51
|
Zhang Y, Liu K, Zhu X, Wu Y, Zhang S, Chen H, Ling J, Wang Y, Fang X. Rice tocopherol deficiency 1 encodes a homogentisate phytyltransferase essential for tocopherol biosynthesis and plant development in rice. PLANT CELL REPORTS 2018; 37:775-787. [PMID: 29427065 DOI: 10.1007/s00299-018-2266-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/29/2018] [Indexed: 06/08/2023]
Abstract
RTD1 encodes a homogentisate phytyltransferase catalyzing a key step in rice tocopherol biosynthesis, confers cold tolerance and regulates rice development by affecting the accumulation of DELLA protein SLENDER RICE1. Tocopherols are one of the most important lipid-soluble antioxidants having indispensable roles in living organisms. The physiological functions of tocopherols have been comprehensively characterized in animals and artificial membranes. However, genetic and molecular functions of tocopherols in plants are less understood. This study aimed to isolate a tocopherol-deficient mutant rtd1 in rice. The rtd1 mutant showed overall growth retardation throughout the growth period. Most of the agronomic traits were impaired in rtd1. Map-based cloning revealed that the RTD1 gene encoded a homogentisate phytyltransferase, a key enzyme catalyzing the committed step in tocopherol biosynthesis. RTD1 was preferentially expressed in green leafy tissues, and the protein was located in chloroplasts. Cold tolerance was found to be reduced in rtd1. The cold-related C-repeat-binding factor (CBF)/dehydration-responsive element-binding protein 1 (DREB1) genes were significantly upregulated in rtd1 under natural growth conditions. Moreover, rtd1 exhibited a reduced response to gibberellin (GA).The transcript and protein levels of DELLA protein-coding gene SLENDER RICE 1 (SLR1) in rice was increased in rtd1. However, the GA content was not changed, suggesting a transcriptional, not posttranslational, regulation of SLR1. These findings implied that tocopherols play important roles in regulating rice growth and development.
Collapse
Affiliation(s)
- Yunhui Zhang
- Provincial Key Laboratory of Agrobiology, Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences/The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, 210014, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Kai Liu
- Institute of Agricultural Sciences in Jiangsu Coastal Areas, Yancheng, 224002, China
| | - Xiaomei Zhu
- Provincial Key Laboratory of Agrobiology, Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences/The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, 210014, China
| | - Yan Wu
- Provincial Key Laboratory of Agrobiology, Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences/The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, 210014, China
| | - Suobing Zhang
- Provincial Key Laboratory of Agrobiology, Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences/The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, 210014, China
| | - Haiyuan Chen
- Provincial Key Laboratory of Agrobiology, Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences/The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, 210014, China
| | - Jing Ling
- Provincial Key Laboratory of Agrobiology, Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences/The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, 210014, China
| | - Yingjie Wang
- Provincial Key Laboratory of Agrobiology, Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences/The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, 210014, China
| | - Xianwen Fang
- Provincial Key Laboratory of Agrobiology, Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences/The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, 210014, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
52
|
Han Y, Wang X, Zhao F, Gao S, Wei A, Chen Z, Liu N, Zhang Z, Du S. Transcriptomic analysis of differentially expressed genes in flower-buds of genetic male sterile and wild type cucumber by RNA sequencing. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2018; 24:359-367. [PMID: 29692544 PMCID: PMC5911260 DOI: 10.1007/s12298-018-0515-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 01/19/2018] [Accepted: 01/25/2018] [Indexed: 05/21/2023]
Abstract
Cucumber (Cucumis sativus L.) pollen development involves a diverse range of gene interactions between sporophytic and gametophytic tissues. Previous studies in our laboratory showed that male sterility was controlled by a single recessive nuclear gene, and occurred in pollen mother cell meiophase. To fully explore the global gene expression and identify genes related to male sterility, a RNA-seq analysis was adopted in this study. Young male flower-buds (1-2 mm in length) from genetic male sterility (GMS) mutant and homozygous fertile cucumber (WT) were collected for two sequencing libraries. Total 545 differentially expressed genes (DEGs), including 142 up-regulated DEGs and 403 down-regulated DEGs, were detected in two libraries (Fold Change ≥ 2, FDR < 0.01). These genes were involved in a variety of metabolic pathways, like ethylene-activated signaling pathway, sporopollenin biosynthetic pathway, cell cycle and DNA damage repair pathway. qRT-PCR analysis was performed and showed that the correlation between RNA-Seq and qRT-PCR was 0.876. These findings contribute to a better understanding of the mechanism that leads to GMS in cucumber.
Collapse
Affiliation(s)
- Yike Han
- Department of Vegetable Science, China Agricultural University, Beijing, 100193 China
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin Key Laboratory of Vegetable Breeding Enterprise, Tianjin Kernel Cucumber Research Institute, 295 Baidi Road, Tianjin, 300192 China
| | - Xianyun Wang
- College of Life, Nankai University, Tianjin, 300071 China
| | - Fengyue Zhao
- College of Life, Nankai University, Tianjin, 300071 China
| | - Shang Gao
- The Richard and Loan Hill Department of Bioengineering, University of Illinois, Chicago, IL 0661 USA
| | - Aimin Wei
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin Key Laboratory of Vegetable Breeding Enterprise, Tianjin Kernel Cucumber Research Institute, 295 Baidi Road, Tianjin, 300192 China
| | - Zhengwu Chen
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin Key Laboratory of Vegetable Breeding Enterprise, Tianjin Kernel Cucumber Research Institute, 295 Baidi Road, Tianjin, 300192 China
| | - Nan Liu
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin Key Laboratory of Vegetable Breeding Enterprise, Tianjin Kernel Cucumber Research Institute, 295 Baidi Road, Tianjin, 300192 China
| | - Zhenxian Zhang
- Department of Vegetable Science, China Agricultural University, Beijing, 100193 China
| | - Shengli Du
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin Key Laboratory of Vegetable Breeding Enterprise, Tianjin Kernel Cucumber Research Institute, 295 Baidi Road, Tianjin, 300192 China
| |
Collapse
|
53
|
Sim JS, Kesawat MS, Kumar M, Kim SY, Mani V, Subramanian P, Park S, Lee CM, Kim SR, Hahn BS. Lack of the α1,3-Fucosyltransferase Gene ( Osfuct) Affects Anther Development and Pollen Viability in Rice. Int J Mol Sci 2018; 19:ijms19041225. [PMID: 29670011 PMCID: PMC5979348 DOI: 10.3390/ijms19041225] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 04/11/2018] [Accepted: 04/16/2018] [Indexed: 12/04/2022] Open
Abstract
N-linked glycosylation is one of the key post-translational modifications. α1,3-Fucosyltransferase (OsFucT) is responsible for transferring α1,3-linked fucose residues to the glycoprotein N-glycan in plants. We characterized an Osfuct mutant that displayed pleiotropic developmental defects, such as impaired anther and pollen development, diminished growth, shorter plant height, fewer tillers, and shorter panicle length and internodes under field conditions. In addition, the anthers were curved, the pollen grains were shriveled, and pollen viability and pollen number per anther decreased dramatically in the mutant. Matrix-assisted laser desorption/ionization time-of-flight analyses of the N-glycans revealed that α1,3-fucose was lacking in the N-glycan structure of the mutant. Mutant complementation revealed that the phenotype was caused by loss of Osfuct function. Transcriptome profiling also showed that several genes essential for plant developmental processes were significantly altered in the mutant, including protein kinases, transcription factors, genes involved in metabolism, genes related to protein synthesis, and hypothetical proteins. Moreover, the mutant exhibited sensitivity to an increased concentration of salt. This study facilitates a further understanding of the function of genes mediating N-glycan modification and anther and pollen development in rice.
Collapse
Affiliation(s)
- Joon-Soo Sim
- Metabolic Engineering Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea.
| | - Mahipal Singh Kesawat
- Metabolic Engineering Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea.
| | - Manu Kumar
- Department of Life Sciences, Sogang University, Seoul 121-742, Korea.
| | - Su-Yeon Kim
- Metabolic Engineering Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea.
| | - Vimalraj Mani
- Metabolic Engineering Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea.
| | - Parthiban Subramanian
- Metabolic Engineering Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea.
| | - Soyoung Park
- Metabolic Engineering Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea.
| | - Chang-Muk Lee
- Metabolic Engineering Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea.
| | - Seong-Ryong Kim
- Department of Life Sciences, Sogang University, Seoul 121-742, Korea.
| | - Bum-Soo Hahn
- Metabolic Engineering Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea.
| |
Collapse
|
54
|
Borah P, Khurana JP. The OsFBK1 E3 Ligase Subunit Affects Anther and Root Secondary Cell Wall Thickenings by Mediating Turnover of a Cinnamoyl-CoA Reductase. PLANT PHYSIOLOGY 2018; 176:2148-2165. [PMID: 29295941 PMCID: PMC5841686 DOI: 10.1104/pp.17.01733] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 12/29/2017] [Indexed: 05/20/2023]
Abstract
Regulated proteolysis by the ubiquitin-26S proteasome system challenges transcription and phosphorylation in magnitude and is one of the most important regulatory mechanisms in plants. This article describes the characterization of a rice (Oryza sativa) auxin-responsive Kelch-domain-containing F-box protein, OsFBK1, found to be a component of an SCF E3 ligase by interaction studies in yeast. Rice transgenics of OsFBK1 displayed variations in anther and root secondary cell wall content; it could be corroborated by electron/confocal microscopy and lignification studies, with no apparent changes in auxin content/signaling pathway. The presence of U-shaped secondary wall thickenings (or lignin) in the anthers were remarkably less pronounced in plants overexpressing OsFBK1 as compared to wild-type and knockdown transgenics. The roots of the transgenics also displayed differential accumulation of lignin. Yeast two-hybrid anther library screening identified an OsCCR that is a homolog of the well-studied Arabidopsis (Arabidopsis thaliana) IRX4; OsFBK1-OsCCR interaction was confirmed by fluorescence and immunoprecipitation studies. Degradation of OsCCR mediated by SCFOsFBK1 and the 26S proteasome pathway was validated by cell-free experiments in the absence of auxin, indicating that the phenotype observed is due to the direct interaction between OsFBK1 and OsCCR. Interestingly, the OsCCR knockdown transgenics also displayed a decrease in root and anther lignin depositions, suggesting that OsFBK1 plays a role in the development of rice anthers and roots by regulating the cellular levels of a key enzyme controlling lignification.
Collapse
Affiliation(s)
- Pratikshya Borah
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Jitendra P Khurana
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| |
Collapse
|
55
|
Li X, Wang Y, Duan E, Qi Q, Zhou K, Lin Q, Wang D, Wang Y, Long W, Zhao Z, Cheng Z, Lei C, Zhang X, Guo X, Wang J, Wu C, Jiang L, Wang C, Wan J. OPEN GLUME1: a key enzyme reducing the precursor of JA, participates in carbohydrate transport of lodicules during anthesis in rice. PLANT CELL REPORTS 2018; 37:329-346. [PMID: 29177846 DOI: 10.1007/s00299-017-2232-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 11/01/2017] [Indexed: 06/07/2023]
Abstract
OG1 is involved in JA-regulated anthesis by modulating carbohydrate transport of lodicules in rice. Flowering plants have evolved a sophisticated regulatory network to coordinate anthesis and maximize reproductive success. In addition to various environmental conditions, the plant hormone jasmonic acid and its derivatives (JAs) are involved in anthesis. However, the underlying mechanism remains largely unexplored. Here, we report a JA-defective mutant in rice (Oryza sativa), namely open glume 1, which has dysfunctional lodicules that lead to open glumes following anthesis. Map-based cloning and subsequent complementation tests confirmed that OG1 encodes a peroxisome-localized 12-oxo-phytodienoic acid reductase-a key enzyme that reduces the precursor of JA. Loss-of-function of OG1 resulted in almost no JA accumulation. Exogenous JA treatment completely rescued the defects caused by the og1 mutation. Further studies revealed that intracellular metabolism was disrupted in the lodicules of og1 mutant. At the mature plant stage, most seeds of the mutant were malformed with significantly reduced starch content. We speculate that JA or JA signaling mediates the carbohydrate transport of lodicules during anthesis, and signal the onset of cell degradation in lodicules after anthesis. We conclude that the OPEN GLUME 1 gene that produces a key enzyme involved in reducing the precursor of JA in JA biosynthesis and is involved in carbohydrate transport underlying normal lodicule function during anthesis in rice.
Collapse
Affiliation(s)
- Xiaohui Li
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yihua Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Erchao Duan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Qi Qi
- College of Life Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Kunneng Zhou
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Qiuyun Lin
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Di Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yunlong Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Wuhua Long
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Zhigang Zhao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Jiulin Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Chuanyin Wu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Chunming Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| |
Collapse
|
56
|
Rao GS, Deveshwar P, Sharma M, Kapoor S, Rao KV. Evolvement of transgenic male-sterility and fertility-restoration system in rice for production of hybrid varieties. PLANT MOLECULAR BIOLOGY 2018; 96:35-51. [PMID: 29090429 DOI: 10.1007/s11103-017-0678-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 10/24/2017] [Indexed: 05/22/2023]
Abstract
We have developed a unique male-sterility and fertility-restoration system in rice by combining Brassica napus cysteine-protease gene (BnCysP1) with anther-specific P12 promoter of rice for facilitating production of hybrid varieties. In diverse crop plants, male-sterility has been exploited as a useful approach for production of hybrid varieties to harness the benefits of hybrid vigour. The promoter region of Os12bglu38 gene of rice has been isolated from the developing panicles and was designated as P12. The promoter was fused with gusA reporter gene and was expressed in Arabidopsis and rice systems. Transgenic plants exhibited GUS activity in tapetal cells and pollen of the developing anthers indicating anther/pollen-specific expression of the promoter. For engineering nuclear male sterility, the coding region of Brassica napus cysteine protease1 (BnCysP1) was isolated from developing seeds and fused to P12 promoter. Transgenic rice plants obtained with P12-BnCysP1 failed to produce functional pollen grains. The F1 seeds obtained from BnCysP1 male-sterile plants and untransformed controls showed 1:1 (tolerant:sensitive) ratio when germinated on the MS medium supplemented with phosphinothricin (5 mg/l), confirming that the male sterility has been successfully engineered in rice. For male fertility restoration, transgenic rice plants carrying BnCysP1Si silencing system were developed. The pollination of BnCysP1 male-sterile (female-fertile) plants with BnCysP1Si pollen resulted in normal grain filling. The F1 seeds of BnCysP1 × BnCysP1Si when germinated on the MS basal medium containing PPT (5 mg/l) and hygromycin (70 mg/l) exhibited 1:1 (tolerant:sensitive) ratio and the tolerant plants invariably showed normal grain filling. The overall results clearly suggest that the customized male-sterility & fertility-restoration system can be exploited for quality hybrid seed production in various crops.
Collapse
Affiliation(s)
| | - Priyanka Deveshwar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Malini Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Sanjay Kapoor
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | | |
Collapse
|
57
|
Pectin methylesterase inhibitor (PMEI) family can be related to male sterility in Chinese cabbage (Brassica rapa ssp. pekinensis). Mol Genet Genomics 2017; 293:343-357. [DOI: 10.1007/s00438-017-1391-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 10/31/2017] [Indexed: 10/18/2022]
|
58
|
Analysis of the meiotic transcriptome reveals the genes related to the regulation of pollen abortion in cytoplasmic male-sterile pepper (Capsicum annuum L.). Gene 2017; 641:8-17. [PMID: 29031775 DOI: 10.1016/j.gene.2017.10.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 10/04/2017] [Accepted: 10/10/2017] [Indexed: 01/23/2023]
Abstract
CMS, which refers to the inability to generate functional pollen grains while still producing a normal gynoecium, has been widely used for pepper hybrid seed production. Pepper line 8214A is an excellent CMS line exhibiting 100% male sterility and superior economic characteristics. A TUNEL assay revealed the nuclear DNA is damaged in 8214A PMCs during meiosis. TEM images indicated that the 8214A PMCs exhibited asynchronous meiosis after prophase I, and some PMCs degraded prematurely with morphological features typical of PCD. Additionally, at the end of meiosis, the 8214A PMCs formed abnormal non-tetrahedral tetrads that degraded in situ. To identify the genes involved in the pollen abortion of line 8214A, the transcriptional profiles of the 8214A and the 8214B anthers (i.e., from the fertile maintainer line) during meiosis were analyzed using an RNA-seq approach. A total of 1355 genes were determined to be differentially expressed, including 424 and 931 up- and down- regulated genes, respectively, in the 8214A anthers during meiosis relative to the expression levels in the 8214B. The expression levels of ubiquitin ligase and cell cycle-related genes were apparently down-regulated, while the expression of methyltransferase genes was up-regulated in the 8214A anthers during meiosis, which likely contributed to the PCD of these PMCs during meiosis. Thus, our results may be useful for revealing the molecular mechanism regulating the pollen abortion of CMS pepper.
Collapse
|
59
|
Liu YJ, Liu X, Chen H, Zheng P, Wang W, Wang L, Zhang J, Tu J. A Plastid-Localized Pentatricopeptide Repeat Protein is Required for Both Pollen Development and Plant Growth in Rice. Sci Rep 2017; 7:11484. [PMID: 28904339 PMCID: PMC5597598 DOI: 10.1038/s41598-017-10727-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 08/14/2017] [Indexed: 11/18/2022] Open
Abstract
Several mitochondrial-targeted pentatricopeptide repeat (PPR) proteins involved in pollen development have been reported to be fertility restorer (Rf) proteins. However, the roles of plastid-localized PPR proteins in plant male reproduction are poorly defined. Here, we described a plastid-localized PPR-SMR protein, OsPPR676, which is required for plant growth and pollen development in rice. In this study, OsPPR676 was confirmed to be an interacted protein with Osj10gBTF3, β-subunit of nascent polypeptide-associated complex (β-NAC), by bimolecular fluorescence complementation assays, indicating that both proteins are probably involved in the same regulatory pathway of pollen development. Compared with other chloroplast-rich tissues, OsPPR676 was only weakly expressed in anther, but in the Mei and YM stages of pollen development, its expression was relatively strong in the tapetum. Disruption of OsPPR676 resulted in growth retardation of plants and partial sterility of pollens. Phenotypic analysis of different osppr676 mutant lines implied that the SMR domain was not essential for the function of OsPPR676. We further demonstrated that OsPPR676 is essential for production of plastid atpB subunit, and then plays crucial roles in biosynthesis of fatty acids, carbohydrates, and other organic matters via affecting activity of ATP synthase.
Collapse
Affiliation(s)
- Yu-Jun Liu
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, P. R. China.,State Key Lab of Agrobiotechnology, School of Life Science, The Chinese University of Hong Kong, N.T., Hong Kong, P. R. China
| | - Xuejiao Liu
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Hao Chen
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Peng Zheng
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Wenyi Wang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Liangchao Wang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Jianhua Zhang
- State Key Lab of Agrobiotechnology, School of Life Science, The Chinese University of Hong Kong, N.T., Hong Kong, P. R. China.
| | - Jumin Tu
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, P. R. China.
| |
Collapse
|
60
|
Xu Y, Yang J, Wang Y, Wang J, Yu Y, Long Y, Wang Y, Zhang H, Ren Y, Chen J, Wang Y, Zhang X, Guo X, Wu F, Zhu S, Lin Q, Jiang L, Wu C, Wang H, Wan J. OsCNGC13 promotes seed-setting rate by facilitating pollen tube growth in stylar tissues. PLoS Genet 2017; 13:e1006906. [PMID: 28708858 PMCID: PMC5533464 DOI: 10.1371/journal.pgen.1006906] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 07/28/2017] [Accepted: 07/05/2017] [Indexed: 11/29/2022] Open
Abstract
Seed-setting rate is a critical determinant of grain yield in rice (Oryza sativa L.). Rapid and healthy pollen tube growth in the style is required for high seed-setting rate. The molecular mechanisms governing this process remain largely unknown. In this study, we isolate a dominant low seed-setting rate rice mutant, sss1-D. Cellular examination results show that pollen tube growth is blocked in about half of the mutant styles. Molecular cloning and functional assays reveals that SSS1-D encodes OsCNGC13, a member of the cyclic nucleotide-gated channel family. OsCNGC13 is preferentially expressed in the pistils and its expression is dramatically reduced in the heterozygous plant, suggesting a haploinsufficiency nature for the dominant mutant phenotype. We show that OsCNGC13 is permeable to Ca2+. Consistent with this, accumulation of cytoplasmic calcium concentration ([Ca2+]cyt) is defective in the sss1-D mutant style after pollination. Further, the sss1-D mutant has altered extracellular matrix (ECM) components and delayed cell death in the style transmission tract (STT). Based on these results, we propose that OsCNGC13 acts as a novel maternal sporophytic factor required for stylar [Ca2+]cyt accumulation, ECM components modification and STT cell death, thus facilitating the penetration of pollen tube in the style for successful double fertilization and seed-setting in rice. Rice is not only the staple food for more than half of the world’s population, but also a model species for plant developmental and genetic studies. After pollination, rice pollen grains adhere and hydrate at the surface of stigmatic papilla cells. Then, the germinated pollen tubes invade the stigma and navigate through the style transmission tract to reach the micropyle of the embryo sac for fertilization. During this long and arduous process, pollen tube requires abundant communication with the surrounding sporophytic maternal tissues. However, how the growth of pollen tube is regulated by maternal tissue remains largely elusive. This work identifies a typical cyclic nucleotide-gated channel protein in rice, OsCNGC13, which can mediate Ca2+ inward current. Our results suggest that OsCNGC13 acts as a novel maternal sporophytic factor required for stylar [Ca2+]cyt accumulation, extracellular matrix components modification and style cell death, thus facilitating the penetration of pollen tube in the style for successful double fertilization and seed-setting in rice. These findings provide new insights into the molecular genetic control mechanisms of seed-setting rate/grain yield in rice and expand our knowledge on the cyclic nucleotide-gated channel proteins in plant sexual reproduction.
Collapse
Affiliation(s)
- Yang Xu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Yang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yihua Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Jiachang Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Yang Yu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Yu Long
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, National Plant Gene Research Centre (Beijing), China Agricultural University, Beijing, China
| | - Yunlong Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Huan Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Yulong Ren
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Chen
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ying Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fuqing Wu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shanshan Zhu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qibing Lin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Chuanyin Wu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haiyang Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
61
|
Ma DD, Pan MY, Hou CC, Tan FQ, Yang WX. KIFC1 and myosin Va: two motors for acrosomal biogenesis and nuclear shaping during spermiogenesis of Portunus trituberculatus. Cell Tissue Res 2017. [DOI: 10.1007/s00441-017-2638-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
62
|
Zhou X, Liu Z, Ji R, Feng H. Comparative transcript profiling of fertile and sterile flower buds from multiple-allele-inherited male sterility in Chinese cabbage (Brassica campestris L. ssp. pekinensis). Mol Genet Genomics 2017; 292:967-990. [PMID: 28492984 DOI: 10.1007/s00438-017-1324-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 05/04/2017] [Indexed: 10/19/2022]
Abstract
We studied the underlying causes of multiple-allele-inherited male sterility in Chinese cabbage (Brassica campestris L. ssp. pekinensis) by identifying differentially expressed genes (DEGs) related to pollen sterility between fertile and sterile flower buds. In this work, we verified the stages of sterility microscopically and then performed transcriptome analysis of mRNA isolated from fertile and sterile buds using Illumina HiSeq 2000 platform sequencing. Approximately 80% of ~229 million high-quality paired-end reads were uniquely mapped to the reference genome. In sterile buds, 699 genes were significantly up-regulated and 4096 genes were down-regulated. Among the DEGs, 28 pollen cell wall-related genes, 54 transcription factor genes, 45 phytohormone-related genes, 20 anther and pollen-related genes, 212 specifically expressed transcripts, and 417 DEGs located on linkage group A07 were identified. Six transcription factor genes BrAMS, BrMS1, BrbHLH089, BrbHLH091, BrAtMYB103, and BrANAC025 were identified as putative sterility-related genes. The weak auxin signal that is regulated by BrABP1 may be one of the key factors causing pollen sterility observed here. Moreover, several significantly enriched GO terms such as "cell wall organization or biogenesis" (GO:0071554), "intrinsic to membrane" (GO:0031224), "integral to membrane" (GO:0016021), "hydrolase activity, acting on ester bonds" (GO:0016788), and one significantly enriched pathway "starch and sucrose metabolism" (ath00500) were identified in this work. qRT-PCR, PCR, and in situ hybridization experiments validated our RNA-seq transcriptome analysis as accurate and reliable. This study will lay the foundation for elucidating the molecular mechanism(s) that underly sterility and provide valuable information for studying multiple-allele-inherited male sterility in the Chinese cabbage line 'AB01'.
Collapse
Affiliation(s)
- Xue Zhou
- Department of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Zhiyong Liu
- Department of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Ruiqin Ji
- Department of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Hui Feng
- Department of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.
| |
Collapse
|
63
|
Ranjan R, Khurana R, Malik N, Badoni S, Parida SK, Kapoor S, Tyagi AK. bHLH142 regulates various metabolic pathway-related genes to affect pollen development and anther dehiscence in rice. Sci Rep 2017; 7:43397. [PMID: 28262713 PMCID: PMC5338287 DOI: 10.1038/srep43397] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 01/20/2017] [Indexed: 01/14/2023] Open
Abstract
Apposite development of anther and its dehiscence are important for the reproductive success of the flowering plants. Recently, bHLH142, a bHLH transcription factor encoding gene of rice has been found to show anther-specific expression and mutant analyses suggest its functions in regulating tapetum differentiation and degeneration during anther development. However, our study on protein level expression and gain-of-function phenotype revealed novel aspects of its regulation and function during anther development. Temporally dissimilar pattern of bHLH142 transcript and polypeptide accumulation suggested regulation of its expression beyond transcriptional level. Overexpression of bHLH142 in transgenic rice resulted in indehiscent anthers and aborted pollen grains. Defects in septum and stomium rupture caused anther indehiscence while pollen abortion phenotype attributed to abnormal degeneration of the tapetum. Furthermore, RNA-Seq-based transcriptome analysis of tetrad and mature pollen stage anthers of wild type and bHLH142OEplants suggested that it might regulate carbohydrate and lipid metabolism, cell wall modification, reactive oxygen species (ROS) homeostasis and cell death-related genes during rice anther development. Thus, bHLH142 is an anther-specific gene whose expression is regulated at transcriptional and post-transcriptional/translational levels. It plays a role in pollen maturation and anther dehiscence by regulating expression of various metabolic pathways-related genes.
Collapse
Affiliation(s)
- Rajeev Ranjan
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Reema Khurana
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Marg, New Delhi 110021, India
| | - Naveen Malik
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Saurabh Badoni
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Swarup K. Parida
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Sanjay Kapoor
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Marg, New Delhi 110021, India
| | - Akhilesh K. Tyagi
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Marg, New Delhi 110021, India
| |
Collapse
|
64
|
Xu D, Shi J, Rautengarten C, Yang L, Qian X, Uzair M, Zhu L, Luo Q, An G, Waßmann F, Schreiber L, Heazlewood JL, Scheller HV, Hu J, Zhang D, Liang W. Defective Pollen Wall 2 (DPW2) Encodes an Acyl Transferase Required for Rice Pollen Development. PLANT PHYSIOLOGY 2017; 173:240-255. [PMID: 27246096 PMCID: PMC5210703 DOI: 10.1104/pp.16.00095] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/23/2016] [Indexed: 05/18/2023]
Abstract
Aliphatic and aromatic lipids are both essential structural components of the plant cuticle, an important interface between the plant and environment. Although cross links between aromatic and aliphatic or other moieties are known to be associated with the formation of leaf cutin and root and seed suberin, the contribution of aromatic lipids to the biosynthesis of anther cuticles and pollen walls remains elusive. In this study, we characterized the rice (Oryza sativa) male sterile mutant, defective pollen wall 2 (dpw2), which showed an abnormal anther cuticle, a defective pollen wall, and complete male sterility. Compared with the wild type, dpw2 anthers have increased amounts of cutin and waxes and decreased levels of lipidic and phenolic compounds. DPW2 encodes a cytoplasmically localized BAHD acyltransferase. In vitro assays demonstrated that recombinant DPW2 specifically transfers hydroxycinnamic acid moieties, using ω-hydroxy fatty acids as acyl acceptors and hydroxycinnamoyl-CoAs as acyl donors. Thus, The cytoplasmic hydroxycinnamoyl-CoA:ω-hydroxy fatty acid transferase DPW2 plays a fundamental role in male reproduction via the biosynthesis of key components of the anther cuticle and pollen wall.
Collapse
Affiliation(s)
- Dawei Xu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (D.X., J.S., L.Y., X.Q., M.U., L.Z., Q.L., D.Z., W.L.)
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Victoria 3010, Australia (C.R., J.L.H.)
- Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (C.R., J.L.H., H.V.S.)
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea (G.A.)
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany (F.W., L.S.)
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (H.V.S.)
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824 (J.H.); and
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (D.X., J.S., L.Y., X.Q., M.U., L.Z., Q.L., D.Z., W.L.)
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Victoria 3010, Australia (C.R., J.L.H.)
- Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (C.R., J.L.H., H.V.S.)
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea (G.A.)
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany (F.W., L.S.)
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (H.V.S.)
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824 (J.H.); and
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| | - Carsten Rautengarten
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (D.X., J.S., L.Y., X.Q., M.U., L.Z., Q.L., D.Z., W.L.)
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Victoria 3010, Australia (C.R., J.L.H.)
- Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (C.R., J.L.H., H.V.S.)
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea (G.A.)
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany (F.W., L.S.)
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (H.V.S.)
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824 (J.H.); and
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| | - Li Yang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (D.X., J.S., L.Y., X.Q., M.U., L.Z., Q.L., D.Z., W.L.)
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Victoria 3010, Australia (C.R., J.L.H.)
- Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (C.R., J.L.H., H.V.S.)
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea (G.A.)
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany (F.W., L.S.)
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (H.V.S.)
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824 (J.H.); and
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| | - Xiaoling Qian
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (D.X., J.S., L.Y., X.Q., M.U., L.Z., Q.L., D.Z., W.L.)
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Victoria 3010, Australia (C.R., J.L.H.)
- Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (C.R., J.L.H., H.V.S.)
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea (G.A.)
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany (F.W., L.S.)
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (H.V.S.)
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824 (J.H.); and
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| | - Muhammad Uzair
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (D.X., J.S., L.Y., X.Q., M.U., L.Z., Q.L., D.Z., W.L.)
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Victoria 3010, Australia (C.R., J.L.H.)
- Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (C.R., J.L.H., H.V.S.)
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea (G.A.)
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany (F.W., L.S.)
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (H.V.S.)
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824 (J.H.); and
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| | - Lu Zhu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (D.X., J.S., L.Y., X.Q., M.U., L.Z., Q.L., D.Z., W.L.)
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Victoria 3010, Australia (C.R., J.L.H.)
- Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (C.R., J.L.H., H.V.S.)
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea (G.A.)
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany (F.W., L.S.)
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (H.V.S.)
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824 (J.H.); and
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| | - Qian Luo
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (D.X., J.S., L.Y., X.Q., M.U., L.Z., Q.L., D.Z., W.L.)
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Victoria 3010, Australia (C.R., J.L.H.)
- Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (C.R., J.L.H., H.V.S.)
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea (G.A.)
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany (F.W., L.S.)
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (H.V.S.)
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824 (J.H.); and
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| | - Gynheung An
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (D.X., J.S., L.Y., X.Q., M.U., L.Z., Q.L., D.Z., W.L.)
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Victoria 3010, Australia (C.R., J.L.H.)
- Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (C.R., J.L.H., H.V.S.)
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea (G.A.)
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany (F.W., L.S.)
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (H.V.S.)
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824 (J.H.); and
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| | - Fritz Waßmann
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (D.X., J.S., L.Y., X.Q., M.U., L.Z., Q.L., D.Z., W.L.)
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Victoria 3010, Australia (C.R., J.L.H.)
- Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (C.R., J.L.H., H.V.S.)
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea (G.A.)
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany (F.W., L.S.)
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (H.V.S.)
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824 (J.H.); and
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| | - Lukas Schreiber
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (D.X., J.S., L.Y., X.Q., M.U., L.Z., Q.L., D.Z., W.L.)
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Victoria 3010, Australia (C.R., J.L.H.)
- Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (C.R., J.L.H., H.V.S.)
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea (G.A.)
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany (F.W., L.S.)
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (H.V.S.)
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824 (J.H.); and
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| | - Joshua L Heazlewood
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (D.X., J.S., L.Y., X.Q., M.U., L.Z., Q.L., D.Z., W.L.)
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Victoria 3010, Australia (C.R., J.L.H.)
- Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (C.R., J.L.H., H.V.S.)
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea (G.A.)
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany (F.W., L.S.)
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (H.V.S.)
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824 (J.H.); and
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| | - Henrik Vibe Scheller
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (D.X., J.S., L.Y., X.Q., M.U., L.Z., Q.L., D.Z., W.L.)
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Victoria 3010, Australia (C.R., J.L.H.)
- Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (C.R., J.L.H., H.V.S.)
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea (G.A.)
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany (F.W., L.S.)
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (H.V.S.)
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824 (J.H.); and
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| | - Jianping Hu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (D.X., J.S., L.Y., X.Q., M.U., L.Z., Q.L., D.Z., W.L.)
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Victoria 3010, Australia (C.R., J.L.H.)
- Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (C.R., J.L.H., H.V.S.)
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea (G.A.)
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany (F.W., L.S.)
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (H.V.S.)
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824 (J.H.); and
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (D.X., J.S., L.Y., X.Q., M.U., L.Z., Q.L., D.Z., W.L.)
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Victoria 3010, Australia (C.R., J.L.H.)
- Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (C.R., J.L.H., H.V.S.)
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea (G.A.)
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany (F.W., L.S.)
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (H.V.S.)
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824 (J.H.); and
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (D.X., J.S., L.Y., X.Q., M.U., L.Z., Q.L., D.Z., W.L.);
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Victoria 3010, Australia (C.R., J.L.H.);
- Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (C.R., J.L.H., H.V.S.);
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea (G.A.);
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany (F.W., L.S.);
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (H.V.S.);
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824 (J.H.); and
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| |
Collapse
|
65
|
Zhang P, Zhang Y, Sun L, Sinumporn S, Yang Z, Sun B, Xuan D, Li Z, Yu P, Wu W, Wang K, Cao L, Cheng S. The Rice AAA-ATPase OsFIGNL1 Is Essential for Male Meiosis. FRONTIERS IN PLANT SCIENCE 2017; 8:1639. [PMID: 29021797 PMCID: PMC5624289 DOI: 10.3389/fpls.2017.01639] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/06/2017] [Indexed: 05/18/2023]
Abstract
Meiosis is crucial in reproduction of plants and ensuring genetic diversity. Although several genes involved in homologous recombination and DNA repair have been reported, their functions in rice (Oryza sativa) male meiosis remain poorly understood. Here, we isolated and characterized the rice OsFIGNL1 (OsFidgetin-like 1) gene, encoding a conserved AAA-ATPase, and explored its function and importance in male meiosis and pollen formation. The rice Osfignl1 mutant exhibited normal vegetative growth, but failed to produce seeds and displayed pollen abortion phenotype. Phenotypic comparisons between the wild-type and Osfignl1 mutant demonstrated that OsFIGNL1 is required for anther development, and that the recessive mutation of this gene causes male sterility in rice. Complementation and CRISPR/Cas9 experiments demonstrated that wild-type OsFIGNL1 is responsible for the male sterility phenotype. Subcellular localization showed that OsFIGNL1-green fluorescent protein was exclusively localized in the nucleus of rice protoplasts. Male meiosis in the Osfignl1 mutant exhibited abnormal chromosome behavior, including chromosome bridges and multivalent chromosomes at diakinesis, lagging chromosomes, and chromosome fragments during meiosis. Yeast two-hybrid assays demonstrated OsFIGNL1 could interact with RAD51A1, RAD51A2, DMC1A, DMC1B, and these physical interactions were further confirmed by BiFC assay. Taken together, our results suggest that OsFIGNL1 plays an important role in regulation of male meiosis and anther development.
Collapse
Affiliation(s)
- Peipei Zhang
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yingxin Zhang
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Lianping Sun
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Sittipun Sinumporn
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Zhengfu Yang
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Bin Sun
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Dandan Xuan
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Zihe Li
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Ping Yu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Weixun Wu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Kejian Wang
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Liyong Cao
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- *Correspondence: Liyong Cao, Shihua Cheng,
| | - Shihua Cheng
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- *Correspondence: Liyong Cao, Shihua Cheng,
| |
Collapse
|
66
|
Ma W, Wu F, Sheng P, Wang X, Zhang Z, Zhou K, Zhang H, Hu J, Lin Q, Cheng Z, Wang J, Zhu S, Zhang X, Guo X, Wang H, Wu C, Zhai H, Wan J. The LBD12-1 Transcription Factor Suppresses Apical Meristem Size by Repressing Argonaute 10 Expression. PLANT PHYSIOLOGY 2017; 173:801-811. [PMID: 27895202 PMCID: PMC5210715 DOI: 10.1104/pp.16.01699] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 11/27/2016] [Indexed: 05/20/2023]
Abstract
The shoot apical meristem (SAM) consists of a population of multipotent cells that generates all aerial structures and regenerates itself. SAM maintenance and lateral organ development are regulated by several complex signaling pathways, in which the Argonaute gene-mediated pathway plays a key role. One Argonaute gene, AGO10, functions as a microRNA locker that attenuates miR165/166 activity and positively regulates shoot apical meristem development, but little is known about when and how AGO10 is regulated at the transcriptional level. In this work, we showed that transgenic rice plants overexpressing LBD12-1, an LBD family transcription factor, exhibited stunted growth, twisted leaves, abnormal anthers, and reduced SAM size. Further research revealed that LBD12-1 directly binds to the promoter region and represses the expression of AGO10. Overexpression of AGO10 in an LBD12-1 overexpression background rescued the growth defect phenotype of LBD12-1-overexpressing plants. The expression of LBD12-1 and its binding ability to the AGO10 promoter is induced by stress. lbd12-1 loss-of-function mutants showed similar phenotypes and SAM size to the wild type under normal conditions, but lbd12-1 had a larger SAM under salt stress. Our findings provide novel insights into the regulatory mechanism of AGO10 by which SAM size is controlled under stress conditions.
Collapse
Affiliation(s)
- Weiwei Ma
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China (W.M., F.W., P.S., X.W., Z.Z., Q.L., Z.C., J. Wang, S.Z., X.Z., X.G., H.W., C.W., H.Z., J. Wan); and
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China (K.Z., H.Z., J.H., J. Wan)
| | - Fuqing Wu
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China (W.M., F.W., P.S., X.W., Z.Z., Q.L., Z.C., J. Wang, S.Z., X.Z., X.G., H.W., C.W., H.Z., J. Wan); and
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China (K.Z., H.Z., J.H., J. Wan)
| | - Peike Sheng
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China (W.M., F.W., P.S., X.W., Z.Z., Q.L., Z.C., J. Wang, S.Z., X.Z., X.G., H.W., C.W., H.Z., J. Wan); and
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China (K.Z., H.Z., J.H., J. Wan)
| | - Xiaole Wang
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China (W.M., F.W., P.S., X.W., Z.Z., Q.L., Z.C., J. Wang, S.Z., X.Z., X.G., H.W., C.W., H.Z., J. Wan); and
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China (K.Z., H.Z., J.H., J. Wan)
| | - Zhe Zhang
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China (W.M., F.W., P.S., X.W., Z.Z., Q.L., Z.C., J. Wang, S.Z., X.Z., X.G., H.W., C.W., H.Z., J. Wan); and
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China (K.Z., H.Z., J.H., J. Wan)
| | - Kunneng Zhou
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China (W.M., F.W., P.S., X.W., Z.Z., Q.L., Z.C., J. Wang, S.Z., X.Z., X.G., H.W., C.W., H.Z., J. Wan); and
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China (K.Z., H.Z., J.H., J. Wan)
| | - Huan Zhang
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China (W.M., F.W., P.S., X.W., Z.Z., Q.L., Z.C., J. Wang, S.Z., X.Z., X.G., H.W., C.W., H.Z., J. Wan); and
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China (K.Z., H.Z., J.H., J. Wan)
| | - Jinlong Hu
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China (W.M., F.W., P.S., X.W., Z.Z., Q.L., Z.C., J. Wang, S.Z., X.Z., X.G., H.W., C.W., H.Z., J. Wan); and
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China (K.Z., H.Z., J.H., J. Wan)
| | - Qibin Lin
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China (W.M., F.W., P.S., X.W., Z.Z., Q.L., Z.C., J. Wang, S.Z., X.Z., X.G., H.W., C.W., H.Z., J. Wan); and
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China (K.Z., H.Z., J.H., J. Wan)
| | - Zhijun Cheng
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China (W.M., F.W., P.S., X.W., Z.Z., Q.L., Z.C., J. Wang, S.Z., X.Z., X.G., H.W., C.W., H.Z., J. Wan); and
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China (K.Z., H.Z., J.H., J. Wan)
| | - Jiulin Wang
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China (W.M., F.W., P.S., X.W., Z.Z., Q.L., Z.C., J. Wang, S.Z., X.Z., X.G., H.W., C.W., H.Z., J. Wan); and
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China (K.Z., H.Z., J.H., J. Wan)
| | - Shanshan Zhu
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China (W.M., F.W., P.S., X.W., Z.Z., Q.L., Z.C., J. Wang, S.Z., X.Z., X.G., H.W., C.W., H.Z., J. Wan); and
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China (K.Z., H.Z., J.H., J. Wan)
| | - Xin Zhang
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China (W.M., F.W., P.S., X.W., Z.Z., Q.L., Z.C., J. Wang, S.Z., X.Z., X.G., H.W., C.W., H.Z., J. Wan); and
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China (K.Z., H.Z., J.H., J. Wan)
| | - Xiuping Guo
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China (W.M., F.W., P.S., X.W., Z.Z., Q.L., Z.C., J. Wang, S.Z., X.Z., X.G., H.W., C.W., H.Z., J. Wan); and
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China (K.Z., H.Z., J.H., J. Wan)
| | - Haiyang Wang
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China (W.M., F.W., P.S., X.W., Z.Z., Q.L., Z.C., J. Wang, S.Z., X.Z., X.G., H.W., C.W., H.Z., J. Wan); and
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China (K.Z., H.Z., J.H., J. Wan)
| | - Chuanyin Wu
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China (W.M., F.W., P.S., X.W., Z.Z., Q.L., Z.C., J. Wang, S.Z., X.Z., X.G., H.W., C.W., H.Z., J. Wan); and
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China (K.Z., H.Z., J.H., J. Wan)
| | - Huqu Zhai
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China (W.M., F.W., P.S., X.W., Z.Z., Q.L., Z.C., J. Wang, S.Z., X.Z., X.G., H.W., C.W., H.Z., J. Wan); and
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China (K.Z., H.Z., J.H., J. Wan)
| | - Jianmin Wan
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China (W.M., F.W., P.S., X.W., Z.Z., Q.L., Z.C., J. Wang, S.Z., X.Z., X.G., H.W., C.W., H.Z., J. Wan); and
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China (K.Z., H.Z., J.H., J. Wan)
| |
Collapse
|
67
|
Yu Y, Li QF, Zhang JP, Zhang F, Zhou YF, Feng YZ, Chen YQ, Zhang YC. Laccase-13 Regulates Seed Setting Rate by Affecting Hydrogen Peroxide Dynamics and Mitochondrial Integrity in Rice. FRONTIERS IN PLANT SCIENCE 2017; 8:1324. [PMID: 28798768 PMCID: PMC5526905 DOI: 10.3389/fpls.2017.01324] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/14/2017] [Indexed: 05/03/2023]
Abstract
Seed setting rate is one of the most important components of rice grain yield. To date, only several genes regulating setting rate have been identified in plant. In this study, we showed that laccase-13 (OsLAC13), a member of laccase family genes which are known for their roles in modulating phenylpropanoid pathway and secondary lignification in cell wall, exerts a regulatory function in rice seed setting rate. OsLAC13 expressed in anthers and promotes hydrogen peroxide production both in vitro and in the filaments and anther connectives. Knock-out of OsLAC13 showed significantly increased seed setting rate, while overexpression of this gene exhibited induced mitochondrial damage and suppressed sugar transportation in anthers, which in turn affected seed setting rate. OsLAC13 also induced H2O2 production and mitochondrial damage in the root tip cells which caused the lethal phenotype. We also showed that high abundant of OsmiR397, the suppressor of OsLAC13 mRNA, increased the seed setting rate of rice plants, and restrains H2O2 accumulation in roots during oxidative stress. Our results suggested a novel regulatory role of OsLAC13 gene in regulating seed setting rate by affecting H2O2 dynamics and mitochondrial integrity in rice.
Collapse
|
68
|
Khosa JS, Lee R, Bräuning S, Lord J, Pither-Joyce M, McCallum J, Macknight RC. Doubled Haploid 'CUDH2107' as a Reference for Bulb Onion (Allium cepa L.) Research: Development of a Transcriptome Catalogue and Identification of Transcripts Associated with Male Fertility. PLoS One 2016; 11:e0166568. [PMID: 27861615 PMCID: PMC5115759 DOI: 10.1371/journal.pone.0166568] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/31/2016] [Indexed: 11/21/2022] Open
Abstract
Researchers working on model plants have derived great benefit from developing genomic and genetic resources using ‘reference’ genotypes. Onion has a large and highly heterozygous genome making the sharing of germplasm and analysis of sequencing data complicated. To simplify the discovery and analysis of genes underlying important onion traits, we are promoting the use of the homozygous double haploid line ‘CUDH2107’ by the onion research community. In the present investigation, we performed transcriptome sequencing on vegetative and reproductive tissues of CUDH2107 to develop a multi-organ reference transcriptome catalogue. A total of 396 million 100 base pair paired reads was assembled using the Trinity pipeline, resulting in 271,665 transcript contigs. This dataset was analysed for gene ontology and transcripts were classified on the basis of putative biological processes, molecular function and cellular localization. Significant differences were observed in transcript expression profiles between different tissues. To demonstrate the utility of our CUDH2107 transcriptome catalogue for understanding the genetic and molecular basis of various traits, we identified orthologues of rice genes involved in male fertility and flower development. These genes provide an excellent starting point for studying the molecular regulation, and the engineering of reproductive traits.
Collapse
Affiliation(s)
| | - Robyn Lee
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Sophia Bräuning
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
- Department of Botany, University of Otago, Dunedin, New Zealand
| | - Janice Lord
- Department of Botany, University of Otago, Dunedin, New Zealand
| | | | - John McCallum
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
- New Zealand Institute for Plant & Food Research, Lincoln, New Zealand
| | - Richard C. Macknight
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
- New Zealand Institute for Plant & Food Research, Lincoln, New Zealand
- * E-mail:
| |
Collapse
|
69
|
Tian S, Wu J, Li F, Zou J, Liu Y, Zhou B, Bai Y, Sun MX. NtKRP, a kinesin-12 protein, regulates embryo/seed size and seed germination via involving in cell cycle progression at the G2/M transition. Sci Rep 2016; 6:35641. [PMID: 27779252 PMCID: PMC5078848 DOI: 10.1038/srep35641] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 10/03/2016] [Indexed: 01/01/2023] Open
Abstract
Kinesins comprise a superfamily of microtubule-based motor proteins involved in essential processes in plant development, but few kinesins have been functionally identified during seed development. Especially, few kinesins that regulate cell division during embryogenesis have been identified. Here we report the functional characterization of NtKRP, a motor protein of the kinesin-12 family. NtKRP is predominantly expressed in embryos and embryonic roots. NtKRP RNAi lines displayed reductions in cell numbers in the meristematic zone, in embryonic root length, and in mature embryo and seed sizes. Furthermore, we also show that CDKA;1 binds to NtKRP at the consensus phosphorylation sites and that the decreased cell numbers in NtKRP-silenced embryos are due to a delay in cell division cycle at the G2/M transition. In addition, binding between the cargo-binding tail domain of NtKRP and CDKA; 1 was also determined. Our results reveal a novel molecular pathway that regulates embryo/seed development and critical role of kinesin in temporal and spatial regulation of a specific issue of embryo developmental.
Collapse
Affiliation(s)
- Shujuan Tian
- College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
| | - Jingjing Wu
- College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
| | - Fen Li
- College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Jianwei Zou
- College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
| | - Yuwen Liu
- College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
| | - Bing Zhou
- College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
| | - Yang Bai
- College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
| | - Meng-Xiang Sun
- College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
70
|
Kong W, Yu X, Chen H, Liu L, Xiao Y, Wang Y, Wang C, Lin Y, Yu Y, Wang C, Jiang L, Zhai H, Zhao Z, Wan J. The catalytic subunit of magnesium-protoporphyrin IX monomethyl ester cyclase forms a chloroplast complex to regulate chlorophyll biosynthesis in rice. PLANT MOLECULAR BIOLOGY 2016; 92:177-91. [PMID: 27514852 DOI: 10.1007/s11103-016-0513-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 06/02/2016] [Indexed: 05/20/2023]
Abstract
YGL8 has the dual functions in Chl biosynthesis: one as a catalytic subunit of MgPME cyclase, the other as a core component of FLU-YGL8-LCAA-POR complex in Chl biosynthesis. Magnesium-protoporphyrin IX monomethyl ester (MgPME) cyclase is an essential enzyme involved in chlorophyll (Chl) biosynthesis. However, its roles in regulating Chl biosynthesis are not fully explored. In this study, we isolated a rice mutant yellow-green leaf 8 (ygl8) that exhibited chlorosis phenotype with abnormal chloroplast development in young leaves. As the development of leaves, the chlorotic plants turned green accompanied by restorations in Chl content and chloroplast ultrastructure. Map-based cloning revealed that the ygl8 gene encodes a catalytic subunit of MgPME cyclase. The ygl8 mutation caused a conserved amino acid substitution (Asn182Ser), which was related to the alterations of Chl precursor content. YGL8 was constitutively expressed in various tissues, with more abundance in young leaves and panicles. Furthermore, we showed that expression levels of some nuclear genes associated with Chl biosynthesis were affected in both the ygl8 mutant and YGL8 RNA interference lines. By transient expression in rice protoplasts, we found that N-terminal 40 amino acid residues were enough to localize the YGL8 protein to chloroplast. In vivo experiments demonstrated a physical interaction between YGL8 and a rice chloroplast protein, low chlorophyll accumulation A (OsLCAA). Moreover, bimolecular fluorescence complementation assays revealed that YGL8 also interacted with the other two rice chloroplast proteins, viz. fluorescent (OsFLU1) and NADPH:protochlorophyllide oxidoreductase (OsPORB). These results provide new insights into the roles of YGL8, not only as a subunit with catalytic activity, but as a core component of FLU-YGL8-LCAA-POR complex required for Chl biosynthesis.
Collapse
Affiliation(s)
- Weiyi Kong
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaowen Yu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haiyuan Chen
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Linglong Liu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanjia Xiao
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yunlong Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chaolong Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yun Lin
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yang Yu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunming Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ling Jiang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huqu Zhai
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Zhigang Zhao
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianmin Wan
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China.
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agriculture Sciences, Beijing, 100081, China.
| |
Collapse
|
71
|
Tomei EJ, Wolniak SM. Transcriptome analysis reveals a diverse family of kinesins essential for spermatogenesis in the fern
M
arsilea. Cytoskeleton (Hoboken) 2016; 73:145-59. [DOI: 10.1002/cm.21285] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/10/2016] [Accepted: 02/12/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Erika J. Tomei
- Department of Cell Biology and Molecular GeneticsUniversity of Maryland at College ParkCollege Park Maryland
| | - Stephen M. Wolniak
- Department of Cell Biology and Molecular GeneticsUniversity of Maryland at College ParkCollege Park Maryland
| |
Collapse
|
72
|
Yang J, Chen X, Zhu C, Peng X, He X, Fu J, Ouyang L, Bian J, Hu L, Sun X, Xu J, He H. Using RNA-seq to Profile Gene Expression of Spikelet Development in Response to Temperature and Nitrogen during Meiosis in Rice (Oryza sativa L.). PLoS One 2015; 10:e0145532. [PMID: 26714321 PMCID: PMC4694716 DOI: 10.1371/journal.pone.0145532] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 12/04/2015] [Indexed: 11/18/2022] Open
Abstract
Rice reproductive development is sensitive to high temperature and soil nitrogen supply, both of which are predicted to be increased threats to rice crop yield. Rice spikelet development is a critical process that determines yield, yet little is known about the transcriptional regulation of rice spikelet development in response to the combination of heat stress and low nitrogen availability. Here, we profiled gene expression of rice spikelet development during meiosis under heat stress and different nitrogen levels using RNA-seq. We subjected plants to four treatments: 1) NN: normal nitrogen level (165 kg ha-1) with normal temperature (30°C); 2) HH: high nitrogen level (264 kg ha-1) with high temperature (37°C); 3) NH: normal nitrogen level and high temperature; and 4) HN: high nitrogen level and normal temperature. The de novo transcriptome assembly resulted in 52,250,482 clean reads aligned with 76,103 unigenes, which were then used to compare differentially expressed genes (DEGs) in the different treatments. Comparing gene expression in samples with the same nitrogen levels but different temperatures, we identified 70 temperature-responsive DEGs in normal nitrogen levels (NN vs NH) and 135 DEGs in high nitrogen levels (HN vs HH), with 27 overlapping DEGs. We identified 17 and seven nitrogen-responsive DEGs by comparing changes in nitrogen levels in lower temperature (NN vs HN) and higher temperature (NH vs HH), with one common DEG. The temperature-responsive genes were principally associated with cytochrome, heat shock protein, peroxidase, and ubiquitin, while the nitrogen-responsive genes were mainly involved in glutamine synthetase, amino acid transporter, pollen development, and plant hormone. Rice spikelet fertility was significantly reduced under high temperature, but less reduced under high-nitrogen treatment. In the high temperature treatments, we observed downregulation of genes involved in spikelet development, such as pollen tube growth, pollen maturation, especially sporopollenin biosynthetic process, and pollen exine formation. Moreover, we observed higher expression levels of the co-expressed DEGs in HN vs HH compared to NN vs NH. These included the six downregulated genes (one pollen maturation and five pollen exine formation genes), as well as the four upregulated DEGs in response to heat. This suggests that high-nitrogen treatment may enhance the gene expression levels to mitigate aspects of heat-stress. The spikelet genes identified in this study may play important roles in response to the combined effects of high temperature and high nitrogen, and may serve as candidates for crop improvement.
Collapse
Affiliation(s)
- Jun Yang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiaorong Chen
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha, 410128, China
| | - Changlan Zhu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha, 410128, China
| | - Xiaosong Peng
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha, 410128, China
| | - Xiaopeng He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha, 410128, China
| | - Junru Fu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha, 410128, China
| | - Linjuan Ouyang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha, 410128, China
| | - Jianmin Bian
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha, 410128, China
| | - Lifang Hu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha, 410128, China
| | - Xiaotang Sun
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha, 410128, China
| | - Jie Xu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Haohua He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha, 410128, China
- * E-mail:
| |
Collapse
|
73
|
Lee YRJ, Qiu W, Liu B. Kinesin motors in plants: from subcellular dynamics to motility regulation. CURRENT OPINION IN PLANT BIOLOGY 2015; 28:120-126. [PMID: 26556761 DOI: 10.1016/j.pbi.2015.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 09/30/2015] [Accepted: 10/07/2015] [Indexed: 06/05/2023]
Abstract
Plants produce enormous forms of the microtubule (MT)-based motor kinesins that have been inspiring plant cell biologists to uncover their functions in relation to plant growth and development. Subcellular localization of kinesin proteins detected through live-cell imaging or immunofluorescence microscopy has provided great insights into the functions of these motors. Dozens of mitotic kinesins exhibit particularly splendid localization patterns from chromosomes and kinetochores to MT arrays like the preprophase band, spindle poles, the spindle midzone, phragmoplast distal ends, and the phragmoplast midzone. Different subcellular localizations indicate distinct functions of these motors that are yet to be characterized. The localization difference between plant kinesins and their animal counterparts implies mechanistic differences in mitosis and cytokinesis between the two kingdoms. When many forms of kinesins are present simultaneously, it becomes critical that their motility is differentially regulated with spatial and temporal precision. Insights into regulatory mechanisms of motors can often be brought about by in vitro single-molecule biophysical studies. Significant advances are expected in this area in the coming years owing to rapid technological advances that are being brought to various model plants.
Collapse
Affiliation(s)
- Yuh-Ru Julie Lee
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Weihong Qiu
- Departments of Physics and Biophysics & Biochemistry, Oregon State University, Covallis, OR 97331, USA
| | - Bo Liu
- Department of Plant Biology, University of California, Davis, CA 95616, USA.
| |
Collapse
|
74
|
Yang J, Chen X, Zhu C, Peng X, He X, Fu J, Ouyang L, Bian J, Hu L, Sun X, Xu J, He H. RNA-seq reveals differentially expressed genes of rice (Oryza sativa) spikelet in response to temperature interacting with nitrogen at meiosis stage. BMC Genomics 2015; 16:959. [PMID: 26576634 PMCID: PMC4650392 DOI: 10.1186/s12864-015-2141-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 10/23/2015] [Indexed: 12/22/2022] Open
Abstract
Background Rice (Oryza sativa) is one of the most important cereal crops, providing food for more than half of the world’s population. However, grain yields are challenged by various abiotic stresses such as drought, fertilizer, heat, and their interaction. Rice at reproductive stage is much more sensitive to environmental temperatures, and little is known about molecular mechanisms of rice spikelet in response to high temperature interacting with nitrogen (N). Results Here we reported the transcriptional profiling analysis of rice spikelet at meiosis stage using RNA sequencing (RNA-seq) as an attempt to gain insights into molecular events associated with temperature and nitrogen. This study received four treatments: 1) NN: normal nitrogen level (165 kg ha−1) with natural temperature (30 °C); 2) HH: high nitrogen level (330 kg ha−1) with high temperature (37 °C); 3) NH: normal nitrogen level and high temperature; and 4) HN: high nitrogen level and natural temperature, respectively. The de novo assembly generated 52,553,536 clean reads aligned with 72,667 unigenes. About 10 M reads were identified from each treatment. In these differentially expressed genes (DEGs), we found 151 and 323 temperature-responsive DEGs in NN-vs-NH and HN-vs-HH, and 114 DEGs were co-expressed. Meanwhile, 203 and 144 nitrogen-responsive DEGs were focused in NN-vs-HN and NH-vs-HH, and 111 DEGs were co-expressed. The temperature-responsive genes were principally associated with calcium-dependent protein, cytochrome, flavonoid, heat shock protein, peroxidase, ubiquitin, and transcription factor while the nitrogen-responsive genes were mainly involved in glutamine synthetase, transcription factor, anthocyanin, amino acid transporter, leucine zipper protein, and hormone. It is noted that, rice spikelet fertility was significantly decreased under high temperature, but it was more reduced under higher nitrogen. Accordingly, numerous spikelet genes involved in pollen development, pollen tube growth, pollen germination, especially sporopollenin biosynthetic process, and pollen exine formation were mainly down-regulated under high temperature. Moreover, the expression levels of co-expressed DEGs including 5 sporopollenin biosynthetic process and 7 pollen exine formation genes of NN-vs-NH were lower than that of HN-vs-HH. Therefore, these spikelet genes may play important roles in response to high temperature with high nitrogen and may be good candidates for crop improvement. Conclusions This RNA-seq study will help elucidate the molecular mechanisms of rice spikelet defense response to high temperature interacting with high nitrogen level. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2141-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jun Yang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, 1101 Zhimin Street, Changbei economic and technological development zone, QingShanHu District, Nanchang, Jiangxi Province, 330045, China.
| | - Xiaorong Chen
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, 1101 Zhimin Street, Changbei economic and technological development zone, QingShanHu District, Nanchang, Jiangxi Province, 330045, China.
| | - Changlan Zhu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, 1101 Zhimin Street, Changbei economic and technological development zone, QingShanHu District, Nanchang, Jiangxi Province, 330045, China.
| | - Xiaosong Peng
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, 1101 Zhimin Street, Changbei economic and technological development zone, QingShanHu District, Nanchang, Jiangxi Province, 330045, China.
| | - Xiaopeng He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, 1101 Zhimin Street, Changbei economic and technological development zone, QingShanHu District, Nanchang, Jiangxi Province, 330045, China.
| | - Junru Fu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, 1101 Zhimin Street, Changbei economic and technological development zone, QingShanHu District, Nanchang, Jiangxi Province, 330045, China.
| | - Linjuan Ouyang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, 1101 Zhimin Street, Changbei economic and technological development zone, QingShanHu District, Nanchang, Jiangxi Province, 330045, China.
| | - Jianmin Bian
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, 1101 Zhimin Street, Changbei economic and technological development zone, QingShanHu District, Nanchang, Jiangxi Province, 330045, China.
| | - Lifang Hu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, 1101 Zhimin Street, Changbei economic and technological development zone, QingShanHu District, Nanchang, Jiangxi Province, 330045, China.
| | - Xiaotang Sun
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, 1101 Zhimin Street, Changbei economic and technological development zone, QingShanHu District, Nanchang, Jiangxi Province, 330045, China.
| | - Jie Xu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, 1101 Zhimin Street, Changbei economic and technological development zone, QingShanHu District, Nanchang, Jiangxi Province, 330045, China.
| | - Haohua He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, 1101 Zhimin Street, Changbei economic and technological development zone, QingShanHu District, Nanchang, Jiangxi Province, 330045, China.
| |
Collapse
|
75
|
Omidvar V, Mohorianu I, Dalmay T, Fellner M. Identification of miRNAs with potential roles in regulation of anther development and male-sterility in 7B-1 male-sterile tomato mutant. BMC Genomics 2015; 16:878. [PMID: 26511108 PMCID: PMC4625851 DOI: 10.1186/s12864-015-2077-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 10/13/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The 7B-1 tomato line (Solanum lycopersicum cv. Rutgers) is a photoperiod-sensitive male-sterile mutant, with potential application in hybrid seed production. Small RNAs (sRNAs) in tomato have been mainly characterized in fruit development and ripening, but none have been studied with respect to flower development and regulation of male-sterility. Using sRNA sequencing, we identified miRNAs that are potentially involved in anther development and regulation of male-sterility in 7B-1 mutant. RESULTS Two sRNA libraries from 7B-1 and wild type (WT) anthers were sequenced and thirty two families of known miRNAs and 23 new miRNAs were identified in both libraries. MiR390, miR166, miR159 were up-regulated and miR530, miR167, miR164, miR396, miR168, miR393, miR8006 and two new miRNAs, miR#W and miR#M were down-regulated in 7B-1 anthers. Ta-siRNAs were not differentially expressed and likely not associated with 7B-1 male-sterility. miRNA targets with potential roles in anther development were validated using 5'-RACE. QPCR analysis showed differential expression of miRNA/target pairs of interest in anthers and stem of 7B-1, suggesting that they may regulate different biological processes in these tissues. Expression level of most miRNA/target pairs showed negative correlation, except for few. In situ hybridization showed predominant expression of miR159, GAMYBL1, PMEI and cystatin in tapetum, tetrads and microspores. CONCLUSION Overall, we identified miRNAs with potential roles in anther development and regulation of male-sterility in 7B-1. A number of new miRNAs were also identified from tomato for the first time. Our data could be used as a benchmark for future studies of the molecular mechanisms of male-sterility in other crops.
Collapse
Affiliation(s)
- Vahid Omidvar
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University and Institute of Experimental Botany AS CR, Šlechtitelů 11, CZ-78371, Olomouc, Czech Republic.
| | - Irina Mohorianu
- School of Computing Sciences, University of East Anglia, Norwich, NR4 7TJ, UK. .,School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK.
| | - Tamas Dalmay
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK.
| | - Martin Fellner
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University and Institute of Experimental Botany AS CR, Šlechtitelů 11, CZ-78371, Olomouc, Czech Republic.
| |
Collapse
|
76
|
Zhang B, Xu M, Bian S, Hou L, Tang D, Li Y, Gu M, Cheng Z, Yu H. Global Identification of Genes Specific for Rice Meiosis. PLoS One 2015; 10:e0137399. [PMID: 26394329 PMCID: PMC4578934 DOI: 10.1371/journal.pone.0137399] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 08/17/2015] [Indexed: 11/23/2022] Open
Abstract
The leptotene-zygotene transition is a major step in meiotic progression during which pairing between homologous chromosomes is initiated and double strand breaks occur. OsAM1, a homologue of maize AM1 and Arabidopsis SWI1, encodes a protein with a coiled-coil domain in its central region that is required for the leptotene-zygotene transition during rice meiosis. To gain more insight into the role of OsAM1 in rice meiosis and identify additional meiosis-specific genes, we characterized the transcriptomes of young panicles of Osam1 mutant and wild-type rice plants using RNA-Seq combined with bioinformatic and statistical analyses. As a result, a total of 25,750 and 28,455 genes were expressed in young panicles of wild-type and Osam1 mutant plants, respectively, and 4,400 differentially expressed genes (DEGs; log2 Ratio ≥ 1, FDR ≤ 0.05) were identified. Of these DEGs, four known rice meiosis-specific genes were detected, and 22 new putative meiosis-related genes were found by mapping these DEGs to reference biological pathways in the KEGG database. We identified eight additional well-conserved OsAM1-responsive rice meiotic genes by comparing our RNA-Seq data with known meiotic genes in Arabidopsis and fission yeast.
Collapse
Affiliation(s)
- Bingwei Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modem Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Meng Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modem Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Shiquan Bian
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modem Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Lili Hou
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modem Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Ding Tang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yafei Li
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Minghong Gu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modem Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Zhukuan Cheng
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hengxiu Yu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modem Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
- * E-mail:
| |
Collapse
|
77
|
Cao H, Li X, Wang Z, Ding M, Sun Y, Dong F, Chen F, Liu L, Doughty J, Li Y, Liu YX. Histone H2B Monoubiquitination Mediated by HISTONE MONOUBIQUITINATION1 and HISTONE MONOUBIQUITINATION2 Is Involved in Anther Development by Regulating Tapetum Degradation-Related Genes in Rice. PLANT PHYSIOLOGY 2015; 168:1389-405. [PMID: 26143250 PMCID: PMC4528728 DOI: 10.1104/pp.114.256578] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 07/02/2015] [Indexed: 05/06/2023]
Abstract
Histone H2B monoubiquitination (H2Bub1) is an important regulatory mechanism in eukaryotic gene transcription and is essential for normal plant development. However, the function of H2Bub1 in reproductive development remains elusive. Here, we report rice (Oryza sativa) HISTONE MONOUBIQUITINATION1 (OsHUB1) and OsHUB2, the homologs of Arabidopsis (Arabidopsis thaliana) HUB1 and HUB2 proteins, which function as E3 ligases in H2Bub1, are involved in late anther development in rice. oshub mutants exhibit abnormal tapetum development and aborted pollen in postmeiotic anthers. Knockout of OsHUB1 or OsHUB2 results in the loss of H2Bub1 and a reduction in the levels of dimethylated lysine-4 on histone 3 (H3K4me2). Anther transcriptome analysis revealed that several key tapetum degradation-related genes including OsC4, rice Cysteine Protease1 (OsCP1), and Undeveloped Tapetum1 (UDT1) were down-regulated in the mutants. Further, chromatin immunoprecipitation assays demonstrate that H2Bub1 directly targets OsC4, OsCP1, and UDT1 genes, and enrichment of H2Bub1 and H3K4me2 in the targets is consistent to some degree. Our studies suggest that histone H2B monoubiquitination, mediated by OsHUB1 and OsHUB2, is an important epigenetic modification that in concert with H3K4me2, modulates transcriptional regulation of anther development in rice.
Collapse
Affiliation(s)
- Hong Cao
- Key Laboratory of Plant Molecular Physiology (H.C., X.L., Z.W., M.D., Y.S., F.D., F.C., Y.-X.L.) and Beijing Botanical Garden (L.L.), Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;University of Chinese Academy of Sciences, Beijing 100049, China (X.L., M.D.);Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom (J.D.); andDepartment of Internal Medicine IV, University of Hospital Freiburg, 79106 Freiburg, Germany (Y.L.)
| | - Xiaoying Li
- Key Laboratory of Plant Molecular Physiology (H.C., X.L., Z.W., M.D., Y.S., F.D., F.C., Y.-X.L.) and Beijing Botanical Garden (L.L.), Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;University of Chinese Academy of Sciences, Beijing 100049, China (X.L., M.D.);Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom (J.D.); andDepartment of Internal Medicine IV, University of Hospital Freiburg, 79106 Freiburg, Germany (Y.L.)
| | - Zhi Wang
- Key Laboratory of Plant Molecular Physiology (H.C., X.L., Z.W., M.D., Y.S., F.D., F.C., Y.-X.L.) and Beijing Botanical Garden (L.L.), Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;University of Chinese Academy of Sciences, Beijing 100049, China (X.L., M.D.);Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom (J.D.); andDepartment of Internal Medicine IV, University of Hospital Freiburg, 79106 Freiburg, Germany (Y.L.)
| | - Meng Ding
- Key Laboratory of Plant Molecular Physiology (H.C., X.L., Z.W., M.D., Y.S., F.D., F.C., Y.-X.L.) and Beijing Botanical Garden (L.L.), Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;University of Chinese Academy of Sciences, Beijing 100049, China (X.L., M.D.);Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom (J.D.); andDepartment of Internal Medicine IV, University of Hospital Freiburg, 79106 Freiburg, Germany (Y.L.)
| | - Yongzhen Sun
- Key Laboratory of Plant Molecular Physiology (H.C., X.L., Z.W., M.D., Y.S., F.D., F.C., Y.-X.L.) and Beijing Botanical Garden (L.L.), Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;University of Chinese Academy of Sciences, Beijing 100049, China (X.L., M.D.);Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom (J.D.); andDepartment of Internal Medicine IV, University of Hospital Freiburg, 79106 Freiburg, Germany (Y.L.)
| | - Fengqin Dong
- Key Laboratory of Plant Molecular Physiology (H.C., X.L., Z.W., M.D., Y.S., F.D., F.C., Y.-X.L.) and Beijing Botanical Garden (L.L.), Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;University of Chinese Academy of Sciences, Beijing 100049, China (X.L., M.D.);Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom (J.D.); andDepartment of Internal Medicine IV, University of Hospital Freiburg, 79106 Freiburg, Germany (Y.L.)
| | - Fengying Chen
- Key Laboratory of Plant Molecular Physiology (H.C., X.L., Z.W., M.D., Y.S., F.D., F.C., Y.-X.L.) and Beijing Botanical Garden (L.L.), Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;University of Chinese Academy of Sciences, Beijing 100049, China (X.L., M.D.);Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom (J.D.); andDepartment of Internal Medicine IV, University of Hospital Freiburg, 79106 Freiburg, Germany (Y.L.)
| | - Li'an Liu
- Key Laboratory of Plant Molecular Physiology (H.C., X.L., Z.W., M.D., Y.S., F.D., F.C., Y.-X.L.) and Beijing Botanical Garden (L.L.), Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;University of Chinese Academy of Sciences, Beijing 100049, China (X.L., M.D.);Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom (J.D.); andDepartment of Internal Medicine IV, University of Hospital Freiburg, 79106 Freiburg, Germany (Y.L.)
| | - James Doughty
- Key Laboratory of Plant Molecular Physiology (H.C., X.L., Z.W., M.D., Y.S., F.D., F.C., Y.-X.L.) and Beijing Botanical Garden (L.L.), Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;University of Chinese Academy of Sciences, Beijing 100049, China (X.L., M.D.);Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom (J.D.); andDepartment of Internal Medicine IV, University of Hospital Freiburg, 79106 Freiburg, Germany (Y.L.)
| | - Yong Li
- Key Laboratory of Plant Molecular Physiology (H.C., X.L., Z.W., M.D., Y.S., F.D., F.C., Y.-X.L.) and Beijing Botanical Garden (L.L.), Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;University of Chinese Academy of Sciences, Beijing 100049, China (X.L., M.D.);Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom (J.D.); andDepartment of Internal Medicine IV, University of Hospital Freiburg, 79106 Freiburg, Germany (Y.L.)
| | - Yong-Xiu Liu
- Key Laboratory of Plant Molecular Physiology (H.C., X.L., Z.W., M.D., Y.S., F.D., F.C., Y.-X.L.) and Beijing Botanical Garden (L.L.), Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;University of Chinese Academy of Sciences, Beijing 100049, China (X.L., M.D.);Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom (J.D.); andDepartment of Internal Medicine IV, University of Hospital Freiburg, 79106 Freiburg, Germany (Y.L.)
| |
Collapse
|
78
|
Zheng M, Wang Y, Wang Y, Wang C, Ren Y, Lv J, Peng C, Wu T, Liu K, Zhao S, Liu X, Guo X, Jiang L, Terzaghi W, Wan J. DEFORMED FLORAL ORGAN1 (DFO1) regulates floral organ identity by epigenetically repressing the expression of OsMADS58 in rice (Oryza sativa). THE NEW PHYTOLOGIST 2015; 206:1476-90. [PMID: 25675970 DOI: 10.1111/nph.13318] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 12/24/2014] [Indexed: 05/05/2023]
Abstract
Floral organ identity in plants is controlled by floral homeotic A/B/C/D/E-class genes. In Arabidopsis thaliana, several epigenetic repressors that regulate these floral organ identity genes have been characterized. However, the roles of epigenetic factors in rice floral development have not been explored in detail. Here, we report the identification and functional characterization of a rice epigenetic repressor, DEFORMED FLORAL ORGAN1 (DFO1) gene, which causes abnormal floral morphology when mutated. We isolated dfo1 by mapping, and confirmed its function by rescue experiments, combined with genetic, cytological and molecular biological analysis. We showed that DFO1 is constitutively expressed and encodes a nuclear-localized protein. Mutation of DFO1 causes the ectopic expression of C-class genes in the dfo1-1 mutant, and overexpression of OsMADS58, a C-class gene, phenocopies the dfo1 mutants. In vitro and in vivo experiments demonstrated that DFO1 interacts with the rice polycomb group (PcG) proteins (OsMSI1 and OsiEZ1). Remarkably, trimethylation of histone H3 lysine 27, a mark of epigenetic repression, is significantly reduced on OsMADS58 chromatin in the dfo1-1 mutant. Our results suggest that DFO1 functions in maintaining rice floral organ identity by cooperating with PcG proteins to regulate the H3K27me3-mediated epigenetic repression on OsMADS58.
Collapse
Affiliation(s)
- Ming Zheng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yihua Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yunlong Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunming Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yulong Ren
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jia Lv
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Cheng Peng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tao Wu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kai Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shaolu Zhao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xi Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - William Terzaghi
- Department of Biology, Wilkes University, Wilkes-Barre, PA, 18766, USA
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
79
|
Zhou X, Graumann K, Meier I. The plant nuclear envelope as a multifunctional platform LINCed by SUN and KASH. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1649-59. [PMID: 25740919 DOI: 10.1093/jxb/erv082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The nuclear envelope (NE) is a double membrane system enclosing the genome of eukaryotes. Besides nuclear pore proteins, which form channels at the NE, nuclear membranes are populated by a collection of NE proteins that perform various cellular functions. However, in contrast to well-conserved nuclear pore proteins, known NE proteins share little homology between opisthokonts and plants. Recent studies on NE protein complexes formed by Sad1/UNC-84 (SUN) and Klarsicht/ANC-1/Syne-1 Homology (KASH) proteins have advanced our understanding of plant NE proteins and revealed their function in anchoring other proteins at the NE, nuclear shape determination, nuclear positioning, anti-pathogen defence, root development, and meiotic chromosome organization. In this review, we discuss the current understanding of plant SUN, KASH, and other related NE proteins, and compare their function with the opisthokont counterparts.
Collapse
Affiliation(s)
- Xiao Zhou
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Katja Graumann
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Headington Campus, Oxford OX3 OBP, UK
| | - Iris Meier
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
80
|
Ling S, Chen C, Wang Y, Sun X, Lu Z, Ouyang Y, Yao J. The mature anther-preferentially expressed genes are associated with pollen fertility, pollen germination and anther dehiscence in rice. BMC Genomics 2015; 16:101. [PMID: 25765586 PMCID: PMC4340671 DOI: 10.1186/s12864-015-1305-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 01/30/2015] [Indexed: 11/22/2022] Open
Abstract
Background The anthers and pollen grains are critical for male fertility and hybrid rice breeding. The development of rice mature anther and pollen consists of multiple continuous stages. However, molecular mechanisms regulating mature anther development were poorly understood. Results In this study, we have identified 291 mature anther-preferentially expressed genes (OsSTA) in rice based on Affymetrix microarray data. Gene Ontology (GO) analysis indicated that OsSTA genes mainly participated in metabolic and cellular processes that are likely important for rice anther and pollen development. The expression patterns of OsSTA genes were validated using real-time PCR and mRNA in situ hybridizations. Cis-element identification showed that most of the OsSTA genes had the cis-elements responsive to phytohormone regulation. Co-expression analysis of OsSTA genes showed that genes annotated with pectinesterase and calcium ion binding activities were rich in the network, suggesting that OsSTA genes could be involved in pollen germination and anther dehiscence. Furthermore, OsSTA RNAi transgenic lines showed male-sterility and pollen germination defects. Conclusions The results suggested that OsSTA genes function in rice male fertility, pollen germination and anther dehiscence and established molecular regulating networks that lay the foundation for further functional studies. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1305-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sheng Ling
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Caisheng Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yang Wang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xiaocong Sun
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Zhanhua Lu
- College of Plant Science and technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yidan Ouyang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jialing Yao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
81
|
Jiang L, Yan S, Yang W, Li Y, Xia M, Chen Z, Wang Q, Yan L, Song X, Liu R, Zhang X. Transcriptomic analysis reveals the roles of microtubule-related genes and transcription factors in fruit length regulation in cucumber (Cucumis sativus L.). Sci Rep 2015; 5:8031. [PMID: 25619948 PMCID: PMC5379036 DOI: 10.1038/srep08031] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 12/18/2014] [Indexed: 11/09/2022] Open
Abstract
Cucumber (Cucumis sativus L.) fruit is a type of fleshy fruit that is harvested immaturely. Early fruit development directly determines the final fruit length and diameter, and consequently the fruit yield and quality. Different cucumber varieties display huge variations of fruit length, but how fruit length is determined at the molecular level remains poorly understood. To understand the genes and gene networks that regulate fruit length in cucumber, high throughout RNA-Seq data were used to compare the transcriptomes of early fruit from two near isogenic lines with different fruit lengths. 3955 genes were found to be differentially expressed, among which 2368 genes were significantly up-regulated and 1587 down-regulated in the line with long fruit. Microtubule and cell cycle related genes were dramatically activated in the long fruit, and transcription factors were implicated in the fruit length regulation in cucumber. Thus, our results built a foundation for dissecting the molecular mechanism of fruit length control in cucumber, a key agricultural trait of significant economic importance.
Collapse
Affiliation(s)
- Li Jiang
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Shuangshuang Yan
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Wencai Yang
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Yanqiang Li
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Mengxue Xia
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Zijing Chen
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Qian Wang
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Liying Yan
- College of Horticulture Science and Technology, Qinhuangdao 066004, China
| | - Xiaofei Song
- Analysis and Testing Centre, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Renyi Liu
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Xiaolan Zhang
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| |
Collapse
|
82
|
Jeong HJ, Kang JH, Zhao M, Kwon JK, Choi HS, Bae JH, Lee HA, Joung YH, Choi D, Kang BC. Tomato Male sterile 1035 is essential for pollen development and meiosis in anthers. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:6693-709. [PMID: 25262227 PMCID: PMC4246194 DOI: 10.1093/jxb/eru389] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Male fertility in flowering plants depends on proper cellular differentiation in anthers. Meiosis and tapetum development are particularly important processes in pollen production. In this study, we showed that the tomato male sterile (ms10(35)) mutant of cultivated tomato (Solanum lycopersicum) exhibited dysfunctional meiosis and an abnormal tapetum during anther development, resulting in no pollen production. We demonstrated that Ms10(35) encodes a basic helix-loop-helix transcription factor that is specifically expressed in meiocyte and tapetal tissue from pre-meiotic to tetrad stages. Transgenic expression of the Ms10(35) gene from its native promoter complemented the male sterility of the ms10(35) mutant. In addition, RNA-sequencing-based transcriptome analysis revealed that Ms10(35) regulates 246 genes involved in anther development processes such as meiosis, tapetum development, cell-wall degradation, pollen wall formation, transport, and lipid metabolism. Our results indicate that Ms10(35) plays key roles in regulating both meiosis and programmed cell death of the tapetum during microsporogenesis.
Collapse
Affiliation(s)
- Hee-Jin Jeong
- Department of Plant Science and Plant Genomics and Breeding Institute, College of Agriculture and Life Science, Seoul National University, 599 Gwanak-ro Gwank-gu, Seoul 151-921, Republic of Korea Plant Genomics and Breeding Institute, College of Agricultural Sciences, Seoul National University, 599 Gwanak-ro Gwank-gu, Seoul 151-921, Republic of Korea
| | - Jin-Ho Kang
- Department of Plant Science and Plant Genomics and Breeding Institute, College of Agriculture and Life Science, Seoul National University, 599 Gwanak-ro Gwank-gu, Seoul 151-921, Republic of Korea Plant Genomics and Breeding Institute, College of Agricultural Sciences, Seoul National University, 599 Gwanak-ro Gwank-gu, Seoul 151-921, Republic of Korea
| | - Meiai Zhao
- College of Life Science, Qingdao Agricultural University, Qingdao 266-109, PR China
| | - Jin-Kyung Kwon
- Department of Plant Science and Plant Genomics and Breeding Institute, College of Agriculture and Life Science, Seoul National University, 599 Gwanak-ro Gwank-gu, Seoul 151-921, Republic of Korea Plant Genomics and Breeding Institute, College of Agricultural Sciences, Seoul National University, 599 Gwanak-ro Gwank-gu, Seoul 151-921, Republic of Korea
| | - Hak-Soon Choi
- National Institute of Horticultural and Herbal Science, Suwon 440-310, Republic of Korea
| | - Jung Hwan Bae
- Department of Plant Science and Plant Genomics and Breeding Institute, College of Agriculture and Life Science, Seoul National University, 599 Gwanak-ro Gwank-gu, Seoul 151-921, Republic of Korea
| | - Hyun-Ah Lee
- Department of Plant Science and Plant Genomics and Breeding Institute, College of Agriculture and Life Science, Seoul National University, 599 Gwanak-ro Gwank-gu, Seoul 151-921, Republic of Korea Plant Genomics and Breeding Institute, College of Agricultural Sciences, Seoul National University, 599 Gwanak-ro Gwank-gu, Seoul 151-921, Republic of Korea
| | - Young-Hee Joung
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Doil Choi
- Department of Plant Science and Plant Genomics and Breeding Institute, College of Agriculture and Life Science, Seoul National University, 599 Gwanak-ro Gwank-gu, Seoul 151-921, Republic of Korea Plant Genomics and Breeding Institute, College of Agricultural Sciences, Seoul National University, 599 Gwanak-ro Gwank-gu, Seoul 151-921, Republic of Korea
| | - Byoung-Cheorl Kang
- Department of Plant Science and Plant Genomics and Breeding Institute, College of Agriculture and Life Science, Seoul National University, 599 Gwanak-ro Gwank-gu, Seoul 151-921, Republic of Korea Plant Genomics and Breeding Institute, College of Agricultural Sciences, Seoul National University, 599 Gwanak-ro Gwank-gu, Seoul 151-921, Republic of Korea
| |
Collapse
|
83
|
Duroc Y, Lemhemdi A, Larchevêque C, Hurel A, Cuacos M, Cromer L, Horlow C, Armstrong SJ, Chelysheva L, Mercier R. The kinesin AtPSS1 promotes synapsis and is required for proper crossover distribution in meiosis. PLoS Genet 2014; 10:e1004674. [PMID: 25330379 PMCID: PMC4199493 DOI: 10.1371/journal.pgen.1004674] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 08/14/2014] [Indexed: 11/19/2022] Open
Abstract
Meiotic crossovers (COs) shape genetic diversity by mixing homologous chromosomes at each generation. CO distribution is a highly regulated process. CO assurance forces the occurrence of at least one obligatory CO per chromosome pair, CO homeostasis smoothes out the number of COs when faced with variation in precursor number and CO interference keeps multiple COs away from each other along a chromosome. In several organisms, it has been shown that cytoskeleton forces are transduced to the meiotic nucleus via KASH- and SUN-domain proteins, to promote chromosome synapsis and recombination. Here we show that the Arabidopsis kinesin AtPSS1 plays a major role in chromosome synapsis and regulation of CO distribution. In Atpss1 meiotic cells, chromosome axes and DNA double strand breaks (DSBs) appear to form normally but only a variable portion of the genome synapses and is competent for CO formation. Some chromosomes fail to form the obligatory CO, while there is an increased CO density in competent regions. However, the total number of COs per cell is unaffected. We further show that the kinesin motor domain of AtPSS1 is required for its meiotic function, and that AtPSS1 interacts directly with WIP1 and WIP2, two KASH-domain proteins. Finally, meiocytes missing AtPSS1 and/or SUN proteins show similar meiotic defects suggesting that AtPSS1 and SUNs act in the same pathway. This suggests that forces produced by the AtPSS1 kinesin and transduced by WIPs/SUNs, are required to authorize complete synapsis and regulate maturation of recombination intermediates into COs. We suggest that a form of homeostasis applies, which maintains the total number of COs per cell even if only a part of the genome is competent for CO formation. In species that reproduce sexually, diploid individuals have two copies of each chromosome, inherited from their father and mother. During a special cell division called meiosis, these two sets of chromosomes are mixed by homologous recombination to give genetically unique chromosomes that will be transmitted to the next generation. Homologous recombination processes are highly controlled in terms of number and localization of events within and among chromosomes. Disruption of this control (a lack of or improper positioning of homologous recombination events) causes deleterious chromosome associations in the offspring. Using the model plant Arabidopsis thaliana we reveal here that the AtPSS1 gene is required for proper localization of these homologous recombination events along the genome. We also show that AtPSS1, which belongs to a family of proteins able to move along the cytoskeleton, is likely part of a module that allows cytoplasmic forces to be transmitted through the nucleus envelope to promote chromosome movements during homologous recombination progression.
Collapse
Affiliation(s)
- Yann Duroc
- The French National Institute for Agricultural Research (INRA), Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
| | - Afef Lemhemdi
- The French National Institute for Agricultural Research (INRA), Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
| | - Cécile Larchevêque
- The French National Institute for Agricultural Research (INRA), Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
| | - Aurélie Hurel
- The French National Institute for Agricultural Research (INRA), Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
| | - Maria Cuacos
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Laurence Cromer
- The French National Institute for Agricultural Research (INRA), Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
| | - Christine Horlow
- The French National Institute for Agricultural Research (INRA), Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
| | - Susan J. Armstrong
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Liudmila Chelysheva
- The French National Institute for Agricultural Research (INRA), Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
| | - Raphael Mercier
- The French National Institute for Agricultural Research (INRA), Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- * E-mail:
| |
Collapse
|
84
|
Zuo J, Li J. Molecular dissection of complex agronomic traits of rice: a team effort by Chinese scientists in recent years. Natl Sci Rev 2014. [DOI: 10.1093/nsr/nwt004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Rice is a staple food for more than half of the worldwide population and is also a model species for biological studies on monocotyledons. Through a team effort, Chinese scientists have made rapid and important progresses in rice biology in recent years. Here, we briefly review these advances, emphasizing on the regulatory mechanisms of the complex agronomic traits that affect rice yield and grain quality. Progresses in rice genome biology and genome evolution have also been summarized.
Collapse
Affiliation(s)
- Jianru Zuo
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
85
|
Wei S, Hu W, Deng X, Zhang Y, Liu X, Zhao X, Luo Q, Jin Z, Li Y, Zhou S, Sun T, Wang L, Yang G, He G. A rice calcium-dependent protein kinase OsCPK9 positively regulates drought stress tolerance and spikelet fertility. BMC PLANT BIOLOGY 2014; 14:133. [PMID: 24884869 PMCID: PMC4036088 DOI: 10.1186/1471-2229-14-133] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 05/12/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND In plants, calcium-dependent protein kinases (CDPKs) are involved in tolerance to abiotic stresses and in plant seed development. However, the functions of only a few rice CDPKs have been clarified. At present, it is unclear whether CDPKs also play a role in regulating spikelet fertility. RESULTS We cloned and characterized the rice CDPK gene, OsCPK9. OsCPK9 transcription was induced by abscisic acid (ABA), PEG6000, and NaCl treatments. The results of OsCPK9 overexpression (OsCPK9-OX) and OsCPK9 RNA interference (OsCPK9-RNAi) analyses revealed that OsCPK9 plays a positive role in drought stress tolerance and spikelet fertility. Physiological analyses revealed that OsCPK9 improves drought stress tolerance by enhancing stomatal closure and by improving the osmotic adjustment ability of the plant. It also improves pollen viability, thereby increasing spikelet fertility. In OsCPK9-OX plants, shoot and root elongation showed enhanced sensitivity to ABA, compared with that of wild-type. Overexpression and RNA interference of OsCPK9 affected the transcript levels of ABA- and stress-responsive genes. CONCLUSIONS Our results demonstrated that OsCPK9 is a positive regulator of abiotic stress tolerance, spikelet fertility, and ABA sensitivity.
Collapse
Affiliation(s)
- Shuya Wei
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Wei Hu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
- Present address: Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Xiaomin Deng
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
- Present address: Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yingying Zhang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Xiaodong Liu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Xudong Zhao
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Qingchen Luo
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Zhengyi Jin
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Yin Li
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Shiyi Zhou
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Tao Sun
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Lianzhe Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| |
Collapse
|
86
|
Wang H, Liu R, Wang J, Wang P, Shen Y, Liu G. The Arabidopsis kinesin gene AtKin-1 plays a role in the nuclear division process during megagametogenesis. PLANT CELL REPORTS 2014; 33:819-828. [PMID: 24667993 DOI: 10.1007/s00299-014-1594-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 01/15/2014] [Accepted: 02/26/2014] [Indexed: 06/03/2023]
Abstract
Atkin - 1 , the only Kinesin-1 member of Arabidopsis thaliana , plays a role during female gametogenesis through regulation of nuclear division cycles. Kinesins are microtubule-dependent motor proteins found in eukaryotic organisms. They constitute a superfamily that can be further classified into at least 14 families. In the Kinesin-1 family, members from animal and fungi play roles in long-distance transport of organelles and vesicles. Although Kinesin-1-like sequences have been identified in higher plants, little is known about their function in plant cells, other than in a recently identified Kinesin-1-like protein in a rice pollen semi-sterile mutant. In this study, the gene encoding the only Kinesin-1 member in Arabidopsis, AtKin-1 was found to be specifically expressed in ovules and anthers. AtKin-1 loss-of-function mutants showed substantially aborted ovules in siliques, and this finding was supported by complementation testing. Reciprocal crossing between mutant and wild-type plants indicated that a defect in AtKin-1 results in partially aborted megagametophytes, with no observable effects on pollen fertility. Further observation of ovule development in the mutant pistils indicated that the enlargement of the megaspore was blocked and nuclear division arrested at the one-nucleate stage during embryo sac formation. Our data suggest that AtKin-1 plays a role in the nuclear division cycles during megagametogenesis.
Collapse
Affiliation(s)
- Haiqing Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Plateau Institute of Biology, Chinese Academy of Sciences, 23 Xinning Road, Xining, 810001, China,
| | | | | | | | | | | |
Collapse
|
87
|
Luo Q, Li Y, Shen Y, Cheng Z. Ten years of gene discovery for meiotic event control in rice. J Genet Genomics 2014; 41:125-37. [PMID: 24656233 DOI: 10.1016/j.jgg.2014.02.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/26/2014] [Accepted: 02/17/2014] [Indexed: 12/29/2022]
Abstract
Meiosis is the crucial process by which sexually propagating eukaryotes give rise to haploid gametes from diploid cells. Several key processes, like homologous chromosomes pairing, synapsis, recombination, and segregation, sequentially take place in meiosis. Although these widely conserved events are under both genetic and epigenetic control, the accurate details of molecular mechanisms are continuing to investigate. Rice is a good model organism for exploring the molecular mechanisms of meiosis in higher plants. So far, 28 rice meiotic genes have been characterized. In this review, we give an overview of the discovery of rice meiotic genes in the last ten years, with a particular focus on their functions in meiosis.
Collapse
Affiliation(s)
- Qiong Luo
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Yafei Li
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Shen
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhukuan Cheng
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
88
|
Lin SY, Chen PW, Chuang MH, Juntawong P, Bailey-Serres J, Jauh GY. Profiling of translatomes of in vivo-grown pollen tubes reveals genes with roles in micropylar guidance during pollination in Arabidopsis. THE PLANT CELL 2014; 26:602-18. [PMID: 24532595 PMCID: PMC3967028 DOI: 10.1105/tpc.113.121335] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Transcriptome profiling has been used to identify genes expressed in pollen tubes elongating in vitro; however, little is known of the transcriptome of in vivo-grown pollen tubes due to the difficulty of collecting pollen that is elongating within the solid maternal gynoecium. Using a pollen-specific promoter (ProLAT52) to generate epitope-tagged polysomal-RNA complexes that could be affinity purified, we obtained mRNAs undergoing translation (the translatome) of in vivo-grown pollen tubes from self-pollinated gynoecia of Arabidopsis thaliana. Translatomes of pollen grains as well as in vivo- and in vitro-cultured pollen tubes were assayed by microarray analyses, revealing over 500 transcripts specifically enriched in in vivo-elongating pollen tubes. Functional analyses of several in vivo mutants (iv) of these pollination-enhanced transcripts revealed partial pollination/fertilization and seed formation defects in siliques (iv2, iv4, and iv6). Cytological observation confirmed the involvement of these genes in specialized processes including micropylar guidance (IV6 and IV4), pollen tube burst (IV2), and repulsion of multiple pollen tubes in embryo sac (IV2). In summary, the selective immunopurification of transcripts engaged with polysomes in pollen tubes within self-fertilized florets has identified a cohort of pollination-enriched transcripts that facilitated the identification of genes important in in vivo pollen tube biology.
Collapse
Affiliation(s)
- Shih-Yun Lin
- Institute of Plant and Microbial Biology, Academia
Sinica, Taipei 11529, Taiwan
| | - Pei-Wei Chen
- Institute of Plant and Microbial Biology, Academia
Sinica, Taipei 11529, Taiwan
| | - Ming-Hsiang Chuang
- Institute of Plant and Microbial Biology, Academia
Sinica, Taipei 11529, Taiwan
| | - Piyada Juntawong
- Center for Plant Cell Biology and Department Botany and
Plant Sciences, University of California, Riverside, California 92521
| | - Julia Bailey-Serres
- Center for Plant Cell Biology and Department Botany and
Plant Sciences, University of California, Riverside, California 92521
| | - Guang-Yuh Jauh
- Institute of Plant and Microbial Biology, Academia
Sinica, Taipei 11529, Taiwan
- Molecular and Biological Agricultural Sciences, Taiwan
International Graduate Program, National Chung-Hsing University–Academia
Sinica, Taipei 11529, Taiwan
- Biotechnology Center, National Chung-Hsing University,
Taichung 40227, Taiwan
- Address correspondence to
| |
Collapse
|
89
|
Wu T, Shen Y, Zheng M, Yang C, Chen Y, Feng Z, Liu X, Liu S, Chen Z, Lei C, Wang J, Jiang L, Wan J. Gene SGL, encoding a kinesin-like protein with transactivation activity, is involved in grain length and plant height in rice. PLANT CELL REPORTS 2014; 33:235-44. [PMID: 24170341 DOI: 10.1007/s00299-013-1524-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 09/24/2013] [Accepted: 10/08/2013] [Indexed: 05/23/2023]
Abstract
Grain shape, a complex agronomic trait, plays an important role in determining yield and quality in rice. In the present study, a mutant named short grain length (sgl) was identified among explants of tissue cultured japonica variety Kita-ake. It exhibited reduced plant height (about 72 % of WT) and short grain length (about 80 % of WT). The reduced length was due to decreased cell elongation. The Short Grain Length (SGL) gene was isolated via map-based cloning and identified to encode a kinesin-like protein. SGL was expressed in the whole plant, especially in the stem and panicles. SGL was shown to have transcriptional activity. In onion epidermal cells, SGL protein was found mainly in the nucleus. Real-time PCR analyses showed that expression levels of genes involved in gibberellin metabolic pathways were affected in the sgl mutant. These data suggested that SGL protein may be involved in regulating GA synthesis and response genes, that in turn, regulates grain length and plant height.
Collapse
Affiliation(s)
- Tao Wu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Wang XG, Wang HB, Chen FD, Jiang JF, Fang WM, Liao Y, Teng NJ. Factors affecting quantity of pollen dispersal of spray cut chrysanthemum (Chrysanthemum morifolium). BMC PLANT BIOLOGY 2014; 14:5. [PMID: 24393236 PMCID: PMC3890635 DOI: 10.1186/1471-2229-14-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 01/02/2014] [Indexed: 05/30/2023]
Abstract
BACKGROUND Spray cut chrysanthemum is a vital flower with high ornamental value and popularity in the world. However, the excessive quantity of pollen dispersal of most spray cut chrysanthemum is an adverse factor during its flowering stage, and can significantly reduce its ornamental value and quickly shorten its vase life. More seriously, excessive pollen grains in the air are usually harmful to people, especially for those with pollen allergies. Therefore, in order to obtain some valuable information for developing spray cut chrysanthemum with less-dispersed or non-dispersed pollen in the future breeding programs, we here investigated the factors affecting quantity of pollen dispersal of spray cut chrysanthemum with four cultivars, i.e. 'Qx-097', 'Noa', 'Qx-115', and 'Kingfisher', that have different quantity of pollen dispersal. RESULTS 'Qx-097' with high quantity of pollen dispersal has 819 pollen grains per anther, 196.4 disk florets per inflorescence and over 800,000 pollen grains per inflorescence. The corresponding data for 'Noa' with low quantity of pollen dispersal are 406, 175.4 and over 350,000, respectively; and 219, 144.2 and nearly 160,000 for 'Qx-115' without pollen dispersal, respectively. 'Kingfisher' without pollen dispersal has 202.8 disk florets per inflorescence, but its anther has no pollen grains. In addition, 'Qx-097' has a very high degree of anther cracking that nearly causes a complete dispersal of pollen grains from its anthers. 'Noa' has a moderate degree of anther cracking, and pollen grains in its anthers are not completely dispersed. However, the anthers of 'Qx-115' and 'Kingfisher' do not crack at all. Furthermore, microsporogenesis and pollen development are normal in 'Qx-097', whereas many microspores or pollen degenerate in 'Noa', most of them abort in 'Qx-115', and all of them degrade in 'Kingfisher'. CONCLUSIONS These results suggest that quantity of pollen dispersal in spray cut chrysanthemum are mainly determined by pollen quantity per anther, and capacity of pollen dispersal. Abnormality during microsporogenesis and pollen development significantly affects pollen quantity per anther. Capacity of pollen dispersal is closely related to the degree of anther dehiscence. The entire degeneration of microspore or pollen, or the complete failure of anther dehiscence can cause the complete failure of pollen dispersal.
Collapse
Affiliation(s)
- Xiao-Guang Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Hai-Bin Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fa-Di Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology & Equipment, Nanjing 210095, China
| | - Jia-Fu Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei-Min Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuan Liao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Nian-Jun Teng
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology & Equipment, Nanjing 210095, China
| |
Collapse
|
91
|
Zamariola L, Tiang CL, De Storme N, Pawlowski W, Geelen D. Chromosome segregation in plant meiosis. FRONTIERS IN PLANT SCIENCE 2014; 5:279. [PMID: 24987397 PMCID: PMC4060054 DOI: 10.3389/fpls.2014.00279] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/28/2014] [Indexed: 05/18/2023]
Abstract
Faithful chromosome segregation in meiosis is essential for ploidy stability over sexual life cycles. In plants, defective chromosome segregation caused by gene mutations or other factors leads to the formation of unbalanced or unreduced gametes creating aneuploid or polyploid progeny, respectively. Accurate segregation requires the coordinated execution of conserved processes occurring throughout the two meiotic cell divisions. Synapsis and recombination ensure the establishment of chiasmata that hold homologous chromosomes together allowing their correct segregation in the first meiotic division, which is also tightly regulated by cell-cycle dependent release of cohesin and monopolar attachment of sister kinetochores to microtubules. In meiosis II, bi-orientation of sister kinetochores and proper spindle orientation correctly segregate chromosomes in four haploid cells. Checkpoint mechanisms acting at kinetochores control the accuracy of kinetochore-microtubule attachment, thus ensuring the completion of segregation. Here we review the current knowledge on the processes taking place during chromosome segregation in plant meiosis, focusing on the characterization of the molecular factors involved.
Collapse
Affiliation(s)
- Linda Zamariola
- Department of Plant Production, Faculty of Bioscience Engineering, University of GhentGhent, Belgium
| | - Choon Lin Tiang
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY, USA
| | - Nico De Storme
- Department of Plant Production, Faculty of Bioscience Engineering, University of GhentGhent, Belgium
| | - Wojtek Pawlowski
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY, USA
| | - Danny Geelen
- Department of Plant Production, Faculty of Bioscience Engineering, University of GhentGhent, Belgium
- *Correspondence: Danny Geelen, Department of Plant Production, Faculty of Bioscience Engineering, University of Ghent, Coupure Links 653, 9000 Ghent, Belgium e-mail:
| |
Collapse
|
92
|
Hamada T. Microtubule organization and microtubule-associated proteins in plant cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 312:1-52. [PMID: 25262237 DOI: 10.1016/b978-0-12-800178-3.00001-4] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Plants have unique microtubule (MT) arrays, cortical MTs, preprophase band, mitotic spindle, and phragmoplast, in the processes of evolution. These MT arrays control the directions of cell division and expansion especially in plants and are essential for plant morphogenesis and developments. Organizations and functions of these MT arrays are accomplished by diverse MT-associated proteins (MAPs). This review introduces 10 of conserved MAPs in eukaryote such as γ-TuC, augmin, katanin, kinesin, EB1, CLASP, MOR1/MAP215, MAP65, TPX2, formin, and several plant-specific MAPs such as CSI1, SPR2, MAP70, WVD2/WDL, RIP/MIDD, SPR1, MAP18/PCaP, EDE1, and MAP190. Most of the studies cited in this review have been analyzed in the particular model plant, Arabidopsis thaliana. The significant knowledge of A. thaliana is the important established base to understand MT organizations and functions in plants.
Collapse
Affiliation(s)
- Takahiro Hamada
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan.
| |
Collapse
|
93
|
Yang XY, Wang Y, Jiang WJ, Liu XL, Zhang XM, Yu HJ, Huang SW, Liu GQ. Characterization and expression profiling of cucumber kinesin genes during early fruit development: revealing the roles of kinesins in exponential cell production and enlargement in cucumber fruit. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4541-57. [PMID: 24023249 PMCID: PMC3808332 DOI: 10.1093/jxb/ert269] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Rapid cell division and expansion in early fruit development are important phases for cucumber fruit yield and quality. Kinesin proteins are microtubule-based motors responsible for modulating cell division and enlargement. In this work, the candidate kinesin genes involved in rapid cell division and expansion during cucumber fruit development were investigated. The morphological and cellular changes during early fruit development were compared in four cucumber genotypes with varied fruit size. The correlation between the expression profiles of cucumber kinesin genes and cellular changes in fruit was investigated. Finally, the biochemical characteristics and subcellular localizations of three candidate kinesins were studied. The results clarified the morphological and cellular changes during early cucumber fruit development. This study found that CsKF2-CsKF6 were positively correlated with rapid cell production; CsKF1 and CsKF7 showed a strongly positive correlation with rapid cell expansion. The results also indicated that CsKF1 localized to the plasma membrane of fast-expanding fruit cells, that CsKF2 might play a role in fruit chloroplast division, and that CsKF3 is involved in the function or formation of phragmoplasts in fruit telophase cells. The results strongly suggest that specific fruit-enriched kinesins are specialized in their functions in rapid cell division and expansion during cucumber fruit development.
Collapse
Affiliation(s)
- Xue Yong Yang
- Institute of Vegetables and Flowers (IVF), the Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- * These authors contributed equally to this work
| | - Yan Wang
- Institute of Vegetables and Flowers (IVF), the Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- * These authors contributed equally to this work
| | - Wei Jie Jiang
- Institute of Vegetables and Flowers (IVF), the Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- To whom correspondence should be addressed. E-mail: or /
| | - Xiao Ling Liu
- Institute of Vegetables and Flowers (IVF), the Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Xiao Meng Zhang
- Institute of Vegetables and Flowers (IVF), the Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Hong Jun Yu
- Institute of Vegetables and Flowers (IVF), the Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - San Wen Huang
- Institute of Vegetables and Flowers (IVF), the Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Guo Qin Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
94
|
Tan C, Han Z, Yu H, Zhan W, Xie W, Chen X, Zhao H, Zhou F, Xing Y. QTL scanning for rice yield using a whole genome SNP array. J Genet Genomics 2013; 40:629-38. [PMID: 24377869 DOI: 10.1016/j.jgg.2013.06.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 05/29/2013] [Accepted: 06/20/2013] [Indexed: 01/04/2023]
Abstract
High-throughput SNP genotyping is widely used for plant genetic studies. Recently, a RICE6K SNP array has been developed based on the Illumina Bead Array platform and Infinium SNP assay technology for genome-wide evaluation of allelic variations and breeding applications. In this study, the RICE6K SNP array was used to genotype a recombinant inbred line (RIL) population derived from the cross between the indica variety, Zhenshan 97, and the japonica variety, Xizang 2. A total of 3324 SNP markers of high quality were identified and were grouped into 1495 recombination bins in the RIL population. A high-density linkage map, consisting of the 1495 bins, was developed, covering 1591.2 cM and with average length of 1.1 cM per bin. Segregation distortions were observed in 24 regions of the 11 chromosomes in the RILs. One half of the distorted regions contained fertility genes that had been previously reported. A total of 23 QTLs were identified for yield. Seven QTLs were firstly detected in this study. The positive alleles from about half of the identified QTLs came from Zhenshan 97 and they had lower phenotypic values than Xizang 2. This indicated that favorable alleles for breeding were dispersed in both parents and pyramiding favorable alleles could develop elite lines. The size of the mapping population for QTL analysis using high throughput SNP genotyping platform is also discussed.
Collapse
Affiliation(s)
- Cong Tan
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhongmin Han
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Huihui Yu
- Life Science and Technology Center, China National Seed Group Co., Ltd., Wuhan 430075, China
| | - Wei Zhan
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Weibo Xie
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Xun Chen
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Hu Zhao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Fasong Zhou
- Life Science and Technology Center, China National Seed Group Co., Ltd., Wuhan 430075, China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
95
|
Yoshikawa T, Eiguchi M, Hibara KI, Ito JI, Nagato Y. Rice slender leaf 1 gene encodes cellulose synthase-like D4 and is specifically expressed in M-phase cells to regulate cell proliferation. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:2049-61. [PMID: 23519729 PMCID: PMC3638827 DOI: 10.1093/jxb/ert060] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Cellulose synthase-like (CSL) genes are predicted to catalyse the biosynthesis of non-cellulosic polysaccharides such as the β-D-glycan backbone of hemicelluloses and are classified into nine subfamilies (CSLA-CSLH and CSLJ). The CSLD subfamily is conserved in all land plants, and among the nine CSL subfamilies, it shows the highest sequence similarity to the cellulose synthase genes, suggesting that it plays fundamental roles in plant development. This study presents a detailed analysis of slender leaf 1 (sle1) mutants of rice that showed rolled and narrow leaf blades and a reduction in plant height. The narrow leaf blade of sle1 was caused by reduced cell proliferation beginning at the P3 primordial stage. In addition to the size reduction of organs, sle1 mutants exhibited serious developmental defects in pollen formation, anther dehiscence, stomata formation, and cell arrangement in various tissues. Map-based cloning revealed that SLE1 encodes the OsCSLD4 protein, which was identified previously from a narrow leaf and dwarf 1 mutant. In situ hybridization experiments showed that OsCSLD4 was expressed in a patchy pattern in developing organs. Double-target in situ hybridization and quantitative RT-PCR analyses revealed that SLE1 was expressed specifically during the M-phase of the cell cycle, and suggested that the cell-cycle regulation was altered in sle1 mutants. These results suggest that the OsCSLD4 protein plays a pivotal role in the M phase to regulate cell proliferation. Further study of OsCSLD4 is expected to yield new insight into the role of hemicelluloses in plant development.
Collapse
Affiliation(s)
- Takanori Yoshikawa
- Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113–8657, Japan
| | - Mitsugu Eiguchi
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411–8540, Japan
| | - Ken-Ichiro Hibara
- Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113–8657, Japan
| | - Jun-Ichi Ito
- Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113–8657, Japan
| | - Yasuo Nagato
- Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113–8657, Japan
- * To whom correspondence should be addressed.
| |
Collapse
|
96
|
Guo JX, Liu YG. Molecular control of male reproductive development and pollen fertility in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:967-78, i. [PMID: 23025662 DOI: 10.1111/j.1744-7909.2012.01172.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Anther development and male fertility are essential biological processes for flowering plants and are important for crop seed production. Genetic manipulation of male fertility/sterility is critical for crop hybrid breeding. Rice (Oryza sativa L.) male sterility phenotypes, including genic male sterility, hybrid male sterility, and cytoplasmic male sterility, are generally caused by mutations of fertility-related genes, by incompatible interactions between divergent allelic or non-allelic genes, or by genetic incompatibilities between cytoplasmic and nuclear genomes. Here, we review the recent advances in the molecular basis of anther development and male fertility-sterility conversion in specific genetic backgrounds, and the interactions with certain environmental factors. The highlighted findings in this review have significant implications in both basic studies and rice genetic improvement.
Collapse
Affiliation(s)
- Jing-Xin Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | | |
Collapse
|
97
|
Kirienko DR, Luo A, Sylvester AW. Reliable transient transformation of intact maize leaf cells for functional genomics and experimental study. PLANT PHYSIOLOGY 2012; 159:1309-18. [PMID: 22706447 PMCID: PMC3425180 DOI: 10.1104/pp.112.199737] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 06/07/2012] [Indexed: 05/18/2023]
Abstract
Maize (Zea mays) transformation routinely produces stable transgenic lines essential for functional genomics; however, transient expression of target proteins in maize cells is not yet routine. Such techniques are critical for rapid testing of transgene constructs and for experimental studies. Here, we report bombardment methods that depend on leaf developmental stage and result in successful expression with broad applications. Fluorescent marker genes were constructed and bombarded into five developmental regions in a growing maize leaf. Expression efficiency was highest in the basal-most 3 cm above the ligule of an approximately 50-cm growing adult leaf. Straightforward dissection procedures provide access to the receptive leaf regions, increasing efficiency from less than one transformant per cm(2) to over 21 transformants per cm(2). Successful expression was routine for proteins from full genomic sequences driven by native regulatory regions and from complementary DNA sequences driven by the constitutive maize polyubiquitin promoter and a heterologous terminator. Four tested fusion proteins, maize PROTEIN DISULFIDE ISOMERASE-Yellow Fluorescent Protein, GLOSSY8a-monomeric Red Fluorescent Protein and maize XYLOSYLTRANSFERASE, and maize Rho-of-Plants7-monomeric Teal Fluorescent Protein, localized as predicted in the endoplasmic reticulum, Golgi, and plasma membrane, respectively. Localization patterns were similar between transient and stable modes of expression, and cotransformation was equally successful. Coexpression was also demonstrated by transiently transforming cells in a stable line expressing a second marker protein, thus increasing the utility of a single stable transformant. Given the ease of dissection procedures, this method replaces heterologous expression assays with a more direct, native, and informative system, and the techniques will be useful for localization, colocalization, and functional studies.
Collapse
|
98
|
Abstract
The mutant of "Sanming Dominant Genic Male Sterile Rice" was found from an F2 population of cross "SE2lS/Basmati370" by Sanming Institute of Agricultural Science in 2001. It has proven that the male sterility of this mutant is controlled by a dominant gene (named as SMS). By multiple backcrosses, this dominant male sterile allele was introduced into the genetic background of an indica rice cultivar Jiafuzhan (which was known as Jiabuyu). In order to map SMS, a mapping population was constructed by crossing Jiabuyu with a japonica cultivar Nipponbare and further crossing the F1 with Jiafuzhan. By bulked segregant analysis and linkage analysis using SSR and INDEL markers, SMS was mapped to a 99 kb interval between INDEL markers ZM30 and ZM9 on chromosome 8. This result will facilitate cloning of SMS.
Collapse
|
99
|
Li J, Xu Y, Chong K. The novel functions of kinesin motor proteins in plants. PROTOPLASMA 2012; 249 Suppl 2:S95-100. [PMID: 22167300 PMCID: PMC3389602 DOI: 10.1007/s00709-011-0357-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 11/28/2011] [Indexed: 05/17/2023]
Abstract
Kinesin superfamily proteins are important microtubule-based motor proteins with a kinesin motor domain that is conserved among all eukaryotic organisms. They are responsible for unidirectionally transporting various cargoes, including membranous organelles, protein complexes, and mRNAs. They also play critical roles in mitosis, morphogenesis, and signal transduction. Most kinesins in plants are evolutionarily divergent from their counterparts in animals and fungi. The mitotic kinesins in the plant kinesin-5 and kinesin-14 subfamilies appear to be similar to those in fungi and animals. However, others with nonmotor sequences are unique to plants. The kinesins affect microtubule organization, organelle distribution, vesicle transport, and cellulose microfibril order. Ultimately, plant kinesins contribute directly or indirectly to cell division and cell growth in various tissues. Here, we review a novel function of kinesins with transcription activation activity in regulating gibberellin biosynthesis and cell growth. These findings will open exciting new areas of kinesin research.
Collapse
Affiliation(s)
- Juan Li
- Research Center for Molecular and Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Yunyuan Xu
- Research Center for Molecular and Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Kang Chong
- Research Center for Molecular and Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| |
Collapse
|
100
|
Gao X, Chen Z, Zhang J, Li X, Chen G, Li X, Wu C. OsLIS-L1 encoding a lissencephaly type-1-like protein with WD40 repeats is required for plant height and male gametophyte formation in rice. PLANTA 2012; 235:713-27. [PMID: 22020753 DOI: 10.1007/s00425-011-1532-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 09/29/2011] [Indexed: 05/05/2023]
Abstract
Although a large number of genes encoding the WD40 motif have been identified as being involved in various developmental processes in Arabidopsis, little is known about the function of these genes in rice (Oryza sativa). Here, we report the cloning and functional characterization of a novel rice gene OsLIS-L1 (Lissencephaly type-1-like 1), which is required for normal fertility and the first internode elongation. OsLIS-L1 encodes a lissencephaly type-1-like protein containing the WD40 motif that is required for brain development in human. SMART algorithm analysis indicated that OsLIS-L1 contains a LIS1 homology (LisH) domain, a C terminus to LisH (CTLH) domain, a five WD40-repeat domain in the middle, and a domain with four WD40 repeats which is homologous to the β subunit of trimeric G-proteins (G(β)). OsLIS-L1 transcript is relatively highly abundant in stem and panicle and has a dynamic expression pattern at different panicle developmental stages. Two independent alleles, designated oslis-l1-1 and oslis-l1-2, exhibited similar abnormal developmental phenotypes, including semi-dwarf, shorter panicle length, and reduced male fertility. Cytological examination confirmed that OsLIS-L1 does not affect the meiosis in pollen mother cells. Compared with wild type, the oslis-l1 mutant had abnormal male gametophyte formation, but anther cell wall and pollen wall development were not affected. Histological analysis revealed that OsLIS-L1 regulates the cell proliferation in the first internode under the panicle. Our results indicate that OsLIS-L1 plays an important role in male gametophyte formation and the first internode elongation in rice.
Collapse
Affiliation(s)
- Xinqiang Gao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research-Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | | | |
Collapse
|