51
|
Dhanushkodi R, Matthew C, McManus MT, Dijkwel PP. Drought-induced senescence of Medicago truncatula nodules involves serpin and ferritin to control proteolytic activity and iron levels. THE NEW PHYTOLOGIST 2018; 220:196-208. [PMID: 29974467 DOI: 10.1111/nph.15298] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/20/2018] [Indexed: 05/09/2023]
Abstract
Drought is a major constraint for legume growth and yield. Senescence of nitrogen-fixing nodules is one of the early drought responses and may cause nutrient stress in addition to water stress in legumes. For nodule senescence to function as part of a drought-survival strategy, we propose that the intrinsically destructive senescence process must be tightly regulated. Medicago truncatula protease inhibitor and iron scavenger-encoding genes, possibly involved in controlling nodule senescence, were identified. RNA interference (RNAi) lines were constructed in which expression of a serpin or ferritins was knocked down. Both wild-type and RNAi lines were subjected to drought stress and nodule activity and plant physiological responses were measured. Drought caused M. truncatula to initiate nodule senescence before plant growth was affected and before an increase in papain-like proteolytic activity and free iron levels was apparent. Knock-down expression of serpin6 and ferritins caused increased protease activity, free iron levels, early nodule senescence and reduced plant growth. The results suggest that M. truncatula nodule-expressed serpin6 and ferritins mediate ordered drought-induced senescence by regulating papain-like cysteine protease activity and free iron levels. This strategy may allow the drought-stressed plants to benefit maximally from residual nitrogen fixation and nutrient recovery resulting from break down of macromolecules.
Collapse
Affiliation(s)
- Ramadoss Dhanushkodi
- Institute of Fundamental Sciences, Massey University, Private Bag 11-222, Palmerston North, New Zealand
| | - Cory Matthew
- Institute of Agriculture and Environment, Massey University, Private Bag 11-222, Palmerston North, New Zealand
| | - Michael T McManus
- Institute of Fundamental Sciences, Massey University, Private Bag 11-222, Palmerston North, New Zealand
| | - Paul P Dijkwel
- Institute of Fundamental Sciences, Massey University, Private Bag 11-222, Palmerston North, New Zealand
| |
Collapse
|
52
|
Rong H, Wang C, Yu X, Fan J, Jiang P, Wang Y, Gan X, Wang Y. Carboxylated multi-walled carbon nanotubes exacerbated oxidative damage in roots of Vicia faba L. seedlings under combined stress of lead and cadmium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 161:616-623. [PMID: 29933131 DOI: 10.1016/j.ecoenv.2018.06.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/22/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
Multi-walled carbon nanotubes (MWCNTs) and heavy metals could be absorbed and bioaccumulated by agricultural crops, implicating ecological risks. Herein, the present study investigated the ecotoxicological effects and mechanisms of individual carboxylated MWCNTs (MWCNTs-COOH) (2.5, 5.0 and 10 mg/L) and their combination with 20 µM Pb and 5 µM Cd (shortened as Pb + Cd) on roots of Vicia faba L. seedlings after 20 days of exposure. The results showed that the tested MWCNTs-COOH induced imbalance of nutrient elements, enhanced isozymes and activities of superoxide dismutase (SOD), guaiacol peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX), resulting in accumulation of carbonylated proteins, elevation of endoproteases (EPs) isozymes, and reduction of HSP70 synthesis in the roots. However, the tested MWCNTs-COOH facilitated the enrichment of Cd, Pb and Na elements, contributing to the decrease of SOD, CAT and APX activities, and the reduction of HSP70 synthesis, whereas the elevation of carbonylated proteins, EP activities and cell necrosis in the roots when Pb + Cd was combined in comparison to the treatments of MWCNTs-COOH, or Pb + Cd alone. Thus, the tested MWCNTs-COOH not only caused oxidative stress, but also aggravated the oxidative damage in the roots exposed to Pb + Cd in the culture solution.
Collapse
Affiliation(s)
- Hong Rong
- School of Biological Engineering, Huainan Normal University, Huainan 232001, China
| | - Chengrun Wang
- School of Biological Engineering, Huainan Normal University, Huainan 232001, China.
| | - Xiaorui Yu
- School of Biological Engineering, Huainan Normal University, Huainan 232001, China
| | - Jinbao Fan
- School of Biological Engineering, Huainan Normal University, Huainan 232001, China
| | - Pei Jiang
- School of Biological Engineering, Huainan Normal University, Huainan 232001, China
| | - Yuchuan Wang
- School of Biological Engineering, Huainan Normal University, Huainan 232001, China
| | - Xianqing Gan
- School of Biological Engineering, Huainan Normal University, Huainan 232001, China
| | - Yun Wang
- School of Biological Engineering, Huainan Normal University, Huainan 232001, China
| |
Collapse
|
53
|
Sadlowski C, Park B, Araújo C, Das S, Kerr DL, He M, Han H, Riley L, Murthy N. Nitro Sulfonyl Fluorides are a new pharmacophore for the development of antibiotics. MOLECULAR SYSTEMS DESIGN & ENGINEERING 2018; 3:599-603. [PMID: 30740245 PMCID: PMC6366622 DOI: 10.1039/c8me00011e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The development of antibiotics against Gram-negative bacteria is a central problem in drug discovery. In this report, we demonstrate that aromatic sulfonyl fluorides with a nitro group in their ortho position have remarkable antibacterial activity and are active against drug-resistant pathogens, such as methicillin-resistant Staphylococcus aureus (MRSA), multidrug resistant Acinetobacter baumannii, and Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Corinne Sadlowski
- Department of Bioengineering, University of California, Berkeley, California, 94720, USA
- These authors contributed equally to this work
| | - Bora Park
- Department of Bioengineering, University of California, Berkeley, California, 94720, USA
- These authors contributed equally to this work
| | - Clarissa Araújo
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, California, 94720, USA
| | - Subhamoy Das
- Department of Bioengineering, University of California, Berkeley, California, 94720, USA
| | - D Lucas Kerr
- Department of Bioengineering, University of California, Berkeley, California, 94720, USA
| | - Maomao He
- Department of Bioengineering, University of California, Berkeley, California, 94720, USA
| | - Hesong Han
- Department of Bioengineering, University of California, Berkeley, California, 94720, USA
| | - Lee Riley
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, California, 94720, USA
| | - Niren Murthy
- Department of Bioengineering, University of California, Berkeley, California, 94720, USA
| |
Collapse
|
54
|
Ahmed A, Shamsi A, Bano B. Deciphering the toxic effects of iprodione, a fungicide and malathion, an insecticide on thiol protease inhibitor isolated from yellow Indian mustard seeds. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 61:52-60. [PMID: 29852369 DOI: 10.1016/j.etap.2018.05.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/21/2018] [Accepted: 05/23/2018] [Indexed: 06/08/2023]
Abstract
Pesticides are being used globally to improve agricultural production. They are applied specifically to combat with pathogens that are a major threat for reduced optimum yield of crops. This study was carried out to see the effect of commercially used pesticides on a specific plant protein viz. phytocystatin isolated from yellow mustard seeds (YMP). Phytocystatin is a thiol proteinase inhibitor, which regulates endogenous and exogenous cysteine proteinases and plays a vital physiological role in plants. Different classes of pesticides like fungicide (iprodione) of dicarboximide class and an insecticide (malathion) of class organophosphate are retorted for our study. In the presence of these pesticides, biophysical and biochemical changes were observed in phytocystatin. These changes were evaluated making use of caseinolytic activity assay, UV-vis spectroscopy, fluorescence spectroscopy, FTIR, and circular dichroism. Isothermal titration calorimetry was employed to see interaction pattern of these pesticides with phytocystatin. The results obtained clearly depict that the pesticides bind with the phytocystatin thereby changing its native conformation and reducing its intrinsic property of inhibition on cysteine proteinase as evident by reduced anti-papain inhibition in the presence of pesticides. Furthermore, CD and FTIR spectroscopy results clearly show a decrease in α-helical content upon interaction with malathion and iprodione. Among the two pesticides, iprodione has far more pronounced effect on YMP evident from striking changes in UV, Fluorescence, CD and FTIR spectroscopy. 2,4-dinitrophenylhydrazine spectrophotometric assay was also carried out to check production of ROS, generation of ROS was observed in the presence of these pesticides thus implying that ROS might be responsible for changes in native structure of phytocystatin induced by pesticides.
Collapse
Affiliation(s)
- Azaj Ahmed
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Anas Shamsi
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Bilqees Bano
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
55
|
Srivastava R, Li Z, Russo G, Tang J, Bi R, Muppirala U, Chudalayandi S, Severin A, He M, Vaitkevicius SI, Lawrence-Dill CJ, Liu P, Stapleton AE, Bassham DC, Brandizzi F, Howell SH. Response to Persistent ER Stress in Plants: A Multiphasic Process That Transitions Cells from Prosurvival Activities to Cell Death. THE PLANT CELL 2018; 30:1220-1242. [PMID: 29802214 PMCID: PMC6048783 DOI: 10.1105/tpc.18.00153] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/22/2018] [Accepted: 05/22/2018] [Indexed: 05/09/2023]
Abstract
The unfolded protein response (UPR) is a highly conserved response that protects plants from adverse environmental conditions. The UPR is elicited by endoplasmic reticulum (ER) stress, in which unfolded and misfolded proteins accumulate within the ER. Here, we induced the UPR in maize (Zea mays) seedlings to characterize the molecular events that occur over time during persistent ER stress. We found that a multiphasic program of gene expression was interwoven among other cellular events, including the induction of autophagy. One of the earliest phases involved the degradation by regulated IRE1-dependent RNA degradation (RIDD) of RNA transcripts derived from a family of peroxidase genes. RIDD resulted from the activation of the promiscuous ribonuclease activity of ZmIRE1 that attacks the mRNAs of secreted proteins. This was followed by an upsurge in expression of the canonical UPR genes indirectly driven by ZmIRE1 due to its splicing of Zmbzip60 mRNA to make an active transcription factor that directly upregulates many of the UPR genes. At the peak of UPR gene expression, a global wave of RNA processing led to the production of many aberrant UPR gene transcripts, likely tempering the ER stress response. During later stages of ER stress, ZmIRE1's activity declined, as did the expression of survival modulating genes, Bax inhibitor1 and Bcl-2-associated athanogene7, amid a rising tide of cell death. Thus, in response to persistent ER stress, maize seedlings embark on a course of gene expression and cellular events progressing from adaptive responses to cell death.
Collapse
Affiliation(s)
- Renu Srivastava
- Plant Sciences Institute, Iowa State University, Ames, Iowa 50011
| | - Zhaoxia Li
- Plant Sciences Institute, Iowa State University, Ames, Iowa 50011
| | - Giulia Russo
- MSU-DOE Plant Research Laboratories, Department of Plant Biology, East Lansing, Michigan 48824
| | - Jie Tang
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Ran Bi
- Department of Statistics, Iowa State University, Ames, Iowa 50011
| | - Usha Muppirala
- Genome Informatics Facility, Iowa State University, Ames, Iowa 50011
| | | | - Andrew Severin
- Genome Informatics Facility, Iowa State University, Ames, Iowa 50011
| | - Mingze He
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Samuel I Vaitkevicius
- MSU-DOE Plant Research Laboratories, Department of Plant Biology, East Lansing, Michigan 48824
| | - Carolyn J Lawrence-Dill
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Peng Liu
- Department of Statistics, Iowa State University, Ames, Iowa 50011
| | - Ann E Stapleton
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina 28403
| | - Diane C Bassham
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Federica Brandizzi
- MSU-DOE Plant Research Laboratories, Department of Plant Biology, East Lansing, Michigan 48824
| | - Stephen H Howell
- Plant Sciences Institute, Iowa State University, Ames, Iowa 50011
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011
| |
Collapse
|
56
|
Cooper JW, Hu Y, Beyyoudh L, Yildiz Dasgan H, Kunert K, Beveridge CA, Foyer CH. Strigolactones positively regulate chilling tolerance in pea and in Arabidopsis. PLANT, CELL & ENVIRONMENT 2018; 41:1298-1310. [PMID: 29341173 DOI: 10.1111/pce.13147] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/22/2017] [Accepted: 01/03/2018] [Indexed: 05/21/2023]
Abstract
Strigolactones (SL) fulfil important roles in plant development and stress tolerance. Here, we characterized the role of SL in the dark chilling tolerance of pea and Arabidopsis by analysis of mutants that are defective in either SL synthesis or signalling. Pea mutants (rms3, rms4, and rms5) had significantly greater shoot branching with higher leaf chlorophyll a/b ratios and carotenoid contents than the wild type. Exposure to dark chilling significantly decreased shoot fresh weights but increased leaf numbers in all lines. Moreover, dark chilling treatments decreased biomass (dry weight) accumulation only in rms3 and rms5 shoots. Unlike the wild type plants, chilling-induced inhibition of photosynthetic carbon assimilation was observed in the rms lines and also in the Arabidopsis max3-9, max4-1, and max2-1 mutants that are defective in SL synthesis or signalling. When grown on agar plates, the max mutant rosettes accumulated less biomass than the wild type. The synthetic SL, GR24, decreased leaf area in the wild type, max3-9, and max4-1 mutants but not in max2-1 in the absence of stress. In addition, a chilling-induced decrease in leaf area was observed in all the lines in the presence of GR24. We conclude that SL plays an important role in the control of dark chilling tolerance.
Collapse
Affiliation(s)
- James W Cooper
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
| | - Yan Hu
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
| | - Leila Beyyoudh
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
| | - H Yildiz Dasgan
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
- Department of Horticulture, Agricultural Faculty, Cukurova University, Adana, 01330, Turkey
| | - Karl Kunert
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
- Forestry and Agricultural Biotechnology Institute, Department Plant and Soil Sciences, University of Pretoria, Hillcrest, Pretoria, 0002, South Africa
| | - Christine A Beveridge
- School of Biological Sciences, University of Queensland, St Lucia, Brisbane, 4072, Australia
| | - Christine H Foyer
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
| |
Collapse
|
57
|
Losvik A, Beste L, Stephens J, Jonsson L. Overexpression of the aphid-induced serine protease inhibitor CI2c gene in barley affects the generalist green peach aphid, not the specialist bird cherry-oat aphid. PLoS One 2018; 13:e0193816. [PMID: 29554141 PMCID: PMC5858787 DOI: 10.1371/journal.pone.0193816] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/20/2018] [Indexed: 11/18/2022] Open
Abstract
Aphids are serious pests in crop plants. In an effort to identify plant genes controlling resistance against aphids, we have here studied a protease inhibitor, CI2c in barley (Hordeum vulgare L.). The CI2c gene was earlier shown to be upregulated by herbivory of the bird cherry-oat aphid (Rhopalosiphum padi L.) in barley genotypes with moderate resistance against this aphid, but not in susceptible lines. We hypothesized that CI2c contributes to the resistance. To test this idea, cDNA encoding CI2c was overexpressed in barley and bioassays were carried out with R. padi. For comparison, tests were carried out with the green peach aphid (Myzus persicae Sulzer), for which barley is a poor host. The performance of R. padi was not different on the CI2c-overexpressing lines in comparison to controls in test monitoring behavior and fecundity. M. persicae preference was affected as shown in the choice test, this species moved away from control plants, but remained on the CI2c-overexpressing lines. R. padi-induced responses related to defense were repressed in the overexpressing lines as compared to in control plants or the moderately resistant genotypes. A putative susceptibility gene, coding for a β-1,3-glucanase was more strongly induced by aphids in one of the CI2c-overexpressing lines. The results indicate that the CI2c inhibitor in overexpressing lines affects aphid-induced responses by suppressing defense. This is of little consequence to the specialist R.padi, but causes lower non-host resistance towards the generalist M. persicae in barley.
Collapse
Affiliation(s)
- Aleksandra Losvik
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Lisa Beste
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Jennifer Stephens
- Cell and Molecular Science, James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | - Lisbeth Jonsson
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
58
|
M-Hamvas M, Ajtay K, Beyer D, Jámbrik K, Vasas G, Surányi G, Máthé C. Cylindrospermopsin induces biochemical changes leading to programmed cell death in plants. Apoptosis 2018; 22:254-264. [PMID: 27787653 DOI: 10.1007/s10495-016-1322-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In the present study we provide cytological and biochemical evidence that the cyanotoxin cylindrospermopsin (CYN) induces programmed cell death (PCD) symptoms in two model vascular plants: the dicot white mustard (Sinapis alba) and the monocot common reed (Phragmites australis). Cytological data include chromatin fragmentation and the increase of the ratio of TUNEL-positive cells in roots, the latter being detected in both model systems studied. The strongest biochemical evidence is the elevation of the activity of several single-stranded DNA preferring nucleases-among them enzymes active at both acidic and alkaline conditions and are probably directly related to DNA breaks occurring at the initial stages of plant PCD: 80 kDa nucleases and a 26 kDa nuclease, both having dual (single- and double-stranded nucleic acid) specificity. Moreover, the total protease activity and in particular, a 53-56 kDa alkaline protease activity increases. This protease could be inhibited by PMSF, thus regarded as serine protease. Serine proteases are detected in all organs of Brassicaceae (Arabidopsis) having importance in differentiation of specialized plant tissue through PCD, in protein degradation/processing during early germination and defense mechanisms induced by a variety of biotic and abiotic stresses. However, knowledge of the physiological roles of these proteases and nucleases in PCD still needs further research. It is concluded that CYN treatment induces chromatin fragmentation and PCD in plant cells by activating specific nucleases and proteases. CYN is proposed to be a suitable molecule to study the mechanism of plant apoptosis.
Collapse
Affiliation(s)
- Márta M-Hamvas
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem ter 1., Debrecen, 4032, Hungary
| | - Kitti Ajtay
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem ter 1., Debrecen, 4032, Hungary
| | - Dániel Beyer
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem ter 1., Debrecen, 4032, Hungary
| | - Katalin Jámbrik
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem ter 1., Debrecen, 4032, Hungary
| | - Gábor Vasas
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem ter 1., Debrecen, 4032, Hungary
| | - Gyula Surányi
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem ter 1., Debrecen, 4032, Hungary
| | - Csaba Máthé
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem ter 1., Debrecen, 4032, Hungary.
| |
Collapse
|
59
|
Siddiqui MF, Bano B. Exposure of carbendazim induces structural and functional alteration in garlic phytocystatin: An in vitro multi-spectroscopic approach. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 145:66-75. [PMID: 29482733 DOI: 10.1016/j.pestbp.2018.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/12/2017] [Accepted: 01/17/2018] [Indexed: 06/08/2023]
Abstract
Carbendazim is a broad spectrum benzimidazole fungicide which is used to ensure plants' protection from pest and pathogens' invasion. The present work describes the impact of carbendazim (CAR) on garlic phytocystatin (GPC) which is a crucial plant regulatory protein. Interaction of carbendazim with GPC has been investigated through various biophysical techniques viz. UV absorption, fluorescence spectroscopy, isothermal titration calorimetry, far-UV circular dichroism and FTIR spectroscopy which showed binding between them with consequent modulatory effects. Functional activity of GPC was monitored by the anti-papain inhibitory assay which suggests that incubation of GPC with the higher concentration of CAR disrupts the inhibitory function of GPC. UV spectroscopy confirmed the formation of GPC-CAR complex. Intrinsic fluorescence suggests binding of CAR to GPC which reflects the changes in microenvironment around tryptophan residues of GPC. Isothermal titration calorimetry suggests that interaction of CAR to GPC is an exothermic reaction. Secondary structure analysis was also performed which confirmed that binding of CAR decreases the alpha-helical content of GPC. Collectively, these results demonstrated that GPC exhibited significant structural and functional alteration upon interaction with carbendazim. Since GPC is involved in various regulatory processes, therefore, its structural or functional alteration may lead to disruption of physiological and biological balance within the plant. Hence, our study signifies that exposure of carbendazim to plant exerts physicochemical alteration within the plant.
Collapse
Affiliation(s)
| | - Bilqees Bano
- Department of Biochemistry, Aligarh Muslim University, Uttar Pradesh, India.
| |
Collapse
|
60
|
Rao GS, Deveshwar P, Sharma M, Kapoor S, Rao KV. Evolvement of transgenic male-sterility and fertility-restoration system in rice for production of hybrid varieties. PLANT MOLECULAR BIOLOGY 2018; 96:35-51. [PMID: 29090429 DOI: 10.1007/s11103-017-0678-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 10/24/2017] [Indexed: 05/22/2023]
Abstract
We have developed a unique male-sterility and fertility-restoration system in rice by combining Brassica napus cysteine-protease gene (BnCysP1) with anther-specific P12 promoter of rice for facilitating production of hybrid varieties. In diverse crop plants, male-sterility has been exploited as a useful approach for production of hybrid varieties to harness the benefits of hybrid vigour. The promoter region of Os12bglu38 gene of rice has been isolated from the developing panicles and was designated as P12. The promoter was fused with gusA reporter gene and was expressed in Arabidopsis and rice systems. Transgenic plants exhibited GUS activity in tapetal cells and pollen of the developing anthers indicating anther/pollen-specific expression of the promoter. For engineering nuclear male sterility, the coding region of Brassica napus cysteine protease1 (BnCysP1) was isolated from developing seeds and fused to P12 promoter. Transgenic rice plants obtained with P12-BnCysP1 failed to produce functional pollen grains. The F1 seeds obtained from BnCysP1 male-sterile plants and untransformed controls showed 1:1 (tolerant:sensitive) ratio when germinated on the MS medium supplemented with phosphinothricin (5 mg/l), confirming that the male sterility has been successfully engineered in rice. For male fertility restoration, transgenic rice plants carrying BnCysP1Si silencing system were developed. The pollination of BnCysP1 male-sterile (female-fertile) plants with BnCysP1Si pollen resulted in normal grain filling. The F1 seeds of BnCysP1 × BnCysP1Si when germinated on the MS basal medium containing PPT (5 mg/l) and hygromycin (70 mg/l) exhibited 1:1 (tolerant:sensitive) ratio and the tolerant plants invariably showed normal grain filling. The overall results clearly suggest that the customized male-sterility & fertility-restoration system can be exploited for quality hybrid seed production in various crops.
Collapse
Affiliation(s)
| | - Priyanka Deveshwar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Malini Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Sanjay Kapoor
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | | |
Collapse
|
61
|
Godwin J, Raviv B, Grafi G. Dead Pericarps of Dry Fruits Function as Long-Term Storage for Active Hydrolytic Enzymes and Other Substances That Affect Germination and Microbial Growth. PLANTS 2017; 6:plants6040064. [PMID: 29257090 PMCID: PMC5750640 DOI: 10.3390/plants6040064] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/30/2017] [Accepted: 11/30/2017] [Indexed: 11/16/2022]
Abstract
It is commonly assumed that dead pericarps of dry indehiscent fruits have evolved to provide an additional physical layer for embryo protection and as a means for long distance dispersal. The pericarps of dry fruits undergo programmed cell death (PCD) during maturation whereby most macromolecules such DNA, RNA, and proteins are thought to be degraded and their constituents remobilized to filial tissues such as embryo and endosperm. We wanted to test the hypothesis that the dead pericarp represents an elaborated layer that is capable of storing active proteins and other substances for increasing survival rate of germinating seeds. Using in gel assays we found that dead pericarps of both dehiscent and indehiscent dry fruits of various plant species including Arabidopsis thaliana and Sinapis alba release upon hydration multiple active hydrolytic enzymes that can persist in an active form for decades, including nucleases, proteases, and chitinases. Proteomic analysis of indehiscent pericarp of S. alba revealed multiple proteins released upon hydration, among them proteases and chitinases, as well as proteins involved in reactive oxygen species (ROS) detoxification and cell wall modification. Pericarps appear to function also as a nutritional element-rich storage for nitrate, potassium, phosphorus, sulfur, and others. Sinapis alba dehiscent and indehiscent pericarps possess germination inhibitory substances as well as substances that promote microbial growth. Collectively, our study explored previously unknown features of the dead pericarp acting also as a reservoir of biological active proteins, and other substances capable of “engineering” the microenvironment for the benefit of the embryo.
Collapse
Affiliation(s)
- James Godwin
- French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion 84990, Israel.
| | - Buzi Raviv
- French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion 84990, Israel.
| | - Gideon Grafi
- French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion 84990, Israel.
| |
Collapse
|
62
|
Khan S, Khan NA, Bano B. In-sights into the effect of heavy metal stress on the endogenous mustard cystatin. Int J Biol Macromol 2017; 105:1138-1147. [PMID: 28754626 DOI: 10.1016/j.ijbiomac.2017.07.146] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 06/04/2017] [Accepted: 07/24/2017] [Indexed: 01/07/2023]
|
63
|
Balakireva AV, Kuznetsova NV, Petushkova AI, Savvateeva LV, Zamyatnin AA. Trends and Prospects of Plant Proteases in Therapeutics. Curr Med Chem 2017; 26:465-486. [PMID: 29173148 DOI: 10.2174/0929867325666171123204403] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 09/19/2017] [Accepted: 11/01/2017] [Indexed: 12/13/2022]
Abstract
The main function of proteases in any living organism is the cleavage of proteins resulting in the degradation of damaged, misfolded and potentially harmful proteins and therefore providing the cell with amino acids essential for the synthesis of new proteins. Besides this main function, proteases may play an important role as signal molecules and participate in numerous protein cascades to maintain the vital processes of an organism. Plant proteases are no exception to this rule. Moreover, in contrast to humanencoded enzymes, many plant proteases possess exceptional features such as higher stability, unique substrate specificity and a wide pH range for enzymatic activity. These valuable features make plant-derived proteolytic enzymes suitable for many biomedical applications, and furthermore, the plants can serve as factories for protein production. Plant proteases are already applied in the treatment of several pathological conditions in the human organism. Some of the enzymes possess antitumour, antibacterial and antifungal activity. The collagenolytic activity of plant proteases determines important medical applications such as the healing of wounds and burn debridement. Plant proteases may affect blood coagulation processes and can be applied in the treatment of digestive disorders. The present review summarizes recent advances and possible applications for plant proteases in biomedicine, and proposes further development of plant-derived proteolytic enzymes in the biotechnology and pharmaceutical industries.
Collapse
Affiliation(s)
- Anastasia V Balakireva
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russian Federation
| | - Natalia V Kuznetsova
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russian Federation
| | | | - Lyudmila V Savvateeva
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russian Federation
| | - Andrey A Zamyatnin
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russian Federation.,Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, 119992, Russian Federation
| |
Collapse
|
64
|
Li Y, Ding X, Wang X, He T, Zhang H, Yang L, Wang T, Chen L, Gai J, Yang S. Genome-wide comparative analysis of DNA methylation between soybean cytoplasmic male-sterile line NJCMS5A and its maintainer NJCMS5B. BMC Genomics 2017; 18:596. [PMID: 28806912 PMCID: PMC5557475 DOI: 10.1186/s12864-017-3962-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/25/2017] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND DNA methylation is an important epigenetic modification. It can regulate the expression of many key genes without changing the primary structure of the genomic DNA, and plays a vital role in the growth and development of the organism. The genome-wide DNA methylation profile of the cytoplasmic male sterile (CMS) line in soybean has not been reported so far. RESULTS In this study, genome-wide comparative analysis of DNA methylation between soybean CMS line NJCMS5A and its maintainer NJCMS5B was conducted by whole-genome bisulfite sequencing. The results showed 3527 differentially methylated regions (DMRs) and 485 differentially methylated genes (DMGs), including 353 high-credible methylated genes, 56 methylated genes coding unknown protein and 76 novel methylated genes with no known function were identified. Among them, 25 DMRs were further validated that the genome-wide DNA methylation data were reliable through bisulfite treatment, and 9 DMRs were confirmed the relationship between DNA methylation and gene expression by qRT-PCR. Finally, 8 key DMGs possibly associated with soybean CMS were identified. CONCLUSIONS Genome-wide DNA methylation profile of the soybean CMS line NJCMS5A and its maintainer NJCMS5B was obtained for the first time. Several specific DMGs which participated in pollen and flower development were further identified to be probably associated with soybean CMS. This study will contribute to further understanding of the molecular mechanism behind soybean CMS.
Collapse
Affiliation(s)
- Yanwei Li
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xianlong Ding
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xuan Wang
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Tingting He
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Hao Zhang
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Longshu Yang
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Tanliu Wang
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Linfeng Chen
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Junyi Gai
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shouping Yang
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
65
|
Lortzing T, Firtzlaff V, Nguyen D, Rieu I, Stelzer S, Schad M, Kallarackal J, Steppuhn A. Transcriptomic responses of Solanum dulcamara to natural and simulated herbivory. Mol Ecol Resour 2017; 17:e196-e211. [PMID: 28449359 DOI: 10.1111/1755-0998.12687] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/24/2017] [Accepted: 04/14/2017] [Indexed: 11/28/2022]
Abstract
Plants are attacked by diverse herbivores and respond with manifold defence responses. To study transcriptional and other early regulation events of these plant responses, herbivory is often simulated to standardize the temporal and spatial dynamics that vary tremendously for natural herbivory. Yet, to what extent such simulations of herbivory are able to elicit the same plant response as real herbivory remains largely undetermined. We examined the transcriptional response of a wild model plant to herbivory by lepidopteran larvae and to a commonly used herbivory simulation by applying the larvae's oral secretions to standardized wounds. We designed a microarray for Solanum dulcamara and showed that the transcriptional responses to real and to simulated herbivory by Spodoptera exigua overlapped moderately by about 40%. Interestingly, certain responses were mimicked better than others; 60% of the genes upregulated but not even a quarter of the genes downregulated by herbivory were similarly affected by application of oral secretions to wounds. While the regulation of genes involved in signalling, defence and water stress was mimicked well by the simulated herbivory, most of the genes related to photosynthesis, carbohydrate- and lipid metabolism were exclusively regulated by real herbivory. Thus, wounding and application of oral secretions decently mimics herbivory-induced defence responses but likely not the reallocation of primary metabolites induced by real herbivory.
Collapse
Affiliation(s)
- Tobias Lortzing
- Molecular Ecology, Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Vivien Firtzlaff
- Applied Zoology/Animal Ecology, Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Duy Nguyen
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands
| | - Ivo Rieu
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands
| | - Sandra Stelzer
- Molecular Ecology, Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | | | | | - Anke Steppuhn
- Molecular Ecology, Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
66
|
Subburaj S, Zhu D, Li X, Hu Y, Yan Y. Molecular Characterization and Expression Profiling of Brachypodium distachyon L. Cystatin Genes Reveal High Evolutionary Conservation and Functional Divergence in Response to Abiotic Stress. FRONTIERS IN PLANT SCIENCE 2017; 8:743. [PMID: 28536593 PMCID: PMC5423411 DOI: 10.3389/fpls.2017.00743] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/20/2017] [Indexed: 05/26/2023]
Abstract
Cystatin is a class of proteins mainly involved in cysteine protease inhibition and plant growth and development, as well as tolerance under various abiotic stresses. In this study, we performed the first comprehensive analysis of the molecular characterization and expression profiling in response to various abiotic stresses of the cystatin gene family in Brachypodium distachyon, a novel model plant for Triticum species with huge genomes. Comprehensive searches of the Brachypodium genome database identified 25 B. distachyon cystatin (BdC) genes that are distributed unevenly on chromosomes; of these, nine and two were involved in tandem and segmental duplication events, respectively. All BdC genes had similar exon/intron structural organization, with three conserved motifs similar to those from other plant species, indicating their high evolutionary conservation. Expression profiling of 10 typical BdC genes revealed ubiquitous expression in different organs at varying expression levels. BdC gene expression in seedling leaves was particularly highly induced by various abiotic stresses, including the plant hormone abscisic acid and various environmental cues (cold, H2O2, CdCl2, salt, and drought). Interestingly, most BdC genes were significantly upregulated under multiple abiotic stresses, including BdC15 under all stresses, BdC7-2 and BdC10 under five stresses, and BdC7-1, BdC2-1, BdC14, and BdC12 under four stresses. The putative metabolic pathways of cytastin genes in response to various abiotic stresses mainly involve the aberrant protein degradation pathway and reactive oxygen species (ROS)-triggered programmed cell death signaling pathways. These observations provide a better understanding of the structural and functional characteristics of the plant cystatin gene family.
Collapse
|
67
|
Gupta DK, Pena LB, Romero-Puertas MC, Hernández A, Inouhe M, Sandalio LM. NADPH oxidases differentially regulate ROS metabolism and nutrient uptake under cadmium toxicity. PLANT, CELL & ENVIRONMENT 2017; 40:509-526. [PMID: 26765289 DOI: 10.1111/pce.12711] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/22/2015] [Accepted: 12/26/2015] [Indexed: 05/18/2023]
Abstract
The role of NADPH oxidases under cadmium (Cd) toxicity was studied using Arabidopsis thaliana mutants AtrbohC, AtrbohD and AtrbohF, which were grown under hydroponic conditions with 25 and 100 μM Cd for 1 and 5 days. Cadmium reduced the growth of leaves in WT, AtrbohC and D, but not in AtrbohF. A time-dependent increase in H2 O2 and lipid peroxidation was observed in all genotypes, with AtrbohC showing the smallest increase. An opposite behaviour was observed with NO accumulation. Cadmium increased catalase activity in WT plants and decreased it in Atrboh mutants, while glutathione reductase and glycolate oxidase activities increased in Atrboh mutants, and superoxide dismutases were down-regulated in AtrbohC. The GSH/GSSG and ASA/DHA couples were also affected by the treatment, principally in AtrbohC and AtrbohF, respectively. Cadmium translocation to the leaves was severely reduced in Atrboh mutants after 1 day of treatment and even after 5 days in AtrbohF. Similar results were observed for S, P, Ca, Zn and Fe accumulation, while an opposite trend was observed for K accumulation, except in AtrbohF. Thus, under Cd stress, RBOHs differentially regulate ROS metabolism, redox homeostasis and nutrient balance and could be of potential interest in biotechnology for the phytoremediation of polluted soils.
Collapse
Affiliation(s)
- D K Gupta
- Department of Biochemistry and Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/Prof. Albareda No 1, Granada, 18008, Spain
| | - L B Pena
- Department of Biological Chemistry, Faculty of Pharmacy and Biochemistry, IQUIFIB, CONICET, University of Buenos Aires, Buenos Aires, C1113AAD, Argentina
| | - M C Romero-Puertas
- Department of Biochemistry and Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/Prof. Albareda No 1, Granada, 18008, Spain
| | - A Hernández
- Postgrados de Agronomía, Universidad Centroccidental Lisandro Alvarado, Apdo 400, Barquisimeto, 3001, Venezuela
| | - M Inouhe
- Department of Biology, Faculty of Science, Ehime University, Matsuyama, 790-8577, Japan
| | - L M Sandalio
- Department of Biochemistry and Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/Prof. Albareda No 1, Granada, 18008, Spain
| |
Collapse
|
68
|
Gordeziani M, Adamia G, Khatisashvili G, Gigolashvili G. Programmed cell self-liquidation (apoptosis). ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.aasci.2016.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
69
|
Souza TP, Dias RO, Silva-Filho MC. Defense-related proteins involved in sugarcane responses to biotic stress. Genet Mol Biol 2017; 40:360-372. [PMID: 28222203 PMCID: PMC5452140 DOI: 10.1590/1678-4685-gmb-2016-0057] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 09/27/2016] [Indexed: 11/22/2022] Open
Abstract
Sugarcane is one of the most important agricultural crops in the world. However, pathogen infection and herbivore attack cause constant losses in yield. Plants respond to pathogen infection by inducing the expression of several protein types, such as glucanases, chitinases, thaumatins, peptidase inhibitors, defensins, catalases and glycoproteins. Proteins induced by pathogenesis are directly or indirectly involved in plant defense, leading to pathogen death or inducing other plant defense responses. Several of these proteins are induced in sugarcane by different pathogens or insects and have antifungal or insecticidal activity. In this review, defense-related proteins in sugarcane are described, with their putative mechanisms of action, pathogen targets and biotechnological perspectives.
Collapse
Affiliation(s)
- Thais P Souza
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Renata O Dias
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Marcio C Silva-Filho
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP, Brazil
| |
Collapse
|
70
|
Luo XM, Xie CJ, Wang D, Wei YM, Cai J, Cheng SS, Yang XY, Sui AP. Psc-AFP from Psoralea corylifolia L. overexpressed in Pichia pastoris increases antimicrobial activity and enhances disease resistance of transgenic tobacco. Appl Microbiol Biotechnol 2017; 101:1073-1084. [PMID: 27587300 DOI: 10.1007/s00253-016-7768-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/25/2016] [Accepted: 08/01/2016] [Indexed: 12/12/2022]
Abstract
Psc-AFP, isolated from the seeds of Psoralea corylifolia L., is an antimicrobial protein with trypsin inhibitor activity. Its encoding gene was cloned by 3'- rapid amplification of cDNA ends (RACE) combined with Y-shaped adaptor-dependent extension (YADE) method. The gene Psc-AFP encodes a protein of 203 amino acids with a deduced signal peptide of 24 residues. The growth inhibition effect exerted by the heterologously expressed Psc-AFP in Pichia pastoris revealed that the recombinant Psc-AFP inhibited mycelium growth of Aspergillus niger, Rhizoctonia solani, and Alternaria brassicae and conidial germination of Alternaria alternata. The recombinant Psc-AFP also showed protease inhibitor activity manifested by the inhibition of trypsin. The transgenic tobacco bioassays confirmed that overexpressing Psc-AFP significantly enhanced the disease resistance of tobacco and that some of the transgenic lines were almost fully tolerant to Ralstonia solanacearum and A. alternata, whereas no apparent alteration in plant growth and development was observed. Collectively, these results indicate that the recombinant Psc-AFP is an active antimicrobial protein, with protease inhibitor activity that can be successfully produced in the yeast and tobacco and, therefore, maybe a potential antimicrobial candidate for practical use.
Collapse
Affiliation(s)
- Xiu-Mei Luo
- The School of Life Science, Southwest University, Chongqing, 400715, China
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, 401331, China
- The College of Life Science, Chongqing Normal University, Chongqing, 401331, China
| | - Cheng-Jian Xie
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, 401331, China
- The College of Life Science, Chongqing Normal University, Chongqing, 401331, China
| | - De Wang
- The School of Life Science, Southwest University, Chongqing, 400715, China
| | - Yun-Min Wei
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, 401331, China
- The College of Life Science, Chongqing Normal University, Chongqing, 401331, China
| | - Jie Cai
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, 401331, China
- The College of Life Science, Chongqing Normal University, Chongqing, 401331, China
| | - Shan-Shan Cheng
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, 401331, China
- The College of Life Science, Chongqing Normal University, Chongqing, 401331, China
| | - Xing -Yong Yang
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, 401331, China.
- The College of Life Science, Chongqing Normal University, Chongqing, 401331, China.
| | - An -Ping Sui
- The School of Life Science, Southwest University, Chongqing, 400715, China
| |
Collapse
|
71
|
Pružinská A, Shindo T, Niessen S, Kaschani F, Tóth R, Millar AH, van der Hoorn RAL. Major Cys protease activities are not essential for senescence in individually darkened Arabidopsis leaves. BMC PLANT BIOLOGY 2017; 17:4. [PMID: 28061816 PMCID: PMC5217659 DOI: 10.1186/s12870-016-0955-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 12/19/2016] [Indexed: 05/24/2023]
Abstract
BACKGROUND Papain-like Cys Proteases (PLCPs) and Vacuolar Processing Enzymes (VPEs) are amongst the most highly expressed proteases during leaf senescence in Arabidopsis. Using activity-based protein profiling (ABPP), a method that enables detection of active enzymes within a complex sample using chemical probes, the activities of PLCPs and VPEs were investigated in individually darkened leaves of Arabidopsis, and their role in senescence was tested in null mutants. RESULTS ABPP and mass spectrometry revealed an increased activity of several PLCPs, particularly RD21A and AALP. By contrast, despite increased VPE transcript levels, active VPE decreased in individually darkened leaves. Eight protease knock-out lines and two protease over expressing lines were subjected to senescence phenotype analysis to determine the importance of individual protease activities to senescence. Unexpectedly, despite the absence of dominating PLCP activities in these plants, the rubisco and chlorophyll decline in individually darkened leaves and the onset of whole plant senescence were unaltered. However, a significant delay in progression of whole plant senescence was observed in aalp-1 and rd21A-1/aalp-1 mutants, visible in the reduced number of senescent leaves. CONCLUSIONS Major Cys protease activities are not essential for dark-induced and developmental senescence and only a knock out line lacking AALP shows a slight but significant delay in plant senescence.
Collapse
Affiliation(s)
- Adriana Pružinská
- The Plant Chemetics laboratory, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
- The Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA Australia
| | - Takayuki Shindo
- The Plant Chemetics laboratory, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Sherry Niessen
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Center for Physiological Proteomics, The Scripps Research Institute, La Jolla, 92037 California USA
| | - Farnusch Kaschani
- The Plant Chemetics laboratory, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Réka Tóth
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - A. Harvey Millar
- The Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA Australia
| | - Renier A. L. van der Hoorn
- The Plant Chemetics laboratory, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, OX1 3RB Oxford, UK
| |
Collapse
|
72
|
Cui Y, Zhao Q, Xie HT, Wong WS, Wang X, Gao C, Ding Y, Tan Y, Ueda T, Zhang Y, Jiang L. MONENSIN SENSITIVITY1 (MON1)/CALCIUM CAFFEINE ZINC SENSITIVITY1 (CCZ1)-Mediated Rab7 Activation Regulates Tapetal Programmed Cell Death and Pollen Development. PLANT PHYSIOLOGY 2017; 173:206-218. [PMID: 27799422 PMCID: PMC5210713 DOI: 10.1104/pp.16.00988] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/25/2016] [Indexed: 05/08/2023]
Abstract
Programmed cell death (PCD)-triggered degradation of plant tapetum is essential for microspore development and pollen coat formation; however, little is known about the cellular mechanism regulating tapetal PCD Here, we demonstrate that Rab7-mediated vacuolar transport of tapetum degradation-related cysteine proteases is crucial for tapetal PCD and pollen development in Arabidopsis (Arabidopsis thaliana), with the following evidence: (1) The monensin sensitivity1 (mon1) mutants, which are defective in Rab7 activation, showed impaired male fertility due to a combined defect in both tapetum and male gametophyte development. (2) In anthers, MON1 showed preferential high level expression in tapetal cell layers and pollen. (3) The mon1 mutants exhibited delayed tapetum degeneration and tapetal PCD, resulting in abnormal pollen coat formation and decreased male fertility. (4) MON1/CALCIUM CAFFEINE ZINC SENSITIVITY1 (CCZ1)-mediated Rab7 activation was indispensable for vacuolar trafficking of tapetum degradation-related cysteine proteases, supporting that PCD-triggered tapetum degeneration requires Rab7-mediated vacuolar trafficking of these cysteine proteases. (5) MON1 mutations also resulted in defective pollen germination and tube growth. Taken together, tapetal PCD and pollen development require successful MON1/CCZ1-mediated vacuolar transport in Arabidopsis.
Collapse
Affiliation(s)
- Yong Cui
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (Y.C., Q.Z., W.S.W., X.W., C.G., Y.D., Y.T., L.J.)
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China (H.-T.X., Y.Z.)
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan (T.U.); and
- CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China (L.J.)
| | - Qiong Zhao
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (Y.C., Q.Z., W.S.W., X.W., C.G., Y.D., Y.T., L.J.)
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China (H.-T.X., Y.Z.)
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan (T.U.); and
- CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China (L.J.)
| | - Hong-Tao Xie
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (Y.C., Q.Z., W.S.W., X.W., C.G., Y.D., Y.T., L.J.)
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China (H.-T.X., Y.Z.)
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan (T.U.); and
- CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China (L.J.)
| | - Wing Shing Wong
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (Y.C., Q.Z., W.S.W., X.W., C.G., Y.D., Y.T., L.J.)
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China (H.-T.X., Y.Z.)
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan (T.U.); and
- CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China (L.J.)
| | - Xiangfeng Wang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (Y.C., Q.Z., W.S.W., X.W., C.G., Y.D., Y.T., L.J.)
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China (H.-T.X., Y.Z.)
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan (T.U.); and
- CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China (L.J.)
| | - Caiji Gao
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (Y.C., Q.Z., W.S.W., X.W., C.G., Y.D., Y.T., L.J.)
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China (H.-T.X., Y.Z.)
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan (T.U.); and
- CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China (L.J.)
| | - Yu Ding
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (Y.C., Q.Z., W.S.W., X.W., C.G., Y.D., Y.T., L.J.)
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China (H.-T.X., Y.Z.)
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan (T.U.); and
- CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China (L.J.)
| | - Yuqi Tan
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (Y.C., Q.Z., W.S.W., X.W., C.G., Y.D., Y.T., L.J.)
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China (H.-T.X., Y.Z.)
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan (T.U.); and
- CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China (L.J.)
| | - Takashi Ueda
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (Y.C., Q.Z., W.S.W., X.W., C.G., Y.D., Y.T., L.J.)
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China (H.-T.X., Y.Z.)
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan (T.U.); and
- CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China (L.J.)
| | - Yan Zhang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (Y.C., Q.Z., W.S.W., X.W., C.G., Y.D., Y.T., L.J.)
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China (H.-T.X., Y.Z.)
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan (T.U.); and
- CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China (L.J.)
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (Y.C., Q.Z., W.S.W., X.W., C.G., Y.D., Y.T., L.J.);
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China (H.-T.X., Y.Z.);
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan (T.U.); and
- CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China (L.J.)
| |
Collapse
|
73
|
Szewińska J, Simińska J, Bielawski W. The roles of cysteine proteases and phytocystatins in development and germination of cereal seeds. JOURNAL OF PLANT PHYSIOLOGY 2016; 207:10-21. [PMID: 27771502 DOI: 10.1016/j.jplph.2016.09.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Proteolysis is an important process for development and germination of cereal seeds. Among the many types of proteases identified in plants are the cysteine proteases (CPs) of the papain and legumain families, which play a crucial role in hydrolysing storage proteins during seed germination as well as in processing the precursors of these proteins and the inactive forms of other proteases. Moreover, all of the tissues of cereal seeds undergo progressive degradation via programed cell death, which is integral to their growth. In view of the important roles played by proteases, their uncontrolled activity could be harmful to the development of seeds and young seedlings. Thus, the activities of these enzymes are regulated by intracellular inhibitors called phytocystatins (PhyCys). The phytocystatins inhibit the activity of proteases of the papain family, and the presence of an additional motif in their C-termini allows them to also regulate the activity of members of the legumain family. A balance between the levels of cysteine proteases and phytocystatins is necessary for proper cereal seed development, and this is maintained through the antagonistic activities of gibberellins (GAs) and abscisic acid (ABA), which regulate the expression of the corresponding genes. Transcriptional regulation of cysteine proteases and phytocystatins is determined by cis-acting elements located in the promoters of these genes and by the expression of their corresponding transcription factors (TFs) and the interactions between different TFs.
Collapse
Affiliation(s)
- Joanna Szewińska
- Warsaw University of Life Sciences-SGGW, Faculty of Agriculture and Biology, Department of Biochemistry, Nowoursynowska 159 street, Warsaw 02-776, Poland.
| | - Joanna Simińska
- Warsaw University of Life Sciences-SGGW, Faculty of Agriculture and Biology, Department of Biochemistry, Nowoursynowska 159 street, Warsaw 02-776, Poland
| | - Wiesław Bielawski
- Warsaw University of Life Sciences-SGGW, Faculty of Agriculture and Biology, Department of Biochemistry, Nowoursynowska 159 street, Warsaw 02-776, Poland
| |
Collapse
|
74
|
Zhou J, Ma C, Zhen S, Cao M, Zeller FJ, Hsam SLK, Yan Y. Identification of drought stress related proteins from 1S l(1B) chromosome substitution line of wheat variety Chinese Spring. BOTANICAL STUDIES 2016; 57:20. [PMID: 28597430 PMCID: PMC5430570 DOI: 10.1186/s40529-016-0134-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/02/2016] [Indexed: 05/05/2023]
Abstract
BACKGROUND Wheat, one of the most important crops, has a detrimental effect on both yield and quality under drought stress. As our preliminary experiment showed that the Chinese Spring wheat-Aegilops longissima chromosome substitution line CS-1Sl (1B) had a better drought tolerance than CS, the substitution line CS-1Sl(1B) was used to identify drought stress related proteins by means of a comparative proteome approach in this work. Our present study aimed to explore the gene resources for drought resistance in 1Sl genome. RESULT Our results showed that drought stress induced downregulation of relative water and chlorophyll contents and the upregulation of proline content, and further influencing grain filling shortening and significant decrease of plant height, B-type starch granule numbers, grain number and weight. In total, 25 grain albumin and globulin protein spots were found to be specifically encoded by the 1Sl chromosome. In addition, 17 protein spots respected 13 unique proteins were identified by MALDI-TOF/TOF MS, which were mainly involved in adverse defense and gluten quality. Among them, ascorbate peroxidase, serpin-Z2B and alpha-amylase/trypsin inhibitor were upregulated under drought stress. These proteins play important roles in plant drought defenses through various metabolic pathways. CONCLUSION Our results indicate that the 1Sl chromosome of Aegilops longissima has potential gene resources that could be useful for improving wheat drought resistance.
Collapse
Affiliation(s)
- Jiaxing Zhou
- College of Life Science, Capital Normal University, Beijing, 100048 People’s Republic of China
| | - Chaoying Ma
- College of Life Science, Capital Normal University, Beijing, 100048 People’s Republic of China
| | - Shoumin Zhen
- College of Life Science, Capital Normal University, Beijing, 100048 People’s Republic of China
| | - Min Cao
- College of Life Science, Capital Normal University, Beijing, 100048 People’s Republic of China
| | - Friedich J. Zeller
- Division of Plant Breeding and Applied Genetics, Technical University of Munich, 85354 Freising-Weihenstephan, Germany
| | - Sai L. K. Hsam
- Division of Plant Breeding and Applied Genetics, Technical University of Munich, 85354 Freising-Weihenstephan, Germany
| | - Yueming Yan
- College of Life Science, Capital Normal University, Beijing, 100048 People’s Republic of China
| |
Collapse
|
75
|
Siddiqui AA, Khaki PSS, Bano B. Interaction of almond cystatin with pesticides: Structural and functional analysis. J Mol Recognit 2016; 30. [DOI: 10.1002/jmr.2586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/06/2016] [Accepted: 09/27/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Azad Alam Siddiqui
- Department of Biochemistry, Faculty of life Sciences; Aligarh Muslim University; Aligarh India
| | | | - Bilqees Bano
- Department of Biochemistry, Faculty of life Sciences; Aligarh Muslim University; Aligarh India
| |
Collapse
|
76
|
Gholizadeh A. Differential expression of a cysteine proteinase and cystatin pair as side-by-side fusion forms in Escherichia coli. CYTOL GENET+ 2016. [DOI: 10.3103/s0095452716050042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
77
|
Song L, Zhou Z, Tang S, Zhang Z, Xia S, Qin M, Li B, Wen J, Yi B, Shen J, Ma C, Fu T, Tu J. Ectopic Expression of BnaC.CP20.1 Results in Premature Tapetal Programmed Cell Death in Arabidopsis. PLANT & CELL PHYSIOLOGY 2016; 57:1972-84. [PMID: 27388342 DOI: 10.1093/pcp/pcw119] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 06/23/2016] [Indexed: 05/23/2023]
Abstract
Tapetal programmed cell death (PCD) is essential in pollen grain development, and cysteine proteases are ubiquitous enzymes participating in plant PCD. Although the major papain-like cysteine proteases (PLCPs) have been investigated, the exact functions of many PLCPs are still poorly understood in PCD. Here, we identified a PLCP gene, BnaC.CP20.1, which was closely related to XP_013596648.1 from Brassica oleracea. Quantitative real-time PCR analysis revealed that BnaC.CP20.1 expression was down-regulated in male-sterile lines in oilseed rape, suggesting a connection between this gene and male sterility. BnaC.CP20.1 is especially active in the tapetum and microspores in Brassica napus from the uninucleate stage until formation of mature pollen grains during anther development. On expression of BnaC.CP20.1 prior to the tetrad stage, BnA9::BnaC.CP20.1 transgenic lines in Arabidopsis thaliana showed a male-sterile phenotype with shortened siliques containing fewer or no seeds by self-crossing. Scanning electron microscopy indicated that the reticulate exine was defective in aborted microspores. Callose degradation was delayed and microspores were not released from the tetrad in a timely fashion. Additionally, the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay indicated that BnaC.CP20.1 ectopic expression led to premature tapetal PCD. Transmission electron microscopy analyses further demonstrated that the pollen abortion was due to the absence of tectum connections to the bacula in the transgenic anthers. These findings suggest that timely expression of BnaC.CP20.1 is necessary for tapetal degeneration and pollen wall formation.
Collapse
Affiliation(s)
- Liping Song
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhengfu Zhou
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Shan Tang
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhiqiang Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Shengqian Xia
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Maomao Qin
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Bao Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
78
|
Identification of Differentially Expressed Genes between “Honeycrisp” and “Golden Delicious” Apple Fruit Tissues Reveal Candidates for Crop Improvement. HORTICULTURAE 2016. [DOI: 10.3390/horticulturae2030011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
79
|
Bhat SA, Bhat WF, Bano B. Spectroscopic evaluation of the interaction between pesticides and chickpea cystatin: comparative binding and toxicity analyses. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2016; 18:872-81. [PMID: 27327564 DOI: 10.1039/c6em00195e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The binding study of pesticides with proteins is of great importance in ecotoxicology. In this study, a comparative interaction mechanism of phytocystatin with three pesticides has been presented, each from a different class-glyphosate herbicide (GPS), chlorpyrifos insecticide (CPF), and mancozeb fungicide (MCZ). The interaction of purified chickpea cystatin (CPC) has been characterized by fluorescence, UV, and circular dichroism (CD) spectroscopic methods. The study revealed association constants (Ka) of 52 M(-1), 1.145 × 10(3) M(-1), and 36.12 M(-1) for the interaction of CPF, MCZ, and GPS with CPC, respectively, signifying the high affinity interaction for MCZ. Structural changes (at tertiary and secondary levels) were confirmed by UV-visible, intrinsic fluorescence and CD spectroscopy. The results showed that the effect on the CPC structure was more pronounced in the case of MCZ, which was followed by CPF and then GPS. The functional analysis of the pesticide treated inhibitor showed a decline in antipapain activity which varied with the time and dose as well as the class of pesticide. MCZ was relatively much more toxic as compared to CPF and GPS. Reactive oxygen species responsible for inhibitor damage were also analyzed. The results obtained implicate that the exposure of plants to pesticides may lead to physicochemical changes in proteins such as phytocystatins leading to physiological damage to the plant system.
Collapse
Affiliation(s)
- Sheraz Ahmad Bhat
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh-202002, India.
| | - Waseem Feeroze Bhat
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh-202002, India.
| | - Bilqees Bano
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh-202002, India.
| |
Collapse
|
80
|
Nguyen D, D'Agostino N, Tytgat TOG, Sun P, Lortzing T, Visser EJW, Cristescu SM, Steppuhn A, Mariani C, van Dam NM, Rieu I. Drought and flooding have distinct effects on herbivore-induced responses and resistance in Solanum dulcamara. PLANT, CELL & ENVIRONMENT 2016; 39:1485-99. [PMID: 26759219 DOI: 10.1111/pce.12708] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 12/28/2015] [Indexed: 05/20/2023]
Abstract
In the field, biotic and abiotic stresses frequently co-occur. As a consequence, common molecular signalling pathways governing adaptive responses to individual stresses can interact, resulting in compromised phenotypes. How plant signalling pathways interact under combined stresses is poorly understood. To assess this, we studied the consequence of drought and soil flooding on resistance of Solanum dulcamara to Spodoptera exigua and their effects on hormonal and transcriptomic profiles. The results showed that S. exigua larvae performed less well on drought-stressed plants than on well-watered and flooded plants. Both drought and insect feeding increased abscisic acid and jasmonic acid (JA) levels, whereas flooding did not induce JA accumulation. RNA sequencing analyses corroborated this pattern: drought and herbivory induced many biological processes that were repressed by flooding. When applied in combination, drought and herbivory had an additive effect on specific processes involved in secondary metabolism and defence responses, including protease inhibitor activity. In conclusion, drought and flooding have distinct effects on herbivore-induced responses and resistance. Especially, the interaction between abscisic acid and JA signalling may be important to optimize plant responses to combined drought and insect herbivory, making drought-stressed plants more resistant to insects than well-watered and flooded plants.
Collapse
Affiliation(s)
- Duy Nguyen
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University, 6500, GL, Nijmegen, The Netherlands
| | - Nunzio D'Agostino
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di ricerca per l'orticoltura, 84098, Pontecagnano, (SA), Italy
| | - Tom O G Tytgat
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University, 6500, GL, Nijmegen, The Netherlands
| | - Pulu Sun
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University, 6500, GL, Nijmegen, The Netherlands
- Laboratoire de Biotechnologies Végétales Appliquées aux Plantes Aromatiques et Médicinales, Université Jean Monnet, 42023, Saint-Etienne, France
| | - Tobias Lortzing
- Molecular Ecology Group, Dahlem Centre of Plant Sciences, Freie Universität Berlin, 12163, Berlin, Germany
| | - Eric J W Visser
- Department of Experimental Plant Ecology, Institute for Water and Wetland Research, Radboud University, 6500, GL, Nijmegen, The Netherlands
| | - Simona M Cristescu
- Department of Molecular and Laser Physics, Institute for Molecules and Materials, Radboud University, 6500, GL, Nijmegen, The Netherlands
| | - Anke Steppuhn
- Molecular Ecology Group, Dahlem Centre of Plant Sciences, Freie Universität Berlin, 12163, Berlin, Germany
| | - Celestina Mariani
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University, 6500, GL, Nijmegen, The Netherlands
| | - Nicole M van Dam
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University, 6500, GL, Nijmegen, The Netherlands
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany
- Institute of Ecology, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Ivo Rieu
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University, 6500, GL, Nijmegen, The Netherlands
| |
Collapse
|
81
|
Khan S, Ahmad S, Siddiqi MI, Bano B. Physico-chemical and in-silico analysis of a phytocystatin purified from Brassica juncea cultivar RoAgro 5444. Biochem Cell Biol 2016; 94:584-596. [PMID: 27845561 DOI: 10.1139/bcb-2016-0029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This study describes the isolation and purification of a phytocystatin from seeds of Brassica juncea (Indian mustard; cultivar RoAgro 5444), which is an important oilseed crop both agriculturally and economically. The protein was purified by gel filtration chromatography with 24.3% yield and 204-fold purification, and visualised by 2D gel electrophoresis. The 18.1 kDa mustard cystatin was highly specific for cysteine proteinases. The plant cystatin inhibited cathepsin B, confirming its role in conferring pest resistance. The inhibitor was highly stable over a pH range of 3-10 and retained significant inhibitory potential up to 70 °C. The stoichiometry of its interaction with papain, determined by isothermal calorimetry, suggests a 1:1 complex. Secondary structural elements calculated by far-UV circular dichroism (CD) spectroscopy show an 18.8% α-helical and 21% β-sheet structure. The protein was a non-competitive inhibitor of thiol proteinases. The Stokes radius and frictional co-efficient were used to describe the shape and size of the protein. Homology modelling and docking studies proposed a prototype illustrating the Brassica phytocystatin mediated papain inhibition. Molecular dynamics (MD) study revealed the excellent stability of the papain-phytocystatin complex during a simulation for 100 ns. Detailed results identify the mustard cystatin as an important member of the phytocystatin family.
Collapse
Affiliation(s)
- Shumaila Khan
- a Department of Biochemistry, Faculty of Life Science, Aligarh Muslim University, Aligarh 202002, India
| | - Sabahuddin Ahmad
- b Molecular and Structural Biology Division, Council of Scientific and Industrial Research-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, Uttar Pradesh, India
| | - Mohammad Imran Siddiqi
- b Molecular and Structural Biology Division, Council of Scientific and Industrial Research-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, Uttar Pradesh, India
| | - Bilqees Bano
- a Department of Biochemistry, Faculty of Life Science, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
82
|
Zhang M, Koh J, Liu L, Shao Z, Liu H, Hu S, Zhu N, Dufresne CP, Chen S, Wang Q. Critical Role of COI1-Dependent Jasmonate Pathway in AAL toxin induced PCD in Tomato Revealed by Comparative Proteomics. Sci Rep 2016; 6:28451. [PMID: 27324416 PMCID: PMC4914994 DOI: 10.1038/srep28451] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 05/31/2016] [Indexed: 12/24/2022] Open
Abstract
Alternaria alternata f.sp. Lycopersici (AAL) toxin induces programmed cell death (PCD) in susceptible tomato (Solanum lycopersicum) leaves. Jasmonate (JA) promotes AAL toxin induced PCD in a COI1 (coronatine insensitive 1, JA receptor)-dependent manner by enhancement of reactive oxygen species (ROS) production. To further elucidate the underlying mechanisms of this process, we performed a comparative proteomic analysis using tomato jasmonic acid insensitive1 ( jai1), the receptor mutant of JA, and its wild type (WT) after AAL toxin treatment with or without JA treatment. A total of 10367 proteins were identified in tomato leaves using isobaric tags for relative and absolute quantitation (iTRAQ) quantitative proteomics approach. 2670 proteins were determined to be differentially expressed in response to AAL toxin and JA. Comparison between AAL toxin treated jai1 and its WT revealed the COI1-dependent JA pathway regulated proteins, including pathways related to redox response, ceramide synthesis, JA, ethylene (ET), salicylic acid (SA) and abscisic acid (ABA) signaling. Autophagy, PCD and DNA damage related proteins were also identified. Our data suggest that COI1-dependent JA pathway enhances AAL toxin induced PCD through regulating the redox status of the leaves, other phytohormone pathways and/or important PCD components.
Collapse
Affiliation(s)
- Min Zhang
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Jin Koh
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610, USA
| | - Lihong Liu
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Zhiyong Shao
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Haoran Liu
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Songshen Hu
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Ning Zhu
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | | | - Sixue Chen
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610, USA
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Qiaomei Wang
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
83
|
Li Y, Dickman M. Processing of AtBAG6 triggers autophagy and fungal resistance. PLANT SIGNALING & BEHAVIOR 2016; 11:e1175699. [PMID: 27128431 PMCID: PMC4973798 DOI: 10.1080/15592324.2016.1175699] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 03/28/2016] [Accepted: 03/29/2016] [Indexed: 05/18/2023]
Abstract
The Bcl-2-associated athanogene (BAG) family is an evolutionarily conserved, multifunctional group of cytoprotective co-chaperones. Using structural bioinformatic approaches we identified 7 homologs of the Arabidopsis BAG family. Evaluating knockouts in Arabidopsis of individual BAG family members, we noted that Arabidopsis BAG6 (AtBAG6) knockout lines exhibited a pronounced enhancement of susceptibility to the necrotrophic fungal pathogen Botrytis cinerea. Moreover, we identified a single predicted caspase-1 site that was cleaved by an aspartyl protease (AtAPCB1). Finally, we showed AtBAG6 forms a complex with AtAPCB1 via coupling to a C2 GRAM domain protein (AtBAGP1). This complex and its activation is necessary for triggering pathogen mediated autophagic cell death and host resistance.
Collapse
Affiliation(s)
- Yurong Li
- Institute for Plant Genomics and Biotechnology, Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
| | - Marty Dickman
- Institute for Plant Genomics and Biotechnology, Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
- CONTACT Marty Dickman
| |
Collapse
|
84
|
Dabhade AR, Mokashe NU, Patil UK. Purification, characterization, and antimicrobial activity of nontoxic trypsin inhibitor from Albizia amara Boiv. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.02.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
85
|
Li J, Ding X, Han S, He T, Zhang H, Yang L, Yang S, Gai J. Differential proteomics analysis to identify proteins and pathways associated with male sterility of soybean using iTRAQ-based strategy. J Proteomics 2016; 138:72-82. [PMID: 26921830 DOI: 10.1016/j.jprot.2016.02.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 01/27/2016] [Accepted: 02/19/2016] [Indexed: 12/11/2022]
Abstract
To further elucidate the molecular mechanism of cytoplasmic male sterility (CMS) in soybean, a differential proteomic analysis was completed between the CMS line NJCMS1A and its maintainer NJCMS1B using iTRAQ-based strategy. As a result, 180 differential abundance proteins (DAPs) were identified, of which, 60 were down-regulated and 120 were up-regulated in NJCMS1A compared with NJCMS1B. Bioinformatic analysis showed that 167 DAPs were annotated in 41 Gene Ontology functional groups, 106 DAPs were classified into 20 clusters of orthologous groups of protein categories, and 128 DAPs were enrichment in 53 KEGG pathways. Fifteen differential level proteins/genes with the same expression pattern were identified in the further conjoint analysis of DAPs and the previously reported differential expression genes. Moreover, multiple reaction monitoring test, qRT-PCR analysis and enzyme activity assay validated that the iTRAQ results were reliable. Based on functional analysis of DAPs, we concluded that male sterility in NJCMS1A might be related to insufficiencies in energy supply, unbalance of protein synthesis and degradation, disruption of flavonoid synthesis, programmed cell death, abnormalities of substance metabolism, etc. These results might facilitate our understanding of the molecular mechanisms behind CMS in soybean. BIOLOGICAL SIGNIFICANCE Soybean is an important global crop that provides protein and oil. Heterosis is a significantly potential approach to increase the yield of soybean. Cytoplasmic male sterility (CMS) plays a vital role in the production of hybrid seeds. However, the genetic and molecular mechanisms of male sterility in soybean still need to be further elucidated. In the present paper, a differential proteomic analysis was carried out and the results showed that several key proteins involved in key pathways were associated with male sterility in soybean. This work provides a new insight to understand the genetic and molecular mechanisms underlying CMS in soybean.
Collapse
Affiliation(s)
- Jiajia Li
- Soybean Research Institute, National Center for Soybean Improvement, MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Xianlong Ding
- Soybean Research Institute, National Center for Soybean Improvement, MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Shaohuai Han
- Soybean Research Institute, National Center for Soybean Improvement, MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Tingting He
- Soybean Research Institute, National Center for Soybean Improvement, MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Hao Zhang
- Soybean Research Institute, National Center for Soybean Improvement, MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Longshu Yang
- Soybean Research Institute, National Center for Soybean Improvement, MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Shouping Yang
- Soybean Research Institute, National Center for Soybean Improvement, MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Junyi Gai
- Soybean Research Institute, National Center for Soybean Improvement, MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
86
|
Deeba F, Pandey AK, Pandey V. Organ Specific Proteomic Dissection of Selaginella bryopteris Undergoing Dehydration and Rehydration. FRONTIERS IN PLANT SCIENCE 2016; 7:425. [PMID: 27092152 PMCID: PMC4824794 DOI: 10.3389/fpls.2016.00425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 03/18/2016] [Indexed: 05/06/2023]
Abstract
To explore molecular mechanisms underlying the physiological response of Selaginella bryopteris, a comprehensive proteome analysis was carried out in roots and fronds undergoing dehydration and rehydration. Plants were dehydrated for 7 days followed by 2 and 24 h of rehydration. In roots out of 59 identified spots, 58 protein spots were found to be up-regulated during dehydration stress. The identified proteins were related to signaling, stress and defense, protein and nucleotide metabolism, carbohydrate and energy metabolism, storage and epigenetic control. Most of these proteins remained up-regulated on first rehydration, suggesting their role in recovery phase also. Among the 90 identified proteins in fronds, about 49% proteins were up-regulated during dehydration stress. Large number of ROS scavenging proteins was enhanced on dehydration. Many other proteins involved in energy, protein turnover and nucleotide metabolism, epigenetic control were also highly upregulated. Many photosynthesis related proteins were upregulated during stress. This would have helped plant to recover rapidly on rehydration. This study provides a comprehensive picture of different cellular responses elucidated by the proteome changes during dehydration and rehydration in roots and fronds as expected from a well-choreographed response from a resurrection plant.
Collapse
Affiliation(s)
| | | | - Vivek Pandey
- Plant Ecology and Environmental Science, CSIR-National Botanical Research InstituteLucknow, India
| |
Collapse
|
87
|
Uzelac B, Janošević D, Simonović A, Motyka V, Dobrev PI, Budimir S. Characterization of natural leaf senescence in tobacco (Nicotiana tabacum) plants grown in vitro. PROTOPLASMA 2016; 253:259-75. [PMID: 25837009 DOI: 10.1007/s00709-015-0802-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/14/2015] [Indexed: 05/18/2023]
Abstract
Leaf senescence is a highly regulated final phase of leaf development preceding massive cell death. It results in the coordinated degradation of macromolecules and the subsequent nutrient relocation to other plant parts. Very little is still known about early stages of leaf senescence during normal leaf ontogeny that is not triggered by stress factors. This paper comprises an integrated study of natural leaf senescence in tobacco plants grown in vitro, using molecular, structural, and physiological information. We determined the time sequence of ultrastructural changes in mesophyll cells during leaf senescence, showing that the degradation of chloroplast ultrastructure fully correlated with changes in chlorophyll content. The earliest degenerative changes in chloroplast ultrastructure coinciding with early chromatin condensation were observed already in mature green leaves. A continuum of degradative changes in chloroplast ultrastructure, chromatin condensation and aggregation, along with progressive decrease in cytoplasm organization and electron density were observed in the course of mesophyll cells ageing. Although the total amounts of endogenous cytokinins gradually increased during leaf ontogenesis, the proportion of bioactive cytokinin forms, as well as their phosphate precursors, in total cytokinin content rapidly declined with ageing. Endogenous indole-3-acetic acid (IAA) levels were strongly reduced in senescent leaves, and a decreasing tendency was also observed for abscisic acid (ABA) levels. Senescence-associated tobacco cysteine proteases (CP, E.C. 3.4.22) CP1 and CP23 genes were induced in the initial phase of senescence. Genes encoding glutamate dehydrogenase (GDH, E.C. 1.4.1.2) and one isoform of cytosolic glutamine synthetase (GS1, E.C. 6.3.1.2) were induced in the late stage of senescence, while chloroplastic GS (GS2) gene showed a continuous decrease with leaf ageing.
Collapse
Affiliation(s)
- Branka Uzelac
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia.
| | - Dušica Janošević
- Institute of Botany and Botanical Garden "Jevremovac", Faculty of Biology, University of Belgrade, Takovska 43, Belgrade, Serbia
| | - Ana Simonović
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia
| | - Václav Motyka
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojova 263, 16502, Praha 6, Czech Republic
| | - Petre I Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojova 263, 16502, Praha 6, Czech Republic
| | - Snežana Budimir
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia
| |
Collapse
|
88
|
Gholizadeh A. Interaction of L-amino Acids with the Fusion Structures of a Cysteine Proteinase/Cystatin Pair. APPL BIOCHEM MICRO+ 2016. [DOI: 10.1134/s000368381602006x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
89
|
Ahmed A, Shamsi A, Bano B. Purification and biochemical characterization of phytocystatin from Brassica alba. J Mol Recognit 2016; 29:223-31. [PMID: 26748819 DOI: 10.1002/jmr.2522] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 10/24/2015] [Accepted: 10/26/2015] [Indexed: 11/10/2022]
Abstract
Phytocystatins belong to the family of cysteine proteinases inhibitors. They are ubiquitously found in plants and carry out various significant physiological functions. These plant derived inhibitors are gaining wide consideration as potential candidate in engineering transgenic crops and in drug designing. Hence it is crucial to identify these inhibitors from various plant sources. In the present study a phytocystatin has been isolated and purified by a simple two-step procedure using ammonium sulfate saturation and gel filtration chromatography on Sephacryl S-100HR from Brassica alba seeds (yellow mustard seeds).The protein was purified to homogeneity with 60.3% yield and 180-fold of purification. The molecular mass of the mustard seed cystatin was estimated to be nearly 26,000 Da by sodium dodecyl sulfate polyacrylamide gel electrophoresis as well as by gel filtration chromatography. The stokes radius and diffusion coefficient of the mustard cystatin were found to be 23A° and 9.4 × 10(-7) cm(2) s(-1) respectively. The isolated phytocystatin was found to be stable in the pH range of 6-8 and is thermostable up to 60 °C. Kinetic analysis revealed that the phytocystatin exhibited non-competitive type of inhibition and inhibited papain more efficiently (K(i) = 3 × 10(-7) M) than ficin (K(i) = 6.6 × 10(-7) M) and bromelain (K(i) = 7.7 × 10(-7) M respectively). CD spectral analysis shows that it possesses 17.11% alpha helical content.
Collapse
Affiliation(s)
- Azaj Ahmed
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Anas Shamsi
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Bilqees Bano
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| |
Collapse
|
90
|
Buffon G, Blasi ÉAR, Adamski JM, Ferla NJ, Berger M, Santi L, Lavallée-Adam M, Yates JR, Beys-da-Silva WO, Sperotto RA. Physiological and Molecular Alterations Promoted by Schizotetranychus oryzae Mite Infestation in Rice Leaves. J Proteome Res 2015; 15:431-46. [PMID: 26667653 DOI: 10.1021/acs.jproteome.5b00729] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Infestation of phytophagous mite Schizotetranychus oryzae in rice causes critical yield losses. To better understand this interaction, we employed Multidimensional Protein Identification Technology (MudPIT) approach to identify differentially expressed proteins. We detected 18 and 872 unique proteins in control and infested leaves, respectively, along with 32 proteins more abundant in control leaves. S. oryzae infestation caused decreased abundance of proteins related to photosynthesis (mostly photosystem II-related), carbon assimilation and energy production, chloroplast detoxification, defense, and fatty acid and gibberellin synthesis. On the contrary, infestation caused increased abundance of proteins involved in protein modification and degradation, gene expression at the translation level, protein partitioning to different organelles, lipid metabolism, actin cytoskeleton remodeling, and synthesis of jasmonate, amino acid, and molecular chaperones. Our results also suggest that S. oryzae infestation promotes cell-wall remodeling and interferes with ethylene biosynthesis in rice leaves. Proteomic data were positively correlated with enzymatic assays and RT-qPCR analysis. Our findings describe the protein expression patterns of infested rice leaves and suggest that the acceptor side of PSII is probably the major damaged target in the photosynthetic apparatus. These data will be useful in future biotechnological approaches aiming to induce phytophagous mite resistance in rice.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mathieu Lavallée-Adam
- Department of Chemical Physiology, The Scripps Research Institute , La Jolla, California 92037, United States
| | - John R Yates
- Department of Chemical Physiology, The Scripps Research Institute , La Jolla, California 92037, United States
| | | | | |
Collapse
|
91
|
Sytwala S, Domsalla A, Melzig MF. Investigation of plant latices of Asteraceae and Campanulaceae regarding proteolytic activity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 97:117-123. [PMID: 26458257 DOI: 10.1016/j.plaphy.2015.09.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/01/2015] [Accepted: 09/21/2015] [Indexed: 06/05/2023]
Abstract
Occurrence of plant latices is widespread, there are more than 40 families of plants characterized to establish lactiferous structures. The appearance of hydrolytic active proteins, incorporated in latices is already characterized, and hydrolytic active proteins are considerable, and for several plant families, the occurrence of hydrolytic active proteins is already specified e.g. Apocynaceae Juss., Caricaceae Dumort, Euphorbiaceae Juss., Moraceae Gaudich and Papaveraceae Juss. In our investigation, focused on latex bearing plants of order Asterales, Asteraceae and Campanulaceae in particular. The present outcomes represent a comprehensive study, relating to the occurrence of proteolytic active enzymes of order Asterales for the first time. 131 different species of Asteraceae and Campanulaceae were tested, and the appearance of plant latex proteases were determined in different quantities. Proteolytic activity was investigated by inhibitory studies and determination of residual activity in the following, enable us to characterize the proteases. Most of the considered species exhibit a serine protease activity and a multiplicity of species exhibited two or more subclasses of proteases.
Collapse
Affiliation(s)
- Sonja Sytwala
- Institute of Pharmacy, Freie Universitaet, Berlin, Germany
| | - André Domsalla
- Institute of Pharmacy, Freie Universitaet, Berlin, Germany
| | | |
Collapse
|
92
|
Gene-expression profile of developing pollen tube of Pyrus bretschneideri. Gene Expr Patterns 2015; 20:11-21. [PMID: 26547040 DOI: 10.1016/j.gep.2015.10.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 10/28/2015] [Accepted: 10/30/2015] [Indexed: 11/23/2022]
Abstract
Pollen is an ideal model system for investigation of cell growth. In order to better understand the molecular biology mechanisms of the process of pear pollen tube development, RNA sequencing (RNA-Seq) technology was used to characterize the expression of genes during four development stages of pear pollen, including mature pollen grains (MP), hydrated pollen grains (HP), growing pollen tubes (PT) and stopped-growth pollen tubes (SPT). The four libraries generated a total of 47,072,151 clean reads that were mapped and assembled into 21,394 genes. Transcripts from the four stages were classified into 38 functional subcategories. Between MP and HP, 305 genes were differentially expressed, and 502 genes were differentially expressed between HP and PT. More importantly, we have observed that 2208 genes were differentially expressed between PT and SPT, and this is the first report of the gene expression comparison between the two development stages. Eight of the differentially expressed genes were randomly selected to confirm the RNA-Seq results by quantitative real-time PCR (qRT-PCR). Taken together, this research provides a platform for future research on pear pollen tube growth and growth cessation.
Collapse
|
93
|
Liang J, Wang Y, Ding G, Li W, Yang G, He N. Biotic stress-induced expression of mulberry cystatins and identification of cystatin exhibiting stability to silkworm gut proteinases. PLANTA 2015; 242:1139-1151. [PMID: 26070440 DOI: 10.1007/s00425-015-2345-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 06/01/2015] [Indexed: 06/04/2023]
Abstract
Biotic stresses induce the expression of mulberry cystatins. MaCPI-4 protein is stable in silkworm digestive fluid and accumulates in gut food debris and frass. Plant cystatins are considered to be involved in defense responses to insect herbivores though little is known about how cystatins from the natural host respond to a specialist herbivory and the following postingestive interaction is also poorly understood. Here, we studied the biotic stress-mediated inductions of cystatins from mulberry tree, and examined the stability of mulberry cystatin proteins in the gut of silkworm, Bombyx mori, a specialist insect feeding on mulberry leaf. First, we cloned and characterized six cystatin genes from a mulberry cultivar, Morus atropurpurea Roxb., named as MaCPI-1 to MaCPI-6. The recombinant MaCPI-1, MaCPI-3 and MaCPI-4 proteins, which showed inhibitory effects against papain in vitro, were produced. Silkworm herbivory as well as methyl jasmonate (MeJA) treatment induced the expression of five mulberry cystatin genes, and the highest inductions were observed from MaCPI-1 and MaCPI-6. Mechanical wounding led to the inductions of four cystatin genes. The differential induction occurred in MaCPI-2. The induced protein changes were detected from three mulberry cystatins comprising MaCPI-1, MaCPI-3 and MaCPI-4. In vivo and in vitro assays showed that MaCPI-1 and MaCPI-3 proteins were susceptible to silkworm digestive fluid and MaCPI-4 had an antidigestive stability, and was detected in silkworm gut and frass. Collectively, our data indicated that biotic stresses resulted in the transcriptional inductions and protein changes of mulberry cystatins (MaCPIs), and identified MaCPI-4 with stability in the gut of its specialist herbivore.
Collapse
Affiliation(s)
- Jiubo Liang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.
| | - Yupeng Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.
| | - Guangyu Ding
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.
| | - Wensheng Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.
| | - Guangwei Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.
| | - Ningjia He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
94
|
Gene Expression Profiles in Rice Developing Ovules Provided Evidence for the Role of Sporophytic Tissue in Female Gametophyte Development. PLoS One 2015; 10:e0141613. [PMID: 26506227 PMCID: PMC4624635 DOI: 10.1371/journal.pone.0141613] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/09/2015] [Indexed: 12/21/2022] Open
Abstract
The development of ovule in rice (Oryza sativa) is vital during its life cycle. To gain more understanding of the molecular events associated with the ovule development, we used RNA sequencing approach to perform transcriptome-profiling analysis of the leaf and ovules at four developmental stages. In total, 25,401, 23,343, 23,647 and 23,806 genes were identified from the four developmental stages of the ovule, respectively. We identified a number of differently expressed genes (DEGs) from three adjacent stage comparisons, which may play crucial roles in ovule development. The DEGs were then conducted functional annotations and Kyoto encyclopedia of genes and genomes (KEGG) pathway analyses. Genes related to cellular component biogenesis, membrane-bounded organelles and reproductive regulation were identified to be highly expressed during the ovule development. Different expression levels of auxin-related and cytokinin-related genes were also identified at various stages, providing evidence for the role of sporophytic ovule tissue in female gametophyte development from the aspect of gene expression. Generally, an overall transcriptome analysis for rice ovule development has been conducted. These results increased our knowledge of the complex molecular and cellular events that occur during the development of rice ovule and provided foundation for further studies on rice ovule development.
Collapse
|
95
|
Boex-Fontvieille E, Rustgi S, Reinbothe S, Reinbothe C. A Kunitz-type protease inhibitor regulates programmed cell death during flower development in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6119-35. [PMID: 26160583 DOI: 10.1093/jxb/erv327] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Flower development and fertilization are tightly controlled in Arabidopsis thaliana. In order to permit the fertilization of a maximum amount of ovules as well as proper embryo and seed development, a subtle balance between pollen tube growth inside the transmitting tract and pollen tube exit from the septum is needed. Both processes depend on a type of programmed cell death that is still poorly understood. Here, it is shown that a Kunitz protease inhibitor related to water-soluble chlorophyll proteins of Brassicaceae (AtWSCP, encoded by At1g72290) is involved in controlling cell death during flower development in A. thaliana. Genetic, biochemical, and cell biology approaches revealed that WSCP physically interacts with RD21 (RESPONSIVE TO DESICCATION) and that this interaction in turn inhibits the activity of RD21 as a pro-death protein. The regulatory circuit identified depends on the restricted expression of WSCP in the transmitting tract and the septum epidermis. In a respective Atwscp knock-out mutant, flowers exhibited precocious cell death in the transmitting tract and unnatural death of septum epidermis cells. As a consequence, apical-basal pollen tube growth, fertilization of ovules, as well as embryo development and seed formation were perturbed. Together, the data identify a unique mechanism of cell death regulation that fine-tunes pollen tube growth.
Collapse
Affiliation(s)
- Edouard Boex-Fontvieille
- Laboratoire de Génétique Moléculaire des Plantes and Biologie Environnementale et Systémique (BEeSy), Université Joseph Fourier, LBFA, BP53F, 38041 Grenoble cedex 9, France
| | - Sachin Rustgi
- Molecular Plant Sciences, Department of Crop and Soil Sciences, Washington State University, Pullman WA 99164-6420, USA
| | - Steffen Reinbothe
- Laboratoire de Génétique Moléculaire des Plantes and Biologie Environnementale et Systémique (BEeSy), Université Joseph Fourier, LBFA, BP53F, 38041 Grenoble cedex 9, France
| | | |
Collapse
|
96
|
Lambirth KC, Whaley AM, Blakley IC, Schlueter JA, Bost KL, Loraine AE, Piller KJ. A Comparison of transgenic and wild type soybean seeds: analysis of transcriptome profiles using RNA-Seq. BMC Biotechnol 2015; 15:89. [PMID: 26427366 PMCID: PMC4591623 DOI: 10.1186/s12896-015-0207-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 09/22/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Soybean (Glycine max) has been bred for thousands of years to produce seeds rich in protein for human and animal consumption, making them an appealing bioreactor for producing valuable recombinant proteins at high levels. However, the effects of expressing recombinant protein at high levels on bean physiology are not well understood. To address this, we investigated whether gene expression within transgenic soybean seed tissue is altered when large amounts of recombinant proteins are being produced and stored exclusively in the seeds. We used RNA-Seq to survey gene expression in three transgenic soybean lines expressing recombinant protein at levels representing up to 1.61 % of total protein in seed tissues. The three lines included: ST77, expressing human thyroglobulin protein (hTG), ST111, expressing human myelin basic protein (hMBP), and 764, expressing a mutant, nontoxic form of a staphylococcal subunit vaccine protein (mSEB). All lines selected for analysis were homozygous and contained a single copy of the transgene. METHODS Each transgenic soybean seed was screened for transgene presence and recombinant protein expression via PCR and western blotting. Whole seed mRNA was extracted and cDNA libraries constructed for Illumina sequencing. Following alignment to the soybean reference genome, differential gene expression analysis was conducted using edgeR and cufflinks. Functional analysis of differentially expressed genes was carried out using the gene ontology analysis tool AgriGO. RESULTS The transcriptomes of nine seeds from each transgenic line were sequenced and compared with wild type seeds. Native soybean gene expression was significantly altered in line 764 (mSEB) with more than 3000 genes being upregulated or downregulated. ST77 (hTG) and ST111 (hMBP) had significantly less differences with 52 and 307 differentially expressed genes respectively. Gene ontology enrichment analysis found that the upregulated genes in the 764 line were annotated with functions related to endopeptidase inhibitors and protein synthesis, but suppressed expression of genes annotated to the nuclear pore and to protein transport. No significant gene ontology terms were detected in ST77, and only a few genes involved in photosynthesis and thylakoid functions were downregulated in ST111. Despite these differences, transgenic plants and seeds appeared phenotypically similar to non-transgenic controls. There was no correlation between recombinant protein expression level and the quantity of differentially expressed genes detected. CONCLUSIONS Measurable unscripted gene expression changes were detected in the seed transcriptomes of all three transgenic soybean lines analyzed, with line 764 being substantially altered. Differences detected at the transcript level may be due to T-DNA insert locations, random mutations following transformation or direct effects of the recombinant protein itself, or a combination of these. The physiological consequences of such changes remain unknown.
Collapse
Affiliation(s)
- Kevin C Lambirth
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA.
| | - Adam M Whaley
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA.
| | - Ivory C Blakley
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, North Carolina Research Campus, Kannapolis, NC, 28081, USA.
| | - Jessica A Schlueter
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA.
| | - Kenneth L Bost
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA.
| | - Ann E Loraine
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, North Carolina Research Campus, Kannapolis, NC, 28081, USA.
| | - Kenneth J Piller
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA.
| |
Collapse
|
97
|
Hu YJ, Irene D, Lo CJ, Cai YL, Tzen TC, Lin TH, Chyan CL. Resonance assignments and secondary structure of a phytocystatin from Sesamum indicum. BIOMOLECULAR NMR ASSIGNMENTS 2015; 9:309-11. [PMID: 25673506 DOI: 10.1007/s12104-015-9598-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 02/09/2015] [Indexed: 05/26/2023]
Abstract
A cDNA encoding a cysteine protease inhibitor, cystatin was cloned from sesame (Sesamum indicum L.) seed. This clone was constructed into an expression vector and expressed in E. coli and purified to homogeneous. The recombinant sesame cystatin (SiCYS) showed effectively inhibitory activity toward C1 cysteine proteases. In order to unravel its inhibitory action from structural point of view, multidimensional heteronuclear NMR techniques were used to characterize the structure of SiCYS. The full (1)H, (15)N, and (13)C resonances of SiCYS were assigned. The secondary structure of SiCYS was identified by using the assigned chemical shifts of (1)H(α), (13)C(α), (13)C(β), and (13)CO through the consensus chemical shift index (CSI). The results of CSI analysis of SiCYS suggest eight β-strands (residues 33-46, 51-61, 63-75, 80-87, 150-155, 157-169, 172-183, and 192-195) and two α-helices (residues 16-30, and 120-135).
Collapse
Affiliation(s)
- Yu-Jun Hu
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien, 974, Taiwan, ROC
| | - Deli Irene
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien, 974, Taiwan, ROC
| | - Chi-Jen Lo
- Department of Biochemistry, National Yang Ming University, Taipei, 112, Taiwan, ROC
| | - Yong-Liang Cai
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien, 974, Taiwan, ROC
| | - T-C Tzen
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 402, Taiwan, ROC
| | - Ta-Hsien Lin
- Department of Biochemistry, National Yang Ming University, Taipei, 112, Taiwan, ROC
- Basic Research Division, Medical Research Department, Taipei Veterans General Hospital, Taipei, 112, Taiwan, ROC
| | - Chia-Lin Chyan
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien, 974, Taiwan, ROC.
| |
Collapse
|
98
|
Chen YE, Cui JM, Su YQ, Yuan S, Yuan M, Zhang HY. Influence of stripe rust infection on the photosynthetic characteristics and antioxidant system of susceptible and resistant wheat cultivars at the adult plant stage. FRONTIERS IN PLANT SCIENCE 2015; 6:779. [PMID: 26442087 PMCID: PMC4585106 DOI: 10.3389/fpls.2015.00779] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/10/2015] [Indexed: 05/05/2023]
Abstract
Wheat stripe rust (Puccinia striiformis f. sp. tritici, Pst), is one of the most serious diseases of wheat (Triticum aestivum L.) worldwide. To gain a better understanding of the protective mechanism against stripe rust at the adult plant stage, the differences in photosystem II and antioxidant enzymatic systems between susceptible and resistant wheat in response to stripe rust disease (P. striiformis) were investigated. We found that chlorophyll fluorescence and the activities of the antioxidant enzymes were higher in resistant wheat than in susceptible wheat after stripe rust infection. Compared with the susceptible wheat, the resistant wheat accumulated a higher level of D1 protein and a lower level of reactive oxygen species after infection. Furthermore, our results demonstrate that D1 and light-harvesting complex II (LHCII) phosphorylation are involved in the resistance to stripe rust in wheat. The CP29 protein was phosphorylated under stripe rust infection, like its phosphorylation in other monocots under environmental stresses. More extensive damages occur on the thylakoid membranes in the susceptible wheat compared with the resistant wheat. The findings provide evidence that thylakoid protein phosphorylation and antioxidant enzyme systems play important roles in plant responses and defense to biotic stress.
Collapse
Affiliation(s)
- Yang-Er Chen
- College of Life Sciences, Sichuan Agricultural UniversityYa’an, China
| | - Jun-Mei Cui
- College of Life Sciences, Sichuan Agricultural UniversityYa’an, China
| | | | - Shu Yuan
- College of Resources, Sichuan Agricultural UniversityChengdu, China
| | - Ming Yuan
- College of Life Sciences, Sichuan Agricultural UniversityYa’an, China
| | - Huai-Yu Zhang
- College of Life Sciences, Sichuan Agricultural UniversityYa’an, China
| |
Collapse
|
99
|
Li R, Wang W, Wang W, Li F, Wang Q, Xu Y, Wang S. Overexpression of a cysteine proteinase inhibitor gene from Jatropha curcas confers enhanced tolerance to salinity stress. ELECTRON J BIOTECHN 2015. [DOI: 10.1016/j.ejbt.2015.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
100
|
Wang W, Zhao P, Zhou XM, Xiong HX, Sun MX. Genome-wide identification and characterization of cystatin family genes in rice (Oryza sativa L.). PLANT CELL REPORTS 2015; 34:1579-92. [PMID: 26007238 DOI: 10.1007/s00299-015-1810-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/04/2015] [Accepted: 05/13/2015] [Indexed: 05/26/2023]
Abstract
11 Cystatin genes in rice were identified, and their expression patterns were comprehensively analyzed, which reveals multiple roles in both seed development and plant response to environmental variations. Cystatin is a group of small proteins and known to inhibit the activities of cysteine proteases in the papain C1A and legumain C13 peptidase families in plants. Cystatin family genes have only been well characterized recently in a few plant species such as Hordeum vulgare and Nicotiana tabacum, which show their critical roles in programmed cell death and responses to biotic stresses. Up to now, little is known about cystatin family genes and their roles in Oryza sativa, a model plant for cereal biology study. Here, we identified 11 cystatin genes in rice genome. Comprehensive expression profile analysis reveals that cystatin family genes in rice display diverse expression pattern. They are temporally regulated at different developmental stages during the process of seed production and germination. Our experiments also reveal that the majority of cystatin genes are responsive to plant hormones and different environmental cues including cold, drought and other abiotic stresses, while some others are very stable under different stresses, indicating their fundamental roles in normal plant development. In addition, their distribution in rice chromosomes and their evolutionary relation to the members of Cystatin family in A. thaliana and N. tabacum have also been analyzed. These works suggest multiple roles of cystatin family genes in both seed development and plant response to environmental variations.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Hybrid Rice, Department of Cell and Developmental Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | | | | | | | | |
Collapse
|