51
|
Wang Y, Yao Q, Zhang Y, Zhang Y, Xing J, Yang B, Mi G, Li Z, Zhang M. The Role of Gibberellins in Regulation of Nitrogen Uptake and Physiological Traits in Maize Responding to Nitrogen Availability. Int J Mol Sci 2020; 21:E1824. [PMID: 32155833 PMCID: PMC7084584 DOI: 10.3390/ijms21051824] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/24/2020] [Accepted: 03/03/2020] [Indexed: 01/05/2023] Open
Abstract
Modified gibberellin (GA) signaling leads to semi-dwarfism with low nitrogen (N) use efficiency (NUE) in crops. An understanding of GA-mediated N uptake is essential for the development of crops with improved NUE. The function of GA in modulating N uptake capacity and nitrate (NO3-) transporters (NRTs) was analyzed in the GA synthesis-deficient mutant zmga3ox grown under low (LN) and sufficient (SN) N conditions. LN significantly suppressed the production of GA1, GA3, and GA4, and the zmga3ox plants showed more sensitivity in shoots as well as LN stress. Moreover, the higher anthocyanin accumulation and the decrease of chlorophyll content were also recorded. The net NO3- fluxes and 15N content were decreased in zmga3ox plants under both LN and SN conditions. Exogenous GA3 could restore the NO3- uptake in zmga3ox plants, but uniconazole repressed NO3- uptake. Moreover, the transcript levels of ZmNRT2.1/2.2 were downregulated in zmga3ox plants, while the GA3 application enhanced the expression level. Furthermore, the RNA-seq analyses identified several transcription factors that are involved in the GA-mediated transcriptional operation of NRTs related genes. These findings revealed that GAs influenced N uptake involved in the transcriptional regulation of NRTs and physiological responses in maize responding to nitrogen supply.
Collapse
Affiliation(s)
- Yubin Wang
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (Y.W.); (Q.Y.); (Y.Z.); (Y.Z.); (J.X.); (B.Y.); (Z.L.)
| | - Qingqing Yao
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (Y.W.); (Q.Y.); (Y.Z.); (Y.Z.); (J.X.); (B.Y.); (Z.L.)
| | - Yushi Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (Y.W.); (Q.Y.); (Y.Z.); (Y.Z.); (J.X.); (B.Y.); (Z.L.)
| | - Yuexia Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (Y.W.); (Q.Y.); (Y.Z.); (Y.Z.); (J.X.); (B.Y.); (Z.L.)
| | - Jiapeng Xing
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (Y.W.); (Q.Y.); (Y.Z.); (Y.Z.); (J.X.); (B.Y.); (Z.L.)
| | - Benzhou Yang
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (Y.W.); (Q.Y.); (Y.Z.); (Y.Z.); (J.X.); (B.Y.); (Z.L.)
| | - Guohua Mi
- College of Resources and Environmental Science, Department of Plant Nutrition, China Agricultural University, Beijing 100193, China;
| | - Zhaohu Li
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (Y.W.); (Q.Y.); (Y.Z.); (Y.Z.); (J.X.); (B.Y.); (Z.L.)
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Mingcai Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (Y.W.); (Q.Y.); (Y.Z.); (Y.Z.); (J.X.); (B.Y.); (Z.L.)
| |
Collapse
|
52
|
Huang H, Gong Y, Liu B, Wu D, Zhang M, Xie D, Song S. The DELLA proteins interact with MYB21 and MYB24 to regulate filament elongation in Arabidopsis. BMC PLANT BIOLOGY 2020; 20:64. [PMID: 32033528 PMCID: PMC7006197 DOI: 10.1186/s12870-020-2274-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 02/03/2020] [Indexed: 05/24/2023]
Abstract
BACKGROUND Gibberellin (GA) and jasmonate (JA) are two essential phytohormones for filament elongation in Arabidopsis. GA and JA trigger degradation of DELLAs and JASMONATE ZIM-domain (JAZ) proteins through SCFSLY1 and SCFCOI1 separately to activate filament elongation. In JA pathway, JAZs interact with MYB21 and MYB24 to control filament elongation. However, little is known how DELLAs regulate filament elongation. RESULTS Here we showed that DELLAs interact with MYB21 and MYB24, and that R2R3 domains of MYB21 and MYB24 are responsible for interaction with DELLAs. Furthermore, we demonstrated that DELLA and JAZ proteins coordinately repress the transcriptional function of MYB21 and MYB24 to inhibit filament elongation. CONCLUSION We discovered that DELLAs interact with MYB21 and MYB24, and that DELLAs and JAZs attenuate the transcriptional function of MYB21 and MYB24 to control filament elongation. This study reveals a novel cross-talk mechanism of GA and JA in the regulation of filament elongation in Arabidopsis.
Collapse
Affiliation(s)
- Huang Huang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, China.
| | - Yilong Gong
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, RNA Center, College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Bei Liu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, RNA Center, College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Dewei Wu
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009, China
| | - Min Zhang
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, RNA Center, College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Daoxin Xie
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Susheng Song
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, RNA Center, College of Life Sciences, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
53
|
Kumar G, Dasgupta I. Comprehensive molecular insights into the stress response dynamics of rice (Oryza sativa L.) during rice tungro disease by RNA-seq-based comparative whole transcriptome analysis. J Biosci 2020. [DOI: 10.1007/s12038-020-9996-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
54
|
Wang Z, Liu L, Cheng C, Ren Z, Xu S, Li X. GAI Functions in the Plant Response to Dehydration Stress in Arabidopsis thaliana. Int J Mol Sci 2020; 21:ijms21030819. [PMID: 32012796 PMCID: PMC7037545 DOI: 10.3390/ijms21030819] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 12/15/2022] Open
Abstract
DELLA (GAI/RGA/RGL1/RGL2/RGL3) proteins are key negative regulators in GA (gibberellin) signaling and are involved in regulating plant growth as a response to environmental stresses. It has been shown that the DELLA protein PROCERA (PRO) in tomato promotes drought tolerance, but its molecular mechanism remains unknown. Here, we showed that the gai-1 (gibberellin insensitive 1) mutant (generated from the gai-1 (Ler) allele (with a 17 amino acid deletion within the DELLA domain of GAI) by backcrossing gai-1 (Ler) with Col-0 three times), the gain-of-function mutant of GAI (GA INSENSITIVE) in Arabidopsis, increases drought tolerance. The stomatal density of the gai-1 mutant was increased but its stomatal aperture was decreased under abscisic acid (ABA) treatment conditions, suggesting that the drought tolerance of the gai-1 mutant is a complex trait. We further tested the interactions between DELLA proteins and ABF2 (abscisic acid (ABA)-responsive element (ABRE)-binding transcription factors) and found that there was a strong interaction between DELLA proteins and ABF2. Our results provide new insight into DELLA proteins and their role in drought stress tolerance.
Collapse
Affiliation(s)
- Zhijuan Wang
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.W.); (Z.R.)
| | - Liu Liu
- The State Key Laboratory of Plant Cell & Chromosome Engineering, Center for Agricultural Research Resources, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, China; (L.L.); (C.C.)
- Graduate University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Chunhong Cheng
- The State Key Laboratory of Plant Cell & Chromosome Engineering, Center for Agricultural Research Resources, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, China; (L.L.); (C.C.)
- Graduate University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Ziyin Ren
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.W.); (Z.R.)
| | - Shimin Xu
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.W.); (Z.R.)
| | - Xia Li
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.W.); (Z.R.)
- Correspondence: ; Tel.: +86-027-87856637
| |
Collapse
|
55
|
Naeem M, Waseem M, Zhu Z, Zhang L. Downregulation of SlGRAS15 manipulates plant architecture in tomato (Solanum lycopersicum). Dev Genes Evol 2020; 230:1-12. [PMID: 31828522 DOI: 10.1007/s00427-019-00643-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 11/28/2019] [Indexed: 11/25/2022]
Abstract
GRAS family transcription factors (TF) are involved in multiple biological processes in plants. In recent years among the 54 identified GRAS proteins, only few have been studied functionally in tomato (Solanum lycopersicum). In the present study, a novel and previously uncharacterized member of tomato GRAS transcription factors family SlGRAS15 was isolated and functionally characterized. It was observed that SlGRAS15 preferably expressed in roots, followed by young leaves, stem, and comparatively low transcripts levels were noticed in all other tissues. To explore the SlGRAS15 function in detail, an RNA interference (RNAi) vector targeting SlGRAS15 was constructed and transformed into tomato plants. The transgenic plants carrying SlGRAS15-RNAi displayed pleiotropic phenotypes associated with multiple agronomical traits including reduced plant height and small leaf size with pointed margins, increased node number, lateral shoots, and petiolules length. In addition, transcriptional analysis revealed that silencing SlGRAS15 altered vegetative growth by downregulating gibberellin (GA) biosynthesis genes and stimulating the GA deactivating genes, thus lowering the endogenous GA content in tomato transgenic lines. Moreover, the GA signaling downstream gene (SlGAST1) was downregulated but the negative regulator of GA signaling (SlDELLA) was upregulated by SlGRAS15 silencing. The root and hypocotyl length in SlGRAS15-RNAi lines showed reduced growth under normal conditions (Mock) as compared with the wild type (WT) control plants. Taken together, these findings enhanced our understanding that suppression of SlGRAS15 lead to a series of developmental processes by modulating gibberellin signaling and demonstrate an association between the SlGRAS15 and GA signaling pathway during vegetative growth in tomato.
Collapse
Affiliation(s)
- Muhammad Naeem
- Bioengineering College, Chongqing University, Campus B, 174 Shapingba Main Street, Chongqing, People's Republic of China.
| | - Muhammad Waseem
- School of Life Sciences, Chongqing University, Huxi Campus, Daxuecheng, Shapingba, Chongqing, People's Republic of China
| | - Zhiguo Zhu
- Bioengineering College, Chongqing University, Campus B, 174 Shapingba Main Street, Chongqing, People's Republic of China
| | - Lincheng Zhang
- Bioengineering College, Chongqing University, Campus B, 174 Shapingba Main Street, Chongqing, People's Republic of China
| |
Collapse
|
56
|
Kumar G, Dasgupta I. Comprehensive molecular insights into the stress response dynamics of rice ( Oryza sativa L.) during rice tungro disease by RNA-seq-based comparative whole transcriptome analysis. J Biosci 2020; 45:27. [PMID: 32020909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Rice tungro is a serious viral disease of rice resulting from infection by two viruses, Rice tungro bacilliform virus and Rice tungro spherical virus. To gain molecular insights into the global gene expression changes in rice during tungro, a comparative whole genome transcriptome study was performed on healthy and tungroaffected rice plants using Illumina Hiseq 2500. About 10 GB of sequenced data comprising about 50 million paired end reads per sample were then aligned on to the rice genome. Gene expression analysis revealed around 959 transcripts, related to various cellular pathways concerning stress response and hormonal homeostasis to be differentially expressed. The data was validated through qRT-PCR. Gene ontology and pathway analyses revealed enrichment of transcripts and processes similar to the differentially expressed genes categories. In short, the present study is a comprehensive coverage of the differential gene expression landscape and provides molecular insights into the infection dynamics of the rice-tungro virus system.
Collapse
Affiliation(s)
- Gaurav Kumar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110 021, India
| | | |
Collapse
|
57
|
Li W, Liu SW, Ma JJ, Liu HM, Han FX, Li Y, Niu SH. Gibberellin Signaling Is Required for Far-Red Light-Induced Shoot Elongation in Pinus tabuliformis Seedlings. PLANT PHYSIOLOGY 2020; 182:658-668. [PMID: 31659126 PMCID: PMC6945873 DOI: 10.1104/pp.19.00954] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/18/2019] [Indexed: 05/30/2023]
Abstract
Gibberellin (GA) is known to play an important role in low red/far-red (R:FR) light ratio-mediated hypocotyl and petiole elongation in Arabidopsis (Arabidopsis thaliana). However, the regulatory relationship between low R:FR and GAs remains unclear, especially in gymnosperms. To increase our understanding of the molecular basis of low R:FR-mediated shoot elongation in pines and to determine whether there is an association between low R:FR and GAs action, we explored the morphological and transcriptomic changes triggered by low R:FR, GAs, and paclobutrazol (PAC), a GAs biosynthesis inhibitor, in Pinus tabuliformis seedlings. Transcriptome profiles revealed that low R:FR conditions and GAs have a common set of transcriptional targets in P. tabuliformis We provide evidence that the effect of low R:FR on shoot elongation in P. tabuliformis is at least partially modulated by GAs accumulation, which can be largely attenuated by PAC. GAs are also involved in the cross talk between different phytohormones in the low R:FR response. A GA biosynthesis gene, encoding ent-kaurenoic acid oxidase (KAO), was strongly stimulated by low R:FR without being affected by GAs feedback regulation or the photoperiod. We show that GA signaling is required for low R:FR-induced shoot elongation in P tabuliformis seedlings, and that there are different regulatory targets for low R:FR-mediated GA biosynthesis between conifers and angiosperms.
Collapse
Affiliation(s)
- Wei Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Forest Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Shuang-Wei Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Forest Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Jing-Jing Ma
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Forest Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Hong-Mei Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Forest Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Fang-Xu Han
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Forest Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Yue Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Forest Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Shi-Hui Niu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Forest Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People's Republic of China
| |
Collapse
|
58
|
Buet A, Galatro A, Ramos-Artuso F, Simontacchi M. Nitric oxide and plant mineral nutrition: current knowledge. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4461-4476. [PMID: 30903155 DOI: 10.1093/jxb/erz129] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/14/2019] [Indexed: 05/20/2023]
Abstract
Plants under conditions of essential mineral deficiency trigger signaling mechanisms that involve common components. Among these components, nitric oxide (NO) has been identified as a key participant in responses to changes in nutrient availability. Usually, nutrient imbalances affect the levels of NO in specific plant tissues, via modification of its rate of synthesis or degradation. Changes in the level of NO affect plant morphology and/or trigger responses associated with nutrient homeostasis, mediated by its interaction with reactive oxygen species, phytohormones, and through post-translational modification of proteins. NO-related events constitute an exciting field of research to understand how plants adapt and respond to conditions of nutrient shortage. This review summarizes the current knowledge on NO as a component of the multiple processes related to plant performance under conditions of deficiency in mineral nutrients, focusing on macronutrients such as nitrogen, phosphate, potassium, and magnesium, as well as micronutrients such as iron and zinc.
Collapse
Affiliation(s)
- Agustina Buet
- Instituto de Fisiología Vegetal, CCT-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Buenos Aires, Argentina
- Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
| | - Andrea Galatro
- Instituto de Fisiología Vegetal, CCT-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Buenos Aires, Argentina
| | - Facundo Ramos-Artuso
- Instituto de Fisiología Vegetal, CCT-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Buenos Aires, Argentina
- Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
| | - Marcela Simontacchi
- Instituto de Fisiología Vegetal, CCT-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Buenos Aires, Argentina
- Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
59
|
Illouz-Eliaz N, Ramon U, Shohat H, Blum S, Livne S, Mendelson D, Weiss D. Multiple Gibberellin Receptors Contribute to Phenotypic Stability under Changing Environments. THE PLANT CELL 2019; 31:1506-1519. [PMID: 31076539 PMCID: PMC6635849 DOI: 10.1105/tpc.19.00235] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/23/2019] [Accepted: 05/08/2019] [Indexed: 05/23/2023]
Abstract
The pleiotropic and complex gibberellin (GA) response relies on targeted proteolysis of DELLA proteins mediated by a GA-activated GIBBERELLIN-INSENSITIVE DWARF1 (GID1) receptor. The tomato (Solanum lycopersicum) genome encodes for a single DELLA protein, PROCERA (PRO), and three receptors, SlGID1a (GID1a), GID1b1, and GID1b2, that may guide specific GA responses. In this work, clustered regularly interspaced short palindromic repeats (CRISPR) /CRISPR associated protein 9-derived gid1 mutants were generated and their effect on GA responses was studied. The gid1 triple mutant was extremely dwarf and fully insensitive to GA. Under optimal growth conditions, the three receptors function redundantly and the single gid1 mutants exhibited very mild phenotypic changes. Among the three receptors, GID1a had the strongest effects on germination and growth. Yeast two-hybrid assays suggested that GID1a has the highest affinity to PRO. Analysis of lines with a single active receptor demonstrated a unique role for GID1a in protracted response to GA that was saturated only at high doses. When the gid1 mutants were grown in the field under ambient changing environments, they showed phenotypic instability, the high redundancy was lost, and gid1a exhibited dwarfism that was strongly exacerbated by the loss of another GID1b receptor gene. These results suggest that multiple GA receptors contribute to phenotypic stability under environmental extremes.
Collapse
Affiliation(s)
- Natanella Illouz-Eliaz
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Uria Ramon
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Hagai Shohat
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Shula Blum
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Sivan Livne
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Dvir Mendelson
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - David Weiss
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| |
Collapse
|
60
|
Hu Y, Han X, Yang M, Zhang M, Pan J, Yu D. The Transcription Factor INDUCER OF CBF EXPRESSION1 Interacts with ABSCISIC ACID INSENSITIVE5 and DELLA Proteins to Fine-Tune Abscisic Acid Signaling during Seed Germination in Arabidopsis. THE PLANT CELL 2019; 31:1520-1538. [PMID: 31123050 PMCID: PMC6635857 DOI: 10.1105/tpc.18.00825] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 04/19/2019] [Accepted: 05/06/2019] [Indexed: 05/04/2023]
Abstract
ABSCISIC ACID INSENSITIVE5 (ABI5) is a crucial regulator of abscisic acid (ABA) signaling pathways involved in repressing seed germination and postgerminative growth in Arabidopsis (Arabidopsis thaliana). ABI5 is precisely modulated at the posttranslational level; however, the transcriptional regulatory mechanisms underlying ABI5 and its interacting transcription factors remain largely unknown. Here, we found that INDUCER OF CBF EXPRESSION1 (ICE1) physically associates with ABI5. ICE1 negatively regulates ABA responses during seed germination and directly suppresses ABA-responsive LATE EMBRYOGENESIS ABUNDANT6 (EM6) and EM1 expression. Genetic analysis demonstrated that the ABA-hypersensitive phenotype of the ice1 mutant requires ABI5. ICE1 interferes with the transcriptional activity of ABI5 to mediate downstream regulons. Importantly, ICE1 also interacts with DELLA proteins, which stimulate ABI5 during ABA signaling. Disruption of ICE1 partially restored the ABA-hyposensitive phenotype of the della mutant, gai-t6 rga-t2 rgl1-1 rgl2-1, indicating that ICE1 functions antagonistically with DELLA in ABA signaling. Consistently, DELLA proteins repress ICE1's transcriptional function and the antagonistic effect of ICE1 on ABI5. Collectively, our study demonstrates that ICE1 antagonizes ABI5 and DELLA activity to maintain the appropriate level of ABA signaling during seed germination, providing a mechanistic understanding of how ABA signaling is fine-tuned by a transcriptional complex involving ABI5 and its interacting partners.
Collapse
Affiliation(s)
- Yanru Hu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xiao Han
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Milian Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghui Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinjing Pan
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Diqiu Yu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
61
|
Stages identifying and transcriptome profiling of the floral transition in Juglans regia. Sci Rep 2019; 9:7092. [PMID: 31068628 PMCID: PMC6506622 DOI: 10.1038/s41598-019-43582-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 04/27/2019] [Indexed: 11/30/2022] Open
Abstract
Using paraffin sections, the stages of walnut female flower bud differentiation were divided into the predifferentiation period (F_1), initial differentiation period (F_2) and flower primordium differentiation period (F_3). Leaf buds collected at the same stage as F_2 were designated JRL. Transcriptomic profiling was performed, and a total of 132,154 unigenes were obtained with lengths ranging from 201 bp to 16,831 bp. The analysis of differentially expressed genes (DEGs) showed that there were 597, 784 and 532 DEGs in the three combinations F_1vsF_2, F_1vsF_3, and F_2vsF_3, respectively. The comparison F_2vsJRL showed that 374 DEGs were differentially expressed between female buds and leaf buds. Thirty-one DEGs related to flowering time were further used to construct coexpression networks, and CRY2 and NF-YA were identified as core DEGs in flowering time regulation. Eighteen DEGs related to flowering time were subjected to real-time quantitative analysis. Our work provides a foundation for further research on the walnut floral transition and provides new resources for future research on walnut biology and biotechnology.
Collapse
|
62
|
Pál M, Ivanovska B, Oláh T, Tajti J, Hamow KÁ, Szalai G, Khalil R, Vanková R, Dobrev P, Misheva SP, Janda T. Role of polyamines in plant growth regulation of Rht wheat mutants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 137:189-202. [PMID: 30798173 DOI: 10.1016/j.plaphy.2019.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/14/2019] [Accepted: 02/14/2019] [Indexed: 05/27/2023]
Abstract
Besides their protective role, polyamines also serve as signalling molecules. However, further studies are needed to elucidate the polyamine signalling pathways, especially to identify polyamine-regulated mechanisms and their connections with other regulatory molecules. Reduced height (Rht) genes in wheat are often used in breeding programs to increase harvest index. Some of these genes are encoding DELLA proteins playing role in gibberellic acid signalling. The aim of the present paper was to reveal how the mutations in Rht gene modify the polyamine-regulated processes in wheat. Wild type and two Rht mutant genotypes (Rht 1: semi-dwarf; Rht 3: dwarf mutants) were treated with polyamines. Polyamine treatments differently influenced the polyamine metabolism, the plant growth parameters and certain hormone levels (salicylic acid and abscisic acid) in these genotypes. The observed distinct metabolism of Rht 3 may more likely reflect more intensive polyamine exodus from putrescine to spermidine and spermine, and the catabolism of the higher polyamines. The lower root to shoot translocation of putrescine can contribute to the regulation of polyamine pool, which in turn may be responsible for the observed lack of growth inhibition in Rht 3 after spermidine and spermine treatments. Lower accumulation of salicylic acid and abscisic acid, plant hormones usually linked with growth inhibition, in leaves may also be responsible for the diminished negative effect of higher polyamines on the shoot growth parameters observed in Rht 3. These results provide an insight into the role of polyamines in plant growth regulation based on the investigation of gibberellin-insensitive Rht mutants.
Collapse
Affiliation(s)
- Magda Pál
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 2462, Martonvásár, Hungary.
| | - Beti Ivanovska
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 2462, Martonvásár, Hungary
| | - Tímea Oláh
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 2462, Martonvásár, Hungary
| | - Judit Tajti
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 2462, Martonvásár, Hungary
| | - Kamirán Áron Hamow
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 2462, Martonvásár, Hungary; Plant Protection Institute, Centre for Agricultural Research of the Hungarian Academy of Sciences, Budapest, Hungary
| | - Gabriella Szalai
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 2462, Martonvásár, Hungary
| | - Radwan Khalil
- Botany Department, Faculty of Science, Benha University, Benha, 13518, Egypt
| | - Radomira Vanková
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Academy of Sciences, 16502, Prague, Czech Republic
| | - Petr Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Academy of Sciences, 16502, Prague, Czech Republic
| | - Svetlana P Misheva
- Department of Plant Ecophysiology, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria
| | - Tibor Janda
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 2462, Martonvásár, Hungary
| |
Collapse
|
63
|
Sun L, Yang W, Li Y, Shan Q, Ye X, Wang D, Yu K, Lu W, Xin P, Pei Z, Guo X, Liu D, Sun J, Zhan K, Chu J, Zhang A. A wheat dominant dwarfing line with Rht12, which reduces stem cell length and affects gibberellic acid synthesis, is a 5AL terminal deletion line. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:887-900. [PMID: 30466195 DOI: 10.1111/tpj.14168] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 10/22/2018] [Accepted: 10/31/2018] [Indexed: 05/02/2023]
Abstract
Dwarfing and semi-dwarfing are important agronomic traits that have great potential for the improvement of wheat yields. Rht12, a dominant gibberellic acid (GA)-responsive dwarfing gene from the gamma-ray-induced wheat mutant Karcagi 522M7K, is located in the long arm of chromosome 5A, which is closely linked with the locus Xwmc410. Rht12 is likely an ideal gene for GA biosynthesis and deactivation research in common wheat. However, information on the Rht12 locus and sequence is lacking. In this study, Rht12 significantly shortened stem cell length and decreased GA biosynthetic components. Using bulked segregant RNA-Seq, wheat 660k single nucleotide polymorphism chip detection, and newly developed simple sequence repeat markers, Rht12 was mapped to a 11.21-Mb region at the terminal end of chromosome 5AL, and was found to be closely linked with the Xw5ac207SSR marker with a 10.73-Mb fragment deletion in all of the homologous dwarfing plants. Transcriptome analyses of the remaining 483-kb region showed significantly higher expression of the TraesCS5A01G543100 gene encoding the GA metabolic enzyme GA 2-β-dioxygenase in dwarfing plants than in high stalk plants, suggesting that Rht12 reduces plant height by activating TaGA2ox-A14. Taken together, our findings will promote cloning and functional studies of Rht12 in common wheat.
Collapse
Affiliation(s)
- Linhe Sun
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenlong Yang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yafei Li
- The Collaborative Innovation Center for Grain Crops in Henan, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Qiangqiang Shan
- The Collaborative Innovation Center for Grain Crops in Henan, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiaobin Ye
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dongzhi Wang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kang Yu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Genomics Institute-Shenzhen, Shenzhen, 518083, China
| | - Weiwen Lu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peiyong Xin
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhong Pei
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaoli Guo
- College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Dongcheng Liu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiazhu Sun
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kehui Zhan
- The Collaborative Innovation Center for Grain Crops in Henan, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jinfang Chu
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Aimin Zhang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
64
|
Moriconi JI, Kotula L, Santa-María GE, Colmer TD. Root phenotypes of dwarf and "overgrowth" SLN1 barley mutants, and implications for hypoxic stress tolerance. JOURNAL OF PLANT PHYSIOLOGY 2019; 234-235:60-70. [PMID: 30665049 DOI: 10.1016/j.jplph.2019.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 06/09/2023]
Abstract
Gibberellins are central to the regulation of plant development and growth. Action of gibberellins involves the degradation of DELLA proteins, which are negative regulators of growth. In barley (Hordeum vulgare), certain mutations affecting genes involved in gibberellin synthesis or coding for the barley DELLA protein (Sln1) confer dwarfism. Recent studies have identified new alleles of Sln1 with the capacity to revert the dwarf phenotype back to the taller phenotypes. While the effect of these overgrowth alleles on shoot phenotypes has been explored, no information is available for roots. Here, we examined aspects of the root phenotypes displayed by plants with various Sln1 gene alleles, and tested responses to growth in an O2-deficient root-zone as occurs during soil waterlogging. One overgrowth line, bearing the Sln1d.8 allele carrying two amino acid substitutions (one in the amino terminus and one in the GRAS domain of the encoded DELLA protein), displays profound and opposite effects on shoot height and root length. While it stimulates shoot height, it severely compromises root length by a reduction of cell size in zones distal to the root apex. In addition, Sln1d.8 plants counteract the negative effect of the original mutation on the formation of adventitious roots. Interestingly, plants bearing this allele display enhanced resistance to flooding stress in a way non-related with increased root porosity. Thus, various Sln1 gene alleles contribute to root phenotypes and can also influence plant responses to root-zone O2-deficiency stress.
Collapse
Affiliation(s)
- Jorge I Moriconi
- Instituto Tecnológico Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de San Martín (CONICET-UNSAM), Avenida Intendente Marino, km 8.2, Chascomús, 7130 Buenos Aires, Argentina; UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Lukasz Kotula
- UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Guillermo E Santa-María
- Instituto Tecnológico Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de San Martín (CONICET-UNSAM), Avenida Intendente Marino, km 8.2, Chascomús, 7130 Buenos Aires, Argentina
| | - Timothy D Colmer
- UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| |
Collapse
|
65
|
Hormonal Regulation of Early Fruit Development in European Pear (Pyrus communis cv. ‘Conference’). HORTICULTURAE 2019. [DOI: 10.3390/horticulturae5010009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
European pear requires inter-cultivar cross-pollination by insects to develop fertilized fruits. However, some European pear cultivars such as ‘Conference’ naturally produce parthenocarpic seedless fruits. To better understand the hormonal regulation of fruit set and early fruit development in this European pear cultivar, the phytohormone and polyamine profiles in ‘Conference’ flowers and fruits resulting from both fertilization and parthenocarpic processes were analyzed. The expression of genes involved in phytohormone metabolism and signaling were also investigated. Phytohormone profiles differed more at flower stage 3 days after treatment than in 15 day- and 30-day-old fruits in response to fertilization and parthenocarpy. An increase in auxins, abscisic acid, ethylene precursor, and spermine, and a decrease in putrescine were recorded in the fertilized flowers as compared to the parthenocarpic flowers. Fertilization also upregulated genes involved in gibberellin synthesis and down-regulated genes involved in gibberellin catabolism although the total gibberellin content was not modified. Moreover, exogenous gibberellin (GA3, GA4/7) and cytokinin (6BA) applications did not increase parthenocarpic induction in ‘Conference’ as observed in other European and Asian pear cultivars. We hypothesize that the intrinsic parthenocarpy of ‘Conference’ could be related to a high gibberellin level in the flowers explaining why exogenous gibberellin application did not increase parthenocarpy as observed in other pear cultivars and species.
Collapse
|
66
|
Jian H, Zhang A, Ma J, Wang T, Yang B, Shuang LS, Liu M, Li J, Xu X, Paterson AH, Liu L. Joint QTL mapping and transcriptome sequencing analysis reveal candidate flowering time genes in Brassica napus L. BMC Genomics 2019; 20:21. [PMID: 30626329 PMCID: PMC6325782 DOI: 10.1186/s12864-018-5356-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 12/09/2018] [Indexed: 01/10/2023] Open
Abstract
Background Optimum flowering time is a key agronomic trait in Brassica napus. To investigate the genetic architecture and genetic regulation of flowering time in this important crop, we conducted quantitative trait loci (QTL) analysis of flowering time in a recombinant inbred line (RIL) population, including lines with extreme differences in flowering time, in six environments, along with RNA-Seq analysis. Results We detected 27 QTLs distributed on eight chromosomes among six environments, including one major QTL on chromosome C02 that explained 11–25% of the phenotypic variation and was stably detected in all six environments. RNA-Seq analysis revealed 105 flowering time-related differentially expressed genes (DEGs) that play roles in the circadian clock/photoperiod, autonomous pathway, and hormone and vernalization pathways. We focused on DEGs related to the regulation of flowering time, especially DEGs in QTL regions. Conclusions We identified 45 flowering time-related genes in these QTL regions, eight of which are DEGs, including key flowering time genes PSEUDO RESPONSE REGULATOR 7 (PRR7) and FY (located in a major QTL region on C02). These findings provide insights into the genetic architecture of flowering time in B. napus. Electronic supplementary material The online version of this article (10.1186/s12864-018-5356-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hongju Jian
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Academy of Agricultural Sciences, Chongqing, 400715, China.,Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30605, USA
| | - Aoxiang Zhang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Academy of Agricultural Sciences, Chongqing, 400715, China
| | - Jinqi Ma
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Academy of Agricultural Sciences, Chongqing, 400715, China
| | - Tengyue Wang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Academy of Agricultural Sciences, Chongqing, 400715, China
| | - Bo Yang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Academy of Agricultural Sciences, Chongqing, 400715, China
| | - Lan Shuan Shuang
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30605, USA
| | - Min Liu
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30605, USA
| | - Jiana Li
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Academy of Agricultural Sciences, Chongqing, 400715, China
| | - Xinfu Xu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Academy of Agricultural Sciences, Chongqing, 400715, China
| | - Andrew H Paterson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30605, USA.
| | - Liezhao Liu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Academy of Agricultural Sciences, Chongqing, 400715, China.
| |
Collapse
|
67
|
Köster P, Wallrad L, Edel KH, Faisal M, Alatar AA, Kudla J. The battle of two ions: Ca 2+ signalling against Na + stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21 Suppl 1:39-48. [PMID: 29411929 DOI: 10.1111/plb.12704] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/30/2018] [Indexed: 05/22/2023]
Abstract
Soil salinity adversely affects plant growth, crop yield and the composition of ecosystems. Salinity stress impacts plants by combined effects of Na+ toxicity and osmotic perturbation. Plants have evolved elaborate mechanisms to counteract the detrimental consequences of salinity. Here we reflect on recent advances in our understanding of plant salt tolerance mechanisms. We discuss the embedding of the salt tolerance-mediating SOS pathway in plant hormonal and developmental adaptation. Moreover, we review newly accumulating evidence indicating a crucial role of a transpiration-dependent salinity tolerance pathway, that is centred around the function of the NADPH oxidase RBOHF and its role in endodermal and Casparian strip differentiation. Together, these data suggest a unifying and coordinating role for Ca2+ signalling in combating salinity stress at the cellular and organismal level.
Collapse
Affiliation(s)
- P Köster
- Institut für Biologie und Biotechnologie der Pflanzen, WWU Münster, Münster, Germany
| | - L Wallrad
- Institut für Biologie und Biotechnologie der Pflanzen, WWU Münster, Münster, Germany
| | - K H Edel
- Institut für Biologie und Biotechnologie der Pflanzen, WWU Münster, Münster, Germany
| | - M Faisal
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - A A Alatar
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - J Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, WWU Münster, Münster, Germany
| |
Collapse
|
68
|
Ullah A, Manghwar H, Shaban M, Khan AH, Akbar A, Ali U, Ali E, Fahad S. Phytohormones enhanced drought tolerance in plants: a coping strategy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:33103-33118. [PMID: 30284160 DOI: 10.1007/s11356-018-3364-5] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 09/27/2018] [Indexed: 05/20/2023]
Abstract
Drought stress is a severe environmental constraint among the emerging problems. Plants are highly vulnerable to drought stress and a severe decrease in yield was recorded in the last few decades. So, it is highly desirable to understand the mechanism of drought tolerance in plants and consequently enhance the tolerance against drought stress. Phytohormones are known to play vital roles in regulating various phenomenons in plants to acclimatize to varying drought environment. Abscisic acid (ABA) is considered the main hormone which intensifies drought tolerance in plants through various morpho-physiological and molecular processes including stomata regulation, root development, and initiation of ABA-dependent pathway. In addition, jasmonic acid (JA), salicylic acid (SA) ethylene (ET), auxins (IAA), gibberellins (GAs), cytokinins (CKs), and brassinosteroids (BRs) are also very important phytohormones to congregate the challenges of drought stress. However, these hormones are usually cross talk with each other to increase the survival of plants in drought conditions. On the other hand, the transgenic approach is currently the most accepted technique to engineer the genes responsible for the synthesis of phytohormones in drought stress response. Our present review highlights the regulatory circuits of phytohormones in drought tolerance mechanism.
Collapse
Affiliation(s)
- Abid Ullah
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.
- Department of Botany, University of Malakand, Chakdara Dir Lower, Khyber Pakhtunkhwa, 18550, Pakistan.
| | - Hakim Manghwar
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Muhammad Shaban
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Aamir Hamid Khan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Adnan Akbar
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Usman Ali
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Ehsan Ali
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Shah Fahad
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
- Department of Agriculture, University of Swabi, Swabi, KPK, Pakistan
| |
Collapse
|
69
|
DELLA-GRF4-mediated coordination of growth and nitrogen metabolism paves the way for a new Green Revolution. SCIENCE CHINA-LIFE SCIENCES 2018; 61:1130-1131. [PMID: 30136055 DOI: 10.1007/s11427-018-9368-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 08/01/2018] [Indexed: 10/28/2022]
|
70
|
Modulating plant growth-metabolism coordination for sustainable agriculture. Nature 2018; 560:595-600. [PMID: 30111841 PMCID: PMC6155485 DOI: 10.1038/s41586-018-0415-5] [Citation(s) in RCA: 348] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 07/05/2018] [Indexed: 11/08/2022]
Abstract
Enhancing future global food security by increasing cereal Green Revolution Variety (GRV) productivity risks escalating collateral environmental damage from inorganic nitrogen (N) fertilizers. Whilst crop N use-efficiency (NUE) improvements are therefore essential, they require in-depth understanding of unknown co-regulatory mechanisms integrating growth, N assimilation and carbon (C) fixation. Here we show that the balanced opposing activities and physical interactions of the rice GROWTH-REGULATING FACTOR 4 (OsGRF4) transcription factor and the DELLA growth-inhibitor confer homeostatic co-regulation of growth, C and N metabolism. OsGRF4 promotes and integrates N assimilation, C fixation and growth, whilst DELLA inhibits them. In consequence, the DELLA accumulation characteristic of GRVs confers yield-enhancing dwarfism, but also reduces NUE. However, GRV NUE and grain yield are increased by tipping the OsGRF4-DELLA balance towards increased OsGRF4 abundance. Modulation of plant growth and metabolic co-regulation thus enables novel breeding strategies for future sustainable food security and a new Green Revolution.
Collapse
|
71
|
Caviglia M, Mazorra Morales LM, Concellón A, Gergoff Grozeff GE, Wilson M, Foyer CH, Bartoli CG. Ethylene signaling triggered by low concentrations of ascorbic acid regulates biomass accumulation in Arabidopsis thaliana. Free Radic Biol Med 2018; 122:130-136. [PMID: 29410312 DOI: 10.1016/j.freeradbiomed.2018.01.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/27/2018] [Accepted: 01/31/2018] [Indexed: 11/26/2022]
Abstract
Ascorbic acid (AA) is a major redox buffer in plant cells. The role of ethylene in the redox signaling pathways that influence photosynthesis and growth was explored in two independent AA deficient Arabidopsis thaliana mutants (vtc2-1 and vtc2-4). Both mutants, which are defective in the AA biosynthesis gene GDP-L-galactose phosphorylase, produce higher amounts of ethylene than wt plants. In contrast to the wt, the inhibition of ethylene signaling increased leaf conductance, photosynthesis and dry weight in both vtc2 mutant lines. The AA-deficient mutants showed altered expression of genes encoding proteins involved in the synthesis/responses to phytohormones that control growth, particularly auxin, cytokinins, abscisic acid, brassinosterioids, ethylene and salicylic acid. These results demonstrate that AA deficiency modifies hormone signaling in plants, redox-ethylene interactions providing a regulatory node controlling shoot biomass accumulation.
Collapse
Affiliation(s)
- M Caviglia
- Instituto de Fisiología Vegetal, Facultad Ciencias Agrarias y Forestales, Universidad Nacional de La Plata-CCT CONICET La Plata, cc327 (1900), La Plata, Argentina
| | - L M Mazorra Morales
- Instituto de Fisiología Vegetal, Facultad Ciencias Agrarias y Forestales, Universidad Nacional de La Plata-CCT CONICET La Plata, cc327 (1900), La Plata, Argentina; Setor de Fisiologia Vegetal, LMGV, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ, Brazil
| | - A Concellón
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos CCT CONICET La Plata. Facultad de Ciencias Exactas, Universidad Nacional de La Plata, calle 47 y 116 (1900), La Plata, Argentina
| | - G E Gergoff Grozeff
- Instituto de Fisiología Vegetal, Facultad Ciencias Agrarias y Forestales, Universidad Nacional de La Plata-CCT CONICET La Plata, cc327 (1900), La Plata, Argentina
| | - M Wilson
- Centre of Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - C H Foyer
- Centre of Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - C G Bartoli
- Instituto de Fisiología Vegetal, Facultad Ciencias Agrarias y Forestales, Universidad Nacional de La Plata-CCT CONICET La Plata, cc327 (1900), La Plata, Argentina.
| |
Collapse
|
72
|
Plackett ARG, Powers SJ, Phillips AL, Wilson ZA, Hedden P, Thomas SG. The early inflorescence of Arabidopsis thaliana demonstrates positional effects in floral organ growth and meristem patterning. PLANT REPRODUCTION 2018; 31:171-191. [PMID: 29264708 PMCID: PMC5940708 DOI: 10.1007/s00497-017-0320-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/11/2017] [Indexed: 05/04/2023]
Abstract
Linear modelling approaches detected significant gradients in organ growth and patterning across early flowers of the Arabidopsis inflorescence and uncovered evidence of new roles for gibberellin in floral development. Most flowering plants, including the genetic model Arabidopsis thaliana, produce multiple flowers in sequence from a reproductive shoot apex to form a flower spike (inflorescence). The development of individual flowers on an Arabidopsis inflorescence has typically been considered as highly stereotypical and uniform, but this assumption is contradicted by the existence of mutants with phenotypes visible in early flowers only. This phenomenon is demonstrated by mutants partially impaired in the biosynthesis of the phytohormone gibberellin (GA), in which floral organ growth is retarded in the first flowers to be produced but has recovered spontaneously by the 10th flower. We presently lack systematic data from multiple flowers across the Arabidopsis inflorescence to explain such changes. Using mutants of the GA 20-OXIDASE (GA20ox) GA biosynthesis gene family to manipulate endogenous GA levels, we investigated the dynamics of changing floral organ growth across the early Arabidopsis inflorescence (flowers 1-10). Modelling of floral organ lengths identified a significant, GA-independent gradient of increasing stamen length relative to the pistil in the wild-type inflorescence that was separable from other, GA-dependent effects. It was also found that the first flowers exhibited unstable organ patterning in contrast to later flowers and that this instability was prolonged by exogenous GA treatment. These findings indicate that the development of individual flowers is influenced by hitherto unknown factors acting across the inflorescence and also suggest novel functions for GA in floral patterning.
Collapse
Affiliation(s)
- Andrew R G Plackett
- Department of Plant Sciences, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK.
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK.
| | - Stephen J Powers
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Andy L Phillips
- Department of Plant Sciences, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Zoe A Wilson
- School of Biosciences, University of Nottingham, Loughborough, Leicestershire, LE12 5RD, UK
| | - Peter Hedden
- Department of Plant Sciences, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany AS CR, Šlechtitelů 27, Olomouc, 783 71, Czech Republic
| | - Stephen G Thomas
- Department of Plant Sciences, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| |
Collapse
|
73
|
Tarkowská D, Strnad M. Isoprenoid-derived plant signaling molecules: biosynthesis and biological importance. PLANTA 2018; 247:1051-1066. [PMID: 29532163 DOI: 10.1007/s00425-018-2878-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/05/2018] [Indexed: 05/23/2023]
Abstract
The present review summarizes current knowledge of the biosynthesis and biological importance of isoprenoid-derived plant signaling compounds. Cellular organisms use chemical signals for intercellular communication to coordinate their growth, development, and responses to environmental cues. The skeletons of majority of plant signaling molecules, mediators of plant intercellular 'broadcasting', are built from C5 units of isoprene and therefore belong to a huge and diverse group of natural substances called isoprenoids (terpenoids). They fill many important roles in nature. This review summarizes current knowledge of the biosynthesis and biological importance of a group of isoprenoid-derived plant signaling compounds.
Collapse
Affiliation(s)
- Danuše Tarkowská
- Laboratory of Growth Regulators, Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR, Palacký University, Šlechtitelů 27, 78371, Olomouc, Czechia.
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR, Palacký University, Šlechtitelů 27, 78371, Olomouc, Czechia
| |
Collapse
|
74
|
Li ZF, Guo Y, Ou L, Hong H, Wang J, Liu ZX, Guo B, Zhang L, Qiu L. Identification of the dwarf gene GmDW1 in soybean (Glycine max L.) by combining mapping-by-sequencing and linkage analysis. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:1001-1016. [PMID: 29550969 PMCID: PMC5895683 DOI: 10.1007/s00122-017-3044-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 12/17/2017] [Indexed: 05/10/2023]
Abstract
KEY MESSAGE GmDW1 encodes an ent-kaurene synthase (KS) acting at the early step of the biosynthesis pathway for gibberellins (GAs) and regulates the development of plant height in soybean. Plant height is an important component of plant architecture, and significantly affects crop breeding practices and yield. Here, we report the characterization of an EMS-induced dwarf mutant (dw) of the soybean cultivar Zhongpin 661 (ZDD23893). The dw mutant displayed reduced plant height and shortened internodes, both of which were mainly attributed to the longitudinally decreased cell length. The bioactive GA1 (gibberellin A1) and GA4 (gibberellin A4) were not detectable in the stem of dw, and the dwarf phenotype could be rescued by treatment with exogenous GA3. Genetic analysis showed that the dwarf trait of dw was controlled by a recessive nuclear gene. By combining linkage analysis and mapping-by-sequencing, we mapped the GmDW1 gene to an approximately 460-kb region on chromosome (Chr.) 8, containing 36 annotated genes in the reference Willliams 82 genome. Of these genes, we identified two nonsynonymous single nucleotide polymorphisms (SNPs) that are present in the encoding regions of Gmdw1 and Glyma.08G165100 in dw, respectively. However, only the SNP mutation (T>A) at nucleotide 1224 in Gmdw1 cosegregated with the dwarf phenotype. GmDW1 encodes an ent-kaurene synthase, and was expressed in various tissues including root, stem, and leaf. Further phenotypic analysis of the allelic variations in soybean accessions strongly indicated that GmDW1 is responsible for the dwarf phenotype in dw. Our results provide important information for improving our understanding of the genetics of soybean plant height and crop breeding.
Collapse
Affiliation(s)
- Zhong-Feng Li
- National Key Facility for Gene Resources and Genetic Improvement/Key Laboratory of Crop Germplasm Utilization, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Science, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Yong Guo
- National Key Facility for Gene Resources and Genetic Improvement/Key Laboratory of Crop Germplasm Utilization, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Science, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Lin Ou
- College of Agriculture, Yangzi University, Jingzhou, 434025, People's Republic of China
| | - Huilong Hong
- National Key Facility for Gene Resources and Genetic Improvement/Key Laboratory of Crop Germplasm Utilization, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Science, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Jun Wang
- College of Agriculture, Yangzi University, Jingzhou, 434025, People's Republic of China
| | - Zhang-Xiong Liu
- National Key Facility for Gene Resources and Genetic Improvement/Key Laboratory of Crop Germplasm Utilization, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Science, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Bingfu Guo
- National Key Facility for Gene Resources and Genetic Improvement/Key Laboratory of Crop Germplasm Utilization, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Science, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Lijuan Zhang
- National Key Facility for Gene Resources and Genetic Improvement/Key Laboratory of Crop Germplasm Utilization, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Science, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Lijuan Qiu
- National Key Facility for Gene Resources and Genetic Improvement/Key Laboratory of Crop Germplasm Utilization, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Science, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China.
| |
Collapse
|
75
|
Tarkowská D, Strnad M. Isoprenoid-derived plant signaling molecules: biosynthesis and biological importance. PLANTA 2018; 247:1051-1066. [PMID: 29532163 DOI: 10.1007/s00425-018-2878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/05/2018] [Indexed: 05/18/2023]
Abstract
The present review summarizes current knowledge of the biosynthesis and biological importance of isoprenoid-derived plant signaling compounds. Cellular organisms use chemical signals for intercellular communication to coordinate their growth, development, and responses to environmental cues. The skeletons of majority of plant signaling molecules, mediators of plant intercellular 'broadcasting', are built from C5 units of isoprene and therefore belong to a huge and diverse group of natural substances called isoprenoids (terpenoids). They fill many important roles in nature. This review summarizes current knowledge of the biosynthesis and biological importance of a group of isoprenoid-derived plant signaling compounds.
Collapse
Affiliation(s)
- Danuše Tarkowská
- Laboratory of Growth Regulators, Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR, Palacký University, Šlechtitelů 27, 78371, Olomouc, Czechia.
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR, Palacký University, Šlechtitelů 27, 78371, Olomouc, Czechia
| |
Collapse
|
76
|
Lei C, Fan S, Li K, Meng Y, Mao J, Han M, Zhao C, Bao L, Zhang D. iTRAQ-Based Proteomic Analysis Reveals Potential Regulation Networks of IBA-Induced Adventitious Root Formation in Apple. Int J Mol Sci 2018; 19:ijms19030667. [PMID: 29495482 PMCID: PMC5877528 DOI: 10.3390/ijms19030667] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/14/2018] [Accepted: 02/22/2018] [Indexed: 01/19/2023] Open
Abstract
Adventitious root (AR) formation, which is controlled by endogenous and environmental factors, is indispensable for vegetative asexual propagation. However, comprehensive proteomic data on AR formation are still lacking. The aim of this work was to study indole-3-butyric acid (IBA)-induced AR formation in the dwarf apple rootstock 'T337'. In this study, the effect of IBA on AR formation was analysed. Subsequent to treatment with IBA, both the rooting rate and root length of 'T337' increased significantly. An assessment of hormone levels in basal stem cuttings suggested that auxin, abscisic acid, and brassinolide were higher in basal stem cuttings that received the exogenous IBA application; while zeatin riboside, gibberellins, and jasmonic acid were lower than non-treated basal stem cuttings. To explore the underlying molecular mechanism, an isobaric tags for relative and absolute quantification (iTRAQ)-based proteomic technique was employed to identify the expression profiles of proteins at a key period of adventitious root induction (three days after IBA treatment). In total, 3355 differentially expressed proteins (DEPs) were identified. Many DEPs were closely related to carbohydrate metabolism and energy production, protein homeostasis, reactive oxygen and nitric oxide signaling, and cell wall remodeling biological processes; as well as the phytohormone signaling, which was the most critical process in response to IBA treatment. Further, RT-qPCR analysis was used to evaluate the expression level of nine genes that are involved in phytohormone signaling and their transcriptional levels were mostly in accordance with the protein patterns. Finally, a putative work model was proposed. Our study establishes a foundation for further research and sheds light on IBA-mediated AR formation in apple as well as other fruit rootstock cuttings.
Collapse
Affiliation(s)
- Chao Lei
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Sheng Fan
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Ke Li
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Yuan Meng
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Jiangping Mao
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Mingyu Han
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Caiping Zhao
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Lu Bao
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Dong Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
77
|
Salazar-Cerezo S, Martínez-Montiel N, García-Sánchez J, Pérez-Y-Terrón R, Martínez-Contreras RD. Gibberellin biosynthesis and metabolism: A convergent route for plants, fungi and bacteria. Microbiol Res 2018; 208:85-98. [PMID: 29551215 DOI: 10.1016/j.micres.2018.01.010] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/24/2018] [Accepted: 01/27/2018] [Indexed: 11/26/2022]
Abstract
Gibberellins (GAs) are natural complex biomolecules initially identified as secondary metabolites in the fungus Gibberella fujikuroi with strong implications in plant physiology. GAs have been identified in different fungal and bacterial species, in some cases related to virulence, but the full understanding of the role of these metabolites in the different organisms would need additional investigation. In this review, we summarize the current evidence regarding a common pathway for GA synthesis in fungi, bacteria and plant from the genes depicted as part of the GA production cluster to the enzymes responsible for the catalytic transformations and the biosynthetical routes involved. Moreover, we present the relationship between these observations and the biotechnological applications of GAs in plants, which has shown an enormous commercial impact.
Collapse
Affiliation(s)
- Sonia Salazar-Cerezo
- Laboratorio de Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Edif 103J, Ciudad Universitaria, Col. San Manuel, CP 72570, Puebla, Mexico
| | - Nancy Martínez-Montiel
- Laboratorio de Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Edif 103J, Ciudad Universitaria, Col. San Manuel, CP 72570, Puebla, Mexico
| | - Jenny García-Sánchez
- Laboratorio de Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Edif 103J, Ciudad Universitaria, Col. San Manuel, CP 72570, Puebla, Mexico
| | | | - Rebeca D Martínez-Contreras
- Laboratorio de Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Edif 103J, Ciudad Universitaria, Col. San Manuel, CP 72570, Puebla, Mexico.
| |
Collapse
|
78
|
Revealing critical mechanisms of BR-mediated apple nursery tree growth using iTRAQ-based proteomic analysis. J Proteomics 2018; 173:139-154. [DOI: 10.1016/j.jprot.2017.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/07/2017] [Accepted: 12/11/2017] [Indexed: 11/19/2022]
|
79
|
Sánchez-Bel P, Sanmartín N, Pastor V, Mateu D, Cerezo M, Vidal-Albalat A, Pastor-Fernández J, Pozo MJ, Flors V. Mycorrhizal tomato plants fine tunes the growth-defence balance upon N depleted root environments. PLANT, CELL & ENVIRONMENT 2018; 41:406-420. [PMID: 29194658 DOI: 10.1111/pce.13105] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 11/07/2017] [Accepted: 11/13/2017] [Indexed: 05/06/2023]
Abstract
In low nutritive environments, the uptake of N by arbuscular mycorrhizal (AM) fungi may confer competitive advantages for the host. The present study aims to understand how mycorrhizal tomato plants perceive and then prepare for an N depletion in the root environment. Plants colonized by Rhizophagus irregularis displayed improved responses to a lack of N than nonmycorrhizal (NM) plants. These responses were accomplished by a complex metabolic and transcriptional rearrangement that mostly affected the gibberellic acid and jasmonic acid pathways involving DELLA and JAZ1 genes, which were responsive to changes in the C/N imbalance of the plant. N starved mycorrhizal plants showed lower C/N equilibrium in the shoots than starved NM plants and concomitantly a downregulation of the JAZ1 repressor and the increased expression of the DELLA gene, which translated into a more active oxylipin pathway in mycorrhizal plants. In addition, the results support a priorization in AM plants of stress responses over growth. Therefore, these plants were better prepared for an expected stress. Furthermore, most metabolites that were severely reduced in NM plants following the N depletion remained unaltered in starved AM plants compared with those normally fertilized, suggesting that the symbiosis buffered the stress, improving plant development in a stressed environment.
Collapse
Affiliation(s)
- P Sánchez-Bel
- Metabolic Integration and Cell Signaling Laboratory, Plant Physiology Section, Unidad Asociada al Consejo Superior de Investigaciones Científicas (EEZ-CSIC)-Department of Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castellón, 12071, Spain
| | - N Sanmartín
- Metabolic Integration and Cell Signaling Laboratory, Plant Physiology Section, Unidad Asociada al Consejo Superior de Investigaciones Científicas (EEZ-CSIC)-Department of Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castellón, 12071, Spain
| | - V Pastor
- Metabolic Integration and Cell Signaling Laboratory, Plant Physiology Section, Unidad Asociada al Consejo Superior de Investigaciones Científicas (EEZ-CSIC)-Department of Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castellón, 12071, Spain
| | - D Mateu
- Metabolic Integration and Cell Signaling Laboratory, Plant Physiology Section, Unidad Asociada al Consejo Superior de Investigaciones Científicas (EEZ-CSIC)-Department of Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castellón, 12071, Spain
| | - M Cerezo
- Metabolic Integration and Cell Signaling Laboratory, Plant Physiology Section, Unidad Asociada al Consejo Superior de Investigaciones Científicas (EEZ-CSIC)-Department of Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castellón, 12071, Spain
| | - A Vidal-Albalat
- Departament de Química Inorgànica i Orgànica, Universitat Jaume I, Castellón, 12071, Spain
| | - J Pastor-Fernández
- Metabolic Integration and Cell Signaling Laboratory, Plant Physiology Section, Unidad Asociada al Consejo Superior de Investigaciones Científicas (EEZ-CSIC)-Department of Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castellón, 12071, Spain
| | - M J Pozo
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (CSIC), Granada, 18160, Spain
| | - V Flors
- Metabolic Integration and Cell Signaling Laboratory, Plant Physiology Section, Unidad Asociada al Consejo Superior de Investigaciones Científicas (EEZ-CSIC)-Department of Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castellón, 12071, Spain
| |
Collapse
|
80
|
Zheng H, Zhang F, Wang S, Su Y, Ji X, Jiang P, Chen R, Hou S, Ding Y. MLK1 and MLK2 Coordinate RGA and CCA1 Activity to Regulate Hypocotyl Elongation in Arabidopsis thaliana. THE PLANT CELL 2018; 30:67-82. [PMID: 29255112 PMCID: PMC5810577 DOI: 10.1105/tpc.17.00830] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/28/2017] [Accepted: 12/15/2017] [Indexed: 05/03/2023]
Abstract
Gibberellins (GAs) modulate diverse developmental processes throughout the plant life cycle. However, the interaction between GAs and the circadian rhythm remains unclear. Here, we report that MUT9p-LIKE KINASE1 (MLK1) and MLK2 mediate the interaction between GAs and the circadian clock to regulate hypocotyl elongation in Arabidopsis thaliana DELLA proteins function as master growth repressors that integrate phytohormone signaling and environmental pathways in plant development. MLK1 and MLK2 interact with the DELLA protein REPRESSOR OF ga1-3 (RGA). Loss of MLK1 and MLK2 function results in plants with short hypocotyls and hyposensitivity to GAs. MLK1/2 and RGA directly interact with CIRCADIAN CLOCK ASSOCIATED1 (CCA1), which targets the promoter of DWARF4 (DWF4) to regulate its roles in cell expansion. MLK1/2 antagonize the ability of RGA to bind CCA1, and these factors coordinately regulate the expression of DWF4 RGA suppressed the ability of CCA1 to activate expression from the DWF4 promoter, but MLK1/2 reversed this suppression. Genetically, MLK1/2 act in the same pathway as RGA and CCA1 in hypocotyl elongation. Together, our results provide insight into the mechanism by which MLK1 and MLK2 antagonize the function of RGA in hypocotyl elongation and suggest that MLK1/2 coordinately mediate the regulation of plant development by GAs and the circadian rhythm in Arabidopsis.
Collapse
Affiliation(s)
- Han Zheng
- CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, University of Science and Technology of China, Anhui 230027, China
| | - Fei Zhang
- CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, University of Science and Technology of China, Anhui 230027, China
| | - Shiliang Wang
- CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, University of Science and Technology of China, Anhui 230027, China
- School of Life Sciences, Anhui Agricultural University, Anhui 230036, China
| | - Yanhua Su
- CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, University of Science and Technology of China, Anhui 230027, China
| | - Xiaoru Ji
- CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, University of Science and Technology of China, Anhui 230027, China
| | - Pengfei Jiang
- CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, University of Science and Technology of China, Anhui 230027, China
- School of Life Sciences, Anhui Agricultural University, Anhui 230036, China
| | - Rihong Chen
- CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, University of Science and Technology of China, Anhui 230027, China
| | - Suiwen Hou
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yong Ding
- CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, University of Science and Technology of China, Anhui 230027, China
| |
Collapse
|
81
|
Liu F, Wang P, Zhang X, Li X, Yan X, Fu D, Wu G. The genetic and molecular basis of crop height based on a rice model. PLANTA 2018; 247:1-26. [PMID: 29110072 DOI: 10.1007/s00425-017-2798-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/15/2017] [Indexed: 05/04/2023]
Abstract
This review presents genetic and molecular basis of crop height using a rice crop model. Height is controlled by multiple genes with potential to be manipulated through breeding strategies to improve productivity. Height is an important factor affecting crop architecture, apical dominance, biomass, resistance to lodging, tolerance to crowding and mechanical harvesting. The impressive increase in wheat and rice yield during the 'green revolution' benefited from a combination of breeding for high-yielding dwarf varieties together with advances in agricultural mechanization, irrigation and agrochemical/fertilizer use. To maximize yield under irrigation and high fertilizer use, semi-dwarfing is optimal, whereas extreme dwarfing leads to decreased yield. Rice plant height is controlled by genes that lie in a complex regulatory network, mainly involved in the biosynthesis or signal transduction of phytohormones such as gibberellins, brassinosteroids and strigolactones. Additional dwarfing genes have been discovered that are involved in other pathways, some of which are uncharacterized. This review discusses our current understanding of the regulation of plant height using rice as a well-characterized model and highlights some of the most promising research that could lead to the development of new, high-yielding varieties. This knowledge underpins future work towards the genetic improvement of plant height in rice and other crops.
Collapse
Affiliation(s)
- Fang Liu
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Pandi Wang
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiaobo Zhang
- State Key Laboratory of Crop Breeding Technology Innovation and Integration, China National Seed Group Co., Ltd., Wuhan, 430206, China
| | - Xiaofei Li
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiaohong Yan
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Donghui Fu
- The Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang, China.
| | - Gang Wu
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China.
| |
Collapse
|
82
|
Liu L, Wang Z, Liu J, Liu F, Zhai R, Zhu C, Wang H, Ma F, Xu L. Histological, hormonal and transcriptomic reveal the changes upon gibberellin-induced parthenocarpy in pear fruit. HORTICULTURE RESEARCH 2018; 5:1. [PMID: 29736250 PMCID: PMC5798812 DOI: 10.1038/s41438-017-0012-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 11/07/2017] [Accepted: 11/28/2017] [Indexed: 05/06/2023]
Abstract
Phytohormones play crucial roles in fruit set regulation and development. Here, gibberellins (GA4+7), but not GA3, induced pear parthenocarpy. To systematically investigate the changes upon GA4+7 induced pear parthenocarpy, dynamic changes in histology, hormone and transcript levels were observed and identified in unpollinated, pollinated and GA4+7-treated ovaries. Mesocarp cells continued developing in both GA4+7-treated and pollinated ovaries. In unpollinated ovaries, mesocarp cells stopped developing 14 days after anthesis. During fruit set process, GA4+7, but not GA1+3, increased after pollination. Abscisic acid (ABA) accumulation was significantly repressed by GA4+7 or pollination, but under unpollinated conditions, ABA was produced in large quantities. Moreover, indole-3-acetic acid biosynthesis was not induced by GA4+7 or pollination treatments. Details of this GA-auxin-ABA cross-linked gene network were determined by a comparative transcriptome analysis. The indole-3-acetic acid transport-related genes, mainly auxin efflux carrier component genes, were induced in both GA4+7-treated and pollinated ovaries. ABA biosynthetic genes of the 9-cis-epoxycarotenoid dioxygenase family were repressed by GA4+7 and pollination. Moreover, directly related genes in the downstream parthenocarpy network involved in cell division and expansion (upregulated), and MADS-box family genes (downregulated), were also identified. Thus, a model of GA-induced hormonal balance and its effects on parthenocarpy were established.
Collapse
Affiliation(s)
- Lulu Liu
- Institution: College of Horticulture, Northwest A&F University, Taicheng Road NO.3, Yangling, Shaanxi Province China
| | - Zhigang Wang
- Institution: College of Horticulture, Northwest A&F University, Taicheng Road NO.3, Yangling, Shaanxi Province China
| | - Jianlong Liu
- Institution: College of Horticulture, Northwest A&F University, Taicheng Road NO.3, Yangling, Shaanxi Province China
| | - Fengxia Liu
- Institution: College of Horticulture, Northwest A&F University, Taicheng Road NO.3, Yangling, Shaanxi Province China
| | - Rui Zhai
- Institution: College of Horticulture, Northwest A&F University, Taicheng Road NO.3, Yangling, Shaanxi Province China
| | - Chunqin Zhu
- Institution: College of Horticulture, Northwest A&F University, Taicheng Road NO.3, Yangling, Shaanxi Province China
| | - Huibin Wang
- Institution: College of Horticulture, Northwest A&F University, Taicheng Road NO.3, Yangling, Shaanxi Province China
| | - Fengwang Ma
- Institution: College of Horticulture, Northwest A&F University, Taicheng Road NO.3, Yangling, Shaanxi Province China
| | - Lingfei Xu
- Institution: College of Horticulture, Northwest A&F University, Taicheng Road NO.3, Yangling, Shaanxi Province China
| |
Collapse
|
83
|
Zhang L, Chen L, Yu D. Transcription Factor WRKY75 Interacts with DELLA Proteins to Affect Flowering. PLANT PHYSIOLOGY 2018; 176:790-803. [PMID: 29133369 PMCID: PMC5761768 DOI: 10.1104/pp.17.00657] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 11/09/2017] [Indexed: 05/04/2023]
Abstract
Flowering time is tightly controlled by both endogenous and exogenous signals. Although several lines of evidence have suggested the involvement of WRKY transcription factors in floral initiation, the underlying mechanisms and signaling pathways involved remain elusive. Here, we newly identified Arabidopsis (Arabidopsis thaliana) WRKY DNA binding protein75 (WRKY75) as a positive regulator of flowering initiation. Mutation of WRKY75 resulted in a delay in flowering, whereas overexpression of WRKY75 significantly accelerated flowering in Arabidopsis. Gene expression analysis showed that the transcript abundance of the flowering time integrator gene FLOWERING LOCUS T (FT) was lower in wrky75 mutants than in the wild type, but greater in WRKY75-overexpressing plants. Chromatin immunoprecipitation assays revealed that WRKY75 directly binds to the promoter of FT Both in vivo and in vitro biochemical analyses demonstrated that WRKY75 interacts with DELLA proteins. We found that both REPRESSOR OF ga1-3 (RGA) RGA-LIKE1 (RGL1) and GA INSENSITIVE (GAI) can repress the activation ability of WRKY75, thereby attenuating expression of its regulon. Genetic analyses indicated that WRKY75 positively regulates flowering in a FT-dependent manner and overexpression of RGL1 or gain-of-function of GAI could partially rescue the early flowering phenotype of WRKY75-overexpressing plants. Taken together, our results demonstrate that WRKY75 may function as a new component of the GA-mediated signaling pathway to positively regulate flowering in Arabidopsis.
Collapse
Affiliation(s)
- Liping Zhang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Ligang Chen
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Diqiu Yu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
84
|
Alhajturki D, Muralidharan S, Nurmi M, Rowan BA, Lunn JE, Boldt H, Salem MA, Alseekh S, Jorzig C, Feil R, Giavalisco P, Fernie AR, Weigel D, Laitinen RAE. Dose-dependent interactions between two loci trigger altered shoot growth in BG-5 × Krotzenburg-0 (Kro-0) hybrids of Arabidopsis thaliana. THE NEW PHYTOLOGIST 2018; 217:392-406. [PMID: 28906562 DOI: 10.1111/nph.14781] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 08/06/2017] [Indexed: 06/07/2023]
Abstract
Hybrids occasionally exhibit genetic interactions resulting in reduced fitness in comparison to their parents. Studies of Arabidopsis thaliana have highlighted the role of immune conflicts, but less is known about the role of other factors in hybrid incompatibility in plants. Here, we present a new hybrid incompatibility phenomenon in this species. We have characterized a new case of F1 hybrid incompatibility from a cross between the A. thaliana accessions Krotzenburg-0 (Kro-0) and BG-5, by conducting transcript, metabolite and hormone analyses, and identified the causal loci through genetic mapping. The F1 hybrids showed arrested growth of the main stem, altered shoot architecture, and altered concentrations of hormones in comparison to parents. The F1 phenotype could be rescued in a developmental-stage-dependent manner by shifting to a higher growth temperature. These F1 phenotypes were linked to two loci, one on chromosome 2 and one on chromosome 3. The F2 generation segregated plants with more severe phenotypes which were linked to the same loci as those in the F1 . This study provides novel insights into how previously unknown mechanisms controlling shoot branching and stem growth can result in hybrid incompatibility.
Collapse
Affiliation(s)
- Dema Alhajturki
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | | | - Markus Nurmi
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Beth A Rowan
- Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Helena Boldt
- Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Mohamed A Salem
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Christian Jorzig
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Patrick Giavalisco
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Detlef Weigel
- Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Roosa A E Laitinen
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| |
Collapse
|
85
|
Gene Regulatory Networks Mediating Cold Acclimation: The CBF Pathway. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1081:3-22. [PMID: 30288701 DOI: 10.1007/978-981-13-1244-1_1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Under low nonfreezing temperature conditions, plants from temperate climates undergo physiological and biochemical adjustments that increase their tolerance to freezing temperatures. This response, termed cold acclimation, is largely regulated by changes in gene expression. Molecular and genetic studies have identified a small family of transcription factors, called C-repeat binding factors (CBFs), as key regulators of the transcriptomic rearrangement that leads to cold acclimation. The function of these proteins is tightly controlled, and an inadequate supply of CBF activity may be detrimental to the plant. Accumulated evidence has revealed an extremely intricate network of positive and negative regulators of cold acclimation that coalesce at the level of CBF promoters constituting a central hub where multiple internal and external signals are integrated. Moreover, CBF expression is also controlled at posttranscriptional and posttranslational levels further refining CBF regulation. Recently, natural variation studies in Arabidopsis have demonstrated that mutations resulting in changes in CBF expression have an adaptive value for wild populations. Intriguingly, CBF genes are also present in plant species that do not cold acclimate, which suggest that they may also have additional functions. For instance, CBFs are required for some cold-related abiotic stress responses. In addition, their involvement in plant development deserves further study. Although more studies are necessary to fully harness CBF biotechnological potential, these transcription factors are meant to be key for a rational design of crops with enhanced tolerance to abiotic stress.
Collapse
|
86
|
Nir I, Shohat H, Panizel I, Olszewski N, Aharoni A, Weiss D. The Tomato DELLA Protein PROCERA Acts in Guard Cells to Promote Stomatal Closure. THE PLANT CELL 2017; 29:3186-3197. [PMID: 29150547 PMCID: PMC5757276 DOI: 10.1105/tpc.17.00542] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/30/2017] [Accepted: 11/16/2017] [Indexed: 05/03/2023]
Abstract
Plants employ stomatal closure and reduced growth to avoid water deficiency damage. Reduced levels of the growth-promoting hormone gibberellin (GA) lead to increased tolerance to water deficit, but the underlying mechanism is unknown. Here, we show that the tomato (Solanum lycopersicum) DELLA protein PROCERA (PRO), a negative regulator of GA signaling, acts in guard cells to promote stomatal closure and reduce water loss in response to water deficiency by increasing abscisic acid (ABA) sensitivity. The loss-of-function pro mutant exhibited increased stomatal conductance and rapid wilting under water deficit stress. Transgenic tomato overexpressing constitutively active stable DELLA proteins (S-della) displayed the opposite phenotype. The effects of S-della on stomatal aperture and water loss were strongly suppressed in the ABA-deficient mutant sitiens, indicating that these effects of S-della are ABA dependent. While DELLA had no effect on ABA levels, guard cell ABA responsiveness was increased in S-della and reduced in pro plants compared with the wild type. Expressing S-della under the control of a guard-cell-specific promoter was sufficient to increase stomatal sensitivity to ABA and to reduce water loss under water deficit stress but had no effect on leaf size. This result indicates that DELLA promotes stomatal closure independently of its effect on growth.
Collapse
Affiliation(s)
- Ido Nir
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Hagai Shohat
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Irina Panizel
- Department of Plant Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Neil Olszewski
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Asaph Aharoni
- Department of Plant Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - David Weiss
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| |
Collapse
|
87
|
Du R, Niu S, Liu Y, Sun X, Porth I, El-Kassaby YA, Li W. The gibberellin GID1-DELLA signalling module exists in evolutionarily ancient conifers. Sci Rep 2017; 7:16637. [PMID: 29192140 PMCID: PMC5709395 DOI: 10.1038/s41598-017-11859-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 08/29/2017] [Indexed: 01/03/2023] Open
Abstract
Gibberellins (GAs) participate in controlling various aspects of basic plant growth responses. With the exception of bryophytes, GA signalling in land plants, such as lycophytes, ferns and angiosperms, is mediated via GIBBERELLIN-INSENSITIVE DWARF1 (GID1) and DELLA proteins. To explore whether this GID1-DELLA mechanism is present in pines, we cloned an orthologue (PtGID1) of Arabidopsis AtGID1a and two putative DELLA proteins (PtDPL; PtRGA) from Pinus tabuliformis, a widespread indigenous conifer species in China, and studied their recombinant proteins. PtGID1 shares with AtGID1a the conserved HSL motifs for GA binding and an N-terminal feature that are essential for interaction with DELLA proteins. Indeed, A. thaliana 35S:PtGID1 overexpressors showed a strong GA-hypersensitive phenotype compared to the wild type. Interactions between PtGID1 and PtDELLAs, but also interactions between the conifer-angiosperm counterparts (i.e. between AtGID1 and PtDELLAs and between PtGID1 and AtDELLA), were detected in vivo. This demonstrates that pine has functional GID1-DELLA components. The Δ17-domains within PtDPL and PtRGA were identified as potential interaction sites within PtDELLAs. Our results show that PtGID1 has the ability to interact with DELLA and functions as a GA receptor. Thus, a GA-GID1-DELLA signalling module also operates in evolutionarily ancient conifers.
Collapse
Affiliation(s)
- Ran Du
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Forest Tree Breeding, College of biological sciences and technology, Beijing Forestry University, Beijing, 100083, P.R. China.,Science and Technology Development Center, State Forestry Administration, Beijing, 100714, P.R. China
| | - Shihui Niu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Forest Tree Breeding, College of biological sciences and technology, Beijing Forestry University, Beijing, 100083, P.R. China
| | - Yang Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Forest Tree Breeding, College of biological sciences and technology, Beijing Forestry University, Beijing, 100083, P.R. China
| | - Xinrui Sun
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Forest Tree Breeding, College of biological sciences and technology, Beijing Forestry University, Beijing, 100083, P.R. China
| | - Ilga Porth
- Département des sciences du bois et de la forêt, Faculté de foresterie, de géographie et de géomatique, Université Laval, 1030 Avenue de la Médecine, Québec, Québec, G1V 0A6, Canada
| | - Yousry A El-Kassaby
- Department of Forest Sciences, Faculty of Forestry, The University of British Columbia, 2424 Main Mall, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Wei Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Forest Tree Breeding, College of biological sciences and technology, Beijing Forestry University, Beijing, 100083, P.R. China.
| |
Collapse
|
88
|
Ballaré CL, Pierik R. The shade-avoidance syndrome: multiple signals and ecological consequences. PLANT, CELL & ENVIRONMENT 2017; 40:2530-2543. [PMID: 28102548 DOI: 10.1111/pce.12914] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/10/2017] [Accepted: 01/13/2017] [Indexed: 05/18/2023]
Abstract
Plants use photoreceptor proteins to detect the proximity of other plants and to activate adaptive responses. Of these photoreceptors, phytochrome B (phyB), which is sensitive to changes in the red (R) to far-red (FR) ratio of sunlight, is the one that has been studied in greatest detail. The molecular connections between the proximity signal (low R:FR) and a model physiological response (increased elongation growth) have now been mapped in considerable detail in Arabidopsis seedlings. We briefly review our current understanding of these connections and discuss recent progress in establishing the roles of other photoreceptors in regulating growth-related pathways in response to competition cues. We also consider processes other than elongation that are controlled by photoreceptors and contribute to plant fitness under variable light conditions, including photoresponses that optimize the utilization of soil resources. In examining recent advances in the field, we highlight emerging roles of phyB as a major modulator of hormones related to plant immunity, in particular salicylic acid and jasmonic acid (JA). Recent attempts to manipulate connections between light signals and defence in Arabidopsis suggest that it might be possible to improve crop health at high planting densities by targeting links between phyB and JA signalling.
Collapse
Affiliation(s)
- Carlos L Ballaré
- IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Ave. San Martín 4453, C1417DSE, Buenos Aires, Argentina
- IIB-INTECH, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de San Martín, B1650HMP, Buenos Aires, Argentina
| | - Ronald Pierik
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| |
Collapse
|
89
|
Oliferuk S, Ródenas R, Pérez A, Martinez V, Rubio F, Santa María GE. How DELLAs contribute to control potassium uptake under conditions of potassium scarcity? Hypotheses and uncertainties. PLANT SIGNALING & BEHAVIOR 2017; 12:e1366396. [PMID: 28816584 PMCID: PMC5647977 DOI: 10.1080/15592324.2017.1366396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/07/2017] [Accepted: 08/07/2017] [Indexed: 05/29/2023]
Abstract
Maintenance of the inward transport of potassium (K) by roots is a critical step to ensure K-nutrition for all plant tissues. When plants are grown at low external K concentrations a strong enhancement of the activity of the AtHAK5 transporter takes place. In a recent work, we observed that the gai-1 mutant of Arabidopsis thaliana, which bears an altered function version of a DELLA regulatory protein, displays reduced accumulation of AtHAK5 transcripts and reduced uptake of Rubidium, an analog for K. In this Addendum we discuss some hypotheses and uncertainties regarding how DELLAs could contribute to the control of K uptake under those conditions. We advance the idea that, following K-restriction, there is a zone and tissue specific regulation of DELLAs by gibberellins through a pathway that likely involves ethylene. According to this model in the epidermis of non-apical zones, DELLAs repress transcription factors that promote AtHAK5 accumulation.
Collapse
Affiliation(s)
- Sonia Oliferuk
- Instituto Tecnológico Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de San Martín (CONICET-UNSAM). Avenida Intendente Marino, Chascomús, Buenos Aires, Argentina
| | - Reyes Ródenas
- Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC). Campus Universitario de Espinardo. Espinardo. Murcia, España
| | - Adriana Pérez
- Instituto Tecnológico Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de San Martín (CONICET-UNSAM). Avenida Intendente Marino, Chascomús, Buenos Aires, Argentina
| | - Vicente Martinez
- Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC). Campus Universitario de Espinardo. Espinardo. Murcia, España
| | - Francisco Rubio
- Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC). Campus Universitario de Espinardo. Espinardo. Murcia, España
| | - Guillermo E. Santa María
- Instituto Tecnológico Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de San Martín (CONICET-UNSAM). Avenida Intendente Marino, Chascomús, Buenos Aires, Argentina
| |
Collapse
|
90
|
Roy R, Schmitt AJ, Thomas JB, Carter CJ. Review: Nectar biology: From molecules to ecosystems. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 262:148-164. [PMID: 28716410 DOI: 10.1016/j.plantsci.2017.04.012] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 04/17/2017] [Accepted: 04/19/2017] [Indexed: 05/06/2023]
Abstract
Plants attract mutualistic animals by offering a reward of nectar. Specifically, floral nectar (FN) is produced to attract pollinators, whereas extrafloral nectar (EFN) mediates indirect defenses through the attraction of mutualist predatory insects to limit herbivory. Nearly 90% of all plant species, including 75% of domesticated crops, benefit from animal-mediated pollination, which is largely facilitated by FN. Moreover, EFN represents one of the few defense mechanisms for which stable effects on plant health and fitness have been demonstrated in multiple systems, and thus plays a crucial role in the resistance phenotype of plants producing it. In spite of its central role in plant-animal interactions, the molecular events involved in the development of both floral and extrafloral nectaries (the glands that produce nectar), as well as the synthesis and secretion of the nectar itself, have been poorly understood until recently. This review will cover major recent developments in the understanding of (1) nectar chemistry and its role in plant-mutualist interactions, (2) the structure and development of nectaries, (3) nectar production, and (4) its regulation by phytohormones.
Collapse
Affiliation(s)
- Rahul Roy
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Anthony J Schmitt
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Jason B Thomas
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Clay J Carter
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA.
| |
Collapse
|
91
|
Acheampong AK, Zheng C, Halaly T, Giacomelli L, Takebayashi Y, Jikumaru Y, Kamiya Y, Lichter A, Or E. Abnormal Endogenous Repression of GA Signaling in a Seedless Table Grape Cultivar with High Berry Growth Response to GA Application. FRONTIERS IN PLANT SCIENCE 2017; 8:850. [PMID: 28596775 PMCID: PMC5442209 DOI: 10.3389/fpls.2017.00850] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 05/08/2017] [Indexed: 05/24/2023]
Abstract
Gibberellin (GA) application is routinely used in the table grape industry to increase berry size and cluster length. Although grapevine cultivars show a wide range of growth responsiveness to GA3 application, the reasons for these differences is unclear. To shed light on this issue, two commercial grapevine cultivars with contrasting berry response to GA were selected for comparative analysis, in which we tested if the differences in response: (1) is organ-specific or cultivar-related; (2) will be reflected in qualitative/quantitative differences in transcripts/proteins of central components of GA metabolism and signaling and levels of GA metabolites. Our results showed that in addition to the high response of its berries to GA, internodes and rachis of cv. Black finger (BF) presented a greater growth response compared to that of cv. Spring blush (SB). In agreement, the results exposed significant quantitative differences in GA signaling components in several organs of both cultivars. Exceptionally higher level of all three functional VvDELLA proteins was recorded in young BF organs, accompanied by elevated VvGID1 expression and lower VvSLY1b transcripts. Absence of seed traces, low endogenous GA quantities and lower expression of VvGA20ox4 and VvGA3ox3 were also recorded in berries of BF. Our results raise the hypothesis that, in young organs of BF, low expression of VvSLY1b may be responsible for the massive accumulation of VvDELLA proteins, which then leads to elevated VvGID1 levels. This integrated analysis suggests causal relationship between endogenous mechanisms leading to anomalous GA signaling repression in BF, manifested by high quantities of VvDELLA proteins, and greater growth response to GA application.
Collapse
Affiliation(s)
- Atiako K. Acheampong
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani CenterBet Dagan, Israel
- Department of Horticulture, Faculty of Agriculture Environment and Food Sciences, The Hebrew University of JerusalemRehovot, Israel
| | - Chuanlin Zheng
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani CenterBet Dagan, Israel
| | - Tamar Halaly
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani CenterBet Dagan, Israel
| | - Lisa Giacomelli
- Research and Innovation Centre-Fondazione Edmund MachSan Michele all’Adige, Italy
| | | | | | | | - Amnon Lichter
- Institute of Postharvest and Food Sciences, Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Volcani CenterBet Dagan, Israel
| | - Etti Or
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani CenterBet Dagan, Israel
| |
Collapse
|
92
|
Li Y, Wang H, Li X, Liang G, Yu D. Two DELLA-interacting proteins bHLH48 and bHLH60 regulate flowering under long-day conditions in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2757-2767. [PMID: 28591805 PMCID: PMC5853475 DOI: 10.1093/jxb/erx143] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/13/2017] [Indexed: 05/07/2023]
Abstract
Gibberellin (GA) regulates many developmental transitions in the plant life cycle. Although great progress has been made, the GA signaling pathways have not been fully elucidated. Identifying and characterizing new targets of DELLA proteins is an effective approach to reveal the complicated GA signaling networks. In this study, two novel DELLA-interacting transcription factors, bHLH48 and bHLH60, were identified. Their overexpression caused plants to flower early under long-day conditions, whereas their functional repression resulted in the opposite result. The constitutive expression of bHLH48 and bHLH60 upregulated the transcription of the FLOWERING LOCUS T (FT) gene. Chromatin immunoprecipitation experiments confirmed that bHLH48 bound to the promoter of FT and that GA promoted the DNA-binding activity of bHLH48. Genetic analyses indicated that the early flowering phenotype of plants overexpressing bHLH48 and bHLH60 depended on FT and that the overexpression of bHLH48 and bHLH60 could rescue the late-flowering phenotypes of RGL1 overexpressing plants. Transient expression assays suggested that RGL1 inhibited the transcription activation ability of bHLH48 and bHLH60. Taken together, this study confirmed that bHLH48 and bHLH60 positively regulate GA-mediated flowering.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Houping Wang
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoli Li
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Kunming, Yunnan, China
| | - Gang Liang
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Kunming, Yunnan, China
- Correspondence: ;
| | - Diqiu Yu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Kunming, Yunnan, China
- Correspondence: ;
| |
Collapse
|
93
|
Derkx AP, Harding CA, Miraghazadeh A, Chandler PM. Overgrowth (Della) mutants of wheat: development, growth and yield of intragenic suppressors of the Rht-B1c dwarfing gene. FUNCTIONAL PLANT BIOLOGY : FPB 2017; 44:525-537. [PMID: 32480585 DOI: 10.1071/fp16262] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 02/01/2017] [Indexed: 06/11/2023]
Abstract
A suppressor screen using the dwarf Rht-B1c Della mutant of wheat (Triticum aestivum L.) led to the isolation of overgrowth mutants, which retained the original dwarfing gene but grew at a faster rate because of a new mutation elsewhere in that gene. Forty-six alleles were identified, which included amino acid substitutions, premature stop codons, and splice site alterations. The sites of amino acid substitution were primarily localised around conserved motifs in the DELLA protein, and these mutants showed a wide range in their extent of growth recovery (dwarf, semidwarf, tall). Detailed growth comparisons were made on a wide height range of backcrossed overgrowth alleles, comparing stem and spike growth, leaf size, tillering, phenological development, coleoptile length, grain dormancy and grain yield. There were large and reproducible differences between alleles for some traits, whereas others were largely unaffected or varied with growth conditions. Some of the overgrowth alleles offer promise as alternatives to the Rht-B1b and Rht-D1b dwarfing genes, allowing a wider range of height control, improved grain dormancy and equivalent grain yield. The collection of mutants will also be valuable as a resource to study the effect of height on different physiological or agronomic traits, and in elucidating DELLA protein function.
Collapse
Affiliation(s)
- Adinda P Derkx
- CSIRO Agriculture Flagship, GPO Box 1600, Canberra, ACT 2601, Australia
| | - Carol A Harding
- CSIRO Agriculture Flagship, GPO Box 1600, Canberra, ACT 2601, Australia
| | | | - Peter M Chandler
- CSIRO Agriculture Flagship, GPO Box 1600, Canberra, ACT 2601, Australia
| |
Collapse
|
94
|
Dobrikova AG, Yotsova EK, Börner A, Landjeva SP, Apostolova EL. The wheat mutant DELLA-encoding gene (Rht-B1c) affects plant photosynthetic responses to cadmium stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 114:10-18. [PMID: 28246038 DOI: 10.1016/j.plaphy.2017.02.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/18/2017] [Accepted: 02/16/2017] [Indexed: 05/03/2023]
Abstract
Тhe sensitivity to cadmium (Cd) stress of two near-isogenic wheat lines with differences at the Rht-B1 locus, Rht-B1a (tall wild type, encoding DELLA proteins) and Rht-B1c (dwarf mutant, encoding modified DELLA proteins), was investigated. The effects of 100 μM CdCl2 on plant growth, pigment content and functional activity of the photosynthetic apparatus of wheat seedlings grown on a nutrient solution were evaluated through a combination of PAM chlorophyll fluorescence, oxygen evolution, oxidation-reduction kinetics of P700 and 77 K fluorescence. The results showed that the wheat mutant (Rht-B1c) was more tolerant to Cd stress compared to the wild type (Rht-B1a), as evidenced by the lower reductions in plant growth and pigment content, lower inhibition of photosystem I (PSI) and photosystem II (PSII) photochemistry and of the oxygen evolution measured with Clark-type and Joliot-type electrodes. Furthermore, the enhanced Cd tolerance was accompanied by increased Cd accumulation within mutant plant tissues. The molecular mechanisms through which the Rht-B1c mutation improves plant tolerance to Cd stress involve structural alterations in the mutant photosynthetic membranes leading to better protection of the Mn cluster of oxygen-evolving complex and increased capacity for PSI cyclic electron transport, protecting photochemical activity of the photosynthetic apparatus under stress. This study suggests a role for the Rht-B1c-encoded DELLA proteins in protective mechanisms and tolerance of the photosynthetic apparatus in wheat plants exposed to heavy metals stress.
Collapse
Affiliation(s)
- Anelia G Dobrikova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
| | - Ekaterina K Yotsova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Andreas Börner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466 Stadt Seeland, OT Gatersleben, Germany
| | - Svetlana P Landjeva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Emilia L Apostolova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
95
|
Miyakawa T, Tanokura M. Structural basis for the regulation of phytohormone receptors. Biosci Biotechnol Biochem 2017; 81:1261-1273. [PMID: 28417669 DOI: 10.1080/09168451.2017.1313696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Phytohormones are central players in diverse plant physiological events, such as plant growth, development, and environmental stress and defense responses. The elucidation of their regulatory mechanisms through phytohormone receptors could facilitate the generation of transgenic crops with cultivation advantages and the rational design of growth control chemicals. During the last decade, accumulated structural data on phytohormone receptors have provided critical insights into the molecular mechanisms of phytohormone perception and signal transduction. Here, we review the structural bases of phytohormone recognition and receptor activation. As a common feature, phytohormones regulate the interaction between the receptors and their respective target proteins (also called co-receptors) by two types of regulatory mechanisms, acting as either "molecular glue" or an "allosteric regulator." However, individual phytohormone receptors adopt specific structural features that are essential for activation. In addition, recent studies have focused on the molecular diversity of redundant phytohormone receptors.
Collapse
Affiliation(s)
- Takuya Miyakawa
- a Department of Applied Biological Chemistry , Graduate School of Agricultural and Life Sciences, The University of Tokyo , Tokyo , Japan
| | - Masaru Tanokura
- a Department of Applied Biological Chemistry , Graduate School of Agricultural and Life Sciences, The University of Tokyo , Tokyo , Japan
| |
Collapse
|
96
|
Plum Fruit Development Occurs via Gibberellin-Sensitive and -Insensitive DELLA Repressors. PLoS One 2017; 12:e0169440. [PMID: 28076366 PMCID: PMC5226729 DOI: 10.1371/journal.pone.0169440] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/17/2016] [Indexed: 01/16/2023] Open
Abstract
Fruit growth depends on highly coordinated hormonal activities. The phytohormone gibberellin (GA) promotes growth by triggering degradation of the growth-repressing DELLA proteins; however, the extent to which such proteins contribute to GA-mediated fruit development remains to be clarified. Three new plum genes encoding DELLA proteins, PslGAI, PslRGL and PslRGA were isolated and functionally characterized. Analysis of expression profile during fruit development suggested that PslDELLA are transcriptionally regulated during flower and fruit ontogeny with potential positive regulation by GA and ethylene, depending on organ and developmental stage. PslGAI and PslRGL deduced proteins contain all domains present in typical DELLA proteins. However, PslRGA exhibited a degenerated DELLA domain and subsequently lacks in GID1–DELLA interaction property. PslDELLA–overexpression in WT Arabidopsis caused dramatic disruption in overall growth including root length, stem elongation, plant architecture, flower structure, fertility, and considerable retardation in development due to dramatic distortion in GA-metabolic pathway. GA treatment enhanced PslGAI/PslRGL interaction with PslGID1 receptors, causing protein destabilization and relief of growth-restraining effect. By contrast, PslRGA protein was not degraded by GA due to its inability to interact with PslGID1. Relative to other PslDELLA–mutants, PslRGA–plants displayed stronger constitutive repressive growth that was irreversible by GA application. The present results describe additional complexities in GA-signalling during plum fruit development, which may be particularly important to optimize successful reproductive growth.
Collapse
|
97
|
Yang C, Li L. Hormonal Regulation in Shade Avoidance. FRONTIERS IN PLANT SCIENCE 2017; 8:1527. [PMID: 28928761 PMCID: PMC5591575 DOI: 10.3389/fpls.2017.01527] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/21/2017] [Indexed: 05/10/2023]
Abstract
At high vegetation density, shade-intolerant plants sense a reduction in the red (660 nm) to far-red (730 nm) light ratio (R/FR) in addition to a general reduction in light intensity. These light signals trigger a spectrum of morphological changes manifested by growth of stem-like tissue (hypocotyl, petiole, etc.) instead of harvestable organs (leaves, fruits, seeds, etc.)-namely, shade avoidance syndrome (SAS). Common phenotypical changes related to SAS are changes in leaf hyponasty, an increase in hypocotyl and internode elongation and extended petioles. Prolonged shade exposure leads to early flowering, less branching, increased susceptibility to insect herbivory, and decreased seed yield. Thus, shade avoidance significantly impacts on agronomic traits. Many genetic and molecular studies have revealed that phytochromes, cryptochromes and UVR8 (UV-B photoreceptor protein) monitor the changes in light intensity under shade and regulate the stability or activity of phytochrome-interacting factors (PIFs). PIF-governed modulation of the expression of auxin biosynthesis, transporter and signaling genes is the major driver for shade-induced hypocotyl elongation. Besides auxin, gibberellins, brassinosteroids, and ethylene are also required for shade-induced hypocotyl or petiole elongation growth. In leaves, accumulated auxin stimulates cytokinin oxidase expression to break down cytokinins and inhibit leaf growth. In the young buds, shade light promotes the accumulation of abscisic acid to repress branching. Shade light also represses jasmonate- and salicylic acid-induced defense responses to balance resource allocation between growth and defense. Here we will summarize recent findings relating to such hormonal regulation in SAS in Arabidopsis thaliana, Brassica rapa, and certain crops.
Collapse
|
98
|
Zhang Y, Zhao G, Li Y, Mo N, Zhang J, Liang Y. Transcriptomic Analysis Implies That GA Regulates Sex Expression via Ethylene-Dependent and Ethylene-Independent Pathways in Cucumber ( Cucumis sativus L.). FRONTIERS IN PLANT SCIENCE 2017; 8:10. [PMID: 28154572 PMCID: PMC5243814 DOI: 10.3389/fpls.2017.00010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 01/03/2017] [Indexed: 05/20/2023]
Abstract
Sex differentiation of flower buds is an important developmental process that directly affects fruit yield of cucumber (Cucumis sativus L.). Plant hormones, such as gibberellins (GAs) and ethylene can promote development of male and female flowers, respectively, however, the regulatory mechanisms of GA-induced male flower formation and potential involvement of ethylene in this process still remain unknown. In this study, to unravel the genes and gene networks involved in GA-regulated cucumber sexual development, we performed high throughout RNA-Seq analyses that compared the transcriptomes of shoot tips between GA3 treated and untreated gynoecious cucumber plants. Results showed that GA3 application markedly induced male flowers but decreased ethylene production in shoot tips. Furthermore, the transcript levels of M (CsACS2) gene, ethylene receptor CsETR1 and some ethylene-responsive transcription factors were dramatically changed after GA3 treatment, suggesting a potential involvement of ethylene in GA-regulated sex expression of cucumber. Interestingly, GA3 down-regulated transcript of a C-class floral homeotic gene, CAG2, indicating that GA may also influence cucumber sex determination through an ethylene-independent process. These results suggest a novel model for hormone-mediated sex differentiation and provide a theoretical basis for further dissection of the regulatory mechanism of male flower formation in cucumber. Statement: We reveal that GA can regulate sex expression of cucumber via an ethylene-dependent manner, and the M (CsACS2), CsETR1, and ERFs are probably involved in this process. Moreover, CAG2, a C-class floral homeotic gene, may also participate in GA-modulated cucumber sex determination, but this pathway is ethylene-independent.
Collapse
Affiliation(s)
- Yan Zhang
- College of Horticulture, Northwest A&F UniversityYangling, China
- State Key Laboratory of Crop Stress Biology in Arid Region, Northwest A&F UniversityYangling, China
| | - Guiye Zhao
- College of Horticulture, Northwest A&F UniversityYangling, China
- State Key Laboratory of Crop Stress Biology in Arid Region, Northwest A&F UniversityYangling, China
| | - Yushun Li
- College of Horticulture, Northwest A&F UniversityYangling, China
- State Key Laboratory of Crop Stress Biology in Arid Region, Northwest A&F UniversityYangling, China
| | - Ning Mo
- College of Horticulture, Northwest A&F UniversityYangling, China
- State Key Laboratory of Crop Stress Biology in Arid Region, Northwest A&F UniversityYangling, China
| | - Jie Zhang
- College of Horticulture, Northwest A&F UniversityYangling, China
- State Key Laboratory of Crop Stress Biology in Arid Region, Northwest A&F UniversityYangling, China
| | - Yan Liang
- College of Horticulture, Northwest A&F UniversityYangling, China
- State Key Laboratory of Crop Stress Biology in Arid Region, Northwest A&F UniversityYangling, China
- *Correspondence: Yan Liang,
| |
Collapse
|
99
|
Stamm P, Topham AT, Mukhtar NK, Jackson MDB, Tomé DFA, Beynon JL, Bassel GW. The Transcription Factor ATHB5 Affects GA-Mediated Plasticity in Hypocotyl Cell Growth during Seed Germination. PLANT PHYSIOLOGY 2017; 173:907-917. [PMID: 27872245 PMCID: PMC5210717 DOI: 10.1104/pp.16.01099] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 11/21/2016] [Indexed: 05/04/2023]
Abstract
Gibberellic acid (GA)-mediated cell expansion initiates the seed-to-seedling transition in plants and is repressed by DELLA proteins. Using digital single-cell analysis, we identified a cellular subdomain within the midhypocotyl, whose expansion drives the final step of this developmental transition under optimal conditions. Using network inference, the transcription factor ATHB5 was identified as a genetic factor whose localized expression promotes GA-mediated expansion specifically within these cells. Both this protein and its putative growth-promoting target EXPANSIN3 are repressed by DELLA, and coregulated at single-cell resolution during seed germination. The cellular domains of hormone sensitivity were explored within the Arabidopsis (Arabidopsis thaliana) embryo by putting seeds under GA-limiting conditions and quantifying cellular growth responses. The middle and upper hypocotyl have a greater requirement for GA to promote cell expansion than the lower embryo axis. Under these conditions, germination was still completed following enhanced growth within the radicle and lower axis. Under GA-limiting conditions, the athb5 mutant did not show a phenotype at the level of seed germination, but it did at a cellular level with reduced cell expansion in the hypocotyl relative to the wild type. These data reveal that the spatiotemporal cell expansion events driving this transition are not determinate, and the conditional use of GA-ATHB5-mediated hypocotyl growth under optimal conditions may be used to optionally support rapid seedling growth. This study demonstrates that multiple genetic and spatiotemporal cell expansion mechanisms underlie the seed to seedling transition in Arabidopsis.
Collapse
Affiliation(s)
- Petra Stamm
- School of Biosciences, College of Life and Environmental and Life Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom (P.S., A.T.T., N.K.M., M.D.B.J., G.W.B); and
- School of Life Sciences, Gibbet Hill Campus, The University of Warwick, Coventry CV4 7AL, United Kingdom (D.F.A.T., J.L.B.)
| | - Alexander T Topham
- School of Biosciences, College of Life and Environmental and Life Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom (P.S., A.T.T., N.K.M., M.D.B.J., G.W.B); and
- School of Life Sciences, Gibbet Hill Campus, The University of Warwick, Coventry CV4 7AL, United Kingdom (D.F.A.T., J.L.B.)
| | - Nur Karimah Mukhtar
- School of Biosciences, College of Life and Environmental and Life Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom (P.S., A.T.T., N.K.M., M.D.B.J., G.W.B); and
- School of Life Sciences, Gibbet Hill Campus, The University of Warwick, Coventry CV4 7AL, United Kingdom (D.F.A.T., J.L.B.)
| | - Matthew D B Jackson
- School of Biosciences, College of Life and Environmental and Life Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom (P.S., A.T.T., N.K.M., M.D.B.J., G.W.B); and
- School of Life Sciences, Gibbet Hill Campus, The University of Warwick, Coventry CV4 7AL, United Kingdom (D.F.A.T., J.L.B.)
| | - Daniel F A Tomé
- School of Biosciences, College of Life and Environmental and Life Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom (P.S., A.T.T., N.K.M., M.D.B.J., G.W.B); and
- School of Life Sciences, Gibbet Hill Campus, The University of Warwick, Coventry CV4 7AL, United Kingdom (D.F.A.T., J.L.B.)
| | - Jim L Beynon
- School of Biosciences, College of Life and Environmental and Life Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom (P.S., A.T.T., N.K.M., M.D.B.J., G.W.B); and
- School of Life Sciences, Gibbet Hill Campus, The University of Warwick, Coventry CV4 7AL, United Kingdom (D.F.A.T., J.L.B.)
| | - George W Bassel
- School of Biosciences, College of Life and Environmental and Life Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom (P.S., A.T.T., N.K.M., M.D.B.J., G.W.B); and
- School of Life Sciences, Gibbet Hill Campus, The University of Warwick, Coventry CV4 7AL, United Kingdom (D.F.A.T., J.L.B.)
| |
Collapse
|
100
|
Liu Q, Guo X, Chen G, Zhu Z, Yin W, Hu Z. Silencing SlGID2, a putative F-box protein gene, generates a dwarf plant and dark-green leaves in tomato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 109:491-501. [PMID: 27835847 DOI: 10.1016/j.plaphy.2016.10.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/31/2016] [Accepted: 10/31/2016] [Indexed: 06/06/2023]
Abstract
In plant, F-box protein participates in various signal transduction systems and plays an important role in signaling pathways. Here, a putative F-box protein, namely SlGID2, was isolated from tomato (Solanum lycopersicum). Bioinformatics analyses suggested that SlGID2 shows high identity with F-box proteins from other plant species. Expression pattern analysis showed that SlGID2 gene is ubiquitously expressed in tomato tissues. To study the function of SlGID2 in tomato, SlGID2-silenced (SlGID2i) tomato by RNA interference (RNAi) was generated and displayed a dwarf plant and dark-green leaf phenotypes. The defective stem elongation of SlGID2i lines was not rescued by exogenous GA and its endogenous GA level was higher than wild type, further supporting the observation that SlGID2i transgenic plants are GA insensitive. Furthermore, SlGAST1, the downstream gene of GA signaling, and some cell expansion, division related genes (SlCycB1;1, SlCycD2;1, SlCycA3;1, SlXTH2, SlEXP2, SlKRP4) were down-regulated by SlGID2 silencing. In addition, the expression levels of SlDELLA (a negative regulator of GA signaling) and SlGA2ox1 were decreased, while SlGA3ox1 and SlGA20ox2 transcripts were increased in SlGID2i lines. Thus, we conclude that SlGID2 may be a positive regulator of GA signaling and promotes the GA signal pathway.
Collapse
Affiliation(s)
- Qin Liu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400044, PR China
| | - Xuhu Guo
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400044, PR China
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400044, PR China
| | - Zhiguo Zhu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400044, PR China
| | - Wencheng Yin
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400044, PR China
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400044, PR China.
| |
Collapse
|