collapse
Affiliation(s)
- Sarah L Irons
- School of Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford, UK
| | | | | | | | | | | |
Collapse
|
65
|
Yamada K, Nagano AJ, Nishina M, Hara-Nishimura I, Nishimura M. NAI2 is an endoplasmic reticulum body component that enables ER body formation in Arabidopsis thaliana. THE PLANT CELL 2008; 20:2529-40. [PMID: 18780803 PMCID: PMC2570739 DOI: 10.1105/tpc.108.059345] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 08/03/2008] [Accepted: 08/20/2008] [Indexed: 05/22/2023]
Abstract
Plants develop various endoplasmic reticulum (ER)-derived structures, each of which has specific functions. The ER body found in Arabidopsis thaliana is a spindle-shaped structure that specifically accumulates high levels of PYK10/BGLU23, a beta-glucosidase that bears an ER-retention signal. The molecular mechanisms underlying the formation of the ER body remain obscure. We isolated an ER body-deficient mutant in Arabidopsis seedlings that we termed nai2. The NAI2 gene (At3g15950) encodes a member of a unique protein family that is only found in the Brassicaceae. NAI2 localizes to the ER body, and a reduction in NAI2 gene expression elongates ER bodies and reduces their numbers. NAI2 deficiency does not affect PYK10 mRNA levels but reduces the level of PYK10 protein, which becomes uniformly diffused throughout the ER. NAI1, a transcription factor responsible for ER body formation, regulates NAI2 gene expression. These observations indicate that NAI2 is a key factor that enables ER body formation and the accumulation of PYK10 in ER bodies of Arabidopsis. Interestingly, ER body-like structures are also restricted to the Brassicales, including the Brassicaceae. NAI2 homologs may have evolved specifically in Brassicales for the purpose of producing ER body-like structures.
Collapse
Affiliation(s)
- Kenji Yamada
- Department of Cell Biology, National Institute for Basic Biology, Nishigo-naka 38, Okazaki 444-8585, Aichi, Japan
| | | | | | | | | |
Collapse
|
66
|
Bubeck J, Scheuring D, Hummel E, Langhans M, Viotti C, Foresti O, Denecke J, Banfield DK, Robinson DG. The syntaxins SYP31 and SYP81 control ER-Golgi trafficking in the plant secretory pathway. Traffic 2008; 9:1629-52. [PMID: 18764818 DOI: 10.1111/j.1600-0854.2008.00803.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Overexpression of the Golgi and endoplasmic reticulum (ER) syntaxins SYP31 and SYP81 strongly inhibits constitutive secretion. By comparing the secreted reporter alpha-amylase with the ER-retained reporter alpha-amylase-HDEL, it was concluded that SYP81 overexpression inhibits both retrograde and anterograde transport, while SYP31 overexpression mainly affected anterograde transport. Of the other interacting SNAREs investigated, only the overexpression of MEMB11 led to an inhibition of protein secretion. Although the position of a fluorescent tag does not influence the correct localization of the fusion protein, only N-terminal-tagged SYP31 retained the ability of the untagged SNARE to inhibit transport. C-terminal-tagged SYP31 failed to exhibit this effect. Overexpression of both wild-type and N-terminal-tagged syntaxins caused standard Golgi marker proteins to redistribute into the ER. Nevertheless, green fluorescent protein (GFP)-SYP31 was still visible as fluorescent punctae, which, unlike SYP31-GFP, were resistant to brefeldin A treatment. Immunogold electron microscopy showed that endogenous SYP81 is not only present at the ER but also in the cis Golgi, indicating that this syntaxin cycles between these two organelles. However, when expressed at non-inhibitory levels, YFP-SYP81 was seen to locate principally to subdomains of the ER. These punctate structures were physically separated from the Golgi, suggesting that they might possibly reflect the position of ER import sites.
Collapse
Affiliation(s)
- Julia Bubeck
- Department of Cell Biology, Heidelberg Institute for Plant Sciences, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Rojo E, Denecke J. What is moving in the secretory pathway of plants? PLANT PHYSIOLOGY 2008; 147:1493-503. [PMID: 18678741 PMCID: PMC2492647 DOI: 10.1104/pp.108.124552] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 06/25/2008] [Indexed: 05/18/2023]
Affiliation(s)
- Enrique Rojo
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, E-28049 Madrid, Spain
| | | |
Collapse
|
68
|
Foresti O, Denecke J. Intermediate organelles of the plant secretory pathway: identity and function. Traffic 2008; 9:1599-612. [PMID: 18627574 DOI: 10.1111/j.1600-0854.2008.00791.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The secretory pathway of eukaryotic cells comprises a network of organelles that connects three large membranes, the plasma membrane, the vacuole and the endoplasmic reticulum. The Golgi apparatus and the various post-Golgi organelles that control vacuolar sorting, secretion and endocytosis can be regarded as intermediate organelles of the endocytic and biosynthetic routes. Many processes in the secretory pathway have evolved differently in plants and cannot be studied using yeast or mammalian cells as models. The best characterized organelles are the Golgi apparatus and the prevacuolar compartment, but recent work has shed light on the role of the trans Golgi network, which has to be regarded as a separate organelle in plants. In this study, we wish to highlight recent findings regarding the late secretory pathway and its crosstalk with the early secretory pathway as well as the endocytic route in plants. Recently published findings and suggested models are discussed within the context of known features of the equivalent pathway in other eukaryotes.
Collapse
Affiliation(s)
- Ombretta Foresti
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | | |
Collapse
|
69
|
Vitale A, Boston RS. Endoplasmic reticulum quality control and the unfolded protein response: insights from plants. Traffic 2008; 9:1581-8. [PMID: 18557840 DOI: 10.1111/j.1600-0854.2008.00780.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein quality control (QC) within the endoplasmic reticulum and the related unfolded protein response (UPR) pathway of signal transduction are major regulators of the secretory pathway, which is involved in virtually any aspect of development and reproduction. The study of plant-specific processes such as pathogen response, seed development and the synthesis of seed storage proteins and of particular toxins is providing novel insights, with potential implications for the general recognition events and mechanisms of action of QC and UPR.
Collapse
Affiliation(s)
- Alessandro Vitale
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Milano, Italy.
| | | |
Collapse
|
70
|
Jakobsen CH, Størvold GL, Bremseth H, Follestad T, Sand K, Mack M, Olsen KS, Lundemo AG, Iversen JG, Krokan HE, Schønberg SA. DHA induces ER stress and growth arrest in human colon cancer cells: associations with cholesterol and calcium homeostasis. J Lipid Res 2008; 49:2089-100. [PMID: 18566476 PMCID: PMC2533412 DOI: 10.1194/jlr.m700389-jlr200] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Polyunsaturated fatty acids (PUFAs) are normal constituents of the diet, but have properties different from other fatty acids (e.g., through generation of signaling molecules). N-3 PUFAs reduce cancer cell growth, but no unified mechanism has been identified. We show that docosahexaenoic acid (DHA; 22:6 n-3) causes extensive changes in gene expression patterns at mRNA level in the colon cancer cell line SW620. Early changes include unfolded protein response (UPR) and increased levels of phosphorylated eIF2α as verified at protein level. The latter is considered a hallmark of endoplasmic reticulum (ER) stress and is abundantly present already after 3 h. It may coordinate many of the downstream changes observed, including signaling pathways for cell cycle arrest/apoptosis, calcium homeostasis, cholesterol metabolism, ubiquitination, and proteasomal degradation. Also, eicosapentaenoic acid (EPA), but not oleic acid (OA), induced key mediators of ER stress and UPR at protein level. Accumulation of esterified cholesterol was not compensated for by increased total levels of cholesterol, and mRNAs for cholesterol biosynthesis as well as de novo synthesis of cholesterol were reduced. These results suggest that cytotoxic effects of DHA are associated with signaling pathways involving lipid metabolism and ER stress.
Collapse
Affiliation(s)
- Caroline Hild Jakobsen
- Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology (NTNU), Erling Skjalgssons gate 1, N-7006 Trondheim, Norway
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Marshall RS, Jolliffe NA, Ceriotti A, Snowden CJ, Lord JM, Frigerio L, Roberts LM. The role of CDC48 in the retro-translocation of non-ubiquitinated toxin substrates in plant cells. J Biol Chem 2008; 283:15869-77. [PMID: 18420588 PMCID: PMC3259637 DOI: 10.1074/jbc.m709316200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 03/19/2008] [Indexed: 11/06/2022] Open
Abstract
When the catalytic A subunits of the castor bean toxins ricin and Ricinus communis agglutinin (denoted as RTA and RCA A, respectively) are delivered into the endoplasmic reticulum (ER) of tobacco protoplasts, they become substrates for ER-associated protein degradation (ERAD). As such, these orphan polypeptides are retro-translocated to the cytosol, where a significant proportion of each protein is degraded by proteasomes. Here we begin to characterize the ERAD pathway in plant cells, showing that retro-translocation of these lysine-deficient glycoproteins requires the ATPase activity of cytosolic CDC48. Lysine polyubiquitination is not obligatory for this step. We also show that although RCA A is found in a mannose-untrimmed form prior to its retro-translocation, a significant proportion of newly synthesized RTA cycles via the Golgi and becomes modified by downstream glycosylation enzymes. Despite these differences, both proteins are similarly retro-translocated.
Collapse
Affiliation(s)
- Richard S. Marshall
- Department of Biological Sciences,
University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom and
the Istituto di Biologia e Biotecnologia
Agraria, Consiglio Nazionale delle Ricerche, Via Bassini 15, Milano,
Italy
| | - Nicholas A. Jolliffe
- Department of Biological Sciences,
University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom and
the Istituto di Biologia e Biotecnologia
Agraria, Consiglio Nazionale delle Ricerche, Via Bassini 15, Milano,
Italy
| | - Aldo Ceriotti
- Department of Biological Sciences,
University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom and
the Istituto di Biologia e Biotecnologia
Agraria, Consiglio Nazionale delle Ricerche, Via Bassini 15, Milano,
Italy
| | - Christopher J. Snowden
- Department of Biological Sciences,
University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom and
the Istituto di Biologia e Biotecnologia
Agraria, Consiglio Nazionale delle Ricerche, Via Bassini 15, Milano,
Italy
| | - J. Michael Lord
- Department of Biological Sciences,
University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom and
the Istituto di Biologia e Biotecnologia
Agraria, Consiglio Nazionale delle Ricerche, Via Bassini 15, Milano,
Italy
| | - Lorenzo Frigerio
- Department of Biological Sciences,
University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom and
the Istituto di Biologia e Biotecnologia
Agraria, Consiglio Nazionale delle Ricerche, Via Bassini 15, Milano,
Italy
| | - Lynne M. Roberts
- Department of Biological Sciences,
University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom and
the Istituto di Biologia e Biotecnologia
Agraria, Consiglio Nazionale delle Ricerche, Via Bassini 15, Milano,
Italy
| |
Collapse
|
72
|
Langhans M, Marcote MJ, Pimpl P, Virgili-López G, Robinson DG, Aniento F. In vivo Trafficking and Localization of p24 Proteins in Plant Cells. Traffic 2008; 9:770-85. [DOI: 10.1111/j.1600-0854.2008.00719.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
73
|
Abranches R, Arcalis E, Marcel S, Altmann F, Ribeiro-Pedro M, Rodriguez J, Stoger E. Functional specialization of Medicago truncatula leaves and seeds does not affect the subcellular localization of a recombinant protein. PLANTA 2008; 227:649-58. [PMID: 17943311 DOI: 10.1007/s00425-007-0647-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Accepted: 10/02/2007] [Indexed: 05/18/2023]
Abstract
A number of recent reports suggest that the functional specialization of plant cells in storage organs can influence subcellular protein sorting, so that the fate of a recombinant protein tends to differ between seeds and leaves. In order to test the general applicability of this hypothesis, we investigated the fate of a model recombinant glycoprotein in the leaves and seeds of a leguminous plant, Medicago truncatula. Detailed analysis of immature seeds by immunofluorescence and electron microscopy showed that recombinant phytase carrying a signal peptide for entry into the endoplasmic reticulum was efficiently secreted from storage cotyledon cells. A second version of the protein carrying a C-terminal KDEL tag for retention in the endoplasmic reticulum was predominantly retained in the ER of seed cotyledon cells, but some of the protein was secreted to the apoplast and some was deposited in storage vacuoles. Importantly, the fate of the recombinant protein in the leaves was nearly identical to that in the seeds from the same plant. This shows that in M. truncatula, the unanticipated partial vacuolar delivery and secretion is not a special feature of seed cotyledon tissue, but are conserved in different specialized tissues. Further investigation revealed that the unexpected fate of the tagged variant of phytase likely resulted from partial loss of the KDEL tag in both leaves and seeds. Our results indicate that the previously observed aberrant deposition of recombinant proteins into storage organelles of seed tissue is not a general reflection of functional specialization, but also depends on the species of plant under investigation. This discovery will have an impact on the production of recombinant pharmaceutical proteins in plants.
Collapse
Affiliation(s)
- Rita Abranches
- Plant Cell Biology Laboratory, Instituto de Tecnologia Quimica e Biologica, Universidade Nova de Lisboa, Av Republica, 2781-901 Oeiras, Portugal
| | | | | | | | | | | | | |
Collapse
|
74
|
Snowden CJ, Leborgne-Castel N, Wootton LJ, Hadlington JL, Denecke J. In vivo analysis of the lumenal binding protein (BiP) reveals multiple functions of its ATPase domain. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 52:987-1000. [PMID: 17971046 DOI: 10.1111/j.1365-313x.2007.03296.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The endoplasmic reticulum (ER) chaperone binding protein (BiP) binds exposed hydrophobic regions of misfolded proteins. Cycles of ATP hydrolysis and nucleotide exchange on the ATPase domain were shown to regulate the function of the ligand-binding domain in vitro. Here we show that ATPase mutants of BiP with defective ATP-hydrolysis (T46G) or ATP-binding (G235D) caused permanent association with a model ligand, but also interfered with the production of secretory, but not cytosolic, proteins in vivo. Furthermore, the negative effect of BiP(T46G) on secretory protein synthesis was rescued by increased levels of wild-type BiP, whereas the G235D mutation was dominant. Unexpectedly, expression of a mutant BiP with impaired ligand binding also interfered with secretory protein production. Although mutant BiP lacking its ATPase domain had no detrimental effect on ER function, expression of an isolated ATPase domain interfered with secretory protein synthesis. Interestingly, the inhibitory effect of the isolated ATPase was alleviated by the T46G mutation and aggravated by the G235D mutation. We propose that in addition to its role in ligand release, the ATPase domain can interact with other components of the protein translocation and folding machinery to influence secretory protein synthesis.
Collapse
Affiliation(s)
- Christopher James Snowden
- Centre for Plant Sciences, Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | |
Collapse
|
75
|
Eimer S, Gottschalk A, Hengartner M, Horvitz HR, Richmond J, Schafer WR, Bessereau JL. Regulation of nicotinic receptor trafficking by the transmembrane Golgi protein UNC-50. EMBO J 2007; 26:4313-23. [PMID: 17853888 PMCID: PMC2034668 DOI: 10.1038/sj.emboj.7601858] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Accepted: 08/22/2007] [Indexed: 01/21/2023] Open
Abstract
Nicotinic acetylcholine receptors (AChRs) are pentameric ligand-gated ion channels that mediate fast synaptic transmission at the neuromuscular junction (NMJ). After assembly in the endoplasmic reticulum (ER), AChRs must be transported to the plasma membrane through the secretory apparatus. Little is known about specific molecules that mediate this transport. Here we identify a gene that is required for subtype-specific trafficking of assembled nicotinic AChRs in Caenorhabditis elegans. unc-50 encodes an evolutionarily conserved integral membrane protein that localizes to the Golgi apparatus. In the absence of UNC-50, a subset of AChRs present in body-wall muscle are sorted to the lysosomal system and degraded. However, the trafficking of a second AChR type and of GABA ionotropic receptors expressed in the same muscle cells is not affected in unc-50 mutants. These results suggest that, in addition to ER quality control, assembled AChRs are sorted within the Golgi system by a mechanism that controls the amount of cell-surface AChRs in a subtype-specific way.
Collapse
Affiliation(s)
- Stefan Eimer
- Ecole Normale Supérieure, Biology Department, Paris, France
- INSERM, U789, Biologie cellulaire de la synapse, Paris, France
| | - Alexander Gottschalk
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Michael Hengartner
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - H Robert Horvitz
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Janet Richmond
- Department of Biology, University of Illinois, Chicago, IL, USA
| | - William R Schafer
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Jean-Louis Bessereau
- Ecole Normale Supérieure, Biology Department, Paris, France
- INSERM, U789, Biologie cellulaire de la synapse, Paris, France
- Ecole Normale Supérieure, INSERM, U789, Biologie cellulaire de la synapse, 46 Rue d'Ulm, Paris 75005, France. Tel.: +33 1 44 32 23 05; Fax: +33 1 44 32 36 54; E-mail:
| |
Collapse
|
76
|
Bellucci M, De Marchis F, Nicoletti I, Arcioni S. Zeolin is a recombinant storage protein with different solubility and stability properties according to its localization in the endoplasmic reticulum or in the chloroplast. J Biotechnol 2007; 131:97-105. [PMID: 17659801 DOI: 10.1016/j.jbiotec.2007.06.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 05/28/2007] [Accepted: 06/04/2007] [Indexed: 11/18/2022]
Abstract
Several strategies have been exploited to maximize heterologous protein accumulation in the plant cell. Recently, it has been shown that a portion of a maize prolamin storage protein, gamma-zein, can be used for the high accumulation of a recombinant protein in novel endoplasmic reticulum (ER)-derived protein bodies of vegetative tissues. In this study, we investigate whether this protein can be expressed in the chloroplast. Our long-term purpose is to use zeolin to produce value-added proteins by fusing these polypeptides with its gamma-zein portion and targeting the recombinant proteins to the ER or to the chloroplast. We show here that zeolin accumulates in the chloroplast to lower levels than in the ER and its stability is compromised by chloroplast proteolytic activity. Co-localization of zeolin and the ER chaperone BiP in the chloroplast does not have a beneficial effect on zeolin accumulation. In this organelle, zeolin is not stored in protein bodies, nor do zeolin polypeptides seem to be linked by inter-chain disulfide bonds, which are usually formed by the six cysteine of the gamma-zein portion, indicating abnormal folding of the recombinant protein. Therefore, it is concluded that to accumulate zeolin in the chloroplast it is necessary to facilitate inter-chain disulfide bond formation.
Collapse
Affiliation(s)
- Michele Bellucci
- Institute of Plant Genetics - Research Division of Perugia, Italian National Research Council (CNR), via della Madonna Alta 130, 06128 Perugia, Italy.
| | | | | | | |
Collapse
|
77
|
Campanoni P, Sutter JU, Davis CS, Littlejohn GR, Blatt MR. A generalized method for transfecting root epidermis uncovers endosomal dynamics in Arabidopsis root hairs. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 51:322-30. [PMID: 17610544 DOI: 10.1111/j.1365-313x.2007.03139.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Progress in analysing the cellular functions of many structural proteins has accelerated through the use of confocal microscopy together with transient gene expression. Several methods for transient expression have been developed in the past few years, but their application has seen limited success beyond a few tractable species and tissues. We have developed a simple and efficient method to visualize fluorescent proteins in Arabidopsis root epidermis using co-cultivation of seedlings with Agrobacterium rhizogenes. The method is equally suitable for transient gene expression in other species, including Thellungiella, and can be combined with supporting molecular and biochemical analyses. The method promises significant advantages for study of membrane dynamics, cellular development and polar growth in root hairs without interference in the development of the plant. Since the method targets specifically the root epidermis, it also offers a powerful tool to approach issues of root-rhizosphere interactions, such as ion transport and nutrient acquisition. As a proof of principle, we carried out transfections with fluorescent markers for the plasma membrane (NpPMA2-GFP, Nicotiana plumbaginifolia L. Plasma Membrane H(+)-ATPase 2), the endoplasmic reticulum (YFP-HDEL), and the Golgi apparatus (sialyl transferase-GFP) to trace their distribution in growing Arabidopsis root hairs and epidermis. The results demonstrate that, in Arabidopsis root hairs, movement of the Golgi is faster than previously reported for tobacco leaf epidermal cells, consistent with the high secretory dynamics of the tip growing cell; they show a pattern to the endoplasmic reticulum within the cytoplasm that is more diffuse than found in tobacco leaf epidermis, and they confirm previous findings of a polarized distribution of the endoplasmic reticulum at the tip of growing root hairs.
Collapse
Affiliation(s)
- Prisca Campanoni
- Laboratory of Plant Physiology and Biophysics, IBLS - Plant Sciences, Bower Building, University of Glasgow , Scotland, UK.
| | | | | | | | | |
Collapse
|
78
|
Robatzek S, Bittel P, Chinchilla D, Köchner P, Felix G, Shiu SH, Boller T. Molecular identification and characterization of the tomato flagellin receptor LeFLS2, an orthologue of Arabidopsis FLS2 exhibiting characteristically different perception specificities. PLANT MOLECULAR BIOLOGY 2007; 64:539-47. [PMID: 17530419 DOI: 10.1007/s11103-007-9173-8] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Accepted: 04/14/2007] [Indexed: 05/15/2023]
Abstract
Bacterial flagellin is known to stimulate host immune responses in mammals and plants. In Arabidopsis thaliana, the receptor kinase FLS2 mediates flagellin perception through physical interaction with a highly conserved epitope in the N-terminus of flagellin, represented by the peptide flg22 derived from Pseudomonas syringae. The peptide flg22 is highly active as an elicitor in many plant species. In contrast, a shortened version of the same epitope derived from Escherichia coli, flg15(E coli), is highly active as an elicitor in tomato but not in A. thaliana or Nicotiana benthamiana. Here, we make use of these species-specific differences in flagellin perception abilities to identify LeFLS2 as the flagellin receptor in tomato. LeFLS2 is most closely related to AtFLS2, indicating that it may represent the flagellin receptor of tomato. Expression of the LeFLS2 gene in Arabidopsis did not result in accumulation of its corresponding gene product, as indicated by experiments with LeFLS2-GFP fusions. In contrast, expression of LeFLS2-GFP fusions in N. benthamiana, a species that, like tomato, belongs to the Solanaceae, was obviously functional. N. benthamiana plants transiently expressing a LeFLS2-GFP fusion acquired responsiveness to flg15(E coli) to which they are normally unresponsive. Thus, LeFLS2 encodes a functional, specific flagellin receptor, the first to be identified in a plant family other than the Brassicaceae.
Collapse
Affiliation(s)
- Silke Robatzek
- Zürich-Basel Plant Science Center, Botanical Institute, University Basel, Hebelstrasse 1, Basel, 4056, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
79
|
Wadahama H, Kamauchi S, Ishimoto M, Kawada T, Urade R. Protein disulfide isomerase family proteins involved in soybean protein biogenesis. FEBS J 2007; 274:687-703. [PMID: 17181539 DOI: 10.1111/j.1742-4658.2006.05613.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein disulfide isomerase family proteins are known to play important roles in the folding of nascent polypeptides and the formation of disulfide bonds in the endoplasmic reticulum. In this study, we cloned two similar protein disulfide isomerase family genes from soybean leaf (Glycine max L. Merrill cv. Jack) mRNA by RT-PCR using forward and reverse primers designed from the expressed sequence tag clone sequences. The cDNA encodes a protein of either 364 or 362 amino acids, named GmPDIS-1 or GmPDIS-2, respectively. The nucleotide and amino acid sequence identities of GmPDIS-1 and GmPDIS-2 were 68% and 74%, respectively. Both proteins lack the C-terminal, endoplasmic reticulum-retrieval signal, KDEL. Recombinant proteins of both GmPDIS-1 and GmPDIS-2 were expressed in Escherichia coli as soluble folded proteins that showed both an oxidative refolding activity of denatured ribonuclease A and a chaperone activity. Their domain structures were identified as containing two thioredoxin-like domains, a and a', and an ERp29c domain by peptide mapping with either trypsin or V8 protease. In cotyledon cells, both proteins were shown to distribute to the endoplasmic reticulum and protein storage vacuoles by confocal microscopy. Data from coimmunoprecipitation and crosslinking experiments suggested that GmPDIS-1 associates with proglycinin, a precursor of the seed storage protein glycinin, in the cotyledon. Levels of GmPDIS-1, but not of GmPDIS-2, were increased in cotyledons, where glycinin accumulates during seed development. GmPDIS-1, but not GmPDIS-2, was induced under endoplasmic reticulum-stress conditions.
Collapse
|
80
|
Abstract
Secretory and transmembrane proteins are synthesized in the endoplasmic reticulum (ER) in eukaryotic cells. Nascent polypeptide chains, which are translated on the rough ER, are translocated to the ER lumen and folded into their native conformation. When protein folding is inhibited because of mutations or unbalanced ratios of subunits of hetero-oligomeric proteins, unfolded or misfolded proteins accumulate in the ER in an event called ER stress. As ER stress often disturbs normal cellular functions, signal-transduction pathways are activated in an attempt to maintain the homeostasis of the ER. These pathways are collectively referred to as the unfolded protein response (UPR). There have been great advances in our understanding of the molecular mechanisms underlying the UPR in yeast and mammals over the past two decades. In plants, a UPR analogous to those in yeast and mammals has been recognized and has recently attracted considerable attention. This review will summarize recent advances in the plant UPR and highlight the remaining questions that have yet to be addressed.
Collapse
Affiliation(s)
- Reiko Urade
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| |
Collapse
|
81
|
Van Droogenbroeck B, Cao J, Stadlmann J, Altmann F, Colanesi S, Hillmer S, Robinson DG, Van Lerberge E, Terryn N, Van Montagu M, Liang M, Depicker A, Jaeger GD. Aberrant localization and underglycosylation of highly accumulating single-chain Fv-Fc antibodies in transgenic Arabidopsis seeds. Proc Natl Acad Sci U S A 2007; 104:1430-5. [PMID: 17227846 PMCID: PMC1783127 DOI: 10.1073/pnas.0609997104] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Indexed: 11/18/2022] Open
Abstract
Production of high-value recombinant proteins in transgenic seeds is an attractive and economically feasible alternative to conventional systems based on mammalian cells and bacteria. In contrast to leaves, seeds allow high-level accumulation of recombinant proteins in a relatively small volume and a stable environment. We demonstrate that single-chain variable fragment (scFv)-Fc antibodies, with N-terminal signal sequence and C-terminal KDEL tag, can accumulate to very high levels as bivalent IgG-like antibodies in Arabidopsis thaliana seeds and illustrate that a plant-produced anti-hepatitis A virus scFv-Fc has similar antigen-binding and in vitro neutralizing activities as the corresponding full-length IgG. As expected, most scFv-Fc produced in seeds contained only oligomannose-type N-glycans, but, unexpectedly, 35-40% was never glycosylated. A portion of the scFv-Fc was found in endoplasmic reticulum (ER)-derived compartments delimited by ribosome-associated membranes. Additionally, consistent with the glycosylation data, large amounts of the recombinant protein were deposited in the periplasmic space, implying a direct transport from the ER to the periplasmic space between the plasma membrane and the cell wall. Aberrant localization of the ER chaperones calreticulin and binding protein (BiP) and the endogenous seed storage protein cruciferin in the periplasmic space suggests that overproduction of recombinant scFv-Fc disturbs normal ER retention and protein-sorting mechanisms in the secretory pathway.
Collapse
Affiliation(s)
- Bart Van Droogenbroeck
- *Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium
| | - Jingyuan Cao
- State Key Laboratory for Infectious Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, 100052 Beijing, China
| | - Johannes Stadlmann
- Department of Chemistry, University of Natural Resources and Applied Life Sciences, A-1190 Vienna, Austria
| | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Applied Life Sciences, A-1190 Vienna, Austria
| | - Sarah Colanesi
- Heidelberg Institute for Plant Sciences, University of Heidelberg, D-69120 Heidelberg, Germany; and
| | - Stefan Hillmer
- Heidelberg Institute for Plant Sciences, University of Heidelberg, D-69120 Heidelberg, Germany; and
| | - David G. Robinson
- Heidelberg Institute for Plant Sciences, University of Heidelberg, D-69120 Heidelberg, Germany; and
| | - Els Van Lerberge
- *Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium
| | - Nancy Terryn
- Institute for Plant Biotechnology for Developing Countries, Ghent University, B-9000 Ghent, Belgium
| | - Marc Van Montagu
- Institute for Plant Biotechnology for Developing Countries, Ghent University, B-9000 Ghent, Belgium
| | - Mifang Liang
- State Key Laboratory for Infectious Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, 100052 Beijing, China
| | - Ann Depicker
- *Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium
| | - Geert De Jaeger
- *Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium
| |
Collapse
|
82
|
Lam SK, Siu CL, Hillmer S, Jang S, An G, Robinson DG, Jiang L. Rice SCAMP1 defines clathrin-coated, trans-golgi-located tubular-vesicular structures as an early endosome in tobacco BY-2 cells. THE PLANT CELL 2007; 19:296-319. [PMID: 17209124 PMCID: PMC1820953 DOI: 10.1105/tpc.106.045708] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 11/07/2006] [Accepted: 11/15/2006] [Indexed: 05/13/2023]
Abstract
We recently identified multivesicular bodies (MVBs) as prevacuolar compartments (PVCs) in the secretory and endocytic pathways to the lytic vacuole in tobacco (Nicotiana tabacum) BY-2 cells. Secretory carrier membrane proteins (SCAMPs) are post-Golgi, integral membrane proteins mediating endocytosis in animal cells. To define the endocytic pathway in plants, we cloned the rice (Oryza sativa) homolog of animal SCAMP1 and generated transgenic tobacco BY-2 cells expressing yellow fluorescent protein (YFP)-SCAMP1 or SCAMP1-YFP fusions. Confocal immunofluorescence and immunogold electron microscopy studies demonstrated that YFP-SCAMP1 fusions and native SCAMP1 localize to the plasma membrane and mobile structures in the cytoplasm of transgenic BY-2 cells. Drug treatments and confocal immunofluorescence studies demonstrated that the punctate cytosolic organelles labeled by YFP-SCAMP1 or SCAMP1 were distinct from the Golgi apparatus and PVCs. SCAMP1-labeled organelles may represent an early endosome because the internalized endocytic markers FM4-64 and AM4-64 reached these organelles before PVCs. In addition, wortmannin caused the redistribution of SCAMP1 from the early endosomes to PVCs, probably as a result of fusions between the two compartments. Immunogold electron microscopy with high-pressure frozen/freeze-substituted samples identified the SCAMP1-positive organelles as tubular-vesicular structures at the trans-Golgi with clathrin coats. These early endosomal compartments resemble the previously described partially coated reticulum and trans-Golgi network in plant cells.
Collapse
Affiliation(s)
- Sheung Kwan Lam
- Department of Biology and Molecular Biotechnology Program, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
83
|
Klein EM, Mascheroni L, Pompa A, Ragni L, Weimar T, Lilley KS, Dupree P, Vitale A. Plant endoplasmin supports the protein secretory pathway and has a role in proliferating tissues. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 48:657-73. [PMID: 17059403 DOI: 10.1111/j.1365-313x.2006.02904.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Endoplasmin is a molecular chaperone of the heat-shock protein 90 class located in the endoplasmic reticulum and its activity is poorly characterized in plants. We assessed the ability of endoplasmin to alleviate stress via its transient overexpression in tobacco protoplasts treated with tunicamycin, an inhibitor of glycosylation and inducer of the unfolded protein response (UPR). Endoplasmin supported the secretion of a model secretory protein but was less effective than BiP, the endoplasmic reticulum member of the heat-shock protein 70 family. Consistently, immunoprecipitation experiments with in vivo radioactively labelled proteins using an antiserum prepared against Arabidopsis endoplasmin showed that a much smaller number of newly synthesized polypeptides associated with endoplasmin than with BiP. Synthesis of endoplasmin was enhanced by UPR inducers in tobacco seedlings but not protoplasts. As BiP synthesis was induced in both systems, we conclude that the UPR acts differently, at least in part, on the expression of the two chaperones. Endoplasmin was not detectable in extracts of leaves and stems of the Arabidopsis endoplasmin T-DNA insertion mutant shepherd. However, the chaperone is present, albeit at low levels, in shepherd mutant callus, mature roots and tunicamycin-treated seedlings, demonstrating that the mutation is leaky. Reduced endoplasmin in the shepherd mutant has no effect on BiP protein levels in callus or mature roots, leaves and stems, but is compensated by increased BiP in seedlings. This increase occurs in proliferating rather than expanding leaf cells, indicating an important role for endoplasmin in proliferating plant tissues.
Collapse
Affiliation(s)
- Eva M Klein
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, via Bassini 15, 20133 Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Foresti O, daSilva LLP, Denecke J. Overexpression of the Arabidopsis syntaxin PEP12/SYP21 inhibits transport from the prevacuolar compartment to the lytic vacuole in vivo. THE PLANT CELL 2006; 18:2275-93. [PMID: 16935987 PMCID: PMC1560924 DOI: 10.1105/tpc.105.040279] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Golgi-mediated transport to the lytic vacuole involves passage through the prevacuolar compartment (PVC), but little is known about how vacuolar proteins exit the PVC. We show that this last step is inhibited by overexpression of Arabidopsis thaliana syntaxin PEP12/SYP21, causing an accumulation of soluble and membrane cargo and the plant vacuolar sorting receptor BP80 in the PVC. Anterograde transport proceeds normally from the endoplasmic reticulum to the Golgi and the PVC, although export from the PVC appears to be compromised, affecting both anterograde membrane flow to the vacuole and the recycling route of BP80 to the Golgi. However, Golgi-mediated transport of soluble and membrane cargo toward the plasma membrane is not affected, but a soluble BP80 ligand is partially mis-sorted to the culture medium. We also observe clustering of individual PVC bodies that move together and possibly fuse with each other, forming enlarged compartments. We conclude that PEP12/SYP21 overexpression specifically inhibits export from the PVC without affecting the Golgi complex or compromising the secretory branch of the endomembrane system. The results provide a functional in vivo assay that confirms PEP12/SYP21 involvement in vacuolar sorting and indicates that excess of this syntaxin in the PVC can be detrimental for further transport from this organelle.
Collapse
Affiliation(s)
- Ombretta Foresti
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | | |
Collapse
|
85
|
Kohli A, Melendi PG, Abranches R, Capell T, Stoger E, Christou P. The Quest to Understand the Basis and Mechanisms that Control Expression of Introduced Transgenes in Crop Plants. PLANT SIGNALING & BEHAVIOR 2006; 1:185-95. [PMID: 19521484 PMCID: PMC2634025 DOI: 10.4161/psb.1.4.3195] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Accepted: 07/12/2006] [Indexed: 05/19/2023]
Abstract
We discuss mechanisms and factors that influence levels and stability of expressed heterologous proteins in crop plants. We have seen substantial progress in this field over the past two decades in model experimental organisms such as Arabidopsis and tobacco. There is no question such studies have resulted in furthering our understanding of key processes in the plant cell and the elaboration of sophisticated models to explain underlying mechanisms that might influence the fate, levels and stability of expression of recombinant heterologous proteins in plants. However, very often, such information is not applicable outside these laboratory experimental models. In order to generate a knowledge basis that can be used to achieve high levels and stability of heterologous proteins in relevant crop plants it is imperative to perform such studies on the target crops. With this in mind, we discuss key elements of the process at the DNA, RNA and protein levels. We believe it is essential to discuss recombinant protein production in crops in a holistic manner in order to develop a comprehensive knowledge base that will in turn serve plant biotechnology applications well.
Collapse
Affiliation(s)
- Ajay Kohli
- Institute for Research on Environment & Sustainability (IRES); University of Newcastle upon Tyne; Newcastle, UK
| | | | - Rita Abranches
- Instituto de Tecnologia Quimica e Biologica; Plant Cell Biology Laboratory; Oeiras, Portugal and Universidade Nova de Lisboa
| | | | - Eva Stoger
- Biology VII; RWTH Aachen; Aachen, Germany
| | - Paul Christou
- ICREA; Department de Produccio Vegetal I Ciencia Forestal; Lleida, Spain
| |
Collapse
|
86
|
Hanton SL, Matheson LA, Brandizzi F. Seeking a way out: export of proteins from the plant endoplasmic reticulum. TRENDS IN PLANT SCIENCE 2006; 11:335-43. [PMID: 16781884 DOI: 10.1016/j.tplants.2006.05.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 04/21/2006] [Accepted: 05/24/2006] [Indexed: 05/10/2023]
Abstract
The functionality of the secretory pathway relies on the efficient transfer of cargo molecules from their site of synthesis in the endoplasmic reticulum (ER) to successive compartments within the pathway. Although transport mechanisms of secretory proteins have been studied in detail in various non-plant systems, it is only recently that our knowledge of secretory routes in plants has expanded dramatically. This review focuses on exciting new findings concerning the exit mechanisms of cargo proteins from the plant ER and the role of ER export sites in this process.
Collapse
Affiliation(s)
- Sally L Hanton
- Department of Biology, 112 Science Place, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
| | | | | |
Collapse
|
87
|
daSilva LLP, Foresti O, Denecke J. Targeting of the plant vacuolar sorting receptor BP80 is dependent on multiple sorting signals in the cytosolic tail. THE PLANT CELL 2006; 18:1477-97. [PMID: 16714388 PMCID: PMC1475491 DOI: 10.1105/tpc.105.040394] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Although signals for vacuolar sorting of soluble proteins are well described, we have yet to learn how the plant vacuolar sorting receptor BP80 reaches its correct destination and recycles. To shed light on receptor targeting, we used an in vivo competition assay in which a truncated receptor (green fluorescent protein-BP80) specifically competes with sorting machinery and causes hypersecretion of BP80-ligands from tobacco (Nicotiana tabacum) leaf protoplasts. We show that both the transmembrane domain and the cytosolic tail of BP80 contain information necessary for efficient progress to the prevacuolar compartment (PVC). Furthermore, the tail must be exposed on the correct membrane surface to compete with sorting machinery. Mutational analysis of conserved residues revealed that multiple sequence motifs are necessary for competition, one of which is a typical Tyr-based motif (YXXPhi). Substitution of Tyr-612 for Ala causes partial retention in the Golgi apparatus, mistargeting to the plasma membrane (PM), and slower progress to the PVC. A role in Golgi-to-PVC transport was confirmed by generating the corresponding mutation on full-length BP80. The mutant receptor was partially mistargeted to the PM and induced the secretion of a coexpressed BP80-ligand. Further mutants indicate that the cytosolic tail is likely to contain other information besides the YXXPhi motif, possibly for endoplasmic reticulum export, endocytosis from the PM, and PVC-to-Golgi recycling.
Collapse
Affiliation(s)
- Luis L P daSilva
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | | |
Collapse
|