51
|
Semeradova H, Montesinos JC, Benkova E. All Roads Lead to Auxin: Post-translational Regulation of Auxin Transport by Multiple Hormonal Pathways. PLANT COMMUNICATIONS 2020; 1:100048. [PMID: 33367243 PMCID: PMC7747973 DOI: 10.1016/j.xplc.2020.100048] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/26/2020] [Accepted: 04/18/2020] [Indexed: 05/03/2023]
Abstract
Auxin is a key hormonal regulator, that governs plant growth and development in concert with other hormonal pathways. The unique feature of auxin is its polar, cell-to-cell transport that leads to the formation of local auxin maxima and gradients, which coordinate initiation and patterning of plant organs. The molecular machinery mediating polar auxin transport is one of the important points of interaction with other hormones. Multiple hormonal pathways converge at the regulation of auxin transport and form a regulatory network that integrates various developmental and environmental inputs to steer plant development. In this review, we discuss recent advances in understanding the mechanisms that underlie regulation of polar auxin transport by multiple hormonal pathways. Specifically, we focus on the post-translational mechanisms that contribute to fine-tuning of the abundance and polarity of auxin transporters at the plasma membrane and thereby enable rapid modification of the auxin flow to coordinate plant growth and development.
Collapse
Affiliation(s)
- Hana Semeradova
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | | | - Eva Benkova
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| |
Collapse
|
52
|
Abstract
Cell polarity in plants operates across a broad range of spatial and temporal scales to control processes from acute cell growth to systemic hormone distribution. Similar to other eukaryotes, plants generate polarity at both the subcellular and tissue levels, often through polarization of membrane-associated protein complexes. However, likely due to the constraints imposed by the cell wall and their extremely plastic development, plants possess novel polarity molecules and mechanisms highly tuned to environmental inputs. Considerable progress has been made in identifying key plant polarity regulators, but detailed molecular understanding of polarity mechanisms remains incomplete in plants. Here, we emphasize the striking similarities in the conceptual frameworks that generate polarity in both animals and plants. To this end, we highlight how novel, plant-specific proteins engage in common themes of positive feedback, dynamic intracellular trafficking, and posttranslational regulation to establish polarity axes in development. We end with a discussion of how environmental signals control intrinsic polarity to impact postembryonic organogenesis and growth.
Collapse
Affiliation(s)
- Andrew Muroyama
- Howard Hughes Medical Institute, Stanford University, Stanford, California 94305-5020, USA; .,Department of Biology, Stanford University, Stanford, California 94305-5020, USA
| | - Dominique Bergmann
- Howard Hughes Medical Institute, Stanford University, Stanford, California 94305-5020, USA; .,Department of Biology, Stanford University, Stanford, California 94305-5020, USA
| |
Collapse
|
53
|
Qin L, Zhou Z, Li Q, Zhai C, Liu L, Quilichini TD, Gao P, Kessler SA, Jaillais Y, Datla R, Peng G, Xiang D, Wei Y. Specific Recruitment of Phosphoinositide Species to the Plant-Pathogen Interfacial Membrane Underlies Arabidopsis Susceptibility to Fungal Infection. THE PLANT CELL 2020; 32:1665-1688. [PMID: 32156686 PMCID: PMC7203932 DOI: 10.1105/tpc.19.00970] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/07/2020] [Accepted: 03/09/2020] [Indexed: 05/04/2023]
Abstract
Different phosphoinositides enriched at the membranes of specific subcellular compartments within plant cells contribute to organelle identity, ensuring appropriate cellular trafficking and function. During the infection of plant cells, biotrophic pathogens such as powdery mildews enter plant cells and differentiate into haustoria. Each haustorium is enveloped by an extrahaustorial membrane (EHM) derived from the host plasma membrane. Little is known about the EHM biogenesis and identity. Here, we demonstrate that among the two plasma membrane phosphoinositides in Arabidopsis (Arabidopsis thaliana), PI(4,5)P2 is dynamically up-regulated at powdery mildew infection sites and recruited to the EHM, whereas PI4P is absent in the EHM. Lateral transport of PI(4,5)P2 into the EHM occurs through a brefeldin A-insensitive but actin-dependent trafficking pathway. Furthermore, the lower levels of PI(4,5)P2 in pip5k1 pip5k2 mutants inhibit fungal pathogen development and cause disease resistance, independent of cell death-associated defenses and involving impaired host susceptibility. Our results reveal that plant biotrophic and hemibiotrophic pathogens modulate the subcellular distribution of host phosphoinositides and recruit PI(4,5)P2 as a susceptibility factor for plant disease.
Collapse
Affiliation(s)
- Li Qin
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Zhuqing Zhou
- Laboratory of Cell Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qiang Li
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Chun Zhai
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan S7N 0X2, Canada
| | - Lijiang Liu
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, China
| | | | - Peng Gao
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Sharon A Kessler
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, École normale supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS, INRA, Lyon 69342, France
| | - Raju Datla
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Gary Peng
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan S7N 0X2, Canada
| | - Daoquan Xiang
- National Research Council Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Yangdou Wei
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
| |
Collapse
|
54
|
Xiao Y, Offringa R. PDK1 regulates auxin transport and Arabidopsis vascular development through AGC1 kinase PAX. NATURE PLANTS 2020; 6:544-555. [PMID: 32393878 DOI: 10.1038/s41477-020-0650-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
The 3-phosphoinositide-dependent protein kinase 1 (PDK1) is a conserved master regulator of AGC kinases in eukaryotic organisms. pdk1 loss of function causes a lethal phenotype in animals and yeasts, but only mild phenotypic defects in Arabidopsis thaliana (Arabidopsis). The Arabidopsis genome contains two PDK1-encoding genes, PDK1 and PDK2. Here, we used clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) to generate true loss-of-function pdk1 alleles, which, when combined with pdk2 alleles, showed severe developmental defects including fused cotyledons, a short primary root, dwarf stature and defects in male fertility. We obtained evidence that PDK1 is responsible for AGC1 kinase PROTEIN KINASE ASSOCIATED WITH BRX (PAX) activation by phosphorylation during vascular development, and that the PDK1 phospholipid-binding Pleckstrin Homology domain is not required for this process. Our data indicate that PDK1 regulates polar auxin transport by activating AGC1 clade kinases, resulting in PIN phosphorylation.
Collapse
Affiliation(s)
- Yao Xiao
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
- Plant Systems Biology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Remko Offringa
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, Leiden, the Netherlands.
| |
Collapse
|
55
|
Tan S, Zhang X, Kong W, Yang XL, Molnár G, Vondráková Z, Filepová R, Petrášek J, Friml J, Xue HW. The lipid code-dependent phosphoswitch PDK1-D6PK activates PIN-mediated auxin efflux in Arabidopsis. NATURE PLANTS 2020; 6:556-569. [PMID: 32393881 DOI: 10.1038/s41477-020-0648-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Directional intercellular transport of the phytohormone auxin mediated by PIN-FORMED (PIN) efflux carriers has essential roles in both coordinating patterning processes and integrating multiple external cues by rapidly redirecting auxin fluxes. PIN activity is therefore regulated by multiple internal and external cues, for which the underlying molecular mechanisms are not fully elucidated. Here, we demonstrate that 3'-PHOSPHOINOSITIDE-DEPENDENT PROTEIN KINASE1 (PDK1), which is conserved in plants and mammals, functions as a molecular hub that perceives upstream lipid signalling and modulates downstream substrate activity through phosphorylation. Using genetic analysis, we show that the loss-of-function Arabidopsis pdk1.1 pdk1.2 mutant exhibits a plethora of abnormalities in organogenesis and growth due to defective polar auxin transport. Further cellular and biochemical analyses reveal that PDK1 phosphorylates D6 protein kinase, a well-known upstream activator of PIN proteins. We uncover a lipid-dependent phosphorylation cascade that connects membrane-composition-based cellular signalling with plant growth and patterning by regulating morphogenetic auxin fluxes.
Collapse
Affiliation(s)
- Shutang Tan
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Xixi Zhang
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Wei Kong
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Li Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Gergely Molnár
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Zuzana Vondráková
- Institute of Experimental Botany, The Czech Academy of Sciences, Prague, Czech Republic
| | - Roberta Filepová
- Institute of Experimental Botany, The Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Petrášek
- Institute of Experimental Botany, The Czech Academy of Sciences, Prague, Czech Republic
| | - Jiří Friml
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria.
| | - Hong-Wei Xue
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
56
|
Abstract
Anionic phospholipids, which include phosphatidic acid, phosphatidylserine, and phosphoinositides, represent a small percentage of membrane lipids. They are able to modulate the physical properties of membranes, such as their surface charges, curvature, or clustering of proteins. Moreover, by mediating interactions with numerous membrane-associated proteins, they are key components in the establishment of organelle identity and dynamics. Finally, anionic lipids also act as signaling molecules, as they are rapidly produced or interconverted by a set of dedicated enzymes. As such, anionic lipids are major regulators of many fundamental cellular processes, including cell signaling, cell division, membrane trafficking, cell growth, and gene expression. In this review, we describe the functions of anionic lipids from a cellular perspective. Using the localization of each anionic lipid and its related metabolic enzymes as starting points, we summarize their roles within the different compartments of the endomembrane system and address their associated developmental and physiological consequences.
Collapse
Affiliation(s)
- Lise C Noack
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, École Normale Supérieure (ENS) de Lyon, L'Université Claude Bernard (UCB) Lyon 1, CNRS, INRAE, 69342 Lyon, France; ,
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, École Normale Supérieure (ENS) de Lyon, L'Université Claude Bernard (UCB) Lyon 1, CNRS, INRAE, 69342 Lyon, France; ,
| |
Collapse
|
57
|
Coordinated Localization and Antagonistic Function of NtPLC3 and PI4P 5-Kinases in the Subapical Plasma Membrane of Tobacco Pollen Tubes. PLANTS 2020; 9:plants9040452. [PMID: 32260253 PMCID: PMC7238183 DOI: 10.3390/plants9040452] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/26/2020] [Accepted: 04/01/2020] [Indexed: 01/22/2023]
Abstract
Polar tip growth of pollen tubes is regulated by the membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), which localizes in a well-defined region of the subapical plasma membrane. How the PtdIns(4,5)P2 region is maintained is currently unclear. In principle, the formation of PtdIns(4,5)P2 by PI4P 5-kinases can be counteracted by phospholipase C (PLC), which hydrolyzes PtdIns(4,5)P2. Here, we show that fluorescence-tagged tobacco NtPLC3 displays a subapical plasma membrane distribution which frames that of fluorescence-tagged PI4P 5-kinases, suggesting that NtPLC3 may modulate PtdIns(4,5)P2-mediated processes in pollen tubes. The expression of a dominant negative NtPLC3 variant resulted in pollen tube tip swelling, consistent with a delimiting effect on PtdIns(4,5)P2 production. When pollen tube morphologies were assessed as a quantitative read-out for PtdIns(4,5)P2 function, NtPLC3 reverted the effects of a coexpressed PI4P 5-kinase, demonstrating that NtPLC3-mediated breakdown of PtdIns(4,5)P2 antagonizes the effects of PtdIns(4,5)P2 overproduction in vivo. When analyzed by spinning disc microscopy, fluorescence-tagged NtPLC3 displayed discontinuous membrane distribution omitting punctate areas of the membrane, suggesting that NtPLC3 is involved in the spatial restriction of plasma membrane domains also at the nanodomain scale. Together, the data indicate that NtPLC3 may contribute to the spatial restriction of PtdIns(4,5)P2 in the subapical plasma membrane of pollen tubes.
Collapse
|
58
|
LPIAT, a lyso-Phosphatidylinositol Acyltransferase, Modulates Seed Germination in Arabidopsis thaliana through PIP Signalling Pathways and is Involved in Hyperosmotic Response. Int J Mol Sci 2020; 21:ijms21051654. [PMID: 32121266 PMCID: PMC7084726 DOI: 10.3390/ijms21051654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/17/2020] [Accepted: 02/26/2020] [Indexed: 11/17/2022] Open
Abstract
Lyso-lipid acyltransferases are enzymes involved in various processes such as lipid synthesis and remodelling. Here, we characterized the activity of an acyltransferase from Arabidopsis thaliana (LPIAT). In vitro, this protein, expressed in Escherichia coli membrane, displayed a 2-lyso-phosphatidylinositol acyltransferase activity with a specificity towards saturated long chain acyl CoAs (C16:0- and C18:0-CoAs), allowing the remodelling of phosphatidylinositol. In planta, LPIAT gene was expressed in mature seeds and very transiently during seed imbibition, mostly in aleurone-like layer cells. Whereas the disruption of this gene did not alter the lipid composition of seed, its overexpression in leaves promoted a strong increase in the phosphatidylinositol phosphates (PIP) level without affecting the PIP2 content. The spatial and temporal narrow expression of this gene as well as the modification of PIP metabolism led us to investigate its role in the control of seed germination. Seeds from the lpiat mutant germinated faster and were less sensitive to abscisic acid (ABA) than wild-type or overexpressing lines. We also showed that the protective effect of ABA on young seedlings against dryness was reduced for lpiat line. In addition, germination of lpiat mutant seeds was more sensitive to hyperosmotic stress. All these results suggest a link between phosphoinositides and ABA signalling in the control of seed germination.
Collapse
|
59
|
Abstract
Plant cells use polarity cues to confine membrane proteins to specific localizations. In this issue of Developmental Cell, Marhava et al. (2020) describe a biochemical feedforward mechanism that reinforces polar protein localization and regulates membrane composition and endocytosis.
Collapse
Affiliation(s)
- Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, the Netherlands.
| |
Collapse
|
60
|
Colin LA, Jaillais Y. Phospholipids across scales: lipid patterns and plant development. CURRENT OPINION IN PLANT BIOLOGY 2020; 53:1-9. [PMID: 31580918 DOI: 10.1016/j.pbi.2019.08.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/09/2019] [Accepted: 08/14/2019] [Indexed: 05/18/2023]
Abstract
Phospholipids are major building blocks of cell membranes and as such they have a key structural role in maintaining their integrity as a hydrophobic barrier. However, phospholipids not only have structural but also regulatory functions that are involved in a myriad of signaling pathways. Integrative approaches in plants recently revealed that certain phospholipids have distinct patterns of accumulation at the tissue or organ scales, which turned out to be important cues in a developmental context. Using examples on different phospholipid classes, including phosphatidylinositol-4,5-bisphosphate, phosphatidylserine, phosphatidylcholine, and phosphatidic acid, we review how spatio-temporal lipid patterns arise at the organismal level and what are their downstream consequences on plant development.
Collapse
Affiliation(s)
- Leia Axelle Colin
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342 Lyon, France
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342 Lyon, France.
| |
Collapse
|
61
|
Fang F, Ye S, Tang J, Bennett MJ, Liang W. DWT1/DWL2 act together with OsPIP5K1 to regulate plant uniform growth in rice. THE NEW PHYTOLOGIST 2020; 225:1234-1246. [PMID: 31550392 DOI: 10.1111/nph.16216] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/14/2019] [Indexed: 05/27/2023]
Abstract
Uniform growth of the main shoot and tillers significantly influences rice plant architecture and grain yield. The WUSCHEL-related homeobox transcription factor DWT1 is a key regulator of this important agronomic trait, disruption of which causes enhanced main shoot dominance and tiller dwarfism by an unknown mechanism. Here, we have used yeast-two-hybrid screening to identify OsPIP5K1, a member of the rice phosphatidylinositol-4-phosphate 5-kinase family, as a protein that interacts with DWT1. Cytological analyses confirmed that DWT1 induces accumulation of OsPIP5K1 and its product PI(4,5)P2 , a phosphoinositide secondary messenger, in nuclear bodies. Mutation of OsPIP5K1 compounds the dwarf dwt1 phenotype but abolishes the main shoot dominance. Conversely, overexpression of OsPIP5K1 partially rescues dwt1 developmental defects. Furthermore, we showed that DWL2, the homologue of DWT1, is also able to interact with OsPIP5K1 and shares partial functional redundancy with DWT1 in controlling rice uniformity. Overall, our data suggest that nuclear localised OsPIP5K1 acts with DWT1 and/or DWL2 to coordinate the uniform growth of rice shoots, likely to be through nuclear phosphoinositide signals, and provides insights into the regulation of rice uniformity via a largely unexplored plant nuclear signalling pathway.
Collapse
Affiliation(s)
- Fang Fang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 20040, China
| | - Shiwei Ye
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 20040, China
| | - Jingyao Tang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 20040, China
| | - Malcolm J Bennett
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 20040, China
| |
Collapse
|
62
|
Marhava P, Aliaga Fandino AC, Koh SW, Jelínková A, Kolb M, Janacek DP, Breda AS, Cattaneo P, Hammes UZ, Petrášek J, Hardtke CS. Plasma Membrane Domain Patterning and Self-Reinforcing Polarity in Arabidopsis. Dev Cell 2020; 52:223-235.e5. [DOI: 10.1016/j.devcel.2019.11.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/08/2019] [Accepted: 11/21/2019] [Indexed: 10/25/2022]
|
63
|
Rodriguez-Furlan C, Minina EA, Hicks GR. Remove, Recycle, Degrade: Regulating Plasma Membrane Protein Accumulation. THE PLANT CELL 2019; 31:2833-2854. [PMID: 31628169 PMCID: PMC6925004 DOI: 10.1105/tpc.19.00433] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/23/2019] [Accepted: 10/17/2019] [Indexed: 05/21/2023]
Abstract
Interactions between plant cells and the environment rely on modulation of protein receptors, transporters, channels, and lipids at the plasma membrane (PM) to facilitate intercellular communication, nutrient uptake, environmental sensing, and directional growth. These functions are fine-tuned by cellular pathways maintaining or reducing particular proteins at the PM. Proteins are endocytosed, and their fate is decided between recycling and degradation to modulate localization, abundance, and activity. Selective autophagy is another pathway regulating PM protein accumulation in response to specific conditions or developmental signals. The mechanisms regulating recycling, degradation, and autophagy have been studied extensively, yet we are just now addressing their regulation and coordination. Here, we (1) provide context concerning regulation of protein accumulation, recycling, or degradation by overviewing endomembrane trafficking; (2) discuss pathways regulating recycling and degradation in terms of cellular roles and cargoes; (3) review plant selective autophagy and its physiological significance; (4) focus on two decision-making mechanisms: regulation of recycling versus degradation of PM proteins and coordination between autophagy and vacuolar degradation; and (5) identify future challenges.
Collapse
Affiliation(s)
- Cecilia Rodriguez-Furlan
- Department of Botany and Plant Sciences and Institute of Integrative Genome Biology, University of California, Riverside, California 92506
| | - Elena A Minina
- Uppsala Bio Center, Swedish University of Agricultural Sciences, Uppsala SE-75007, Sweden
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Glenn R Hicks
- Department of Botany and Plant Sciences and Institute of Integrative Genome Biology, University of California, Riverside, California 92506
- Uppsala Bio Center, Swedish University of Agricultural Sciences, Uppsala SE-75007, Sweden
| |
Collapse
|
64
|
Zhou Y, Dobritsa AA. Formation of aperture sites on the pollen surface as a model for development of distinct cellular domains. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 288:110222. [PMID: 31521218 DOI: 10.1016/j.plantsci.2019.110222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
Pollen grains are covered by the complex extracellular structure, called exine, which in most species is deposited on the pollen surface non-uniformly. Certain surface areas receive fewer exine deposits and develop into regions whose structure and morphology differ significantly from the rest of pollen wall. These regions are known as pollen apertures. Across species, pollen apertures can vary in their numbers, positions, and morphology, generating highly diverse patterns. The process of aperture formation involves establishment of cell polarity, formation of distinct plasma membrane domains, and deposition of extracellular materials at precise positions. Thus, pollen apertures present an excellent model for studying the development of cellular domains and formation of patterns at the single-cell level. Until very recently, the molecular mechanisms underlying the specification and formation of aperture sites were completely unknown. Here, we review recent advances in understanding of the molecular processes involved in pollen aperture formation, focusing on the molecular players identified through genetic approaches in the model plant Arabidopsis. We discuss a potential working model that describes the process of aperture formation, including specification of domains, creation of their defining features, and protection of these regions from exine deposition.
Collapse
Affiliation(s)
- Yuan Zhou
- Department of Molecular Genetics and Center for Applied Plant Sciences, Ohio State University, Columbus, OH, 43210, United States
| | - Anna A Dobritsa
- Department of Molecular Genetics and Center for Applied Plant Sciences, Ohio State University, Columbus, OH, 43210, United States.
| |
Collapse
|
65
|
Lu S, Liu H, Jin C, Li Q, Guo L. An efficient and comprehensive plant glycerolipids analysis approach based on high-performance liquid chromatography-quadrupole time-of-flight mass spectrometer. PLANT DIRECT 2019; 3:e00183. [PMID: 31832598 PMCID: PMC6858605 DOI: 10.1002/pld3.183] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 05/14/2023]
Abstract
In past two decades, numerous lipidomics approaches based on mass spectrometry with or without liquid chromatography separation have been established for identification and quantification of lipids in plants. In this study, we developed an efficient and comprehensive lipidomics approach based on UPLC with an Acquity UPLCTM BEH C18 column coupled to TripleTOF using ESI in positive ion mode and MS/MSALL scan for data collection. Lipid extract was prepared to 2 mg/ml solution according to dry tissue weight and mixed with 13 kinds of internal standards including PA, PC, PE, and PG. Each analysis required single injection of 5-10 μl lipid solvent and completed in 32 min. A target method dataset was generated using the LipidView software for prediction of the accurate mass of target lipid species. The dataset was uploaded into the PeakView to create processing datasets to search target lipid species, which achieved batch data processing of multiple samples for lipid species-specific identification and quantification. As proof of concept, we profiled the lipids of different tissues of rapeseed. Thirteen lipid classes including 218 glycerolipids were identified including 46 TAGs, 15 DAGs, 20 PCs, 24 PEs, 13 PGs, 14 PIs, 26 PSs, 12 PAs, 16 MGDGs, 16 DGDGs, 6 LysoPCs, 5 LysoPEs, and 5 LysoPGs. Together, our approach permits the analysis of glycerolipids in plant tissues with simplicity in sample analysis and data processing using UPLC-TripleTOF.
Collapse
Affiliation(s)
- Shaoping Lu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Hongbo Liu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Cheng Jin
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Qing Li
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Liang Guo
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
66
|
Menzel W, Stenzel I, Helbig LM, Krishnamoorthy P, Neumann S, Eschen-Lippold L, Heilmann M, Lee J, Heilmann I. A PAMP-triggered MAPK cascade inhibits phosphatidylinositol 4,5-bisphosphate production by PIP5K6 in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2019; 224:833-847. [PMID: 31318449 DOI: 10.1111/nph.16069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 06/30/2019] [Indexed: 05/24/2023]
Abstract
The phosphoinositide kinase PIP5K6 has recently been identified as a target for the mitogen-activated protein kinase (MAPK) MPK6. Phosphorylation of PIP5K6 inhibited the production of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2 ), impacting membrane trafficking and cell expansion in pollen tubes. Here, we analyzed whether MPK6 regulated PIP5K6 in vegetative Arabidopsis cells in response to the pathogen-associated molecular pattern (PAMP) flg22. Promoter-β-glucuronidase analyses and quantitative real-time reverse transcription polymerase chain reaction data show PIP5K6 expressed throughout Arabidopsis tissues. Upon flg22 treatment of transgenic protoplasts, the PIP5K6 protein was phosphorylated, and this modification was reduced for a PIP5K6 variant lacking MPK6-targeted residues, or in protoplasts from mpk6 mutants. Upon flg22 treatment of Arabidopsis plants, phosphoinositide levels mildly decreased and a fluorescent reporter for PtdIns(4,5)P2 displayed reduced plasma membrane association, contrasting with phosphoinositide increases reported for abiotic stress responses. Flg22 treatment and chemical induction of the upstream MAPK kinase, MKK5, decreased phosphatidylinositol 4-phosphate 5-kinase activity in mesophyll protoplasts, indicating that the flg22-activated MAPK cascade limited PtdIns(4,5)P2 production. PIP5K6 expression or PIP5K6 protein abundance changed only marginally upon flg22 treatment, consistent with post-translational control of PIP5K6 activity. PtdIns(4,5)P2 -dependent endocytosis of FM 4-64, PIN2 and the NADPH-oxidase RbohD were reduced upon flg22 treatment or MKK5 induction. Reduced RbohD-endocytosis was correlated with enhanced ROS production. We conclude that MPK6-mediated phosphorylation of PIP5K6 limits the production of a functional PtdIns(4,5)P2 pool upon PAMP perception.
Collapse
Affiliation(s)
- Wilhelm Menzel
- Department of Cellular Biochemistry, Institute of Biochemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Irene Stenzel
- Department of Cellular Biochemistry, Institute of Biochemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Lisa-Marie Helbig
- Department of Cellular Biochemistry, Institute of Biochemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Praveen Krishnamoorthy
- Department of Cellular Biochemistry, Institute of Biochemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Susanne Neumann
- Department of Cellular Biochemistry, Institute of Biochemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Lennart Eschen-Lippold
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Halle (Saale), 06120, Germany
| | - Mareike Heilmann
- Department of Cellular Biochemistry, Institute of Biochemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Justin Lee
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Halle (Saale), 06120, Germany
| | - Ingo Heilmann
- Department of Cellular Biochemistry, Institute of Biochemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), 06120, Germany
| |
Collapse
|
67
|
Rubilar-Hernández C, Osorio-Navarro C, Cabello F, Norambuena L. PI4KIII β Activity Regulates Lateral Root Formation Driven by Endocytic Trafficking to the Vacuole. PLANT PHYSIOLOGY 2019; 181:112-126. [PMID: 31285293 PMCID: PMC6716240 DOI: 10.1104/pp.19.00695] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 06/17/2019] [Indexed: 06/01/2023]
Abstract
Lateral roots (LRs) increase the contact area of the root with the rhizosphere and thereby improve water and nutrient uptake from the soil. LRs are generated either via a developmentally controlled mechanism or through induction by external stimuli, such as water and nutrient availability. Auxin regulates LR organogenesis via transcriptional activation by an auxin complex receptor. Endocytic trafficking to the vacuole positively regulates LR organogenesis independently of the auxin complex receptor in Arabidopsis (Arabidopsis thaliana). Here, we demonstrate that phosphatidylinositol 4-phosphate (PI4P) biosynthesis regulated by the phosphatidylinositol 4-kinases PI4KIIIβ1 and PI4KIIIβ2 is essential for the LR organogenesis driven by endocytic trafficking to the vacuole. Stimulation with Sortin2, a biomodulator that promotes protein targeting to the vacuole, altered PI4P abundance at both the plasma membrane and endosomal compartments, a process dependent on PI4K activity. These findings suggest that endocytic trafficking to the vacuole regulated by the enzymatic activities of PI4KIIIβ1 and PI4KIIIβ2 participates in a mechanism independent of the auxin complex receptor that regulates LR organogenesis in Arabidopsis. Surprisingly, loss-of-function of PI4KIIIβ1 and PI4KIIIβ2 induced both LR primordium formation and endocytic trafficking toward the vacuole. This LR primordium induction was alleviated by exogenous PI4P, suggesting that PI4KIIIβ1 and PI4KIIIβ2 activity constitutively negatively regulates LR primordium formation. Overall, this research demonstrates a dual role of PI4KIIIβ1 and PI4KIIIβ2 in LR primordium formation in Arabidopsis.
Collapse
Affiliation(s)
- Carlos Rubilar-Hernández
- Plant Molecular Biology Centre, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Claudio Osorio-Navarro
- Plant Molecular Biology Centre, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Francisca Cabello
- Plant Molecular Biology Centre, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Lorena Norambuena
- Plant Molecular Biology Centre, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| |
Collapse
|
68
|
Wang J, Deng Y, Zhou Y, Liu D, Yu H, Zhou Y, Lv J, Ou L, Li X, Ma Y, Dai X, Liu F, Zou X, Ouyang B, Li F. Full-length mRNA sequencing and gene expression profiling reveal broad involvement of natural antisense transcript gene pairs in pepper development and response to stresses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:763-783. [PMID: 31009127 DOI: 10.1111/tpj.14351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/18/2019] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
Pepper is an important vegetable with great economic value and unique biological features. In the past few years, significant development has been made toward understanding the huge complex pepper genome; however, pepper functional genomics has not been well studied. To better understand the pepper gene structure and pepper gene regulation, we conducted full-length mRNA sequencing by PacBio sequencing and obtained 57 862 high-quality full-length mRNA sequences derived from 18 362 previously annotated and 5769 newly detected genes. New gene models were built that combined the full-length mRNA sequences and corrected approximately 500 fragmented gene models from previous annotations. Based on the full-length mRNA, we identified 4114 and 5880 pepper genes forming natural antisense transcript (NAT) genes in-cis and in-trans, respectively. Most of these genes accumulate small RNAs in their overlapping regions. By analyzing these NAT gene expression patterns in our transcriptome data, we identified many NAT pairs responsive to a variety of biological processes in pepper. Pepper formate dehydrogenase 1 (FDH1), which is required for R-gene-mediated disease resistance, may be regulated by nat-siRNAs and participate in a positive feedback loop in salicylic acid biosynthesis during resistance responses. Several cis-NAT pairs and subgroups of trans-NAT genes were responsive to pepper pericarp and placenta development, which may play roles in capsanthin and capsaicin biosynthesis. Using a comparative genomics approach, the evolutionary mechanisms of cis-NATs were investigated, and we found that an increase in intergenic sequences accounted for the loss of most cis-NATs, while transposon insertion contributed to the formation of most new cis-NATs. OPEN RESEARCH BADGES: This article has earned an Open Data Badge for making publicly available the digitally-shareable data necessary to reproduce the reported results. The data is available at http://bigd.big.ac.cn/gsa Accession number, CRA001412.
Collapse
Affiliation(s)
- Jubin Wang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, HB, China
| | - Yingtian Deng
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, HB, China
| | - Yingjia Zhou
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, HB, China
| | - Dan Liu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, HB, China
| | - Huiyang Yu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, HB, China
| | - Yuhong Zhou
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, HB, China
| | - Junheng Lv
- Hunan Institute of Vegetable Research, Academy of Agricultural Sciences of Hunan Province, Changsha, HN, China
| | - Lijun Ou
- Hunan Institute of Vegetable Research, Academy of Agricultural Sciences of Hunan Province, Changsha, HN, China
| | - Xuefeng Li
- Hunan Institute of Vegetable Research, Academy of Agricultural Sciences of Hunan Province, Changsha, HN, China
| | - Yanqing Ma
- Hunan Institute of Vegetable Research, Academy of Agricultural Sciences of Hunan Province, Changsha, HN, China
| | - Xiongze Dai
- Hunan Institute of Vegetable Research, Academy of Agricultural Sciences of Hunan Province, Changsha, HN, China
| | - Feng Liu
- Hunan Institute of Vegetable Research, Academy of Agricultural Sciences of Hunan Province, Changsha, HN, China
| | - Xuexiao Zou
- Hunan Institute of Vegetable Research, Academy of Agricultural Sciences of Hunan Province, Changsha, HN, China
| | - Bo Ouyang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, HB, China
| | - Feng Li
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, HB, China
| |
Collapse
|
69
|
Kato M, Tsuge T, Maeshima M, Aoyama T. Arabidopsis PCaP2 modulates the phosphatidylinositol 4,5-bisphosphate signal on the plasma membrane and attenuates root hair elongation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:610-625. [PMID: 30604455 DOI: 10.1111/tpj.14226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/12/2018] [Accepted: 12/17/2018] [Indexed: 05/22/2023]
Abstract
Phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2 ] serves as a subcellular signal on the plasma membrane, mediating various cell-polarized phenomena including polar cell growth. Here, we investigated the involvement of Arabidopsis thaliana PCaP2, a plant-unique plasma membrane protein with phosphoinositide-binding activity, in PtdIns(4,5)P2 signaling for root hair tip growth. The long-root-hair phenotype of the pcap2 knockdown mutant was found to stem from its higher average root hair elongation rate compared with the wild type and to counteract the low average rate caused by a defect in the PtdIns(4,5)P2 -producing enzyme gene PIP5K3. On the plasma membrane of elongating root hairs, the PCaP2 promoter-driven PCaP2-green fluorescent protein (GFP), which complemented the pcap2 mutant phenotype, overlapped with the PtdIns(4,5)P2 marker 2xCHERRY-2xPHPLC in the subapical region, but not at the apex, suggesting that PCaP2 attenuates root hair elongation via PtdIns(4,5)P2 signaling on the subapical plasma membrane. Consistent with this, a GFP fusion with the PCaP2 phosphoinositide-binding domain PCaP2N23 , root hair-specific overexpression of which caused a low average root hair elongation rate, localized more intense to the subapical plasma membrane than to the apical plasma membrane similar to PCaP2-GFP. Inducibly overexpressed PCaP2-GFP, but not its derivative lacking the PCaP2N23 domain, replaced 2xCHERRY-2xPHPLC on the plasma membrane in root meristematic epidermal cells, and suppressed FM4-64 internalization in elongating root hairs. Moreover, inducibly overexpressed PCaP2 arrested an endocytic process of PIN2-GFP recycling. Based on these results, we conclude that PCaP2 functions as a negative modulator of PtdIns(4,5)P2 signaling on the subapical plasma membrane probably through competitive binding to PtdIns(4,5)P2 and attenuates root hair elongation.
Collapse
Affiliation(s)
- Mariko Kato
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Tomohiko Tsuge
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Masayoshi Maeshima
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Nagoya, Aichi, 464-8601, Japan
| | - Takashi Aoyama
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| |
Collapse
|
70
|
Shimada TL, Betsuyaku S, Inada N, Ebine K, Fujimoto M, Uemura T, Takano Y, Fukuda H, Nakano A, Ueda T. Enrichment of Phosphatidylinositol 4,5-Bisphosphate in the Extra-Invasive Hyphal Membrane Promotes Colletotrichum Infection of Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2019; 60:1514-1524. [PMID: 30989198 DOI: 10.1093/pcp/pcz058] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
Pathogenic fungi from the genus Colletotrichum form invasive hyphae; the hyphae are surrounded by an extra-invasive hyphal membrane (EIHM), which is continuous with the plant plasma membrane. Although the EIHM plays a crucial role as the interface between plant and fungal cells, its precise function during Colletotrichum infection remains elusive. Here, we show that enrichment of phosphoinositides (PIs) has a crucial role in Colletotrichum infection. We observed the localization of PIs in Arabidopsis thaliana cells infected by A. thaliana-adapted Colletotrichum higginsianum (Ch), and found that phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] was extremely enriched in the EIHM during Ch infection. We also found that phosphatidylinositol 4-phosphate-5 kinase (PIP5K), which catalyzes production of PI(4,5)P2, also accumulated at the EIHM. The overexpression of PIP5K3 in A. thaliana increased hyphal invasion by Ch. An exocytic factor, EXO84b, was targeted to the EIHM during Ch infection, although endocytic factors such as CLATHRIN LIGHT CHAIN 2 and FLOTILLIN 1 did not. Intriguingly, the interfacial membranes between A. thaliana and powdery mildew- or downy mildew-causing pathogens did not accumulate PI(4,5)P2. These results suggest that Ch could modify the PI(4,5)P2 levels in the EIHM to increase the exocytic membrane/protein supply of the EIHM for successful infection. Our results also suggest that PI(4,5)P2 biosynthesis is a promising target for improved defense against Colletotrichum infection.
Collapse
Affiliation(s)
- Takashi L Shimada
- Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, Japan
- Department of Applied Biological Chemistry, Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba, Japan
| | - Shigeyuki Betsuyaku
- Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho Kawaguchi, Saitama, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
- Present address: Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Noriko Inada
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai-shi, Osaka, Japan
| | - Kazuo Ebine
- Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, Japan
- Department of Basic Biology, SOKENDAI (Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - Masaru Fujimoto
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Tomohiro Uemura
- Graduate School of Humanities and Sciences, Ochanomizu University, Bunkyo-ku, Tokyo, Japan
| | - Yoshitaka Takano
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, Japan
| | - Hiroo Fukuda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Akihiko Nakano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
- Live Cell Super-resolution Live Imaging Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama, Japan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, Japan
- Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho Kawaguchi, Saitama, Japan
- Department of Basic Biology, SOKENDAI (Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| |
Collapse
|
71
|
Chen X, Li L, Xu B, Zhao S, Lu P, He Y, Ye T, Feng YQ, Wu Y. Phosphatidylinositol-specific phospholipase C2 functions in auxin-modulated root development. PLANT, CELL & ENVIRONMENT 2019; 42:1441-1457. [PMID: 30496625 DOI: 10.1111/pce.13492] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 11/08/2018] [Accepted: 11/24/2018] [Indexed: 05/11/2023]
Abstract
Nine phosphatidylinositol-specific phospholipases C (PLCs) have been identified in the Arabidopsis genome; among the importance of PLC2 in reproductive development is significant. However, the role of PLC2 in vegetative development such as in root growth is elusive. Here, we report that plc2 mutants displayed multiple auxin-defective phenotypes in root development, including short primary root, impaired root gravitropism, and inhibited root hair growth. The DR5:GUS expression and the endogenous indole-3-acetic acid (IAA) content, as well as the responses of a set of auxin-related genes to exogenous IAA treatment, were all decreased in plc2 seedlings, suggesting the influence of PLC2 on auxin accumulation and signalling. The root elongation of plc2 mutants was less sensitive to the high concentration of exogenous auxins, and the application of 1-naphthaleneacetic acid or the auxin transport inhibitor N-1-naphthylphthalamic acid could rescue the root hair growth of plc2 mutants. In addition, the PIN2 polarity and cycling in plc2 root epidermis cells were altered. These results demonstrate a critical role of PLC2 in auxin-mediated root development in Arabidopsis, in which PLC2 influences the polar distribution of PIN2.
Collapse
Affiliation(s)
- Xi Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lin Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Buxian Xu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Shujuan Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Piaoying Lu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yuqing He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Tiantian Ye
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, China
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, China
| | - Yan Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
72
|
Caillaud MC. Anionic Lipids: A Pipeline Connecting Key Players of Plant Cell Division. FRONTIERS IN PLANT SCIENCE 2019; 10:419. [PMID: 31110508 PMCID: PMC6499208 DOI: 10.3389/fpls.2019.00419] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/19/2019] [Indexed: 05/23/2023]
Abstract
How cells position their division plane is a critical component of cell division. Indeed, it defines whether the two daughter cells divide symmetrically (with equal volumes) or not, and as such is critical for cell differentiation and lineage specification across eukaryotes. However, oriented cell divisions are of special significance for organisms with cell walls, such as plants, because their cells are embedded and cannot relocate. Correctly positioning the division plane is therefore of prevailing importance in plants, as it controls not only the occurrence of asymmetric cell division, but also tissue morphogenesis and organ integrity. While cytokinesis is executed in radically different manners in animals and plants, they both rely on the dynamic interplay between the cytoskeleton and membrane trafficking to precisely deliver molecular components to the future site of cell division. Recent research has shown that strict regulation of the levels and distribution of anionic lipids, which are minor components of the cell membrane's lipids, is required for successful cytokinesis in non-plant organisms. This review focused on the recent evidence pointing to whether such signaling lipids have roles in plant cell division.
Collapse
Affiliation(s)
- Marie-Cécile Caillaud
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon, France
| |
Collapse
|
73
|
Hirano T, Sato MH. Diverse Physiological Functions of FAB1 and Phosphatidylinositol 3,5-Bisphosphate in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:274. [PMID: 30967882 PMCID: PMC6439278 DOI: 10.3389/fpls.2019.00274] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/19/2019] [Indexed: 06/09/2023]
Abstract
Biological membranes are predominantly composed of structural glycerophospholipids such as phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol. Of the membrane glycerophospholipids, phosphatidylinositol (PtdIns) and its phosphorylated derivatives (phosphoinositides) constitute a minor fraction yet exert a wide variety of regulatory functions in eukaryotic cells. Phosphoinositides include PtdIns, three PtdIns monophosphates, three PtdIns bisphosphates, and one PtdIns triphosphate, in which the hydroxy groups of the inositol head group of PtdIns are phosphorylated by specific lipid kinases. Of all the phosphoinositides in eukaryotic cells, phosphatidylinositol 3,5-bisphosphate [PtdIns(3,5)P2] constitutes the smallest fraction, yet it is a crucial lipid in animal and yeast membrane trafficking systems. Here, we review the recent findings on the physiological functions of PtdIns(3,5)P2 and its enzyme-formation of aploid and binucleate cells (FAB1)-along with the regulatory proteins of FAB1 and the downstream effector proteins of PtdIns(3,5)P2 in Arabidopsis.
Collapse
|
74
|
Ivanov S, Harrison MJ. Accumulation of phosphoinositides in distinct regions of the periarbuscular membrane. THE NEW PHYTOLOGIST 2019; 221:2213-2227. [PMID: 30347433 DOI: 10.1111/nph.15553] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/15/2018] [Indexed: 05/11/2023]
Abstract
Phosphoinositides and phosphatidic acid are small anionic lipids that comprise a minor proportion of total membrane lipids in eukaryotic cells but influence a broad range of cellular processes including endomembrane trafficking, signaling, exocytosis and endocytosis. To investigate the spatial distribution of phosphoinositides during arbuscular mycorrhizal symbiosis, we generated fluorescent reporters of PI(4,5)P2 and PI4P, as well as phosphatidic acid and diacylglycerol and used them to monitor lipid distribution on the cytoplasmic side of membrane bilayers in colonized cortical cells. The PI4P reporter accumulated strongly on the periarbuscular membrane (PAM) and transiently labeled Golgi bodies, while the PA reporter showed differential labeling of endomembranes and the PAM. Surprisingly, the PI(4,5)P2 reporter accumulated in small, discrete regions of the PAM on the arbuscule trunks, frequently in two regions on opposing sides of the hypha. A mutant reporter with reduced PI(4,5)P2 binding capacity did not show these accumulations. The PI(4,5)P2 -rich regions were detected at all phases of arbuscule development following branching, co-localized with membrane marker proteins potentially indicating high membrane bilayer content, and were associated with an alteration in morphology of the hypha. A possible analogy to the biotrophic interfacial membrane complex formed in rice infected with Magnaporthe orzyae is discussed.
Collapse
Affiliation(s)
- Sergey Ivanov
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY, 14853, USA
| | - Maria J Harrison
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY, 14853, USA
| |
Collapse
|
75
|
Wang P, Shen L, Guo J, Jing W, Qu Y, Li W, Bi R, Xuan W, Zhang Q, Zhang W. Phosphatidic Acid Directly Regulates PINOID-Dependent Phosphorylation and Activation of the PIN-FORMED2 Auxin Efflux Transporter in Response to Salt Stress. THE PLANT CELL 2019; 31:250-271. [PMID: 30464035 PMCID: PMC6391703 DOI: 10.1105/tpc.18.00528] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/22/2018] [Accepted: 11/15/2018] [Indexed: 05/05/2023]
Abstract
Remodeling of auxin distribution during the integration of plant growth responses with the environment requires the precise control of auxin influx and efflux transporters. The plasma membrane-localized PIN-FORMED (PIN) proteins facilitate auxin efflux from cells, and their activity is regulated by reversible phosphorylation. How PIN modulates plant cellular responses to external stresses and whether its activity is coordinated by phospholipids remain unclear. Here, we reveal that, in Arabidopsis (Arabidopsis thaliana), the phosphatidic acid (PA)-regulated PINOID (PID) kinase is a crucial modulator of PIN2 activity and auxin redistribution in response to salt stress. Under salt stress, loss of phospholipase D function impaired auxin redistribution and resulted in markedly reduced primary root growth; these effects were reversed by exogenous PA. The phospholipase D-derived PA interacted with PID and increased PID-dependent phosphorylation of PIN2, which activated auxin efflux and altered auxin accumulation, promoting root growth when exposed to salt stress. Ablation of the PA binding motif not only diminished PID accumulation at the plasma membrane but also abolished PA-promoted PID phosphorylation of PIN2 and its function in coping with salt stress; however, this ablation did not affect inflorescence and cotyledon development or PIN2-dependent gravitropic and halotropic responses. Our data indicate a role for PA in coupling extracellular salt signaling to PID-directed PIN2 phosphorylation and polar auxin transport, highlighting the importance of lipid-protein interactions in the spatiotemporal regulation of auxin signaling.
Collapse
Affiliation(s)
- Peipei Wang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Like Shen
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinhe Guo
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Wen Jing
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yana Qu
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Laboratory Centre of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenyu Li
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Rongrong Bi
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Xuan
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Qun Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenhua Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
76
|
Physiological Functions of Phosphoinositide-Modifying Enzymes and Their Interacting Proteins in Arabidopsis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018. [PMID: 30499079 DOI: 10.1007/5584_2018_295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
The integrity of cellular membranes is maintained not only by structural phospholipids such as phosphatidylcholine and phosphatidylethanolamine, but also by regulatory phospholipids, phosphatidylinositol phosphates (phosphoinositides). Although phosphoinositides constitute minor membrane phospholipids, they exert a wide variety of regulatory functions in all eukaryotic cells. They act as key markers of membrane surfaces that determine the biological integrity of cellular compartments to recruit various phosphoinositide-binding proteins. This review focuses on recent progress on the significance of phosphoinositides, their modifying enzymes, and phosphoinositide-binding proteins in Arabidopsis.
Collapse
|
77
|
Mamode Cassim A, Gouguet P, Gronnier J, Laurent N, Germain V, Grison M, Boutté Y, Gerbeau-Pissot P, Simon-Plas F, Mongrand S. Plant lipids: Key players of plasma membrane organization and function. Prog Lipid Res 2018; 73:1-27. [PMID: 30465788 DOI: 10.1016/j.plipres.2018.11.002] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 12/29/2022]
Abstract
The plasma membrane (PM) is the biological membrane that separates the interior of all cells from the outside. The PM is constituted of a huge diversity of proteins and lipids. In this review, we will update the diversity of molecular species of lipids found in plant PM. We will further discuss how lipids govern global properties of the plant PM, explaining that plant lipids are unevenly distributed and are able to organize PM in domains. From that observation, it emerges a complex picture showing a spatial and multiscale segregation of PM components. Finally, we will discuss how lipids are key players in the function of PM in plants, with a particular focus on plant-microbe interaction, transport and hormone signaling, abiotic stress responses, plasmodesmata function. The last chapter is dedicated to the methods that the plant membrane biology community needs to develop to get a comprehensive understanding of membrane organization in plants.
Collapse
Affiliation(s)
- Adiilah Mamode Cassim
- Laboratoire de Biogenèse Membranaire (LBM), CNRS, University of Bordeaux, UMR 5200, F-33882 Villenave d'Ornon, France
| | - Paul Gouguet
- Laboratoire de Biogenèse Membranaire (LBM), CNRS, University of Bordeaux, UMR 5200, F-33882 Villenave d'Ornon, France
| | - Julien Gronnier
- Laboratoire de Biogenèse Membranaire (LBM), CNRS, University of Bordeaux, UMR 5200, F-33882 Villenave d'Ornon, France
| | - Nelson Laurent
- Agroécologie, AgroSup Dijon, INRA, University of Bourgogne Franche-Comté, F-21000 Dijon, ERL 6003 CNRS, Dijon, France
| | - Véronique Germain
- Laboratoire de Biogenèse Membranaire (LBM), CNRS, University of Bordeaux, UMR 5200, F-33882 Villenave d'Ornon, France
| | - Magali Grison
- Laboratoire de Biogenèse Membranaire (LBM), CNRS, University of Bordeaux, UMR 5200, F-33882 Villenave d'Ornon, France
| | - Yohann Boutté
- Laboratoire de Biogenèse Membranaire (LBM), CNRS, University of Bordeaux, UMR 5200, F-33882 Villenave d'Ornon, France
| | - Patricia Gerbeau-Pissot
- Agroécologie, AgroSup Dijon, INRA, University of Bourgogne Franche-Comté, F-21000 Dijon, ERL 6003 CNRS, Dijon, France
| | - Françoise Simon-Plas
- Agroécologie, AgroSup Dijon, INRA, University of Bourgogne Franche-Comté, F-21000 Dijon, ERL 6003 CNRS, Dijon, France.
| | - Sébastien Mongrand
- Laboratoire de Biogenèse Membranaire (LBM), CNRS, University of Bordeaux, UMR 5200, F-33882 Villenave d'Ornon, France.
| |
Collapse
|
78
|
Strobl SM, Kischka D, Heilmann I, Mouille G, Schneider S. The Tonoplastic Inositol Transporter INT1 From Arabidopsis thaliana Impacts Cell Elongation in a Sucrose-Dependent Way. FRONTIERS IN PLANT SCIENCE 2018; 9:1657. [PMID: 30505313 PMCID: PMC6250803 DOI: 10.3389/fpls.2018.01657] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 10/25/2018] [Indexed: 05/29/2023]
Abstract
The tonoplastic inositol transporter INT1 is the only known transport protein in Arabidopsis that facilitates myo-inositol import from the vacuole into the cytoplasm. Impairment of the release of vacuolar inositol by knockout of INT1 results in a severe inhibition of cell elongation in roots as well as in etiolated hypocotyls. Importantly, a more strongly reduced cell elongation was observed when sucrose was supplied in the growth medium, and this sucrose-dependent effect can be complemented by the addition of exogenous myo-inositol. Comparing int1 mutants (defective in transport) with mutants defective in myo-inositol biosynthesis (mips1 mutants) revealed that the sucrose-induced inhibition in cell elongation does not just depend on inositol depletion. Secondary effects as observed for altered availability of inositol in biosynthesis mutants, as disturbed membrane turnover, alterations in PIN protein localization or alterations in inositol-derived signaling molecules could be ruled out to be responsible for impairing the cell elongation in int1 mutants. Although the molecular mechanism remains to be elucidated, our data implicate a crucial role of INT1-transported myo-inositol in regulating cell elongation in a sucrose-dependent manner and underline recent reports of regulatory roles for sucrose and other carbohydrate intermediates as metabolic semaphores.
Collapse
Affiliation(s)
- Sabrina Maria Strobl
- Molecular Plant Physiology, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Dominik Kischka
- Molecular Plant Physiology, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Ingo Heilmann
- Department of Cellular Biochemistry, Institute for Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Grégory Mouille
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris Saclay, Versailles, France
| | - Sabine Schneider
- Molecular Plant Physiology, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
79
|
Apostolakos P, Livanos P, Giannoutsou E, Panteris E, Galatis B. The intracellular and intercellular cross-talk during subsidiary cell formation in Zea mays: existing and novel components orchestrating cell polarization and asymmetric division. ANNALS OF BOTANY 2018; 122:679-696. [PMID: 29346521 PMCID: PMC6215039 DOI: 10.1093/aob/mcx193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/25/2017] [Indexed: 05/03/2023]
Abstract
Background Formation of stomatal complexes in Poaceae is the outcome of three asymmetric and one symmetric cell division occurring in particular leaf protodermal cells. In this definite sequence of cell division events, the generation of subsidiary cells is of particular importance and constitutes an attractive model for studying local intercellular stimulation. In brief, an induction stimulus emitted by the guard cell mother cells (GMCs) triggers a series of polarization events in their laterally adjacent protodermal cells. This signal determines the fate of the latter cells, forcing them to divide asymmetrically and become committed to subsidiary cell mother cells (SMCs). Scope This article summarizes old and recent structural and molecular data mostly derived from Zea mays, focusing on the interplay between GMCs and SMCs, and on the unique polarization sequence occurring in both cell types. Recent evidence suggests that auxin operates as an inducer of SMC polarization/asymmetric division. The intercellular auxin transport is facilitated by the distribution of a specific transmembrane auxin carrier and requires reactive oxygen species (ROS). Interestingly, the local differentiation of the common cell wall between SMCs and GMCs is one of the earliest features of SMC polarization. Leucine-rich repeat receptor-like kinases, Rho-like plant GTPases as well as the SCAR/WAVE regulatory complex also participate in the perception of the morphogenetic stimulus and have been implicated in certain polarization events in SMCs. Moreover, the transduction of the auxin signal and its function are assisted by phosphatidylinositol-3-kinase and the products of the catalytic activity of phospholipases C and D. Conclusion In the present review, the possible role(s) of each of the components in SMC polarization and asymmetric division are discussed, and an overall perspective on the mechanisms beyond these phenomena is provided.
Collapse
Affiliation(s)
- P Apostolakos
- Department of Botany, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - P Livanos
- Department of Botany, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - E Giannoutsou
- Department of Botany, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - E Panteris
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - B Galatis
- Department of Botany, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
80
|
Zhang Q, van Wijk R, Zarza X, Shahbaz M, van Hooren M, Guardia A, Scuffi D, García-Mata C, Van den Ende W, Hoffmann-Benning S, Haring MA, Laxalt AM, Munnik T. Knock-Down of Arabidopsis PLC5 Reduces Primary Root Growth and Secondary Root Formation While Overexpression Improves Drought Tolerance and Causes Stunted Root Hair Growth. PLANT & CELL PHYSIOLOGY 2018; 59:2004-2019. [PMID: 30107538 DOI: 10.1093/pcp/pcy120] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/14/2018] [Indexed: 05/12/2023]
Abstract
Phospholipase C (PLC) is a well-known signaling enzyme in metazoans that hydrolyzes phosphatidylinositol 4,5-bisphosphate (PIP2) to produce inositol 1,4,5-trisphosphate and diacylglycerol as second messengers involved in mutiple processes. Plants contain PLC too, but relatively little is known about its function there. The model system Arabidopsis thaliana contains nine PLC genes. Reversed genetics have implicated several roles for PLCs in plant development and stress signaling. Here, PLC5 is functionally addressed. Promoter-β-glucuronidase (GUS) analyses revealed expression in roots, leaves and flowers, predominantly in vascular tissue, most probably phloem companion cells, but also in guard cells, trichomes and root apical meristem. Only one plc5-1 knock-down mutant was obtained, which developed normally but grew more slowly and exhibited reduced primary root growth and decreased lateral root numbers. These phenotypes could be complemented by expressing the wild-type gene behind its own promoter. Overexpression of PLC5 (PLC5-OE) using the UBQ10 promoter resulted in reduced primary and secondary root growth, stunted root hairs, decreased stomatal aperture and improved drought tolerance. PLC5-OE lines exhibited strongly reduced phosphatidylinositol 4-monophosphate (PIP) and PIP2 levels and increased amounts of phosphatidic acid, indicating enhanced PLC activity in vivo. Reduced PIP2 levels and stunted root hair growth of PLC5-OE seedlings could be recovered by inducible overexpression of a root hair-specific PIP 5-kinase, PIP5K3. Our results show that PLC5 is involved in primary and secondary root growth and that its overexpression improves drought tolerance. Independently, we provide new evidence that PIP2 is essential for the polar tip growth of root hairs.
Collapse
Affiliation(s)
- Qianqian Zhang
- Section Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, XH, The Netherlands
- Section Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, XH, The Netherlands
| | - Ringo van Wijk
- Section Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, XH, The Netherlands
- Section Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, XH, The Netherlands
| | - Xavier Zarza
- Section Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, XH, The Netherlands
- Section Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, XH, The Netherlands
| | - Muhammad Shahbaz
- Section Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, XH, The Netherlands
| | - Max van Hooren
- Section Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, XH, The Netherlands
| | - Aisha Guardia
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Denise Scuffi
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Carlos García-Mata
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology, University of Leuven, Leuven, Belgium
| | - Susanne Hoffmann-Benning
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Michel A Haring
- Section Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, XH, The Netherlands
| | - Ana M Laxalt
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Teun Munnik
- Section Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, XH, The Netherlands
- Section Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, XH, The Netherlands
| |
Collapse
|
81
|
Lee BH, Weber ZT, Zourelidou M, Hofmeister BT, Schmitz RJ, Schwechheimer C, Dobritsa AA. Arabidopsis Protein Kinase D6PKL3 Is Involved in the Formation of Distinct Plasma Membrane Aperture Domains on the Pollen Surface. THE PLANT CELL 2018; 30:2038-2056. [PMID: 30150313 PMCID: PMC6181024 DOI: 10.1105/tpc.18.00442] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/09/2018] [Accepted: 08/23/2018] [Indexed: 05/22/2023]
Abstract
Certain regions on the surfaces of developing pollen grains exhibit very limited deposition of pollen wall exine. These regions give rise to pollen apertures, which are highly diverse in their patterns and specific for individual species. Arabidopsis thaliana pollen develops three equidistant longitudinal apertures. The precision of aperture formation suggests that, to create them, pollen employs robust mechanisms that generate distinct cellular domains. To identify players involved in this mechanism, we screened natural Arabidopsis accessions and discovered one accession, Martuba, whose apertures form abnormally due to the disruption of the protein kinase D6PKL3. During pollen development, D6PKL3 accumulates at the three plasma membrane domains underlying future aperture sites. Both D6PKL3 localization and aperture formation require kinase activity. Proper D6PKL3 localization is also dependent on a polybasic motif for phosphoinositide interactions, and we identified two phosphoinositides that are specifically enriched at the future aperture sites. The other known aperture factor, INAPERTURATE POLLEN1, fails to aggregate at the aperture sites in d6pkl3 mutants, changes its localization when D6PKL3 is mislocalized, and, in turn, affects D6PKL3 localization. The discovery of aperture factors provides important insights into the mechanisms cells utilize to generate distinct membrane domains, develop cell polarity, and pattern their surfaces.
Collapse
Affiliation(s)
- Byung Ha Lee
- Department of Molecular Genetics and Center for Applied Plant Science, Ohio State University, Columbus, Ohio 43210
| | - Zachary T Weber
- Department of Molecular Genetics and Center for Applied Plant Science, Ohio State University, Columbus, Ohio 43210
| | - Melina Zourelidou
- Plant Systems Biology, Technische Universität München, 85354 Freising, Germany
| | | | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, Georgia 30602
| | - Claus Schwechheimer
- Plant Systems Biology, Technische Universität München, 85354 Freising, Germany
| | - Anna A Dobritsa
- Department of Molecular Genetics and Center for Applied Plant Science, Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
82
|
Hong Y, Yuan S, Sun L, Wang X, Hong Y. Cytidinediphosphate-diacylglycerol synthase 5 is required for phospholipid homeostasis and is negatively involved in hyperosmotic stress tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:1038-1050. [PMID: 29604140 DOI: 10.1111/tpj.13916] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 03/12/2018] [Accepted: 03/22/2018] [Indexed: 06/08/2023]
Abstract
Cytidinediphosphate diacylglycerol synthase (CDS) uses phosphatidic acid (PA) and cytidinetriphosphate to produce cytidinediphosphate-diacylglycerol, an intermediate for phosphatidylglycerol (PG) and phosphatidylinositol (PI) synthesis. This study shows that CDS5, one of the five CDSs of the Oryza sativa (rice) genome, has multifaceted effects on plant growth and stress responses. The loss of CDS5 resulted in a decrease in PG and PI levels, defective thylakoid membranes, pale leaves in seedlings and growth retardation. In addition, the loss of CDS5 led to an elevated PA level and enhanced hyperosmotic tolerance. The inhibition of phospholipase D (PLD)-derived PA formation in cds5 restored the hyperosmotic stress tolerance of the mutant phenotype to that of the wild type, suggesting that CDS5 functions as a suppressor in PLD-derived PA signaling and negatively affects hyperosmotic stress tolerance.
Collapse
Affiliation(s)
- Yue Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shu Yuan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Linxiao Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuemin Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Department of Biology, University of Missouri, St. Louis, MO, 63121, USA
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Yueyun Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
83
|
Adamowski M, Narasimhan M, Kania U, Glanc M, De Jaeger G, Friml J. A Functional Study of AUXILIN-LIKE1 and 2, Two Putative Clathrin Uncoating Factors in Arabidopsis. THE PLANT CELL 2018; 30:700-716. [PMID: 29511054 PMCID: PMC5894831 DOI: 10.1105/tpc.17.00785] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/16/2018] [Accepted: 03/05/2018] [Indexed: 05/20/2023]
Abstract
Clathrin-mediated endocytosis (CME) is a cellular trafficking process in which cargoes and lipids are internalized from the plasma membrane into vesicles coated with clathrin and adaptor proteins. CME is essential for many developmental and physiological processes in plants, but its underlying mechanism is not well characterized compared with that in yeast and animal systems. Here, we searched for new factors involved in CME in Arabidopsis thaliana by performing tandem affinity purification of proteins that interact with clathrin light chain, a principal component of the clathrin coat. Among the confirmed interactors, we found two putative homologs of the clathrin-coat uncoating factor auxilin previously described in non-plant systems. Overexpression of AUXILIN-LIKE1 and AUXILIN-LIKE2 in Arabidopsis caused an arrest of seedling growth and development. This was concomitant with inhibited endocytosis due to blocking of clathrin recruitment after the initial step of adaptor protein binding to the plasma membrane. By contrast, auxilin-like1/2 loss-of-function lines did not present endocytosis-related developmental or cellular phenotypes under normal growth conditions. This work contributes to the ongoing characterization of the endocytotic machinery in plants and provides a robust tool for conditionally and specifically interfering with CME in Arabidopsis.
Collapse
Affiliation(s)
| | | | - Urszula Kania
- IST Austria, 3400 Klosterneuburg, Austria
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Matouš Glanc
- IST Austria, 3400 Klosterneuburg, Austria
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 12844 Prague, Czech Republic
| | - Geert De Jaeger
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Jiří Friml
- IST Austria, 3400 Klosterneuburg, Austria
| |
Collapse
|
84
|
Stanislas T, Platre MP, Liu M, Rambaud-Lavigne LES, Jaillais Y, Hamant O. A phosphoinositide map at the shoot apical meristem in Arabidopsis thaliana. BMC Biol 2018; 16:20. [PMID: 29415713 PMCID: PMC5803925 DOI: 10.1186/s12915-018-0490-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/19/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND In plants, the shoot apical meristem (SAM) has two main functions, involving the production of all aerial organs on the one hand and self-maintenance on the other, allowing the production of organs during the entire post-embryonic life of the plant. Transcription factors, microRNA, hormones, peptides and forces have been involved in meristem function. Whereas phosphatidylinositol phosphates (PIPs) have been involved in almost all biological functions, including stem cell maintenance and organogenesis in animals, the processes in meristem biology to which PIPs contribute still need to be delineated. RESULTS Using biosensors for PI4P and PI(4,5)P2, the two most abundant PIPs at the plasma membrane, we reveal that meristem functions are associated with a stereotypical PIP tissue-scale pattern, with PI(4,5)P2 always displaying a more clear-cut pattern than PI4P. Using clavata3 and pin-formed1 mutants, we show that stem cell maintenance is associated with reduced levels of PIPs. In contrast, high PIP levels are signatures for organ-meristem boundaries. Interestingly, this pattern echoes that of cortical microtubules and stress anisotropy at the meristem. Using ablations and pharmacological approaches, we further show that PIP levels can be increased when the tensile stress pattern is altered. Conversely, we find that katanin mutant meristems, with increased isotropy of microtubule arrays and slower response to mechanical perturbations, exhibit reduced PIP gradients within the SAM. Comparable PIP pattern defects were observed in phospholipase A3β overexpressor lines, which largely phenocopy katanin mutants at the whole plant level. CONCLUSIONS Using phospholipid biosensors, we identified a stereotypical PIP accumulation pattern in the SAM that negatively correlates with stem cell maintenance and positively correlates with organ-boundary establishment. While other cues are very likely to contribute to the final PIP pattern, we provide evidence that the patterns of PIP, cortical microtubules and mechanical stress are positively correlated, suggesting that the PIP pattern, and its reproducibility, relies at least in part on the mechanical status of the SAM.
Collapse
Affiliation(s)
- Thomas Stanislas
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRA, CNRS, 46 Allée d'Italie, 69364, Lyon, Cedex 07, France
| | - Matthieu Pierre Platre
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRA, CNRS, 46 Allée d'Italie, 69364, Lyon, Cedex 07, France
| | - Mengying Liu
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRA, CNRS, 46 Allée d'Italie, 69364, Lyon, Cedex 07, France
| | - Léa E S Rambaud-Lavigne
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRA, CNRS, 46 Allée d'Italie, 69364, Lyon, Cedex 07, France
| | - Yvon Jaillais
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRA, CNRS, 46 Allée d'Italie, 69364, Lyon, Cedex 07, France
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRA, CNRS, 46 Allée d'Italie, 69364, Lyon, Cedex 07, France.
| |
Collapse
|
85
|
WRKY23 is a component of the transcriptional network mediating auxin feedback on PIN polarity. PLoS Genet 2018; 14:e1007177. [PMID: 29377885 PMCID: PMC5805370 DOI: 10.1371/journal.pgen.1007177] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/08/2018] [Accepted: 12/29/2017] [Indexed: 11/19/2022] Open
Abstract
Auxin is unique among plant hormones due to its directional transport that is mediated by the polarly distributed PIN auxin transporters at the plasma membrane. The canalization hypothesis proposes that the auxin feedback on its polar flow is a crucial, plant-specific mechanism mediating multiple self-organizing developmental processes. Here, we used the auxin effect on the PIN polar localization in Arabidopsis thaliana roots as a proxy for the auxin feedback on the PIN polarity during canalization. We performed microarray experiments to find regulators of this process that act downstream of auxin. We identified genes that were transcriptionally regulated by auxin in an AXR3/IAA17- and ARF7/ARF19-dependent manner. Besides the known components of the PIN polarity, such as PID and PIP5K kinases, a number of potential new regulators were detected, among which the WRKY23 transcription factor, which was characterized in more detail. Gain- and loss-of-function mutants confirmed a role for WRKY23 in mediating the auxin effect on the PIN polarity. Accordingly, processes requiring auxin-mediated PIN polarity rearrangements, such as vascular tissue development during leaf venation, showed a higher WRKY23 expression and required the WRKY23 activity. Our results provide initial insights into the auxin transcriptional network acting upstream of PIN polarization and, potentially, canalization-mediated plant development. The plant hormone auxin belongs to the major plant-specific developmental regulators. It mediates or modifies almost all aspects of plant life. One of the fascinating features of the auxin action is its directional movement between cells, whose direction can be regulated by auxin signaling itself. This plant-specific feedback regulation has been proposed decades ago and allows for the self-organizing formation of distinct auxin channels shown to be crucial for processes, such as the regular pattern formation of leaf venation, organ formation, and regeneration of plant tissues. Despite the prominent importance of this so called auxin canalization process, the insight into the underlying molecular mechanism is very limited. Here, we identified a number of genes that are transcriptionally regulated and act downstream of the auxin signaling to mediate the auxin feedback on the polarized auxin transport. One of them is the WRKY23 transcription factor that has previously been unsuspected to play a role in this process. Our work provides the first insights into the transcriptional regulation of the auxin canalization and opens multiple avenues to further study this crucial process.
Collapse
|
86
|
Tejos R, Rodriguez-Furlán C, Adamowski M, Sauer M, Norambuena L, Friml J. PATELLINS are regulators of auxin-mediated PIN1 relocation and plant development in Arabidopsis thaliana. J Cell Sci 2018; 131:jcs.204198. [PMID: 28687624 DOI: 10.1242/jcs.204198] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/05/2017] [Indexed: 01/02/2023] Open
Abstract
Coordinated cell polarization in developing tissues is a recurrent theme in multicellular organisms. In plants, a directional distribution of the plant hormone auxin is at the core of many developmental programs. A feedback regulation of auxin on the polarized localization of PIN auxin transporters in individual cells has been proposed as a self-organizing mechanism for coordinated tissue polarization, but the molecular mechanisms linking auxin signalling to PIN-dependent auxin transport remain unknown. We used a microarray-based approach to find regulators of the auxin-induced PIN relocation in Arabidopsis thaliana root, and identified a subset of a family of phosphatidylinositol transfer proteins (PITPs), the PATELLINs (PATLs). Here, we show that PATLs are expressed in partially overlapping cell types in different tissues going through mitosis or initiating differentiation programs. PATLs are plasma membrane-associated proteins accumulated in Arabidopsis embryos, primary roots, lateral root primordia and developing stomata. Higher order patl mutants display reduced PIN1 repolarization in response to auxin, shorter root apical meristem, and drastic defects in embryo and seedling development. This suggests that PATLs play a redundant and crucial role in polarity and patterning in Arabidopsis.
Collapse
Affiliation(s)
- Ricardo Tejos
- Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, 111093 Iquique, Chile
| | - Cecilia Rodriguez-Furlán
- Plant Molecular Biology Centre, Biology Department, Faculty of Sciences, Universidad de Chile, 7800024 Santiago, Chile
| | - Maciej Adamowski
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria
| | - Michael Sauer
- Department of Plant Physiology, University of Potsdam, D-14476 Potsdam, Germany
| | - Lorena Norambuena
- Plant Molecular Biology Centre, Biology Department, Faculty of Sciences, Universidad de Chile, 7800024 Santiago, Chile
| | - Jiří Friml
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria
| |
Collapse
|
87
|
Han X, Shi Y, Liu G, Guo Y, Yang Y. Activation of ROP6 GTPase by Phosphatidylglycerol in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2018; 9:347. [PMID: 29599797 PMCID: PMC5862815 DOI: 10.3389/fpls.2018.00347] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 03/01/2018] [Indexed: 05/05/2023]
Abstract
Plant Rho-like GTPases (ROPs) are switch-like proteins which play essential roles in controlling cell polarity development and cellular activities. ROPs are regulated by many factors, such as auxin, light, and RopGEFs and RopGAPs proteins. However, it has not been reported yet whether small molecules play a role in the regulation of ROP activity. Here, we showed that AtROP6 specially bound to a phospholipid, phosphatidylglycerol (PG), by the protein-lipid overlay and liposome sedimentation assays, and further MST assay gave a dissociation constant (Kd) of 4.8 ± 0.4 μM for binding of PG to His-AtROP6. PG profile analysis in Arabidopsis revealed that PG existed both in leaves and roots but with distinctive fatty acyl chain patterns. By evaluating AtROP6 activity using RIC1 effector binding-based assay, we found that PG stimulated AtROP6 activity. In the FM4-64 uptake experiment, PG inhibited AtROP6-mediated endocytosis process. By evaluating internalization of PIN2, PG was shown to regulate endocytosis process coordinately with NAA. Further root gravitropism experiment revealed that PG enhanced the AtROP6-mediated root gravity response. These results suggest that the phospholipid PG physically binds AtROP6, stimulates its activity and influences AtROP6-mediated root gravity response in Arabidopsis.
Collapse
|
88
|
Dobritsa AA, Kirkpatrick AB, Reeder SH, Li P, Owen HA. Pollen Aperture Factor INP1 Acts Late in Aperture Formation by Excluding Specific Membrane Domains from Exine Deposition. PLANT PHYSIOLOGY 2018; 176:326-339. [PMID: 28899962 PMCID: PMC5761771 DOI: 10.1104/pp.17.00720] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/07/2017] [Indexed: 05/07/2023]
Abstract
Accurate placement of extracellular materials is a critical part of cellular development. To study how cells achieve this accuracy, we use formation of pollen apertures as a model. In Arabidopsis (Arabidopsis thaliana), three regions on the pollen surface lack deposition of pollen wall exine and develop into apertures. In developing pollen, Arabidopsis INAPERTURATE POLLEN1 (INP1) protein acts as a marker for the preaperture domains, assembling there into three punctate lines. To understand the mechanism of aperture formation, we studied the dynamics of INP1 expression and localization and its relationship with the membrane domains at which it assembles. We found that INP1 assembly occurs after meiotic cytokinesis at the interface between the plasma membrane and the overlying callose wall, and requires the normal callose wall formation. Sites of INP1 localization coincide with positions of protruding membrane ridges in proximity to the callose wall. Our data suggest that INP1 is a late-acting factor involved in keeping specific membrane domains next to the callose wall to prevent formation of exine at these sites.
Collapse
Affiliation(s)
- Anna A Dobritsa
- Department of Molecular Genetics and Center for Applied Plant Science, The Ohio State University, Columbus, Ohio 43210
| | - Andrew B Kirkpatrick
- Department of Molecular Genetics and Center for Applied Plant Science, The Ohio State University, Columbus, Ohio 43210
| | - Sarah H Reeder
- Department of Molecular Genetics and Center for Applied Plant Science, The Ohio State University, Columbus, Ohio 43210
| | - Peng Li
- Department of Molecular Genetics and Center for Applied Plant Science, The Ohio State University, Columbus, Ohio 43210
| | - Heather A Owen
- Department of Biological Sciences, University of Wisconsin, Milwaukee, Wisconsin 53211
| |
Collapse
|
89
|
Nicolas WJ, Grison MS, Bayer EM. Shaping intercellular channels of plasmodesmata: the structure-to-function missing link. JOURNAL OF EXPERIMENTAL BOTANY 2017; 69:91-103. [PMID: 28992136 DOI: 10.1093/jxb/erx225] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Plasmodesmata (PD) are a hallmark of the plant kingdom and a cornerstone of plant biology and physiology, forming the conduits for the cell-to-cell transfer of proteins, RNA and various metabolites, including hormones. They connect the cytosols and endomembranes of cells, which allows enhanced cell-to-cell communication and synchronization. Because of their unique position as intercellular gateways, they are at the frontline of plant defence and signalling and constitute the battleground for virus replication and spreading. The membranous organization of PD is remarkable, where a tightly furled strand of endoplasmic reticulum comes into close apposition with the plasma membrane, the two connected by spoke-like elements. The role of these structural features is, to date, still not completely understood. Recent data on PD seem to point in an unexpected direction, establishing a close parallel between PD and membrane contact sites and defining plasmodesmal membranes as microdomains. However, the implications of this new viewpoint are not fully understood. Aided by available phylogenetic data, this review attempts to reassess the function of the different elements comprising the PD and the relevance of membrane lipid composition and biophysics in defining specialized microdomains of PD, critical for their function.
Collapse
Affiliation(s)
- William J Nicolas
- Laboratoire de Biogénèse Membranaire, UMR 5200 CNRS, University of Bordeaux, France
| | - Magali S Grison
- Laboratoire de Biogénèse Membranaire, UMR 5200 CNRS, University of Bordeaux, France
| | - Emmanuelle M Bayer
- Laboratoire de Biogénèse Membranaire, UMR 5200 CNRS, University of Bordeaux, France
| |
Collapse
|
90
|
Himschoot E, Pleskot R, Van Damme D, Vanneste S. The ins and outs of Ca 2+ in plant endomembrane trafficking. CURRENT OPINION IN PLANT BIOLOGY 2017; 40:131-137. [PMID: 28965016 DOI: 10.1016/j.pbi.2017.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/01/2017] [Accepted: 09/06/2017] [Indexed: 06/07/2023]
Abstract
Trafficking of proteins and lipids within the plant endomembrane system is essential to support cellular functions and is subject to rigorous regulation. Despite this seemingly strict regulation, endomembrane trafficking needs to be dynamically adjusted to ever-changing internal and environmental stimuli, while maintaining cellular integrity. Although often overlooked, the versatile second messenger Ca2+ is intimately connected to several endomembrane-associated processes. Here, we discuss the impact of electrostatic interactions between Ca2+ and anionic phospholipids on endomembrane trafficking, and illustrate the direct role of Ca2+ sensing proteins in regulating endomembrane trafficking and membrane integrity preservation. Moreover, we discuss how Ca2+ can control protein sorting within the plant endomembrane system. We thus highlight Ca2+ signaling as a versatile mechanism by which numerous signals are integrated into plant endomembrane trafficking dynamics.
Collapse
Affiliation(s)
- Ellie Himschoot
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Roman Pleskot
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium; Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 263, 16502 Prague, Czech Republic
| | - Daniël Van Damme
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Steffen Vanneste
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium.
| |
Collapse
|
91
|
Gerth K, Lin F, Daamen F, Menzel W, Heinrich F, Heilmann M. Arabidopsis phosphatidylinositol 4-phosphate 5-kinase 2 contains a functional nuclear localization sequence and interacts with alpha-importins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:862-878. [PMID: 28949047 DOI: 10.1111/tpj.13724] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 08/22/2017] [Accepted: 09/11/2017] [Indexed: 05/22/2023]
Abstract
The Arabidopsis phosphoinositide kinase PIP5K2 has been implicated in the control of membrane trafficking and is important for development and growth. In addition to cytosolic functions of phosphoinositides, a nuclear phosphoinositide system has been proposed, but evidence for nuclear phosphoinositides in plants is limited. Fluorescence-tagged variants of PIP5K2 reside in the nucleus of Arabidopsis root meristem cells, in addition to reported plasma membrane localization. Here we report on the interaction of PIP5K2 with alpha-importins and characterize its nuclear localization sequences (NLSs). The PIP5K2 sequence contains four putative NLSs (NLSa-NLSd) and only a PIP5K2 fragment containing NLSs is imported into nuclei of onion epidermis cells upon transient expression. PIP5K2 interacts physically with alpha-importin isoforms in cytosolic split-ubiquitin-based yeast two-hybrid tests, in dot-blot experiments and in immuno-pull-downs. A 27-amino-acid fragment of PIP5K2 containing NLSc is necessary and sufficient to mediate the nuclear import of a large cargo fusion consisting of two mCherry markers fused to RubisCO large subunit. Substitution of basic residues in NLSc results in reduced import of PIP5K2 or other cargoes into plant nuclei. The data suggest that PIP5K2 is subject to active, alpha-importin-mediated nuclear import, consistent with a nuclear role for PIP5K2 in addition to its reported cytosolic functions. The detection of both substrate and product of PIP5K2 in plant nuclei according to reporter fluorescence and immunofluorescence further supports the notion of a nuclear phosphoinositide system in plants. Variants of PIP5K2 with reduced nuclear residence might serve as tools for the future functional study of plant nuclear phosphoinositides.
Collapse
Affiliation(s)
- Katharina Gerth
- Department of Cellular Biochemistry, Institute of Biochemistry, Martin-Luther-University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Feng Lin
- Department of Cellular Biochemistry, Institute of Biochemistry, Martin-Luther-University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Franziska Daamen
- Department of Cellular Biochemistry, Institute of Biochemistry, Martin-Luther-University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Wilhelm Menzel
- Department of Cellular Biochemistry, Institute of Biochemistry, Martin-Luther-University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Franziska Heinrich
- Department of Cellular Biochemistry, Institute of Biochemistry, Martin-Luther-University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Mareike Heilmann
- Department of Cellular Biochemistry, Institute of Biochemistry, Martin-Luther-University Halle-Wittenberg, 06120, Halle (Saale), Germany
| |
Collapse
|
92
|
Noack LC, Jaillais Y. Precision targeting by phosphoinositides: how PIs direct endomembrane trafficking in plants. CURRENT OPINION IN PLANT BIOLOGY 2017; 40:22-33. [PMID: 28734137 DOI: 10.1016/j.pbi.2017.06.017] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/19/2017] [Accepted: 06/27/2017] [Indexed: 05/18/2023]
Abstract
Each phosphoinositide (PI, also known as phosphatidylinositol phosphate, polyphosphoinositide, PtdInsP or PIP) species is partitioned in the endomembrane system and thereby contributes to the identity of membrane compartments. However, membranes are in constant flux within this system, which raises the questions of how the spatiotemporal pattern of phosphoinositides is established and maintained within the cell. Here, we review the general mechanisms by which phosphoinositides and membrane trafficking feedbacks on each other to regulate cellular patterning. We then use the specific examples of polarized trafficking, endosomal sorting and vacuolar biogenesis to illustrate these general concepts.
Collapse
Affiliation(s)
- Lise C Noack
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342 Lyon, France
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342 Lyon, France.
| |
Collapse
|
93
|
Wu C, Tan L, van Hooren M, Tan X, Liu F, Li Y, Zhao Y, Li B, Rui Q, Munnik T, Bao Y. Arabidopsis EXO70A1 recruits Patellin3 to the cell membrane independent of its role as an exocyst subunit. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:851-865. [PMID: 28815958 DOI: 10.1111/jipb.12578] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 08/14/2017] [Indexed: 06/07/2023]
Abstract
The exocyst is a well-known complex which tethers vesicles at the cell membrane before fusion. Whether an individual subunit can execute a unique function is largely unknown. Using yeast-two-hybrid (Y2H) analysis, we found that EXO70A1 interacted with the GOLD domain of Patellin3 (PATL3). The direct EXO70A1-PATL3 interaction was supported by in vitro and in vivo experiments. In Arabidopsis, PATL3-GFP colocalized with EXO70A1 predominantly at the cell membrane, and PATL3 localization was insensitive to BFA and TryA23. Remarkably, in the exo70a1 mutant, PATL3 proteins accumulated as punctate structures within the cytosol, which did not colocalize with several endomembrane compartment markers, and was insensitive to BFA. Furthermore, PATL3 localization was not changed in the exo70e2, PRsec6 or exo84b mutants. These data suggested that EXO70A1, but not other exocyst subunits, was responsible for PATL3 localization, which is independent of its role in secretory/recycling vesicle-tethering/fusion. Both EXO70A1 and PATL3 were shown to bind PI4P and PI(4,5)P2 in vitro. Evidence was obtained that the other four members of the PATL family bound to EXO70A1 as well, and shared a similar localization pattern as PATL3. These findings offered new insights into exocyst subunit-specific function, and provided data and tools for further characterization of PATL family proteins.
Collapse
Affiliation(s)
- Chengyun Wu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lu Tan
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Max van Hooren
- Department of Plant Cell Biology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science park 904, 1098 XH, Amsterdam, The Netherlands
| | - Xiaoyun Tan
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanxue Zhao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Bingxuan Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qingchen Rui
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Teun Munnik
- Department of Plant Cell Biology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science park 904, 1098 XH, Amsterdam, The Netherlands
| | - Yiqun Bao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
94
|
Kf de Campos M, Schaaf G. The regulation of cell polarity by lipid transfer proteins of the SEC14 family. CURRENT OPINION IN PLANT BIOLOGY 2017; 40:158-168. [PMID: 29017091 DOI: 10.1016/j.pbi.2017.09.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/07/2017] [Accepted: 09/11/2017] [Indexed: 06/07/2023]
Abstract
SEC14 lipid transfer proteins are important regulators of phospholipid metabolism. Structural, genetic and cell biological studies in yeast suggest that they help phosphatidylinositol (PtdIns)/phosphoinositide (PIP) kinases to overcome their intrinsic inefficiency to recognize membrane-embedded substrate, thereby playing a key role in PIP homeostasis. Genomes of higher plants encode a high number and diversity of SEC14 proteins, often in combination with other domains. The Arabidopsis SEC14-Nlj16 protein AtSFH1, an important regulator of root hair development, plays an important role in the establishment of PIP microdomains. Key to this mechanism is a highly specific interaction of the Nlj16 domain with PtdIns(4,5)P2 and an interaction-triggered oligomerization of the protein. Nlj16/PtdIns(4,5)P2 interaction depends on a polybasic motif similar to those identified in other regulatory proteins.
Collapse
Affiliation(s)
- Marília Kf de Campos
- Institute of Crop Science and Resource Conservation, Department of Plant Nutrition, University of Bonn, Karlrobert-Kreiten-Strasse 13, 53115 Bonn, Germany.
| | - Gabriel Schaaf
- Institute of Crop Science and Resource Conservation, Department of Plant Nutrition, University of Bonn, Karlrobert-Kreiten-Strasse 13, 53115 Bonn, Germany.
| |
Collapse
|
95
|
Zhang Q, Song P, Qu Y, Wang P, Jia Q, Guo L, Zhang C, Mao T, Yuan M, Wang X, Zhang W. Phospholipase Dδ negatively regulates plant thermotolerance by destabilizing cortical microtubules in Arabidopsis. PLANT, CELL & ENVIRONMENT 2017; 40:2220-2235. [PMID: 28710795 DOI: 10.1111/pce.13023] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/30/2017] [Accepted: 07/02/2017] [Indexed: 05/20/2023]
Abstract
The pattern of cortical microtubule arrays plays an important role in plant growth and adaptation in response to hormonal and environmental changes. Cortical microtubules are connected with the plasma membrane (PM); however, how the membrane affects cortical microtubule organization is not well understood. Here, we showed that phospholipase Dδ (PLDδ) was associated with the PM and co-localized with microtubules in cells. In vitro analysis revealed that PLDδ bound to microtubules, resulting in microtubule disorganization. Site-specific mutations that decreased PLDδ enzymatic activity impaired its effects on destabilizing microtubule organization. Heat shock transiently activated PLDδ, without any change of its PM localization, triggering microtubule dissociation from PM and depolymerization and seedling death in Arabidopsis, but these effects were alleviated in pldδ knockout mutants. Complementation of pldδ with wild-type PLDδ, but not mutated PLDδ, restored the phenotypes of microtubules and seedling survival to those of wild-type Arabidopsis. Thus, we conclude that the PM-associated PLDδ negatively regulates plant thermotolerance via destabilizing cortical microtubules, in an activity-dependent manner, rather than its subcellular translocation.
Collapse
Affiliation(s)
- Qun Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ping Song
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yana Qu
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Peipei Wang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qianru Jia
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chuanpeng Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tonglin Mao
- College of Biology, China Agricultural University, Beijing, 100083, China
| | - Ming Yuan
- College of Biology, China Agricultural University, Beijing, 100083, China
| | - Xuemin Wang
- Department of Biology, University of Missouri, St Louis, MO, 63121, USA
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | - Wenhua Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
96
|
Abstract
The membranes of eukaryotic cells create hydrophobic barriers that control substance and information exchange between the inside and outside of cells and between cellular compartments. Besides their roles as membrane building blocks, some membrane lipids, such as phosphoinositides (PIs), also exert regulatory effects. Indeed, emerging evidence indicates that PIs play crucial roles in controlling polarity and growth in plants. Here, I highlight the key roles of PIs as important regulatory membrane lipids in plant development and function.
Collapse
Affiliation(s)
- Ingo Heilmann
- Department of Cellular Biochemistry, Institute for Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle (Saale) 06114, Germany
| |
Collapse
|
97
|
Gujas B, Cruz TMD, Kastanaki E, Vermeer JEM, Munnik T, Rodriguez-Villalon A. Perturbing phosphoinositide homeostasis oppositely affects vascular differentiation in Arabidopsis thaliana roots. Development 2017; 144:3578-3589. [PMID: 28851711 PMCID: PMC5665488 DOI: 10.1242/dev.155788] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/18/2017] [Indexed: 01/16/2023]
Abstract
The plant vascular network consists of specialized phloem and xylem elements that undergo two distinct morphogenetic developmental programs to become transport-functional units. Whereas vacuolar rupture is a determinant step in protoxylem differentiation, protophloem elements never form a big central vacuole. Here, we show that a genetic disturbance of phosphatidylinositol 4,5-bis-phosphate [PtdIns(4,5)P2] homeostasis rewires cell trafficking towards the vacuole in Arabidopsis thaliana roots. Consequently, an enhanced phosphoinositide-mediated vacuolar biogenesis correlates with premature programmed cell death (PCD) and secondary cell wall elaboration in xylem cells. By contrast, vacuolar fusion events in protophloem cells trigger the abnormal formation of big vacuoles, preventing cell clearance and tissue functionality. Removal of the inositol 5' phosphatase COTYLEDON VASCULAR PATTERN 2 from the plasma membrane (PM) by brefeldin A (BFA) treatment increases PtdIns(4,5)P2 content at the PM and disrupts protophloem continuity. Conversely, BFA application abolishes vacuolar fusion events in xylem tissue without preventing PCD, suggesting the existence of additional PtdIns(4,5)P2-dependent cell death mechanisms. Overall, our data indicate that tight PM phosphoinositide homeostasis is required to modulate intracellular trafficking contributing to oppositely regulate vascular differentiation.
Collapse
Affiliation(s)
- Bojan Gujas
- Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, CH-8092, Zurich, Switzerland
| | - Tiago M D Cruz
- Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, CH-8092, Zurich, Switzerland
| | - Elizabeth Kastanaki
- Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, CH-8092, Zurich, Switzerland
| | - Joop E M Vermeer
- Department of Plant and Microbial Biology, University of Zurich, CH-8008, Zurich, Switzerland
| | - Teun Munnik
- Section Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090 GE, Amsterdam, The Netherlands
| | - Antia Rodriguez-Villalon
- Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, CH-8092, Zurich, Switzerland
| |
Collapse
|
98
|
Vermeer JE, van Wijk R, Goedhart J, Geldner N, Chory J, Gadella TW, Munnik T. In Vivo Imaging of Diacylglycerol at the Cytoplasmic Leaflet of Plant Membranes. PLANT & CELL PHYSIOLOGY 2017; 58:1196-1207. [PMID: 28158855 PMCID: PMC6200129 DOI: 10.1093/pcp/pcx012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 01/11/2017] [Indexed: 05/05/2023]
Abstract
Diacylglycerol (DAG) is an important intermediate in lipid biosynthesis and plays key roles in cell signaling, either as a second messenger itself or as a precursor of phosphatidic acid. Methods to identify distinct DAG pools have proven difficult because biochemical fractionation affects the pools, and concentrations are limiting. Here, we validate the use of a genetically encoded DAG biosensor in living plant cells. The sensor is composed of a fusion between yellow fluorescent protein and the C1a domain of protein kinase C (YFP-C1aPKC) that specifically binds DAG, and was stably expressed in suspension-cultured tobacco BY-2 cells and whole Arabidopsis thaliana plants. Confocal imaging revealed that the majority of the YFP-C1aPKC fluorescence did not locate to membranes but was present in the cytosol and nucleus. Treatment with short-chain DAG or PMA (phorbol-12-myristate-13-acetate), a phorbol ester that binds the C1a domain of PKC, caused the recruitment of the biosensor to the plasma membrane. These results indicate that the biosensor works and that the basal DAG concentration in the cytoplasmic leaflet of membranes (i.e. accessible to the biosensor) is in general too low, and confirms that the known pools in plastids, the endoplasmic reticulum and mitochondria are located at the luminal face of these compartments (i.e. inaccessible to the biosensor). Nevertheless, detailed further analysis of different cells and tissues discovered four novel DAG pools, namely at: (i) the trans-Golgi network; (ii) the cell plate during cytokinesis; (iii) the plasma membrane of root epidermal cells in the transition zone, and (iv) the apex of growing root hairs. The results provide new insights into the spatiotemporal dynamics of DAG in plants and offer a new tool to monitor this in vivo.
Collapse
Affiliation(s)
- Joop E.M. Vermeer
- Section of Plant Physiology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, NL-1098XH, Amsterdam, The Netherlands
- Department of Plant Molecular Biology, University of Lausanne-Sorge, Lausanne 1015, Switzerland
- Present address: Department of Plant and Microbial Biology, University of Zürich, Zürich 8008, Switzerland
| | - Ringo van Wijk
- Section of Plant Physiology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, NL-1098XH, Amsterdam, The Netherlands
- Section of Plant Cell Biology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, NL-1098XH, Amsterdam, The Netherlands
| | - Joachim Goedhart
- Section of Molecular Cytology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, NL-1098XH, Amsterdam, The Netherlands
| | - Niko Geldner
- Department of Plant Molecular Biology, University of Lausanne-Sorge, Lausanne 1015, Switzerland
| | - Joanne Chory
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Theodorus W.J. Gadella
- Section of Molecular Cytology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, NL-1098XH, Amsterdam, The Netherlands
| | - Teun Munnik
- Section of Plant Physiology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, NL-1098XH, Amsterdam, The Netherlands
- Section of Plant Cell Biology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, NL-1098XH, Amsterdam, The Netherlands
| |
Collapse
|
99
|
Prabhakaran Mariyamma N, Hou H, Carland FM, Nelson T, Schultz EA. Localization of Arabidopsis FORKED1 to a RABA-positive compartment suggests a role in secretion. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3375-3390. [PMID: 28575401 PMCID: PMC5853234 DOI: 10.1093/jxb/erx180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 05/04/2017] [Indexed: 05/30/2023]
Abstract
When FORKED1 (FKD1) is mutated, asymmetric localization of PINFORMED1 (PIN1), particularly to the apical side of cells, fails to occur properly in developing veins, resulting in an open vein pattern. FKD1 encodes a protein with a Pleckstrin homology-like (PL) domain, suggesting interaction with phosphoinositides. FKD1 has been previously found to interact with an ADP ribosylation factor GTPase-activating protein (ARF-GAP) important for vein patterning, SCARFACE/VAN3 (SFC). We find that FKD1-green fluorescent protein (GFP) localizes to the plasma membrane and to punctae labeled by SFC-yellow fluorescent protein (YFP). Supporting the idea that the FKD1 PL domain recognizes phosphatidylinositol 4-phosphate [PtdIns(4)P], FKD1-GFP co-localizes with PtdIns(4)P markers, and is more cytosolic when in a background mutant for the PtdIns(4,5)P2 hydrolases CVP2 and CVL1. Both FKD1 and SFC partially co-localize with markers for the trans-Golgi network (TGN), at which endocytic and secretory pathways merge. FKD1-labeled punctae rarely co-localize with the endocytic marker FM4-64, suggesting that FKD1 is not involved primarily in the endocytic pathway. FKD1 and SFC co-localize with members of the RABA group of RAB-GTPases, which are proposed to act in the post-Golgi secretory pathway. The compartments labeled by FKD1 and SFC do not localize to membrane compartments induced by the fungal toxin brefeldin A (BFA). Collectively, our data suggest that FKD1 and SFC act in a BFA-insensitive secretory pathway.
Collapse
Affiliation(s)
| | - Hongwei Hou
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, TIK, Canada
| | - Francine M Carland
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Timothy Nelson
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Elizabeth A Schultz
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, TIK, Canada
| |
Collapse
|
100
|
Li L, Wang F, Yan P, Jing W, Zhang C, Kudla J, Zhang W. A phosphoinositide-specific phospholipase C pathway elicits stress-induced Ca 2+ signals and confers salt tolerance to rice. THE NEW PHYTOLOGIST 2017; 214:1172-1187. [PMID: 28157263 DOI: 10.1111/nph.14426] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/06/2016] [Indexed: 05/20/2023]
Abstract
In animal cells, phospholipase C (PLC) isoforms predominantly hydrolyze phosphatidylinositol-4,5-biphosphates [PtdIns(4,5)P2 ] into the second messengers diacylglycerol (DAG) and inositol 1,4,5-trisphosphate [Ins(1,4,5)P3 ] to regulate diverse biological processes. By contrast, the molecular mechanisms and physiological significance of PLC signaling in plants still awaits full elucidation. Here, we identified a rice (Oryza sativa cv) PI-PLC, OsPLC1, which preferred to hydrolyze phosphatidylinositol-4-phosphate (PtdIns4P) and elicited stress-induced Ca2+ signals regulating salt tolerance. Analysis by ion chromatography revealed that the concentration of PtdIns4P was c. 28 times of that of PtdIns(4,5)P2 in shoots. OsPLC1 not only converted PtdIns(4,5)P2 but also - and even more efficiently - converted PtdIns4P into DAG and Ins(1,4,5)P3 in vitro and in vivo. Salt stress induced the recruitment of OsPLC1 from cytoplasm to plasma membrane, where it hydrolyzed PtdIns4P. The stress-induced Ca2+ signaling was dependent on OsPLC1, and the PLC-mediated Ca2+ signaling was essential for controlling Na+ accumulation in leaf blades, thus establishing whole plant salt tolerance. Our work identifies a conversion pathway and physiological function for PtdIns4P pools in rice and reveals the connection between phosphoinositides and Ca2+ signals mediated by PLC during salt stress responses.
Collapse
Affiliation(s)
- Li Li
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fawei Wang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Peiwen Yan
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wen Jing
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunxia Zhang
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7, Münster, 48149, Germany
| | - Jörg Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7, Münster, 48149, Germany
- College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Wenhua Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|