51
|
Kim YH, Park SC, Yun BW, Kwak SS. Overexpressing sweetpotato peroxidase gene swpa4 affects nitric oxide production by activating the expression of reactive oxygen species- and nitric oxide-related genes in tobacco. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 120:52-60. [PMID: 28987862 DOI: 10.1016/j.plaphy.2017.09.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/27/2017] [Accepted: 09/27/2017] [Indexed: 05/26/2023]
Abstract
Reactive oxygen species (ROS) and nitric oxide (NO) are key signaling molecules involved in various developmental and stress responses in plants. NO and ROS production, which is triggered by various stimuli, activates downstream signaling pathways to help plants cope with abiotic and biotic stresses. Recent evidence suggests that the interplay between NO and ROS signaling plays a critical role in regulating stress responses. However, the underlying molecular mechanism remains poorly understood. We previously reported that transgenic tobacco overexpressing the swpa4 peroxidase (POD) gene from sweetpotato exhibits increased tolerance to stress. Overexpression of swpa4 also induces the generation of H2O2 and activates the expression of various extracellular acidic pathogenesis-related (PR) genes. Here, we show that swpa4 positively regulates the expression of ROS- and NO-related genes in transgenic tobacco plants. Plants expressing swpa4 exhibited increased expression of ROS-related genes and increased ROS-related enzyme activity under normal conditions and H2O2 treatment, whereas the expression of NO associated 1 (NOA1) only increased under normal conditions. Moreover, plants overexpressing swpa4 showed increased NO levels under normal conditions and after treatment with the NO donor sodium nitroprusside (SNP). Interestingly, treatment with a POD inhibitor dramatically reduced NO levels in swpa4 transgenic plants. These findings suggest that swpa4 regulates H2O2 and NO homeostasis in plants under stress conditions, thereby establishing a possible molecular link between the NO and ROS signaling pathways.
Collapse
Affiliation(s)
- Yun-Hee Kim
- Department of Biology Education, College of Education, IALS, Gyeongsang National University, 501 Jinju-Daero, Jinju, 660-701, South Korea
| | - Sung Chul Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 111 Gwahangno, Yusong-gu, Daejeon 305-806, South Korea
| | - Byung-Wook Yun
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Sang-Soo Kwak
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 111 Gwahangno, Yusong-gu, Daejeon 305-806, South Korea.
| |
Collapse
|
52
|
Mwaba I, Rey MEC. Nitric oxide associated protein 1 is associated with chloroplast perturbation and disease symptoms in Nicotiana benthamiana infected with South African cassava mosaic virus. Virus Res 2017; 238:75-83. [PMID: 28577889 DOI: 10.1016/j.virusres.2017.05.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/22/2017] [Accepted: 05/26/2017] [Indexed: 12/31/2022]
Abstract
Nitric oxide associated 1 (NOA1) in plants is a cyclic GTPase involved in protein translation in the chloroplast and has been indirectly linked to nitric oxide (NO) accumulation and response to biotic stress. The association between NOA1 and NO accumulation in Arabidopsis noa1 mutants has been linked to the inability of noa1 mutants to accumulate carbon reserves such as fumarate, leading to chloroplast dysfunction and a pale green leaf phenotype. To understand the role played by NOA1 in response to South African cassava mosaic virus infection in Nicotiana benthamiana, the expression of NbNOA1 and the accumulation of NO in leaf samples was compared between south african cassava mosaic (SACMV)-infected and mock-infected plants at 14 and 28 dpi. Real-time qPCR was used to measure SACMV viral load which increased significantly by 20% from 14 to 28 dpi as chlorosis and symptom severity progressed. At 14 and 28 dpi, NbNOA1 expression was significantly lower than mock inoculated plants (2-fold lower at 14 dpi, p-value=0.01 and 5-fold lower at 28, p-value=0.00). At 14 dpi, NO accumulation remained unchanged in infected leaf tissue compared to mock inoculated, while at 28 dpi, NO accumulation was 40% lower (p-value=0.01). At 28 dpi, the decrease in NbNOA1 expression and NO accumulation was accompanied by chloroplast dysfunction, evident from the significant reduction in chlorophylls a and b and carotenoids in SACMV-infected leaves. Furthermore, the expression of chloroplast translation factors (chloroplast RNA binding, chloroplast elongation factor G, translation elongation factor Tu, translation initiation factor 3-2, plastid-specific ribosomal protein 6 and plastid ribosome recycling factor) were found to be repressed in infected N. benthamiana. GC-MS analysis showed a decrease in fumarate and an increase in glucose in SACMV-infected N. benthamiana in comparison to mock samples suggesting a decrease in carbon stores. Collectively, these results provide evidence that in response to SACMV infection, a decrease in photopigments and carbon stores, accompanied by an increase in glucose and decrease in fumarate, leads to a decline in NbNOA1expression and NO levels. This is manifested by suppressed translation factors and disruption of chloroplast function, thereby contributing to chlorotic disease symptoms.
Collapse
Affiliation(s)
- Imanu Mwaba
- School of Molecular and Cell Biology, University of the Witwatersrand, 1, Jan Smuts Avenue, Braamfontein, Johannesburg 2000, South Africa
| | - Marie Emma Christine Rey
- School of Molecular and Cell Biology, University of the Witwatersrand, 1, Jan Smuts Avenue, Braamfontein, Johannesburg 2000, South Africa.
| |
Collapse
|
53
|
Wei B, Zhang W, Chao J, Zhang T, Zhao T, Noctor G, Liu Y, Han Y. Functional analysis of the role of hydrogen sulfide in the regulation of dark-induced leaf senescence in Arabidopsis. Sci Rep 2017; 7:2615. [PMID: 28572670 PMCID: PMC5454012 DOI: 10.1038/s41598-017-02872-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/20/2017] [Indexed: 12/19/2022] Open
Abstract
There is growing evidence that hydrogen sulfide (H2S) is involved in many physiological processes in plants, but the role of H2S in dark-induced leaf senescence remains unknown. In this work, we found that H2S not only inhibited chlorophyll degradation but also caused the accumulation of photoreactive pheide a in detached leaves under extended darkness. Despite this, transcript levels of senescence-associated genes (SAGs) were less affected in H2S-treated detached leaves compared with those in H2S-untreated detached leaves. Furthermore, cell death/rapid bleaching occurred in both H2S-treated detached and attached leaves after transfer from extended darkness to light. Unlike the lack of effect of H2S on SAG transcripts in darkened detached leaves, exogenous H2S induced higher SAG transcript levels in attached leaves than untreated attached leaves. Genetic evidence further underlined the positive correlation between SAG expression in attached leaves and H2S. In addition, effects of H2S on SAG expression in attached leaves were compromised in the S-nitrosoglutathione reductase-deficient mutant, gsnor1. Taken together, our results suggest that H2S suppresses chlorophyll degradation of detached leaves by regulating a dark-dependent reaction, and that this gas positively modulates SAG expression in attached leaves under prolonged darkness in a GSNOR1-dependent manner.
Collapse
Affiliation(s)
- Bo Wei
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Wei Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Jin Chao
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Tianru Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Tingting Zhao
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Graham Noctor
- Institute of Plant Sciences Paris Saclay, Université Paris-Sud, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Evry, Paris Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, 91405, Orsay, France
| | - Yongsheng Liu
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China.
| | - Yi Han
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China.
| |
Collapse
|
54
|
Wang J, Wang Y, Lv Q, Wang L, Du J, Bao F, He YK. Nitric oxide modifies root growth by S-nitrosylation of plastidial glyceraldehyde-3-phosphate dehydrogenase. Biochem Biophys Res Commun 2017; 488:88-94. [DOI: 10.1016/j.bbrc.2017.05.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 05/02/2017] [Indexed: 01/11/2023]
|
55
|
Arbuscular mycorrhizal symbiosis modifies the effects of a nitric oxide donor (sodium nitroprusside;SNP) and a nitric oxide synthesis inhibitor (Nω-nitro-L-arginine methyl ester;L-NAME) on lettuce plants under well watered and drought conditions. Symbiosis 2017. [DOI: 10.1007/s13199-017-0486-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
56
|
Kuruthukulangarakoola GT, Zhang J, Albert A, Winkler B, Lang H, Buegger F, Gaupels F, Heller W, Michalke B, Sarioglu H, Schnitzler JP, Hebelstrup KH, Durner J, Lindermayr C. Nitric oxide-fixation by non-symbiotic haemoglobin proteins in Arabidopsis thaliana under N-limited conditions. PLANT, CELL & ENVIRONMENT 2017; 40:36-50. [PMID: 27245884 DOI: 10.1111/pce.12773] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 05/03/2016] [Accepted: 05/24/2016] [Indexed: 05/18/2023]
Abstract
Nitric oxide (NO) is an important signalling molecule that is involved in many different physiological processes in plants. Here, we report about a NO-fixing mechanism in Arabidopsis, which allows the fixation of atmospheric NO into nitrogen metabolism. We fumigated Arabidopsis plants cultivated in soil or as hydroponic cultures during the whole growing period with up to 3 ppmv of NO gas. Transcriptomic, proteomic and metabolomic analyses were used to identify non-symbiotic haemoglobin proteins as key components of the NO-fixing process. Overexpressing non-symbiotic haemoglobin 1 or 2 genes resulted in fourfold higher nitrate levels in these plants compared with NO-treated wild-type. Correspondingly, rosettes size and weight, vegetative shoot thickness and seed yield were 25, 40, 30, and 50% higher, respectively, than in wild-type plants. Fumigation with 250 ppbv 15 NO confirmed the importance of non-symbiotic haemoglobin 1 and 2 for the NO-fixation pathway, and we calculated a daily uptake for non-symbiotic haemoglobin 2 overexpressing plants of 250 mg N/kg dry weight. This mechanism is probably important under conditions with limited N supply via the soil. Moreover, the plant-based NO uptake lowers the concentration of insanitary atmospheric NOx, and in this context, NO-fixation can be beneficial to air quality.
Collapse
Affiliation(s)
| | - Jiangli Zhang
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Germany
| | - Andreas Albert
- Research Unit Environmental Simulation, Helmholtz Zentrum München, Germany
| | - Barbro Winkler
- Research Unit Environmental Simulation, Helmholtz Zentrum München, Germany
| | - Hans Lang
- Research Unit Environmental Simulation, Helmholtz Zentrum München, Germany
| | - Franz Buegger
- Institute of Soil Ecology, Helmholtz Zentrum München, Germany
| | - Frank Gaupels
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Germany
| | - Werner Heller
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Germany
| | - Bernhard Michalke
- Research Unit Analytical Biogeochemistry, Helmholtz Zentrum München, Germany
| | - Hakan Sarioglu
- Research Unit Protein Sciences, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764, Neuherberg/Munich, Germany
| | | | - Kim Henrik Hebelstrup
- Department of Molecular Biology and Genetics, Aarhus University, Forsøgsvej 1, DK-4200, Slagelse, Denmark
| | - Jörg Durner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Germany
- Chair of Biochemical Plant Pathology, Technische Universität München, 85354, Freising, Germany
| | | |
Collapse
|
57
|
Sun H, Feng F, Liu J, Zhao Q. The Interaction between Auxin and Nitric Oxide Regulates Root Growth in Response to Iron Deficiency in Rice. FRONTIERS IN PLANT SCIENCE 2017; 8:2169. [PMID: 29312409 PMCID: PMC5743679 DOI: 10.3389/fpls.2017.02169] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/11/2017] [Indexed: 05/22/2023]
Abstract
Fe deficiency (-Fe) is a common abiotic stress that affects the root development of plants. Auxin and nitric oxide (NO) are key regulator of root growth under -Fe. However, the interactions between auxin and NO regulate root growth in response to Fe deficiency are complex and unclear. In this study, the indole-3-acetic acid (IAA) and NO levels in roots, and the responses of root growth in rice to different levels of Fe supply were investigated using wild type (WT), ospin1b and osnia2 mutants. -Fe promoted LR formation but inhibited seminal root elongation. IAA levels, [3H] IAA transport, and expression levels of PIN1a-c genes in roots were reduced under -Fe, suggesting that polar auxin transport from shoots to roots was decreased. Application of IAA to -Fe seedlings restored seminal root length, but not LR density, to levels similar to those under normal Fe (+Fe), and the seminal root length was shorter in two ospin1b mutants relative to WT under +Fe, but not under -Fe, confirming that auxin transport participates in -Fe-inhibited seminal root elongation. Moreover, -Fe-induced LR density and -Fe-inhibited seminal root elongation paralleled NO production in roots. Interestingly, similar NO accumulation and responses of LR density and root elongation were observed in osnia2 mutants compared to WT, and the higher expression of NOA gene under -Fe, suggesting that -Fe-induced NO was generated via the NO synthase-like pathway rather than the nitrate reductase pathway. However, IAA could restore the functions of NO in inhibiting seminal root elongation, but did not replace the role of NO-induced LR formation under -Fe. Overall, our findings suggested that NO functions downstream of auxin in regulating LR formation; NO-inhibited seminal root elongation by decreasing meristem activity in root tips under -Fe, with the involvement of auxin.
Collapse
|
58
|
Li Z, Wang X, Chen J, Gao J, Zhou X, Kuai B. CCX1, a Putative Cation/Ca2+ Exchanger, Participates in Regulation of Reactive Oxygen Species Homeostasis and Leaf Senescence. PLANT & CELL PHYSIOLOGY 2016; 57:2611-2619. [PMID: 27986916 DOI: 10.1093/pcp/pcw175] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/12/2016] [Indexed: 05/07/2023]
Abstract
The major developmental significance of leaf senescence is the massive recycling of nutrients from senescing leaves to nascent organs, including seeds, to meet the requirement of their rapid development, so-called nutrient remobilization. The efficiency of nutrient remobilization is associated with the activity of diverse transporters. A large number of transporters are up-regulated during leaf senescence in Arabidopsis, many of which participate in regulating leaf senescence via different signaling pathways. Here, we report that a member of the cation/Ca2+ exchanger family, CCX1, is highly induced during leaf senescence in Arabidopsis. Although single mutation of CCX1 did not change the senescence phenotype, double mutation of CCX1 and CCX4 resulted in a subtle but significant stay-green phenotype during natural and dark-induced leaf senescence, suggesting that some members of the cation/Ca2+ exchanger family act redundantly in mediating leaf senescence. Consistently, overexpression of CCX1 accelerated leaf senescence. Moreover, the ccx1ccx4 double mutant was more tolerant to H2O2, whereas CCX1-overexpressing lines showed an elevated response to H2O2 treatment, presumably due to an overaccumulation of reactive oxygen species (ROS), indicating that CCX1 may promote leaf senescence via modulating ROS homeostasis. Notably, both ccx1-1 and ccx1ccx4 were sensitive to Ca2+ deprivation, implying that CCX1 may also be involved in modulating Ca2+ signaling and consequently affecting the initiation of leaf senescence.
Collapse
Affiliation(s)
- Zhongpeng Li
- State Key Laboratory of Genetic Engineering and Fudan Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xiaolei Wang
- State Key Laboratory of Genetic Engineering and Fudan Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Junyi Chen
- State Key Laboratory of Genetic Engineering and Fudan Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jiong Gao
- State Key Laboratory of Genetic Engineering and Fudan Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xin Zhou
- State Key Laboratory of Genetic Engineering and Fudan Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Benke Kuai
- State Key Laboratory of Genetic Engineering and Fudan Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
59
|
Fu ZW, Wang YL, Lu YT, Yuan TT. Nitric oxide is involved in stomatal development by modulating the expression of stomatal regulator genes in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 252:282-289. [PMID: 27717464 DOI: 10.1016/j.plantsci.2016.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 08/08/2016] [Accepted: 08/09/2016] [Indexed: 05/11/2023]
Abstract
As sessile organisms, plants require many flexible strategies to adapt to the environment. Although some environmental signaling pathways regulating stomatal development have been identified, how stomatal regulators are modulated by internal and external signals to determine the final stomatal abundance requires further exploration. In our studies, we found that nitric oxide (NO) promotes stomatal development with increased stomatal index as well as the relative number of meristemoids and guard mother cells [%(M+GMC)] in NO-treated wild-type Arabidopsis plants; this role of NO was further verified in the nox1 mutant, which exhibits higher NO levels, and the noa1 mutant, which exhibits low NO accumulation. To gain insight into the molecular mechanisms underlying the effect of NO, we further assayed the expression of genes involved in stomatal development and found that NO induces the expression of the master regulators SPCH, MUTE and SCRM2 to initiate stomatal development. In addition, MPK6 is also involved in NO-promoted stomatal development, as MPK6 expression was repressed in nox1 and NO-treated plants, and transgenic plants overexpressing MPK6 were less sensitive to SNP treatment in terms of changes in the%(M+GMC). Thus, our study shows that NO promotes the production of stomata by up-regulating the expression of SPCH, MUTE and SCRM2 and down-regulating MPK6 expression.
Collapse
Affiliation(s)
- Zheng-Wei Fu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yan-Li Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ying-Tang Lu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ting-Ting Yuan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
60
|
Ji Y, Liu J, Xing D. Low concentrations of salicylic acid delay methyl jasmonate-induced leaf senescence by up-regulating nitric oxide synthase activity. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5233-45. [PMID: 27440938 DOI: 10.1093/jxb/erw280] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In plants, extensive efforts have been devoted to understanding the crosstalk between salicylic acid (SA) and jasmonic acid (JA) signaling in pathogen defenses, but this crosstalk has scarcely been addressed during senescence. In this study, the effect of SA application on methyl jasmonate (MeJA)-induced leaf senescence was assessed. We found that low concentrations of SA (1-50 μM) played a delayed role against the senescence promoted by MeJA. Furthermore, low concentrations of SA enhanced plant antioxidant defenses and restricted reactive oxygen species (ROS) accumulation in MeJA-treated leaves. When applied simultaneously with MeJA, low concentrations of SA triggered a nitric oxide (NO) burst, and the elevated NO levels were linked to the nitric oxide associated 1 (NOA1)-dependent pathway via nitric oxide synthase (NOS) activity. The ability of SA to up-regulate plant antioxidant defenses, reduce ROS accumulation, and suppress leaf senescence was lost in NO-deficient Atnoa1 plants. In a converse manner, exogenous addition of NO donors increased the plant antioxidant capacity and lowered the ROS levels in MeJA-treated leaves. Taken together, the results indicate that SA at low concentrations counteracts MeJA-induced leaf senescence through NOA1-dependent NO signaling and strengthening of the antioxidant defense.
Collapse
Affiliation(s)
- Yingbin Ji
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Jian Liu
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
61
|
Shumaev KB, Kosmachevskaya OV, Chumikina LV, Topunov AF. Dinitrosyl Iron Complexes and other Physiological Metabolites of Nitric Oxide: Multifarious Role in Plants. Nat Prod Commun 2016. [DOI: 10.1177/1934578x1601100839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This review considers dinitrosyl iron complexes (DNICs) and some other metabolites of nitric oxide (NO) in plants. Nitric oxide is vital for all living organisms, although its role in plants has been studied insufficiently compared with that in animals. We presume that the spectrum of its functions in plants is even wider than in animals. The main NO metabolites could be S-nitrosothiols, DNICs and peroxynitrite. Of particular interest are pro- and antioxidant properties of these compounds. DNICs function and their potential biosynthetic role in plants are practically unknown and brought to the limelight in this review. Since the process of NO biosynthesis in plants is still under discussion, we also specially examine this problem.
Collapse
Affiliation(s)
- Konstantin B. Shumaev
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russian Federation
| | - Olga V. Kosmachevskaya
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russian Federation
| | - Ludmila V. Chumikina
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russian Federation
| | - Alexey F. Topunov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russian Federation
| |
Collapse
|
62
|
Sun H, Bi Y, Tao J, Huang S, Hou M, Xue R, Liang Z, Gu P, Yoneyama K, Xie X, Shen Q, Xu G, Zhang Y. Strigolactones are required for nitric oxide to induce root elongation in response to nitrogen and phosphate deficiencies in rice. PLANT, CELL & ENVIRONMENT 2016; 39:1473-84. [PMID: 27194103 DOI: 10.1111/pce.12709] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/26/2015] [Indexed: 05/21/2023]
Abstract
The response of the root system architecture to nutrient deficiencies is critical for sustainable agriculture. Nitric oxide (NO) is considered a key regulator of root growth, although the mechanisms remain unknown. Phenotypic, cellular and genetic analyses were undertaken in rice to explore the role of NO in regulating root growth and strigolactone (SL) signalling under nitrogen-deficient and phosphate-deficient conditions (LN and LP). LN-induced and LP-induced seminal root elongation paralleled NO production in root tips. NO played an important role in a shared pathway of LN-induced and LP-induced root elongation via increased meristem activity. Interestingly, no responses of root elongation were observed in SL d mutants compared with wild-type plants, although similar NO accumulation was induced by sodium nitroprusside (SNP) application. Application of abamine (the SL inhibitor) reduced seminal root length and pCYCB1;1::GUS expression induced by SNP application in wild type; furthermore, comparison with wild type showed lower SL-signalling genes in nia2 mutants under control and LN treatments and similar under SNP application. Western blot analysis revealed that NO, similar to SL, triggered proteasome-mediated degradation of D53 protein levels. Therefore, we presented a novel signalling pathway in which NO-activated seminal root elongation under LN and LP conditions, with the involvement of SLs.
Collapse
Affiliation(s)
- Huwei Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, and Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yang Bi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, and Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinyuan Tao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, and Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuangjie Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, and Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mengmeng Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, and Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ren Xue
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, and Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhihao Liang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, and Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Pengyuan Gu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, and Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Koichi Yoneyama
- Center for Bioscience Research & Education, Utsunomiya University, Utsunomiya, 321-8505, Japan
| | - Xiaonan Xie
- Center for Bioscience Research & Education, Utsunomiya University, Utsunomiya, 321-8505, Japan
| | - Qirong Shen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, and Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, and Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yali Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, and Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
63
|
Wu S, Meng Y, Cao X, Xue S. Regulatory mechanisms of oxidative species and phytohormones in marine microalgae Isochrysis zhangjiangensis under nitrogen deficiency. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.05.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
64
|
Zhu Y, Liao W, Niu L, Wang M, Ma Z. Nitric oxide is involved in hydrogen gas-induced cell cycle activation during adventitious root formation in cucumber. BMC PLANT BIOLOGY 2016; 16:146. [PMID: 27352869 PMCID: PMC4924243 DOI: 10.1186/s12870-016-0834-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/16/2016] [Indexed: 05/04/2023]
Abstract
BACKGROUND Adventitious root development is a complex process regulated through a variety of signaling molecules. Hydrogen gas (H2) and nitric oxide (NO), two new signaling molecules are both involved in plant development and stress tolerance. RESULTS To investigate the mechanism of adventitious root development induced by hydrogen-rich water (HRW), a combination of fluorescence microscopy and molecular approaches was used to study cell cycle activation and cell cycle-related gene expression in cucumber (Cucumis sativus 'Xinchun 4') explants. The results revealed that the effect of HRW on adventitious root development was dose-dependent, with maximal biological responses at 50 % HRW. HRW treatment increased NO content in a time-dependent fashion. The results also indicated that HRW and NO promoted the G1-to-S transition and up-regulated cell cycle-related genes: CycA (A-type cyclin), CycB (B-type cyclin), CDKA (cyclin-dependent kinase A) and CDKB (cyclin-dependent kinase B) expression. Additionally, target genes related to adventitious rooting were up-regulated by HRW and NO in cucumber explants. While, the responses of HRW-induced adventitious root development and increase of NO content were partially blocked by a specific NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt, NO synthase (NOS)-like enzyme inhibitor N(G) -nitro-L-arginine methylester hydrochloride, or nitrate reductase inhibitors tungstate and NaN3. These chemicals also partially reversed the effect of HRW on cell cycle activation and the transcripts of cell cycle regulatory genes and target genes related adventitious root formation. CONCLUSIONS Together, NO may emerge as a downstream signaling molecule in H2-induced adventitious root organogenesis. Additionally, H2 mediated cell cycle activation via NO pathway during adventitious root formation.
Collapse
Affiliation(s)
- Yongchao Zhu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Lijuan Niu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Meng Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Zhanjun Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| |
Collapse
|
65
|
Vanzo E, Merl-Pham J, Velikova V, Ghirardo A, Lindermayr C, Hauck SM, Bernhardt J, Riedel K, Durner J, Schnitzler JP. Modulation of Protein S-Nitrosylation by Isoprene Emission in Poplar. PLANT PHYSIOLOGY 2016; 170:1945-61. [PMID: 26850277 PMCID: PMC4825136 DOI: 10.1104/pp.15.01842] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/04/2016] [Indexed: 05/18/2023]
Abstract
Researchers have been examining the biological function(s) of isoprene in isoprene-emitting (IE) species for two decades. There is overwhelming evidence that leaf-internal isoprene increases the thermotolerance of plants and protects them against oxidative stress, thus mitigating a wide range of abiotic stresses. However, the mechanisms of abiotic stress mitigation by isoprene are still under debate. Here, we assessed the impact of isoprene on the emission of nitric oxide (NO) and the S-nitroso-proteome of IE and non-isoprene-emitting (NE) gray poplar (Populus × canescens) after acute ozone fumigation. The short-term oxidative stress induced a rapid and strong emission of NO in NE compared with IE genotypes. Whereas IE and NE plants exhibited under nonstressful conditions only slight differences in their S-nitrosylation pattern, the in vivo S-nitroso-proteome of the NE genotype was more susceptible to ozone-induced changes compared with the IE plants. The results suggest that the nitrosative pressure (NO burst) is higher in NE plants, underlining the proposed molecular dialogue between isoprene and the free radical NO Proteins belonging to the photosynthetic light and dark reactions, the tricarboxylic acid cycle, protein metabolism, and redox regulation exhibited increased S-nitrosylation in NE samples compared with IE plants upon oxidative stress. Because the posttranslational modification of proteins via S-nitrosylation often impacts enzymatic activities, our data suggest that isoprene indirectly regulates the production of reactive oxygen species (ROS) via the control of the S-nitrosylation level of ROS-metabolizing enzymes, thus modulating the extent and velocity at which the ROS and NO signaling molecules are generated within a plant cell.
Collapse
Affiliation(s)
- Elisa Vanzo
- Helmholtz Zentrum München, Research Unit Environmental Simulation (E.V., V.V., A.G., J.-P.S.), Institute of Biochemical Plant Pathology (C.L., J.D.), and Research Unit Protein Science (J.M.-P., S.M.H.), D-85764 Neuherberg, Germany;Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria (V.V.); andInstitute for Microbiology, Ernst-Moritz-Arndt University, 17487 Greifswald, Germany (J.B., K.R.)
| | - Juliane Merl-Pham
- Helmholtz Zentrum München, Research Unit Environmental Simulation (E.V., V.V., A.G., J.-P.S.), Institute of Biochemical Plant Pathology (C.L., J.D.), and Research Unit Protein Science (J.M.-P., S.M.H.), D-85764 Neuherberg, Germany;Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria (V.V.); andInstitute for Microbiology, Ernst-Moritz-Arndt University, 17487 Greifswald, Germany (J.B., K.R.)
| | - Violeta Velikova
- Helmholtz Zentrum München, Research Unit Environmental Simulation (E.V., V.V., A.G., J.-P.S.), Institute of Biochemical Plant Pathology (C.L., J.D.), and Research Unit Protein Science (J.M.-P., S.M.H.), D-85764 Neuherberg, Germany;Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria (V.V.); andInstitute for Microbiology, Ernst-Moritz-Arndt University, 17487 Greifswald, Germany (J.B., K.R.)
| | - Andrea Ghirardo
- Helmholtz Zentrum München, Research Unit Environmental Simulation (E.V., V.V., A.G., J.-P.S.), Institute of Biochemical Plant Pathology (C.L., J.D.), and Research Unit Protein Science (J.M.-P., S.M.H.), D-85764 Neuherberg, Germany;Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria (V.V.); andInstitute for Microbiology, Ernst-Moritz-Arndt University, 17487 Greifswald, Germany (J.B., K.R.)
| | - Christian Lindermayr
- Helmholtz Zentrum München, Research Unit Environmental Simulation (E.V., V.V., A.G., J.-P.S.), Institute of Biochemical Plant Pathology (C.L., J.D.), and Research Unit Protein Science (J.M.-P., S.M.H.), D-85764 Neuherberg, Germany;Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria (V.V.); andInstitute for Microbiology, Ernst-Moritz-Arndt University, 17487 Greifswald, Germany (J.B., K.R.)
| | - Stefanie M Hauck
- Helmholtz Zentrum München, Research Unit Environmental Simulation (E.V., V.V., A.G., J.-P.S.), Institute of Biochemical Plant Pathology (C.L., J.D.), and Research Unit Protein Science (J.M.-P., S.M.H.), D-85764 Neuherberg, Germany;Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria (V.V.); andInstitute for Microbiology, Ernst-Moritz-Arndt University, 17487 Greifswald, Germany (J.B., K.R.)
| | - Jörg Bernhardt
- Helmholtz Zentrum München, Research Unit Environmental Simulation (E.V., V.V., A.G., J.-P.S.), Institute of Biochemical Plant Pathology (C.L., J.D.), and Research Unit Protein Science (J.M.-P., S.M.H.), D-85764 Neuherberg, Germany;Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria (V.V.); andInstitute for Microbiology, Ernst-Moritz-Arndt University, 17487 Greifswald, Germany (J.B., K.R.)
| | - Katharina Riedel
- Helmholtz Zentrum München, Research Unit Environmental Simulation (E.V., V.V., A.G., J.-P.S.), Institute of Biochemical Plant Pathology (C.L., J.D.), and Research Unit Protein Science (J.M.-P., S.M.H.), D-85764 Neuherberg, Germany;Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria (V.V.); andInstitute for Microbiology, Ernst-Moritz-Arndt University, 17487 Greifswald, Germany (J.B., K.R.)
| | - Jörg Durner
- Helmholtz Zentrum München, Research Unit Environmental Simulation (E.V., V.V., A.G., J.-P.S.), Institute of Biochemical Plant Pathology (C.L., J.D.), and Research Unit Protein Science (J.M.-P., S.M.H.), D-85764 Neuherberg, Germany;Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria (V.V.); andInstitute for Microbiology, Ernst-Moritz-Arndt University, 17487 Greifswald, Germany (J.B., K.R.)
| | - Jörg-Peter Schnitzler
- Helmholtz Zentrum München, Research Unit Environmental Simulation (E.V., V.V., A.G., J.-P.S.), Institute of Biochemical Plant Pathology (C.L., J.D.), and Research Unit Protein Science (J.M.-P., S.M.H.), D-85764 Neuherberg, Germany;Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria (V.V.); andInstitute for Microbiology, Ernst-Moritz-Arndt University, 17487 Greifswald, Germany (J.B., K.R.)
| |
Collapse
|
66
|
Dahro B, Wang F, Peng T, Liu JH. PtrA/NINV, an alkaline/neutral invertase gene of Poncirus trifoliata, confers enhanced tolerance to multiple abiotic stresses by modulating ROS levels and maintaining photosynthetic efficiency. BMC PLANT BIOLOGY 2016. [PMID: 27025596 DOI: 10.1016/j.envexpbot.2018.12.009] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
BACKGROUND Alkaline/neutral invertase (A/N-INV), an enzyme that hydrolyzes sucrose irreversibly into glucose and fructose, is essential for normal plant growth,development, and stress tolerance. However, the physiological and/or molecular mechanism underpinning the role of A/N-INV in abiotic stress tolerance is poorly understood. RESULTS In this report, an A/N-INV gene (PtrA/NINV) was isolated from Poncirus trifoliata, a cold-hardy relative of citrus, and functionally characterized. PtrA/NINV expression levels were induced by cold, salt, dehydration, sucrose, and ABA, but decreased by glucose. PtrA/NINV was found to localize in both chloroplasts and mitochondria. Overexpression of PtrA/NINV conferred enhanced tolerance to multiple stresses, including cold, high salinity, and drought, as supported by lower levels of reactive oxygen species (ROS), reduced oxidative damages, decreased water loss rate, and increased photosynthesis efficiency, relative to wild-type (WT). The transgenic plants exhibited higher A/N-INV activity and greater reducing sugar content under normal and stress conditions. CONCLUSIONS PtrA/NINV is an important gene implicated in sucrose decomposition, and plays a positive role in abiotic stress tolerance by promoting osmotic adjustment, ROS detoxification and photosynthesis efficiency. Thus, PtrA/NINV has great potential to be used in transgenic breeding for improvement of stress tolerance.
Collapse
Affiliation(s)
- Bachar Dahro
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
- Department of Horticulture, Faculty of Agriculture, Tishreen University, Lattakia, Syria
| | - Fei Wang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ting Peng
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
67
|
Dahro B, Wang F, Peng T, Liu JH. PtrA/NINV, an alkaline/neutral invertase gene of Poncirus trifoliata, confers enhanced tolerance to multiple abiotic stresses by modulating ROS levels and maintaining photosynthetic efficiency. BMC PLANT BIOLOGY 2016; 16:76. [PMID: 27025596 PMCID: PMC4812658 DOI: 10.1186/s12870-016-0761-0] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/15/2016] [Indexed: 05/09/2023]
Abstract
BACKGROUND Alkaline/neutral invertase (A/N-INV), an enzyme that hydrolyzes sucrose irreversibly into glucose and fructose, is essential for normal plant growth,development, and stress tolerance. However, the physiological and/or molecular mechanism underpinning the role of A/N-INV in abiotic stress tolerance is poorly understood. RESULTS In this report, an A/N-INV gene (PtrA/NINV) was isolated from Poncirus trifoliata, a cold-hardy relative of citrus, and functionally characterized. PtrA/NINV expression levels were induced by cold, salt, dehydration, sucrose, and ABA, but decreased by glucose. PtrA/NINV was found to localize in both chloroplasts and mitochondria. Overexpression of PtrA/NINV conferred enhanced tolerance to multiple stresses, including cold, high salinity, and drought, as supported by lower levels of reactive oxygen species (ROS), reduced oxidative damages, decreased water loss rate, and increased photosynthesis efficiency, relative to wild-type (WT). The transgenic plants exhibited higher A/N-INV activity and greater reducing sugar content under normal and stress conditions. CONCLUSIONS PtrA/NINV is an important gene implicated in sucrose decomposition, and plays a positive role in abiotic stress tolerance by promoting osmotic adjustment, ROS detoxification and photosynthesis efficiency. Thus, PtrA/NINV has great potential to be used in transgenic breeding for improvement of stress tolerance.
Collapse
Affiliation(s)
- Bachar Dahro
- />Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070 China
- />Department of Horticulture, Faculty of Agriculture, Tishreen University, Lattakia, Syria
| | - Fei Wang
- />Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070 China
| | - Ting Peng
- />Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070 China
| | - Ji-Hong Liu
- />Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
68
|
Qi Y, Zhao J, An R, Zhang J, Liang S, Shao J, Liu X, An L, Yu F. Mutations in circularly permuted GTPase family genes AtNOA1/RIF1/SVR10 and BPG2 suppress var2-mediated leaf variegation in Arabidopsis thaliana. PHOTOSYNTHESIS RESEARCH 2016; 127:355-67. [PMID: 26435530 DOI: 10.1007/s11120-015-0195-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 09/24/2015] [Indexed: 05/18/2023]
Abstract
Leaf variegation mutants constitute a unique group of chloroplast development mutants and are ideal genetic materials to dissect the regulation of chloroplast development. We have utilized the Arabidopsis yellow variegated (var2) mutant and genetic suppressor analysis to probe the mechanisms of chloroplast development. Here we report the isolation of a new var2 suppressor locus SUPPRESSOR OF VARIEGATION (SVR10). Genetic mapping and molecular complementation indicated that SVR10 encodes a circularly permuted GTPase that has been reported as Arabidopsis thaliana NITRIC OXIDE ASSOCIATED 1 (AtNOA1) and RESISTANT TO INHIBITION BY FOSMIDOMYCIN 1 (RIF1). Biochemical evidence showed that SVR10/AtNOA1/RIF1 likely localizes to the chloroplast stroma. We further demonstrate that the mutant of a close homologue of SVR10/AtNOA1/RIF1, BRASSINAZOLE INSENSITIVE PALE GREEN 2 (BPG2), can also suppress var2 leaf variegation. Mutants of SVR10 and BPG2 are impaired in photosynthesis and the accumulation of chloroplast proteins. Interestingly, two-dimensional blue native gel analysis showed that mutants of SVR10 and BPG2 display defects in the assembly of thylakoid membrane complexes including reduced levels of major photosynthetic complexes and the abnormal accumulation of a chlorophyll-protein supercomplex containing photosystem I. Taken together, our findings suggest that SVR10 and BPG2 are functionally related with VAR2, likely through their potential roles in regulating chloroplast protein homeostasis, and both SVR10 and BPG2 are required for efficient thylakoid protein complex assembly and photosynthesis.
Collapse
Affiliation(s)
- Yafei Qi
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Jun Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Rui An
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Juan Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Shuang Liang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Jingxia Shao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Xiayan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Lijun An
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Fei Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
69
|
Deng XG, Zhu T, Zou LJ, Han XY, Zhou X, Xi DH, Zhang DW, Lin HH. Orchestration of hydrogen peroxide and nitric oxide in brassinosteroid-mediated systemic virus resistance in Nicotiana benthamiana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:478-93. [PMID: 26749255 DOI: 10.1111/tpj.13120] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 12/13/2015] [Accepted: 12/24/2015] [Indexed: 05/13/2023]
Abstract
Brassinosteroids (BRs) play essential roles in modulating plant growth, development and stress responses. Here, involvement of BRs in plant systemic resistance to virus was studied. Treatment of local leaves in Nicotiana benthamiana with BRs induced virus resistance in upper untreated leaves, accompanied by accumulations of H2O2 and NO. Scavenging of H2O2 or NO in upper leaves blocked BR-induced systemic virus resistance. BR-induced systemic H2O2 accumulation was blocked by local pharmacological inhibition of NADPH oxidase or silencing of respiratory burst oxidase homolog gene NbRBOHB, but not by systemic NADPH oxidase inhibition or NbRBOHA silencing. Silencing of the nitrite-dependent nitrate reductase gene NbNR or systemic pharmacological inhibition of NR compromised BR-triggered systemic NO accumulation, while local inhibition of NR, silencing of NbNOA1 and inhibition of NOS had little effect. Moreover, we provide evidence that BR-activated H2O2 is required for NO synthesis. Pharmacological scavenging or genetic inhibiting of H2O2 generation blocked BR-induced systemic NO production, but BR-induced H2O2 production was not sensitive to NO scavengers or silencing of NbNR. Systemically applied sodium nitroprusside rescued BR-induced systemic virus defense in NbRBOHB-silenced plants, but H2O2 did not reverse the effect of NbNR silencing on BR-induced systemic virus resistance. Finally, we demonstrate that the receptor kinase BRI1(BR insensitive 1) is an upstream component in BR-mediated systemic defense signaling, as silencing of NbBRI1 compromised the BR-induced H2O2 and NO production associated with systemic virus resistance. Together, our pharmacological and genetic data suggest the existence of a signaling pathway leading to BR-mediated systemic virus resistance that involves local Respiratory Burst Oxidase Homolog B (RBOHB)-dependent H2O2 production and subsequent systemic NR-dependent NO generation.
Collapse
Affiliation(s)
- Xing-Guang Deng
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Tong Zhu
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Li-Juan Zou
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Xue-Ying Han
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Xue Zhou
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - De-Hui Xi
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Da-Wei Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Hong-Hui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
70
|
Yu J, Zhang Y, Di C, Zhang Q, Zhang K, Wang C, You Q, Yan H, Dai SY, Yuan JS, Xu W, Su Z. JAZ7 negatively regulates dark-induced leaf senescence in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:751-62. [PMID: 26547795 PMCID: PMC4737072 DOI: 10.1093/jxb/erv487] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
JASMONATE ZIM-domain (JAZ) proteins play important roles in plant defence and growth by regulating jasmonate signalling. Through data mining, we discovered that the JAZ7 gene was up-regulated in darkness. In the dark, the jaz7 mutant displayed more severe leaf yellowing, quicker chlorophyll degradation, and higher hydrogen peroxide accumulation compared with wild-type (WT) plants. The mutant phenotype of dark-induced leaf senescence could be rescued in the JAZ7-complemented and -overexpression lines. Moreover, the double mutants of jaz7 myc2 and jaz7 coi1 exhibited delayed leaf senescence. We further employed GeneChip analysis to study the molecular mechanism. Some key genes down-regulated in the triple mutant myc2 myc3 myc4 were up-regulated in the jaz7 mutant under darkness. The Gene Ontology terms 'leaf senescence' and 'cell death' were significantly enriched in the differentially expressed genes. Combining the genetic and transcriptomic analyses together, we proposed a model whereby darkness can induce JAZ7, which might further block MYC2 to suppress dark-induced leaf senescence. In darkness, the mutation of JAZ7 might partially liberate MYC2/MYC3/MYC4 from suppression, leading the MYC proteins to bind to the G-box/G-box-like motifs in the promoters, resulting in the up-regulation of the downstream genes related to indole-glucosinolate biosynthesis, sulphate metabolism, callose deposition, and JA-mediated signalling pathways. In summary, our genetic and transcriptomic studies established the JAZ7 protein as an important regulator in dark-induced leaf senescence.
Collapse
Affiliation(s)
- Juan Yu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Yixiang Zhang
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| | - Chao Di
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Qunlian Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Kang Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Chunchao Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Qi You
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Hong Yan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Susie Y Dai
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA
| | - Joshua S Yuan
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| | - Wenying Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Zhen Su
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| |
Collapse
|
71
|
Du S, Zhang R, Zhang P, Liu H, Yan M, Chen N, Xie H, Ke S. Elevated CO2-induced production of nitric oxide (NO) by NO synthase differentially affects nitrate reductase activity in Arabidopsis plants under different nitrate supplies. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:893-904. [PMID: 26608644 DOI: 10.1093/jxb/erv506] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
CO2 elevation often alters the plant's nitrate reductase (NR) activity, the first enzyme acting in the nitrate assimilation pathway. However, the mechanism underlying this process remains unknown. The association between elevated CO2-induced alterations of NR activity and nitric oxide (NO) was examined in Col-0 Arabidopsis fed with 0.2-10 mM nitrate, using NO donors, NO scavenger, and NO synthase (NOS) inhibitor. The noa1 mutant, in which most NOS activity was lost, and the NR activity-null mutant nia1 nia2 were also used to examine the above association. In response to CO2 elevation, NR activity increased in low-nitrate Col-0 plants but was inhibited in high-nitrate Col-0 plants. NO scavenger and NOS inhibitor could eliminate these two responses, whereas the application of NO donors mimicked these distinct responses in ambient CO2-grown Col-0 plants. Furthermore, in both low- and high-nitrate conditions, elevated CO2 increased NOS activity and NO levels in Col-0 and nia1 nia2 plants but had little effect on NO level and NR activity in noa1 plants. Considering all of these findings, this study concluded that, in response to CO2 elevation, either the NR activity induction in low-nitrate plants or the NR activity inhibition in high-nitrate plants is regulated by NOS-generated NO.
Collapse
Affiliation(s)
- Shaoting Du
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Ranran Zhang
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Peng Zhang
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Huijun Liu
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Minggang Yan
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Ni Chen
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Huaqiang Xie
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Shouwei Ke
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China
| |
Collapse
|
72
|
Li X, Pan Y, Chang B, Wang Y, Tang Z. NO Promotes Seed Germination and Seedling Growth Under High Salt May Depend on EIN3 Protein in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2016; 6:1203. [PMID: 26779234 PMCID: PMC4703817 DOI: 10.3389/fpls.2015.01203] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 12/14/2015] [Indexed: 05/23/2023]
Abstract
The gas molecule nitric oxide (NO) can cooperate with ethylene to tightly modulate plant growth and stress responses. One of the mechanism of their crosstalk is that NO is able to activate ethylene biosynthesis, possibly through post-translational modification of key enzymes such as ACC synthase and oxidase by S-nitrosylation. In this paper, we focus on the crosstalk of NO with ethylene signaling transduction transcription factor EIN3 (Ethylene Insensitive 3) and downstream gene expression in alleviating germination inhibition and growth damage induced by high salt. The Arabidopsis lines affected in ethylene signaling (ein3eil1) and NO biosynthesis (nia1nia2) were employed to compare with the wild-type Col-0 and overexpressing line EIN3ox. Firstly, the obviously inhibited germination, greater ratio of bleached leaves and enhanced electrolyte leakage were found in ein3eil1 and nia1nia2 lines than in Col-0 plants upon high salinity. However, the line EIN3ox obtained a notably elevated ability to germinate and improved seedling resistance. The experiment with SNP alone or plus high salt mostly enhanced the expression of EIN3 transcripts, compared with ACO4 and ACS2. The western blot and transcript analysis found that high-salt-induced EIN3 stabilization and EIN3 transcripts were largely attenuated in the NO biogenesis mutant nia1nia2 plants than in Col-0 ones. This observation was confirmed by simulation experiments with NO scavenger cPTIO to block NO emission. Taken together, our study provides insights that NO promotes seed germination and seedlings growth under salinity may depend on EIN3 protein.
Collapse
Affiliation(s)
- Xilong Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry UniversityHarbin, China
| | - Yajie Pan
- The Key Laboratory of Plant Ecology, Northeast Forestry UniversityHarbin, China
| | - Bowen Chang
- The Key Laboratory of Plant Ecology, Northeast Forestry UniversityHarbin, China
| | - Yucheng Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry UniversityHarbin, China
| | - Zhonghua Tang
- The Key Laboratory of Plant Ecology, Northeast Forestry UniversityHarbin, China
| |
Collapse
|
73
|
Liu X, Liu B, Xue S, Cai Y, Qi W, Jian C, Xu S, Wang T, Ren H. Cucumber ( Cucumis sativus L.) Nitric Oxide Synthase Associated Gene1 ( CsNOA1) Plays a Role in Chilling Stress. FRONTIERS IN PLANT SCIENCE 2016; 7:1652. [PMID: 27891134 PMCID: PMC5104743 DOI: 10.3389/fpls.2016.01652] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 10/20/2016] [Indexed: 05/11/2023]
Abstract
Nitric oxide (NO) is a gaseous signaling molecule in plants, transducing information as a result of exposure to low temperatures. However, the underlying molecular mechanism linking NO with chilling stress is not well understood. Here, we functionally characterized the cucumber (Cucumis sativus L.) nitric oxide synthase-associated gene, NITRIC OXIDE ASSOCIATED 1 (CsNOA1). Expression analysis of CsNOA1, using quantitative real-time PCR, in situ hybridization, and a promoter::β-glucuronidase (GUS) reporter assay, revealed that it is expressed mainly in the root and shoot apical meristem (SAM), and that expression is up-regulated by low temperatures. A CsNOA1-GFP fusion protein was found to be localized in the mitochondria, and ectopic expression of CsNOA1 in the A. thaliana noa1 mutant partially rescued the normal phenotype. When overexpressing CsNOA1 in the Atnoa1 mutant under normal condition, no obvious phenotypic differences was observed between its wild type and transgenic plants. However, the leaves from mutant plant grown under chilling conditions showed hydrophanous spots and wilting. Physiology tolerance markers, chlorophyll fluorescence parameter (Fv/Fm), and electrolyte leakage, were observed to dramatically change, compared mutant to overexpressing lines. Transgenic cucumber plants revealed that the gene is required by seedlings to tolerate chilling stress: constitutive over-expression of CsNOA1 led to a greater accumulation of soluble sugars, starch, and an up-regulation of Cold-regulatory C-repeat binding factor3 (CBF3) expression as well as a lower chilling damage index (CI). Conversely, suppression of CsNOA1 expression resulted in the opposite phenotype and a reduced NO content compared to wild type plants. Those results suggest that CsNOA1 regulates cucumber seedlings chilling tolerance. Additionally, under normal condition, we took several classic inhibitors to perform, and detect endogenous NO levels in wild type cucumber seedling. The results suggest that generation of endogenous NO in cucumber leaves occurs largely independently in the (CsNOA1) and nitrate reductase (NR) pathway.
Collapse
Affiliation(s)
- Xingwang Liu
- College of Horticulture and Developmental Regulation for Protected Vegetable Crops, China Agricultural UniversityBeijing, China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural UniversityBeijing, China
| | - Bin Liu
- College of Horticulture and Developmental Regulation for Protected Vegetable Crops, China Agricultural UniversityBeijing, China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural UniversityBeijing, China
| | - Shudan Xue
- College of Horticulture and Developmental Regulation for Protected Vegetable Crops, China Agricultural UniversityBeijing, China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural UniversityBeijing, China
| | - Yanlinq Cai
- College of Horticulture and Developmental Regulation for Protected Vegetable Crops, China Agricultural UniversityBeijing, China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural UniversityBeijing, China
| | - Wenzhu Qi
- College of Horticulture and Developmental Regulation for Protected Vegetable Crops, China Agricultural UniversityBeijing, China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural UniversityBeijing, China
| | - Chen Jian
- College of Horticulture and Developmental Regulation for Protected Vegetable Crops, China Agricultural UniversityBeijing, China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural UniversityBeijing, China
| | - Shuo Xu
- College of Horticulture and Developmental Regulation for Protected Vegetable Crops, China Agricultural UniversityBeijing, China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural UniversityBeijing, China
| | - Ting Wang
- College of Horticulture and Developmental Regulation for Protected Vegetable Crops, China Agricultural UniversityBeijing, China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural UniversityBeijing, China
| | - Huazhong Ren
- College of Horticulture and Developmental Regulation for Protected Vegetable Crops, China Agricultural UniversityBeijing, China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural UniversityBeijing, China
- *Correspondence: Huazhong Ren
| |
Collapse
|
74
|
Kumari A, Gupta AK, Mishra S, Wany A, Gupta KJ. Nitric Oxide Measurement from Purified Enzymes and Estimation of Scavenging Activity by Gas Phase Chemiluminescence Method. Methods Mol Biol 2016; 1424:31-38. [PMID: 27094408 DOI: 10.1007/978-1-4939-3600-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In plants, nitrate reductase (NR) is a key enzyme that produces nitric oxide (NO) using nitrite as a substrate. Lower plants such as algae are shown to have nitric oxide synthase enzyme and higher plants contain NOS activity but enzyme responsible for NO production in higher plants is subjected to debate. In plant nitric oxide research, it is very important to measure NO very precisely in order to determine its functional role. A significant amount of NO is being scavenged by various cell components. The net NO production depends in production minus scavenging. Here, we describe methods to measure NO from purified NR and inducible nitric oxide synthase from mouse (iNOS), we also describe a method of measure NO scavenging by tobacco cell suspensions and mitochondria from roots.
Collapse
Affiliation(s)
- Aprajita Kumari
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, 10531, 110067, New Delhi, India
| | - Alok Kumar Gupta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, 10531, 110067, New Delhi, India
| | - Sonal Mishra
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, 10531, 110067, New Delhi, India
| | - Aakanksha Wany
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, 10531, 110067, New Delhi, India
| | - Kapuganti Jagadis Gupta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, 10531, 110067, New Delhi, India.
| |
Collapse
|
75
|
Yang L, Ji J, Wang H, Harris-Shultz KR, Abd_Allah EF, Luo Y, Guan Y, Hu X. Carbon Monoxide Interacts with Auxin and Nitric Oxide to Cope with Iron Deficiency in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2016; 7:112. [PMID: 27014280 PMCID: PMC4780267 DOI: 10.3389/fpls.2016.00112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/21/2016] [Indexed: 05/03/2023]
Abstract
To clarify the roles of carbon monoxide (CO), nitric oxide (NO), and auxin in the plant response to iron deficiency (-Fe), and to establish how the signaling molecules interact to enhance Fe acquisition, we conducted physiological, genetic, and molecular analyses that compared the responses of various Arabidopsis mutants, including hy1 (CO deficient), noa1 (NO deficient), nia1/nia2 (NO deficient), yuc1 (auxin over-accumulation), and cue1 (NO over-accumulation) to -Fe stress. We also generated a HY1 over-expression line (named HY1-OX) in which CO is over-produced compared to wild-type. We found that the suppression of CO and NO generation using various inhibitors enhanced the sensitivity of wild-type plants to Fe depletion. Similarly, the hy1, noa1, and nia1/nia2 mutants were more sensitive to Fe deficiency. By contrast, the yuc1, cue1, and HY1-OX lines were less sensitive to Fe depletion. The hy1 mutant with low CO content exhibited no induced expression of the Fe uptake-related genes FIT1 and FRO2 as compared to wild-type plants. On the other hand, the treatments of exogenous CO and NO enhanced Fe uptake. Likewise, cue1 and HY1-OX lines with increased endogenous content of NO and CO, respectively, also exhibited enhanced Fe uptake and increased expression of bHLH transcriptional factor FIT1as compared to wild-type plants. Furthermore, we found that CO affected auxin accumulation and transport in the root tip by altering the PIN1 and PIN2 proteins distribution that control lateral root structure under -Fe stress. Our results demonstrated the integration of CO, NO, and auxin signaling to cope with Fe deficiency in Arabidopsis.
Collapse
Affiliation(s)
- Liming Yang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Jiangsu Key Laboratory for Eco-Agriculture Biotechnology around Hongze Lake, Huaiyin Normal UniversityHuaian, China
- Crop Protection and Management Research Unit, Agricultural Research Service – United States Department of AgricultureTifton, GA, USA
- Department of Plant Pathology, The University of GeorgiaTifton, GA, USA
| | - Jianhui Ji
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Jiangsu Key Laboratory for Eco-Agriculture Biotechnology around Hongze Lake, Huaiyin Normal UniversityHuaian, China
| | - Hongliang Wang
- Crop Genetics and Breeding Research Unit, Agricultural Research Service – United States Department of AgricultureTifton, GA, USA
| | - Karen R. Harris-Shultz
- Crop Genetics and Breeding Research Unit, Agricultural Research Service – United States Department of AgricultureTifton, GA, USA
| | - Elsayed F. Abd_Allah
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud UniversityRiyadh, Saudi Arabia
| | - Yuming Luo
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Jiangsu Key Laboratory for Eco-Agriculture Biotechnology around Hongze Lake, Huaiyin Normal UniversityHuaian, China
| | - Yanlong Guan
- Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Institute of Tibet Plateau Research at Kunming, Chinese Academy of SciencesKunming, China
- *Correspondence: Xiangyang Hu, ; Yanlong Guan,
| | - Xiangyang Hu
- Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Institute of Tibet Plateau Research at Kunming, Chinese Academy of SciencesKunming, China
- *Correspondence: Xiangyang Hu, ; Yanlong Guan,
| |
Collapse
|
76
|
Li C, Shen Y, Meeley R, McCarty DR, Tan BC. Embryo defective 14 encodes a plastid-targeted cGTPase essential for embryogenesis in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:785-799. [PMID: 26771182 DOI: 10.1111/tpj.13045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 09/24/2015] [Indexed: 06/05/2023]
Abstract
The embryo defective (emb) mutants in maize genetically define a unique class of loci that is required for embryogenesis but not endosperm development, allowing dissection of two developmental processes of seed formation. Through characterization of the emb14 mutant, we report here that Emb14 gene encodes a circular permuted, YqeH class GTPase protein that likely functions in 30S ribosome formation in plastids. Loss of Emb14 function in the null mutant arrests embryogenesis at the early transition stage. Emb14 was cloned by transposon tagging and was confirmed by analysis of four alleles. Subcellular localization indicated that the EMB14 is targeted to chloroplasts. Recombinant EMB14 is shown to hydrolyze GTP in vitro (Km = 2.42 ± 0.3 μm). Emb14 was constitutively expressed in all tissues examined and high level of expression was found in transition stage embryos. Comparison of emb14 and WT indicated that loss of EMB14 function severely impairs accumulation of 16S rRNA and several plastid encoded ribosomal genes. We show that an EMB14 transgene complements the pale green, slow growth phenotype conditioned by mutations in AtNOA1, a closely related YqeH GTPase of Arabidopsis. Taken together, we propose that the EMB14/AtNOA1/YqeH class GTPases function in assembly of the 30S subunit of the chloroplast ribosome, and that this function is essential to embryogenesis in plants.
Collapse
Affiliation(s)
- Cuiling Li
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Yun Shen
- State Key Lab of Agrobiotechnology, Institute of Plant Molecular Biology and Agrobiotechnology, School of Life Science, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Robert Meeley
- DuPont Pioneer AgBiotech Research, Johnston, Iowa, 50131-1004, USA
| | - Donald R McCarty
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Bao-Cai Tan
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
- State Key Lab of Agrobiotechnology, Institute of Plant Molecular Biology and Agrobiotechnology, School of Life Science, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
77
|
Mansilla N, Garcia L, Gonzalez DH, Welchen E. AtCOX10, a protein involved in haem o synthesis during cytochrome c oxidase biogenesis, is essential for plant embryogenesis and modulates the progression of senescence. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6761-75. [PMID: 26246612 DOI: 10.1093/jxb/erv381] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cytochrome c oxidase (CcO) biogenesis requires several accessory proteins implicated, among other processes, in copper and haem a insertion. In yeast, the farnesyltransferase Cox10p that catalyses the conversion of haem b to haem o is the limiting factor in haem a biosynthesis and is essential for haem a insertion in CcO. In this work, we characterized AtCOX10, a putative Cox10p homologue from Arabidopsis thaliana. AtCOX10 was localized in mitochondria and was able to restore growth of a yeast Δcox10 null mutant on non-fermentable carbon sources, suggesting that it also participates in haem o synthesis. Plants with T-DNA insertions in the coding region of both copies of AtCOX10 could not be recovered, and heterozygous mutant plants showed seeds with embryos arrested at early developmental stages that lacked CcO activity. Heterozygous mutant plants exhibited lower levels of CcO activity and cyanide-sensitive respiration but normal levels of total respiration at the expense of an increase in alternative respiration. AtCOX10 seems to be implicated in the onset and progression of senescence, since heterozygous mutant plants showed a faster decrease in chlorophyll content and photosynthetic performance than wild-type plants after natural and dark-induced senescence. Furthermore, complementation of mutants by expressing AtCOX10 under its own promoter allowed us to obtain plants with T-DNA insertions in both AtCOX10 copies, which showed phenotypic characteristics comparable to those of wild type. Our results highlight the relevance of haem o synthesis in plants and suggest that this process is a limiting factor that influences CcO activity levels, mitochondrial respiration, and plant senescence.
Collapse
Affiliation(s)
- Natanael Mansilla
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Centro Científico Tecnológico Santa Fe - Colectora Ruta Nacional Nº 168 Km 0, Paraje El Pozo, 3000 Santa Fe, Argentina
| | - Lucila Garcia
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Centro Científico Tecnológico Santa Fe - Colectora Ruta Nacional Nº 168 Km 0, Paraje El Pozo, 3000 Santa Fe, Argentina
| | - Daniel H Gonzalez
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Centro Científico Tecnológico Santa Fe - Colectora Ruta Nacional Nº 168 Km 0, Paraje El Pozo, 3000 Santa Fe, Argentina
| | - Elina Welchen
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Centro Científico Tecnológico Santa Fe - Colectora Ruta Nacional Nº 168 Km 0, Paraje El Pozo, 3000 Santa Fe, Argentina
| |
Collapse
|
78
|
Wang J, Leister D, Bolle C. Photosynthetic lesions can trigger accelerated senescence in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6891-903. [PMID: 26272903 PMCID: PMC4623695 DOI: 10.1093/jxb/erv393] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Senescence is a highly regulated process characterized by the active breakdown of cells, which ultimately leads to the death of plant organs or whole plants. In annual plants such as Arabidopsis thaliana senescence can be observed in each individual leaf. Whether deficiencies in photosynthesis promote the induction of senescence was investigated by monitoring chlorophyll degradation, photosynthetic parameters, and reactive oxygen species accumulation in photosynthetic mutants. Several mutations affecting components of the photosynthetic apparatus, including psal-2, psan-2, and psbs, were found to lead to premature or faster senescence, as did simultaneous inactivation of the STN7 and STN8 kinases. Premature senescence is apparently not directly linked to an overall reduction in photosynthesis but to perturbations in specific aspects of the process. Dark-induced senescence is accelerated in mutants affected in linear electron flow, especially psad2-1, psan-2, and pete2-1, as well as in stn7 and stn8 mutants and STN7 and STN8 overexpressor lines. Interestingly, no direct link with ROS production could be observed.
Collapse
Affiliation(s)
- Jing Wang
- Ludwig-Maximilians-Universität München (LMU), Department Biologie I, Botanik, Großhaderner Str. 2-4, D-82152 Planegg-Martinsried, Germany
| | - Dario Leister
- Ludwig-Maximilians-Universität München (LMU), Department Biologie I, Botanik, Großhaderner Str. 2-4, D-82152 Planegg-Martinsried, Germany
| | - Cordelia Bolle
- Ludwig-Maximilians-Universität München (LMU), Department Biologie I, Botanik, Großhaderner Str. 2-4, D-82152 Planegg-Martinsried, Germany
| |
Collapse
|
79
|
Lai J, Yu B, Cao Z, Chen Y, Wu Q, Huang J, Yang C. Two homologous protein S-acyltransferases, PAT13 and PAT14, cooperatively regulate leaf senescence in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6345-53. [PMID: 26160582 DOI: 10.1093/jxb/erv347] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Lipid modification on the cysteine residues of proteins, known as S-palmitoylation or S-acylation, regulates the subcellular localization and the function of proteins. S-acylation is catalysed by a group of protein acyltransferases (PATs) with a conserved Asp-His-His-Cys (DHHC) motif. The molecular function of S-acylation has been studied in details in yeast and mammalian cells, but its role in plant cells remains unclear. Here it is reported that the expression of two homologous protein acyltransferases- PAT13 and PAT14 -was moderately increased in the older leaves of Arabidopsis. The double mutant of PAT13 and PAT14 displayed a severely early leaf senescence phenotype. The phenotype was complemented by PAT13 or PAT14 overexpression in the double mutant, confirming the roles of PAT13 and PAT14 in this process. Furthermore, the levels of reactive oxygen species (ROS) and cell death were dramatically induced in the double mutant. To investigate the molecular functions of PAT13 and PAT14, their potential S-acylation substrates were predicted by bioinformatics methods. The subcellular localization and S-acylation of a candidate substrate NITRIC OXIDE ASSOCIATED 1 (NOA1), which also plays a role in leaf senescence control, were partially disrupted in the protoplasts of the double mutant. Impairment of S-acylation on NOA1 affected its subcellular localization and its function in leaf senescence regulation. Conclusively, protein S-acyltransferases PAT13 and PAT14 are involved in leaf senescence control- possibly via NOA1 S-acylation-, providing a new sight into the regulation mechanism of S-acylation in leaf senescence.
Collapse
Affiliation(s)
- Jianbin Lai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Boya Yu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Zhendan Cao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yanming Chen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Qian Wu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Jingyi Huang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Chengwei Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
80
|
Cai W, Liu W, Wang WS, Fu ZW, Han TT, Lu YT. Overexpression of Rat Neurons Nitric Oxide Synthase in Rice Enhances Drought and Salt Tolerance. PLoS One 2015; 10:e0131599. [PMID: 26121399 PMCID: PMC4485468 DOI: 10.1371/journal.pone.0131599] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 06/03/2015] [Indexed: 12/27/2022] Open
Abstract
Nitric oxide (NO) has been shown to play an important role in the plant response to biotic and abiotic stresses in Arabidopsis mutants with lower or higher levels of endogenous NO. The exogenous application of NO donors or scavengers has also suggested an important role for NO in plant defense against environmental stress. In this study, rice plants under drought and high salinity conditions showed increased nitric oxide synthase (NOS) activity and NO levels. Overexpression of rat neuronal NO synthase (nNOS) in rice increased both NOS activity and NO accumulation, resulting in improved tolerance of the transgenic plants to both drought and salt stresses. nNOS-overexpressing plants exhibited stronger water-holding capability, higher proline accumulation, less lipid peroxidation and reduced electrolyte leakage under drought and salt conditions than wild rice. Moreover, nNOS-overexpressing plants accumulated less H2O2, due to the observed up-regulation of OsCATA, OsCATB and OsPOX1. In agreement, the activities of CAT and POX were higher in transgenic rice than wild type. Additionally, the expression of six tested stress-responsive genes including OsDREB2A, OsDREB2B, OsSNAC1, OsSNAC2, OsLEA3 and OsRD29A, in nNOS-overexpressing plants was higher than that in the wild type under drought and high salinity conditions. Taken together, our results suggest that nNOS overexpression suppresses the stress-enhanced electrolyte leakage, lipid peroxidation and H2O2 accumulation, and promotes proline accumulation and the expression of stress-responsive genes under stress conditions, thereby promoting increased tolerance to drought and salt stresses.
Collapse
Affiliation(s)
- Wei Cai
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Wen Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Wen-Shu Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zheng-Wei Fu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Tong-Tong Han
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ying-Tang Lu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
81
|
Ye YQ, Jin CW, Fan SK, Mao QQ, Sun CL, Yu Y, Lin XY. Elevation of NO production increases Fe immobilization in the Fe-deficiency roots apoplast by decreasing pectin methylation of cell wall. Sci Rep 2015; 5:10746. [PMID: 26073914 PMCID: PMC4466582 DOI: 10.1038/srep10746] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 04/29/2015] [Indexed: 12/15/2022] Open
Abstract
Cell wall is the major component of root apoplast which is the main reservoir for iron in roots, while nitric oxide (NO) is involved in regulating the synthesis of cell wall. However, whether such regulation could influence the reutilization of iron stored in root apoplast remains unclear. In this study, we observed that iron deficiency elevated NO level in tomato (Solanum lycopersicum) roots. However, application of S-nitrosoglutathione, a NO donor, significantly enhanced iron retention in root apoplast of iron-deficient plants, accompanied with a decrease of iron level in xylem sap. Consequently, S-nitrosoglutathione treatment increased iron concentration in roots, but decreased it in shoots. The opposite was true for the NO scavenging treatment with 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO). Interestingly, S-nitrosoglutathione treatment increased pectin methylesterase activity and decreased degree of pectin methylation in root cell wall of both iron-deficient and iron-sufficient plants, which led to an increased iron retention in pectin fraction, thus increasing the binding capacity of iron to the extracted cell wall. Altogether, these results suggested that iron-deficiency-induced elevation of NO increases iron immobilization in root apoplast by decreasing pectin methylation in cell wall.
Collapse
Affiliation(s)
- Yi Quan Ye
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chong Wei Jin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Subtropical Soil Science and Plant Nutrition of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Shi Kai Fan
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qian Qian Mao
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Cheng Liang Sun
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yan Yu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xian Yong Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Subtropical Soil Science and Plant Nutrition of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
82
|
Sanz L, Albertos P, Mateos I, Sánchez-Vicente I, Lechón T, Fernández-Marcos M, Lorenzo O. Nitric oxide (NO) and phytohormones crosstalk during early plant development. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2857-68. [PMID: 25954048 DOI: 10.1093/jxb/erv213] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
During the past two decades, nitric oxide (NO) has evolved from a mere gaseous free radical to become a new messenger in plant biology with an important role in a plethora of physiological processes. This molecule is involved in the regulation of plant growth and development, pathogen defence and abiotic stress responses, and in most cases this is achieved through its interaction with phytohormones. Understanding the role of plant growth regulators is essential to elucidate how plants activate the appropriate set of responses to a particular developmental stage or a particular stress. The first task to achieve this goal is the identification of molecular targets, especially those involved in the regulation of the crosstalk. The nature of NO targets in these growth and development processes and stress responses remains poorly described. Currently, the molecular mechanisms underlying the effects of NO in these processes and their interaction with other plant hormones are beginning to unravel. In this review, we made a compilation of the described interactions between NO and phytohormones during early plant developmental processes (i.e. seed dormancy and germination, hypocotyl elongation and root development).
Collapse
Affiliation(s)
- Luis Sanz
- Dpto. de Microbiología y Genética, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - Pablo Albertos
- Dpto. de Microbiología y Genética, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - Isabel Mateos
- Dpto. de Microbiología y Genética, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - Inmaculada Sánchez-Vicente
- Dpto. de Microbiología y Genética, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - Tamara Lechón
- Dpto. de Microbiología y Genética, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - María Fernández-Marcos
- Dpto. de Microbiología y Genética, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - Oscar Lorenzo
- Dpto. de Microbiología y Genética, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| |
Collapse
|
83
|
Domingos P, Prado AM, Wong A, Gehring C, Feijo JA. Nitric oxide: a multitasked signaling gas in plants. MOLECULAR PLANT 2015; 8:506-20. [PMID: 25680232 DOI: 10.1016/j.molp.2014.12.010] [Citation(s) in RCA: 256] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/11/2014] [Accepted: 12/14/2014] [Indexed: 05/20/2023]
Abstract
Nitric oxide (NO) is a gaseous reactive oxygen species (ROS) that has evolved as a signaling hormone in many physiological processes in animals. In plants it has been demonstrated to be a crucial regulator of development, acting as a signaling molecule present at each step of the plant life cycle. NO has also been implicated as a signal in biotic and abiotic responses of plants to the environment. Remarkably, despite this plethora of effects and functional relationships, the fundamental knowledge of NO production, sensing, and transduction in plants remains largely unknown or inadequately characterized. In this review we cover the current understanding of NO production, perception, and action in different physiological scenarios. We especially address the issues of enzymatic and chemical generation of NO in plants, NO sensing and downstream signaling, namely the putative cGMP and Ca(2+) pathways, ion-channel activity modulation, gene expression regulation, and the interface with other ROS, which can have a profound effect on both NO accumulation and function. We also focus on the importance of NO in cell-cell communication during developmental processes and sexual reproduction, namely in pollen tube guidance and embryo sac fertilization, pathogen defense, and responses to abiotic stress.
Collapse
Affiliation(s)
| | | | - Aloysius Wong
- Division of Biological and Environmental Sciences and Engineering, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Christoph Gehring
- Division of Biological and Environmental Sciences and Engineering, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jose A Feijo
- Instituto Gulbenkian de Ciência, P-2780-156 Oeiras, Portugal; Department of Cell Biology and Molecular Genetics, University of Maryland, 0118 BioScience Research Building, College Park, MD 20742-5815, USA.
| |
Collapse
|
84
|
Yang H, Mu J, Chen L, Feng J, Hu J, Li L, Zhou JM, Zuo J. S-nitrosylation positively regulates ascorbate peroxidase activity during plant stress responses. PLANT PHYSIOLOGY 2015; 167:1604-15. [PMID: 25667317 PMCID: PMC4378166 DOI: 10.1104/pp.114.255216] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/06/2015] [Indexed: 05/18/2023]
Abstract
Nitric oxide (NO) and reactive oxygen species (ROS) are two classes of key signaling molecules involved in various developmental processes and stress responses in plants. The burst of NO and ROS triggered by various stimuli activates downstream signaling pathways to cope with abiotic and biotic stresses. Emerging evidence suggests that the interplay of NO and ROS plays a critical role in regulating stress responses. However, the underpinning molecular mechanism remains poorly understood. Here, we show that NO positively regulates the activity of the Arabidopsis (Arabidopsis thaliana) cytosolic ascorbate peroxidase1 (APX1). We found that S-nitrosylation of APX1 at cysteine (Cys)-32 enhances its enzymatic activity of scavenging hydrogen peroxide, leading to the increased resistance to oxidative stress, whereas a substitution mutation at Cys-32 causes the reduction of ascorbate peroxidase activity and abolishes its responsiveness to the NO-enhanced enzymatic activity. Moreover, S-nitrosylation of APX1 at Cys-32 also plays an important role in regulating immune responses. These findings illustrate a unique mechanism by which NO regulates hydrogen peroxide homeostasis in plants, thereby establishing a molecular link between NO and ROS signaling pathways.
Collapse
Affiliation(s)
- Huanjie Yang
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (H.Y., J.M., L.C., J.F., J.H., L.L., J.-M.Z., J.Z.); andThe University of Chinese Academy of Sciences, Beijing 100049, China (H.Y., L.C., L.L.)
| | - Jinye Mu
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (H.Y., J.M., L.C., J.F., J.H., L.L., J.-M.Z., J.Z.); andThe University of Chinese Academy of Sciences, Beijing 100049, China (H.Y., L.C., L.L.)
| | - Lichao Chen
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (H.Y., J.M., L.C., J.F., J.H., L.L., J.-M.Z., J.Z.); andThe University of Chinese Academy of Sciences, Beijing 100049, China (H.Y., L.C., L.L.)
| | - Jian Feng
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (H.Y., J.M., L.C., J.F., J.H., L.L., J.-M.Z., J.Z.); andThe University of Chinese Academy of Sciences, Beijing 100049, China (H.Y., L.C., L.L.)
| | - Jiliang Hu
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (H.Y., J.M., L.C., J.F., J.H., L.L., J.-M.Z., J.Z.); andThe University of Chinese Academy of Sciences, Beijing 100049, China (H.Y., L.C., L.L.)
| | - Lei Li
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (H.Y., J.M., L.C., J.F., J.H., L.L., J.-M.Z., J.Z.); andThe University of Chinese Academy of Sciences, Beijing 100049, China (H.Y., L.C., L.L.)
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (H.Y., J.M., L.C., J.F., J.H., L.L., J.-M.Z., J.Z.); andThe University of Chinese Academy of Sciences, Beijing 100049, China (H.Y., L.C., L.L.)
| | - Jianru Zuo
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (H.Y., J.M., L.C., J.F., J.H., L.L., J.-M.Z., J.Z.); andThe University of Chinese Academy of Sciences, Beijing 100049, China (H.Y., L.C., L.L.)
| |
Collapse
|
85
|
Nitrite reduction by molybdoenzymes: a new class of nitric oxide-forming nitrite reductases. J Biol Inorg Chem 2015; 20:403-33. [DOI: 10.1007/s00775-014-1234-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 12/14/2014] [Indexed: 02/07/2023]
|
86
|
Bykova NV, Hu J, Ma Z, Igamberdiev AU. The Role of Reactive Oxygen and Nitrogen Species in Bioenergetics, Metabolism, and Signaling During Seed Germination. SIGNALING AND COMMUNICATION IN PLANTS 2015. [DOI: 10.1007/978-3-319-10079-1_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
87
|
Yu B, Li W. Comparative profiling of membrane lipids during water stress in Thellungiella salsuginea and its relative Arabidopsis thaliana. PHYTOCHEMISTRY 2014; 108:77-86. [PMID: 25308761 DOI: 10.1016/j.phytochem.2014.09.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 07/31/2014] [Accepted: 07/19/2014] [Indexed: 05/12/2023]
Abstract
The remodelling of membrane lipids contributes to the tolerance of plants to stresses, such as freezing and deprivation of phosphorus. However, whether and how this remodelling relates to tolerance of PEG-induced osmotic stress has seldom been reported. Thellungiella salsuginea is a popular extremophile model for studies of stress tolerance. In this study, it was demonstrated that T. salsuginea was more tolerant to PEG-induced osmotic stress than its close relative Arabidopsis thaliana. Lipidomic analysis indicated that plastidic lipids are more sensitive to PEG-induced osmotic stress than extra-plastidic ones in both species, and that the changes in plastidic lipids differed markedly between them. PEG-induced osmotic stress led to a dramatic decrease in levels of plastidic lipids in A. thaliana, whereas the change in plastidic lipid in T. salsuginea involved an adaptive remodelling shortly after the onset of PEG-induced osmotic stress. The two aspects of this remodelling involved increases in (1) the level of plastidic lipids, especially digalactosyl diacylglycerol, and (2) the double bond index of plastidic lipids. These remodelling steps could maintain the integrity and improve the fluidity of plastidic membranes and this may contribute to the PEG-induced osmotic stress tolerance of T. salsuginea.
Collapse
Affiliation(s)
- Buzhu Yu
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Weiqi Li
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| |
Collapse
|
88
|
Nitric oxide negatively regulates AKT1-mediated potassium uptake through modulating vitamin B6 homeostasis in Arabidopsis. Proc Natl Acad Sci U S A 2014; 111:16196-201. [PMID: 25355908 DOI: 10.1073/pnas.1417473111] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Nitric oxide (NO), an active signaling molecule in plants, is involved in numerous physiological processes and adaptive responses to environmental stresses. Under high-salt conditions, plants accumulate NO quickly, and reorganize Na(+) and K(+) contents. However, the molecular connection between NO and ion homeostasis is largely unknown. Here, we report that NO lowers K(+) channel AKT1-mediated plant K(+) uptake by modulating vitamin B6 biosynthesis. In a screen for Arabidopsis NO-hypersensitive mutants, we isolated sno1 (sensitive to nitric oxide 1), which is allelic to the previously noted mutant sos4 (salt overly sensitive 4) that has impaired Na(+) and K(+) contents and overproduces pyridoxal 5'-phosphate (PLP), an active form of vitamin B6. We showed that NO increased PLP and decreased K(+) levels in plant. NO induced SNO1 gene expression and enzyme activity, indicating that NO-triggered PLP accumulation mainly occurs through SNO1-mediated vitamin B6 salvage biosynthetic pathway. Furthermore, we demonstrated that PLP significantly repressed the activity of K(+) channel AKT1 in the Xenopus oocyte system and Arabidopsis root protoplasts. Together, our results suggest that NO decreases K(+) absorption by promoting the synthesis of vitamin B6 PLP, which further represses the activity of K(+) channel AKT1 in Arabidopsis. These findings reveal a previously unidentified pivotal role of NO in modulating the homeostasis of vitamin B6 and potassium nutrition in plants, and shed light on the mechanism of NO in plant acclimation to environmental changes.
Collapse
|
89
|
Planchais S, Cabassa C, Toka I, Justin AM, Renou JP, Savouré A, Carol P. BASIC AMINO ACID CARRIER 2 gene expression modulates arginine and urea content and stress recovery in Arabidopsis leaves. FRONTIERS IN PLANT SCIENCE 2014; 5:330. [PMID: 25076951 PMCID: PMC4099941 DOI: 10.3389/fpls.2014.00330] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 06/23/2014] [Indexed: 05/29/2023]
Abstract
In plants, basic amino acids are important for the synthesis of proteins and signaling molecules and for nitrogen recycling. The Arabidopsis nuclear gene BASIC AMINO ACID CARRIER 2 (BAC2) encodes a mitochondria-located carrier that transports basic amino acids in vitro. We present here an analysis of the physiological and genetic function of BAC2 in planta. When BAC2 is overexpressed in vivo, it triggers catabolism of arginine, a basic amino acid, leading to arginine depletion and urea accumulation in leaves. BAC2 expression was known to be strongly induced by stress. We found that compared to wild type plants, bac2 null mutants (bac2-1) recover poorly from hyperosmotic stress when restarting leaf expansion. The bac2-1 transcriptome differs from the wild-type transcriptome in control conditions and under hyperosmotic stress. The expression of genes encoding stress-related transcription factors (TF), arginine metabolism enzymes, and transporters is particularly disturbed in bac2-1, and in control conditions, the bac2-1 transcriptome has some hallmarks of a wild-type stress transcriptome. The BAC2 carrier is therefore involved in controlling the balance of arginine and arginine-derived metabolites and its associated amino acid metabolism is physiologically important in equipping plants to respond to and recover from stress.
Collapse
Affiliation(s)
| | - Cécile Cabassa
- Laboratory APCE, URF5, Université Pierre et Marie CurieParis, France
| | - Iman Toka
- Laboratory APCE, URF5, Université Pierre et Marie CurieParis, France
| | - Anne-Marie Justin
- Laboratory APCE, URF5, Université Pierre et Marie CurieParis, France
| | | | - Arnould Savouré
- Laboratory APCE, URF5, Université Pierre et Marie CurieParis, France
| | - Pierre Carol
- Laboratory APCE, URF5, Université Pierre et Marie CurieParis, France
| |
Collapse
|
90
|
Zhao J, Yi H. Genome-wide transcriptome analysis of Arabidopsis response to sulfur dioxide fumigation. Mol Genet Genomics 2014; 289:989-99. [PMID: 24889700 DOI: 10.1007/s00438-014-0870-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 05/15/2014] [Indexed: 01/27/2023]
Abstract
Sulfur dioxide (SO2) supplies the basic sulfur element to promote plant growth, yet at the same time it is a harmful air pollutant. Currently, the mechanisms of plant adaptation to SO2 stress are largely unknown. Pathways of SO2 metabolism, a range of networks of interacting regulatory signals and defense mechanisms triggered in resistance to SO2 stress, have not yet been clarified. We performed transcriptome analysis of Arabidopsis plants fumigated with 30 mg m(-3) SO2 for 72 h and untreated controls using microarrays. This identified 2,780 significantly up- or down-regulated genes in plants response to SO2 stress, indicating a possible genome-scale reprogramming of the transcriptome. Significant changes in the transcript abundance of genes that participated in SO2 metabolic pathways indicated that numerous sulfites were involved in sulfur assimilatory pathways directly and away from sulfite oxidative pathways. Furthermore, the up-regulation of components involved in reactive oxygen species generating and scavenging pathways demonstrated altered redox homeostasis. Transcripts encoding key components in nitric oxide biosynthesis pathways were simultaneously up-regulated by SO2 exposure. In addition, transcripts associated with putative biotic stress were also up-regulated. Therefore, SO2 evokes a comprehensive reprogramming of metabolic pathways, consistent with up-regulation of transcripts involved in tolerance and defense mechanisms, in Arabidopsis.
Collapse
Affiliation(s)
- Jun Zhao
- School of Life Science, Shanxi University, No. 92 Wucheng Road, Taiyuan, 030006, China,
| | | |
Collapse
|
91
|
Affiliation(s)
- Luisa B. Maia
- REQUIMTE/CQFB, Departamento
de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - José J. G. Moura
- REQUIMTE/CQFB, Departamento
de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
92
|
Wang L, Guo Y, Jia L, Chu H, Zhou S, Chen K, Wu D, Zhao L. Hydrogen peroxide acts upstream of nitric oxide in the heat shock pathway in Arabidopsis seedlings. PLANT PHYSIOLOGY 2014; 164:2184-96. [PMID: 24510762 PMCID: PMC3982771 DOI: 10.1104/pp.113.229369] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 02/04/2014] [Indexed: 05/18/2023]
Abstract
We previously reported that nitric oxide (NO) functions as a signal in thermotolerance. To illustrate its relationship with hydrogen peroxide (H₂O₂) in the tolerance of Arabidopsis (Arabidopsis thaliana) to heat shock (HS), we investigated the effects of heat on Arabidopsis seedlings of the following types: the wild type; three NADPH oxidase-defective mutants that exhibit reduced endogenous H₂O₂ levels (atrbohB, atrbohD, and atrbohB/D); and a mutant that is resistant to inhibition by fosmidomycin (noa1, for nitric oxide-associated protein1). After HS, the NO levels in atrbohB, atrbohD, and atrbohB/D seedlings were lower than that in wild-type seedlings. Treatment of the seedlings with sodium nitroprusside or S-nitroso-N-acetylpenicillamine partially rescued their heat sensitivity, suggesting that NO is involved in H₂O₂ signaling as a downstream factor. This point was verified by phenotypic analyses and thermotolerance testing of transgenic seedlings that overexpressed Nitrate reductase2 and NOA1, respectively, in an atrbohB/D background. Electrophoretic mobility shift assays, western blotting, and real-time reverse transcription-polymerase chain reaction demonstrated that NO stimulated the DNA-binding activity of HS factors and the accumulation of HS proteins through H₂O₂. These data indicate that H₂O₂ acts upstream of NO in thermotolerance, which requires increased HS factor DNA-binding activity and HS protein accumulation.
Collapse
Affiliation(s)
| | | | - Lixiu Jia
- Institute of Molecular Cell Biology, School of Life Sciences, and Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang 050024, China (L.W., Y.G., L.J., H.C., S.Z., D.W., L.Z.); and
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest Agriculture and Forestry University, Yangling 712100, China (K.C.)
| | - Hongye Chu
- Institute of Molecular Cell Biology, School of Life Sciences, and Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang 050024, China (L.W., Y.G., L.J., H.C., S.Z., D.W., L.Z.); and
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest Agriculture and Forestry University, Yangling 712100, China (K.C.)
| | - Shuo Zhou
- Institute of Molecular Cell Biology, School of Life Sciences, and Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang 050024, China (L.W., Y.G., L.J., H.C., S.Z., D.W., L.Z.); and
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest Agriculture and Forestry University, Yangling 712100, China (K.C.)
| | - Kunming Chen
- Institute of Molecular Cell Biology, School of Life Sciences, and Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang 050024, China (L.W., Y.G., L.J., H.C., S.Z., D.W., L.Z.); and
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest Agriculture and Forestry University, Yangling 712100, China (K.C.)
| | - Dan Wu
- Institute of Molecular Cell Biology, School of Life Sciences, and Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang 050024, China (L.W., Y.G., L.J., H.C., S.Z., D.W., L.Z.); and
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest Agriculture and Forestry University, Yangling 712100, China (K.C.)
| | | |
Collapse
|
93
|
Sun C, Lu L, Liu L, Liu W, Yu Y, Liu X, Hu Y, Jin C, Lin X. Nitrate reductase-mediated early nitric oxide burst alleviates oxidative damage induced by aluminum through enhancement of antioxidant defenses in roots of wheat (Triticum aestivum). THE NEW PHYTOLOGIST 2014; 201:1240-1250. [PMID: 24237306 DOI: 10.1111/nph.12597] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Accepted: 10/09/2013] [Indexed: 05/03/2023]
Abstract
• Nitric oxide (NO) is an important signaling molecule involved in the physiological processes of plants. The role of NO release in the tolerance strategies of roots of wheat (Triticum aestivum) under aluminum (Al) stress was investigated using two genotypes with different Al resistances. • An early NO burst at 3 h was observed in the root tips of the Al-tolerant genotype Jian-864, whereas the Al-sensitive genotype Yang-5 showed no NO accumulation at 3 h but an extremely high NO concentration after 12 h. Stimulating NO production at 3 h in the root tips of Yang-5 with the NO donor relieved Al-induced root inhibition and callose production, as well as oxidative damage and ROS accumulation, while elimination of the early NO burst by NO scavenger aggravated root inhibition in Jian-864. • Synthesis of early NO in roots of Jian-864 was mediated through nitrate reductase (NR) but not through NO synthase. Elevated antioxidant enzyme activities were induced by Al stress in both wheat genotypes and significantly enhanced by NO donor, but suppressed by NO scavenger or NR inhibitor. • These results suggest that an NR-mediated early NO burst plays an important role in Al resistance of wheat through modulating enhanced antioxidant defense to adapt to Al stress.
Collapse
Affiliation(s)
- Chengliang Sun
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lingli Lu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Subtropical Soil Science and Plant Nutrition of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lijuan Liu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wenjing Liu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yan Yu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoxia Liu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yan Hu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chongwei Jin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Subtropical Soil Science and Plant Nutrition of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xianyong Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Subtropical Soil Science and Plant Nutrition of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
94
|
León J, Castillo MC, Coego A, Lozano-Juste J, Mir R. Diverse functional interactions between nitric oxide and abscisic acid in plant development and responses to stress. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:907-21. [PMID: 24371253 DOI: 10.1093/jxb/ert454] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The extensive support for abscisic acid (ABA) involvement in the complex regulatory networks controlling stress responses and development in plants contrasts with the relatively recent role assigned to nitric oxide (NO). Because treatment with exogenous ABA leads to enhanced production of NO, it has been widely considered that NO participates downstream of ABA in controlling processes such as stomata movement, seed dormancy, and germination. However, data on leaf senescence and responses to stress suggest that the functional interaction between ABA and NO is more complex than previously thought, including not only cooperation but also antagonism. The functional relationship is probably determined by several factors including the time- and place-dependent pattern of accumulation of both molecules, the threshold levels, and the regulatory factors important for perception. These factors will determine the actions exerted by each regulator. Here, several examples of well-documented functional interactions between NO and ABA are analysed in light of the most recent reported data on seed dormancy and germination, stomata movements, leaf senescence, and responses to abiotic and biotic stresses.
Collapse
Affiliation(s)
- José León
- Plant Development and Hormone Action, Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), Spain
| | | | | | | | | |
Collapse
|
95
|
Plant mitochondria: source and target for nitric oxide. Mitochondrion 2014; 19 Pt B:329-33. [PMID: 24561220 DOI: 10.1016/j.mito.2014.02.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 02/05/2014] [Accepted: 02/07/2014] [Indexed: 12/23/2022]
Abstract
Plant mitochondria generate nitric oxide (NO) under anoxia through the action of cytochrome c oxidase and other electron transport chain components on nitrite. This reductive mechanism operates under aerobic conditions at high electron transport rates. Indirect evidence also indicates that the oxidative pathway of NO production may be associated with mitochondria. We review the consequences of mitochondrial NO production, including the inhibition of oxygen uptake by cytochrome c oxidase, the inhibition of aconitase and succinate dehydrogenase, the induction of alternative oxidase, and the nitrosylation of several proteins, including glycine decarboxylase. The importance of these events in adaptation to abiotic and biotic stresses is discussed.
Collapse
|
96
|
Jiang Y, Liang G, Yang S, Yu D. Arabidopsis WRKY57 functions as a node of convergence for jasmonic acid- and auxin-mediated signaling in jasmonic acid-induced leaf senescence. THE PLANT CELL 2014; 26:230-45. [PMID: 24424094 PMCID: PMC3963572 DOI: 10.1105/tpc.113.117838] [Citation(s) in RCA: 318] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Leaf senescence is regulated by diverse developmental and environmental factors. Exogenous jasmonic acid (JA) can induce leaf senescence, whereas auxin suppresses this physiological process. Crosstalk between JA and auxin signaling has been well studied, but not during JA-induced leaf senescence. Here, we found that upon methyl jasmonate treatment, Arabidopsis thaliana wrky57 mutants produced typical leaf senescence symptoms, such as yellowing leaves, low chlorophyll content, and high cell death rates. Further investigation suggested that senescence-associated genes were upregulated in the wrky57 mutants. Chromatin immunoprecipitation experiments revealed that WRKY57 directly binds to the promoters of SENESCENCE4 and SENESCENCE-ASSOCIATED GENE12 and represses their transcription. In vivo and in vitro experiments suggested that WRKY57 interacts with JASMONATE ZIM-DOMAIN4/8 (JAZ4/8) and the AUX/IAA protein IAA29, repressors of the JA and auxin signaling pathways, respectively. Consistent with the opposing functions of JA and auxin in JA-induced leaf senescence, JAZ4/8 and IAA29 also displayed opposite functions in JA-induced leaf senescence and competitively interacted with WRKY57. Our results suggested that the JA-induced leaf senescence process can be antagonized by auxin via WRKY57. Moreover, WRKY57 protein levels were downregulated by JA but upregulated by auxin. Therefore, as a repressor in JA-induced leaf senescence, WRKY57 is a common component of the JA- and auxin-mediated signaling pathways.
Collapse
|
97
|
Lázaro JJ, Jiménez A, Camejo D, Iglesias-Baena I, Martí MDC, Lázaro-Payo A, Barranco-Medina S, Sevilla F. Dissecting the integrative antioxidant and redox systems in plant mitochondria. Effect of stress and S-nitrosylation. FRONTIERS IN PLANT SCIENCE 2013; 4:460. [PMID: 24348485 PMCID: PMC3842906 DOI: 10.3389/fpls.2013.00460] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 10/26/2013] [Indexed: 05/19/2023]
Abstract
Mitochondrial respiration provides the energy needed to drive metabolic and transport processes in cells. Mitochondria are a significant site of reactive oxygen species (ROS) production in plant cells, and redox-system components obey fine regulation mechanisms that are essential in protecting the mitochondrial integrity. In addition to ROS, there are compelling indications that nitric oxide can be generated in this organelle by both reductive and oxidative pathways. ROS and reactive nitrogen species play a key role in signaling but they can also be deleterious via oxidation of macromolecules. The high production of ROS obligates mitochondria to be provided with a set of ROS scavenging mechanisms. The first line of mitochondrial antioxidants is composed of superoxide dismutase and the enzymes of the ascorbate-glutathione cycle, which are not only able to scavenge ROS but also to repair cell damage and possibly serve as redox sensors. The dithiol-disulfide exchanges form independent signaling nodes and act as antioxidant defense mechanisms as well as sensor proteins modulating redox signaling during development and stress adaptation. The presence of thioredoxin (Trx), peroxiredoxin (Prx) and sulfiredoxin (Srx) in the mitochondria has been recently reported. Cumulative results obtained from studies in salt stress models have demonstrated that these redox proteins play a significant role in the establishment of salt tolerance. The Trx/Prx/Srx system may be subjected to a fine regulated mechanism involving post-translational modifications, among which S-glutathionylation and S-nitrosylation seem to exhibit a critical role that is just beginning to be understood. This review summarizes our current knowledge in antioxidative systems in plant mitochondria, their interrelationships, mechanisms of compensation and some unresolved questions, with special focus on their response to abiotic stress.
Collapse
Affiliation(s)
- Juan J. Lázaro
- Department of Biochemistry and Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - Ana Jiménez
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones CientíficasMurcia, Spain
| | - Daymi Camejo
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones CientíficasMurcia, Spain
| | - Iván Iglesias-Baena
- Department of Biochemistry and Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - María del Carmen Martí
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones CientíficasMurcia, Spain
| | - Alfonso Lázaro-Payo
- Department of Biochemistry and Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - Sergio Barranco-Medina
- Department of Biochemistry and Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - Francisca Sevilla
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones CientíficasMurcia, Spain
| |
Collapse
|
98
|
Zhao Y, Pan Z, Zhang Y, Qu X, Zhang Y, Yang Y, Jiang X, Huang S, Yuan M, Schumaker KS, Guo Y. The actin-related Protein2/3 complex regulates mitochondrial-associated calcium signaling during salt stress in Arabidopsis. THE PLANT CELL 2013; 25:4544-59. [PMID: 24280386 PMCID: PMC3875735 DOI: 10.1105/tpc.113.117887] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 10/30/2013] [Accepted: 11/14/2013] [Indexed: 05/18/2023]
Abstract
Microfilament and Ca(2+) dynamics play important roles in stress signaling in plants. Through genetic screening of Arabidopsis thaliana mutants that are defective in stress-induced increases in cytosolic Ca(2+) ([Ca(2+)]cyt), we identified Actin-Related Protein2 (Arp2) as a regulator of [Ca(2+)]cyt in response to salt stress. Plants lacking Arp2 or other proteins in the Arp2/3 complex exhibited enhanced salt-induced increases in [Ca(2+)]cyt, decreased mitochondria movement, and hypersensitivity to salt. In addition, mitochondria aggregated, the mitochondrial permeability transition pore opened, and mitochondrial membrane potential Ψm was impaired in the arp2 mutant, and these changes were associated with salt-induced cell death. When opening of the enhanced mitochondrial permeability transition pore was blocked or increases in [Ca(2+)]cyt were prevented, the salt-sensitive phenotype of the arp2 mutant was partially rescued. These results indicate that the Arp2/3 complex regulates mitochondrial-dependent Ca(2+) signaling in response to salt stress.
Collapse
Affiliation(s)
- Yi Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhen Pan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- College of Life Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yan Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaolu Qu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yuguo Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yongqing Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiangning Jiang
- College of Life Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- National Engineering Laboratory of Tree Breeding, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of State Forestry Administration, Beijing 100083, China
| | - Shanjin Huang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ming Yuan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | | | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- National Center for Plant Gene Research, Beijing 100193, China
- Address correspondence to
| |
Collapse
|
99
|
Freschi L. Nitric oxide and phytohormone interactions: current status and perspectives. FRONTIERS IN PLANT SCIENCE 2013; 4:398. [PMID: 24130567 PMCID: PMC3793198 DOI: 10.3389/fpls.2013.00398] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 09/19/2013] [Indexed: 05/16/2023]
Abstract
Nitric oxide (NO) is currently considered a ubiquitous signal in plant systems, playing significant roles in a wide range of responses to environmental and endogenous cues. During the signaling events leading to these plant responses, NO frequently interacts with plant hormones and other endogenous molecules, at times originating remarkably complex signaling cascades. Accumulating evidence indicates that virtually all major classes of plant hormones may influence, at least to some degree, the endogenous levels of NO. In addition, studies conducted during the induction of diverse plant responses have demonstrated that NO may also affect biosynthesis, catabolism/conjugation, transport, perception, and/or transduction of different phytohormones, such as auxins, gibberellins, cytokinins, abscisic acid, ethylene, salicylic acid, jasmonates, and brassinosteroids. Although still not completely elucidated, the mechanisms underlying the interaction between NO and plant hormones have recently been investigated in a number of species and plant responses. This review specifically focuses on the current knowledge of the mechanisms implicated in NO-phytohormone interactions during the regulation of developmental and metabolic plant events. The modifications triggered by NO on the transcription of genes encoding biosynthetic/degradative enzymes as well as proteins involved in the transport and signal transduction of distinct plant hormones will be contextualized during the control of developmental, metabolic, and defense responses in plants. Moreover, the direct post-translational modification of phytohormone biosynthetic enzymes and receptors through S-nitrosylation will also be discussed as a key mechanism for regulating plant physiological responses. Finally, some future perspectives toward a more complete understanding of NO-phytohormone interactions will also be presented and discussed.
Collapse
Affiliation(s)
- Luciano Freschi
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Sao PauloSao Paulo, Brazil
| |
Collapse
|
100
|
Schlicht M, Ludwig-Müller J, Burbach C, Volkmann D, Baluska F. Indole-3-butyric acid induces lateral root formation via peroxisome-derived indole-3-acetic acid and nitric oxide. THE NEW PHYTOLOGIST 2013; 200:473-482. [PMID: 23795714 DOI: 10.1111/nph.12377] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 05/20/2013] [Indexed: 05/18/2023]
Abstract
Controlled plant growth requires regulation through a variety of signaling molecules, including steroids, peptides, radicals of oxygen and nitrogen, as well as the 'classical' phytohormone groups. Auxin is critical for the control of plant growth and also orchestrates many developmental processes, such as the formation of new roots. It modulates root architecture both slowly, through actions at the transcriptional level and, more rapidly, by mechanisms targeting primarily plasma membrane sensory systems and intracellular signaling pathways. The latter reactions use several second messengers, including Ca(2+) , nitric oxide (NO) and reactive oxygen species (ROS). Here, we investigated the different roles of two auxins, the major auxin indole-3-acetic acid (IAA) and another endogenous auxin indole-3-butyric acid (IBA), in the lateral root formation process of Arabidopsis and maize. This was mainly analyzed by different types of fluorescence microscopy and inhibitors of NO production. This study revealed that peroxisomal IBA to IAA conversion is followed by peroxisomal NO, which is important for IBA-induced lateral root formation. We conclude that peroxisomal NO emerges as a new player in auxin-induced root organogenesis. In particular, the spatially and temporally coordinated release of NO and IAA from peroxisomes is behind the strong promotion of lateral root formation via IBA.
Collapse
Affiliation(s)
- Markus Schlicht
- Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829, Cologne, Germany
| | - Jutta Ludwig-Müller
- Institut für Botanik, Technische Universität Dresden, 01062, Dresden, Germany
| | - Christian Burbach
- Department of Plant Cell Biology IZMB, University of Bonn, 53115, Bonn, Germany
| | - Dieter Volkmann
- Department of Plant Cell Biology IZMB, University of Bonn, 53115, Bonn, Germany
| | - Frantisek Baluska
- Department of Plant Cell Biology IZMB, University of Bonn, 53115, Bonn, Germany
| |
Collapse
|