51
|
Erb M. Plant Defenses against Herbivory: Closing the Fitness Gap. TRENDS IN PLANT SCIENCE 2018; 23:187-194. [PMID: 29223923 DOI: 10.1016/j.tplants.2017.11.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/10/2017] [Accepted: 11/15/2017] [Indexed: 05/03/2023]
Abstract
Many morphological and chemical features of plants are classified as plant defenses against herbivores. By definition, plant defenses should increase a plant's fitness (i.e., its contribution to the gene pool of the next generation) as a function of herbivory. Over the past years, substantial progress has been made in understanding and manipulating the mechanistic basis of many putative plant defense traits. However, most plant defenses are still characterized by proximate variables such as herbivore performance or plant damage rather than actual fitness. Determining fitness benefits as a function of herbivory therefore remains a major knowledge gap that must be filled to understand the ecology and evolution of plant defenses.
Collapse
Affiliation(s)
- Matthias Erb
- Institute of Plant Sciences, University of Bern, Bern, Switzerland.
| |
Collapse
|
52
|
Schuman MC, Meldau S, Gaquerel E, Diezel C, McGale E, Greenfield S, Baldwin IT. The Active Jasmonate JA-Ile Regulates a Specific Subset of Plant Jasmonate-Mediated Resistance to Herbivores in Nature. FRONTIERS IN PLANT SCIENCE 2018; 9:787. [PMID: 29963064 PMCID: PMC6010948 DOI: 10.3389/fpls.2018.00787] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/24/2018] [Indexed: 05/20/2023]
Abstract
The jasmonate hormones are essential regulators of plant defense against herbivores and include several dozen derivatives of the oxylipin jasmonic acid (JA). Among these, the conjugate jasmonoyl isoleucine (JA-Ile) has been shown to interact directly with the jasmonate co-receptor complex to regulate responses to jasmonate signaling. However, functional studies indicate that some aspects of jasmonate-mediated defense are not regulated by JA-Ile. Thus, it is not clear whether JA-Ile is best characterized as the master jasmonate regulator of defense, or if it regulates more specific aspects. We investigated possible functions of JA-Ile in anti-herbivore resistance of the wild tobacco Nicotiana attenuata, a model system for plant-herbivore interactions. We first analyzed the soluble and volatile secondary metabolomes of irJAR4xirJAR6, asLOX3, and WT plants, as well as an RNAi line targeting the jasmonate co-receptor CORONATINE INSENSITIVE 1 (irCOI1), following a standardized herbivory treatment. irJAR4xirJAR6 were the most similar to WT plants, having a ca. 60% overlap in differentially regulated metabolites with either asLOX3 or irCOI1. In contrast, while at least 25 volatiles differed between irCOI1 or asLOX3 and WT plants, there were few or no differences in herbivore-induced volatile emission between irJAR4xirJAR6 and WT plants, in glasshouse- or field-collected samples. We then measured the susceptibility of jasmonate-deficient vs. JA-Ile-deficient plants in nature, in comparison to wild-type (WT) controls, and found that JA-Ile-deficient plants (irJAR4xirJAR6) are much better defended even than a mildly jasmonate-deficient line (asLOX3). The differences among lines could be attributed to differences in damage from specific herbivores, which appeared to prefer either one or the other jasmonate-deficient phenotype. We further investigated the elicitation of one herbivore-induced volatile known to be jasmonate-regulated and to mediate resistance to herbivores: (E)-α-bergamotene. We found that JA was a more potent elicitor of (E)-α-bergamotene emission than was JA-Ile, and when treated with JA, irJAR4xirJAR6 plants emitted 20- to 40-fold as much (E)-α-bergamotene than WT. We conclude that JA-Ile regulates specific aspects of herbivore resistance in N. attenuata. This specificity may allow plants flexibility in their responses to herbivores and in managing trade-offs between resistance, vs. growth and reproduction, over the course of ontogeny.
Collapse
Affiliation(s)
- Meredith C. Schuman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
- *Correspondence: Meredith C. Schuman
| | - Stefan Meldau
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Emmanuel Gaquerel
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Celia Diezel
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Erica McGale
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Sara Greenfield
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Plant Genetics, Brigham Young University, Provo, UT, United States
| | - Ian T. Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
53
|
Salvagnin U, Malnoy M, Thöming G, Tasin M, Carlin S, Martens S, Vrhovsek U, Angeli S, Anfora G. Adjusting the scent ratio: using genetically modified Vitis vinifera plants to manipulate European grapevine moth behaviour. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:264-271. [PMID: 28574666 PMCID: PMC5785346 DOI: 10.1111/pbi.12767] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/08/2017] [Accepted: 05/26/2017] [Indexed: 05/04/2023]
Abstract
Herbivorous insects use olfactory cues to locate their host plant within a complex olfactory landscape. One such example is the European grapevine moth Lobesia botrana, a key pest of the grape in the Palearctic region, which recently expanded both its geographical and host plant range. Previous studies have showed that a synthetic blend of the three terpenoids, (E)-β-caryophyllene, (E)-β-farnesene and (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), was as attractive for the moth as the complete grape odour profile in laboratory conditions. The same studies also showed that the specific ratio of these compounds in the grape bouquet was crucial because a percentage variation in any of the three volatiles resulted in almost complete inhibition of the blend's attractiveness. Here, we report on the creation of stable grapevine transgenic lines, with modified (E)-β-caryophyllene and (E)-β-farnesene emission and thus with an altered ratio compared to the original plants. When headspace collections from these plants were tested in wind tunnel behavioural assays, they were less attractive than control extracts. This result was confirmed by testing synthetic blends imitating the ratio found on natural and transformed plants, as well as by testing the plants themselves. With this evidence, we suggest that a strategy based on volatile ratio modification may also interfere with the host-finding behaviour of L. botrana in the field, creating avenues for new pest control methods.
Collapse
Affiliation(s)
- Umberto Salvagnin
- Faculty of Science and TechnologyFree University of Bozen‐BolzanoBolzanoItaly
- Research and Innovation CentreFondazione Edmund MachS. Michele all'Adige (TN)Italy
| | - Mickael Malnoy
- Research and Innovation CentreFondazione Edmund MachS. Michele all'Adige (TN)Italy
| | - Gunda Thöming
- Norwegian Institute of Bioeconomy Research, NIBIOÅsNorway
| | - Marco Tasin
- Norwegian Institute of Bioeconomy Research, NIBIOÅsNorway
- Swedish University of Agricultural SciencesAlnarpSweden
| | - Silvia Carlin
- Research and Innovation CentreFondazione Edmund MachS. Michele all'Adige (TN)Italy
| | - Stefan Martens
- Research and Innovation CentreFondazione Edmund MachS. Michele all'Adige (TN)Italy
| | - Urska Vrhovsek
- Research and Innovation CentreFondazione Edmund MachS. Michele all'Adige (TN)Italy
| | - Sergio Angeli
- Faculty of Science and TechnologyFree University of Bozen‐BolzanoBolzanoItaly
| | - Gianfranco Anfora
- Research and Innovation CentreFondazione Edmund MachS. Michele all'Adige (TN)Italy
- Center Agriculture Food Environment (CAFE)University of TrentoS. Michele all'Adige (TN)Italy
| |
Collapse
|
54
|
Poreddy S, Li J, Baldwin IT. Plant-mediated RNAi silences midgut-expressed genes in congeneric lepidopteran insects in nature. BMC PLANT BIOLOGY 2017; 17:199. [PMID: 29132300 PMCID: PMC5683459 DOI: 10.1186/s12870-017-1149-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 11/02/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND Plant-mediated RNAi (PMRi) silencing of insect genes has enormous potential for crop protection, but whether it works robustly under field conditions, particularly with lepidopteran pests, remains controversial. Wild tobacco Nicotiana attenuata and cultivated tobacco (N. tabacum) (Solanaceae) is attacked by two closely related specialist herbivores Manduca sexta and M. quinquemaculata (Lepidoptera, Sphingidae). When M. sexta larvae attack transgenic N. attenuata plants expressing double-stranded RNA(dsRNA) targeting M. sexta's midgut-expressed genes, the nicotine-ingestion induced cytochrome P450 monooxygenase (invert repeat (ir)CYP6B46-plants) and the lyciumoside-IV-ingestion induced β-glucosidase1 (irBG1-plants), these larval genes which are important for the larvae's response to ingested host toxins, are strongly silenced. RESULTS Here we show that the PMRi procedure also silences the homologous genes in native M. quinquemaculata larvae feeding on irCYP6B46 and irBG1-transgenic N. attenuata plants in nature. The PMRi lines shared 98 and 96% sequence similarity with M. quinquemaculata homologous coding sequences, and CYP6B46 and BG1 transcripts were reduced by ca. 90 and 80%, without reducing the transcripts of the larvae's most similar, potential off-target genes. CONCLUSIONS We conclude that the PMRi procedure can robustly and specifically silence genes in native congeneric insects that share sufficient sequence similarity and with the careful selection of targets, might protect crops from attack by congeneric-groups of insect pests.
Collapse
Affiliation(s)
- Spoorthi Poreddy
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745, Jena, Germany
- Present address: Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, CH-8008, Zurich, Switzerland
| | - Jiancai Li
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745, Jena, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745, Jena, Germany.
| |
Collapse
|
55
|
Lee G, Joo Y, Kim SG, Baldwin IT. What happens in the pith stays in the pith: tissue-localized defense responses facilitate chemical niche differentiation between two spatially separated herbivores. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:414-425. [PMID: 28805339 DOI: 10.1111/tpj.13663] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 07/28/2017] [Accepted: 08/01/2017] [Indexed: 05/09/2023]
Abstract
Herbivore attack is known to elicit systemic defense responses that spread throughout the host plant and influence the performance of other herbivores. While these plant-mediated indirect competitive interactions are well described, and the co-existence of herbivores from different feeding guilds is common, the mechanisms of co-existence are poorly understood. In both field and glasshouse experiments with a native tobacco, Nicotiana attenuata, we found no evidence of negative interactions when plants were simultaneously attacked by two spatially separated herbivores: a leaf chewer Manduca sexta and a stem borer Trichobaris mucorea. T. mucorea attack elicited jasmonic acid (JA) and jasmonoyl-l-isoleucine bursts in the pith of attacked stems similar to those that occur in leaves when M. sexta attacks N. attenuata leaves. Pith chlorogenic acid (CGA) levels increased 1000-fold to levels 6-fold higher than leaf levels after T. mucorea attack; these increases in pith CGA levels, which did not occur in M. sexta-attacked leaves, required JA signaling. With plants silenced in CGA biosynthesis (irHQT plants), CGA, as well as other caffeic acid conjugates, was demonstrated in both glasshouse and field experiments to function as a direct defense protecting piths against T. mucorea attack, but not against leaf chewers or sucking insects. T. mucorea attack does not systemically activate JA signaling in leaves, while M. sexta leaf-attack transiently induces detectable but minor pith JA levels that are dwarfed by local responses. We conclude that tissue-localized defense responses allow tissue-specialized herbivores to share the same host and occupy different chemical defense niches in the same hostplant.
Collapse
Affiliation(s)
- Gisuk Lee
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straβe 8, Jena, D-07745, Germany
| | - Youngsung Joo
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straβe 8, Jena, D-07745, Germany
| | - Sang-Gyu Kim
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straβe 8, Jena, D-07745, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straβe 8, Jena, D-07745, Germany
| |
Collapse
|
56
|
Jassbi AR, Zare S, Asadollahi M, Schuman MC. Ecological Roles and Biological Activities of Specialized Metabolites from the Genus Nicotiana. Chem Rev 2017; 117:12227-12280. [PMID: 28960061 DOI: 10.1021/acs.chemrev.7b00001] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Species of Nicotiana grow naturally in different parts of the world and have long been used both medicinally and recreationally by human societies. More recently in our history, Nicotiana tabacum has attracted interest as one of the most economically important industrial crops. Nicotiana species are frequently investigated for their bioactive natural products, and the ecological role of their specialized metabolites in responses to abiotic stress or biotic stress factors like pathogens and herbivores. The interest of tobacco companies in genetic information as well as the success of a few wild tobacco species as experimental model organisms have resulted in growing knowledge about the molecular biology and ecology of these plants and functional studies of the plant's natural products. Although a large number of reviews and books on biologically active natural products already exists, mostly from N. tabacum, we focus our attention on the ecological roles and biological activity of natural products, versus products from cured and processed material, in this Review. The studied compounds include alkaloids, aromatic compounds, flavonoids, volatiles, sesquiterpenoids, diterpenes alcohols, and sugar esters from trichomes of the plants, and recently characterized acyclic hydroxygeranyllinalool diterpene glycosides (HGL-DTGs). In this Review (1800s-2017), we describe the above-mentioned classes of natural products, emphasizing their biological activities and functions as they have been determined either in bioassay-guided purification approaches or in bioassays with plants in which the expression of specific biosynthetic genes has been genetically manipulated. Additionally, a review on the history, taxonomy, ecology, and medicinal application of different Nicotiana species growing around the globe presented in this Review may be of interest for pharmacognosists, natural products, and ecological chemists.
Collapse
Affiliation(s)
| | | | | | - Meredith C Schuman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology , Jena 07745, Germany
- German Centre for Integrative Biodiversity Research (iDiv) , Deutscher Platz 5e, Leipzig 04103, Germany
| |
Collapse
|
57
|
Pradhan M, Pandey P, Gase K, Sharaff M, Singh RK, Sethi A, Baldwin IT, Pandey SP. Argonaute 8 (AGO8) Mediates the Elicitation of Direct Defenses against Herbivory. PLANT PHYSIOLOGY 2017; 175:927-946. [PMID: 28811334 PMCID: PMC5619897 DOI: 10.1104/pp.17.00702] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/11/2017] [Indexed: 05/04/2023]
Abstract
In Nicotiana attenuata, specific RNA-directed RNA polymerase (RdR1) and the Dicer-like (DCL3 and DCL4) proteins are recruited during herbivore attack to mediate the regulation of defense responses. However, the identity and role(s) of Argonautes (AGOs) involved in herbivory remain unknown. Of the 11 AGOs in the N. attenuata genome, we silenced the expression of 10. Plants silenced in NaAGO8 expression grew normally but were highly susceptible to herbivore attack. Larvae of Manduca sexta grew faster when consuming inverted-repeat stable transformants (irAGO8) plants but did not differ from the wild type when consuming plants silenced in AGO1 (a, b, and c), AGO2, AGO4 (a and b), AGO7, or AGO10 expression. irAGO8 plants were significantly compromised in herbivore-induced levels of defense metabolites such as nicotine, phenolamides, and diterpenoid glycosides. Time-course analyses revealed extensively altered microRNA profiles and the reduced accumulation of MYB8 transcripts and of the associated genes of the phenolamide and phenylpropanoid pathways as well as the nicotine biosynthetic pathway. A possible AGO8-modulated microRNA-messenger RNA target network was inferred. Furthermore, comparative analysis of domains revealed the diversity of AGO conformations, particularly in the small RNA-binding pocket, which may influence substrate recognition/binding and functional specificity. We infer that AGO8 plays a central role in the induction of direct defenses by modulating several regulatory nodes in the defense signaling network during herbivore response. Thus, our study identifies the effector AGO of the herbivore-induced small RNA machinery, which in N. attenuata now comprises RdR1, DCL3/4, and AGO8.
Collapse
Affiliation(s)
- Maitree Pradhan
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, Nadia, West Bengal, India
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Priyanka Pandey
- National Institute of Biomedical Genomics, Kalyani, 741251 West Bengal, India
| | - Klaus Gase
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Murali Sharaff
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, Nadia, West Bengal, India
| | - Ravi K Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, Nadia, West Bengal, India
| | - Avinash Sethi
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, Nadia, West Bengal, India
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Shree P Pandey
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, Nadia, West Bengal, India
| |
Collapse
|
58
|
Dillon FM, Chludil HD, Zavala JA. Solar UV-B radiation modulates chemical defenses against Anticarsia gemmatalis larvae in leaves of field-grown soybean. PHYTOCHEMISTRY 2017; 141:27-36. [PMID: 28551080 DOI: 10.1016/j.phytochem.2017.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 05/16/2017] [Accepted: 05/18/2017] [Indexed: 06/07/2023]
Abstract
Although it is well known that solar ultraviolet B (UV-B) radiation enhances plant defenses, there is less knowledge about traits that define insect resistance in field-grown soybean. Here we study the effects of solar UV-B radiation on: a) the induction of phenolic compounds and trypsin proteinase inhibitors (TPI) in soybean undamaged leaves or damaged by Anticarsia gemmatalis neonates during six days, and b) the survival and mass gain of A. gemmatalis larvae that fed on soybean foliage. Two soybean cultivars (cv.), Charata and Williams, were grown under plastic with different transmittance to solar UV-B radiation, which generated two treatments: ambient UV-B (UVB+) and reduced UV-B (UVB-) radiation. Solar UV-B radiation decreased survivorship by 30% and mass gain by 45% of larvae that fed on cv. Charata, but no effect was found in those larvae that fed on cv. Williams. TPI activity and malonyl genistin were induced by A. gemmatalis damage in both cultivars, but solar UV-B radiation and damage only synergistically increased the induction of these compounds in cv. Williams. Although TPI activity and genistein derivatives were induced by herbivory, these results did not explain the differences found in survivorship and mass gain of larvae that fed on cv. Charata. However, we found a positive association between lower larval performance and the presence of two quercetin triglycosides and a kaempferol triglycoside in foliage of cv. Charata, which were identified by HPLC-DAD/MS2. We conclude that exclusion of solar UV-B radiation reduce resistance to A. gemmatalis, due to a reduction in flavonol concentration in a cultivar that has low levels of genistein derivatives like cv. Charata.
Collapse
Affiliation(s)
- Francisco M Dillon
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Bioquímica, Avenida San Martín 4453, C1417DSE, Buenos Aires, Argentina; CONICET/INBA, Avenida San Martín 4453, C1417DSE, Buenos Aires, Argentina
| | - Hugo D Chludil
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Química de Biomoléculas, Avenida San Martín 4453, C1417DSE, Buenos Aires, Argentina
| | - Jorge A Zavala
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Bioquímica, Avenida San Martín 4453, C1417DSE, Buenos Aires, Argentina; CONICET/INBA, Avenida San Martín 4453, C1417DSE, Buenos Aires, Argentina.
| |
Collapse
|
59
|
Li R, Wang M, Wang Y, Schuman MC, Weinhold A, Schäfer M, Jiménez-Alemán GH, Barthel A, Baldwin IT. Flower-specific jasmonate signaling regulates constitutive floral defenses in wild tobacco. Proc Natl Acad Sci U S A 2017; 114:E7205-E7214. [PMID: 28784761 PMCID: PMC5576791 DOI: 10.1073/pnas.1703463114] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Optimal defense (OD) theory predicts that within a plant, tissues are defended in proportion to their fitness value and risk of predation. The fitness value of leaves varies greatly and leaves are protected by jasmonate (JA)-inducible defenses. Flowers are vehicles of Darwinian fitness in flowering plants and are attacked by herbivores and pathogens, but how they are defended is rarely investigated. We used Nicotiana attenuata, an ecological model plant with well-characterized herbivore interactions to characterize defense responses in flowers. Early floral stages constitutively accumulate greater amounts of two well-characterized defensive compounds, the volatile (E)-α-bergamotene and trypsin proteinase inhibitors (TPIs), which are also found in herbivore-induced leaves. Plants rendered deficient in JA biosynthesis or perception by RNA interference had significantly attenuated floral accumulations of defensive compounds known to be regulated by JA in leaves. By RNA-seq, we found a JAZ gene, NaJAZi, specifically expressed in early-stage floral tissues. Gene silencing revealed that NaJAZi functions as a flower-specific jasmonate repressor that regulates JAs, (E)-α-bergamotene, TPIs, and a defensin. Flowers silenced in NaJAZi are more resistant to tobacco budworm attack, a florivore. When the defensin was ectopically expressed in leaves, performance of Manduca sexta larvae, a folivore, decreased. NaJAZi physically interacts with a newly identified NINJA-like protein, but not the canonical NINJA. This NINJA-like recruits the corepressor TOPLESS that contributes to the suppressive function of NaJAZi on floral defenses. This study uncovers the defensive function of JA signaling in flowers, which includes components that tailor JA signaling to provide flower-specific defense.
Collapse
Affiliation(s)
- Ran Li
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Ming Wang
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Yang Wang
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Meredith C Schuman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Arne Weinhold
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Martin Schäfer
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | | | - Andrea Barthel
- Department of Entomology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany;
| |
Collapse
|
60
|
Bozorov TA, Dinh ST, Baldwin IT. JA but not JA-Ile is the cell-nonautonomous signal activating JA mediated systemic defenses to herbivory in Nicotiana attenuata. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:552-571. [PMID: 28422432 DOI: 10.1111/jipb.12545] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 04/17/2017] [Indexed: 05/20/2023]
Abstract
The whole-plant activation of defense responses to wounding and herbivory requires systemic signaling in which jasmonates (JAs) play a pivotal role. To examine the nature of the slower cell-nonautonomous as compared to the rapid cell-autonomous signal in mediating systemic defenses in Nicotiana attenuata, reciprocal stem grafting-experiments were used with plants silenced for the JA biosynthetic gene ALLENE OXIDE CYCLASE (irAOC) or plants transformed to create JA sinks by ectopically expressing Arabidopsis JA-O-methyltransferase (ovJMT). JA-impaired irAOC plants were defective in the cell-nonautonomous signaling pathway but not in JA transport. Conversely, ovJMT plants abrogated the production of a graft-transmissible JA signal. Both genotypes displayed unaltered cell-autonomous signaling. Defense responses (17-hydroxygeranyllinalool diterpene glycosides, nicotine, and proteinase inhibitors) and metabolite profiles were differently induced in irAOC and ovJMT scions in response to graft-transmissible signals from elicited wild type stocks. The performance of Manduca sexta larvae on the scions of different graft combinations was consistent with the patterns of systemic defense metabolite elicitations. Taken together, we conclude that JA and possibly MeJA, but not JA-Ile, either directly functions as a long-distance transmissible signal or indirectly interacts with long distance signal(s) to activate systemic defense responses.
Collapse
Affiliation(s)
- Tohir A Bozorov
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745, Jena, Germany
- Institute of Genetics and Plants Experimental Biology, Uzbek Academy of Sciences, Yukori-Yuz, 111226, Kibray, Tashkent Region, Uzbekistan
| | - Son Truong Dinh
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745, Jena, Germany
- Department of Plant Biotechnology, Faculty of Biotechnology - Vietnam National University of Agriculture, Ngo Xuan Quang Street, 100000, Hanoi, Vietnam
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745, Jena, Germany
| |
Collapse
|
61
|
Durrant M, Boyer J, Zhou W, Baldwin IT, Xu S. Evidence of an evolutionary hourglass pattern in herbivory-induced transcriptomic responses. THE NEW PHYTOLOGIST 2017; 215:1264-1273. [PMID: 28618009 DOI: 10.1111/nph.14644] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/28/2017] [Indexed: 06/07/2023]
Abstract
Herbivory-induced defenses are specific and activated in plants when elicitors, frequently found in the herbivores' oral secretions, are introduced into wounds during attack. While complex signaling cascades are known to be involved, it remains largely unclear how natural selection has shaped the evolution of these induced defenses. We analyzed herbivory-induced transcriptomic responses in wild tobacco, Nicotiana attenuata, using a phylotranscriptomic approach that measures the origin and sequence divergence of herbivory-induced genes. Highly conserved and evolutionarily ancient genes of primary metabolism were activated at intermediate time points (2-6 h) after elicitation, while less constrained and young genes associated with defense signaling and biosynthesis of specialized metabolites were activated at early (before 2 h) and late (after 6 h) stages of the induced response, respectively - a pattern resembling the evolutionary hourglass pattern observed during embryogenesis in animals and the developmental process in plants and fungi. The hourglass patterns found in herbivory-induced defense responses and developmental process are both likely to be a result of signaling modularization and differential evolutionary constraints on the modules involved in the signaling cascade.
Collapse
Affiliation(s)
- Matthew Durrant
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
- Department of Plant and Wildlife Sciences, Brigham Young University, 4105A, LSB, Provo, UT 84602, USA
| | - Justin Boyer
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
- Department of Plant and Wildlife Sciences, Brigham Young University, 4105A, LSB, Provo, UT 84602, USA
| | - Wenwu Zhou
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Shuqing Xu
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| |
Collapse
|
62
|
Machado RAR, Baldwin IT, Erb M. Herbivory-induced jasmonates constrain plant sugar accumulation and growth by antagonizing gibberellin signaling and not by promoting secondary metabolite production. THE NEW PHYTOLOGIST 2017; 215:803-812. [PMID: 28631319 DOI: 10.1111/nph.14597] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/03/2017] [Indexed: 05/27/2023]
Abstract
Plants respond to herbivory by reconfiguring hormonal networks, increasing secondary metabolite production and decreasing growth. Furthermore, some plants display a decrease in leaf energy reserves in the form of soluble sugars and starch, leading to the hypothesis that herbivory-induced secondary metabolite production and growth reduction may be linked through a carbohydrate-based resource trade-off. In order to test the above hypothesis, we measured leaf carbohydrates and plant growth in seven genetically engineered Nicotiana attenuata genotypes that are deficient in one or several major herbivore-induced, jasmonate-dependent defensive secondary metabolites and proteins. Furthermore, we manipulated gibberellin and jasmonate signaling, and quantified the impact of these phytohormones on secondary metabolite production, sugar accumulation and growth. Simulated herbivore attack by Manduca sexta specifically reduced leaf sugar concentrations and growth in a jasmonate-dependent manner. These effects were similar or even stronger in defenseless genotypes with intact jasmonate signaling. Gibberellin complementation rescued carbohydrate accumulation and growth in induced plants without impairing the induction of defensive secondary metabolites. These results are consistent with a hormonal antagonism model rather than a resource-cost model to explain the negative relationship between herbivory-induced defenses, leaf energy reserves and growth.
Collapse
Affiliation(s)
- Ricardo A R Machado
- Root-Herbivore Interactions Group, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013, Bern, Switzerland
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Matthias Erb
- Root-Herbivore Interactions Group, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013, Bern, Switzerland
| |
Collapse
|
63
|
Adal AM, Sarker LS, Lemke AD, Mahmoud SS. Isolation and functional characterization of a methyl jasmonate-responsive 3-carene synthase from Lavandula x intermedia. PLANT MOLECULAR BIOLOGY 2017; 93:641-657. [PMID: 28258552 DOI: 10.1007/s11103-017-0588-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/23/2017] [Indexed: 06/06/2023]
Abstract
A methyl jasmonate responsive 3-carene synthase (Li3CARS) gene was isolated from Lavandula x intermedia and functionally characterized in vitro. Lavenders produce essential oils consisting mainly of monoterpenes, including the potent antimicrobial and insecticidal monoterpene 3-carene. In this study we isolated and functionally characterized a leaf-specific, methyl jasmonate (MeJA)-responsive monoterpene synthase (Li3CARS) from Lavandula x intermedia. The ORF excluding transit peptides encoded a 64.9 kDa protein that was expressed in E. coli, and purified with Ni-NTA agarose affinity chromatography. The recombinant Li3CARS converted GPP into 3-carene as the major product, with K m and k cat of 3.69 ± 1.17 µM and 2.01 s-1 respectively. Li3CARS also accepted NPP as a substrate to produce multiple products including a small amount of 3-carene. The catalytic efficiency of Li3CARS to produce 3-carene was over ten fold higher for GPP (k cat /K m = 0.56 µM-1s-1) than NPP (k cat /K m = 0.044 µM-1s-1). Production of distinct end product profiles from different substrates (GPP versus NPP) by Li3CARS indicates that monoterpene metabolism may be controlled in part through substrate availability. Li3CARS transcripts were found to be highly abundant in leaves (16-fold) as compared to flower tissues. The transcriptional activity of Li3CARS correlated with 3-carene production, and was up-regulated (1.18- to 3.8-fold) with MeJA 8-72 h post-treatment. The results suggest that Li3CARS may have a defensive role in Lavandula.
Collapse
Affiliation(s)
- Ayelign M Adal
- Department of Biology, University of British Columbia, 1177 Research Rd, Kelowna, BC. V1V 1V7, Canada
| | - Lukman S Sarker
- Department of Biology, University of British Columbia, 1177 Research Rd, Kelowna, BC. V1V 1V7, Canada
| | - Ashley D Lemke
- Department of Biology, University of British Columbia, 1177 Research Rd, Kelowna, BC. V1V 1V7, Canada
| | - Soheil S Mahmoud
- Department of Biology, University of British Columbia, 1177 Research Rd, Kelowna, BC. V1V 1V7, Canada.
| |
Collapse
|
64
|
Loke KK, Rahnamaie-Tajadod R, Yeoh CC, Goh HH, Mohamed-Hussein ZA, Zainal Z, Ismail I, Mohd Noor N. Transcriptome analysis of Polygonum minus reveals candidate genes involved in important secondary metabolic pathways of phenylpropanoids and flavonoids. PeerJ 2017; 5:e2938. [PMID: 28265493 PMCID: PMC5333554 DOI: 10.7717/peerj.2938] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 12/23/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Polygonum minus is an herbal plant in the Polygonaceae family which is rich in ethnomedicinal plants. The chemical composition and characteristic pungent fragrance of Polygonum minus have been extensively studied due to its culinary and medicinal properties. There are only a few transcriptome sequences available for species from this important family of medicinal plants. The limited genetic information from the public expressed sequences tag (EST) library hinders further study on molecular mechanisms underlying secondary metabolite production. METHODS In this study, we performed a hybrid assembly of 454 and Illumina sequencing reads from Polygonum minus root and leaf tissues, respectively, to generate a combined transcriptome library as a reference. RESULTS A total of 34.37 million filtered and normalized reads were assembled into 188,735 transcripts with a total length of 136.67 Mbp. We performed a similarity search against all the publicly available genome sequences and found similarity matches for 163,200 (86.5%) of Polygonum minus transcripts, largely from Arabidopsis thaliana (58.9%). Transcript abundance in the leaf and root tissues were estimated and validated through RT-qPCR of seven selected transcripts involved in the biosynthesis of phenylpropanoids and flavonoids. All the transcripts were annotated against KEGG pathways to profile transcripts related to the biosynthesis of secondary metabolites. DISCUSSION This comprehensive transcriptome profile will serve as a useful sequence resource for molecular genetics and evolutionary research on secondary metabolite biosynthesis in Polygonaceae family. Transcriptome assembly of Polygonum minus can be accessed at http://prims.researchfrontier.org/index.php/dataset/transcriptome.
Collapse
Affiliation(s)
- Kok-Keong Loke
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | | | - Chean-Chean Yeoh
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Hoe-Han Goh
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Zeti-Azura Mohamed-Hussein
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Zamri Zainal
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Ismanizan Ismail
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Normah Mohd Noor
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| |
Collapse
|
65
|
Heterologous synthesis of geranyllinalool, a diterpenol plant product, in the cyanobacterium Synechocystis. Appl Microbiol Biotechnol 2017; 101:2791-2800. [DOI: 10.1007/s00253-016-8081-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/22/2016] [Accepted: 12/18/2016] [Indexed: 02/04/2023]
|
66
|
Adam N, Erler T, Kallenbach M, Kaltenpoth M, Kunert G, Baldwin IT, Schuman MC. Sex ratio of mirid populations shifts in response to hostplant co-infestation or altered cytokinin signaling . JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:44-59. [PMID: 27862998 PMCID: PMC5234700 DOI: 10.1111/jipb.12507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 11/08/2016] [Indexed: 05/11/2023]
Abstract
Herbivore species sharing a host plant often compete. In this study, we show that host plant-mediated interaction between two insect herbivores - a generalist and a specialist - results in a sex ratio shift of the specialist's offspring. We studied demographic parameters of the specialist Tupiocoris notatus (Hemiptera: Miridae) when co-infesting the host plant Nicotiana attenuata (Solanaceae) with the generalist leafhopper Empoasca sp. (Hemiptera: Cicadellidae). We show that the usually female-biased sex ratio of T. notatus shifts toward a higher male proportion in the offspring on plants co-infested by Empoasca sp. This sex ratio change did not occur after oviposition, nor is it due differential mortality of female and male nymphs. Based on pyrosequencing and PCR of bacterial 16S rRNA amplicons, we concluded that sex ratio shifts were unlikely to be due to infection with Wolbachia or other known sex ratio-distorting endosymbionts. Finally, we used transgenic lines of N. attenuata to evaluate if the sex ratio shift could be mediated by changes in general or specialized host plant metabolites. We found that the sex ratio shift occurred on plants deficient in two cytokinin receptors (irCHK2/3). Thus, cytokinin-regulated traits can alter the offspring sex ratio of the specialist T. notatus.
Collapse
Affiliation(s)
- Nora Adam
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Theresa Erler
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Mario Kallenbach
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Martin Kaltenpoth
- Max Planck Research Group Insect Symbiosis, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Grit Kunert
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Ian T. Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Meredith C. Schuman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Deutscher Platz 5e, 04103 Leipzig, Germany
| |
Collapse
|
67
|
Crava CM, Brütting C, Baldwin IT. Transcriptome profiling reveals differential gene expression of detoxification enzymes in a hemimetabolous tobacco pest after feeding on jasmonate-silenced Nicotiana attenuata plants. BMC Genomics 2016; 17:1005. [PMID: 27931186 PMCID: PMC5146904 DOI: 10.1186/s12864-016-3348-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/25/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The evolutionary arms race between plants and insects has driven the co-evolution of sophisticated defense mechanisms used by plants to deter herbivores and equally sophisticated strategies that enable phytophagous insects to rapidly detoxify the plant's defense metabolites. In this study, we identify the genetic determinants that enable the mirid, Tupiocoris notatus, to feed on its well-defended host plant, Nicotiana attenuata, an outstanding model for plant-insect interaction studies. RESULTS We used an RNAseq approach to evaluate the global gene expression of T. notatus after feeding on a transgenic N. attenuata line which does not accumulate jasmonic acid (JA) after herbivory, and consequently accumulates very low levels of defense metabolites. Using Illumina sequencing, we generated a de novo assembled transcriptome which resulted in 63,062 contigs (putative transcript isoforms) contained in 42,610 isotigs (putative identified genes). Differential expression analysis based on RSEM-estimated transcript abundances identified 82 differentially expressed (DE) transcripts between T. notatus fed on wild-type and the defenseless plants. The same analysis conducted with Corset-estimated transcript abundances identified 59 DE clusters containing 85 transcripts. In both analyses, a larger number of DE transcripts were found down-regulated in mirids feeding on JA-silenced plants (around 70%). Among these down-regulated transcripts we identified seven transcripts possibly involved in the detoxification of N. attenuata defense metabolite, specifically, one glutathione-S-transferase (GST), one UDP-glucosyltransferase (UGT), five cytochrome P450 (P450s), and six serine proteases. Real-time quantitative PCR confirmed the down-regulation for six transcripts (encoding GST, UGT and four P450s) and revealed that their expression was only slightly decreased in mirids feeding on another N. attenuata transgenic line specifically silenced in the accumulation of diterpene glycosides, one of the many classes of JA-mediated defenses in N. attenuata. CONCLUSIONS The results provide a transcriptional overview of the changes in a specialist hemimetabolous insect associated with feeding on host plants depleted in chemical defenses. Overall, the analysis reveals that T. notatus responses to host plant defenses are narrow and engages P450 detoxification pathways. It further identifies candidate genes which can be tested in future experiments to understand their role in shaping the T. notatus-N. attenuata interaction.
Collapse
Affiliation(s)
- Cristina M. Crava
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell strasse 8, D-07745 Jena, Germany
- Present Address: Department of Sustainable Ecosystems and Bio-resources, Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, 38010 San Michele all’Adige, Italy
| | - Christoph Brütting
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell strasse 8, D-07745 Jena, Germany
| | - Ian T. Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell strasse 8, D-07745 Jena, Germany
| |
Collapse
|
68
|
Li D, Heiling S, Baldwin IT, Gaquerel E. Illuminating a plant's tissue-specific metabolic diversity using computational metabolomics and information theory. Proc Natl Acad Sci U S A 2016; 113:E7610-E7618. [PMID: 27821729 PMCID: PMC5127351 DOI: 10.1073/pnas.1610218113] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Secondary metabolite diversity is considered an important fitness determinant for plants' biotic and abiotic interactions in nature. This diversity can be examined in two dimensions. The first one considers metabolite diversity across plant species. A second way of looking at this diversity is by considering the tissue-specific localization of pathways underlying secondary metabolism within a plant. Although these cross-tissue metabolite variations are increasingly regarded as important readouts of tissue-level gene function and regulatory processes, they have rarely been comprehensively explored by nontargeted metabolomics. As such, important questions have remained superficially addressed. For instance, which tissues exhibit prevalent signatures of metabolic specialization? Reciprocally, which metabolites contribute most to this tissue specialization in contrast to those metabolites exhibiting housekeeping characteristics? Here, we explore tissue-level metabolic specialization in Nicotiana attenuata, an ecological model with rich secondary metabolism, by combining tissue-wide nontargeted mass spectral data acquisition, information theory analysis, and tandem MS (MS/MS) molecular networks. This analysis was conducted for two different methanolic extracts of 14 tissues and deconvoluted 895 nonredundant MS/MS spectra. Using information theory analysis, anthers were found to harbor the most specialized metabolome, and most unique metabolites of anthers and other tissues were annotated through MS/MS molecular networks. Tissue-metabolite association maps were used to predict tissue-specific gene functions. Predictions for the function of two UDP-glycosyltransferases in flavonoid metabolism were confirmed by virus-induced gene silencing. The present workflow allows biologists to amortize the vast amount of data produced by modern MS instrumentation in their quest to understand gene function.
Collapse
Affiliation(s)
- Dapeng Li
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Sven Heiling
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Emmanuel Gaquerel
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany;
- Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
69
|
Khan BR, Wherritt DJ, Huhman D, Sumner LW, Chapman KD, Blancaflor EB. Malonylation of Glucosylated N-Lauroylethanolamine: A NEW PATHWAY THAT DETERMINES N-ACYLETHANOLAMINE METABOLIC FATE IN PLANTS. J Biol Chem 2016; 291:27112-27121. [PMID: 27856641 DOI: 10.1074/jbc.m116.751065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/02/2016] [Indexed: 11/06/2022] Open
Abstract
N-Acylethanolamines (NAEs) are bioactive fatty acid derivatives present in trace amounts in many eukaryotes. Although NAEs have signaling and physiological roles in animals, little is known about their metabolic fate in plants. Our previous microarray analyses showed that inhibition of Arabidopsis thaliana seedling growth by exogenous N-lauroylethanolamine (NAE 12:0) was accompanied by the differential expression of multiple genes encoding small molecule-modifying enzymes. We focused on the gene At5g39050, which encodes a phenolic glucoside malonyltransferase 1 (PMAT1), to better understand the biological significance of NAE 12:0-induced gene expression changes. PMAT1 expression was induced 3-5-fold by exogenous NAE 12:0. PMAT1 knockouts (pmat1) had reduced sensitivity to the growth-inhibitory effects of NAE 12:0 compared with wild type leading to the hypothesis that PMAT1 might be a previously uncharacterized regulator of NAE metabolism in plants. To test this hypothesis, metabolic profiling of wild-type and pmat1 seedlings treated with NAE 12:0 was conducted. Wild-type seedlings treated with NAE 12:0 accumulated glucosylated and malonylated forms of this NAE species, and structures were confirmed using nuclear magnetic resonance (NMR) spectroscopy. By contrast, only the peak corresponding to NAE 12:0-glucoside was detected in pmat1 Recombinant PMAT1 catalyzed the reaction converting NAE 12:0-glucoside to NAE 12:0-mono- or -dimalonylglucosides providing direct evidence that this enzyme is involved in NAE 12:0-glucose malonylation. Taken together, our results indicate that glucosylation of NAE 12:0 by a yet to be determined glucosyltransferase and its subsequent malonylation by PMAT1 could represent a mechanism for modulating the biological activities of NAEs in plants.
Collapse
Affiliation(s)
- Bibi Rafeiza Khan
- From the Plant Biology Division, The Samuel Roberts Noble Foundation, Inc., Ardmore, Oklahoma 73401
| | - Daniel J Wherritt
- the Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249
| | - David Huhman
- From the Plant Biology Division, The Samuel Roberts Noble Foundation, Inc., Ardmore, Oklahoma 73401
| | - Lloyd W Sumner
- the Bond Life Sciences Center, Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, and
| | - Kent D Chapman
- the Division of Biochemistry and Molecular Biology, Department of Biological Sciences, University of North Texas, Denton, Texas 76203-5220
| | - Elison B Blancaflor
- From the Plant Biology Division, The Samuel Roberts Noble Foundation, Inc., Ardmore, Oklahoma 73401,
| |
Collapse
|
70
|
Salvagnin U, Carlin S, Angeli S, Vrhovsek U, Anfora G, Malnoy M, Martens S. Homologous and heterologous expression of grapevine E-(β)-caryophyllene synthase (VvGwECar2). PHYTOCHEMISTRY 2016; 131:76-83. [PMID: 27561253 DOI: 10.1016/j.phytochem.2016.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 08/03/2016] [Accepted: 08/10/2016] [Indexed: 06/06/2023]
Abstract
E-(β)-caryophyllene is a sesquiterpene volatile emitted by plants and involved in many ecological interactions within and among trophic levels and it has a kairomonal activity for many insect species. In grapevine it is a key compound for host-plant recognition by the European grapevine moth, Lobesia botrana, together with other two sesquiterpenes. In grapevine E-(β)-caryophyllene synthase is coded by the VvGwECar2 gene, although complete characterization of the corresponding protein has not yet been achieved. Here we performed the characterization of the enzyme after heterologous expression in E. coli, which resulted to produce in vitro also minor amounts of the isomer α-humulene and of germacrene D. The pH optimum was estimated to be 7.8, and the Km and Kcat values for farnesyl pyrophosphate were 31.4 μM and 0.19 s-1 respectively. Then, we overexpressed the gene in the cytoplasm of two plant species, Arabidopsis thaliana and the native host Vitis vinifera. In Arabidopsis the enzyme changed the plant head space release, showing a higher selectivity for E-(β)-caryophyllene, but also the production of thujopsene instead of germacrene D. Overall plants increased the E-(β)-caryophyllene emission in the headspace collection by 8-fold compared to Col-0 control plants. In grapevine VvGwECar2 overexpression resulted in higher E-(β)-caryophyllene emissions, although there was no clear correlation between gene activity and sesquiterpene quantity, suggesting a key role by the plant regulation machinery.
Collapse
Affiliation(s)
- Umberto Salvagnin
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy; Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all'Adige, TN, Italy.
| | - Silvia Carlin
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all'Adige, TN, Italy.
| | - Sergio Angeli
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy.
| | - Urska Vrhovsek
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all'Adige, TN, Italy.
| | - Gianfranco Anfora
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all'Adige, TN, Italy.
| | - Mickael Malnoy
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all'Adige, TN, Italy.
| | - Stefan Martens
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all'Adige, TN, Italy.
| |
Collapse
|
71
|
Choi HW, Klessig DF. DAMPs, MAMPs, and NAMPs in plant innate immunity. BMC PLANT BIOLOGY 2016. [PMID: 27782807 DOI: 10.1186/s12870-016-0921-232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
BACKGROUND Multicellular organisms have evolved systems/mechanisms to detect various forms of danger, including attack by microbial pathogens and a variety of pests, as well as tissue and cellular damage. Detection via cell-surface receptors activates an ancient and evolutionarily conserved innate immune system. RESULT Potentially harmful microorganisms are recognized by the presence of molecules or parts of molecules that have structures or chemical patterns unique to microbes and thus are perceived as non-self/foreign. They are referred to as Microbe-Associated Molecular Patterns (MAMPs). Recently, a class of small molecules that is made only by nematodes, and that functions as pheromones in these organisms, was shown to be recognized by a wide range of plants. In the presence of these molecules, termed Nematode-Associated Molecular Patterns (NAMPs), plants activate innate immune responses and display enhanced resistance to a broad spectrum of microbial and nematode pathogens. In addition to pathogen attack, the relocation of various endogenous molecules or parts of molecules, generally to the extracellular milieu, as a result of tissue or cellular damage is perceived as a danger signal, and it leads to the induction of innate immune responses. These relocated endogenous inducers are called Damage-Associated Molecular Patterns (DAMPs). CONCLUSIONS This mini-review is focused on plant DAMPs, including the recently discovered Arabidopsis HMGB3, which is the counterpart of the prototypic animal DAMP HMGB1. The plant DAMPs will be presented in the context of plant MAMPs and NAMPs, as well as animal DAMPs.
Collapse
Affiliation(s)
- Hyong Woo Choi
- Boyce Thompson Institute, Cornell University, 533 Tower Road, Ithaca, NY, 14853, USA
| | - Daniel F Klessig
- Boyce Thompson Institute, Cornell University, 533 Tower Road, Ithaca, NY, 14853, USA.
| |
Collapse
|
72
|
Choi HW, Klessig DF. DAMPs, MAMPs, and NAMPs in plant innate immunity. BMC PLANT BIOLOGY 2016; 16:232. [PMID: 27782807 PMCID: PMC5080799 DOI: 10.1186/s12870-016-0921-2] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 10/19/2016] [Indexed: 05/13/2023]
Abstract
BACKGROUND Multicellular organisms have evolved systems/mechanisms to detect various forms of danger, including attack by microbial pathogens and a variety of pests, as well as tissue and cellular damage. Detection via cell-surface receptors activates an ancient and evolutionarily conserved innate immune system. RESULT Potentially harmful microorganisms are recognized by the presence of molecules or parts of molecules that have structures or chemical patterns unique to microbes and thus are perceived as non-self/foreign. They are referred to as Microbe-Associated Molecular Patterns (MAMPs). Recently, a class of small molecules that is made only by nematodes, and that functions as pheromones in these organisms, was shown to be recognized by a wide range of plants. In the presence of these molecules, termed Nematode-Associated Molecular Patterns (NAMPs), plants activate innate immune responses and display enhanced resistance to a broad spectrum of microbial and nematode pathogens. In addition to pathogen attack, the relocation of various endogenous molecules or parts of molecules, generally to the extracellular milieu, as a result of tissue or cellular damage is perceived as a danger signal, and it leads to the induction of innate immune responses. These relocated endogenous inducers are called Damage-Associated Molecular Patterns (DAMPs). CONCLUSIONS This mini-review is focused on plant DAMPs, including the recently discovered Arabidopsis HMGB3, which is the counterpart of the prototypic animal DAMP HMGB1. The plant DAMPs will be presented in the context of plant MAMPs and NAMPs, as well as animal DAMPs.
Collapse
Affiliation(s)
- Hyong Woo Choi
- Boyce Thompson Institute, Cornell University, 533 Tower Road, Ithaca, NY 14853 USA
| | - Daniel F. Klessig
- Boyce Thompson Institute, Cornell University, 533 Tower Road, Ithaca, NY 14853 USA
| |
Collapse
|
73
|
Machado RAR, Robert CAM, Arce CCM, Ferrieri AP, Xu S, Jimenez-Aleman GH, Baldwin IT, Erb M. Auxin Is Rapidly Induced by Herbivore Attack and Regulates a Subset of Systemic, Jasmonate-Dependent Defenses. PLANT PHYSIOLOGY 2016; 172:521-32. [PMID: 27485882 PMCID: PMC5074610 DOI: 10.1104/pp.16.00940] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 07/28/2016] [Indexed: 05/20/2023]
Abstract
Plant responses to herbivore attack are regulated by phytohormonal networks. To date, the role of the auxin indole-3-acetic acid (IAA) in this context is not well understood. We quantified and manipulated the spatiotemporal patterns of IAA accumulation in herbivore-attacked Nicotiana attenuata plants to unravel its role in the regulation of plant secondary metabolism. We found that IAA is strongly, rapidly, and specifically induced by herbivore attack. IAA is elicited by herbivore oral secretions and fatty acid conjugate elicitors and is accompanied by a rapid transcriptional increase of auxin biosynthetic YUCCA-like genes. IAA accumulation starts 30 to 60 s after local induction and peaks within 5 min after induction, thereby preceding the jasmonate (JA) burst. IAA accumulation does not require JA signaling and spreads rapidly from the wound site to systemic tissues. Complementation and transport inhibition experiments reveal that IAA is required for the herbivore-specific, JA-dependent accumulation of anthocyanins and phenolamides in the stems. In contrast, IAA does not affect the accumulation of nicotine or 7-hydroxygeranyllinalool diterpene glycosides in the same tissue. Taken together, our results uncover IAA as a rapid and specific signal that regulates a subset of systemic, JA-dependent secondary metabolites in herbivore-attacked plants.
Collapse
Affiliation(s)
- Ricardo A R Machado
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (R.A.R.M., C.A.M.R., C.C.M.A., A.P.F., S.X., G.H.J.-A., I.T.B., M.E.);Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland (R.A.R.M., C.A.M.R., C.C.M.A., M.E.); andDepartamento de Entomologia, Universidade Federal de Viçosa, 36570-000 Viçosa, Brazil (C.C.M.A.)
| | - Christelle A M Robert
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (R.A.R.M., C.A.M.R., C.C.M.A., A.P.F., S.X., G.H.J.-A., I.T.B., M.E.);Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland (R.A.R.M., C.A.M.R., C.C.M.A., M.E.); andDepartamento de Entomologia, Universidade Federal de Viçosa, 36570-000 Viçosa, Brazil (C.C.M.A.)
| | - Carla C M Arce
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (R.A.R.M., C.A.M.R., C.C.M.A., A.P.F., S.X., G.H.J.-A., I.T.B., M.E.);Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland (R.A.R.M., C.A.M.R., C.C.M.A., M.E.); andDepartamento de Entomologia, Universidade Federal de Viçosa, 36570-000 Viçosa, Brazil (C.C.M.A.)
| | - Abigail P Ferrieri
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (R.A.R.M., C.A.M.R., C.C.M.A., A.P.F., S.X., G.H.J.-A., I.T.B., M.E.);Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland (R.A.R.M., C.A.M.R., C.C.M.A., M.E.); andDepartamento de Entomologia, Universidade Federal de Viçosa, 36570-000 Viçosa, Brazil (C.C.M.A.)
| | - Shuqing Xu
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (R.A.R.M., C.A.M.R., C.C.M.A., A.P.F., S.X., G.H.J.-A., I.T.B., M.E.);Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland (R.A.R.M., C.A.M.R., C.C.M.A., M.E.); andDepartamento de Entomologia, Universidade Federal de Viçosa, 36570-000 Viçosa, Brazil (C.C.M.A.)
| | - Guillermo H Jimenez-Aleman
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (R.A.R.M., C.A.M.R., C.C.M.A., A.P.F., S.X., G.H.J.-A., I.T.B., M.E.);Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland (R.A.R.M., C.A.M.R., C.C.M.A., M.E.); andDepartamento de Entomologia, Universidade Federal de Viçosa, 36570-000 Viçosa, Brazil (C.C.M.A.)
| | - Ian T Baldwin
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (R.A.R.M., C.A.M.R., C.C.M.A., A.P.F., S.X., G.H.J.-A., I.T.B., M.E.);Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland (R.A.R.M., C.A.M.R., C.C.M.A., M.E.); andDepartamento de Entomologia, Universidade Federal de Viçosa, 36570-000 Viçosa, Brazil (C.C.M.A.)
| | - Matthias Erb
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (R.A.R.M., C.A.M.R., C.C.M.A., A.P.F., S.X., G.H.J.-A., I.T.B., M.E.);Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland (R.A.R.M., C.A.M.R., C.C.M.A., M.E.); andDepartamento de Entomologia, Universidade Federal de Viçosa, 36570-000 Viçosa, Brazil (C.C.M.A.)
| |
Collapse
|
74
|
Herden J, Meldau S, Kim SG, Kunert G, Joo Y, Baldwin IT, Schuman MC. Shifting Nicotiana attenuata's diurnal rhythm does not alter its resistance to the specialist herbivore Manduca sexta. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:656-68. [PMID: 26699809 PMCID: PMC5295642 DOI: 10.1111/jipb.12458] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/17/2015] [Indexed: 05/07/2023]
Abstract
Arabidopsis thaliana plants are less resistant to attack by the generalist lepidopteran herbivore Trichoplusia ni when plants and herbivores are entrained to opposite, versus identical diurnal cycles and tested under constant conditions. This effect is associated with circadian fluctuations in levels of jasmonic acid, the transcription factor MYC2, and glucosinolate contents in leaves. We tested whether a similar effect could be observed in a different plant-herbivore system: the wild tobacco Nicotiana attenuata and its co-evolved specialist herbivore, Manduca sexta. We measured larval growth on plants under both constant and diurnal conditions following identical or opposite entrainment, profiled the metabolome of attacked leaf tissue, quantified specific metabolites known to reduce M. sexta growth, and monitored M. sexta feeding activity under all experimental conditions. Entrainment did not consistently affect M. sexta growth or plant defense induction. However, both were reduced under constant dark conditions, as was M. sexta feeding activity. Our data indicate that the response induced by M. sexta in N. attenuata is robust to diurnal cues and independent of plant or herbivore entrainment. We propose that while the patterns of constitutive or general damage-induced defense may undergo circadian fluctuation, the orchestration of specific induced responses is more complex.
Collapse
Affiliation(s)
- Jasmin Herden
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745 Jena, Germany
| | - Stefan Meldau
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745 Jena, Germany
| | - Sang-Gyu Kim
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745 Jena, Germany
| | - Grit Kunert
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745 Jena, Germany
| | - Youngsung Joo
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745 Jena, Germany
| | - Ian T. Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745 Jena, Germany
| | - Meredith C. Schuman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745 Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Deutscher Platz 5e, 04103 Leipzig, Germany
| |
Collapse
|
75
|
Lee G, Joo Y, Diezel C, Lee EJ, Baldwin IT, Kim SG. Trichobaris weevils distinguish amongst toxic host plants by sensing volatiles that do not affect larval performance. Mol Ecol 2016; 25:3509-19. [PMID: 27146082 DOI: 10.1111/mec.13686] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/24/2016] [Accepted: 04/27/2016] [Indexed: 11/27/2022]
Abstract
Herbivorous insects use plant metabolites to inform their host plant selection for oviposition. These host-selection behaviours are often consistent with the preference-performance hypothesis; females oviposit on hosts that maximize the performance of their offspring. However, the metabolites used for these oviposition choices and those responsible for differences in offspring performance remain unknown for ecologically relevant interactions. Here, we examined the host-selection behaviours of two sympatric weevils, the Datura (Trichobaris compacta) and tobacco (T. mucorea) weevils in field and glasshouse experiments with transgenic host plants specifically altered in different components of their secondary metabolism. Adult females of both species strongly preferred to feed on D. wrightii rather than on N. attenuata leaves, but T. mucorea preferred to oviposit on N. attenuata, while T. compacta oviposited only on D. wrightii. These oviposition behaviours increased offspring performance: T. compacta larvae only survived in D. wrightii stems and T. mucorea larvae survived better in N. attenuata than in D. wrightii stems. Choice assays with nicotine-free, JA-impaired, and sesquiterpene-over-produced isogenic N. attenuata plants revealed that although half of the T. compacta larvae survived in nicotine-free N. attenuata lines, nicotine did not influence the oviposition behaviours of both the nicotine-adapted and nicotine-sensitive species. JA-induced sesquiterpene volatiles are key compounds influencing T. mucorea females' oviposition choices, but these sesquiterpenes had no effect on larval performance. We conclude that adult females are able to choose the best host plant for their offspring and use chemicals different from those that influence larval performance to inform their oviposition decisions.
Collapse
Affiliation(s)
- Gisuk Lee
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, D-07745, Germany
- School of Biological Science, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Youngsung Joo
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, D-07745, Germany
| | - Celia Diezel
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, D-07745, Germany
| | - Eun Ju Lee
- School of Biological Science, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, D-07745, Germany
| | - Sang-Gyu Kim
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, D-07745, Germany
| |
Collapse
|
76
|
Luo J, Wei K, Wang S, Zhao W, Ma C, Hettenhausen C, Wu J, Cao G, Sun G, Baldwin IT, Wu J, Wang L. COI1-Regulated Hydroxylation of Jasmonoyl-L-isoleucine Impairs Nicotiana attenuata's Resistance to the Generalist Herbivore Spodoptera litura. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:2822-31. [PMID: 26985773 DOI: 10.1021/acs.jafc.5b06056] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The phytohormone jasmonoyl-L-isoleucine (JA-Ile) is well-known as the key signaling molecule that elicits plant defense responses after insect herbivory. Oxidation, which is catalyzed by the cytochrome P450s of the CYP94 family, is thought to be one of the main catabolic pathways of JA-Ile. In this study, we identified four CYP94B3 homologues in the wild tobacco plant Nicotiana attenuata. Individually silencing the four homologues revealed that NaCYP94B3 like-1 and NaCYP94B3 like-2, but not NaCYP94B3 like-3 and NaCYP94B3 like-4, are involved in the C-12-hydroxylation of JA-Ile. Simultaneously silencing three of the NaCYP94B3 like genes, NaCYP94B3 like-1, -2, and -4, in the VIGS-NaCYP94B3s plants doubled herbivory-induced JA-Ile levels and greatly enhanced plant resistance to the generalist insect herbivore, Spodoptera litura. The poor larval performance was strongly correlated with the high concentrations of several JA-Ile-dependent direct defense metabolites in VIGS-NaCYP94B3s plants. Furthermore, we show that the abundance of 12-hydroxy-JA-Ile was dependent on JA-Ile levels as well as COI1, the receptor of JA-Ile. COI1 appeared to transcriptionally control NaCYP94B3 like-1 and -2 and thus regulates the catabolism of its own ligand molecule, JA-Ile. These results highlight the important role of JA-Ile degradation in jasmonate homeostasis and provide new insight into the feedback regulation of JA-Ile catabolism. Given that silencing these CYP94 genes did not detectably alter plant growth and highly increased plant defense levels, we propose that CYP94B3 genes can be potential targets for genetic improvement of herbivore-resistant crops.
Collapse
Affiliation(s)
- Ji Luo
- Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Kun Wei
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, China
| | - Shuanghua Wang
- Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Weiye Zhao
- Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, China
| | - Canrong Ma
- Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Christian Hettenhausen
- Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, China
| | - Jinsong Wu
- Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, China
| | - Guoyan Cao
- Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, China
| | - Guiling Sun
- Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, China
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology , Jena 07745, Germany
| | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, China
| | - Lei Wang
- Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, China
| |
Collapse
|
77
|
Li D, Baldwin IT, Gaquerel E. Beyond the Canon: Within-Plant and Population-Level Heterogeneity in Jasmonate Signaling Engaged by Plant-Insect Interactions. PLANTS 2016; 5:plants5010014. [PMID: 27135234 PMCID: PMC4844416 DOI: 10.3390/plants5010014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 11/16/2022]
Abstract
Plants have evolved sophisticated communication and defense systems with which they interact with insects. Jasmonates are synthesized from the oxylipin pathway and act as pivotal cellular orchestrators of many of the metabolic and physiological processes that mediate these interactions. Many of these jasmonate-dependent responses are tissue-specific and translate from modulations of the canonical jasmonate signaling pathway. Here we provide a short overview of within-plant heterogeneities in jasmonate signaling and dependent responses in the context of plant-insect interactions as illuminated by examples from recent work with the ecological model, Nicotiana attenuata. We then discuss means of manipulating jasmonate signaling by creating tissue-specific jasmonate sinks, and the micrografting of different transgenic plants. The metabolic phenotyping of these manipulations provides an integrative understanding of the functional significance of deviations from the canonical model of this hormonal pathway. Additionally, natural variation in jasmonate biosynthesis and signaling both among and within species can explain polymorphisms in resistance to insects in nature. In this respect, insect-guided explorations of population-level variations in jasmonate metabolism have revealed more complexity than previously realized and we discuss how different "omic" techniques can be used to exploit the natural variation that occurs in this important signaling pathway.
Collapse
Affiliation(s)
- Dapeng Li
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany.
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany.
| | - Emmanuel Gaquerel
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 360, Heidelberg 69120, Germany.
| |
Collapse
|
78
|
Ruprecht C, Mendrinna A, Tohge T, Sampathkumar A, Klie S, Fernie AR, Nikoloski Z, Persson S, Mutwil M. FamNet: A Framework to Identify Multiplied Modules Driving Pathway Expansion in Plants. PLANT PHYSIOLOGY 2016; 170:1878-94. [PMID: 26754669 PMCID: PMC4775111 DOI: 10.1104/pp.15.01281] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 01/07/2016] [Indexed: 05/07/2023]
Abstract
Gene duplications generate new genes that can acquire similar but often diversified functions. Recent studies of gene coexpression networks have indicated that, not only genes, but also pathways can be multiplied and diversified to perform related functions in different parts of an organism. Identification of such diversified pathways, or modules, is needed to expand our knowledge of biological processes in plants and to understand how biological functions evolve. However, systematic explorations of modules remain scarce, and no user-friendly platform to identify them exists. We have established a statistical framework to identify modules and show that approximately one-third of the genes of a plant's genome participate in hundreds of multiplied modules. Using this framework as a basis, we implemented a platform that can explore and visualize multiplied modules in coexpression networks of eight plant species. To validate the usefulness of the platform, we identified and functionally characterized pollen- and root-specific cell wall modules that multiplied to confer tip growth in pollen tubes and root hairs, respectively. Furthermore, we identified multiplied modules involved in secondary metabolite synthesis and corroborated them by metabolite profiling of tobacco (Nicotiana tabacum) tissues. The interactive platform, referred to as FamNet, is available at http://www.gene2function.de/famnet.html.
Collapse
Affiliation(s)
- Colin Ruprecht
- Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam, Germany (C.R., T.T, S.K., A.R.F., Z.N., M.M.), School of Biosciences and Australian Research Council Centre of Excellence in Plant Cell Walls, University of Melbourne, Parkville, Victoria 3010, Australia (A.M., S.P.); andDivision of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125 (A.S.)
| | - Amelie Mendrinna
- Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam, Germany (C.R., T.T, S.K., A.R.F., Z.N., M.M.), School of Biosciences and Australian Research Council Centre of Excellence in Plant Cell Walls, University of Melbourne, Parkville, Victoria 3010, Australia (A.M., S.P.); andDivision of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125 (A.S.)
| | - Takayuki Tohge
- Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam, Germany (C.R., T.T, S.K., A.R.F., Z.N., M.M.), School of Biosciences and Australian Research Council Centre of Excellence in Plant Cell Walls, University of Melbourne, Parkville, Victoria 3010, Australia (A.M., S.P.); andDivision of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125 (A.S.)
| | - Arun Sampathkumar
- Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam, Germany (C.R., T.T, S.K., A.R.F., Z.N., M.M.), School of Biosciences and Australian Research Council Centre of Excellence in Plant Cell Walls, University of Melbourne, Parkville, Victoria 3010, Australia (A.M., S.P.); andDivision of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125 (A.S.)
| | - Sebastian Klie
- Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam, Germany (C.R., T.T, S.K., A.R.F., Z.N., M.M.), School of Biosciences and Australian Research Council Centre of Excellence in Plant Cell Walls, University of Melbourne, Parkville, Victoria 3010, Australia (A.M., S.P.); andDivision of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125 (A.S.)
| | - Alisdair R Fernie
- Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam, Germany (C.R., T.T, S.K., A.R.F., Z.N., M.M.), School of Biosciences and Australian Research Council Centre of Excellence in Plant Cell Walls, University of Melbourne, Parkville, Victoria 3010, Australia (A.M., S.P.); andDivision of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125 (A.S.)
| | - Zoran Nikoloski
- Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam, Germany (C.R., T.T, S.K., A.R.F., Z.N., M.M.), School of Biosciences and Australian Research Council Centre of Excellence in Plant Cell Walls, University of Melbourne, Parkville, Victoria 3010, Australia (A.M., S.P.); andDivision of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125 (A.S.)
| | - Staffan Persson
- Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam, Germany (C.R., T.T, S.K., A.R.F., Z.N., M.M.), School of Biosciences and Australian Research Council Centre of Excellence in Plant Cell Walls, University of Melbourne, Parkville, Victoria 3010, Australia (A.M., S.P.); andDivision of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125 (A.S.)
| | - Marek Mutwil
- Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam, Germany (C.R., T.T, S.K., A.R.F., Z.N., M.M.), School of Biosciences and Australian Research Council Centre of Excellence in Plant Cell Walls, University of Melbourne, Parkville, Victoria 3010, Australia (A.M., S.P.); andDivision of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125 (A.S.)
| |
Collapse
|
79
|
Heiling S, Khanal S, Barsch A, Zurek G, Baldwin IT, Gaquerel E. Using the knowns to discover the unknowns: MS-based dereplication uncovers structural diversity in 17-hydroxygeranyllinalool diterpene glycoside production in the Solanaceae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:561-77. [PMID: 26749139 DOI: 10.1111/tpj.13119] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/16/2015] [Accepted: 12/21/2015] [Indexed: 05/25/2023]
Abstract
Exploring the diversity of plant secondary metabolism requires efficient methods to obtain sufficient structural insights to discriminate previously known from unknown metabolites. De novo structure elucidation and confirmation of known metabolites (dereplication) remain a major bottleneck for mass spectrometry-based metabolomic workflows, and few systematic dereplication strategies have been developed for the analysis of entire compound classes across plant families, partly due to the complexity of plant metabolic profiles that complicates cross-species comparisons. 17-hydroxygeranyllinalool diterpene glycosides (HGL-DTGs) are abundant defensive secondary metabolites whose malonyl and glycosyl decorations are induced by jasmonate signaling in the ecological model plant Nicotiana attenuata. The multiple labile glycosidic bonds of HGL-DTGs result in extensive in-source fragmentation (IS-CID) during ionization. To reconstruct these IS-CID clusters from profiling data and identify precursor ions, we applied a deconvolution algorithm and created an MS/MS library from positive-ion spectra of purified HGL-DTGs. From this library, 251 non-redundant fragments were annotated, and a workflow to characterize leaf, flower and fruit extracts of 35 solanaceous species was established. These analyses predicted 105 novel HGL-DTGs that were restricted to Nicotiana, Capsicum and Lycium species. Interestingly, malonylation is a highly conserved step in HGL-DTG metabolism, but is differentially affected by jasmonate signaling among Nicotiana species. This MS-based workflow is readily applicable for cross-species re-identification/annotation of other compound classes with sufficient fragmentation knowledge, and therefore has the potential to support hypotheses regarding secondary metabolism diversification.
Collapse
Affiliation(s)
- Sven Heiling
- Molecular Ecology Department, Max Planck Institute for Chemical Ecology, Hans Knöll Straße 8, 07745, Jena, Germany
| | - Santosh Khanal
- Molecular Ecology Department, Max Planck Institute for Chemical Ecology, Hans Knöll Straße 8, 07745, Jena, Germany
| | - Aiko Barsch
- Bruker Daltonics, Fahrenheitstraße 4, 28359, Bremen, Germany
| | - Gabriela Zurek
- Bruker Daltonics, Fahrenheitstraße 4, 28359, Bremen, Germany
| | - Ian T Baldwin
- Molecular Ecology Department, Max Planck Institute for Chemical Ecology, Hans Knöll Straße 8, 07745, Jena, Germany
| | - Emmanuel Gaquerel
- Plant Defense Metabolism Research Group, Centre for Organismal Studies Heidelberg, Im Neuenheimer Feld 360, 69120, Heidelberg, Germany
| |
Collapse
|
80
|
Alamgir KM, Hojo Y, Christeller JT, Fukumoto K, Isshiki R, Shinya T, Baldwin IT, Galis I. Systematic analysis of rice (Oryza sativa) metabolic responses to herbivory. PLANT, CELL & ENVIRONMENT 2016; 39:453-66. [PMID: 26386366 DOI: 10.1111/pce.12640] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 09/04/2015] [Accepted: 09/06/2015] [Indexed: 05/26/2023]
Abstract
Plants defend against attack from herbivores by direct and indirect defence mechanisms mediated by the accumulation of phytoalexins and release of volatile signals, respectively. While the defensive arsenals of some plants, such as tobacco and Arabidopsis are well known, most of rice's (Oryza sativa) defence metabolites and their effectiveness against herbivores remain uncharacterized. Here, we used a non-biassed metabolomics approach to identify many novel herbivory-regulated metabolic signatures in rice. Most were up-regulated by herbivore attack while only a few were suppressed. Two of the most prominent up-regulated signatures were characterized as phenolamides (PAs), p-coumaroylputrescine and feruloylputrescine. PAs accumulated in response to attack by both chewing insects, i.e. feeding of the lawn armyworm (Spodoptera mauritia) and the rice skipper (Parnara guttata) larvae, and the attack of the sucking insect, the brown planthopper (Nilaparvata lugens, BPH). In bioassays, BPH insects feeding on 15% sugar solution containing p-coumaroylputrescine or feruloylputrescine, at concentrations similar to those elicited by heavy BPH attack in rice, had a higher mortality compared to those feeding on sugar diet alone. Our results highlight PAs as a rapidly expanding new group of plant defence metabolites that are elicited by herbivore attack, and deter herbivores in rice and other plants.
Collapse
Affiliation(s)
- Kabir Md Alamgir
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Yuko Hojo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - John T Christeller
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
- The New Zealand Institute for Plant and Food Research Ltd, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Kaori Fukumoto
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Ryutaro Isshiki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Tomonori Shinya
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, D-07745, Germany
| | - Ivan Galis
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| |
Collapse
|
81
|
Abstract
Plants collectively produce hundreds of thousands of specialized metabolites that are not required for growth or development. Each species has a qualitatively unique profile, with variation among individuals, growth stages, and tissues. By the 1950s, entomologists began to recognize the supreme importance of these metabolites in shaping insect herbivore communities. Plant defense theories arose to address observed patterns of variation, but provided few testable hypotheses because they did not distinguish clearly among proximate and ultimate causes. Molecular plant-insect interaction research has since revealed the sophistication of plant metabolic, developmental, and signaling networks. This understanding at the molecular level, rather than theoretical predictions, has driven the development of new hypotheses and tools and pushed the field forward. We reflect on the utility of the functional perspective provided by the optimal defense theory, and propose a conceptual model of plant defense as a series of layers each at a different level of analysis, illustrated by advances in the molecular ecology of plant-insect interactions.
Collapse
Affiliation(s)
- Meredith C Schuman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; ,
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; ,
| |
Collapse
|
82
|
Yahyaa M, Matsuba Y, Brandt W, Doron-Faigenboim A, Bar E, McClain A, Davidovich-Rikanati R, Lewinsohn E, Pichersky E, Ibdah M. Identification, Functional Characterization, and Evolution of Terpene Synthases from a Basal Dicot. PLANT PHYSIOLOGY 2015; 169:1683-97. [PMID: 26157114 PMCID: PMC4634067 DOI: 10.1104/pp.15.00930] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 07/06/2015] [Indexed: 05/06/2023]
Abstract
Bay laurel (Laurus nobilis) is an agriculturally and economically important dioecious tree in the basal dicot family Lauraceae used in food and drugs and in the cosmetics industry. Bay leaves, with their abundant monoterpenes and sesquiterpenes, are used to impart flavor and aroma to food, and have also drawn attention in recent years because of their potential pharmaceutical applications. To identify terpene synthases (TPSs) involved in the production of these volatile terpenes, we performed RNA sequencing to profile the transcriptome of L. nobilis leaves. Bioinformatic analysis led to the identification of eight TPS complementary DNAs. We characterized the enzymes encoded by three of these complementary DNAs: a monoterpene synthase that belongs to the TPS-b clade catalyzes the formation of mostly 1,8-cineole; a sesquiterpene synthase belonging to the TPS-a clade catalyzes the formation of mainly cadinenes; and a diterpene synthase of the TPS-e/f clade catalyzes the formation of geranyllinalool. Comparison of the sequences of these three TPSs indicated that the TPS-a and TPS-b clades of the TPS gene family evolved early in the evolution of the angiosperm lineage, and that geranyllinalool synthase activity is the likely ancestral function in angiosperms of genes belonging to an ancient TPS-e/f subclade that diverged from the kaurene synthase gene lineages before the split of angiosperms and gymnosperms.
Collapse
Affiliation(s)
- Mosaab Yahyaa
- Newe Yaar Research Center, Agriculture Research Organization, Ramat Yishay 30095, Israel (M.Y., A.D.-F., E.B., R.D.-R., E.L., M.I.);Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109 (Y.M., A.M., E.P.); andDepartment of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany (W.B.)
| | - Yuki Matsuba
- Newe Yaar Research Center, Agriculture Research Organization, Ramat Yishay 30095, Israel (M.Y., A.D.-F., E.B., R.D.-R., E.L., M.I.);Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109 (Y.M., A.M., E.P.); andDepartment of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany (W.B.)
| | - Wolfgang Brandt
- Newe Yaar Research Center, Agriculture Research Organization, Ramat Yishay 30095, Israel (M.Y., A.D.-F., E.B., R.D.-R., E.L., M.I.);Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109 (Y.M., A.M., E.P.); andDepartment of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany (W.B.)
| | - Adi Doron-Faigenboim
- Newe Yaar Research Center, Agriculture Research Organization, Ramat Yishay 30095, Israel (M.Y., A.D.-F., E.B., R.D.-R., E.L., M.I.);Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109 (Y.M., A.M., E.P.); andDepartment of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany (W.B.)
| | - Einat Bar
- Newe Yaar Research Center, Agriculture Research Organization, Ramat Yishay 30095, Israel (M.Y., A.D.-F., E.B., R.D.-R., E.L., M.I.);Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109 (Y.M., A.M., E.P.); andDepartment of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany (W.B.)
| | - Alan McClain
- Newe Yaar Research Center, Agriculture Research Organization, Ramat Yishay 30095, Israel (M.Y., A.D.-F., E.B., R.D.-R., E.L., M.I.);Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109 (Y.M., A.M., E.P.); andDepartment of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany (W.B.)
| | - Rachel Davidovich-Rikanati
- Newe Yaar Research Center, Agriculture Research Organization, Ramat Yishay 30095, Israel (M.Y., A.D.-F., E.B., R.D.-R., E.L., M.I.);Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109 (Y.M., A.M., E.P.); andDepartment of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany (W.B.)
| | - Efraim Lewinsohn
- Newe Yaar Research Center, Agriculture Research Organization, Ramat Yishay 30095, Israel (M.Y., A.D.-F., E.B., R.D.-R., E.L., M.I.);Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109 (Y.M., A.M., E.P.); andDepartment of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany (W.B.)
| | - Eran Pichersky
- Newe Yaar Research Center, Agriculture Research Organization, Ramat Yishay 30095, Israel (M.Y., A.D.-F., E.B., R.D.-R., E.L., M.I.);Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109 (Y.M., A.M., E.P.); andDepartment of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany (W.B.)
| | - Mwafaq Ibdah
- Newe Yaar Research Center, Agriculture Research Organization, Ramat Yishay 30095, Israel (M.Y., A.D.-F., E.B., R.D.-R., E.L., M.I.);Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109 (Y.M., A.M., E.P.); andDepartment of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany (W.B.)
| |
Collapse
|
83
|
Poreddy S, Mitra S, Schöttner M, Chandran J, Schneider B, Baldwin IT, Kumar P, Pandit SS. Detoxification of hostplant's chemical defence rather than its anti-predator co-option drives β-glucosidase-mediated lepidopteran counteradaptation. Nat Commun 2015; 6:8525. [PMID: 26443324 PMCID: PMC4633822 DOI: 10.1038/ncomms9525] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 09/02/2015] [Indexed: 11/19/2022] Open
Abstract
The evolutionary plant-herbivore arms race sometimes gives rise to remarkably unique adaptation strategies. Here we report one such strategy in the lepidopteran herbivore Manduca sexta against its hostplant Nicotiana attenuata's major phytotoxins, 17-hydroxygeranyllinalool diterpene glycoside, lyciumoside IV and its malonylated forms. We show that alkalinity of larval regurgitant non-enzymatically demalonylates the malonylated forms to lyciumoside IV. Lyciumoside IV is then detoxified in the midgut by β-glucosidase 1-catalysed deglycosylation, which is unusual, as typically the deglycosylation of glycosylated phytochemicals by insects results in the opposite: toxin activation. Suppression of deglucosylation by silencing larval β-glucosidase 1 by plant-mediated RNAi causes moulting impairments and mortality. In the native habitat of N. attenuata, β-glucosidase 1 silencing also increases larval unpalatability to native predatory spiders, suggesting that the defensive co-option of lyciumoside IV may be ecologically advantageous. We infer that M. sexta detoxifies this allelochemical to avoid its deleterious effects, rather than co-opting it against predators.
Collapse
Affiliation(s)
- Spoorthi Poreddy
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, 07745 Jena, Germany
| | - Sirsha Mitra
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, 07745 Jena, Germany
| | - Matthias Schöttner
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, 07745 Jena, Germany
| | - Jima Chandran
- Department of Biosynthesis/NMR Research Group, Max-Planck-Institute for Chemical Ecology, 07745 Jena, Germany
| | - Bernd Schneider
- Department of Biosynthesis/NMR Research Group, Max-Planck-Institute for Chemical Ecology, 07745 Jena, Germany
| | - Ian T. Baldwin
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, 07745 Jena, Germany
| | - Pavan Kumar
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, 07745 Jena, Germany
| | - Sagar S. Pandit
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, 07745 Jena, Germany
| |
Collapse
|
84
|
Santhanam R, Luu VT, Weinhold A, Goldberg J, Oh Y, Baldwin IT. Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping. Proc Natl Acad Sci U S A 2015; 112:E5013-20. [PMID: 26305938 PMCID: PMC4568709 DOI: 10.1073/pnas.1505765112] [Citation(s) in RCA: 226] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plants maintain microbial associations whose functions remain largely unknown. For the past 15 y, we have planted the annual postfire tobacco Nicotiana attenuata into an experimental field plot in the plant's native habitat, and for the last 8 y the number of plants dying from a sudden wilt disease has increased, leading to crop failure. Inadvertently we had recapitulated the common agricultural dilemma of pathogen buildup associated with continuous cropping for this native plant. Plants suffered sudden tissue collapse and black roots, symptoms similar to a Fusarium-Alternaria disease complex, recently characterized in a nearby native population and developed into an in vitro pathosystem for N. attenuata. With this in vitro disease system, different protection strategies (fungicide and inoculations with native root-associated bacterial and fungal isolates), together with a biochar soil amendment, were tested further in the field. A field trial with more than 900 plants in two field plots revealed that inoculation with a mixture of native bacterial isolates significantly reduced disease incidence and mortality in the infected field plot without influencing growth, herbivore resistance, or 32 defense and signaling metabolites known to mediate resistance against native herbivores. Tests in a subsequent year revealed that a core consortium of five bacteria was essential for disease reduction. This consortium, but not individual members of the root-associated bacteria community which this plant normally recruits during germination from native seed banks, provides enduring resistance against fungal diseases, demonstrating that native plants develop opportunistic mutualisms with prokaryotes that solve context-dependent ecological problems.
Collapse
Affiliation(s)
- Rakesh Santhanam
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| | - Van Thi Luu
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| | - Arne Weinhold
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| | - Jay Goldberg
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| | - Youngjoo Oh
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| |
Collapse
|
85
|
Li D, Baldwin IT, Gaquerel E. Navigating natural variation in herbivory-induced secondary metabolism in coyote tobacco populations using MS/MS structural analysis. Proc Natl Acad Sci U S A 2015; 112:E4147-55. [PMID: 26170304 PMCID: PMC4522797 DOI: 10.1073/pnas.1503106112] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Natural variation can be extremely useful in unraveling the determinants of phenotypic trait evolution but has rarely been analyzed with unbiased metabolic profiling to understand how its effects are organized at the level of biochemical pathways. Native populations of Nicotiana attenuata, a wild tobacco species, have been shown to be highly genetically diverse for traits important for their interactions with insects. To resolve the chemodiversity existing in these populations, we developed a metabolomics and computational pipeline to annotate leaf metabolic responses to Manduca sexta herbivory. We selected seeds from 43 accessions of different populations from the southwestern United States--including the well-characterized Utah 30th generation inbred accession--and grew 183 plants in the glasshouse for standardized herbivory elicitation. Metabolic profiles were generated from elicited leaves of each plant using a high-throughput ultra HPLC (UHPLC)-quadrupole TOFMS (qTOFMS) method, processed to systematically infer covariation patterns among biochemically related metabolites, as well as unknown ones, and finally assembled to map natural variation. Navigating this map revealed metabolic branch-specific variations that surprisingly only partly overlapped with jasmonate accumulation polymorphisms and deviated from canonical jasmonate signaling. Fragmentation analysis via indiscriminant tandem mass spectrometry (idMS/MS) was conducted with 10 accessions that spanned a large proportion of the variance found in the complete accession dataset, and compound spectra were computationally assembled into spectral similarity networks. The biological information captured by this networking approach facilitates the mining of the mass spectral data of unknowns with high natural variation, as demonstrated by the annotation of a strongly herbivory-inducible phenolic derivative, and can guide pathway analysis.
Collapse
Affiliation(s)
- Dapeng Li
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Emmanuel Gaquerel
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany; Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
86
|
Machado RAR, Arce CCM, Ferrieri AP, Baldwin IT, Erb M. Jasmonate-dependent depletion of soluble sugars compromises plant resistance to Manduca sexta. THE NEW PHYTOLOGIST 2015; 207:91-105. [PMID: 25704234 DOI: 10.1111/nph.13337] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/18/2015] [Indexed: 05/07/2023]
Abstract
Jasmonates regulate plant secondary metabolism and herbivore resistance. How they influence primary metabolites and how this may affect herbivore growth and performance are not well understood. We profiled sugars and starch of jasmonate biosynthesis-deficient and jasmonate-insensitive Nicotiana attenuata plants and manipulated leaf carbohydrates through genetic engineering and in vitro complementation to assess how jasmonate-dependent sugar accumulation affects the growth of Manduca sexta caterpillars. We found that jasmonates reduce the constitutive and herbivore-induced concentration of glucose and fructose in the leaves across different developmental stages. Diurnal, jasmonate-dependent inhibition of invertase activity was identified as a likely mechanism for this phenomenon. Contrary to our expectation, both in planta and in vitro approaches showed that the lower sugar concentrations led to increased M. sexta growth. As a consequence, jasmonate-dependent depletion of sugars rendered N. attenuata plants more susceptible to M. sexta attack. In conclusion, jasmonates are important regulators of leaf carbohydrate accumulation and this determines herbivore growth. Jasmonate-dependent resistance is reduced rather than enhanced through the suppression of glucose and fructose concentrations, which may contribute to the evolution of divergent resistance strategies of plants in nature.
Collapse
Affiliation(s)
- Ricardo A R Machado
- Root-Herbivore Interactions Group, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Carla C M Arce
- Root-Herbivore Interactions Group, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
- Department of Entomology, Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, 36570-000, Viçosa, Brazil
| | - Abigail P Ferrieri
- Root-Herbivore Interactions Group, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Matthias Erb
- Root-Herbivore Interactions Group, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013, Bern, Switzerland
| |
Collapse
|
87
|
Yahyaa M, Tholl D, Cormier G, Jensen R, Simon PW, Ibdah M. Identification and Characterization of Terpene Synthases Potentially Involved in the Formation of Volatile Terpenes in Carrot (Daucus carota L.) Roots. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:4870-8. [PMID: 25924989 DOI: 10.1021/acs.jafc.5b00546] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plants produce an excess of volatile organic compounds, which are important in determining the quality and nutraceutical properties of fruit and root crops, including the taste and aroma of carrots (Daucus carota L.). A combined chemical, biochemical, and molecular study was conducted to evaluate the differential accumulation of volatile terpenes in a diverse collection of fresh carrots (D. carota L.). Here, we report on a transcriptome-based identification and functional characterization of two carrot terpene synthases, the sesquiterpene synthase, DcTPS1, and the monoterpene synthase, DcTPS2. Recombinant DcTPS1 protein produces mainly (E)-β-caryophyllene, the predominant sesquiterpene in carrot roots, and α-humulene, while recombinant DcTPS2 functions as a monoterpene synthase with geraniol as the main product. Both genes are differentially transcribed in different cultivars and during carrot root development. Our results suggest a role for DcTPS genes in carrot aroma biosynthesis.
Collapse
Affiliation(s)
- Mosaab Yahyaa
- †Newe Ya'ar Research Center, Agriculture Research Organization, Post Office Box 1021, Ramat Yishay 30095, Israel
| | - Dorothea Tholl
- ‡Department of Biological Sciences, Virginia Polytechnic Institute and State University, 409 Latham Hall, 220 Agquad Lane, Blacksburg, Virginia 24061, United States
| | - Guy Cormier
- §Department of Biological Sciences, Virginia Polytechnic Institute and State University, 119 Life Sciences I, 970 Washington Street, Blacksburg, Virginia 24061, United States
| | - Roderick Jensen
- §Department of Biological Sciences, Virginia Polytechnic Institute and State University, 119 Life Sciences I, 970 Washington Street, Blacksburg, Virginia 24061, United States
| | - Philipp W Simon
- ∥Vegetable Crops Research Unit, Department of Horticulture, University of Wisconsin-Madison, 1575 Linden Drive, Madison, Wisconsin 53706, United States
| | - Mwafaq Ibdah
- †Newe Ya'ar Research Center, Agriculture Research Organization, Post Office Box 1021, Ramat Yishay 30095, Israel
| |
Collapse
|
88
|
Ekanayaka EAP, Celiz MD, Jones AD. Relative mass defect filtering of mass spectra: a path to discovery of plant specialized metabolites. PLANT PHYSIOLOGY 2015; 167:1221-32. [PMID: 25659383 PMCID: PMC4378145 DOI: 10.1104/pp.114.251165] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 02/05/2015] [Indexed: 05/20/2023]
Abstract
The rapid identification of novel plant metabolites and assignments of newly discovered substances to natural product classes present the main bottlenecks to defining plant specialized phenotypes. Although mass spectrometry provides powerful support for metabolite discovery by measuring molecular masses, ambiguities in elemental formulas often fail to reveal the biosynthetic origins of specialized metabolites detected using liquid chromatography-mass spectrometry. A promising approach for mining liquid chromatography-mass spectrometry metabolite profiling data for specific metabolite classes is achieved by calculating relative mass defects (RMDs) from molecular and fragment ions. This strategy enabled the rapid recognition of an extensive range of terpenoid metabolites in complex plant tissue extracts and is independent of retention time, abundance, and elemental formula. Using RMD filtering and tandem mass spectrometry data analysis, 24 novel elemental formulas corresponding to glycosylated sesquiterpenoid metabolites were identified in extracts of the wild tomato Solanum habrochaites LA1777 trichomes. Extensive isomerism was revealed by ultra-high-performance liquid chromatography, leading to evidence of more than 200 distinct sesquiterpenoid metabolites. RMD filtering led to the recognition of the presence of glycosides of two unusual sesquiterpenoid cores that bear limited similarity to known sesquiterpenes in the genus Solanum. In addition, RMD filtering is readily applied to existing metabolomics databases and correctly classified the annotated terpenoid metabolites in the public metabolome database for Catharanthus roseus.
Collapse
Affiliation(s)
- E A Prabodha Ekanayaka
- Department of Chemistry (E.A.P.E., A.D.J.) and Department of Biochemistry and Molecular Biology (M.D.C., A.D.J.), Michigan State University, East Lansing, Michigan 48824
| | - Mary Dawn Celiz
- Department of Chemistry (E.A.P.E., A.D.J.) and Department of Biochemistry and Molecular Biology (M.D.C., A.D.J.), Michigan State University, East Lansing, Michigan 48824
| | - A Daniel Jones
- Department of Chemistry (E.A.P.E., A.D.J.) and Department of Biochemistry and Molecular Biology (M.D.C., A.D.J.), Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
89
|
Xu S, Zhou W, Pottinger S, Baldwin IT. Herbivore associated elicitor-induced defences are highly specific among closely related Nicotiana species. BMC PLANT BIOLOGY 2015; 15:2. [PMID: 25592329 PMCID: PMC4304619 DOI: 10.1186/s12870-014-0406-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 12/22/2014] [Indexed: 05/04/2023]
Abstract
BACKGROUND Herbivore-induced defence responses are often specific - different herbivores induce different defence responses in plants - and their specificity is largely mediated by chemical cues (herbivore-associated elicitors: HAEs) in insect oral or oviposition secretions. However, the specificity and the mechanisms of HAE-induced defence have not been investigated in the context of the evolutionary relationships among plant species. Here we compare the responses of six closely related Nicotiana species to a synthetic elicitor, N-linolenoyl-glutamic acid (C18:3-Glu) and HAE of two insect herbivores (the Solanaceae specialist Manduca sexta and generalist Spodoptera littoralis). RESULTS HAE-induced defences are highly specific among closely related Nicotiana species at three perspectives. 1) A single Nicotiana species can elicit distinct responses to different HAEs. N. pauciflora elicited increased levels of JA and trypsin proteinase inhibitors (TPI) in response to C18:3-Glu and the oral secretions of M. sexta (OS Ms ) but not to oral secretions of S. littoralis (OS Sl ). In contrast, N. miersii only responded to OS Sl but not to the other two HAEs. The specific responses to different HAEs in Nicotiana species are likely due to the perception by the plant of each specific component of the HAE. 2) One HAE can induce different defence responses among closely related Nicotiana species. OS Ms and C18:3-Glu induced JA and TPI accumulations in N. linearis, N. attenuata, N. acuminata and N. pauciflora, but not in N. miersii and N. obtusifolia. 3) The effect of HAE-induced defences differ for the Solanaceae specialist M. sexta and the generalist S. littoralis. Among the four tested Nicotiana species, while the growth rate of M. sexta was only reduced by the induced defences elicited by C18:3-Glu; the growth rate of S. littoralis can be reduced by the induced defences elicited by all three HAEs. This is likely due to differences in the susceptibility of the specialist M. sexta and generalist S. littoralis to induced defences of their host. CONCLUSIONS Closely related Nicotiana species elicit highly specific defence responses to herbivore associated elicitors and provide an ideal framework for investigating the molecular mechanisms and evolutionary divergence of induced resistance in plants.
Collapse
Affiliation(s)
- Shuqing Xu
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany.
| | - Wenwu Zhou
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany.
| | - Sarah Pottinger
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany.
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany.
| |
Collapse
|
90
|
Schuman MC, Palmer-Young EC, Schmidt A, Gershenzon J, Baldwin IT. Ectopic terpene synthase expression enhances sesquiterpene emission in Nicotiana attenuata without altering defense or development of transgenic plants or neighbors. PLANT PHYSIOLOGY 2014; 166:779-97. [PMID: 25187528 PMCID: PMC4190577 DOI: 10.1104/pp.114.247130] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 09/01/2014] [Indexed: 05/02/2023]
Abstract
Sesquiterpenoids, with approximately 5,000 structures, are the most diverse class of plant volatiles with manifold hypothesized functions in defense, stress tolerance, and signaling between and within plants. These hypotheses have often been tested by transforming plants with sesquiterpene synthases expressed behind the constitutively active 35S promoter, which may have physiological costs measured as inhibited growth and reduced reproduction or may require augmentation of substrate pools to achieve enhanced emission, complicating the interpretation of data from affected transgenic lines. Here, we expressed maize (Zea mays) terpene synthase10 (ZmTPS10), which produces (E)-α-bergamotene and (E)-β-farnesene, or a point mutant ZmTPS10M, which produces primarily (E)-β-farnesene, under control of the 35S promoter in the ecological model plant Nicotiana attenuata. Transgenic N. attenuata plants had specifically enhanced emission of target sesquiterpene(s) with no changes detected in their emission of any other volatiles. Treatment with herbivore or jasmonate elicitors induces emission of (E)-α-bergamotene in wild-type plants and also tended to increase emission of (E)-α-bergamotene and (E)-β-farnesene in transgenics. However, transgenics did not differ from the wild type in defense signaling or chemistry and did not alter defense chemistry in neighboring wild-type plants. These data are inconsistent with within-plant and between-plant signaling functions of (E)-β-farnesene and (E)-α-bergamotene in N. attenuata. Ectopic sesquiterpene emission was apparently not costly for transgenics, which were similar to wild-type plants in their growth and reproduction, even when forced to compete for common resources. These transgenics would be well suited for field experiments to investigate indirect ecological effects of sesquiterpenes for a wild plant in its native habitat.
Collapse
Affiliation(s)
- Meredith C Schuman
- Departments of Molecular Ecology (M.C.S., I.T.B.) andBiochemistry (E.C.P.-Y., A.S., J.G.), Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Evan C Palmer-Young
- Departments of Molecular Ecology (M.C.S., I.T.B.) andBiochemistry (E.C.P.-Y., A.S., J.G.), Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Axel Schmidt
- Departments of Molecular Ecology (M.C.S., I.T.B.) andBiochemistry (E.C.P.-Y., A.S., J.G.), Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Jonathan Gershenzon
- Departments of Molecular Ecology (M.C.S., I.T.B.) andBiochemistry (E.C.P.-Y., A.S., J.G.), Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Ian T Baldwin
- Departments of Molecular Ecology (M.C.S., I.T.B.) andBiochemistry (E.C.P.-Y., A.S., J.G.), Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| |
Collapse
|
91
|
Falara V, Alba JM, Kant MR, Schuurink RC, Pichersky E. Geranyllinalool synthases in solanaceae and other angiosperms constitute an ancient branch of diterpene synthases involved in the synthesis of defensive compounds. PLANT PHYSIOLOGY 2014; 166:428-41. [PMID: 25052853 PMCID: PMC4149726 DOI: 10.1104/pp.114.243246] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 07/21/2014] [Indexed: 05/22/2023]
Abstract
Many angiosperm plants, including basal dicots, eudicots, and monocots, emit (E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene, which is derived from geranyllinalool, in response to biotic challenge. An Arabidopsis (Arabidopsis thaliana) geranyllinalool synthase (GLS) belonging to the e/f clade of the terpene synthase (TPS) family and two Fabaceae GLSs that belong to the TPS-g clade have been reported, making it unclear which is the main route to geranyllinalool in plants. We characterized a tomato (Solanum lycopersicum) TPS-e/f gene, TPS46, encoding GLS (SlGLS) and its homolog (NaGLS) from Nicotiana attenuata. The Km value of SlGLS for geranylgeranyl diphosphate was 18.7 µm, with a turnover rate value of 6.85 s(-1). In leaves and flowers of N. attenuata, which constitutively synthesize 17-hydroxygeranyllinalool glycosides, NaGLS is expressed constitutively, but the gene can be induced in leaves with methyl jasmonate. In tomato, SlGLS is not expressed in any tissue under normal growth but is induced in leaves by alamethicin and methyl jasmonate treatments. SlGLS, NaGLS, AtGLSs, and several other GLSs characterized only in vitro come from four different eudicot families and constitute a separate branch of the TPS-e/f clade that diverged from kaurene synthases, also in the TPS-e/f clade, before the gymnosperm-angiosperm split. The early divergence of this branch and the GLS activity of genes in this branch in diverse eudicot families suggest that GLS activity encoded by these genes predates the angiosperm-gymnosperm split. However, although a TPS sequence belonging to this GLS lineage was recently reported from a basal dicot, no representative sequences have yet been found in monocot or nonangiospermous plants.
Collapse
Affiliation(s)
- Vasiliki Falara
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109 (V.F., E.P.); andDepartment of Population Biology, Institute for Biodiversity and Ecosystem Dynamics (J.M.A., M.R.K.), and Department of Plant Physiology (R.C.S.), University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Juan M Alba
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109 (V.F., E.P.); andDepartment of Population Biology, Institute for Biodiversity and Ecosystem Dynamics (J.M.A., M.R.K.), and Department of Plant Physiology (R.C.S.), University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Merijn R Kant
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109 (V.F., E.P.); andDepartment of Population Biology, Institute for Biodiversity and Ecosystem Dynamics (J.M.A., M.R.K.), and Department of Plant Physiology (R.C.S.), University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Robert C Schuurink
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109 (V.F., E.P.); andDepartment of Population Biology, Institute for Biodiversity and Ecosystem Dynamics (J.M.A., M.R.K.), and Department of Plant Physiology (R.C.S.), University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Eran Pichersky
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109 (V.F., E.P.); andDepartment of Population Biology, Institute for Biodiversity and Ecosystem Dynamics (J.M.A., M.R.K.), and Department of Plant Physiology (R.C.S.), University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
92
|
Bosch M, Wright LP, Gershenzon J, Wasternack C, Hause B, Schaller A, Stintzi A. Jasmonic acid and its precursor 12-oxophytodienoic acid control different aspects of constitutive and induced herbivore defenses in tomato. PLANT PHYSIOLOGY 2014; 166:396-410. [PMID: 25073705 PMCID: PMC4149723 DOI: 10.1104/pp.114.237388] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 07/25/2014] [Indexed: 05/20/2023]
Abstract
The jasmonate family of growth regulators includes the isoleucine (Ile) conjugate of jasmonic acid (JA-Ile) and its biosynthetic precursor 12-oxophytodienoic acid (OPDA) as signaling molecules. To assess the relative contribution of JA/JA-Ile and OPDA to insect resistance in tomato (Solanum lycopersicum), we silenced the expression of OPDA reductase3 (OPR3) by RNA interference (RNAi). Consistent with a block in the biosynthetic pathway downstream of OPDA, OPR3-RNAi plants contained wild-type levels of OPDA but failed to accumulate JA or JA-Ile after wounding. JA/JA-Ile deficiency in OPR3-RNAi plants resulted in reduced trichome formation and impaired monoterpene and sesquiterpene production. The loss of these JA/JA-Ile -dependent defense traits rendered them more attractive to the specialist herbivore Manduca sexta with respect to feeding and oviposition. Oviposition preference resulted from reduced levels of repellant monoterpenes and sesquiterpenes. Feeding preference, on the other hand, was caused by increased production of cis-3-hexenal acting as a feeding stimulant for M. sexta larvae in OPR3-RNAi plants. Despite impaired constitutive defenses and increased palatability of OPR3-RNAi leaves, larval development was indistinguishable on OPR3-RNAi and wild-type plants, and was much delayed compared with development on the jasmonic acid-insensitive1 (jai1) mutant. Apparently, signaling through JAI1, the tomato ortholog of the ubiquitin ligase CORONATINE INSENSITIVE1 in Arabidopsis (Arabidopsis thaliana), is required for defense, whereas the conversion of OPDA to JA/JA-Ile is not. Comparing the signaling activities of OPDA and JA/JA-Ile, we found that OPDA can substitute for JA/JA-Ile in the local induction of defense gene expression, but the production of JA/JA-Ile is required for a systemic response.
Collapse
Affiliation(s)
- Marko Bosch
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, 70593 Stuttgart, Germany (M.B., A.Sc., A.St.);Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (L.P.W., J.G.); andLeibniz Institute of Plant Biochemistry, 06120 Halle, Germany (C.W., B.H.)
| | - Louwrance P Wright
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, 70593 Stuttgart, Germany (M.B., A.Sc., A.St.);Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (L.P.W., J.G.); andLeibniz Institute of Plant Biochemistry, 06120 Halle, Germany (C.W., B.H.)
| | - Jonathan Gershenzon
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, 70593 Stuttgart, Germany (M.B., A.Sc., A.St.);Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (L.P.W., J.G.); andLeibniz Institute of Plant Biochemistry, 06120 Halle, Germany (C.W., B.H.)
| | - Claus Wasternack
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, 70593 Stuttgart, Germany (M.B., A.Sc., A.St.);Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (L.P.W., J.G.); andLeibniz Institute of Plant Biochemistry, 06120 Halle, Germany (C.W., B.H.)
| | - Bettina Hause
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, 70593 Stuttgart, Germany (M.B., A.Sc., A.St.);Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (L.P.W., J.G.); andLeibniz Institute of Plant Biochemistry, 06120 Halle, Germany (C.W., B.H.)
| | - Andreas Schaller
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, 70593 Stuttgart, Germany (M.B., A.Sc., A.St.);Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (L.P.W., J.G.); andLeibniz Institute of Plant Biochemistry, 06120 Halle, Germany (C.W., B.H.)
| | - Annick Stintzi
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, 70593 Stuttgart, Germany (M.B., A.Sc., A.St.);Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (L.P.W., J.G.); andLeibniz Institute of Plant Biochemistry, 06120 Halle, Germany (C.W., B.H.)
| |
Collapse
|
93
|
Gaquerel E, Gulati J, Baldwin IT. Revealing insect herbivory-induced phenolamide metabolism: from single genes to metabolic network plasticity analysis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:679-92. [PMID: 24617849 PMCID: PMC5140026 DOI: 10.1111/tpj.12503] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 02/20/2014] [Accepted: 03/03/2014] [Indexed: 05/18/2023]
Abstract
The phenylpropanoid metabolic space comprises a network of interconnected metabolic branches that contribute to the biosynthesis of a large array of compounds with functions in plant development and stress adaptation. During biotic challenges, such as insect attack, a major rewiring of gene networks associated with phenylpropanoid metabolism is observed. This rapid reconfiguration of gene expression allows prioritized production of metabolites that help the plant solve ecological problems. Phenolamides are a group of phenolic derivatives that originate from diversion of hydroxycinnamoyl acids from the main phenylpropanoid pathway after N-acyltransferase-dependent conjugation to polyamines or aryl monoamines. These structurally diverse metabolites are abundant in the reproductive organs of many plants, and have recently been shown to play roles as induced defenses in vegetative tissues. In the wild tobacco, Nicotiana attenuata, in which herbivory-induced regulation of these metabolites has been studied, rapid elevations of the levels of phenolamides that function as induced defenses result from a multi-hormonal signaling network that re-shapes connected metabolic pathways. In this review, we summarize recent findings in the regulation of phenolamides obtained by mass spectrometry-based metabolomics profiling, and outline a conceptual framework for gene discovery in this pathway. We also introduce a multifactorial approach that is useful in deciphering metabolic pathway reorganizations among tissues in response to stress.
Collapse
Affiliation(s)
- Emmanuel Gaquerel
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany
- Center for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 360,69120 Heidelberg, Germany
| | - Jyotasana Gulati
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany
| | - Ian T. Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany
| |
Collapse
|
94
|
Intake and transformation to a glycoside of (Z)-3-hexenol from infested neighbors reveals a mode of plant odor reception and defense. Proc Natl Acad Sci U S A 2014; 111:7144-9. [PMID: 24778218 DOI: 10.1073/pnas.1320660111] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Plants receive volatile compounds emitted by neighboring plants that are infested by herbivores, and consequently the receiver plants begin to defend against forthcoming herbivory. However, to date, how plants receive volatiles and, consequently, how they fortify their defenses, is largely unknown. In this study, we found that undamaged tomato plants exposed to volatiles emitted by conspecifics infested with common cutworms (exposed plants) became more defensive against the larvae than those exposed to volatiles from uninfested conspecifics (control plants) in a constant airflow system under laboratory conditions. Comprehensive metabolite analyses showed that only the amount of (Z)-3-hexenylvicianoside (HexVic) was higher in exposed than control plants. This compound negatively affected the performance of common cutworms when added to an artificial diet. The aglycon of HexVic, (Z)-3-hexenol, was obtained from neighboring infested plants via the air. The amount of jasmonates (JAs) was not higher in exposed plants, and HexVic biosynthesis was independent of JA signaling. The use of (Z)-3-hexenol from neighboring damaged conspecifics for HexVic biosynthesis in exposed plants was also observed in an experimental field, indicating that (Z)-3-hexenol intake occurred even under fluctuating environmental conditions. Specific use of airborne (Z)-3-hexenol to form HexVic in undamaged tomato plants reveals a previously unidentified mechanism of plant defense.
Collapse
|
95
|
Li W, Liu W, Wei H, He Q, Chen J, Zhang B, Zhu S. Species-specific expansion and molecular evolution of the 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) gene family in plants. PLoS One 2014; 9:e94172. [PMID: 24722776 PMCID: PMC3983158 DOI: 10.1371/journal.pone.0094172] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 03/11/2014] [Indexed: 12/05/2022] Open
Abstract
The terpene compounds represent the largest and most diverse class of plant secondary metabolites which are important in plant growth and development. The 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR; EC 1.1.1.34) is one of the key enzymes contributed to terpene biosynthesis. To better understand the basic characteristics and evolutionary history of the HMGR gene family in plants, a genome-wide analysis of HMGR genes from 20 representative species was carried out. A total of 56 HMGR genes in the 14 land plant genomes were identified, but no genes were found in all 6 algal genomes. The gene structure and protein architecture of all plant HMGR genes were highly conserved. The phylogenetic analysis revealed that the plant HMGRs were derived from one ancestor gene and finally developed into four distinct groups, two in the monocot plants and two in dicot plants. Species-specific gene duplications, caused mainly by segmental duplication, led to the limited expansion of HMGR genes in Zea mays, Gossypium raimondii, Populus trichocarpa and Glycine max after the species diverged. The analysis of Ka/Ks ratios and expression profiles indicated that functional divergence after the gene duplications was restricted. The results suggested that the function and evolution of HMGR gene family were dramatically conserved throughout the plant kingdom.
Collapse
Affiliation(s)
- Wei Li
- Department of Agronomy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Liu
- Department of Agronomy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Cotton Research Institute, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Qiuling He
- Department of Agronomy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jinhong Chen
- Department of Agronomy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, North Carolina, United States of America
| | - Shuijin Zhu
- Department of Agronomy, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
96
|
Nagel R, Berasategui A, Paetz C, Gershenzon J, Schmidt A. Overexpression of an isoprenyl diphosphate synthase in spruce leads to unexpected terpene diversion products that function in plant defense. PLANT PHYSIOLOGY 2014; 164:555-69. [PMID: 24346420 PMCID: PMC3912089 DOI: 10.1104/pp.113.228940] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Spruce (Picea spp.) and other conifers employ terpenoid-based oleoresin as part of their defense against herbivores and pathogens. The short-chain isoprenyl diphosphate synthases (IDS) are situated at critical branch points in terpene biosynthesis, producing the precursors of the different terpenoid classes. To determine the role of IDS and to create altered terpene phenotypes for assessing the defensive role of terpenoids, we overexpressed a bifunctional spruce IDS, a geranyl diphosphate and geranylgeranyl diphosphate synthase in white spruce (Picea glauca) saplings. While transcript level (350-fold), enzyme activity level (7-fold), and in planta geranyl diphosphate and geranylgeranyl diphosphate levels (4- to 8-fold) were significantly increased in the needles of transgenic plants, there was no increase in the major monoterpenes and diterpene acids of the resin and no change in primary isoprenoids, such as sterols, chlorophylls, and carotenoids. Instead, large amounts of geranylgeranyl fatty acid esters, known from various gymnosperm and angiosperm plant species, accumulated in needles and were shown to act defensively in reducing the performance of larvae of the nun moth (Lymantria monacha), a conifer pest in Eurasia. These results show the impact of overexpression of an IDS and the defensive role of an unexpected accumulation product of terpenoid biosynthesis with the potential for a broader function in plant protection.
Collapse
|
97
|
Spyropoulou EA, Haring MA, Schuurink RC. Expression of Terpenoids 1, a glandular trichome-specific transcription factor from tomato that activates the terpene synthase 5 promoter. PLANT MOLECULAR BIOLOGY 2014; 84:345-57. [PMID: 24142382 DOI: 10.1007/s11103-013-0142-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 10/07/2013] [Indexed: 05/08/2023]
Abstract
Terpene biosynthesis in tomato glandular trichomes has been well studied, with most if not all terpene synthases (TPSs) being identified. However, transcription factors (TFs) that regulate TPSs have not yet been discovered from tomato. In order to unravel the transcriptional regulation of the Solanum lycopersicum linalool synthase (SlMTS1, recently renamed SlTPS5) gene in glandular trichomes, we functionally dissected its promoter. A 207 bp fragment containing the minimal promoter and the 5'UTR appeared to be sufficient for trichome-specific expression in transgenic plants. Yeast-one-hybrid screens with this fragment identified a glandular trichome-specific transcription factor, designated Expression of Terpenoids 1 (SlEOT1). SlEOT1 is a member of a conserved family of TFs that includes the Arabidopsis Stylish 1 (AtSTY1) and Short Internode (AtSHI) genes. The EOT1 protein localized to the nucleus and specifically transactivated the SlTPS5 promoter in Nicotiana benthamiana leaves.
Collapse
Affiliation(s)
- Eleni A Spyropoulou
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | | | | |
Collapse
|
98
|
ABCG Transporters and Their Role in the Biotic Stress Response. SIGNALING AND COMMUNICATION IN PLANTS 2014. [DOI: 10.1007/978-3-319-06511-3_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
99
|
Savatin DV, Gramegna G, Modesti V, Cervone F. Wounding in the plant tissue: the defense of a dangerous passage. FRONTIERS IN PLANT SCIENCE 2014; 5:470. [PMID: 25278948 PMCID: PMC4165286 DOI: 10.3389/fpls.2014.00470] [Citation(s) in RCA: 195] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 08/28/2014] [Indexed: 05/19/2023]
Abstract
Plants are continuously exposed to agents such as herbivores and environmental mechanical stresses that cause wounding and open the way to the invasion by microbial pathogens. Wounding provides nutrients to pathogens and facilitates their entry into the tissue and subsequent infection. Plants have evolved constitutive and induced defense mechanisms to properly respond to wounding and prevent infection. The constitutive defenses are represented by physical barriers, i.e., the presence of cuticle or lignin, or by metabolites that act as toxins or deterrents for herbivores. Plants are also able to sense the injured tissue as an altered self and induce responses similar to those activated by pathogen infection. Endogenous molecules released from wounded tissue may act as Damage-Associated Molecular Patterns (DAMPs) that activate the plant innate immunity. Wound-induced responses are both rapid, such as the oxidative burst and the expression of defense-related genes, and late, such as the callose deposition, the accumulation of proteinase inhibitors and of hydrolytic enzymes (i.e., chitinases and gluganases). Typical examples of DAMPs involved in the response to wounding are the peptide systemin, and the oligogalacturonides, which are oligosaccharides released from the pectic component of the cell wall. Responses to wounding take place both at the site of damage (local response) and systemically (systemic response) and are mediated by hormones such as jasmonic acid, ethylene, salicylic acid, and abscisic acid.
Collapse
Affiliation(s)
| | | | | | - Felice Cervone
- *Correspondence: Felice Cervone, Department of Biology and Biotechnology “Charles Darwin”, Sapienza–University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy e-mail:
| |
Collapse
|
100
|
Farré G, Blancquaert D, Capell T, Van Der Straeten D, Christou P, Zhu C. Engineering complex metabolic pathways in plants. ANNUAL REVIEW OF PLANT BIOLOGY 2014; 65:187-223. [PMID: 24579989 DOI: 10.1146/annurev-arplant-050213-035825] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Metabolic engineering can be used to modulate endogenous metabolic pathways in plants or introduce new metabolic capabilities in order to increase the production of a desirable compound or reduce the accumulation of an undesirable one. In practice, there are several major challenges that need to be overcome, such as gaining enough knowledge about the endogenous pathways to understand the best intervention points, identifying and sourcing the most suitable metabolic genes, expressing those genes in such a way as to produce a functional enzyme in a heterologous background, and, finally, achieving the accumulation of target compounds without harming the host plant. This article discusses the strategies that have been developed to engineer complex metabolic pathways in plants, focusing on recent technological developments that allow the most significant bottlenecks to be overcome.
Collapse
Affiliation(s)
- Gemma Farré
- Departament de Producció Vegetal i Ciència Forestal, Universitat de Lleida, Agrotecnio Center, 25198 Lleida, Spain;
| | | | | | | | | | | |
Collapse
|