51
|
Li Q, Zhou S, Liu W, Zhai Z, Pan Y, Liu C, Chern M, Wang H, Huang M, Zhang Z, Tang J, Du H. A chlorophyll a oxygenase 1 gene ZmCAO1 contributes to grain yield and waterlogging tolerance in maize. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3155-3167. [PMID: 33571996 DOI: 10.1093/jxb/erab059] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 02/07/2021] [Indexed: 05/16/2023]
Abstract
Chlorophylls function in photosynthesis, and are critical to plant developmental processes and responses to environmental stimuli. Chlorophyll b is synthesized from chlorophyll a by chlorophyll a oxygenase (CAO). Here, we characterize a yellow-green leaf (ygl) mutant and identify the causal gene which encodes a chlorophyll a oxygenase in maize (ZmCAO1). A 51 bp Popin transposon insertion in ZmCAO1 strongly disrupts its transcription. Low enzyme activity of ZmCAO1 leads to reduced concentrations of chlorophyll a and chlorophyll b, resulting in the yellow-green leaf phenotype of the ygl mutant. The net photosynthetic rate, stomatal conductance, and transpiration rate are decreased in the ygl mutant, while concentrations of δ-aminolevulinic acid (ALA), porphobilinogen (PBG) and protochlorophyllide (Pchlide) are increased. In addition, a ZmCAO1 mutation results in down-regulation of key photosynthetic genes, limits photosynthetic assimilation, and reduces plant height, ear size, kernel weight, and grain yield. Furthermore, the zmcao1 mutant shows enhanced reactive oxygen species production leading to sensitivity to waterlogging. These results demonstrate the pleiotropy of ZmCAO1 function in photosynthesis, grain yield, and waterlogging tolerance in maize.
Collapse
Affiliation(s)
- Qin Li
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, P.R.China
| | - Shuangzhen Zhou
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, P.R.China
| | - Wenyu Liu
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, P.R.China
| | - Zhensheng Zhai
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, P.R.China
| | - Yitian Pan
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, P.R.China
| | - Changchang Liu
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, P.R.China
| | - Mawsheng Chern
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616,USA
| | - Hongwei Wang
- Hubei Collaborative Innovation Center for Grain Crops, Yangzte University, Jingzhou 434025, P.R. China
| | - Min Huang
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, P.R.China
| | - Zuxin Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070,P.R.China
| | - Jihua Tang
- College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, 450046,P.R.China
| | - Hewei Du
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, P.R.China
- Hubei Collaborative Innovation Center for Grain Crops, Yangzte University, Jingzhou 434025, P.R. China
| |
Collapse
|
52
|
Fooyontphanich K, Morcillo F, Joët T, Dussert S, Serret J, Collin M, Amblard P, Tangphatsornruang S, Roongsattham P, Jantasuriyarat C, Verdeil JL, Tranbarger TJ. Multi-scale comparative transcriptome analysis reveals key genes and metabolic reprogramming processes associated with oil palm fruit abscission. BMC PLANT BIOLOGY 2021; 21:92. [PMID: 33573592 PMCID: PMC7879690 DOI: 10.1186/s12870-021-02874-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Fruit abscission depends on cell separation that occurs within specialized cell layers that constitute an abscission zone (AZ). To determine the mechanisms of fleshy fruit abscission of the monocot oil palm (Elaeis guineensis Jacq.) compared with other abscission systems, we performed multi-scale comparative transcriptome analyses on fruit targeting the developing primary AZ and adjacent tissues. RESULTS Combining between-tissue developmental comparisons with exogenous ethylene treatments, and naturally occurring abscission in the field, RNAseq analysis revealed a robust core set of 168 genes with differentially regulated expression, spatially associated with the ripe fruit AZ, and temporally restricted to the abscission timing. The expression of a set of candidate genes was validated by qRT-PCR in the fruit AZ of a natural oil palm variant with blocked fruit abscission, which provides evidence for their functions during abscission. Our results substantiate the conservation of gene function between dicot dry fruit dehiscence and monocot fleshy fruit abscission. The study also revealed major metabolic transitions occur in the AZ during abscission, including key senescence marker genes and transcriptional regulators, in addition to genes involved in nutrient recycling and reallocation, alternative routes for energy supply and adaptation to oxidative stress. CONCLUSIONS The study provides the first reference transcriptome of a monocot fleshy fruit abscission zone and provides insight into the mechanisms underlying abscission by identifying key genes with functional roles and processes, including metabolic transitions, cell wall modifications, signalling, stress adaptations and transcriptional regulation, that occur during ripe fruit abscission of the monocot oil palm. The transcriptome data comprises an original reference and resource useful towards understanding the evolutionary basis of this fundamental plant process.
Collapse
Affiliation(s)
- Kim Fooyontphanich
- UMR DIADE, Institut de Recherche Pour le Développement, Université de Montpellier, IRD Centre de Montpellier, 911 Avenue Agropolis BP 64501, 34394 Cedex 5, Montpellier, France
- Grow A Green Co, Ltd. 556 Maha Chakraphat Rd. Namaung, Chachoengsao, Chachoengsao Province, 24000, Thailand
| | - Fabienne Morcillo
- UMR DIADE, Institut de Recherche Pour le Développement, Université de Montpellier, IRD Centre de Montpellier, 911 Avenue Agropolis BP 64501, 34394 Cedex 5, Montpellier, France
- CIRAD, DIADE, F-34398, Montpellier, France
| | - Thierry Joët
- UMR DIADE, Institut de Recherche Pour le Développement, Université de Montpellier, IRD Centre de Montpellier, 911 Avenue Agropolis BP 64501, 34394 Cedex 5, Montpellier, France
| | - Stéphane Dussert
- UMR DIADE, Institut de Recherche Pour le Développement, Université de Montpellier, IRD Centre de Montpellier, 911 Avenue Agropolis BP 64501, 34394 Cedex 5, Montpellier, France
| | - Julien Serret
- UMR DIADE, Institut de Recherche Pour le Développement, Université de Montpellier, IRD Centre de Montpellier, 911 Avenue Agropolis BP 64501, 34394 Cedex 5, Montpellier, France
| | - Myriam Collin
- UMR DIADE, Institut de Recherche Pour le Développement, Université de Montpellier, IRD Centre de Montpellier, 911 Avenue Agropolis BP 64501, 34394 Cedex 5, Montpellier, France
| | | | - Sithichoke Tangphatsornruang
- National Science and Technology Development Agency, 111 Thailand Science Park, Phahonyothin Road, Pathum Thani, Thailand
| | - Peerapat Roongsattham
- UMR DIADE, Institut de Recherche Pour le Développement, Université de Montpellier, IRD Centre de Montpellier, 911 Avenue Agropolis BP 64501, 34394 Cedex 5, Montpellier, France
- Department of Genetics, Faculty of Science, Kasetsart University Bangkhen Campus, 50 Phahonyothin Road Jatujak, Bangkok, Thailand
| | - Chatchawan Jantasuriyarat
- Department of Genetics, Faculty of Science, Kasetsart University Bangkhen Campus, 50 Phahonyothin Road Jatujak, Bangkok, Thailand
| | - Jean-Luc Verdeil
- CIRAD, UMR AGAP, F-34398, Montpellier, France
- AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Timothy J Tranbarger
- UMR DIADE, Institut de Recherche Pour le Développement, Université de Montpellier, IRD Centre de Montpellier, 911 Avenue Agropolis BP 64501, 34394 Cedex 5, Montpellier, France.
| |
Collapse
|
53
|
Pattyn J, Vaughan‐Hirsch J, Van de Poel B. The regulation of ethylene biosynthesis: a complex multilevel control circuitry. THE NEW PHYTOLOGIST 2021; 229:770-782. [PMID: 32790878 PMCID: PMC7820975 DOI: 10.1111/nph.16873] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/04/2020] [Indexed: 05/06/2023]
Abstract
The gaseous plant hormone ethylene is produced by a fairly simple two-step biosynthesis route. Despite this pathway's simplicity, recent molecular and genetic studies have revealed that the regulation of ethylene biosynthesis is far more complex and occurs at different layers. Ethylene production is intimately linked with the homeostasis of its general precursor S-adenosyl-l-methionine (SAM), which experiences transcriptional and posttranslational control of its synthesising enzymes (SAM synthetase), as well as the metabolic flux through the adjacent Yang cycle. Ethylene biosynthesis continues from SAM by two dedicated enzymes: 1-aminocyclopropane-1-carboxylic (ACC) synthase (ACS) and ACC oxidase (ACO). Although the transcriptional dynamics of ACS and ACO have been well documented, the first transcription factors that control ACS and ACO expression have only recently been discovered. Both ACS and ACO display a type-specific posttranslational regulation that controls protein stability and activity. The nonproteinogenic amino acid ACC also shows a tight level of control through conjugation and translocation. Different players in ACC conjugation and transport have been identified over the years, however their molecular regulation and biological significance is unclear, yet relevant, as ACC can also signal independently of ethylene. In this review, we bring together historical reports and the latest findings on the complex regulation of the ethylene biosynthesis pathway in plants.
Collapse
Affiliation(s)
- Jolien Pattyn
- Molecular Plant Hormone Physiology LaboratoryDivision of Crop BiotechnicsDepartment of BiosystemsUniversity of LeuvenWillem de Croylaan 42Leuven3001Belgium
| | - John Vaughan‐Hirsch
- Molecular Plant Hormone Physiology LaboratoryDivision of Crop BiotechnicsDepartment of BiosystemsUniversity of LeuvenWillem de Croylaan 42Leuven3001Belgium
| | - Bram Van de Poel
- Molecular Plant Hormone Physiology LaboratoryDivision of Crop BiotechnicsDepartment of BiosystemsUniversity of LeuvenWillem de Croylaan 42Leuven3001Belgium
| |
Collapse
|
54
|
Shan W, Kuang JF, Wei W, Fan ZQ, Deng W, Li ZG, Bouzayen M, Pirrello J, Lu WJ, Chen JY. MaXB3 Modulates MaNAC2, MaACS1, and MaACO1 Stability to Repress Ethylene Biosynthesis during Banana Fruit Ripening. PLANT PHYSIOLOGY 2020; 184:1153-1171. [PMID: 32694134 PMCID: PMC7536691 DOI: 10.1104/pp.20.00313] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/09/2020] [Indexed: 05/19/2023]
Abstract
Ethylene plays a critical regulatory role in climacteric fruit ripening, and its biosynthesis is fine-tuned at the transcriptional and posttranslational levels. Nevertheless, the mechanistic link between transcriptional and posttranslational regulation of ethylene biosynthesis during fruit ripening is largely unknown. This study uncovers a coordinated transcriptional and posttranslational mechanism of controlling ethylene biosynthesis during banana (Musa acuminata) fruit ripening. NAC (NAM, ATAF, and CUC) proteins MaNAC1 and MaNAC2 repress the expression of MaERF11, a protein previously known to negatively regulate ethylene biosynthesis genes MaACS1 and MaACO1 A RING E3 ligase MaXB3 interacts with MaNAC2 to promote its ubiquitination and degradation, leading to the inhibition of MaNAC2-mediated transcriptional repression. In addition, MaXB3 also targets MaACS1 and MaACO1 for proteasome degradation. Further evidence supporting the role of MaXB3 is provided by its transient and ectopic overexpression in banana fruit and tomato (Solanum lycopersicum), respectively, which delays fruit ripening via repressing ethylene biosynthesis and thus ethylene response. Strikingly, MaNAC1 and MaNAC2 directly repress MaXB3 expression, suggesting a feedback regulatory mechanism that maintains a balance of MaNAC2, MaACS1, and MaACO1 levels. Collectively, our findings establish a multilayered regulatory cascade involving MaXB3, MaNACs, MaERF11, and MaACS1/MaACO1 that controls ethylene biosynthesis during climacteric ripening.
Collapse
Affiliation(s)
- Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
| | - Jian-Fei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
| | - Wei Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Zhong-Qi Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wei Deng
- School of Life Science, Chongqing University, Chongqing 400044, China
| | - Zheng-Guo Li
- School of Life Science, Chongqing University, Chongqing 400044, China
| | - Mondher Bouzayen
- Génomique et Biotechnologie des Fruits, Université de Toulouse, INRA, Castanet-Tolosan 31320, France
| | - Julien Pirrello
- Génomique et Biotechnologie des Fruits, Université de Toulouse, INRA, Castanet-Tolosan 31320, France
| | - Wang-Jin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
| | - Jian-Ye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
55
|
Zhou W, Chen F, Meng Y, Chandrasekaran U, Luo X, Yang W, Shu K. Plant waterlogging/flooding stress responses: From seed germination to maturation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 148:228-236. [PMID: 31981875 DOI: 10.1016/j.plaphy.2020.01.020] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 05/27/2023]
Abstract
Global climate change is strongly associated with variations in precipitation and flooding events. Flooding usually causes submergence- or partial submergence stress in plants, which significantly has a negative influence on agricultural production, from seed germination to vegetative and reproductive growth. Flooding stress results in crop growth under low oxygen conditions and thus, negatively affects the developmental periods of plant lifecycle. The survival strategies of different plant species under this stressful condition are distinct, whereas the perception pathways associated with flooding stress are similar at the molecular level. Plants respond to flooding stress by mediating changes in their architecture, energy metabolism, photosynthesis, respiration and endogenous phytohormone biosynthesis/signaling, because aerobic respiration is inhibited under flooding stress, the decrease of energy metabolism further constrains plant development. Consequently, to acclimate under these unfavorable conditions, the anaerobic respiration cascade must be promoted. In this updated review, we primarily focus on recent advances in our understanding of the mechanisms underlying plant responses to flooding stress. We summarize the functions of the flooding response factors involved in energy metabolism and phytohormone biosynthesis/signaling cascades. Finally, the current understanding of how plants circumvent flooding stress, and the potential challenges for future research, are discussed.
Collapse
Affiliation(s)
- Wenguan Zhou
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, China; Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Feng Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, China; Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yongjie Meng
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | | | - Xiaofeng Luo
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, China; Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wenyu Yang
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kai Shu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, China.
| |
Collapse
|
56
|
Progress of ethylene action mechanism and its application on plant type formation in crops. Saudi J Biol Sci 2020; 27:1667-1673. [PMID: 32489309 PMCID: PMC7253889 DOI: 10.1016/j.sjbs.2019.12.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/25/2019] [Accepted: 12/25/2019] [Indexed: 11/21/2022] Open
Abstract
The plant hormone ethylene exerts a huge influence in the whole life cycle of plants, especially stress-resistance responses. With the development of functional genomics, that the action mechanism of ethylene takes part in mediated plant architecture has been clarified gradually, such as plant roots, stems, leaves, fiber elongation and so on. Accordingly, the application of ethylene on crops chemical control and genetic improvement is greatly expanded. From the view of ethylene mediated plant architecture in crops, here reviewed advances in ethylene biosynthesis and signal transduction pathway, stress-resistance responses and the yield potential enhance of crops in recently 20 years. On these grounds, the objectives of this paper were to provide scientific reference and a useful clue for the crop creation of ideal plant type.
Collapse
|
57
|
Xie M, Zhang J, Singan VR, McGranahan MJ, LaFayette PR, Jawdy SS, Engle N, Doeppke C, Tschaplinski TJ, Davis MF, Lindquist E, Barry K, Schmutz J, Parrott WA, Chen F, Tuskan GA, Chen J, Muchero W. Identification of functional single nucleotide polymorphism of Populus trichocarpa PtrEPSP-TF and determination of its transcriptional effect. PLANT DIRECT 2020; 4:e00178. [PMID: 31911959 PMCID: PMC6941116 DOI: 10.1002/pld3.178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/17/2019] [Accepted: 10/02/2019] [Indexed: 06/10/2023]
Abstract
In plants, the phenylpropanoid pathway is responsible for the synthesis of a diverse array of secondary metabolites that include lignin monomers, flavonoids, and coumarins, many of which are essential for plant structure, biomass recalcitrance, stress defense, and nutritional quality. Our previous studies have demonstrated that Populus trichocarpa PtrEPSP-TF, an isoform of 5-enolpyruvylshikimate 3-phosphate (EPSP) synthase, has transcriptional activity and regulates phenylpropanoid biosynthesis in Populus. In this study, we report the identification of single nucleotide polymorphism (SNP) of PtrEPSP-TF that defines its functionality. Populus natural variants carrying this SNP were shown to have reduced lignin content. Here, we demonstrated that the SNP-induced substitution of 142nd amino acid (PtrEPSP-TFD142E) dramatically impairs the DNA-binding and transcriptional activity of PtrEPSP-TF. When introduced to a monocot species rice (Oryza sativa) in which an EPSP synthase isoform with the DNA-binding helix-turn-helix (HTH) motif is absent, the PtrEPSP-TF, but not PtrEPSP-TFD142E, activated genes in the phenylpropanoid pathway. More importantly, heterologous expression of PtrEPSP-TF uncovered five new transcriptional regulators of phenylpropanoid biosynthesis in rice. Collectively, this study identifies the key amino acid required for PtrEPSP-TF functionality and provides a strategy to uncover new transcriptional regulators in phenylpropanoid biosynthesis.
Collapse
Affiliation(s)
- Meng Xie
- Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTNUSA
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Jin Zhang
- Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTNUSA
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
| | | | | | | | - Sara S. Jawdy
- Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTNUSA
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
| | - Nancy Engle
- Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTNUSA
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
| | - Crissa Doeppke
- Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTNUSA
- National Renewable Energy LaboratoryGoldenCOUSA
| | - Timothy J. Tschaplinski
- Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTNUSA
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
| | - Mark F. Davis
- Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTNUSA
- National Renewable Energy LaboratoryGoldenCOUSA
| | - Erika Lindquist
- U.S. Department of EnergyJoint Genome InstituteWalnut CreekCAUSA
| | - Kerrie Barry
- U.S. Department of EnergyJoint Genome InstituteWalnut CreekCAUSA
| | - Jeremy Schmutz
- U.S. Department of EnergyJoint Genome InstituteWalnut CreekCAUSA
- HudsonAlpha Institute for BiotechnologyHuntsvilleALUSA
| | - Wayne A. Parrott
- Department of Crop and Soil SciencesUniversity of GeorgiaAthensGAUSA
| | - Feng Chen
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Gerald A. Tuskan
- Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTNUSA
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
| | - Jin‐Gui Chen
- Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTNUSA
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
| | - Wellington Muchero
- Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTNUSA
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
| |
Collapse
|
58
|
Zhang Y, Wang Y, Ye D, Xing J, Duan L, Li Z, Zhang M. Ethephon-regulated maize internode elongation associated with modulating auxin and gibberellin signal to alter cell wall biosynthesis and modification. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 290:110196. [PMID: 31779899 DOI: 10.1016/j.plantsci.2019.110196] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/18/2019] [Accepted: 07/20/2019] [Indexed: 05/12/2023]
Abstract
Ethephon efficiently regulates plant growth to modulate the maize (Zea mays L.) stalk strength and yield potential, yet there is little information on how ethylene governs a specific cellular response for altering internode elongation. Here, the internode elongation kinetics, cell morphological and physiological properties and transcript expression patterns were investigated in the ethephon-treated elongating internode. Ethephon decreased the internode elongation rate, shortened the effective elongation duration, and advanced the growth process. Ethephon regulated the expression patterns of expansin and secondary cell wall-associated cellulose synthase genes to alter cell size. Moreover, ethephon increased the activities and transcripts level of phenylalanine ammonia-lyase and peroxidase, which contributed to lignin accumulation. Otherwise, ethephon-boosted ethylene evolution activated ethylene signal and increased ZmGA2ox3 and ZmGA2ox10 transcript levels while down-regulating ZmPIN1a, ZmPIN4 and ZmGA3ox1 transcript levels, which led to lower accumulation of gibberellins and auxin. In addition, transcriptome profiles confirmed previous results and identified several transcription factors that are involved in the ethephon-modulated transcriptional regulation of cell wall biosynthesis and modification and responses to ethylene, gibberellins and auxin. These results indicated that ethylene-modulated auxin and gibberellins signaling mediated the transcriptional operation of cell wall modification to regulate cell elongation in the ethephon-treated maize internode.
Collapse
Affiliation(s)
- Yushi Zhang
- Engineering Research Center of Plant Growth Regulator, Ministry of Education, Key Laboratory of Farming System, Ministry of Agriculture of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yubin Wang
- Engineering Research Center of Plant Growth Regulator, Ministry of Education, Key Laboratory of Farming System, Ministry of Agriculture of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Delian Ye
- College of Crop Science, Fujian Agriculture and Forestry University, Fujian, 350002, China
| | - Jiapeng Xing
- Engineering Research Center of Plant Growth Regulator, Ministry of Education, Key Laboratory of Farming System, Ministry of Agriculture of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Liusheng Duan
- Engineering Research Center of Plant Growth Regulator, Ministry of Education, Key Laboratory of Farming System, Ministry of Agriculture of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zhaohu Li
- Engineering Research Center of Plant Growth Regulator, Ministry of Education, Key Laboratory of Farming System, Ministry of Agriculture of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Mingcai Zhang
- Engineering Research Center of Plant Growth Regulator, Ministry of Education, Key Laboratory of Farming System, Ministry of Agriculture of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
59
|
Rauf M, Awais M, Ud-Din A, Ali K, Gul H, Rahman MM, Hamayun M, Arif M. Molecular Mechanisms of the 1-Aminocyclopropane-1-Carboxylic Acid (ACC) Deaminase Producing Trichoderma asperellum MAP1 in Enhancing Wheat Tolerance to Waterlogging Stress. FRONTIERS IN PLANT SCIENCE 2020; 11:614971. [PMID: 33537050 PMCID: PMC7847992 DOI: 10.3389/fpls.2020.614971] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/17/2020] [Indexed: 05/18/2023]
Abstract
Waterlogging stress (WS) induces ethylene (ET) and polyamine (spermine, putrescine, and spermidine) production in plants, but their reprogramming is a decisive element for determining the fate of the plant upon waterlogging-induced stress. WS can be challenged by exploring symbiotic microbes that improve the plant's ability to grow better and resist WS. The present study deals with identification and application of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase-producing fungal endophyte Trichoderma asperellum (strain MAP1), isolated from the roots of Canna indica L., on wheat growth under WS. MAP1 positively affected wheat growth by secreting phytohormones/secondary metabolites, strengthening the plant's antioxidant system and influencing the physiology through polyamine production and modulating gene expression. MAP1 inoculation promoted yield in comparison to non-endophyte inoculated waterlogged seedlings. Exogenously applied ethephon (ET synthesis inducer) and 1-aminocyclopropane carboxylic acid (ACC; ET precursor) showed a reduction in growth, compared to MAP1-inoculated waterlogged seedlings, while amino-oxyacetic acid (AOA; ET inhibitor) application reversed the negative effect imposed by ET and ACC, upon waterlogging treatment. A significant reduction in plant growth rate, chlorophyll content, and stomatal conductance was noticed, while H2O2, MDA production, and electrolyte leakage were increased in non-inoculated waterlogged seedlings. Moreover, in comparison to non-inoculated waterlogged wheat seedlings, MAP1-inoculated waterlogged wheat exhibited antioxidant-enzyme activities. In agreement with the physiological results, genes associated with the free polyamine (PA) biosynthesis were highly induced and PA content was abundant in MAP1-inoculated seedlings. Furthermore, ET biosynthesis/signaling gene expression was reduced upon MAP1 inoculation under WS. Briefly, MAP1 mitigated the adverse effect of WS in wheat, by reprogramming the PAs and ET biosynthesis, which leads to optimal stomatal conductance, increased photosynthesis, and membrane stability as well as reduced ET-induced leaf senescence.
Collapse
Affiliation(s)
- Mamoona Rauf
- Department of Botany, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Muhammad Awais
- Department of Botany, Abdul Wali Khan University Mardan, Mardan, Pakistan
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, South Korea
| | - Aziz Ud-Din
- Department of Biotechnology and Genetic Engineering, Hazara University Mansehra, Mansehra, Pakistan
| | - Kazim Ali
- National Agricultural Research Center (NARC), National Institute for Genomics and Advanced Biotechnology, Islamabad, Pakistan
| | - Humaira Gul
- Department of Botany, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Muhammad Mizanur Rahman
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia, Bangladesh
| | - Muhammad Hamayun
- Department of Botany, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Muhammad Arif
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
- *Correspondence: Muhammad Arif,
| |
Collapse
|
60
|
Pan J, Sharif R, Xu X, Chen X. Mechanisms of Waterlogging Tolerance in Plants: Research Progress and Prospects. FRONTIERS IN PLANT SCIENCE 2020; 11:627331. [PMID: 33643336 PMCID: PMC7902513 DOI: 10.3389/fpls.2020.627331] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/30/2020] [Indexed: 05/19/2023]
Abstract
Waterlogging is one of the main abiotic stresses suffered by plants. Inhibition of aerobic respiration during waterlogging limits energy metabolism and restricts growth and a wide range of developmental processes, from seed germination to vegetative growth and further reproductive growth. Plants respond to waterlogging stress by regulating their morphological structure, energy metabolism, endogenous hormone biosynthesis, and signaling processes. In this updated review, we systematically summarize the changes in morphological structure, photosynthesis, respiration, reactive oxygen species damage, plant hormone synthesis, and signaling cascades after plants were subjected to waterlogging stress. Finally, we propose future challenges and research directions in this field.
Collapse
Affiliation(s)
- Jiawei Pan
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Rahat Sharif
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Xuewen Xu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Xuehao Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
- *Correspondence: Xuehao Chen,
| |
Collapse
|
61
|
Zhang J, Li L, Huang L, Zhang M, Chen Z, Zheng Q, Zhao H, Chen X, Jiang M, Tan M. Maize NAC-domain retained splice variants act as dominant negatives to interfere with the full-length NAC counterparts. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 289:110256. [PMID: 31623792 DOI: 10.1016/j.plantsci.2019.110256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 05/20/2023]
Abstract
The plant-specific NAC transcription factors play diverse roles in various stress signaling. Alternative splicing is particularly prevalent in plants under stress. However, the investigation of cadmium (Cd) on the differential expression of the splice variants of NACs is in its infancy. Here, we identified three Cd-induced intron retention splice NAC variants which only contained the canonical NAC domain, designated as nacDomains, derived from three Cd-upregulated maize NACs. Subcellular localization analysis indicated that both nacDomain and its full-length NAC counterpart co-localized in the nucleus as manifested in the BiFC assay, thus implied that nacDomains and their corresponding NACs form heterodimers through the identical NAC domain. Further chimeric reporter/effector transient expression assay and Cd-tolerance assay in tobacco leaves collectively indicated that nacDomain-NAC heterodimers were involved in the regulation of NAC function. The results obtained here were in accordance with the model of dominant negative, which suggested that nacDomain act as the dominant negative to antagonize the regulation of NAC on its target gene expression and the Cd-tolerance function performance of NAC transcription factor. These findings proposed a novel insight into understanding the molecular mechanisms of Cd response in plants.
Collapse
Affiliation(s)
- Jie Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liang Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liping Huang
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, 528225, China
| | - Manman Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ziyan Chen
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qingsong Zheng
- College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haiyan Zhao
- College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xi Chen
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingyi Jiang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingpu Tan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
62
|
Li M, Cao L, Mwimba M, Zhou Y, Li L, Zhou M, Schnable PS, O'Rourke JA, Dong X, Wang W. Comprehensive mapping of abiotic stress inputs into the soybean circadian clock. Proc Natl Acad Sci U S A 2019; 116:23840-23849. [PMID: 31676549 PMCID: PMC6876155 DOI: 10.1073/pnas.1708508116] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The plant circadian clock evolved to increase fitness by synchronizing physiological processes with environmental oscillations. Crop fitness was artificially selected through domestication and breeding, and the circadian clock was identified by both natural and artificial selections as a key to improved fitness. Despite progress in Arabidopsis, our understanding of the crop circadian clock is still limited, impeding its rational improvement for enhanced fitness. To unveil the interactions between the crop circadian clock and various environmental cues, we comprehensively mapped abiotic stress inputs to the soybean circadian clock using a 2-module discovery pipeline. Using the "molecular timetable" method, we computationally surveyed publicly available abiotic stress-related soybean transcriptomes to identify stresses that have strong impacts on the global rhythm. These findings were then experimentally confirmed using a multiplexed RNA sequencing technology. Specific clock components modulated by each stress were further identified. This comprehensive mapping uncovered inputs to the plant circadian clock such as alkaline stress. Moreover, short-term iron deficiency targeted different clock components in soybean and Arabidopsis and thus had opposite effects on the clocks of these 2 species. Comparing soybean varieties with different iron uptake efficiencies suggests that phase modulation might be a mechanism to alleviate iron deficiency symptoms in soybean. These unique responses in soybean demonstrate the need to directly study crop circadian clocks. Our discovery pipeline may serve as a broadly applicable tool to facilitate these explorations.
Collapse
Affiliation(s)
- Meina Li
- School of Life Sciences, Guangzhou University, 510006 Guangzhou, China
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011
| | - Lijun Cao
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011
| | - Musoki Mwimba
- Howard Hughes Medical Institute and Gordon and Betty Moore Foundation, Duke University, Durham, NC 27708
- Department of Biology, Duke University, Durham, NC 27708
| | - Yan Zhou
- Department of Agronomy, Iowa State University, Ames, IA 50011
| | - Ling Li
- Department of Biological Sciences, Mississippi State University, Starkville, MS 39762
| | - Mian Zhou
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011
- College of Life Sciences, Capital Normal University, 100048 Beijing, China
| | | | - Jamie A O'Rourke
- Department of Agronomy, Iowa State University, Ames, IA 50011
- Corn Insects and Crop Genetics Research Unit, Agricultural Research Service, US Department of Agriculture, Ames, IA 50011
| | - Xinnian Dong
- Howard Hughes Medical Institute and Gordon and Betty Moore Foundation, Duke University, Durham, NC 27708;
- Department of Biology, Duke University, Durham, NC 27708
| | - Wei Wang
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011;
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, 100871 Beijing, China
- Peking-Tsinghua Center for Life Sciences, 100871 Beijing, China
| |
Collapse
|
63
|
Abstract
The circadian oscillator is a complex network of interconnected feedback loops that regulates a wide range of physiological processes. Indeed, variation in clock genes has been implicated in an array of plant environmental adaptations, including growth regulation, photoperiodic control of flowering, and responses to abiotic and biotic stress. Although the clock is buffered against the environment, maintaining roughly 24-h rhythms across a wide range of conditions, it can also be reset by environmental cues such as acute changes in light or temperature. These competing demands may help explain the complexity of the links between the circadian clock network and environmental response pathways. Here, we discuss our current understanding of the clock and its interactions with light and temperature-signaling pathways. We also describe different clock gene alleles that have been implicated in the domestication of important staple crops.
Collapse
Affiliation(s)
- Nicky Creux
- Department of Plant Biology, University of California, Davis, California 95616, USA
| | - Stacey Harmer
- Department of Plant Biology, University of California, Davis, California 95616, USA
| |
Collapse
|
64
|
Woodley Of Menie MA, Pawlik P, Webb MT, Bruce KD, Devlin PF. Circadian leaf movements facilitate overtopping of neighbors. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 146:104-111. [PMID: 30597150 DOI: 10.1016/j.pbiomolbio.2018.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/26/2018] [Indexed: 10/27/2022]
Abstract
Many plants exhibit circadian clock-driven leaf movements whereby the leaves are raised during the day to achieve a relatively high angle during the evening, before lowering late in the night. Such leaf movements were first recorded over 2000 years ago but there is still much debate as to their purpose. We investigated whether such leaf movements within Arabidopsis, a ruderal rosette plant, can aid in overtopping leaves of neighboring plants. Wild type and circadian clock mutant plants were grown in an alternating grid system so that their leaves would meet as the plants grew. Experiments were performed using day lengths that matched the endogenous rhythm of either wild type or mutant. Plants grown in a day length shorter than their endogenous rhythm were consistently overtopped by plants which were in synchrony with the day night cycle, demonstrating a clear overtopping advantage resulting from circadian leaf movement rhythms. Furthermore, we found that this leaf overtopping as a result of correctly synchronized circadian leaf movements is additive to leaf overtopping due to shade avoidance. Curiously, this did not apply to plants grown in a day length longer than their endogenous period. Plants grown in a day length longer than their endogenous period were able to adapt their leaf rhythms and suffered no overtopping disadvantage. Crucially, our results show that, in a context-dependent manner, circadian clock-driven leaf movements in resonance with the external light/dark cycle can facilitate overtopping of the leaves of neighboring plants.
Collapse
Affiliation(s)
| | - Piotr Pawlik
- School of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK.
| | - Matthew T Webb
- School of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK.
| | - Kenneth D Bruce
- Institute of Pharmaceutical Science, King's College London, London, SE1 9NH, UK.
| | - Paul F Devlin
- School of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK.
| |
Collapse
|
65
|
Zhao C, Wang H, Lu Y, Hu J, Qu L, Li Z, Wang D, He Y, Valls M, Coll NS, Chen Q, Lu H. Deep Sequencing Reveals Early Reprogramming of Arabidopsis Root Transcriptomes Upon Ralstonia solanacearum Infection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:813-827. [PMID: 31140930 DOI: 10.1094/mpmi-10-18-0268-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Bacterial wilt caused by the bacterial pathogen Ralstonia solanacearum is one of the most devastating crop diseases worldwide. The molecular mechanisms controlling the early stage of R. solanacearum colonization in the root remain unknown. Aiming to better understand the mechanism of the establishment of R. solanacearum infection in root, we established four stages in the early interaction of the pathogen with Arabidopsis roots and determined the transcriptional profiles of these stages of infection. A total 2,698 genes were identified as differentially expressed genes during the initial 96 h after infection, with the majority of changes in gene expression occurring after pathogen-triggered root-hair development observed. Further analysis of differentially expressed genes indicated sequential activation of multiple hormone signaling cascades, including abscisic acid (ABA), auxin, jasmonic acid, and ethylene. Simultaneous impairment of ABA receptor genes promoted plant wilting symptoms after R. solanacearum infection but did not affect primary root growth inhibition or root-hair and lateral root formation caused by R. solanacearum. This indicated that ABA signaling positively regulates root defense to R. solanacearum. Moreover, transcriptional changes of genes involved in primary root, lateral root, and root-hair formation exhibited high temporal dynamics upon infection. Taken together, our results suggest that successful infection of R. solanacearum on roots is a highly programmed process involving in hormone crosstalk.
Collapse
Affiliation(s)
- Cuizhu Zhao
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huijuan Wang
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yao Lu
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jinxue Hu
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ling Qu
- 2 National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, Ningxia 750002, China
| | - Zheqing Li
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dongdong Wang
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yizhe He
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Marc Valls
- 3 Genetics section, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain
- 4 Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08193 Barcelona, Catalonia, Spain
| | - Núria S Coll
- 4 Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08193 Barcelona, Catalonia, Spain
| | - Qin Chen
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haibin Lu
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
66
|
Houben M, Van de Poel B. 1-Aminocyclopropane-1-Carboxylic Acid Oxidase (ACO): The Enzyme That Makes the Plant Hormone Ethylene. FRONTIERS IN PLANT SCIENCE 2019; 10:695. [PMID: 31191592 PMCID: PMC6549523 DOI: 10.3389/fpls.2019.00695] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/09/2019] [Indexed: 05/18/2023]
Abstract
The volatile plant hormone ethylene regulates many plant developmental processes and stress responses. It is therefore crucial that plants can precisely control their ethylene production levels in space and time. The ethylene biosynthesis pathway consists of two dedicated steps. In a first reaction, S-adenosyl-L-methionine (SAM) is converted into 1-aminocyclopropane-1-carboxylic acid (ACC) by ACC-synthase (ACS). In a second reaction, ACC is converted into ethylene by ACC-oxidase (ACO). Initially, it was postulated that ACS is the rate-limiting enzyme of this pathway, directing many studies to unravel the regulation of ACS protein activity, and stability. However, an increasing amount of evidence has been gathered over the years, which shows that ACO is the rate-limiting step in ethylene production during certain dedicated processes. This implies that also the ACO protein family is subjected to a stringent regulation. In this review, we give an overview about the state-of-the-art regarding ACO evolution, functionality and regulation, with an emphasis on the transcriptional, post-transcriptional, and post-translational control. We also highlight the importance of ACO being a prime target for genetic engineering and precision breeding, in order to control plant ethylene production levels.
Collapse
Affiliation(s)
| | - Bram Van de Poel
- Molecular Plant Hormone Physiology Laboratory, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
| |
Collapse
|
67
|
Li N, Muthreich M, Huang LJ, Thurow C, Sun T, Zhang Y, Gatz C. TGACG-BINDING FACTORs (TGAs) and TGA-interacting CC-type glutaredoxins modulate hyponastic growth in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2019; 221:1906-1918. [PMID: 30252136 DOI: 10.1111/nph.15496] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/13/2018] [Indexed: 06/08/2023]
Abstract
TGACG-BINDING FACTORs (TGAs) control the developmental or defense-related processes. In Arabidopsis thaliana, the functions of at least TGA2 and PERIANTHIA (PAN) can be repressed by interacting with CC-type glutaredoxins, which have the potential to control the redox state of target proteins. As TGA1 can be redox modulated in planta, we analyzed whether some of the 21 CC-type glutaredoxins (ROXYs) encoded in the Arabidopsis genome can influence TGA1 activity in planta and whether the redox active cysteines of TGA1 are functionally important. We show that the tga1 tga4 mutant and plants ectopically expressing ROXY8 or ROXY9 are impaired in hyponastic growth. As expression of ROXY8 and ROXY9 is activated upon transfer of plants from hyponasty-inducing low light to normal light, they might interfere with the growth-promoting function of TGA1/TGA4 to facilitate reversal of hyponastic growth. The redox-sensitive cysteines of TGA1 are not required for induction or reversal of hyponastic growth. TGA1 and TGA4 interact with ROXYs 8, 9, 18, and 19/GRX480, but ectopically expressed ROXY18 and ROXY19/GRX480 do not interfere with hyponastic growth. Our results therefore demonstrate functional specificities of individual ROXYs for distinct TGAs despite promiscuous protein-protein interactions and point to different repression mechanisms, depending on the TGA/ROXY combination.
Collapse
Affiliation(s)
- Ning Li
- Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen, Germany
| | - Martin Muthreich
- Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen, Germany
| | - Li-Jun Huang
- Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen, Germany
| | - Corinna Thurow
- Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen, Germany
| | - Tongjun Sun
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Christiane Gatz
- Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen, Germany
| |
Collapse
|
68
|
An JP, Yao JF, Xu RR, You CX, Wang XF, Hao YJ. An apple NAC transcription factor enhances salt stress tolerance by modulating the ethylene response. PHYSIOLOGIA PLANTARUM 2018; 164:279-289. [PMID: 29527680 DOI: 10.1111/ppl.12724] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/04/2018] [Accepted: 03/05/2018] [Indexed: 05/25/2023]
Abstract
It is known that ethylene signaling is involved in the regulation of the salt stress response. However, the molecular mechanism of ethylene-regulated salt stress tolerance remains largely unclear. In this study, an apple NAM ATAF CUC transcription factor, MdNAC047, was isolated and functionally characterized to be involved in ethylene-modulated salt tolerance. MdNAC047 gene was significantly induced by salt treatment and its overexpression conferred increased tolerance to salt stress and facilitated the release of ethylene. Quantitative real-time-PCR analysis demonstrated that overexpression of MdNAC047 increased the expression of ethylene-responsive genes. Electrophoretic mobility shift assay, yeast one-hybrid and dual-luciferase assays suggested that MdNAC047 directly binds to the MdERF3 (ETHYLENE RESPONSE FACTOR) promoter and activates its transcription. In addition, genetic analysis assays indicated that MdNAC047 regulates ethylene production at least partially in an MdERF3-dependent pathway. Overall, we found a novel 'MdNAC047-MdERF3-ethylene-salt tolerance' regulatory pathway, which provide new insight into the link between ethylene and salt stress.
Collapse
Affiliation(s)
- Jian-Ping An
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Ji-Fang Yao
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Rui-Rui Xu
- College of Biological and Agricultural Engineering, Weifang University, Weifang, Shandong, 261061, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Xiao-Fei Wang
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| |
Collapse
|
69
|
Zhuo X, Zheng T, Zhang Z, Zhang Y, Jiang L, Ahmad S, Sun L, Wang J, Cheng T, Zhang Q. Genome-Wide Analysis of the NAC Transcription Factor Gene Family Reveals Differential Expression Patterns and Cold-Stress Responses in the Woody Plant Prunus mume. Genes (Basel) 2018; 9:genes9100494. [PMID: 30322087 PMCID: PMC6209978 DOI: 10.3390/genes9100494] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/06/2018] [Accepted: 10/06/2018] [Indexed: 02/07/2023] Open
Abstract
NAC transcription factors (TFs) participate in multiple biological processes, including biotic and abiotic stress responses, signal transduction and development. Cold stress can adversely impact plant growth and development, thereby limiting agricultural productivity. Prunus mume, an excellent horticultural crop, is widely cultivated in Asian countries. Its flower can tolerate freezing-stress in the early spring. To investigate the putative NAC genes responsible for cold-stress, we identified and analyzed 113 high-confidence PmNAC genes and characterized them by bioinformatics tools and expression profiles. These PmNACs were clustered into 14 sub-families and distributed on eight chromosomes and scaffolds, with the highest number located on chromosome 3. Duplicated events resulted in a large gene family; 15 and 8 pairs of PmNACs were the result of tandem and segmental duplicates, respectively. Moreover, three membrane-bound proteins (PmNAC59/66/73) and three miRNA-targeted genes (PmNAC40/41/83) were identified. Most PmNAC genes presented tissue-specific and time-specific expression patterns. Sixteen PmNACs (PmNAC11/19/20/23/41/48/58/74/75/76/78/79/85/86/103/111) exhibited down-regulation during flower bud opening and are, therefore, putative candidates for dormancy and cold-tolerance. Seventeen genes (PmNAC11/12/17/21/29/42/30/48/59/66/73/75/85/86/93/99/111) were highly expressed in stem during winter and are putative candidates for freezing resistance. The cold-stress response pattern of 15 putative PmNACs was observed under 4 °C at different treatment times. The expression of 10 genes (PmNAC11/20/23/40/42/48/57/60/66/86) was upregulated, while 5 genes (PmNAC59/61/82/85/107) were significantly inhibited. The putative candidates, thus identified, have the potential for breeding the cold-tolerant horticultural plants. This study increases our understanding of functions of the NAC gene family in cold tolerance, thereby potentially intensifying the molecular breeding programs of woody plants.
Collapse
Affiliation(s)
- Xiaokang Zhuo
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| | - Tangchun Zheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| | - Zhiyong Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| | - Yichi Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| | - Liangbao Jiang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| | - Sagheer Ahmad
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| | - Lidan Sun
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
70
|
Küpers JJ, van Gelderen K, Pierik R. Location Matters: Canopy Light Responses over Spatial Scales. TRENDS IN PLANT SCIENCE 2018; 23:865-873. [PMID: 30037654 DOI: 10.1016/j.tplants.2018.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/15/2018] [Accepted: 06/19/2018] [Indexed: 06/08/2023]
Abstract
Plants use light as a signal to determine neighbour proximity in dense vegetation. Far-red (FR) light reflected from neighbour plants elicits an array of growth responses throughout the plant. Recently, various light quality-induced signals have been discovered that travel between organs and tissue layers. These signals share upstream and downstream components, but can have opposing effects on cell growth. The question is how plants can coordinate these spatial signals into various growth responses in remote tissues. This coordination allows plants to adapt to the environment, and understanding the underlying mechanisms could allow precision engineering of crops. To achieve this understanding, plant photobiology research will need to focus increasingly on spatial signalling at the whole-plant level.
Collapse
Affiliation(s)
- Jesse J Küpers
- Plant Ecophysiology, Department of Biology, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Kasper van Gelderen
- Plant Ecophysiology, Department of Biology, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Ronald Pierik
- Plant Ecophysiology, Department of Biology, Utrecht University, 3584CH Utrecht, The Netherlands.
| |
Collapse
|
71
|
Peng Y, Zhou Z, Zhang Z, Yu X, Zhang X, Du K. Molecular and physiological responses in roots of two full-sib poplars uncover mechanisms that contribute to differences in partial submergence tolerance. Sci Rep 2018; 8:12829. [PMID: 30150759 PMCID: PMC6110812 DOI: 10.1038/s41598-018-30821-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 07/31/2018] [Indexed: 11/22/2022] Open
Abstract
Poplar is a major afforestation tree species in flood-prone areas. Here, we compared molecular and physiological responses in the roots of two full-sib poplar clones, LS1 (flood-tolerant) and LS2 (flood-susceptive), subjected to stagnant flooding using transcript and metabolite profiling. LS1 displayed less phenotypic damage and superior leaf gas exchange and plant growth compared with those of LS2. We concluded that three characteristics might contribute to the differences in flood tolerance between LS1 and LS2. First, fermentation was initiated through lactic dehydrogenation in LS1 roots under flooding and subsequently dominated by alcohol fermentation. However, lactic dehydrogenase was persistently active in flooded LS2. Second, 13 differentially expressed genes associated with energy and O2 consumption processes under soil flooding had lower transcript levels in LS1 than those in LS2, which might contribute to better energy-/O2-saving abilities and behaviours in flood-tolerant LS1 than those in flood-susceptible LS2 under hypoxic stress. Third, LS1 possessed increased reactive oxygen species scavenging abilities compared with those of LS2 under edaphic flooding. Our data are a valuable contribution to understanding the mechanisms involved in the flood tolerance of poplar.
Collapse
Affiliation(s)
- YanJie Peng
- College of Horticulture and Forestry Sciences/Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - ZhiXiang Zhou
- College of Horticulture and Forestry Sciences/Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Zhe Zhang
- College of Horticulture and Forestry Sciences/Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - XiaoLi Yu
- College of Horticulture and Forestry Sciences/Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - XinYe Zhang
- Hubei Academy of Forestry, Wuhan, 430075, P. R. China
| | - KeBing Du
- College of Horticulture and Forestry Sciences/Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| |
Collapse
|
72
|
Mathew IE, Agarwal P. May the Fittest Protein Evolve: Favoring the Plant-Specific Origin and Expansion of NAC Transcription Factors. Bioessays 2018; 40:e1800018. [PMID: 29938806 DOI: 10.1002/bies.201800018] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/26/2018] [Indexed: 12/12/2022]
Abstract
Plant-specific NAC transcription factors (TFs) evolve during the transition from aquatic to terrestrial plant life and are amplified to become one of the biggest TF families. This is because they regulate genes involved in water conductance and cell support. They also control flower and fruit formation. The review presented here focuses on various properties, regulatory intricacies, and developmental roles of NAC family members. Processes controlled by NACs depend majorly on their transcriptional properties. NACs can function as both activators and/or repressors. Additionally, their homo/hetero dimerization abilities can also affect DNA binding and activation properties. The active protein levels are dependent on the regulatory cascades. Because NACs regulate both development and stress responses in plants, in-depth knowledge about them has the potential to help guide future crop improvement studies.
Collapse
Affiliation(s)
- Iny Elizebeth Mathew
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Pinky Agarwal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| |
Collapse
|
73
|
Dubois M, Van den Broeck L, Inzé D. The Pivotal Role of Ethylene in Plant Growth. TRENDS IN PLANT SCIENCE 2018; 23:311-323. [PMID: 29428350 DOI: 10.1016/j.tplants.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 05/27/2023]
Abstract
Being continuously exposed to variable environmental conditions, plants produce phytohormones to react quickly and specifically to these changes. The phytohormone ethylene is produced in response to multiple stresses. While the role of ethylene in defense responses to pathogens is widely recognized, recent studies in arabidopsis and crop species highlight an emerging key role for ethylene in the regulation of organ growth and yield under abiotic stress. Molecular connections between ethylene and growth-regulatory pathways have been uncovered, and altering the expression of ethylene response factors (ERFs) provides a new strategy for targeted ethylene-response engineering. Crops with optimized ethylene responses show improved growth in the field, opening new windows for future crop improvement. This review focuses on how ethylene regulates shoot growth, with an emphasis on leaves.
Collapse
Affiliation(s)
- Marieke Dubois
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium; Present address: Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, 67000 Strasbourg, France
| | - Lisa Van den Broeck
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Dirk Inzé
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium. https://twitter.com/@InzeDirk
| |
Collapse
|
74
|
Dubois M, Van den Broeck L, Inzé D. The Pivotal Role of Ethylene in Plant Growth. TRENDS IN PLANT SCIENCE 2018; 23:311-323. [PMID: 29428350 PMCID: PMC5890734 DOI: 10.1016/j.tplants.2018.01.003] [Citation(s) in RCA: 398] [Impact Index Per Article: 56.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 05/18/2023]
Abstract
Being continuously exposed to variable environmental conditions, plants produce phytohormones to react quickly and specifically to these changes. The phytohormone ethylene is produced in response to multiple stresses. While the role of ethylene in defense responses to pathogens is widely recognized, recent studies in arabidopsis and crop species highlight an emerging key role for ethylene in the regulation of organ growth and yield under abiotic stress. Molecular connections between ethylene and growth-regulatory pathways have been uncovered, and altering the expression of ethylene response factors (ERFs) provides a new strategy for targeted ethylene-response engineering. Crops with optimized ethylene responses show improved growth in the field, opening new windows for future crop improvement. This review focuses on how ethylene regulates shoot growth, with an emphasis on leaves.
Collapse
Affiliation(s)
- Marieke Dubois
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
- Present address: Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, 67000 Strasbourg, France
| | - Lisa Van den Broeck
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Dirk Inzé
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
- Correspondence: @InzeDirk
| |
Collapse
|
75
|
Inoue K, Araki T, Endo M. Circadian clock during plant development. JOURNAL OF PLANT RESEARCH 2018; 131:59-66. [PMID: 29134443 PMCID: PMC5897470 DOI: 10.1007/s10265-017-0991-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/06/2017] [Indexed: 05/14/2023]
Abstract
Plants have endogenous biological clocks that allow organisms to anticipate and prepare for daily and seasonal environmental changes and increase their fitness in changing environments. The circadian clock in plants, as in animals and insects, mainly consists of multiple interlocking transcriptional/translational feedback loops. The circadian clock can be entrained by environmental cues such as light, temperature and nutrient status to synchronize internal biological rhythms with surrounding environments. Output pathways link the circadian oscillator to various physiological, developmental, and reproductive processes for adjusting the timing of these biological processes to an appropriate time of day or a suitable season. Recent genomic studies have demonstrated that polymorphism in circadian clock genes may contribute to local adaptations over a wide range of latitudes in many plant species. In the present review, we summarize the circadian regulation of biological processes throughout the life cycle of plants, and describe the contribution of the circadian clock to local adaptation.
Collapse
Affiliation(s)
- Keisuke Inoue
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| | - Takashi Araki
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| | - Motomu Endo
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| |
Collapse
|
76
|
Giuntoli B, Shukla V, Maggiorelli F, Giorgi FM, Lombardi L, Perata P, Licausi F. Age-dependent regulation of ERF-VII transcription factor activity in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2017; 40:2333-2346. [PMID: 28741696 DOI: 10.1111/pce.13037] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 06/27/2017] [Accepted: 06/30/2017] [Indexed: 05/22/2023]
Abstract
The Group VII Ethylene Responsive Factors (ERFs-VII) RAP2.2 and RAP2.12 have been mainly characterized with regard to their contribution as activators of fermentation in plants. However, transcriptional changes measured in conditions that stabilize these transcription factors exceed the mere activation of this biochemical pathway, implying additional roles performed by the ERF-VIIs in other processes. We evaluated gene expression in transgenic Arabidopsis lines expressing a stabilized form of RAP2.12, or hampered in ERF-VII activity, and identified genes affected by this transcriptional regulator and its homologs, including some involved in oxidative stress response, which are not universally induced under anaerobic conditions. The contribution of the ERF-VIIs in regulating this set of genes in response to chemically induced or submergence-stimulated mitochondria malfunctioning was found to depend on the plant developmental stage. A similar age-dependent mechanism also restrained ERF-VII activity upon the core-hypoxic genes, independently of the N-end rule pathway, which is accounted for the control of the anaerobic response. To conclude, this study shed new light on a dual role of ERF-VII proteins under submergence: as positive regulators of the hypoxic response and as repressors of oxidative-stress related genes, depending on the developmental stage at which plants are challenged by stress conditions.
Collapse
Affiliation(s)
- Beatrice Giuntoli
- Scuola Superiore Sant'Anna, Institute of Life Sciences, Plantlab, Via Guidiccioni 8/10, 56017, Pisa, Italy
| | - Vinay Shukla
- Scuola Superiore Sant'Anna, Institute of Life Sciences, Plantlab, Via Guidiccioni 8/10, 56017, Pisa, Italy
| | - Federica Maggiorelli
- Biology Department, Università degli Studi di Pisa, Via Luca Ghini 13, 56126, Pisa, Italy
| | - Federico M Giorgi
- Scuola Superiore Sant'Anna, Institute of Life Sciences, Plantlab, Via Guidiccioni 8/10, 56017, Pisa, Italy
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 1TN, UK
- Department of Systems Biology, Columbia University, New York, NY, 10027, USA
| | - Lara Lombardi
- Biology Department, Università degli Studi di Pisa, Via Luca Ghini 13, 56126, Pisa, Italy
| | - Pierdomenico Perata
- Scuola Superiore Sant'Anna, Institute of Life Sciences, Plantlab, Via Guidiccioni 8/10, 56017, Pisa, Italy
| | - Francesco Licausi
- Scuola Superiore Sant'Anna, Institute of Life Sciences, Plantlab, Via Guidiccioni 8/10, 56017, Pisa, Italy
- Biology Department, Università degli Studi di Pisa, Via Luca Ghini 13, 56126, Pisa, Italy
| |
Collapse
|
77
|
Zhang Z, Mao C, Shi Z, Kou X. The Amino Acid Metabolic and Carbohydrate Metabolic Pathway Play Important Roles during Salt-Stress Response in Tomato. FRONTIERS IN PLANT SCIENCE 2017; 8:1231. [PMID: 28769946 PMCID: PMC5511834 DOI: 10.3389/fpls.2017.01231] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 06/29/2017] [Indexed: 05/26/2023]
Abstract
Salt stress affects the plant quality, which affects the productivity of plants and the quality of water storage. In a recent study, we conducted the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) analysis and RNA-Seq, bioinformatics study methods, and detection of the key genes with qRT-PCR. Our findings suggested that the optimum salt treatment conditions are 200 mM and 19d for the identification of salt tolerance in tomato. Based on the RNA-Seq, we found 17 amino acid metabolic and 17 carbohydrate metabolic pathways enriched in the biological metabolism during the response to salt stress in tomato. We found 7 amino acid metabolic and 6 carbohydrate metabolic pathways that were significantly enriched in the adaption to salt stress. Moreover, we screened 17 and 19 key genes in 7 amino acid metabolic and 6 carbohydrate metabolic pathways respectively. We chose some of the key genes for verifying by qRT-PCR. The results showed that the expression of these genes was the same as that of RNA-seq. We found that these significant pathways and vital genes occupy an important roles in a whole process of adaptation to salt stress. These results provide valuable information, improve the ability to resist pressure, and improve the quality of the plant.
Collapse
Affiliation(s)
- Zhi Zhang
- School of Food Science and Nutrition Engineering, China Agricultural UniversityBeijing, China
| | - Cuiyu Mao
- School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China
| | - Zheng Shi
- School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China
| | - Xiaohong Kou
- School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China
| |
Collapse
|
78
|
Michaud O, Fiorucci AS, Xenarios I, Fankhauser C. Local auxin production underlies a spatially restricted neighbor-detection response in Arabidopsis. Proc Natl Acad Sci U S A 2017; 114:7444-7449. [PMID: 28652343 PMCID: PMC5514730 DOI: 10.1073/pnas.1702276114] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Competition for light triggers numerous developmental adaptations known as the "shade-avoidance syndrome" (SAS). Important molecular events underlying specific SAS responses have been identified. However, in natural environments light is often heterogeneous, and it is currently unknown how shading affecting part of a plant leads to local responses. To study this question, we analyzed upwards leaf movement (hyponasty), a rapid adaptation to neighbor proximity, in Arabidopsis We show that manipulation of the light environment at the leaf tip triggers a hyponastic response that is restricted to the treated leaf. This response is mediated by auxin synthesized in the blade and transported to the petiole. Our results suggest that a strong auxin response in the vasculature of the treated leaf and auxin signaling in the epidermis mediate leaf elevation. Moreover, the analysis of an auxin-signaling mutant reveals signaling bifurcation in the control of petiole elongation versus hyponasty. Our work identifies a mechanism for a local shade response that may pertain to other plant adaptations to heterogeneous environments.
Collapse
Affiliation(s)
- Olivier Michaud
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Anne-Sophie Fiorucci
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Ioannis Xenarios
- Swiss Institute of Bioinformatics, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Christian Fankhauser
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland;
| |
Collapse
|
79
|
Guerriero G, Behr M, Legay S, Mangeot-Peter L, Zorzan S, Ghoniem M, Hausman JF. Transcriptomic profiling of hemp bast fibres at different developmental stages. Sci Rep 2017; 7:4961. [PMID: 28694530 PMCID: PMC5504027 DOI: 10.1038/s41598-017-05200-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/24/2017] [Indexed: 02/08/2023] Open
Abstract
Bast fibres are long extraxylary cells which mechanically support the phloem and they are divided into xylan- and gelatinous-type, depending on the composition of their secondary cell walls. The former, typical of jute/kenaf bast fibres, are characterized by the presence of xylan and a high degree of lignification, while the latter, found in tension wood, as well as flax, ramie and hemp bast fibres, have a high abundance of crystalline cellulose. During their differentiation, bast fibres undergo specific developmental stages: the cells initially elongate rapidly by intrusive growth, subsequently they cease elongation and start to thicken. The goal of the present study is to provide a transcriptomic close-up of the key events accompanying bast fibre development in textile hemp (Cannabis sativa L.), a fibre crop of great importance. Bast fibres have been sampled from different stem regions. The developmental stages corresponding to active elongation and cell wall thickening have been studied using RNA-Seq. The results show that the fibres sampled at each stem region are characterized by a specific transcriptomic signature and that the major changes in cell wall-related processes take place at the internode containing the snap point. The data generated also identify several interesting candidates for future functional analysis.
Collapse
Affiliation(s)
- Gea Guerriero
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, Esch/Alzette, L-4362, Luxembourg.
| | - Marc Behr
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, Esch/Alzette, L-4362, Luxembourg
- Université catholique de Louvain, Groupe de Recherche en Physiologie Végétale, Earth and Life Institute-Agronomy, Louvain-la-Neuve, B-1348, Belgium
| | - Sylvain Legay
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, Esch/Alzette, L-4362, Luxembourg
| | - Lauralie Mangeot-Peter
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, Esch/Alzette, L-4362, Luxembourg
- Institut National de la Recherche Agronomique, Université de Lorraine, UMR 1136, Interactions Arbres-Microorganismes, Champenoux, F-54280, France
| | - Simone Zorzan
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, Esch/Alzette, L-4362, Luxembourg
| | - Mohammad Ghoniem
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, Esch/Alzette, L-4362, Luxembourg
| | - Jean-Francois Hausman
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, Esch/Alzette, L-4362, Luxembourg
| |
Collapse
|
80
|
Apelt F, Breuer D, Olas JJ, Annunziata MG, Flis A, Nikoloski Z, Kragler F, Stitt M. Circadian, Carbon, and Light Control of Expansion Growth and Leaf Movement. PLANT PHYSIOLOGY 2017; 174:1949-1968. [PMID: 28559360 PMCID: PMC5490918 DOI: 10.1104/pp.17.00503] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/16/2017] [Indexed: 05/18/2023]
Abstract
We used Phytotyping4D to investigate the contribution of clock and light signaling to the diurnal regulation of rosette expansion growth and leaf movement in Arabidopsis (Arabidopsis thaliana). Wild-type plants and clock mutants with a short (lhycca1) and long (prr7prr9) period were analyzed in a T24 cycle and in T-cycles that were closer to the mutants' period. Wild types also were analyzed in various photoperiods and after transfer to free-running light or darkness. Rosette expansion and leaf movement exhibited a circadian oscillation, with superimposed transients after dawn and dusk. Diurnal responses were modified in clock mutants. lhycca1 exhibited an inhibition of growth at the end of night and growth rose earlier after dawn, whereas prr7prr9 showed decreased growth for the first part of the light period. Some features were partly rescued by a matching T-cycle, like the inhibition in lhycca1 at the end of the night, indicating that it is due to premature exhaustion of starch. Other features were not rescued, revealing that the clock also regulates expansion growth more directly. Expansion growth was faster at night than in the daytime, whereas published work has shown that the synthesis of cellular components is faster in the day than at nighttime. This temporal uncoupling became larger in short photoperiods and may reflect the differing dependence of expansion and biosynthesis on energy, carbon, and water. While it has been proposed that leaf expansion and movement are causally linked, we did not observe a consistent temporal relationship between expansion and leaf movement.
Collapse
Affiliation(s)
- Federico Apelt
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - David Breuer
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | | | | | - Anna Flis
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Zoran Nikoloski
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Friedrich Kragler
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| |
Collapse
|
81
|
Sun X, Li Y, He W, Ji C, Xia P, Wang Y, Du S, Li H, Raikhel N, Xiao J, Guo H. Pyrazinamide and derivatives block ethylene biosynthesis by inhibiting ACC oxidase. Nat Commun 2017; 8:15758. [PMID: 28604689 PMCID: PMC5472784 DOI: 10.1038/ncomms15758] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 04/25/2017] [Indexed: 12/30/2022] Open
Abstract
Ethylene is an important phytohormone that promotes the ripening of fruits and senescence of flowers thereby reducing their shelf lives. Specific ethylene biosynthesis inhibitors would help to decrease postharvest loss. Here, we identify pyrazinamide (PZA), a clinical drug used to treat tuberculosis, as an inhibitor of ethylene biosynthesis in Arabidopsis thaliana, using a chemical genetics approach. PZA is converted to pyrazinecarboxylic acid (POA) in plant cells, suppressing the activity of 1-aminocyclopropane-1-carboxylic acid oxidase (ACO), the enzyme catalysing the final step of ethylene formation. The crystal structures of Arabidopsis ACO2 in complex with POA or 2-Picolinic Acid (2-PA), a POA-related compound, reveal that POA/2-PA bind at the active site of ACO, preventing the enzyme from interacting with its natural substrates. Our work suggests that PZA and its derivatives may be promising regulators of plant metabolism, in particular ethylene biosynthesis.
Collapse
Affiliation(s)
- Xiangzhong Sun
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Beijing 100871, China.,Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yaxin Li
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Wenrong He
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.,Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92507, USA
| | - Chenggong Ji
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Peixue Xia
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
| | - Yichuan Wang
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Shuo Du
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Hongjiang Li
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.,Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92507, USA
| | - Natasha Raikhel
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92507, USA
| | - Junyu Xiao
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
| | - Hongwei Guo
- Peking-Tsinghua Center for Life Sciences, Beijing 100871, China.,Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
82
|
Rymen B, Kawamura A, Schäfer S, Breuer C, Iwase A, Shibata M, Ikeda M, Mitsuda N, Koncz C, Ohme-Takagi M, Matsui M, Sugimoto K. ABA Suppresses Root Hair Growth via the OBP4 Transcriptional Regulator. PLANT PHYSIOLOGY 2017; 173:1750-1762. [PMID: 28167701 PMCID: PMC5338652 DOI: 10.1104/pp.16.01945] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/03/2017] [Indexed: 05/20/2023]
Abstract
Plants modify organ growth and tune morphogenesis in response to various endogenous and environmental cues. At the cellular level, organ growth is often adjusted by alterations in cell growth, but the molecular mechanisms underlying this control remain poorly understood. In this study, we identify the DNA BINDING WITH ONE FINGER (DOF)-type transcription regulator OBF BINDING PROTEIN4 (OBP4) as a repressor of cell growth. Ectopic expression of OBP4 in Arabidopsis (Arabidopsis thaliana) inhibits cell growth, resulting in severe dwarfism and the repression of genes involved in the regulation of water transport, root hair development, and stress responses. Among the basic helix-loop-helix transcription factors known to control root hair growth, OBP4 binds the ROOT HAIR DEFECTIVE6-LIKE2 (RSL2) promoter to repress its expression. The accumulation of OBP4 proteins is detected in expanding root epidermal cells, and its expression level is increased by the application of abscisic acid (ABA) at concentrations sufficient to inhibit root hair growth. ABA-dependent induction of OBP4 is associated with the reduced expression of RSL2 Furthermore, ectopic expression of OBP4 or loss of RSL2 function results in ABA-insensitive root hair growth. Taken together, our results suggest that OBP4-mediated transcriptional repression of RSL2 contributes to the ABA-dependent inhibition of root hair growth in Arabidopsis.
Collapse
Affiliation(s)
- Bart Rymen
- RIKEN CSRS, Yokohama 230-0045, Japan (B.R., A.K., C.B., A.I., M.S., M.M., K.S.)
- Max-Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (S.S., C.K.)
- Graduate School of Science and Engineering (M.I.) and Institute for Environmental Science and Technology (M.O.-T.), Saitama University, Saitama 338-8570, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan (M.I., N.M., M.O.-T.); and
- Institute of Plant Biology, Biological Research Center of the Hungarian Academy of Sciences, H-6724 Szeged, Hungary (C.K.)
| | - Ayako Kawamura
- RIKEN CSRS, Yokohama 230-0045, Japan (B.R., A.K., C.B., A.I., M.S., M.M., K.S.)
- Max-Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (S.S., C.K.)
- Graduate School of Science and Engineering (M.I.) and Institute for Environmental Science and Technology (M.O.-T.), Saitama University, Saitama 338-8570, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan (M.I., N.M., M.O.-T.); and
- Institute of Plant Biology, Biological Research Center of the Hungarian Academy of Sciences, H-6724 Szeged, Hungary (C.K.)
| | - Sabine Schäfer
- RIKEN CSRS, Yokohama 230-0045, Japan (B.R., A.K., C.B., A.I., M.S., M.M., K.S.)
- Max-Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (S.S., C.K.)
- Graduate School of Science and Engineering (M.I.) and Institute for Environmental Science and Technology (M.O.-T.), Saitama University, Saitama 338-8570, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan (M.I., N.M., M.O.-T.); and
- Institute of Plant Biology, Biological Research Center of the Hungarian Academy of Sciences, H-6724 Szeged, Hungary (C.K.)
| | - Christian Breuer
- RIKEN CSRS, Yokohama 230-0045, Japan (B.R., A.K., C.B., A.I., M.S., M.M., K.S.)
- Max-Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (S.S., C.K.)
- Graduate School of Science and Engineering (M.I.) and Institute for Environmental Science and Technology (M.O.-T.), Saitama University, Saitama 338-8570, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan (M.I., N.M., M.O.-T.); and
- Institute of Plant Biology, Biological Research Center of the Hungarian Academy of Sciences, H-6724 Szeged, Hungary (C.K.)
| | - Akira Iwase
- RIKEN CSRS, Yokohama 230-0045, Japan (B.R., A.K., C.B., A.I., M.S., M.M., K.S.)
- Max-Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (S.S., C.K.)
- Graduate School of Science and Engineering (M.I.) and Institute for Environmental Science and Technology (M.O.-T.), Saitama University, Saitama 338-8570, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan (M.I., N.M., M.O.-T.); and
- Institute of Plant Biology, Biological Research Center of the Hungarian Academy of Sciences, H-6724 Szeged, Hungary (C.K.)
| | - Michitaro Shibata
- RIKEN CSRS, Yokohama 230-0045, Japan (B.R., A.K., C.B., A.I., M.S., M.M., K.S.)
- Max-Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (S.S., C.K.)
- Graduate School of Science and Engineering (M.I.) and Institute for Environmental Science and Technology (M.O.-T.), Saitama University, Saitama 338-8570, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan (M.I., N.M., M.O.-T.); and
- Institute of Plant Biology, Biological Research Center of the Hungarian Academy of Sciences, H-6724 Szeged, Hungary (C.K.)
| | - Miho Ikeda
- RIKEN CSRS, Yokohama 230-0045, Japan (B.R., A.K., C.B., A.I., M.S., M.M., K.S.)
- Max-Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (S.S., C.K.)
- Graduate School of Science and Engineering (M.I.) and Institute for Environmental Science and Technology (M.O.-T.), Saitama University, Saitama 338-8570, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan (M.I., N.M., M.O.-T.); and
- Institute of Plant Biology, Biological Research Center of the Hungarian Academy of Sciences, H-6724 Szeged, Hungary (C.K.)
| | - Nobutaka Mitsuda
- RIKEN CSRS, Yokohama 230-0045, Japan (B.R., A.K., C.B., A.I., M.S., M.M., K.S.)
- Max-Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (S.S., C.K.)
- Graduate School of Science and Engineering (M.I.) and Institute for Environmental Science and Technology (M.O.-T.), Saitama University, Saitama 338-8570, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan (M.I., N.M., M.O.-T.); and
- Institute of Plant Biology, Biological Research Center of the Hungarian Academy of Sciences, H-6724 Szeged, Hungary (C.K.)
| | - Csaba Koncz
- RIKEN CSRS, Yokohama 230-0045, Japan (B.R., A.K., C.B., A.I., M.S., M.M., K.S.)
- Max-Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (S.S., C.K.)
- Graduate School of Science and Engineering (M.I.) and Institute for Environmental Science and Technology (M.O.-T.), Saitama University, Saitama 338-8570, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan (M.I., N.M., M.O.-T.); and
- Institute of Plant Biology, Biological Research Center of the Hungarian Academy of Sciences, H-6724 Szeged, Hungary (C.K.)
| | - Masaru Ohme-Takagi
- RIKEN CSRS, Yokohama 230-0045, Japan (B.R., A.K., C.B., A.I., M.S., M.M., K.S.)
- Max-Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (S.S., C.K.)
- Graduate School of Science and Engineering (M.I.) and Institute for Environmental Science and Technology (M.O.-T.), Saitama University, Saitama 338-8570, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan (M.I., N.M., M.O.-T.); and
- Institute of Plant Biology, Biological Research Center of the Hungarian Academy of Sciences, H-6724 Szeged, Hungary (C.K.)
| | - Minami Matsui
- RIKEN CSRS, Yokohama 230-0045, Japan (B.R., A.K., C.B., A.I., M.S., M.M., K.S.)
- Max-Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (S.S., C.K.)
- Graduate School of Science and Engineering (M.I.) and Institute for Environmental Science and Technology (M.O.-T.), Saitama University, Saitama 338-8570, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan (M.I., N.M., M.O.-T.); and
- Institute of Plant Biology, Biological Research Center of the Hungarian Academy of Sciences, H-6724 Szeged, Hungary (C.K.)
| | - Keiko Sugimoto
- RIKEN CSRS, Yokohama 230-0045, Japan (B.R., A.K., C.B., A.I., M.S., M.M., K.S.);
- Max-Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (S.S., C.K.);
- Graduate School of Science and Engineering (M.I.) and Institute for Environmental Science and Technology (M.O.-T.), Saitama University, Saitama 338-8570, Japan;
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan (M.I., N.M., M.O.-T.); and
- Institute of Plant Biology, Biological Research Center of the Hungarian Academy of Sciences, H-6724 Szeged, Hungary (C.K.)
| |
Collapse
|
83
|
Shubchynskyy V, Boniecka J, Schweighofer A, Simulis J, Kvederaviciute K, Stumpe M, Mauch F, Balazadeh S, Mueller-Roeber B, Boutrot F, Zipfel C, Meskiene I. Protein phosphatase AP2C1 negatively regulates basal resistance and defense responses to Pseudomonas syringae. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1169-1183. [PMID: 28062592 PMCID: PMC5444444 DOI: 10.1093/jxb/erw485] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Mitogen-activated protein kinases (MAPKs) mediate plant immune responses to pathogenic bacteria. However, less is known about the cell autonomous negative regulatory mechanism controlling basal plant immunity. We report the biological role of Arabidopsis thaliana MAPK phosphatase AP2C1 as a negative regulator of plant basal resistance and defense responses to Pseudomonas syringae. AP2C2, a closely related MAPK phosphatase, also negatively controls plant resistance. Loss of AP2C1 leads to enhanced pathogen-induced MAPK activities, increased callose deposition in response to pathogen-associated molecular patterns or to P. syringae pv. tomato (Pto) DC3000, and enhanced resistance to bacterial infection with Pto. We also reveal the impact of AP2C1 on the global transcriptional reprogramming of transcription factors during Pto infection. Importantly, ap2c1 plants show salicylic acid-independent transcriptional reprogramming of several defense genes and enhanced ethylene production in response to Pto. This study pinpoints the specificity of MAPK regulation by the different MAPK phosphatases AP2C1 and MKP1, which control the same MAPK substrates, nevertheless leading to different downstream events. We suggest that precise and specific control of defined MAPKs by MAPK phosphatases during plant challenge with pathogenic bacteria can strongly influence plant resistance.
Collapse
Affiliation(s)
- Volodymyr Shubchynskyy
- Max F. Perutz Laboratories, University and Medical University of Vienna, Dr Bohrgasse 9, A-1030 Vienna, Austria
| | - Justyna Boniecka
- Max F. Perutz Laboratories, University and Medical University of Vienna, Dr Bohrgasse 9, A-1030 Vienna, Austria
| | - Alois Schweighofer
- Max F. Perutz Laboratories, University and Medical University of Vienna, Dr Bohrgasse 9, A-1030 Vienna, Austria
- Institute of Biotechnology (IBT), University of Vilnius, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania
| | - Justinas Simulis
- Institute of Biotechnology (IBT), University of Vilnius, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Kotryna Kvederaviciute
- Institute of Biotechnology (IBT), University of Vilnius, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Michael Stumpe
- Department of Biology, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | - Felix Mauch
- Department of Biology, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | - Salma Balazadeh
- Max-Planck-Institute for Molecular Plant Physiology, Golm and University of Potsdam, D-14476, Germany
| | - Bernd Mueller-Roeber
- Max-Planck-Institute for Molecular Plant Physiology, Golm and University of Potsdam, D-14476, Germany
| | - Freddy Boutrot
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK
| | - Cyril Zipfel
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK
| | - Irute Meskiene
- Max F. Perutz Laboratories, University and Medical University of Vienna, Dr Bohrgasse 9, A-1030 Vienna, Austria
- Institute of Biotechnology (IBT), University of Vilnius, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| |
Collapse
|
84
|
Chen D, Richardson T, Chai S, Lynne McIntyre C, Rae AL, Xue GP. Drought-Up-Regulated TaNAC69-1 is a Transcriptional Repressor of TaSHY2 and TaIAA7, and Enhances Root Length and Biomass in Wheat. PLANT & CELL PHYSIOLOGY 2016; 57:2076-2090. [PMID: 27440550 DOI: 10.1093/pcp/pcw126] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/09/2016] [Indexed: 05/03/2023]
Abstract
A well-known physiological adaptation process of plants encountering drying soil is to achieve water balance by reducing shoot growth and maintaining or promoting root elongation, but little is known about the molecular basis of this process. This study investigated the role of a drought-up-regulated Triticum aestivum NAC69-1 (TaNAC69-1) in the modulation of root growth in wheat. TaNAC69-1 was predominantly expressed in wheat roots at the early vegetative stage. Overexpression of TaNAC69-1 in wheat roots using OsRSP3 (essentially root-specific) and OsPIP2;3 (root-predominant) promoters resulted in enhanced primary seminal root length and a marked increase in maturity root biomass. Competitive growth analysis under water-limited conditions showed that OsRSP3 promoter-driven TaNAC69-1 transgenic lines produced 32% and 35% more above-ground biomass and grains than wild-type plants, respectively. TaNAC69-1 overexpression in the roots down-regulated the expression of TaSHY2 and TaIAA7, which are from the auxin/IAA (Aux/IAA) transcriptional repressor gene family and are the homologs of negative root growth regulators SHY2/IAA3 and IAA7 in Arabidopsis. The expression of TaSHY2 and TaIAA7 in roots was down-regulated by drought stress and up-regulated by cytokinin treatment, which inhibited root growth. DNA binding and transient expression analyses revealed that TaNAC69-1 bound to the promoters of TaSHY2 and TaIAA7, acted as a transcriptional repressor and repressed the expression of reporter genes driven by the TaSHY2 or TaIAA7 promoter. These data suggest that TaNAC69-1 is a transcriptional repressor of TaSHY2 and TaIAA7 homologous to Arabidopsis negative root growth regulators and is likely to be involved in promoting root elongation in drying soil.
Collapse
Affiliation(s)
- Dandan Chen
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, PR China
- CSIRO Agriculture, 306 Carmody Rd., St Lucia, Qld 4067, Australia
| | - Terese Richardson
- CSIRO Agriculture, Clunies Ross Street, Canberra, ACT 2601, Australia
| | - Shoucheng Chai
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, PR China
| | - C Lynne McIntyre
- CSIRO Agriculture, 306 Carmody Rd., St Lucia, Qld 4067, Australia
| | - Anne L Rae
- CSIRO Agriculture, 306 Carmody Rd., St Lucia, Qld 4067, Australia
| | - Gang-Ping Xue
- CSIRO Agriculture, 306 Carmody Rd., St Lucia, Qld 4067, Australia
| |
Collapse
|
85
|
Van de Poel B, Cooper ED, Van Der Straeten D, Chang C, Delwiche CF. Transcriptome Profiling of the Green Alga Spirogyra pratensis (Charophyta) Suggests an Ancestral Role for Ethylene in Cell Wall Metabolism, Photosynthesis, and Abiotic Stress Responses. PLANT PHYSIOLOGY 2016; 172:533-45. [PMID: 27489312 PMCID: PMC5074641 DOI: 10.1104/pp.16.00299] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 08/01/2016] [Indexed: 05/26/2023]
Abstract
It is well known that ethylene regulates a diverse set of developmental and stress-related processes in angiosperms, yet its roles in early-diverging embryophytes and algae are poorly understood. Recently, it was shown that ethylene functions as a hormone in the charophyte green alga Spirogyra pratensis Since land plants evolved from charophytes, this implies conservation of ethylene as a hormone in green plants for at least 450 million years. However, the physiological role of ethylene in charophyte algae has remained unknown. To gain insight into ethylene responses in Spirogyra, we used mRNA sequencing to measure changes in gene expression over time in Spirogyra filaments in response to an ethylene treatment. Our analyses show that at the transcriptional level, ethylene predominantly regulates three processes in Spirogyra: (1) modification of the cell wall matrix by expansins and xyloglucan endotransglucosylases/hydrolases, (2) down-regulation of chlorophyll biosynthesis and photosynthesis, and (3) activation of abiotic stress responses. We confirmed that the photosynthetic capacity and chlorophyll content were reduced by an ethylene treatment and that several abiotic stress conditions could stimulate cell elongation in an ethylene-dependent manner. We also found that the Spirogyra transcriptome harbors only 10 ethylene-responsive transcription factor (ERF) homologs, several of which are regulated by ethylene. These results provide an initial understanding of the hormonal responses induced by ethylene in Spirogyra and help to reconstruct the role of ethylene in ancestral charophytes prior to the origin of land plants.
Collapse
Affiliation(s)
- Bram Van de Poel
- Department of Cell Biology and Molecular Genetics, University of Maryland, Bioscience Research Building, College Park, Maryland 20742-5815 (B.V.d.P., E.D.C., C.C., C.F.D.); and Laboratory of Functional Plant Biology, Department of Physiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, 9000 Gent, Belgium (D.V.D.S.)
| | - Endymion D Cooper
- Department of Cell Biology and Molecular Genetics, University of Maryland, Bioscience Research Building, College Park, Maryland 20742-5815 (B.V.d.P., E.D.C., C.C., C.F.D.); and Laboratory of Functional Plant Biology, Department of Physiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, 9000 Gent, Belgium (D.V.D.S.)
| | - Dominique Van Der Straeten
- Department of Cell Biology and Molecular Genetics, University of Maryland, Bioscience Research Building, College Park, Maryland 20742-5815 (B.V.d.P., E.D.C., C.C., C.F.D.); and Laboratory of Functional Plant Biology, Department of Physiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, 9000 Gent, Belgium (D.V.D.S.)
| | - Caren Chang
- Department of Cell Biology and Molecular Genetics, University of Maryland, Bioscience Research Building, College Park, Maryland 20742-5815 (B.V.d.P., E.D.C., C.C., C.F.D.); and Laboratory of Functional Plant Biology, Department of Physiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, 9000 Gent, Belgium (D.V.D.S.)
| | - Charles F Delwiche
- Department of Cell Biology and Molecular Genetics, University of Maryland, Bioscience Research Building, College Park, Maryland 20742-5815 (B.V.d.P., E.D.C., C.C., C.F.D.); and Laboratory of Functional Plant Biology, Department of Physiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, 9000 Gent, Belgium (D.V.D.S.)
| |
Collapse
|
86
|
Shahnejat-Bushehri S, Tarkowska D, Sakuraba Y, Balazadeh S. Arabidopsis NAC transcription factor JUB1 regulates GA/BR metabolism and signalling. NATURE PLANTS 2016; 2:16013. [PMID: 27249348 DOI: 10.1038/nplants.2016.13] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/21/2016] [Indexed: 05/02/2023]
|
87
|
Comparative Genomics of NAC Transcriptional Factors in Angiosperms: Implications for the Adaptation and Diversification of Flowering Plants. PLoS One 2015; 10:e0141866. [PMID: 26569117 PMCID: PMC4646352 DOI: 10.1371/journal.pone.0141866] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/14/2015] [Indexed: 11/19/2022] Open
Abstract
NAC proteins constitute one of the largest groups of plant-specific transcription factors and are known to play essential roles in various developmental processes. They are also important in plant responses to stresses such as drought, soil salinity, cold, and heat, which adversely affect growth. The current knowledge regarding the distribution of NAC proteins in plant lineages comes from relatively small samplings from the available data. In the present study, we broadened the number of plant species containing the NAC family origin and evolution to shed new light on the evolutionary history of this family in angiosperms. A comparative genome analysis was performed on 24 land plant species, and NAC ortholog groups were identified by means of bidirectional BLAST hits. Large NAC gene families are found in those species that have experienced more whole-genome duplication events, pointing to an expansion of the NAC family with divergent functions in flowering plants. A total of 3,187 NAC transcription factors that clustered into six major groups were used in the phylogenetic analysis. Many orthologous groups were found in the monocot and eudicot lineages, but only five orthologous groups were found between P. patens and each representative taxa of flowering plants. These groups were called basal orthologous groups and likely expanded into more recent taxa to cope with their environmental needs. This analysis on the angiosperm NAC family represents an effort to grasp the evolutionary and functional diversity within this gene family while providing a basis for further functional research on vascular plant gene families.
Collapse
|
88
|
Huang Q, Wang Y, Li B, Chang J, Chen M, Li K, Yang G, He G. TaNAC29, a NAC transcription factor from wheat, enhances salt and drought tolerance in transgenic Arabidopsis. BMC PLANT BIOLOGY 2015; 15:268. [PMID: 26536863 PMCID: PMC4632686 DOI: 10.1186/s12870-015-0644-9] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/12/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND NAC (NAM, ATAF, and CUC) transcription factors play important roles in plant biological processes, including phytohormone homeostasis, plant development, and in responses to various environmental stresses. METHODS TaNAC29 was introduced into Arabidopsis using the Agrobacterium tumefaciens-mediated floral dipping method. TaNAC29-overexpression plants were subjected to salt and drought stresses for examining gene functions. To investigate tolerant mechanisms involved in the salt and drought responses, expression of related marker genes analyses were conducted, and related physiological indices were also measured. Expressions of genes were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS A novel NAC transcription factor gene, designated TaNAC29, was isolated from bread wheat (Triticum aestivum). Sequence alignment suggested that TaNAC29 might be located on chromosome 2BS. TaNAC29 was localized to the nucleus in wheat protoplasts, and proved to have transcriptional activation activities in yeast. TaNAC29 was expressed at a higher level in the leaves, and expression levels were much higher in senescent leaves, indicating that TaNAC29 might be involved in the senescence process. TaNAC29 transcripts were increased following treatments with salt, PEG6000, H2O2, and abscisic acid (ABA). To examine TaNAC29 function, transgenic Arabidopsis plants overexpressing TaNAC29 were generated. Germination and root length assays of transgenic plants demonstrated that TaNAC29 overexpression plants had enhanced tolerances to high salinity and dehydration, and exhibited an ABA-hypersensitive response. When grown in the greenhouse, TaNAC29-overexpression plants showed the same tolerance response to salt and drought stresses at both the vegetative and reproductive period, and had delayed bolting and flowering in the reproductive period. Moreover, TaNAC29 overexpression plants accumulated lesser malondialdehyde (MDA), H2O2, while had higher superoxide dismutase (SOD) and catalase (CAT) activities under high salinity and/or dehydration stress. CONCLUSIONS Our results demonstrate that TaNAC29 plays important roles in the senescence process and response to salt and drought stresses. ABA signal pathway and antioxidant enzyme systems are involved in TaNAC29-mediated stress tolerance mechanisms.
Collapse
Affiliation(s)
- Quanjun Huang
- The Genetic Engineering International Cooperation Base of Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan, 430074, China.
| | - Yan Wang
- The Genetic Engineering International Cooperation Base of Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan, 430074, China.
| | - Bin Li
- The Genetic Engineering International Cooperation Base of Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan, 430074, China.
| | - Junli Chang
- The Genetic Engineering International Cooperation Base of Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan, 430074, China.
| | - Mingjie Chen
- The Genetic Engineering International Cooperation Base of Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan, 430074, China.
| | - Kexiu Li
- The Genetic Engineering International Cooperation Base of Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan, 430074, China.
| | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan, 430074, China.
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan, 430074, China.
| |
Collapse
|
89
|
Van de Poel B, Smet D, Van Der Straeten D. Ethylene and Hormonal Cross Talk in Vegetative Growth and Development. PLANT PHYSIOLOGY 2015; 169:61-72. [PMID: 26232489 PMCID: PMC4577414 DOI: 10.1104/pp.15.00724] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/29/2015] [Indexed: 05/20/2023]
Abstract
Ethylene is a gaseous plant hormone that most likely became a functional hormone during the evolution of charophyte green algae, prior to land colonization. From this ancient origin, ethylene evolved into an important growth regulator that is essential for myriad plant developmental processes. In vegetative growth, ethylene appears to have a dual role, stimulating and inhibiting growth, depending on the species, tissue, and cell type, developmental stage, hormonal status, and environmental conditions. Moreover, ethylene signaling and response are part of an intricate network in cross talk with internal and external cues. Besides being a crucial factor in the growth control of roots and shoots, ethylene can promote flowering, fruit ripening and abscission, as well as leaf and petal senescence and abscission and, hence, plays a role in virtually every phase of plant life. Last but not least, together with jasmonates, salicylate, and abscisic acid, ethylene is important in steering stress responses.
Collapse
Affiliation(s)
- Bram Van de Poel
- Laboratory of Functional Plant Biology, Department of Physiology, Faculty of Sciences, Ghent University, 9000 Ghent, Belgium
| | - Dajo Smet
- Laboratory of Functional Plant Biology, Department of Physiology, Faculty of Sciences, Ghent University, 9000 Ghent, Belgium
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Physiology, Faculty of Sciences, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
90
|
Sasidharan R, Voesenek LACJ. Ethylene-Mediated Acclimations to Flooding Stress. PLANT PHYSIOLOGY 2015; 169:3-12. [PMID: 25897003 PMCID: PMC4577390 DOI: 10.1104/pp.15.00387] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 04/18/2015] [Indexed: 05/18/2023]
Abstract
Flooding is detrimental for plants, primarily because of restricted gas exchange underwater, which leads to an energy and carbohydrate deficit. Impeded gas exchange also causes rapid accumulation of the volatile ethylene in all flooded plant cells. Although several internal changes in the plant can signal the flooded status, it is the pervasive and rapid accumulation of ethylene that makes it an early and reliable flooding signal. Not surprisingly, it is a major regulator of several flood-adaptive plant traits. Here, we discuss these major ethylene-mediated traits, their functional relevance, and the recent progress in identifying the molecular and signaling events underlying these traits downstream of ethylene. We also speculate on the role of ethylene in postsubmergence recovery and identify several questions for future investigations.
Collapse
Affiliation(s)
- Rashmi Sasidharan
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584-CH Utrecht, The Netherlands
| | - Laurentius A C J Voesenek
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584-CH Utrecht, The Netherlands
| |
Collapse
|
91
|
Polko JK, van Rooij JA, Vanneste S, Pierik R, Ammerlaan AMH, Vergeer-van Eijk MH, McLoughlin F, Gühl K, Van Isterdael G, Voesenek LACJ, Millenaar FF, Beeckman T, Peeters AJM, Marée AFM, van Zanten M. Ethylene-Mediated Regulation of A2-Type CYCLINs Modulates Hyponastic Growth in Arabidopsis. PLANT PHYSIOLOGY 2015; 169:194-208. [PMID: 26041787 PMCID: PMC4577382 DOI: 10.1104/pp.15.00343] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 06/02/2015] [Indexed: 05/06/2023]
Abstract
Upward leaf movement (hyponastic growth) is frequently observed in response to changing environmental conditions and can be induced by the phytohormone ethylene. Hyponasty results from differential growth (i.e. enhanced cell elongation at the proximal abaxial side of the petiole relative to the adaxial side). Here, we characterize Enhanced Hyponasty-d, an activation-tagged Arabidopsis (Arabidopsis thaliana) line with exaggerated hyponasty. This phenotype is associated with overexpression of the mitotic cyclin CYCLINA2;1 (CYCA2;1), which hints at a role for cell divisions in regulating hyponasty. Indeed, mathematical analysis suggested that the observed changes in abaxial cell elongation rates during ethylene treatment should result in a larger hyponastic amplitude than observed, unless a decrease in cell proliferation rate at the proximal abaxial side of the petiole relative to the adaxial side was implemented. Our model predicts that when this differential proliferation mechanism is disrupted by either ectopic overexpression or mutation of CYCA2;1, the hyponastic growth response becomes exaggerated. This is in accordance with experimental observations on CYCA2;1 overexpression lines and cyca2;1 knockouts. We therefore propose a bipartite mechanism controlling leaf movement: ethylene induces longitudinal cell expansion in the abaxial petiole epidermis to induce hyponasty and simultaneously affects its amplitude by controlling cell proliferation through CYCA2;1. Further corroborating the model, we found that ethylene treatment results in transcriptional down-regulation of A2-type CYCLINs and propose that this, and possibly other regulatory mechanisms affecting CYCA2;1, may contribute to this attenuation of hyponastic growth.
Collapse
Affiliation(s)
- Joanna K Polko
- Plant Ecophysiology, Institute of Environmental Biology (J.K.P., R.P., A.M.H.A., M.H.V.-v.E., F.M., K.G., L.A.C.J.V., F.F.M., A.J.M.P., M.v.Z.), and Theoretical Biology and Bioinformatics (J.A.v.R.), Utrecht University, 3584 CH Utrecht, The Netherlands;Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom (J.A.v.R., A.F.M.M.);Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (S.V., G.V.I., T.B.); andDepartment of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (S.V., G.V.I., T.B.)
| | - Jop A van Rooij
- Plant Ecophysiology, Institute of Environmental Biology (J.K.P., R.P., A.M.H.A., M.H.V.-v.E., F.M., K.G., L.A.C.J.V., F.F.M., A.J.M.P., M.v.Z.), and Theoretical Biology and Bioinformatics (J.A.v.R.), Utrecht University, 3584 CH Utrecht, The Netherlands;Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom (J.A.v.R., A.F.M.M.);Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (S.V., G.V.I., T.B.); andDepartment of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (S.V., G.V.I., T.B.)
| | - Steffen Vanneste
- Plant Ecophysiology, Institute of Environmental Biology (J.K.P., R.P., A.M.H.A., M.H.V.-v.E., F.M., K.G., L.A.C.J.V., F.F.M., A.J.M.P., M.v.Z.), and Theoretical Biology and Bioinformatics (J.A.v.R.), Utrecht University, 3584 CH Utrecht, The Netherlands;Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom (J.A.v.R., A.F.M.M.);Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (S.V., G.V.I., T.B.); andDepartment of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (S.V., G.V.I., T.B.)
| | - Ronald Pierik
- Plant Ecophysiology, Institute of Environmental Biology (J.K.P., R.P., A.M.H.A., M.H.V.-v.E., F.M., K.G., L.A.C.J.V., F.F.M., A.J.M.P., M.v.Z.), and Theoretical Biology and Bioinformatics (J.A.v.R.), Utrecht University, 3584 CH Utrecht, The Netherlands;Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom (J.A.v.R., A.F.M.M.);Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (S.V., G.V.I., T.B.); andDepartment of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (S.V., G.V.I., T.B.)
| | - Ankie M H Ammerlaan
- Plant Ecophysiology, Institute of Environmental Biology (J.K.P., R.P., A.M.H.A., M.H.V.-v.E., F.M., K.G., L.A.C.J.V., F.F.M., A.J.M.P., M.v.Z.), and Theoretical Biology and Bioinformatics (J.A.v.R.), Utrecht University, 3584 CH Utrecht, The Netherlands;Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom (J.A.v.R., A.F.M.M.);Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (S.V., G.V.I., T.B.); andDepartment of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (S.V., G.V.I., T.B.)
| | - Marleen H Vergeer-van Eijk
- Plant Ecophysiology, Institute of Environmental Biology (J.K.P., R.P., A.M.H.A., M.H.V.-v.E., F.M., K.G., L.A.C.J.V., F.F.M., A.J.M.P., M.v.Z.), and Theoretical Biology and Bioinformatics (J.A.v.R.), Utrecht University, 3584 CH Utrecht, The Netherlands;Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom (J.A.v.R., A.F.M.M.);Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (S.V., G.V.I., T.B.); andDepartment of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (S.V., G.V.I., T.B.)
| | - Fionn McLoughlin
- Plant Ecophysiology, Institute of Environmental Biology (J.K.P., R.P., A.M.H.A., M.H.V.-v.E., F.M., K.G., L.A.C.J.V., F.F.M., A.J.M.P., M.v.Z.), and Theoretical Biology and Bioinformatics (J.A.v.R.), Utrecht University, 3584 CH Utrecht, The Netherlands;Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom (J.A.v.R., A.F.M.M.);Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (S.V., G.V.I., T.B.); andDepartment of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (S.V., G.V.I., T.B.)
| | - Kerstin Gühl
- Plant Ecophysiology, Institute of Environmental Biology (J.K.P., R.P., A.M.H.A., M.H.V.-v.E., F.M., K.G., L.A.C.J.V., F.F.M., A.J.M.P., M.v.Z.), and Theoretical Biology and Bioinformatics (J.A.v.R.), Utrecht University, 3584 CH Utrecht, The Netherlands;Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom (J.A.v.R., A.F.M.M.);Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (S.V., G.V.I., T.B.); andDepartment of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (S.V., G.V.I., T.B.)
| | - Gert Van Isterdael
- Plant Ecophysiology, Institute of Environmental Biology (J.K.P., R.P., A.M.H.A., M.H.V.-v.E., F.M., K.G., L.A.C.J.V., F.F.M., A.J.M.P., M.v.Z.), and Theoretical Biology and Bioinformatics (J.A.v.R.), Utrecht University, 3584 CH Utrecht, The Netherlands;Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom (J.A.v.R., A.F.M.M.);Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (S.V., G.V.I., T.B.); andDepartment of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (S.V., G.V.I., T.B.)
| | - Laurentius A C J Voesenek
- Plant Ecophysiology, Institute of Environmental Biology (J.K.P., R.P., A.M.H.A., M.H.V.-v.E., F.M., K.G., L.A.C.J.V., F.F.M., A.J.M.P., M.v.Z.), and Theoretical Biology and Bioinformatics (J.A.v.R.), Utrecht University, 3584 CH Utrecht, The Netherlands;Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom (J.A.v.R., A.F.M.M.);Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (S.V., G.V.I., T.B.); andDepartment of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (S.V., G.V.I., T.B.)
| | - Frank F Millenaar
- Plant Ecophysiology, Institute of Environmental Biology (J.K.P., R.P., A.M.H.A., M.H.V.-v.E., F.M., K.G., L.A.C.J.V., F.F.M., A.J.M.P., M.v.Z.), and Theoretical Biology and Bioinformatics (J.A.v.R.), Utrecht University, 3584 CH Utrecht, The Netherlands;Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom (J.A.v.R., A.F.M.M.);Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (S.V., G.V.I., T.B.); andDepartment of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (S.V., G.V.I., T.B.)
| | - Tom Beeckman
- Plant Ecophysiology, Institute of Environmental Biology (J.K.P., R.P., A.M.H.A., M.H.V.-v.E., F.M., K.G., L.A.C.J.V., F.F.M., A.J.M.P., M.v.Z.), and Theoretical Biology and Bioinformatics (J.A.v.R.), Utrecht University, 3584 CH Utrecht, The Netherlands;Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom (J.A.v.R., A.F.M.M.);Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (S.V., G.V.I., T.B.); andDepartment of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (S.V., G.V.I., T.B.)
| | - Anton J M Peeters
- Plant Ecophysiology, Institute of Environmental Biology (J.K.P., R.P., A.M.H.A., M.H.V.-v.E., F.M., K.G., L.A.C.J.V., F.F.M., A.J.M.P., M.v.Z.), and Theoretical Biology and Bioinformatics (J.A.v.R.), Utrecht University, 3584 CH Utrecht, The Netherlands;Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom (J.A.v.R., A.F.M.M.);Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (S.V., G.V.I., T.B.); andDepartment of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (S.V., G.V.I., T.B.)
| | - Athanasius F M Marée
- Plant Ecophysiology, Institute of Environmental Biology (J.K.P., R.P., A.M.H.A., M.H.V.-v.E., F.M., K.G., L.A.C.J.V., F.F.M., A.J.M.P., M.v.Z.), and Theoretical Biology and Bioinformatics (J.A.v.R.), Utrecht University, 3584 CH Utrecht, The Netherlands;Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom (J.A.v.R., A.F.M.M.);Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (S.V., G.V.I., T.B.); andDepartment of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (S.V., G.V.I., T.B.)
| | - Martijn van Zanten
- Plant Ecophysiology, Institute of Environmental Biology (J.K.P., R.P., A.M.H.A., M.H.V.-v.E., F.M., K.G., L.A.C.J.V., F.F.M., A.J.M.P., M.v.Z.), and Theoretical Biology and Bioinformatics (J.A.v.R.), Utrecht University, 3584 CH Utrecht, The Netherlands;Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom (J.A.v.R., A.F.M.M.);Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (S.V., G.V.I., T.B.); andDepartment of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (S.V., G.V.I., T.B.)
| |
Collapse
|
92
|
Barlow PW. Leaf movements and their relationship with the lunisolar gravitational force. ANNALS OF BOTANY 2015. [PMID: 26205177 PMCID: PMC4512198 DOI: 10.1093/aob/mcv096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
BACKGROUND Observation of the diurnal ascent and descent of leaves of beans and other species, as well as experimental interventions into these movements, such as exposures to light at different times during the movement cycle, led to the concept of an endogenous 'clock' as a regulator of these oscillations. The physiological basis of leaf movement can be traced to processes that modulate cell volume in target tissues of the pulvinus and petiole. However, these elements of the leaf-movement process do not completely account for the rhythms that are generated following germination in constant light or dark conditions, or when plants are transferred to similar free-running conditions. SCOPE To develop a new perspective on the regulation of leaf-movement rhythms, many of the published time courses of leaf movements that provided evidence for the concept of the endogenous clock were analysed in conjunction with the contemporaneous time courses of the lunisolar tidal acceleration at the relevant experimental locations. This was made possible by application of the Etide program, which estimates, with high temporal resolution, local gravitational changes as a consequence of the diurnal variations of the lunisolar gravitational force due to the orbits and relative positions of Earth, Moon and Sun. In all cases, it was evident that a synchronism exists between the times of the turning points of both the lunisolar tide and of the leaftide when the direction of leaf movement changes. This finding of synchrony leads to the hypothesis that the lunisolar tide is a regulator of the leaftide, and that the rhythm of leaf movement is not necessarily of endogenous origin but is an expression of an exogenous lunisolar 'clock' impressed upon the leaf-movement apparatus. CONCLUSIONS Correlation between leaftide and Etide time courses holds for leaf movement rhythms in natural conditions of the greenhouse, in conditions of constant light or dark, under microgravity conditions of the International Space Station, and also holds for rhythms that are atypical, such as pendulum and relaxation rhythms whose periods are longer or shorter than usual. Even the apparently spontaneous short-period, small-amplitude rhythms recorded from leaves under unusual growth conditions are consistent with the hypothesis of a lunisolar zeitgeber. Two hypotheses that could account for the synchronism between leaftide and Etide, and which are based on either quantum considerations or on classical Newtonian physics, are presented and discussed.
Collapse
Affiliation(s)
- Peter W Barlow
- School of Biological Sciences, University of Bristol, Bristol Life Sciences Building, 24 Tyndalls Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
93
|
Phukan UJ, Mishra S, Shukla RK. Waterlogging and submergence stress: affects and acclimation. Crit Rev Biotechnol 2015; 36:956-66. [PMID: 26177332 DOI: 10.3109/07388551.2015.1064856] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Submergence, whether partial or complete, imparts some serious consequences on plants grown in flood prone ecosystems. Some plants can endure these conditions by embracing various survival strategies, including morphological adaptations and physiological adjustments. This review summarizes recent progress made in understanding of the stress and the acclimation responses of plants under waterlogged or submerged conditions. Waterlogging and submergence are often associated with hypoxia development, which may trigger various morphological traits and cellular acclimation responses. Ethylene, abscisic acid, gibberellic acid and other hormones play a crucial role in the survival process which is controlled genetically. Effects at the cellular level, including ATP management, starch metabolism, elemental toxicity, role of transporters and redox status have been explained. Transcriptional and hormonal interplay during this stress may provide some key aspects in understanding waterlogging and submergence tolerance. The level and degree of tolerance may vary depending on species or climatic variations which need to be studied for a proper understanding of waterlogging stress at the global level. The exploration of regulatory pathways and interplay in model organisms such as Arabidopsis and rice would provide valuable resources for improvement of economically and agriculturally important plants in waterlogging affected areas.
Collapse
Affiliation(s)
- Ujjal J Phukan
- a Biotechnology Division (CSIR-CIMAP) , Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP) , Lucknow , Uttar Pradesh , India
| | - Sonal Mishra
- a Biotechnology Division (CSIR-CIMAP) , Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP) , Lucknow , Uttar Pradesh , India
| | - Rakesh Kumar Shukla
- a Biotechnology Division (CSIR-CIMAP) , Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP) , Lucknow , Uttar Pradesh , India
| |
Collapse
|
94
|
Garapati P, Xue GP, Munné-Bosch S, Balazadeh S. Transcription Factor ATAF1 in Arabidopsis Promotes Senescence by Direct Regulation of Key Chloroplast Maintenance and Senescence Transcriptional Cascades. PLANT PHYSIOLOGY 2015; 168:1122-39. [PMID: 25953103 PMCID: PMC4741325 DOI: 10.1104/pp.15.00567] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 05/05/2015] [Indexed: 05/18/2023]
Abstract
Senescence represents a fundamental process of late leaf development. Transcription factors (TFs) play an important role for expression reprogramming during senescence; however, the gene regulatory networks through which they exert their functions, and their physiological integration, are still largely unknown. Here, we identify the Arabidopsis (Arabidopsis thaliana) abscisic acid (ABA)- and hydrogen peroxide-activated TF Arabidopsis thaliana activating factor1 (ATAF1) as a novel upstream regulator of senescence. ATAF1 executes its physiological role by affecting both key chloroplast maintenance and senescence-promoting TFs, namely GOLDEN2-LIKE1 (GLK1) and ORESARA1 (Arabidopsis NAC092), respectively. Notably, while ATAF1 activates ORESARA1, it represses GLK1 expression by directly binding to their promoters, thereby generating a transcriptional output that shifts the physiological balance toward the progression of senescence. We furthermore demonstrate a key role of ATAF1 for ABA- and hydrogen peroxide-induced senescence, in accordance with a direct regulatory effect on ABA homeostasis genes, including nine-CIS-epoxycarotenoid dioxygenase3 involved in ABA biosynthesis and ABC transporter G family member40, encoding an ABA transport protein. Thus, ATAF1 serves as a core transcriptional activator of senescence by coupling stress-related signaling with photosynthesis- and senescence-related transcriptional cascades.
Collapse
Affiliation(s)
- Prashanth Garapati
- University of Potsdam, Institute of Biochemistry and Biology, 14476 Potsdam-Golm, Germany (P.G., S.B.);Plant Signaling Group, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany (P.G., S.B.);Commonwealth Scientific and Industrial Research Organization Plant Industry, St. Lucia, Queensland 4067, Australia (G.-P.X.); andDepartament de Biologia Vegetal, Universitat de Barcelona, Facultat de Biologia, 08028 Barcelona, Spain (S.M.-B.)
| | - Gang-Ping Xue
- University of Potsdam, Institute of Biochemistry and Biology, 14476 Potsdam-Golm, Germany (P.G., S.B.);Plant Signaling Group, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany (P.G., S.B.);Commonwealth Scientific and Industrial Research Organization Plant Industry, St. Lucia, Queensland 4067, Australia (G.-P.X.); andDepartament de Biologia Vegetal, Universitat de Barcelona, Facultat de Biologia, 08028 Barcelona, Spain (S.M.-B.)
| | - Sergi Munné-Bosch
- University of Potsdam, Institute of Biochemistry and Biology, 14476 Potsdam-Golm, Germany (P.G., S.B.);Plant Signaling Group, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany (P.G., S.B.);Commonwealth Scientific and Industrial Research Organization Plant Industry, St. Lucia, Queensland 4067, Australia (G.-P.X.); andDepartament de Biologia Vegetal, Universitat de Barcelona, Facultat de Biologia, 08028 Barcelona, Spain (S.M.-B.)
| | - Salma Balazadeh
- University of Potsdam, Institute of Biochemistry and Biology, 14476 Potsdam-Golm, Germany (P.G., S.B.);Plant Signaling Group, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany (P.G., S.B.);Commonwealth Scientific and Industrial Research Organization Plant Industry, St. Lucia, Queensland 4067, Australia (G.-P.X.); andDepartament de Biologia Vegetal, Universitat de Barcelona, Facultat de Biologia, 08028 Barcelona, Spain (S.M.-B.)
| |
Collapse
|
95
|
Cosgrove DJ. Plant expansins: diversity and interactions with plant cell walls. CURRENT OPINION IN PLANT BIOLOGY 2015; 25:162-72. [PMID: 26057089 PMCID: PMC4532548 DOI: 10.1016/j.pbi.2015.05.014] [Citation(s) in RCA: 296] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 05/11/2015] [Accepted: 05/15/2015] [Indexed: 05/18/2023]
Abstract
Expansins were discovered two decades ago as cell wall proteins that mediate acid-induced growth by catalyzing loosening of plant cell walls without lysis of wall polymers. In the interim our understanding of expansins has gotten more complex through bioinformatic analysis of expansin distribution and evolution, as well as through expression analysis, dissection of the upstream transcription factors regulating expression, and identification of additional classes of expansin by sequence and structural similarities. Molecular analyses of expansins from bacteria have identified residues essential for wall loosening activity and clarified the bifunctional nature of expansin binding to complex cell walls. Transgenic modulation of expansin expression modifies growth and stress physiology of plants, but not always in predictable or even understandable ways.
Collapse
Affiliation(s)
- Daniel J Cosgrove
- Department of Biology, Penn State University, University Park, PA 16802, USA.
| |
Collapse
|
96
|
Fisahn J, Klingelé E, Barlow P. Lunar gravity affects leaf movement of Arabidopsis thaliana in the International Space Station. PLANTA 2015; 241:1509-18. [PMID: 25795423 DOI: 10.1007/s00425-015-2280-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/13/2015] [Indexed: 05/26/2023]
Abstract
Cyclic leaf ascent and descent occur in synchrony and phase congruence with the lunisolar tidal force under a broad range of conditions. Digitized records of the vertical leaf movements of Arabidopsis thaliana were collected under space flight conditions in the International Space Station (ISS). Oscillations of leaf movements with periods of 45 and 90 min were found under light-adapted conditions, whereas in darkness, the periods were 45, 90, and 135 min. To demonstrate the close relationship between these oscillations and cyclical variations of the lunisolar gravitational force, we estimated the oscillations of the in-orbit lunisolar tide as they apply to the ISS, with the aid of the Etide software application. In general, in-orbit lunisolar gravitational profiles exhibited a periodicity of 45 min. Alignment of these in-orbit oscillations with the oscillations of Arabidopsis leaf movement revealed high degrees of synchrony and a congruence of phase. These data corroborate previous results which suggested a correlative relationship and a possible causal link between leaf movement rhythms obtained on ground and the rhythmic variation of the lunisolar tidal force.
Collapse
Affiliation(s)
- Joachim Fisahn
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg1, 14476, Potsdam, Germany,
| | | | | |
Collapse
|
97
|
Apelt F, Breuer D, Nikoloski Z, Stitt M, Kragler F. Phytotyping(4D) : a light-field imaging system for non-invasive and accurate monitoring of spatio-temporal plant growth. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:693-706. [PMID: 25801304 DOI: 10.1111/tpj.12833] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/04/2015] [Accepted: 03/13/2015] [Indexed: 05/08/2023]
Abstract
Integrative studies of plant growth require spatially and temporally resolved information from high-throughput imaging systems. However, analysis and interpretation of conventional two-dimensional images is complicated by the three-dimensional nature of shoot architecture and by changes in leaf position over time, termed hyponasty. To solve this problem, Phytotyping(4D) uses a light-field camera that simultaneously provides a focus image and a depth image, which contains distance information about the object surface. Our automated pipeline segments the focus images, integrates depth information to reconstruct the three-dimensional architecture, and analyses time series to provide information about the relative expansion rate, the timing of leaf appearance, hyponastic movement, and shape for individual leaves and the whole rosette. Phytotyping(4D) was calibrated and validated using discs of known sizes, and plants tilted at various orientations. Information from this analysis was integrated into the pipeline to allow error assessment during routine operation. To illustrate the utility of Phytotyping(4D) , we compare diurnal changes in Arabidopsis thaliana wild-type Col-0 and the starchless pgm mutant. Compared to Col-0, pgm showed very low relative expansion rate in the second half of the night, a transiently increased relative expansion rate at the onset of light period, and smaller hyponastic movement including delayed movement after dusk, both at the level of the rosette and individual leaves. Our study introduces light-field camera systems as a tool to accurately measure morphological and growth-related features in plants.
Collapse
Affiliation(s)
- Federico Apelt
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
- University of Potsdam, Am Neuen Palais 10, 14469, Potsdam, Germany
| | - David Breuer
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
- University of Potsdam, Am Neuen Palais 10, 14469, Potsdam, Germany
| | - Zoran Nikoloski
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Friedrich Kragler
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| |
Collapse
|
98
|
Le Gall H, Philippe F, Domon JM, Gillet F, Pelloux J, Rayon C. Cell Wall Metabolism in Response to Abiotic Stress. PLANTS (BASEL, SWITZERLAND) 2015; 4:112-66. [PMID: 27135320 PMCID: PMC4844334 DOI: 10.3390/plants4010112] [Citation(s) in RCA: 636] [Impact Index Per Article: 63.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/05/2015] [Accepted: 02/11/2015] [Indexed: 12/17/2022]
Abstract
This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic), transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i) an increased level in xyloglucan endotransglucosylase/hydrolase (XTH) and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii) an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions.
Collapse
Affiliation(s)
- Hyacinthe Le Gall
- EA3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 80039 Amiens, France.
| | - Florian Philippe
- EA3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 80039 Amiens, France.
| | - Jean-Marc Domon
- EA3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 80039 Amiens, France.
| | - Françoise Gillet
- EA3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 80039 Amiens, France.
| | - Jérôme Pelloux
- EA3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 80039 Amiens, France.
| | - Catherine Rayon
- EA3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 80039 Amiens, France.
| |
Collapse
|
99
|
Stender EG, O'Shea C, Skriver K. Subgroup-specific intrinsic disorder profiles of Arabidopsis NAC transcription factors: Identification of functional hotspots. PLANT SIGNALING & BEHAVIOR 2015; 10:e1010967. [PMID: 26107850 PMCID: PMC4622513 DOI: 10.1080/15592324.2015.1010967] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 01/07/2015] [Indexed: 06/04/2023]
Abstract
Protein intrinsic disorder (ID), referring to the lack of a fixed tertiary structure, is significant in signaling and transcription. We recently characterized ID in 6 phylogenetically representative Arabidopsis thaliana NAC transcription factors. Their transcription regulatory domains are mostly disordered but contain short, functionally important regions with structure propensities known as molecular recognition features. Here, we analyze for NAC subgroup-specific ID patterns. Some subgroups, such as the VND subgroup implicated in secondary cell wall biosynthesis, and the NAP/SHYG subgroup have highly conserved ID profiles. For the stress-associated ATAF1 subgroup and the CUC/ORE1 subgroup involved in development, only sub clades have similar ID patterns. For similar ID profiles, conserved molecular recognition features and sequence motifs represent likely functional determinants of e.g. transcriptional activation and interactions. Based on our analysis, we suggest that ID profiling of regulatory proteins in general can be used to guide identification of interaction partners of network proteins.
Collapse
Affiliation(s)
- Emil G Stender
- Department of Biology; University of Copenhagen; Copenhagen, Denmark
| | - Charlotte O'Shea
- Department of Biology; University of Copenhagen; Copenhagen, Denmark
| | - Karen Skriver
- Department of Biology; University of Copenhagen; Copenhagen, Denmark
| |
Collapse
|
100
|
Bargsten JW, Nap JP, Sanchez-Perez GF, van Dijk ADJ. Prioritization of candidate genes in QTL regions based on associations between traits and biological processes. BMC PLANT BIOLOGY 2014; 14:330. [PMID: 25492368 PMCID: PMC4274756 DOI: 10.1186/s12870-014-0330-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 11/10/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND Elucidation of genotype-to-phenotype relationships is a major challenge in biology. In plants, it is the basis for molecular breeding. Quantitative Trait Locus (QTL) mapping enables to link variation at the trait level to variation at the genomic level. However, QTL regions typically contain tens to hundreds of genes. In order to prioritize such candidate genes, we show that we can identify potentially causal genes for a trait based on overrepresentation of biological processes (gene functions) for the candidate genes in the QTL regions of that trait. RESULTS The prioritization method was applied to rice QTL data, using gene functions predicted on the basis of sequence- and expression-information. The average reduction of the number of genes was over ten-fold. Comparison with various types of experimental datasets (including QTL fine-mapping and Genome Wide Association Study results) indicated both statistical significance and biological relevance of the obtained connections between genes and traits. A detailed analysis of flowering time QTLs illustrates that genes with completely unknown function are likely to play a role in this important trait. CONCLUSIONS Our approach can guide further experimentation and validation of causal genes for quantitative traits. This way it capitalizes on QTL data to uncover how individual genes influence trait variation.
Collapse
Affiliation(s)
- Joachim W Bargsten
- />Applied Bioinformatics, Bioscience, Plant Sciences Group, Wageningen University and Research Centre, Wageningen, The Netherlands
- />Netherlands Bioinformatics Centre (NBIC), Nijmegen, The Netherlands
- />Laboratory for Plant Breeding, Plant Sciences Group, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Jan-Peter Nap
- />Applied Bioinformatics, Bioscience, Plant Sciences Group, Wageningen University and Research Centre, Wageningen, The Netherlands
- />Netherlands Bioinformatics Centre (NBIC), Nijmegen, The Netherlands
| | - Gabino F Sanchez-Perez
- />Applied Bioinformatics, Bioscience, Plant Sciences Group, Wageningen University and Research Centre, Wageningen, The Netherlands
- />Laboratory of Bioinformatics, Plant Sciences Group, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Aalt DJ van Dijk
- />Applied Bioinformatics, Bioscience, Plant Sciences Group, Wageningen University and Research Centre, Wageningen, The Netherlands
- />Biometris, Wageningen University and Research Centre, Wageningen, The Netherlands
| |
Collapse
|