51
|
Tapken W, Murphy AS. Membrane nanodomains in plants: capturing form, function, and movement. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1573-86. [PMID: 25725094 DOI: 10.1093/jxb/erv054] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The plasma membrane is the interface between the cell and the external environment. Plasma membrane lipids provide scaffolds for proteins and protein complexes that are involved in cell to cell communication, signal transduction, immune responses, and transport of small molecules. In animals, fungi, and plants, a substantial subset of these plasma membrane proteins function within ordered sterol- and sphingolipid-rich nanodomains. High-resolution microscopy, lipid dyes, pharmacological inhibitors of lipid biosynthesis, and lipid biosynthetic mutants have been employed to examine the relationship between the lipid environment and protein activity in plants. They have also been used to identify proteins associated with nanodomains and the pathways by which nanodomain-associated proteins are trafficked to their plasma membrane destinations. These studies suggest that plant membrane nanodomains function in a context-specific manner, analogous to similar structures in animals and fungi. In addition to the highly conserved flotillin and remorin markers, some members of the B and G subclasses of ATP binding cassette transporters have emerged as functional markers for plant nanodomains. Further, the glycophosphatidylinositol-anchored fasciclin-like arabinogalactan proteins, that are often associated with detergent-resistant membranes, appear also to have a functional role in membrane nanodomains.
Collapse
Affiliation(s)
- Wiebke Tapken
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | - Angus S Murphy
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
52
|
Safiarian MJ, Pertl-Obermeyer H, Lughofer P, Hude R, Bertl A, Obermeyer G. Lost in traffic? The K(+) channel of lily pollen, LilKT1, is detected at the endomembranes inside yeast cells, tobacco leaves, and lily pollen. FRONTIERS IN PLANT SCIENCE 2015; 6:47. [PMID: 25713578 PMCID: PMC4322604 DOI: 10.3389/fpls.2015.00047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/16/2015] [Indexed: 05/26/2023]
Abstract
Fertilization in plants relies on fast growth of pollen tubes through the style tissue toward the ovules. This polarized growth depends on influx of ions and water to increase the tube's volume. K(+) inward rectifying channels were detected in many pollen species, with one identified in Arabidopsis. Here, an Arabidopsis AKT1-like channel (LilKT1) was identified from Lilium longiflorum pollen. Complementation of K(+) uptake deficient yeast mutants was only successful when the entire LilKT1 C-terminus was replaced by the AKT1 C-terminus. No signals were observed in the plasma membrane (PM) of pollen tubes after expression of fluorescence-tagged LilKT1 nor were any LilKT1-derived peptides detectable in the pollen PM by mass spectrometry analysis. In contrast, fluorescent LilKT1 partly co-localized with the lily PM H(+) ATPase LilHA2 in the PM of tobacco leaf cells, but exhibited a punctual fluorescence pattern and also sub-plasma membrane localization. Thus, incorporation of LilKT1 into the pollen PM seems tighter controlled than in other cells with still unknown trafficking signals in LilKT1's C-terminus, resulting in channel densities below detection limits. This highly controlled incorporation might have physiological reasons: an uncontrolled number of K(+) inward channels in the pollen PM will give an increased water influx due to the raising cytosolic K(+) concentration, and finally, causing the tube to burst.
Collapse
Affiliation(s)
- Minou J. Safiarian
- Molecular Plant Biophysics and Biochemistry, Department of Molecular Biology, University of SalzburgSalzburg, Austria
| | - Heidi Pertl-Obermeyer
- Molecular Plant Biophysics and Biochemistry, Department of Molecular Biology, University of SalzburgSalzburg, Austria
- Plant Systems Biology, University of HohenheimStuttgart, Germany
| | - Peter Lughofer
- Molecular Plant Biophysics and Biochemistry, Department of Molecular Biology, University of SalzburgSalzburg, Austria
| | - Rene Hude
- Molecular Plant Biophysics and Biochemistry, Department of Molecular Biology, University of SalzburgSalzburg, Austria
| | - Adam Bertl
- Yeast Membrane Biology, Department of Biology, Darmstadt University of TechnologyDarmstadt, Germany
| | - Gerhard Obermeyer
- Molecular Plant Biophysics and Biochemistry, Department of Molecular Biology, University of SalzburgSalzburg, Austria
| |
Collapse
|
53
|
Verdoucq L, Rodrigues O, Martinière A, Luu DT, Maurel C. Plant aquaporins on the move: reversible phosphorylation, lateral motion and cycling. CURRENT OPINION IN PLANT BIOLOGY 2014; 22:101-107. [PMID: 25299641 DOI: 10.1016/j.pbi.2014.09.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 09/22/2014] [Accepted: 09/22/2014] [Indexed: 05/21/2023]
Abstract
Aquaporins are channel proteins present in the plasma membrane and most of intracellular compartments of plant cells. This review focuses on recent insights into the cellular function of plant aquaporins, with an emphasis on the subfamily of Plasma membrane Intrinsic Proteins (PIPs). Whereas PIPs mostly serve as water channels, novel functions associated with their ability to transport carbon dioxide and hydrogen peroxide are emerging. Phosphorylation of PIPs was found to play a central role in the mechanisms that determine their gating and subcellular dynamics. Dynamic tracking of single aquaporin molecules in native plant membranes and the search for cell signaling intermediates acting upstream of aquaporins are now used to dissect their cellular regulation by hormonal and environmental stimuli.
Collapse
Affiliation(s)
- Lionel Verdoucq
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, CNRS/INRA/Montpellier SupAgro/Université Montpellier II, F-34060 Montpellier, Cedex 2, France
| | - Olivier Rodrigues
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, CNRS/INRA/Montpellier SupAgro/Université Montpellier II, F-34060 Montpellier, Cedex 2, France
| | - Alexandre Martinière
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, CNRS/INRA/Montpellier SupAgro/Université Montpellier II, F-34060 Montpellier, Cedex 2, France
| | - Doan Trung Luu
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, CNRS/INRA/Montpellier SupAgro/Université Montpellier II, F-34060 Montpellier, Cedex 2, France
| | - Christophe Maurel
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, CNRS/INRA/Montpellier SupAgro/Université Montpellier II, F-34060 Montpellier, Cedex 2, France.
| |
Collapse
|
54
|
Zhu ZX, Ye HB, Xuan YH, Yao DN. Overexpression of a SNARE protein AtBS14b alters BR response in Arabidopsis. BOTANICAL STUDIES 2014; 55:55. [PMID: 28510978 PMCID: PMC5430330 DOI: 10.1186/s40529-014-0055-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 07/02/2014] [Indexed: 05/27/2023]
Abstract
BACKGROUND N-ethyl-maleimide sensitive factor adaptor protein receptor (SNAREs) domain-containing proteins were known as key players in vesicle-associated membrane fusion. Genetic screening has revealed the function of SNAREs in different aspects of plant biology, but the role of many SNAREs are still unknown. In this study, we have characterized the role of Arabidopsis Qc-SNARE protein AtBS14b in brassinosteroids (BRs) signaling pathway. RESULTS AtBS14b overexpression (AtBS14b ox) plants exhibited short hypocotyl and petioles lengths as well as insensitivity to exogenously supplied BR, while AtBS14b mutants did not show any visible BR-dependent morphological differences. BR biosynthesis enzyme BR6OX2 expression was slightly lower in AtBS14b ox than in wild type plants. Further BR-mediated repression of BR6OX2, CPD and DWF4 was inhibited in AtBS14b ox plants. AtBS14b-mCherry fusion protein localized in vesicular compartments surrounding plasma membrane in N. benthamiana leaves. In addition, isolation of AtBS14b-interacting BR signaling protein, which localized in plasma membrane, showed that AtBS14b directly interacted with membrane steroid binding protein 1 (MSBP1), but did not interact with BAK1 or BRI1. CONCLUSION These data suggested that Qc-SNARE protein AtBS14b is the first SNARE protein identified that interacts with MSBP1, and the overexpression of AtBS14b modulates BR response in Arabidopsis.
Collapse
Affiliation(s)
- Zhong Xin Zhu
- Agricultural College, Anhui Agricultural University, Changjiangxi Road 130, Hefei, 230036 Anhui China
| | - Hong Bo Ye
- Department of Biology, Stanford University, N. Service Road, Stanford, 94305-5020 CA USA
| | - Yuan Hu Xuan
- College of Pharmaceutical Sciences, Wenzhou Medical University, Xueyuanxi Road 82, Wenzhou, 325035 Zhejiang China
| | - Da Nian Yao
- Agricultural College, Anhui Agricultural University, Changjiangxi Road 130, Hefei, 230036 Anhui China
| |
Collapse
|
55
|
Lefoulon C, Karnik R, Honsbein A, Gutla PV, Grefen C, Riedelsberger J, Poblete T, Dreyer I, Gonzalez W, Blatt MR. Voltage-sensor transitions of the inward-rectifying K+ channel KAT1 indicate a latching mechanism biased by hydration within the voltage sensor. PLANT PHYSIOLOGY 2014; 166:960-75. [PMID: 25185120 PMCID: PMC4213121 DOI: 10.1104/pp.114.244319] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The Kv-like (potassium voltage-dependent) K(+) channels at the plasma membrane, including the inward-rectifying KAT1 K(+) channel of Arabidopsis (Arabidopsis thaliana), are important targets for manipulating K(+) homeostasis in plants. Gating modification, especially, has been identified as a promising means by which to engineer plants with improved characteristics in mineral and water use. Understanding plant K(+) channel gating poses several challenges, despite many similarities to that of mammalian Kv and Shaker channel models. We have used site-directed mutagenesis to explore residues that are thought to form two electrostatic countercharge centers on either side of a conserved phenylalanine (Phe) residue within the S2 and S3 α-helices of the voltage sensor domain (VSD) of Kv channels. Consistent with molecular dynamic simulations of KAT1, we show that the voltage dependence of the channel gate is highly sensitive to manipulations affecting these residues. Mutations of the central Phe residue favored the closed KAT1 channel, whereas mutations affecting the countercharge centers favored the open channel. Modeling of the macroscopic current kinetics also highlighted a substantial difference between the two sets of mutations. We interpret these findings in the context of the effects on hydration of amino acid residues within the VSD and with an inherent bias of the VSD, when hydrated around a central Phe residue, to the closed state of the channel.
Collapse
Affiliation(s)
- Cécile Lefoulon
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom (C.L., R.K., A.H., P.V.G., C.G., M.R.B.);Centro de Bioinformatica y Simulacion Molecular, Universidad de Talca, Casilla 721, Talca, Chile (J.R., T.P., W.G.);University of Potsdam, Biochemistry and Biology Group BPMBP, D14476 Golm, Germany (J.R., I.D., W.G.); andCentre for Biotechnology and Plant Genomics UPM, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria, 28223 Pozuelo de Alacon, Madrid, Spain (I.D.)
| | - Rucha Karnik
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom (C.L., R.K., A.H., P.V.G., C.G., M.R.B.);Centro de Bioinformatica y Simulacion Molecular, Universidad de Talca, Casilla 721, Talca, Chile (J.R., T.P., W.G.);University of Potsdam, Biochemistry and Biology Group BPMBP, D14476 Golm, Germany (J.R., I.D., W.G.); andCentre for Biotechnology and Plant Genomics UPM, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria, 28223 Pozuelo de Alacon, Madrid, Spain (I.D.)
| | - Annegret Honsbein
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom (C.L., R.K., A.H., P.V.G., C.G., M.R.B.);Centro de Bioinformatica y Simulacion Molecular, Universidad de Talca, Casilla 721, Talca, Chile (J.R., T.P., W.G.);University of Potsdam, Biochemistry and Biology Group BPMBP, D14476 Golm, Germany (J.R., I.D., W.G.); andCentre for Biotechnology and Plant Genomics UPM, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria, 28223 Pozuelo de Alacon, Madrid, Spain (I.D.)
| | - Paul Vijay Gutla
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom (C.L., R.K., A.H., P.V.G., C.G., M.R.B.);Centro de Bioinformatica y Simulacion Molecular, Universidad de Talca, Casilla 721, Talca, Chile (J.R., T.P., W.G.);University of Potsdam, Biochemistry and Biology Group BPMBP, D14476 Golm, Germany (J.R., I.D., W.G.); andCentre for Biotechnology and Plant Genomics UPM, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria, 28223 Pozuelo de Alacon, Madrid, Spain (I.D.)
| | - Christopher Grefen
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom (C.L., R.K., A.H., P.V.G., C.G., M.R.B.);Centro de Bioinformatica y Simulacion Molecular, Universidad de Talca, Casilla 721, Talca, Chile (J.R., T.P., W.G.);University of Potsdam, Biochemistry and Biology Group BPMBP, D14476 Golm, Germany (J.R., I.D., W.G.); andCentre for Biotechnology and Plant Genomics UPM, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria, 28223 Pozuelo de Alacon, Madrid, Spain (I.D.)
| | - Janin Riedelsberger
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom (C.L., R.K., A.H., P.V.G., C.G., M.R.B.);Centro de Bioinformatica y Simulacion Molecular, Universidad de Talca, Casilla 721, Talca, Chile (J.R., T.P., W.G.);University of Potsdam, Biochemistry and Biology Group BPMBP, D14476 Golm, Germany (J.R., I.D., W.G.); andCentre for Biotechnology and Plant Genomics UPM, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria, 28223 Pozuelo de Alacon, Madrid, Spain (I.D.)
| | - Tomás Poblete
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom (C.L., R.K., A.H., P.V.G., C.G., M.R.B.);Centro de Bioinformatica y Simulacion Molecular, Universidad de Talca, Casilla 721, Talca, Chile (J.R., T.P., W.G.);University of Potsdam, Biochemistry and Biology Group BPMBP, D14476 Golm, Germany (J.R., I.D., W.G.); andCentre for Biotechnology and Plant Genomics UPM, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria, 28223 Pozuelo de Alacon, Madrid, Spain (I.D.)
| | - Ingo Dreyer
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom (C.L., R.K., A.H., P.V.G., C.G., M.R.B.);Centro de Bioinformatica y Simulacion Molecular, Universidad de Talca, Casilla 721, Talca, Chile (J.R., T.P., W.G.);University of Potsdam, Biochemistry and Biology Group BPMBP, D14476 Golm, Germany (J.R., I.D., W.G.); andCentre for Biotechnology and Plant Genomics UPM, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria, 28223 Pozuelo de Alacon, Madrid, Spain (I.D.)
| | - Wendy Gonzalez
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom (C.L., R.K., A.H., P.V.G., C.G., M.R.B.);Centro de Bioinformatica y Simulacion Molecular, Universidad de Talca, Casilla 721, Talca, Chile (J.R., T.P., W.G.);University of Potsdam, Biochemistry and Biology Group BPMBP, D14476 Golm, Germany (J.R., I.D., W.G.); andCentre for Biotechnology and Plant Genomics UPM, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria, 28223 Pozuelo de Alacon, Madrid, Spain (I.D.)
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom (C.L., R.K., A.H., P.V.G., C.G., M.R.B.);Centro de Bioinformatica y Simulacion Molecular, Universidad de Talca, Casilla 721, Talca, Chile (J.R., T.P., W.G.);University of Potsdam, Biochemistry and Biology Group BPMBP, D14476 Golm, Germany (J.R., I.D., W.G.); andCentre for Biotechnology and Plant Genomics UPM, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria, 28223 Pozuelo de Alacon, Madrid, Spain (I.D.)
| |
Collapse
|
56
|
Abstract
Nutrient and water uptake from the soil is essential for plant growth and development. In the root, absorption and radial transport of nutrients and water toward the vascular tissues is achieved by a battery of specialized transporters and channels. Modulating the amount and the localization of these membrane transport proteins appears as a way to drive their activity and is essential to maintain nutrient homeostasis in plants. This control first involves the delivery of newly synthesized proteins to the plasma membrane by establishing check points along the secretory pathway, especially during the export from the endoplasmic reticulum. Plasma membrane-localized transport proteins are internalized through endocytosis followed by recycling to the cell surface or targeting to the vacuole for degradation, hence constituting another layer of control. These intricate mechanisms are often regulated by nutrient availability, stresses, and endogenous cues, allowing plants to rapidly adjust to their environment and adapt their development.
Collapse
Affiliation(s)
- Enric Zelazny
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2355, Saclay Plant Sciences, 91190 Gif-sur-Yvette, France
| | - Grégory Vert
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2355, Saclay Plant Sciences, 91190 Gif-sur-Yvette, France
| |
Collapse
|
57
|
McLachlan DH, Kopischke M, Robatzek S. Gate control: guard cell regulation by microbial stress. THE NEW PHYTOLOGIST 2014; 203:1049-1063. [PMID: 25040778 DOI: 10.1111/nph.12916] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 05/26/2014] [Indexed: 05/07/2023]
Abstract
Terrestrial plants rely on stomata, small pores in the leaf surface, for photosynthetic gas exchange and transpiration of water. The stomata, formed by a pair of guard cells, dynamically increase and decrease their volume to control the pore size in response to environmental cues. Stresses can trigger similar or opposing movements: for example, drought induces closure of stomata, whereas many pathogens exploit stomata and cause them to open to facilitate entry into plant tissues. The latter is an active process as stomatal closure is part of the plant's immune response. Stomatal research has contributed much to clarify the signalling pathways of abiotic stress, but guard cell signalling in response to microbes is a relatively new area of research. In this article, we discuss present knowledge of stomatal regulation in response to microbes and highlight common points of convergence, and differences, compared to stomatal regulation by abiotic stresses. We also expand on the mechanisms by which pathogens manipulate these processes to promote disease, for example by delivering effectors to inhibit closure or trigger opening of stomata. The study of pathogen effectors in stomatal manipulation will aid our understanding of guard cell signalling.
Collapse
Affiliation(s)
| | | | - Silke Robatzek
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
58
|
Khanna R, Li J, Tseng TS, Schroeder JI, Ehrhardt DW, Briggs WR. COP1 jointly modulates cytoskeletal processes and electrophysiological responses required for stomatal closure. MOLECULAR PLANT 2014; 7:1441-1454. [PMID: 25151660 PMCID: PMC4153439 DOI: 10.1093/mp/ssu065] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/20/2014] [Indexed: 05/20/2023]
Abstract
Reorganization of the cortical microtubule cytoskeleton is critical for guard cell function. Here, we investigate how environmental and hormonal signals cause these rearrangements and find that COP1, a RING-finger-type ubiquitin E3 ligase, is required for degradation of tubulin, likely by the 26S proteasome. This degradation is required for stomatal closing. In addition to regulating the cytoskeleton, we show that cop1 mutation impaired the activity of S-type anion channels, which are critical for stomatal closure. Thus, COP1 is revealed as a potential coordinator of cytoskeletal and electrophysiological activities required for guard cell function.
Collapse
Affiliation(s)
- Rajnish Khanna
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA
| | - Junlin Li
- Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0116, USA; Present address: College of Forest Resources and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Tong-Seung Tseng
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA
| | - Julian I Schroeder
- Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0116, USA
| | - David W Ehrhardt
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA
| | - Winslow R Briggs
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA.
| |
Collapse
|
59
|
Abstract
Potassium is a macronutrient that is crucial for healthy plant growth. Potassium availability, however, is often limited in agricultural fields and thus crop yields and quality are reduced. Therefore, improving the efficiency of potassium uptake and transport, as well as its utilization, in plants is important for agricultural sustainability. This review summarizes the current knowledge on the molecular mechanisms involved in potassium uptake and transport in plants, and the molecular response of plants to different levels of potassium availability. Based on this information, four strategies for improving potassium use efficiency in plants are proposed; 1) increased root volume, 2) increasing efficiency of potassium uptake from the soil and translocation in planta, 3) increasing mobility of potassium in soil, and 4) molecular breeding new varieties with greater potassium efficiency through marker assisted selection which will require identification and utilization of potassium associated quantitative trait loci.
Collapse
Affiliation(s)
- Ryoung Shin
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045,
Japan
| |
Collapse
|
60
|
Hachez C, Laloux T, Reinhardt H, Cavez D, Degand H, Grefen C, De Rycke R, Inzé D, Blatt MR, Russinova E, Chaumont F. Arabidopsis SNAREs SYP61 and SYP121 coordinate the trafficking of plasma membrane aquaporin PIP2;7 to modulate the cell membrane water permeability. THE PLANT CELL 2014; 26:3132-47. [PMID: 25082856 PMCID: PMC4145137 DOI: 10.1105/tpc.114.127159] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/24/2014] [Accepted: 07/08/2014] [Indexed: 05/19/2023]
Abstract
Plant plasma membrane intrinsic proteins (PIPs) are aquaporins that facilitate the passive movement of water and small neutral solutes through biological membranes. Here, we report that post-Golgi trafficking of PIP2;7 in Arabidopsis thaliana involves specific interactions with two syntaxin proteins, namely, the Qc-SNARE SYP61 and the Qa-SNARE SYP121, that the proper delivery of PIP2;7 to the plasma membrane depends on the activity of the two SNAREs, and that the SNAREs colocalize and physically interact. These findings are indicative of an important role for SYP61 and SYP121, possibly forming a SNARE complex. Our data support a model in which direct interactions between specific SNARE proteins and PIP aquaporins modulate their post-Golgi trafficking and thus contribute to the fine-tuning of the water permeability of the plasma membrane.
Collapse
Affiliation(s)
- Charles Hachez
- Institut des Sciences de la Vie, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Timothée Laloux
- Institut des Sciences de la Vie, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Hagen Reinhardt
- Institut des Sciences de la Vie, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Damien Cavez
- Institut des Sciences de la Vie, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Hervé Degand
- Institut des Sciences de la Vie, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Christopher Grefen
- Zentrum für Molekularbiologie der Pflanzen, Developmental Genetics, University of Tuebingen, D-72076 Tuebingen, Germany
| | - Riet De Rycke
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Dirk Inzé
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, Institute of Molecular, Cell, and Systems Biology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Eugenia Russinova
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - François Chaumont
- Institut des Sciences de la Vie, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
61
|
Bitterlich M, Krügel U, Boldt-Burisch K, Franken P, Kühn C. The sucrose transporter SlSUT2 from tomato interacts with brassinosteroid functioning and affects arbuscular mycorrhiza formation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:877-89. [PMID: 24654931 DOI: 10.1111/tpj.12515] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 03/12/2014] [Accepted: 03/13/2014] [Indexed: 05/20/2023]
Abstract
Mycorrhizal plants benefit from the fungal partners by getting better access to soil nutrients. In exchange, the plant supplies carbohydrates to the fungus. The additional carbohydrate demand in mycorrhizal plants was shown to be balanced partially by higher CO2 assimilation and increased C metabolism in shoots and roots. In order to test the role of sucrose transport for fungal development in arbuscular mycorrhizal (AM) tomato, transgenic plants with down-regulated expression of three sucrose transporter genes were analysed. Plants that carried an antisense construct of SlSUT2 (SlSUT2as) repeatedly exhibited increased mycorrhizal colonization and the positive effect of plants to mycorrhiza was abolished. Grafting experiments between transgenic and wild-type rootstocks and scions indicated that mainly the root-specific function of SlSUT2 has an impact on colonization of tomato roots with the AM fungus. Localization of SISUT2 to the periarbuscular membrane indicates a role in back transport of sucrose from the periarbuscular matrix into the plant cell thereby affecting hyphal development. Screening of an expression library for SlSUT2-interacting proteins revealed interactions with candidates involved in brassinosteroid (BR) signaling or biosynthesis. Interaction of these candidates with SlSUT2 was confirmed by bimolecular fluorescence complementation. Tomato mutants defective in BR biosynthesis were analysed with respect to mycorrhizal symbiosis and showed indeed decreased mycorrhization. This finding suggests that BRs affect mycorrhizal infection and colonization. If the inhibitory effect of SlSUT2 on mycorrhizal growth involves components of BR synthesis and of the BR signaling pathway is discussed.
Collapse
Affiliation(s)
- Michael Bitterlich
- Plant Physiology Department, Humboldt University of Berlin, Philippstr. 13, Building 12, 10115, Berlin, Germany; Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany
| | | | | | | | | |
Collapse
|
62
|
Véry AA, Nieves-Cordones M, Daly M, Khan I, Fizames C, Sentenac H. Molecular biology of K+ transport across the plant cell membrane: what do we learn from comparison between plant species? JOURNAL OF PLANT PHYSIOLOGY 2014; 171:748-69. [PMID: 24666983 DOI: 10.1016/j.jplph.2014.01.011] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 01/30/2014] [Indexed: 05/20/2023]
Abstract
Cloning and characterizations of plant K(+) transport systems aside from Arabidopsis have been increasing over the past decade, favored by the availability of more and more plant genome sequences. Information now available enables the comparison of some of these systems between species. In this review, we focus on three families of plant K(+) transport systems that are active at the plasma membrane: the Shaker K(+) channel family, comprised of voltage-gated channels that dominate the plasma membrane conductance to K(+) in most environmental conditions, and two families of transporters, the HAK/KUP/KT K(+) transporter family, which includes some high-affinity transporters, and the HKT K(+) and/or Na(+) transporter family, in which K(+)-permeable members seem to be present in monocots only. The three families are briefly described, giving insights into the structure of their members and on functional properties and their roles in Arabidopsis or rice. The structure of the three families is then compared between plant species through phylogenic analyses. Within clusters of ortologues/paralogues, similarities and differences in terms of expression pattern, functional properties and, when known, regulatory interacting partners, are highlighted. The question of the physiological significance of highlighted differences is also addressed.
Collapse
Affiliation(s)
- Anne-Aliénor Véry
- Biochimie & Physiologie Moléculaire des Plantes, UMR 5004 CNRS/386 INRA/SupAgro Montpellier/Université Montpellier 2, Campus SupAgro-INRA, 34060 Montpellier Cedex 2, France.
| | - Manuel Nieves-Cordones
- Biochimie & Physiologie Moléculaire des Plantes, UMR 5004 CNRS/386 INRA/SupAgro Montpellier/Université Montpellier 2, Campus SupAgro-INRA, 34060 Montpellier Cedex 2, France
| | - Meriem Daly
- Biochimie & Physiologie Moléculaire des Plantes, UMR 5004 CNRS/386 INRA/SupAgro Montpellier/Université Montpellier 2, Campus SupAgro-INRA, 34060 Montpellier Cedex 2, France; Laboratoire d'Ecologie et d'Environnement, Faculté des Sciences Ben M'sik, Université Hassan II-Mohammedia, Avenue Cdt Driss El Harti, BP 7955, Sidi Othmane, Casablanca, Morocco
| | - Imran Khan
- Biochimie & Physiologie Moléculaire des Plantes, UMR 5004 CNRS/386 INRA/SupAgro Montpellier/Université Montpellier 2, Campus SupAgro-INRA, 34060 Montpellier Cedex 2, France; Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Cécile Fizames
- Biochimie & Physiologie Moléculaire des Plantes, UMR 5004 CNRS/386 INRA/SupAgro Montpellier/Université Montpellier 2, Campus SupAgro-INRA, 34060 Montpellier Cedex 2, France
| | - Hervé Sentenac
- Biochimie & Physiologie Moléculaire des Plantes, UMR 5004 CNRS/386 INRA/SupAgro Montpellier/Université Montpellier 2, Campus SupAgro-INRA, 34060 Montpellier Cedex 2, France
| |
Collapse
|
63
|
Eisenach C, Papanatsiou M, Hillert EK, Blatt MR. Clustering of the K+ channel GORK of Arabidopsis parallels its gating by extracellular K+. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:203-14. [PMID: 24517091 PMCID: PMC4309415 DOI: 10.1111/tpj.12471] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 01/18/2014] [Accepted: 01/22/2014] [Indexed: 05/04/2023]
Abstract
GORK is the only outward-rectifying Kv-like K(+) channel expressed in guard cells. Its activity is tightly regulated to facilitate K(+) efflux for stomatal closure and is elevated in ABA in parallel with suppression of the activity of the inward-rectifying K(+) channel KAT1. Whereas the population of KAT1 is subject to regulated traffic to and from the plasma membrane, nothing is known about GORK, its distribution and traffic in vivo. We have used transformations with fluorescently-tagged GORK to explore its characteristics in tobacco epidermis and Arabidopsis guard cells. These studies showed that GORK assembles in puncta that reversibly dissociated as a function of the external K(+) concentration. Puncta dissociation parallelled the gating dependence of GORK, the speed of response consistent with the rapidity of channel gating response to changes in the external ionic conditions. Dissociation was also suppressed by the K(+) channel blocker Ba(2+) . By contrast, confocal and protein biochemical analysis failed to uncover substantial exo- and endocytotic traffic of the channel. Gating of GORK is displaced to more positive voltages with external K(+) , a characteristic that ensures the channel facilitates only K(+) efflux regardless of the external cation concentration. GORK conductance is also enhanced by external K(+) above 1 mm. We suggest that GORK clustering in puncta is related to its gating and conductance, and reflects associated conformational changes and (de)stabilisation of the channel protein, possibly as a platform for transmission and coordination of channel gating in response to external K(+) .
Collapse
Affiliation(s)
| | - Maria Papanatsiou
- Laboratory of Plant Physiology and Biophysics, Institute of Molecular, Cell and Systems Biology, University of GlasgowBower Building, Glasgow, G12 8QQ, UK
| | - Ellin-Kristina Hillert
- Laboratory of Plant Physiology and Biophysics, Institute of Molecular, Cell and Systems Biology, University of GlasgowBower Building, Glasgow, G12 8QQ, UK
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, Institute of Molecular, Cell and Systems Biology, University of GlasgowBower Building, Glasgow, G12 8QQ, UK
| |
Collapse
|
64
|
Ichikawa M, Hirano T, Enami K, Fuselier T, Kato N, Kwon C, Voigt B, Schulze-Lefert P, Baluška F, Sato MH. Syntaxin of plant proteins SYP123 and SYP132 mediate root hair tip growth in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2014; 55:790-800. [PMID: 24642714 DOI: 10.1093/pcp/pcu048] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Root hairs are fast-growing tubular protrusions on root epidermal cells that play important roles in water and nutrient uptake in plants. The tip-focused polarized growth of root hairs is accomplished by the secretion of newly synthesized materials to the tip via the polarized membrane trafficking mechanism. Here, we report the function of two different types of plasma membrane (PM) Qa-SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors), SYP123 and SYP132, in the growth of root hair in Arabidopsis. We found that SYP123, but not SYP132, localizes in the tip region of root hairs by recycling between the brefeldin A (BFA)-sensitive endosomes and the PM of the expanding tip in an F-actin-dependent manner. The vesicle-associated membrane proteins VAMP721/722/724 also exhibited tip-focused localization in root hairs and formed ternary SNARE complexes with both SYP123 and SYP132. These results demonstrate that SYP123 and SYP132 act in a coordinated fashion to mediate tip-focused membrane trafficking for root hair tip growth.
Collapse
Affiliation(s)
- Mie Ichikawa
- Department of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamonakaragi-cho 1-5, Sakyo-ku, Kyoto, 606-8522 Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Fujiwara M, Uemura T, Ebine K, Nishimori Y, Ueda T, Nakano A, Sato MH, Fukao Y. Interactomics of Qa-SNARE in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2014; 55:781-9. [PMID: 24556609 DOI: 10.1093/pcp/pcu038] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Membrane trafficking in plants is involved in cellular development and the adaptation to various environmental changes. SNARE (soluble N-ethylmaleimide-sensitive factor attachment receptor) proteins mediate the fusion between vesicles and organelles to facilitate transport cargo proteins in cells. To characterize further the SNARE protein networks in cells, we carried out interactome analysis of SNARE proteins using 12 transgenic Arabidopsis thaliana plants expressing green fluorescent protein (GFP)-tagged Qa-SNAREs (SYP111, SYP121, SYP122, SYP123, SYP132, SYP21, SYP22, SYP31, SYP32, SYP41, SYP42 and SYP43). Microsomal fractions were prepared from each transgenic root, and subjected to immunoprecipitation (IP) using micromagnetic beads coupled to anti-GFP antibodies. To identify Qa-SNARE-interacting proteins, all immunoprecipitated products were then subjected to mass spectrometric (IP-MS) analysis. The IP-MS data revealed not only known interactions of SNARE proteins, but also unknown interactions. The IP-MS results were next categorized by gene ontology analysis. The data revealed that categories of cellular component organization, the cytoskeleton and endosome were enriched in the SYP2, SYP3 and SYP4 groups. In contrast, transporter activity was classified specifically in the SYP132 group. We also identified a novel interaction between SYP22 and VAMP711, which was validated using co-localization analysis with confocal microscopy and IP. Additional novel SNARE-interacting proteins play roles in vesicle transport and lignin biosynthesis, and were identified as membrane microdomain-related proteins. We propose that Qa-SNARE interactomics is useful for understanding SNARE interactions across the whole cell.
Collapse
Affiliation(s)
- Masayuki Fujiwara
- Plant Global Educational Project, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Chaumont F, Tyerman SD. Aquaporins: highly regulated channels controlling plant water relations. PLANT PHYSIOLOGY 2014; 164:1600-18. [PMID: 24449709 PMCID: PMC3982727 DOI: 10.1104/pp.113.233791] [Citation(s) in RCA: 381] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 01/19/2014] [Indexed: 05/18/2023]
Abstract
Plant growth and development are dependent on tight regulation of water movement. Water diffusion across cell membranes is facilitated by aquaporins that provide plants with the means to rapidly and reversibly modify water permeability. This is done by changing aquaporin density and activity in the membrane, including posttranslational modifications and protein interaction that act on their trafficking and gating. At the whole organ level aquaporins modify water conductance and gradients at key "gatekeeper" cell layers that impact on whole plant water flow and plant water potential. In this way they may act in concert with stomatal regulation to determine the degree of isohydry/anisohydry. Molecular, physiological, and biophysical approaches have demonstrated that variations in root and leaf hydraulic conductivity can be accounted for by aquaporins but this must be integrated with anatomical considerations. This Update integrates these data and emphasizes the central role played by aquaporins in regulating plant water relations.
Collapse
Affiliation(s)
| | - Stephen D. Tyerman
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4–L7.07.14, B–1348 Louvain-la-Neuve, Belgium (F.C.); and
- Australian Research Council Centre of Excellence in Plant Energy Biology, Waite Research Institute, School of Agriculture, Food, and Wine, University of Adelaide, Waite Campus PMB 1, Glen Osmond, South Australia 5064, Australia (S.D.T.)
| |
Collapse
|
67
|
Jarsch IK, Konrad SSA, Stratil TF, Urbanus SL, Szymanski W, Braun P, Braun KH, Ott T. Plasma Membranes Are Subcompartmentalized into a Plethora of Coexisting and Diverse Microdomains in Arabidopsis and Nicotiana benthamiana. THE PLANT CELL 2014; 26:1698-1711. [PMID: 24714763 PMCID: PMC4036580 DOI: 10.1105/tpc.114.124446] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 03/17/2014] [Accepted: 03/24/2014] [Indexed: 05/19/2023]
Abstract
Eukaryotic plasma membranes are highly compartmentalized structures. So far, only a few individual proteins that function in a wide range of cellular processes have been shown to segregate into microdomains. However, the biological roles of most microdomain-associated proteins are unknown. Here, we investigated the heterogeneity of distinct microdomains and the complexity of their coexistence. This diversity was determined in living cells of intact multicellular tissues using 20 different marker proteins from Arabidopsis thaliana, mostly belonging to the Remorin protein family. These proteins associate with microdomains at the cytosolic leaflet of the plasma membrane. We characterized these membrane domains and determined their lateral dynamics by extensive quantitative image analysis. Systematic colocalization experiments with an extended subset of marker proteins tested in 45 different combinations revealed the coexistence of highly distinct membrane domains on individual cell surfaces. These data provide valuable tools to study the lateral segregation of membrane proteins and their biological functions in living plant cells. They also demonstrate that widely used biochemical approaches such as detergent-resistant membranes cannot resolve this biological complexity of membrane compartmentalization in vivo.
Collapse
Affiliation(s)
- Iris K Jarsch
- Ludwig-Maximilians-University of Munich, Faculty of Biology, Institute of Genetics, 82152 Martinsried, Germany
| | - Sebastian S A Konrad
- Ludwig-Maximilians-University of Munich, Faculty of Biology, Institute of Genetics, 82152 Martinsried, Germany
| | - Thomas F Stratil
- Ludwig-Maximilians-University of Munich, Faculty of Biology, Institute of Genetics, 82152 Martinsried, Germany
| | - Susan L Urbanus
- Ludwig-Maximilians-University of Munich, Faculty of Biology, Institute of Genetics, 82152 Martinsried, Germany
| | - Witold Szymanski
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Pascal Braun
- Department of Plant Systems Biology, Center for Life and Food Sciences Weihenstephan, Technische Universität München, 85354 Freising-Weihenstephan, Germany
| | - Karl-Heinz Braun
- Ludwig-Maximilians-University of Munich, Faculty of Biology, Institute of Genetics, 82152 Martinsried, Germany
| | - Thomas Ott
- Ludwig-Maximilians-University of Munich, Faculty of Biology, Institute of Genetics, 82152 Martinsried, Germany
| |
Collapse
|
68
|
Trinh NN, Huang TL, Chi WC, Fu SF, Chen CC, Huang HJ. Chromium stress response effect on signal transduction and expression of signaling genes in rice. PHYSIOLOGIA PLANTARUM 2014; 150:205-24. [PMID: 24033343 DOI: 10.1111/ppl.12088] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 06/15/2013] [Accepted: 07/01/2013] [Indexed: 05/04/2023]
Abstract
Hexavalent chromium [Cr(VI)] is a non-essential metal for normal plants and is toxic to plants at high concentrations. However, signaling pathways and molecular mechanisms of its action on cell function and gene expression remain elusive. In this study, we found that Cr(VI) induced endogenous reactive oxygen species (ROS) generation and Ca(2+) accumulation and activated NADPH oxidase and calcium-dependent protein kinase. We investigated global transcriptional changes in rice roots by microarray analysis. Gene expression profiling indicated activation of abscisic acid-, ethylene- and jasmonic acid-mediated signaling and inactivation of gibberellic acid-related pathways in Cr(VI) stress-treated rice roots. Genes encoding signaling components such as the protein kinases domain of unknown function 26, receptor-like cytoplasmic kinase, LRK10-like kinase type 2 and protein phosphatase 2C, as well as transcription factors WRKY and apetala2/ethylene response factor were predominant during Cr(VI) stress. Genes involved in vesicle trafficking were subjected to functional characterization. Pretreating rice roots with a vesicle trafficking inhibitor, brefeldin A, effectively reduced Cr(VI)-induced ROS production. Suppression of the vesicle trafficking gene, Exo70, by virus-induced gene silencing strategies revealed that vesicle trafficking is required for mediation of Cr(VI)-induced ROS production. Taken together, these findings shed light on the molecular mechanisms in signaling pathways and transcriptional regulation in response to Cr stress in plants.
Collapse
Affiliation(s)
- Ngoc-Nam Trinh
- Department of Life Sciences, National Cheng Kung University, No.1 University Road 701, Tainan, Taiwan
| | | | | | | | | | | |
Collapse
|
69
|
Negi J, Hashimoto-Sugimoto M, Kusumi K, Iba K. New approaches to the biology of stomatal guard cells. PLANT & CELL PHYSIOLOGY 2014; 55:241-50. [PMID: 24104052 PMCID: PMC3913439 DOI: 10.1093/pcp/pct145] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 09/26/2013] [Indexed: 05/19/2023]
Abstract
CO2 acts as an environmental signal that regulates stomatal movements. High CO2 concentrations reduce stomatal aperture, whereas low concentrations trigger stomatal opening. In contrast to our advanced understanding of light and drought stress responses in guard cells, the molecular mechanisms underlying stomatal CO2 sensing and signaling are largely unknown. Leaf temperature provides a convenient indicator of transpiration, and can be used to detect mutants with altered stomatal control. To identify genes that function in CO2 responses in guard cells, CO2-insensitive mutants were isolated through high-throughput leaf thermal imaging. The isolated mutants are categorized into three groups according to their phenotypes: (i) impaired in stomatal opening under low CO2 concentrations; (ii) impaired in stomatal closing under high CO2 concentrations; and (iii) impaired in stomatal development. Characterization of these mutants has begun to yield insights into the mechanisms of stomatal CO2 responses. In this review, we summarize the current status of the field and discuss future prospects.
Collapse
Affiliation(s)
- Juntaro Negi
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, 812-8581 Japan
- These authors contributed equally to this work
| | - Mimi Hashimoto-Sugimoto
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, 812-8581 Japan
- These authors contributed equally to this work
| | - Kensuke Kusumi
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, 812-8581 Japan
| | - Koh Iba
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, 812-8581 Japan
| |
Collapse
|
70
|
Synek L, Sekereš J, Žárský V. The exocyst at the interface between cytoskeleton and membranes in eukaryotic cells. FRONTIERS IN PLANT SCIENCE 2014; 4:543. [PMID: 24427163 PMCID: PMC3877765 DOI: 10.3389/fpls.2013.00543] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/12/2013] [Indexed: 05/07/2023]
Abstract
Delivery and final fusion of the secretory vesicles with the relevant target membrane are hierarchically organized and reciprocally interconnected multi-step processes involving not only specific protein-protein interactions, but also specific protein-phospholipid interactions. The exocyst was discovered as a tethering complex mediating initial encounter of arriving exocytic vesicles with the plasma membrane. The exocyst complex is regulated by Rab and Rho small GTPases, resulting in docking of exocytic vesicles to the plasma membrane (PM) and finally their fusion mediated by specific SNARE complexes. In model Opisthokont cells, the exocyst was shown to directly interact with both microtubule and microfilament cytoskeleton and related motor proteins as well as with the PM via phosphatidylinositol 4, 5-bisphosphate specific binding, which directly affects cortical cytoskeleton and PM dynamics. Here we summarize the current knowledge on exocyst-cytoskeleton-PM interactions in order to open a perspective for future research in this area in plant cells.
Collapse
Affiliation(s)
- Lukáš Synek
- Laboratory of Cell Biology, Institute of Experimental Botany, Academy of Sciences of the Czech RepublicPrague, Czech Republic
| | - Juraj Sekereš
- Laboratory of Cell Biology, Institute of Experimental Botany, Academy of Sciences of the Czech RepublicPrague, Czech Republic
- Laboratory of Plant Cell Biology, Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
| | - Viktor Žárský
- Laboratory of Cell Biology, Institute of Experimental Botany, Academy of Sciences of the Czech RepublicPrague, Czech Republic
- Laboratory of Plant Cell Biology, Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
- *Correspondence: Viktor Žárský, Laboratory of Plant Cell Biology, Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Vinicna 5, 12844 Prague, Czech Republic e-mail:
| |
Collapse
|
71
|
Abstract
Over the past decade, confocal microscopy and the ever-expanding toolchest of fluorescent protein (xFP) markers and technologies have become routine methods for the biological laboratory. A common use of xFP fluorophores is in localizing proteins and the subcellular structures with which they associate, including analyzing their distribution and dynamics and the interactions of proteins in vivo. Additionally, a number of so-called optical highlighters have proven especially useful in analyzing the kinetics of these processes in pulse-chase studies of protein relocation(s) following an experimental challenge. Here we focus on exemplary methods in transformation and live-cell imaging in plant cells, with the expectation that researchers will find these and the accompanying resources useful as a starting point in developing their own expertise.
Collapse
Affiliation(s)
- Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow, UK
| | | |
Collapse
|
72
|
Paul LK, Rinne PLH, van der Schoot C. Refurbishing the plasmodesmal chamber: a role for lipid bodies? FRONTIERS IN PLANT SCIENCE 2014; 5:40. [PMID: 24605115 PMCID: PMC3932414 DOI: 10.3389/fpls.2014.00040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 01/28/2014] [Indexed: 05/04/2023]
Abstract
Lipid bodies (LBs) are universal constituents of both animal and plant cells. They are produced by specialized membrane domains at the tubular endoplasmic reticulum (ER), and consist of a core of neutral lipids and a surrounding monolayer of phospholipid with embedded amphipathic proteins. Although originally regarded as simple depots for lipids, they have recently emerged as organelles that interact with other cellular constituents, exchanging lipids, proteins and signaling molecules, and shuttling them between various intracellular destinations, including the plasmamembrane (PM). Recent data showed that in plants LBs can deliver a subset of 1,3-β-glucanases to the plasmodesmal (PD) channel. We hypothesize that this may represent a more general mechanism, which complements the delivery of glycosylphosphatidylinositol (GPI)-anchored proteins to the PD exterior via the secretory pathway. We propose that LBs may contribute to the maintenance of the PD chamber and the delivery of regulatory molecules as well as proteins destined for transport to adjacent cells. In addition, we speculate that LBs deliver their cargo through interaction with membrane domains in the cytofacial side of the PM.
Collapse
Affiliation(s)
| | | | - Christiaan van der Schoot
- *Correspondence: Christiaan van der Schoot, Department of Plant and Environmental Sciences, Norwegian University of Life Sciences, P.O. Box 1432, Ås, Norway e-mail:
| |
Collapse
|
73
|
Acharya BR, Jeon BW, Zhang W, Assmann SM. Open Stomata 1 (OST1) is limiting in abscisic acid responses of Arabidopsis guard cells. THE NEW PHYTOLOGIST 2013; 200:1049-63. [PMID: 24033256 DOI: 10.1111/nph.12469] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 07/22/2013] [Indexed: 05/19/2023]
Abstract
Open Stomata 1 (OST1) (SnRK2.6 or SRK2E), a serine/threonine protein kinase, is a positive regulator in abscisic acid (ABA)-mediated stomatal response, but OST1-regulation of K(+) and Ca(2+) currents has not been studied directly in guard cells and it is unknown whether OST1 activity is limiting in ABA-mediated stomatal responses. We employed loss-of-function and gain-of-function approaches to study native ABA responses of Arabidopsis guard cells. We performed stomatal aperture bioassays, patch clamp analyses and reactive oxygen species (ROS) measurements. ABA inhibition of inward K(+) channels and light-induced stomatal opening are reduced in ost1 mutants while transgenic plants overexpressing OST1 show ABA hypersensitivity in these responses. ost1 mutants are insensitive to ABA-induced stomatal closure, regulation of slow anion currents, Ca(2+) -permeable channel activation and ROS production while OST1 overexpressing lines are hypersensitive for these responses, resulting in accelerated stomatal closure in response to ABA. Overexpression of OST1 in planta in the absence of ABA application does not affect basal apertures or ion currents. Moreover, we demonstrate the physical interaction of OST1 with the inward K(+) channel KAT1, the anion channel SLAC1, and the NADPH oxidases AtrbohD and AtrbohF. Our findings support OST1 as a critical limiting component in ABA regulation of stomatal apertures, ion channels and NADPH oxidases in Arabidopsis guard cells.
Collapse
Affiliation(s)
- Biswa R Acharya
- Biology Department, Penn State University, University Park, PA, 16802, USA
| | | | | | | |
Collapse
|
74
|
Li X, Luu DT, Maurel C, Lin J. Probing plasma membrane dynamics at the single-molecule level. TRENDS IN PLANT SCIENCE 2013; 18:617-24. [PMID: 23911558 DOI: 10.1016/j.tplants.2013.07.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 06/22/2013] [Accepted: 07/01/2013] [Indexed: 05/21/2023]
Abstract
The plant plasma membrane is highly dynamic and changes multiple aspects of its organization in response to environmental and internal factors. A detailed understanding of membrane dynamics in living plant cells has remained obscure because of the limited spatial resolution of conventional optical microscopy. Recently, several single-molecule imaging approaches have been developed and used to provide valuable insights into the fundamental biochemical and biophysical properties of the plant plasma membrane, including the organization of membrane microdomains and the dynamics of single-molecule diffusion. Here we review single-molecule imaging methods, including total internal reflection fluorescence microscopy (TIRFM), fluorescence correlation spectroscopy (FCS), and super-resolution microscopy, and examine their contributions to recent progress in understanding protein dynamics and membrane organization in living plant cells.
Collapse
Affiliation(s)
- Xiaojuan Li
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | |
Collapse
|
75
|
Zargar SM, Kurata R, Inaba S, Fukao Y. Unraveling the iron deficiency responsive proteome in Arabidopsis shoot by iTRAQ-OFFGEL approach. PLANT SIGNALING & BEHAVIOR 2013; 8:doi: 10.4161/psb.26892. [PMID: 24494240 PMCID: PMC4091060 DOI: 10.4161/psb.26892] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Iron (Fe) is required by plants for basic redox reactions in photosynthesis and respiration, and for many other key enzymatic reactions in biological processes. Fe homeostatic mechanisms have evolved in plants to enable the uptake and sequestration of Fe in cells. To elucidate the network of proteins that regulate Fe homeostasis and transport, we optimized the iTRAQ-OFFGEL method to identify and quantify the number of proteins that respond to Fe deficiency in the model plant Arabidopsis. In this study, Fe deficiency was created using Fe-deficient growth conditions, excess zinc (Zn), and use of the irt1-1 mutant in which the IRT1 Fe transporter is disrupted. Using the iTRAQ-OFFGEL approach, we identified 1139 proteins, including novel Fe deficiency-responsive proteins, in microsomal fractions isolated from 3 different types of Fe-deficient shoots compared with just 233 proteins identified using conventional iTRAQ-CEX. Further analysis showed that greater numbers of low-abundance proteins could be identified using the iTRAQ-OFFGEL method and that proteins could be identified from numerous cellular compartments. The improved iTRAQ-OFFGEL method used in this study provided an efficient means for identifying greater numbers of proteins from microsomal fractions of Arabidopsis shoots. The proteome identified in this study provides new insight into the regulatory cross talk between Fe-deficient and excess Zn conditions.
Collapse
Affiliation(s)
- Sajad Majeed Zargar
- Plant Global Educational Project; Nara Institute of Science and Technology; Ikoma, Japan
- School of Biotechnology; S K University of Agricultural Sciences and Technology; Chatha, Jammu, Jammu and Kashmir, India
| | - Rie Kurata
- Graduate School of Biological Sciences; Nara Institute of Science and Technology; Ikoma, Japan
| | - Shoko Inaba
- Plant Global Educational Project; Nara Institute of Science and Technology; Ikoma, Japan
| | - Yoichiro Fukao
- Plant Global Educational Project; Nara Institute of Science and Technology; Ikoma, Japan
- Graduate School of Biological Sciences; Nara Institute of Science and Technology; Ikoma, Japan
- Correspondence to: Yoichiro Fukao,
| |
Collapse
|
76
|
Wang YF, Munemasa S, Nishimura N, Ren HM, Robert N, Han M, Puzõrjova I, Kollist H, Lee S, Mori I, Schroeder JI. Identification of cyclic GMP-activated nonselective Ca2+-permeable cation channels and associated CNGC5 and CNGC6 genes in Arabidopsis guard cells. PLANT PHYSIOLOGY 2013; 163:578-90. [PMID: 24019428 PMCID: PMC3793039 DOI: 10.1104/pp.113.225045] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 08/28/2013] [Indexed: 05/08/2023]
Abstract
Cytosolic Ca(2+) in guard cells plays an important role in stomatal movement responses to environmental stimuli. These cytosolic Ca(2+) increases result from Ca(2+) influx through Ca(2+)-permeable channels in the plasma membrane and Ca(2+) release from intracellular organelles in guard cells. However, the genes encoding defined plasma membrane Ca(2+)-permeable channel activity remain unknown in guard cells and, with some exceptions, largely unknown in higher plant cells. Here, we report the identification of two Arabidopsis (Arabidopsis thaliana) cation channel genes, CNGC5 and CNGC6, that are highly expressed in guard cells. Cytosolic application of cyclic GMP (cGMP) and extracellularly applied membrane-permeable 8-Bromoguanosine 3',5'-cyclic monophosphate-cGMP both activated hyperpolarization-induced inward-conducting currents in wild-type guard cells using Mg(2+) as the main charge carrier. The cGMP-activated currents were strongly blocked by lanthanum and gadolinium and also conducted Ba(2+), Ca(2+), and Na(+) ions. cngc5 cngc6 double mutant guard cells exhibited dramatically impaired cGMP-activated currents. In contrast, mutations in CNGC1, CNGC2, and CNGC20 did not disrupt these cGMP-activated currents. The yellow fluorescent protein-CNGC5 and yellow fluorescent protein-CNGC6 proteins localize in the cell periphery. Cyclic AMP activated modest inward currents in both wild-type and cngc5cngc6 mutant guard cells. Moreover, cngc5 cngc6 double mutant guard cells exhibited functional abscisic acid (ABA)-activated hyperpolarization-dependent Ca(2+)-permeable cation channel currents, intact ABA-induced stomatal closing responses, and whole-plant stomatal conductance responses to darkness and changes in CO2 concentration. Furthermore, cGMP-activated currents remained intact in the growth controlled by abscisic acid2 and abscisic acid insensitive1 mutants. This research demonstrates that the CNGC5 and CNGC6 genes encode unique cGMP-activated nonselective Ca(2+)-permeable cation channels in the plasma membrane of Arabidopsis guard cells.
Collapse
Affiliation(s)
| | - Shintaro Munemasa
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (Y.-F.W., H.-M.R.)
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093–0116 (Y.-F.W., S.M., N.N., N.R., M.H., S.L., I.M., J.I.S.)
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia (I.P., H.K.); and
- Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 7008530, Japan (S.M.)
| | | | - Hui-Min Ren
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (Y.-F.W., H.-M.R.)
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093–0116 (Y.-F.W., S.M., N.N., N.R., M.H., S.L., I.M., J.I.S.)
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia (I.P., H.K.); and
- Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 7008530, Japan (S.M.)
| | - Nadia Robert
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (Y.-F.W., H.-M.R.)
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093–0116 (Y.-F.W., S.M., N.N., N.R., M.H., S.L., I.M., J.I.S.)
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia (I.P., H.K.); and
- Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 7008530, Japan (S.M.)
| | - Michelle Han
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (Y.-F.W., H.-M.R.)
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093–0116 (Y.-F.W., S.M., N.N., N.R., M.H., S.L., I.M., J.I.S.)
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia (I.P., H.K.); and
- Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 7008530, Japan (S.M.)
| | - Irina Puzõrjova
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (Y.-F.W., H.-M.R.)
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093–0116 (Y.-F.W., S.M., N.N., N.R., M.H., S.L., I.M., J.I.S.)
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia (I.P., H.K.); and
- Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 7008530, Japan (S.M.)
| | - Hannes Kollist
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (Y.-F.W., H.-M.R.)
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093–0116 (Y.-F.W., S.M., N.N., N.R., M.H., S.L., I.M., J.I.S.)
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia (I.P., H.K.); and
- Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 7008530, Japan (S.M.)
| | - Stephen Lee
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (Y.-F.W., H.-M.R.)
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093–0116 (Y.-F.W., S.M., N.N., N.R., M.H., S.L., I.M., J.I.S.)
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia (I.P., H.K.); and
- Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 7008530, Japan (S.M.)
| | - Izumi Mori
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (Y.-F.W., H.-M.R.)
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093–0116 (Y.-F.W., S.M., N.N., N.R., M.H., S.L., I.M., J.I.S.)
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia (I.P., H.K.); and
- Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 7008530, Japan (S.M.)
| | | |
Collapse
|
77
|
Hachez C, Besserer A, Chevalier AS, Chaumont F. Insights into plant plasma membrane aquaporin trafficking. TRENDS IN PLANT SCIENCE 2013; 18:344-52. [PMID: 23291163 DOI: 10.1016/j.tplants.2012.12.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 11/30/2012] [Accepted: 12/05/2012] [Indexed: 05/11/2023]
Abstract
Plasma membrane intrinsic proteins (PIPs) are plant aquaporins that facilitate the diffusion of water and small uncharged solutes through the cell membrane. Deciphering the network of interacting proteins that modulate PIP trafficking to and activity in the plasma membrane is essential to improve our knowledge about PIP regulation and function. This review highlights the most recent advances related to PIP subcellular routing and dynamic redistribution, identifies some key molecular interacting proteins, and indicates exciting directions for future research in this field. A better understanding of the mechanisms by which plants optimize water movement might help in identifying new molecular players of agronomical relevance involved in the control of cellular water uptake and drought tolerance.
Collapse
Affiliation(s)
- Charles Hachez
- Institut des Sciences de la Vie, Université Catholique de Louvain, Croix du Sud 4-L7.07.14, B-1348 Louvain-la-Neuve, Belgium
| | | | | | | |
Collapse
|
78
|
Karnik R, Grefen C, Bayne R, Honsbein A, Köhler T, Kioumourtzoglou D, Williams M, Bryant NJ, Blatt MR. Arabidopsis Sec1/Munc18 protein SEC11 is a competitive and dynamic modulator of SNARE binding and SYP121-dependent vesicle traffic. THE PLANT CELL 2013; 25:1368-82. [PMID: 23572542 PMCID: PMC3663274 DOI: 10.1105/tpc.112.108506] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 02/27/2013] [Accepted: 03/16/2013] [Indexed: 05/18/2023]
Abstract
The Arabidopsis thaliana Qa-SNARE SYP121 (=SYR1/PEN1) drives vesicle traffic at the plasma membrane of cells throughout the vegetative plant. It facilitates responses to drought, to the water stress hormone abscisic acid, and to pathogen attack, and it is essential for recovery from so-called programmed stomatal closure. How SYP121-mediated traffic is regulated is largely unknown, although it is thought to depend on formation of a fusion-competent SNARE core complex with the cognate partners VAMP721 and SNAP33. Like SYP121, the Arabidopsis Sec1/Munc18 protein SEC11 (=KEULE) is expressed throughout the vegetative plant. We find that SEC11 binds directly with SYP121 both in vitro and in vivo to affect secretory traffic. Binding occurs through two distinct modes, one requiring only SEC11 and SYP121 and the second dependent on assembly of a complex with VAMP721 and SNAP33. SEC11 competes dynamically for SYP121 binding with SNAP33 and VAMP721, and this competition is predicated by SEC11 association with the N terminus of SYP121. These and additional data are consistent with a model in which SYP121-mediated vesicle fusion is regulated by an unusual "handshaking" mechanism of concerted SEC11 debinding and rebinding. They also implicate one or more factors that alter or disrupt SEC11 association with the SYP121 N terminus as an early step initiating SNARE complex formation.
Collapse
Affiliation(s)
- Rucha Karnik
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Christopher Grefen
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Robert Bayne
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Annegret Honsbein
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Tim Köhler
- Botanical Institute, University of Darmstadt, D-64287 Darmstadt, Germany
| | - Dimitrios Kioumourtzoglou
- Cell Biology Laboratory, Institute of Molecular, Cell, and Systems Biology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Mary Williams
- American Society of Plant Biologists, Rockville, Maryland 20855
| | - Nia J. Bryant
- Cell Biology Laboratory, Institute of Molecular, Cell, and Systems Biology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Michael R. Blatt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
79
|
Luu DT, Maurel C. Aquaporin Trafficking in Plant Cells: An Emerging Membrane-Protein Model. Traffic 2013; 14:629-35. [DOI: 10.1111/tra.12062] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 02/18/2013] [Accepted: 02/21/2013] [Indexed: 11/29/2022]
Affiliation(s)
| | - Christophe Maurel
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes; UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier 2; F-34060; Montpellier Cedex 2; France
| |
Collapse
|
80
|
Martinière A, Runions J. Protein diffusion in plant cell plasma membranes: the cell-wall corral. FRONTIERS IN PLANT SCIENCE 2013; 4:515. [PMID: 24381579 PMCID: PMC3865442 DOI: 10.3389/fpls.2013.00515] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 12/01/2013] [Indexed: 05/08/2023]
Abstract
Studying protein diffusion informs us about how proteins interact with their environment. Work on protein diffusion over the last several decades has illustrated the complex nature of biological lipid bilayers. The plasma membrane contains an array of membrane-spanning proteins or proteins with peripheral membrane associations. Maintenance of plasma membrane microstructure can be via physical features that provide intrinsic ordering such as lipid microdomains, or from membrane-associated structures such as the cytoskeleton. Recent evidence indicates, that in the case of plant cells, the cell wall seems to be a major player in maintaining plasma membrane microstructure. This interconnection / interaction between cell-wall and plasma membrane proteins most likely plays an important role in signal transduction, cell growth, and cell physiological responses to the environment.
Collapse
Affiliation(s)
- Alexandre Martinière
- Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Montpellier 2Montpellier, France
- *Correspondence: Alexandre Martinière, Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Montpellier 2, SupAgro. Bat 7, 2 place Viala, 34060 Montpellier Cedex 1, France e-mail: ;
| | - John Runions
- Department of Biological and Medical Sciences, Oxford Brookes UniversityOxford, UK
- John Runions, Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford OX30BP, UK e-mail:
| |
Collapse
|
81
|
Sharma T, Dreyer I, Riedelsberger J. The role of K(+) channels in uptake and redistribution of potassium in the model plant Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2013; 4:224. [PMID: 23818893 PMCID: PMC3694395 DOI: 10.3389/fpls.2013.00224] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 06/09/2013] [Indexed: 05/17/2023]
Abstract
Potassium (K(+)) is inevitable for plant growth and development. It plays a crucial role in the regulation of enzyme activities, in adjusting the electrical membrane potential and the cellular turgor, in regulating cellular homeostasis and in the stabilization of protein synthesis. Uptake of K(+) from the soil and its transport to growing organs is essential for a healthy plant development. Uptake and allocation of K(+) are performed by K(+) channels and transporters belonging to different protein families. In this review we summarize the knowledge on the versatile physiological roles of plant K(+) channels and their behavior under stress conditions in the model plant Arabidopsis thaliana.
Collapse
Affiliation(s)
- Tripti Sharma
- Molecular Biology, Institute for Biochemistry and Biology, University of PotsdamPotsdam, Germany
- IMPRS-PMPG, Max-Planck Institute of Molecular Plant PhysiologyPotsdam, Germany
| | - Ingo Dreyer
- Centro de Biotecnologia y Genomica de Plantas, Universidad Politécnica de MadridMadrid, Spain
- *Correspondence: Ingo Dreyer, Plant Biophysics, Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Campus de Montegancedo, Carretera M-40, km 37.7, Pozuelo de Alarcón, Madrid E-28223, Spain e-mail:
| | - Janin Riedelsberger
- Molecular Biology, Institute for Biochemistry and Biology, University of PotsdamPotsdam, Germany
- IMPRS-PMPG, Max-Planck Institute of Molecular Plant PhysiologyPotsdam, Germany
- Janin Riedelsberger, Molecular Biology, Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24/25, House 20, D-14476 Potsdam, Germany e-mail:
| |
Collapse
|
82
|
Malinsky J, Opekarová M, Grossmann G, Tanner W. Membrane microdomains, rafts, and detergent-resistant membranes in plants and fungi. ANNUAL REVIEW OF PLANT BIOLOGY 2013; 64:501-29. [PMID: 23638827 DOI: 10.1146/annurev-arplant-050312-120103] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The existence of specialized microdomains in plasma membranes, postulated for almost 25 years, has been popularized by the concept of lipid or membrane rafts. The idea that detergent-resistant membranes are equivalent to lipid rafts, which was generally abandoned after a decade of vigorous data accumulation, contributed to intense discussions about the validity of the raft concept. The existence of membrane microdomains, meanwhile, has been verified by unequivocal independent evidence. This review summarizes the current state of research in plants and fungi with respect to common aspects of both kingdoms. In these organisms, principally immobile microdomains large enough for microscopic detection have been visualized. These microdomains are found in the context of cell-cell interactions (plant symbionts and pathogens), membrane transport, stress, and polarized growth, and the data corroborate at least three mechanisms of formation. As documented in this review, modern methods of visualization of lateral membrane compartments are also able to uncover the functional relevance of membrane microdomains.
Collapse
Affiliation(s)
- Jan Malinsky
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic.
| | | | | | | |
Collapse
|
83
|
Abstract
As one of the most important mineral nutrient elements, potassium (K(+)) participates in many plant physiological processes and determines the yield and quality of crop production. In this review, we summarize K(+) signaling processes and K(+) transport regulation in higher plants, especially in plant responses to K(+)-deficiency stress. Plants perceive external K(+) fluctuations and generate the initial K(+) signal in root cells. This signal is transduced into the cytoplasm and encoded as Ca(2+) and reactive oxygen species signaling. K(+)-deficiency-induced signals are subsequently decoded by cytoplasmic sensors, which regulate the downstream transcriptional and posttranslational responses. Eventually, plants produce a series of adaptive events in both physiological and morphological alterations that help them survive K(+) deficiency.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Plant Physiology and Biochemistry, National Center of Plant Gene Research (Beijing), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | | |
Collapse
|
84
|
Chen ZH, Wu D, Eisenach C, Hills A, Zhang G, Blatt MR. Studying plant salt tolerance with the voltage clamp technique. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2012; 913:19-33. [PMID: 22895750 DOI: 10.1007/978-1-61779-986-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Voltage clamp is one of the key techniques for the dissection, identification, and monitoring of ion transporters in plant cells. Voltage clamp-based research work on salinity stress in plants enables the characterization of many plant ATP-dependent pumps, ion channels, and ion-coupled carriers through heterologous expression in Xenopus laevis oocytes and in vivo measurements in salt-tolerant and salt-sensitive giant green algae such as Chara and many plant species. We have modified and developed a reliable set of procedures for voltage clamp analysis in intact guard cells and root epidermal cells from Arabidopsis thaliana with potentially broad applications in the salinity response of plants. These procedures greatly extend the duration of measurements and scope for analysis of the predominant K(+) and anion channels.
Collapse
Affiliation(s)
- Zhong-Hua Chen
- School of Natural Sciences, University of Western Sydney, Sydney, NSW, Australia.
| | | | | | | | | | | |
Collapse
|
85
|
Besserer A, Burnotte E, Bienert GP, Chevalier AS, Errachid A, Grefen C, Blatt MR, Chaumont F. Selective regulation of maize plasma membrane aquaporin trafficking and activity by the SNARE SYP121. THE PLANT CELL 2012; 24:3463-81. [PMID: 22942383 PMCID: PMC3462644 DOI: 10.1105/tpc.112.101758] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 07/23/2012] [Accepted: 08/01/2012] [Indexed: 05/18/2023]
Abstract
Plasma membrane intrinsic proteins (PIPs) are aquaporins facilitating the diffusion of water through the cell membrane. We previously showed that the traffic of the maize (Zea mays) PIP2;5 to the plasma membrane is dependent on the endoplasmic reticulum diacidic export motif. Here, we report that the post-Golgi traffic and water channel activity of PIP2;5 are regulated by the SNARE (for soluble N-ethylmaleimide-sensitive factor protein attachment protein receptor) SYP121, a plasma membrane resident syntaxin involved in vesicle traffic, signaling, and regulation of K(+) channels. We demonstrate that the expression of the dominant-negative SYP121-Sp2 fragment in maize mesophyll protoplasts or epidermal cells leads to a decrease in the delivery of PIP2;5 to the plasma membrane. Protoplast and oocyte swelling assays showed that PIP2;5 water channel activity is negatively affected by SYP121-Sp2. A combination of in vitro (copurification assays) and in vivo (bimolecular fluorescence complementation, Förster resonance energy transfer, and yeast split-ubiquitin) approaches allowed us to demonstrate that SYP121 and PIP2;5 physically interact. Together with previous data demonstrating the role of SYP121 in regulating K(+) channel trafficking and activity, these results suggest that SYP121 SNARE contributes to the regulation of the cell osmotic homeostasis.
Collapse
Affiliation(s)
- Arnaud Besserer
- Institut des Sciences de la Vie, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Emeline Burnotte
- Institut des Sciences de la Vie, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Gerd Patrick Bienert
- Institut des Sciences de la Vie, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Adrien S. Chevalier
- Institut des Sciences de la Vie, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Abdelmounaim Errachid
- Institut des Sciences de la Vie, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Christopher Grefen
- Laboratory of Plant Physiology and Biophysics, Institute of Molecular, Cell, and Systems Biology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Michael R. Blatt
- Laboratory of Plant Physiology and Biophysics, Institute of Molecular, Cell, and Systems Biology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - François Chaumont
- Institut des Sciences de la Vie, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
- Address correspondence to
| |
Collapse
|
86
|
Martinière A, Lavagi I, Nageswaran G, Rolfe DJ, Maneta-Peyret L, Luu DT, Botchway SW, Webb SED, Mongrand S, Maurel C, Martin-Fernandez ML, Kleine-Vehn J, Friml J, Moreau P, Runions J. Cell wall constrains lateral diffusion of plant plasma-membrane proteins. Proc Natl Acad Sci U S A 2012. [PMID: 22689944 DOI: 10.1073/pnas.1202040109 [epub ahead of print]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023] Open
Abstract
A cell membrane can be considered a liquid-phase plane in which lipids and proteins theoretically are free to diffuse. Numerous reports, however, describe retarded diffusion of membrane proteins in animal cells. This anomalous diffusion results from a combination of structuring factors including protein-protein interactions, cytoskeleton corralling, and lipid organization into microdomains. In plant cells, plasma-membrane (PM) proteins have been described as relatively immobile, but the control mechanisms that structure the PM have not been studied. Here, we use fluorescence recovery after photobleaching to estimate mobility of a set of minimal PM proteins. These proteins consist only of a PM-anchoring domain fused to a fluorescent protein, but their mobilities remained limited, as is the case for many full-length proteins. Neither the cytoskeleton nor membrane microdomain structure was involved in constraining the diffusion of these proteins. The cell wall, however, was shown to have a crucial role in immobilizing PM proteins. In addition, by single-molecule fluorescence imaging we confirmed that the pattern of cellulose deposition in the cell wall affects the trajectory and speed of PM protein diffusion. Regulation of PM protein dynamics by the plant cell wall can be interpreted as a mechanism for regulating protein interactions in processes such as trafficking and signal transduction.
Collapse
Affiliation(s)
- Alexandre Martinière
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Martinière A, Lavagi I, Nageswaran G, Rolfe DJ, Maneta-Peyret L, Luu DT, Botchway SW, Webb SED, Mongrand S, Maurel C, Martin-Fernandez ML, Kleine-Vehn J, Friml J, Moreau P, Runions J. Cell wall constrains lateral diffusion of plant plasma-membrane proteins. Proc Natl Acad Sci U S A 2012; 109:12805-10. [PMID: 22689944 PMCID: PMC3411962 DOI: 10.1073/pnas.1202040109] [Citation(s) in RCA: 189] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A cell membrane can be considered a liquid-phase plane in which lipids and proteins theoretically are free to diffuse. Numerous reports, however, describe retarded diffusion of membrane proteins in animal cells. This anomalous diffusion results from a combination of structuring factors including protein-protein interactions, cytoskeleton corralling, and lipid organization into microdomains. In plant cells, plasma-membrane (PM) proteins have been described as relatively immobile, but the control mechanisms that structure the PM have not been studied. Here, we use fluorescence recovery after photobleaching to estimate mobility of a set of minimal PM proteins. These proteins consist only of a PM-anchoring domain fused to a fluorescent protein, but their mobilities remained limited, as is the case for many full-length proteins. Neither the cytoskeleton nor membrane microdomain structure was involved in constraining the diffusion of these proteins. The cell wall, however, was shown to have a crucial role in immobilizing PM proteins. In addition, by single-molecule fluorescence imaging we confirmed that the pattern of cellulose deposition in the cell wall affects the trajectory and speed of PM protein diffusion. Regulation of PM protein dynamics by the plant cell wall can be interpreted as a mechanism for regulating protein interactions in processes such as trafficking and signal transduction.
Collapse
Affiliation(s)
- Alexandre Martinière
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Irene Lavagi
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Gayathri Nageswaran
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Daniel J. Rolfe
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Oxfordshire OX11 0QX, United Kingdom
| | - Lilly Maneta-Peyret
- Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200 Centre National de la Recherche Scientifique, Université Bordeaux Segalen, 33076 Bordeaux, France
| | - Doan-Trung Luu
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, Unité Mixte de Recherche 5004, Centre National de la Recherche Scientifique/Unité Mixte de Recherche 0386 Institut National de la Recherche Agronomique, 34060 Montpellier, France
| | - Stanley W. Botchway
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Oxfordshire OX11 0QX, United Kingdom
| | - Stephen E. D. Webb
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Oxfordshire OX11 0QX, United Kingdom
| | - Sebastien Mongrand
- Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200 Centre National de la Recherche Scientifique, Université Bordeaux Segalen, 33076 Bordeaux, France
| | - Christophe Maurel
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, Unité Mixte de Recherche 5004, Centre National de la Recherche Scientifique/Unité Mixte de Recherche 0386 Institut National de la Recherche Agronomique, 34060 Montpellier, France
| | - Marisa L. Martin-Fernandez
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Oxfordshire OX11 0QX, United Kingdom
| | - Jürgen Kleine-Vehn
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria; and
| | - Jirí Friml
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
| | - Patrick Moreau
- Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200 Centre National de la Recherche Scientifique, Université Bordeaux Segalen, 33076 Bordeaux, France
| | - John Runions
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| |
Collapse
|
88
|
Chen T, Wang X, von Wangenheim D, Zheng M, Šamaj J, Ji W, Lin J. Probing and tracking organelles in living plant cells. PROTOPLASMA 2012; 249 Suppl 2:S157-S167. [PMID: 22183127 DOI: 10.1007/s00709-011-0364-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 12/06/2011] [Indexed: 05/31/2023]
Abstract
Intracellular organelle movements and positioning play pivotal roles in enabling plants to proliferate life efficiently and to survive diverse environmental stresses. The elaborate dissection of organelle dynamics and their underlying mechanisms (e.g., the role of the cytoskeleton in organelle movements) largely depends on the advancement and efficiency of organelle tracking systems. Here, we provide an overview of some recently developed tools for labeling and tracking organelle dynamics in living plant cells.
Collapse
Affiliation(s)
- Tong Chen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | | | | | | | |
Collapse
|
89
|
Guo F, McCubbin AG. The pollen-specific R-SNARE/longin PiVAMP726 mediates fusion of endo- and exocytic compartments in pollen tube tip growth. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3083-95. [PMID: 22345643 PMCID: PMC3350921 DOI: 10.1093/jxb/ers023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 01/13/2012] [Accepted: 01/17/2012] [Indexed: 05/06/2023]
Abstract
The growing pollen tube apex is dedicated to balancing exo- and endocytic processes to form a rapidly extending tube. As perturbation of either tends to cause a morphological phenotype, this system provides tractable model for studying these processes. Vesicle-associated membrane protein 7s (VAMP7s) are members of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) family that mediate cognate membrane fusion but their role in pollen tube growth has not been investigated. This manuscript identifies PiVAMP726 of Petunia inflata as a pollen-specific VAMP7 that localizes to the inverted cone of transport vesicles at the pollen tube tip. The endocytic marker FM4-64 was found to colocalize with yellow fluorescent protein (YFP)-PiVAMP726, which is consistent with PiVAMP726 containing an amino-acid motif implicated in endosomal localization, At high overexpression levels, YFP- PiVAMP726 inhibited growth and caused the formation of novel membrane compartments within the pollen tube tip. Functional dissection of PiVAMP726 implicated the N-terminal longin domain in negative regulation of the SNARE activity, but not localization of PiVAMP726. Expression of the constitutively active C-terminal SNARE domain alone, in pollen tubes, generated similar phenotypes to the full-length protein, but the truncated domain was more potent than the wild-type protein at both inhibiting growth and forming the novel membrane compartments. Both endo- and exocytic markers localized to these compartments in addition to YFP-PiVAMP726, leading to the speculation that PiVAMP726 might be involved in the recycling of endocytic vesicles in tip growth.
Collapse
Affiliation(s)
| | - Andrew G. McCubbin
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| |
Collapse
|
90
|
Martinière A, Li X, Runions J, Lin J, Maurel C, Luu DT. Salt stress triggers enhanced cycling of Arabidopsis root plasma-membrane aquaporins. PLANT SIGNALING & BEHAVIOR 2012; 7:529-32. [PMID: 22499180 PMCID: PMC3419046 DOI: 10.4161/psb.19350] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Aquaporins of the plasma membrane intrinsic protein (PIP) subfamily are channels which facilitate the diffusion of water across the plant plasma membrane (PM). Although PIPs have been considered as canonical protein markers of this compartment, their endomembrane trafficking is still not well documented. We recently obtained insights into the constitutive cycling of PIPs in Arabidopsis root cells by means of fluorescence recovery after photobleaching (FRAP). This work also uncovered the behavior of the model isoform AtPIP2;1 in response to NaCl. The present addendum connects these findings to another recent work which describes the dynamic properties of AtPIP2;1 in the PM in normal and salt stress conditions by means of single particle tracking (SPT) and fluorescence correlation spectroscopy (FCS). The results suggest that membrane rafts play an important role in the partitioning of AtPIP2;1 in normal conditions and that clathrin-mediated endocytosis is predominant. In salt stress conditions, the rate of AtPIP2;1 cycling was enhanced and endocytosis was cooperated by a membrane raft-associated salt-induced pathway and a clathrin-dependent pathway.
Collapse
Affiliation(s)
- Alexandre Martinière
- Department of Biological and Medical Sciences; Oxford Brookes University; Oxford, UK
- Biochimie et Physiologie Moléculaire des Plantes; Institut de Biologie Intégrative des Plantes; UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier 2; Montpellier, France
| | - Xiaojuan Li
- Key Laboratory of Plant Molecular Physiology; Institute of Botany; Chinese Academy of Sciences; Beijing, China
| | - John Runions
- Department of Biological and Medical Sciences; Oxford Brookes University; Oxford, UK
| | - Jinxing Lin
- Key Laboratory of Plant Molecular Physiology; Institute of Botany; Chinese Academy of Sciences; Beijing, China
| | - Christophe Maurel
- Biochimie et Physiologie Moléculaire des Plantes; Institut de Biologie Intégrative des Plantes; UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier 2; Montpellier, France
| | - Doan-Trung Luu
- Biochimie et Physiologie Moléculaire des Plantes; Institut de Biologie Intégrative des Plantes; UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier 2; Montpellier, France
| |
Collapse
|
91
|
Gonneau M, Höfte H, Vernhettes S. Fluorescent tags to explore cell wall structure and dynamics. FRONTIERS IN PLANT SCIENCE 2012; 3:145. [PMID: 22783266 PMCID: PMC3388471 DOI: 10.3389/fpls.2012.00145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 06/13/2012] [Indexed: 05/10/2023]
Abstract
Plant cell walls are highly dynamic and heterogeneous structures, which vary between cell types, growth stages but also between microdomains within a single cell wall. In this review, we summarize the imaging techniques using fluorescent tags that are currently being used and which should in the coming years revolutionize our understanding of the dynamics of cell wall architecture and the cellular processes involved in the synthesis of cell wall components.
Collapse
Affiliation(s)
- Martine Gonneau
- INRA, UMR1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences,Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin,Versailles, France
| | - Herman Höfte
- INRA, UMR1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences,Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin,Versailles, France
| | - Samantha Vernhettes
- INRA, UMR1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences,Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin,Versailles, France
- *Correspondence: Samantha Vernhettes, Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParis Tech, Bâtiment 2, INRA Centre de Versailles-Grignon, Route de St-Cyr (RD10),78026 Versailles Cedex, France. e-mail:
| |
Collapse
|
92
|
Kim SJ, Brandizzi F. News and Views into the SNARE Complexity in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2012; 3:28. [PMID: 23018380 PMCID: PMC3355637 DOI: 10.3389/fpls.2012.00028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 01/25/2012] [Indexed: 05/18/2023]
Abstract
Secretory organelles are engaged in a continuous flux of membranes, which is believed to occur mostly via transport vesicles. Being critical in maintaining several cellular functions, transport vesicles are membrane-enclosed sacs that temporarily store and then deliver membrane lipids, protein, and polysaccharides. SNAREs have a crucial role in vesicle traffic by driving membrane fusion and conferring fidelity through the formation of specific SNARE complexes. Additionally, specific roles of SNAREs in growth and development implicate that they are versatile components for the life of a plant. Here, we summarize the recent progress on the understanding of the role of SNAREs and highlight some of the questions that are still unsolved.
Collapse
Affiliation(s)
- Sang-Jin Kim
- Great Lakes Bioenergy Research Center, Michigan State UniversityEast Lansing, MI, USA
- Plant Research Laboratory, Department of Energy, Michigan State UniversityEast Lansing, MI, USA
| | - Federica Brandizzi
- Great Lakes Bioenergy Research Center, Michigan State UniversityEast Lansing, MI, USA
- Plant Research Laboratory, Department of Energy, Michigan State UniversityEast Lansing, MI, USA
- Department of Plant Biology, Michigan State UniversityEast Lansing, MI, USA
- *Correspondence: Federica Brandizzi, Plant Research Laboratory, Department of Energy, Michigan State University, East Lansing, MI 48824, USA. e-mail:
| |
Collapse
|
93
|
Eisenach C, Chen ZH, Grefen C, Blatt MR. The trafficking protein SYP121 of Arabidopsis connects programmed stomatal closure and K⁺ channel activity with vegetative growth. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:241-51. [PMID: 21914010 DOI: 10.1111/j.1365-313x.2011.04786.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The vesicle-trafficking protein SYP121 (SYR1/PEN1) was originally identified in association with ion channel control at the plasma membrane of stomatal guard cells, although stomata of the Arabidopsis syp121 loss-of-function mutant close normally in ABA and high Ca²⁺. We have now uncovered a set of stomatal phenotypes in the syp121 mutant that reduce CO₂ assimilation, slow vegetative growth and increase water use efficiency in the whole plant, conditional upon high light intensities and low relative humidity. Stomatal opening and the rise in stomatal transpiration of the mutant was delayed in the light and following Ca²⁺-evoked closure, consistent with a constitutive form of so-called programmed stomatal closure. Delayed reopening was observed in the syp121, but not in the syp122 mutant lacking the homologous gene product; the delay was rescued by complementation with wild-type SYP121 and was phenocopied in wild-type plants in the presence of the vesicle-trafficking inhibitor Brefeldin A. K⁺ channel current that normally mediates K⁺ uptake for stomatal opening was suppressed in the syp121 mutant and, following closure, its recovery was slowed compared to guard cells of wild-type plants. Evoked stomatal closure was accompanied by internalisation of GFP-tagged KAT1 K⁺ channels in both wild-type and syp121 mutant guard cells, but their subsequently recycling was slowed in the mutant. Our findings indicate that SYP121 facilitates stomatal reopening and they suggest that K⁺ channel traffic and recycling to the plasma membrane underpins the stress memory phenomenon of programmed closure in stomata. Additionally, they underline the significance of vesicle traffic for whole-plant water use and biomass production, tying SYP121 function to guard cell membrane transport and stomatal control.
Collapse
Affiliation(s)
- Cornelia Eisenach
- Laboratory of Plant Physiology and Biophysics, Institute of Molecular Cell and Systems Biology, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | | | |
Collapse
|
94
|
Ruiz-May E, Kim SJ, Brandizzi F, Rose JKC. The secreted plant N-glycoproteome and associated secretory pathways. FRONTIERS IN PLANT SCIENCE 2012; 3:117. [PMID: 22685447 PMCID: PMC3368311 DOI: 10.3389/fpls.2012.00117] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 05/15/2012] [Indexed: 05/14/2023]
Abstract
N-Glycosylation is a common form of eukaryotic protein post-translational modification, and one that is particularly prevalent in plant cell wall proteins. Large scale and detailed characterization of N-glycoproteins therefore has considerable potential in better understanding the composition and functions of the cell wall proteome, as well as those proteins that reside in other compartments of the secretory pathway. While there have been numerous studies of mammalian and yeast N-glycoproteins, less is known about the population complexity, biosynthesis, structural variation, and trafficking of their plant counterparts. However, technical developments in the analysis of glycoproteins and the structures the glycans that they bear, as well as valuable comparative analyses with non-plant systems, are providing new insights into features that are common among eukaryotes and those that are specific to plants, some of which may reflect the unique nature of the plant cell wall. In this review we present an overview of the current knowledge of plant N-glycoprotein synthesis and trafficking, with particular reference to those that are cell wall localized.
Collapse
Affiliation(s)
- Eliel Ruiz-May
- Department of Plant Biology, Cornell UniversityIthaca, NY, USA
| | - Sang-Jin Kim
- Great Lakes Bioenergy Research Center, Michigan State UniversityEast Lansing, MI, USA
- DOE Plant Research Laboratory, Michigan State UniversityEast Lansing, MI, USA
| | - Federica Brandizzi
- Great Lakes Bioenergy Research Center, Michigan State UniversityEast Lansing, MI, USA
- DOE Plant Research Laboratory, Michigan State UniversityEast Lansing, MI, USA
| | - Jocelyn K. C. Rose
- Department of Plant Biology, Cornell UniversityIthaca, NY, USA
- *Correspondence: Jocelyn K. C. Rose, Department of Plant Biology, Cornell University, 412 Mann Library Building, Ithaca, NY 14853 USA. e-mail:
| |
Collapse
|
95
|
Bose J, Pottosin II, Shabala SS, Palmgren MG, Shabala S. Calcium efflux systems in stress signaling and adaptation in plants. FRONTIERS IN PLANT SCIENCE 2011; 2:85. [PMID: 22639615 PMCID: PMC3355617 DOI: 10.3389/fpls.2011.00085] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 11/04/2011] [Indexed: 05/18/2023]
Abstract
Transient cytosolic calcium ([Ca(2+)](cyt)) elevation is an ubiquitous denominator of the signaling network when plants are exposed to literally every known abiotic and biotic stress. These stress-induced [Ca(2+)](cyt) elevations vary in magnitude, frequency, and shape, depending on the severity of the stress as well the type of stress experienced. This creates a unique stress-specific calcium "signature" that is then decoded by signal transduction networks. While most published papers have been focused predominantly on the role of Ca(2+) influx mechanisms to shaping [Ca(2+)](cyt) signatures, restoration of the basal [Ca(2+)](cyt) levels is impossible without both cytosolic Ca(2+) buffering and efficient Ca(2+) efflux mechanisms removing excess Ca(2+) from cytosol, to reload Ca(2+) stores and to terminate Ca(2+) signaling. This is the topic of the current review. The molecular identity of two major types of Ca(2+) efflux systems, Ca(2+)-ATPase pumps and Ca(2+)/H(+) exchangers, is described, and their regulatory modes are analyzed in detail. The spatial and temporal organization of calcium signaling networks is described, and the importance of existence of intracellular calcium microdomains is discussed. Experimental evidence for the role of Ca(2+) efflux systems in plant responses to a range of abiotic and biotic factors is summarized. Contribution of Ca(2+)-ATPase pumps and Ca(2+)/H(+) exchangers in shaping [Ca(2+)](cyt) signatures is then modeled by using a four-component model (plasma- and endo-membrane-based Ca(2+)-permeable channels and efflux systems) taking into account the cytosolic Ca(2+) buffering. It is concluded that physiologically relevant variations in the activity of Ca(2+)-ATPase pumps and Ca(2+)/H(+) exchangers are sufficient to fully describe all the reported experimental evidence and determine the shape of [Ca(2+)](cyt) signatures in response to environmental stimuli, emphasizing the crucial role these active efflux systems play in plant adaptive responses to environment.
Collapse
Affiliation(s)
- Jayakumar Bose
- School of Agricultural Science, University of TasmaniaHobart, TAS, Australia
| | - Igor I. Pottosin
- Centro Universitario de Investigaciones Biomédicas, Universidad de ColimaColima, México
| | | | | | - Sergey Shabala
- School of Agricultural Science, University of TasmaniaHobart, TAS, Australia
| |
Collapse
|
96
|
Jeanguenin L, Alcon C, Duby G, Boeglin M, Chérel I, Gaillard I, Zimmermann S, Sentenac H, Véry AA. AtKC1 is a general modulator of Arabidopsis inward Shaker channel activity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:570-582. [PMID: 21518051 DOI: 10.1111/j.1365-313x.2011.04617.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A functional Shaker potassium channel requires assembly of four α-subunits encoded by a single gene or various genes from the Shaker family. In Arabidopsis thaliana, AtKC1, a Shaker α-subunit that is silent when expressed alone, has been shown to regulate the activity of AKT1 by forming heteromeric AtKC1-AKT1 channels. Here, we investigated whether AtKC1 is a general regulator of channel activity. Co-expression in Xenopus oocytes of a dominant negative (pore-mutated) AtKC1 subunit with the inward Shaker channel subunits KAT1, KAT2 or AKT2, or the outward subunits SKOR or GORK, revealed that the three inward subunits functionally interact with AtKC1 while the outward ones cannot. Localization experiments in plant protoplasts showed that KAT2 was able to re-locate AtKC1 fused to GFP from endomembranes to the plasma membrane, indicating that heteromeric AtKC1-KAT2 channels are efficiently targeted to the plasma membrane. Functional properties of heteromeric channels involving AtKC1 and KAT1, KAT2 or AKT2 were analysed by voltage clamp after co-expression of the respective subunits in Xenopus oocytes. AtKC1 behaved as a regulatory subunit within the heterotetrameric channel, reducing the macroscopic conductance and negatively shifting the channel activation potential. Expression studies showed that AtKC1 and its identified Shaker partners have overlapping expression patterns, supporting the hypothesis of a general regulation of inward channel activity by AtKC1 in planta. Lastly, AtKC1 disruption appeared to reduce plant biomass production, showing that AtKC1-mediated channel activity regulation is required for normal plant growth.
Collapse
Affiliation(s)
- Linda Jeanguenin
- Biochimie et Physiologie Moléculaire des Plantes, UMR CNRS (5004)/INRA (388)/SupAgro/UM2, Campus INRA/Montpellier SupAgro, 2 Place Viala, 34060 Montpellier Cedex 2, France
| | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Reichardt I, Slane D, El Kasmi F, Knöll C, Fuchs R, Mayer U, Lipka V, Jürgens G. Mechanisms of Functional Specificity Among Plasma-Membrane Syntaxins in Arabidopsis. Traffic 2011; 12:1269-80. [DOI: 10.1111/j.1600-0854.2011.01222.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
98
|
Chen Z, Grefen C, Donald N, Hills A, Blatt MR. A bicistronic, Ubiquitin-10 promoter-based vector cassette for transient transformation and functional analysis of membrane transport demonstrates the utility of quantitative voltage clamp studies on intact Arabidopsis root epidermis. PLANT, CELL & ENVIRONMENT 2011; 34:554-64. [PMID: 21251017 DOI: 10.1111/j.1365-3040.2010.02262.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
To date the use of fluorescent reporter constructs in analysing membrane transport has been limited primarily to cell lines expressing stably either the tagged transporter protein(s) or markers to identify lineages of interest. Strategies for transient expression have yet to be exploited in transport analysis, despite their wide application in cellular imaging studies. Here we describe a Gateway-compatible, bicistronic vector, incorporating the constitutive Ubiqutin-10 gene promoter of Arabidopsis that gives prolonged expression after transient transformation and enables fluorescence marking of cells without a fusion construct. We show that Arabidopsis root epidermal cells are readily transformed by co-cultivation with Agrobacterium and are tractable for quantitative electrophysiological analysis. As a proof of principle, we transiently transformed Arabidopsis with the bicistronic vector carrying GFP as the fluorescent marker and, separately, the integral plasma membrane protein SYP121 essential for the inward K+ channel current. We demonstrate that transient expression of SYP121 in syp121 mutant plants is sufficient to rescue the K+ current in vivo. The combination of transient expression and use of the bicistronic vector promises significant advantages for studies of membrane transport and nutrient acquisition in roots.
Collapse
Affiliation(s)
- Zhonghua Chen
- Laboratory of Plant Physiology and Biophysics, MCSB-Plant Sciences, Bower Building, University of Glasgow, Glasgow G128QQ, UK
| | | | | | | | | |
Collapse
|
99
|
Honsbein A, Blatt MR, Grefen C. A molecular framework for coupling cellular volume and osmotic solute transport control. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:2363-2370. [PMID: 21115662 DOI: 10.1093/jxb/erq386] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Eukaryotic cells expand using vesicle traffic to increase membrane surface area. Expansion in walled eukaryotes is driven by turgor pressure which depends fundamentally on the uptake and accumulation of inorganic ions. Thus, ion uptake and vesicle traffic must be controlled coordinately for growth. How this coordination is achieved is still poorly understood, yet is so elemental to life that resolving the underlying mechanisms will have profound implications for our understanding of cell proliferation, development, and pathogenesis, and will find applications in addressing the mineral and water use by plants in the face of global environmental change. Recent discoveries of interactions between trafficking and ion transport proteins now open the door to an entirely new approach to understanding this coordination. Some of the advances to date in identifying key protein partners in the model plant Arabidopsis and in yeast at membranes vital for cell volume and turgor control are outlined here. Additionally, new evidence is provided of a wider participation among Arabidopsis Kv-like K(+) channels in selective interaction with the vesicle-trafficking protein SYP121. These advances suggest some common paradigms that will help guide further exploration of the underlying connection between ion transport and membrane traffic and should transform our understanding of cellular homeostasis in eukaryotes.
Collapse
Affiliation(s)
- Annegret Honsbein
- Laboratory of Plant Physiology and Biophysics, Institute of Molecular, Cellular and Systems Biology, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | |
Collapse
|
100
|
Tanner W, Malinsky J, Opekarová M. In plant and animal cells, detergent-resistant membranes do not define functional membrane rafts. THE PLANT CELL 2011; 23:1191-3. [PMID: 21531862 PMCID: PMC3101544 DOI: 10.1105/tpc.111.086249] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
|