51
|
Guan Y, Ding L, Jiang J, Shentu Y, Zhao W, Zhao K, Zhang X, Song A, Chen S, Chen F. Overexpression of the CmJAZ1-like gene delays flowering in Chrysanthemum morifolium. HORTICULTURE RESEARCH 2021; 8:87. [PMID: 33795661 PMCID: PMC8016864 DOI: 10.1038/s41438-021-00525-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/23/2021] [Accepted: 03/01/2021] [Indexed: 05/11/2023]
Abstract
Chrysanthemum (Chrysanthemum morifolium) is one of the four major cut-flower plants worldwide and possesses both high ornamental value and cultural connotation. As most chrysanthemum varieties flower in autumn, it is costly to achieve annual production. JAZ genes in the TIFY family are core components of the jasmonic acid (JA) signaling pathway; in addition to playing a pivotal role in plant responses to defense, they are also widely implicated in regulating plant development processes. Here, we characterized the TIFY family gene CmJAZ1-like from the chrysanthemum cultivar 'Jinba'. CmJAZ1-like localizes in the nucleus and has no transcriptional activity in yeast. Tissue expression pattern analysis indicated that CmJAZ1-like was most active in the root and shoot apex. Overexpressing CmJAZ1-like with Jas domain deletion in chrysanthemum resulted in late flowering. RNA-Seq analysis of the overexpression lines revealed some differentially expressed genes (DEGs) involved in flowering, such as the homologs of the flowering integrators FT and SOC1, an FUL homolog involved in flower meristem identity, AP2 domain-containing transcription factors, MADS box genes, and autonomous pathway-related genes. Based on KEGG pathway enrichment analysis, the differentially transcribed genes were enriched in carbohydrate metabolic and fatty acid-related pathways, which are notable for their role in flowering in plants. This study preliminarily verified the function of CmJAZ1-like in chrysanthemum flowering, and the results can be used in molecular breeding programs aimed at flowering time regulation of chrysanthemum.
Collapse
Affiliation(s)
- Yunxiao Guan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lian Ding
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanyue Shentu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenqian Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kunkun Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xue Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Aiping Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
52
|
Wei X, Rahim MA, Zhao Y, Yang S, Wang Z, Su H, Li L, Niu L, Harun-Ur-Rashid M, Yuan Y, Zhang X. Comparative Transcriptome Analysis of Early- and Late-Bolting Traits in Chinese Cabbage ( Brassica rapa). Front Genet 2021; 12:590830. [PMID: 33747036 PMCID: PMC7969806 DOI: 10.3389/fgene.2021.590830] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/18/2021] [Indexed: 12/27/2022] Open
Abstract
Chinese cabbage is one of the most important and widely consumed vegetables in China. The developmental transition from the vegetative to reproductive phase is a crucial process in the life cycle of flowering plants. In spring-sown Chinese cabbage, late bolting is desirable over early bolting. In this study, we analyzed double haploid (DH) lines of late bolting (“Y410-1” and “SY2004”) heading Chinese cabbage (Brassica rapa var. pekinensis) and early-bolting Chinese cabbage (“CX14-1”) (B. rapa ssp. chinensis var. parachinensis) by comparative transcriptome profiling using the Illumina RNA-seq platform. We assembled 721.49 million clean high-quality paired-end reads into 47,363 transcripts and 47,363 genes, including 3,144 novel unigenes. There were 12,932, 4,732, and 4,732 differentially expressed genes (DEGs) in pairwise comparisons of Y410-1 vs. CX14-1, SY2004 vs. CX14-1, and Y410-1 vs. SY2004, respectively. The RNA-seq results were confirmed by reverse transcription quantitative real-time PCR (RT-qPCR). A Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of DEGs revealed significant enrichment for plant hormone and signal transduction as well as starch and sucrose metabolism pathways. Among DEGs related to plant hormone and signal transduction, six unigenes encoding the indole-3-acetic acid-induced protein ARG7 (BraA02g009130), auxin-responsive protein SAUR41 (BraA09g058230), serine/threonine-protein kinase BSK11 (BraA07g032960), auxin-induced protein 15A (BraA10g019860), and abscisic acid receptor PYR1 (BraA08g012630 and BraA01g009450), were upregulated in both late bolting Chinese cabbage lines (Y410-1 and SY2004) and were identified as putative candidates for the trait. These results improve our understanding of the molecular mechanisms underlying flowering in Chinese cabbage and provide a foundation for studies of this key trait in related species.
Collapse
Affiliation(s)
- Xiaochun Wei
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Md Abdur Rahim
- Department of Genetics and Plant Breeding, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Yanyan Zhao
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Shuangjuan Yang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Zhiyong Wang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Henan Su
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Lin Li
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Liujing Niu
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Md Harun-Ur-Rashid
- Department of Genetics and Plant Breeding, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Yuxiang Yuan
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xiaowei Zhang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
53
|
Chen L, Zhang L, Xiang S, Chen Y, Zhang H, Yu D. The transcription factor WRKY75 positively regulates jasmonate-mediated plant defense to necrotrophic fungal pathogens. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1473-1489. [PMID: 33165597 PMCID: PMC7904156 DOI: 10.1093/jxb/eraa529] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/02/2020] [Indexed: 05/04/2023]
Abstract
Necrotrophic fungi cause devastating diseases in both horticultural and agronomic crops, but our understanding of plant defense responses against these pathogens is still limited. In this study, we demonstrated that WRKY75 positively regulates jasmonate (JA)-mediated plant defense against necrotrophic fungal pathogens Botrytis cinerea and Alternaria brassicicola, and also affects the sensitivity of plants to JA-inhibited seed germination and root growth. Quantitative analysis indicated that several JA-associated genes, such as OCTADECANOID-RESPONSIVE ARABIDOPSIS (ORA59) and PLANT DEFENSIN 1.2A (PDF1.2), were significantly reduced in expression in wrky75 mutants, and enhanced in WRKY75 overexpressing transgenic plants. Immunoprecipitation assays revealed that WRKY75 directly binds to the promoter of ORA59 and represses itstranscription. In vivo and in vitro experiments suggested that WRKY75 interacts with several JASMONATE ZIM-domain proteins, repressors of the JA signaling pathway. We determined that JASMONATE-ZIM-DOMAIN PROTEIN 8 (JAZ8) represses the transcriptional function of WRKY75, thereby attenuating the expression of its regulation. Overexpression of JAZ8 repressed plant defense responses to B. cinerea. Our study provides evidence that WRKY75 functions as a critical component of the JA-mediated signaling pathway to positively regulate Arabidopsis defense responses to necrotrophic pathogens.
Collapse
Affiliation(s)
- Ligang Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, China
| | - Liping Zhang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Shengyuan Xiang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanli Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haiyan Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Diqiu Yu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
- Correspondence:
| |
Collapse
|
54
|
Sun P, Shi Y, Valerio AGO, Borrego EJ, Luo Q, Qin J, Liu K, Yan Y. An updated census of the maize TIFY family. PLoS One 2021; 16:e0247271. [PMID: 33621269 PMCID: PMC7901733 DOI: 10.1371/journal.pone.0247271] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 02/03/2021] [Indexed: 11/21/2022] Open
Abstract
The TIFY gene family is a plant-specific gene family encoding a group of proteins characterized by its namesake, the conservative TIFY domain and members can be organized into four subfamilies: ZML, TIFY, PPD and JAZ (Jasmonate ZIM-domain protein) by presence of additional conserved domains. The TIFY gene family is intensively explored in several model and agriculturally important crop species and here, yet the composition of the TIFY family of maize has remained unresolved. This study increases the number of maize TIFY family members known by 40%, bringing the total to 47 including 38 JAZ, 5 TIFY, and 4 ZML genes. The majority of the newly identified genes were belonging to the JAZ subfamily, six of which had aberrant TIFY domains, suggesting loss JAZ-JAZ or JAZ-NINJA interactions. Six JAZ genes were found to have truncated Jas domain or an altered degron motif, suggesting resistance to classical JAZ degradation. In addition, seven membranes were found to have an LxLxL-type EAR motif which allows them to recruit TPL/TPP co-repressors directly without association to NINJA. Expression analysis revealed that ZmJAZ14 was specifically expressed in the seeds and ZmJAZ19 and 22 in the anthers, while the majority of other ZmJAZs were generally highly expressed across diverse tissue types. Additionally, ZmJAZ genes were highly responsive to wounding and JA treatment. This study provides a comprehensive update of the maize TIFY/JAZ gene family paving the way for functional, physiological, and ecological analysis.
Collapse
Affiliation(s)
- Pingdong Sun
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- Crop Breeding & Cultivation Research Institution, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yannan Shi
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Aga Guido Okwana Valerio
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Eli James Borrego
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States of America
| | - Qingyun Luo
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jia Qin
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Kang Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Yuanxin Yan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
- * E-mail:
| |
Collapse
|
55
|
Regulation of flowering under short photoperiods based on transcriptomic and metabolomic analysis in Phaseolus vulgaris L. Mol Genet Genomics 2021; 296:379-390. [PMID: 33449160 DOI: 10.1007/s00438-020-01751-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/09/2020] [Indexed: 10/22/2022]
Abstract
Common bean (Phaseolus vulgaris L.) is a short-day plant and its flowering time, and consequently, pod yield and quality is influenced by photoperiod. In this study, the photoperiodic-sensitive variety 'Hong jin gou', which flowers 31 days (d) earlier in short-day than in long-day, was used as the experimental material. Samples were collected to determine the growth and photosynthetic parameters in each daylength treatment, and transcriptome and metabolome data were conducted. We identified eight genes related to flowering by further screening for differentially expressed genes. These genes function to regulate the biological clock. The combination of differentially expressed genes and metabolites, together with the known regulation network of flowering time and the day-night expression pattern of related genes allow us to speculate on the regulation of flowering time in the common bean and conclude that TIMING OF CAB EXPRESSION1 (TOC1) plays a pivotal role in the network and its upregulation or downregulation causes corresponding changes in the expression of downstream genes. The regulatory network is also influenced by gibberellic acid (GA) and jasmonic acid (JA). These regulatory pathways jointly comprise the flowering regulatory network in common bean.
Collapse
|
56
|
Braynen J, Yang Y, Yuan J, Xie Z, Cao G, Wei X, Shi G, Zhang X, Wei F, Tian B. Comparative transcriptome analysis revealed differential gene expression in multiple signaling pathways at flowering in polyploid Brassica rapa. Cell Biosci 2021; 11:17. [PMID: 33436051 PMCID: PMC7802129 DOI: 10.1186/s13578-021-00528-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 01/03/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Polyploidy is widespread in angiosperms and has a significant impact on plant evolution, diversity, and breeding program. However, the changes in the flower development regulatory mechanism in autotetraploid plants remains relatively limited. In this study, RNA-seq analysis was used to investigate changes in signaling pathways at flowering in autotetraploid Brassica rapa. RESULTS The study findings showed that the key genes such as CO, CRY2, and FT which promotes floral formation were down-regulated, whereas floral transition genes FPF1 and FD were up-regulated in autotetraploid B. rapa. The data also demonstrated that the positive regulators GA1 and ELA1 in the gibberellin's biosynthesis pathway were negatively regulated by polyploidy in B. rapa. Furthermore, transcriptional factors (TFs) associated with flower development were significantly differentially expressed including the up-regulated CIB1 and AGL18, and the down-regulated AGL15 genes, and by working together such genes affected the expression of the down-stream flowering regulator FLOWERING LOCUS T in polyploid B. rapa. Compared with that in diploids autotetrapoid plants consist of differential expression within the signaling transduction pathway, with 13 TIFY gens up-regulated and 17 genes related to auxin pathway down-regulated. CONCLUSION Therefore, polyploidy is more likely to integrate multiple signaling pathways to influence flowering in B. rapa after polyploidization. In general, the present results shed new light on our global understanding of flowering regulation in polyploid plants during breeding program.
Collapse
Affiliation(s)
- Janeen Braynen
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.,Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yan Yang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Jiachen Yuan
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Zhengqing Xie
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Gangqiang Cao
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xiaochun Wei
- Institute of Horticultural Research, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China
| | - Gongyao Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.,Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xiaowei Zhang
- Institute of Horticultural Research, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China
| | - Fang Wei
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China. .,Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Baoming Tian
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
57
|
Serrano-Bueno G, Sánchez de Medina Hernández V, Valverde F. Photoperiodic Signaling and Senescence, an Ancient Solution to a Modern Problem? FRONTIERS IN PLANT SCIENCE 2021; 12:634393. [PMID: 33777070 PMCID: PMC7988197 DOI: 10.3389/fpls.2021.634393] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/12/2021] [Indexed: 05/22/2023]
Abstract
The length of the day (photoperiod) is a robust seasonal signal originated by earth orbital and translational movements, a resilient external cue to the global climate change, and a predictable hint to initiate or complete different developmental programs. In eukaryotic algae, the gene expression network that controls the cellular response to photoperiod also regulates other basic physiological functions such as starch synthesis or redox homeostasis. Land plants, evolving in a novel and demanding environment, imbued these external signals within the regulatory networks controlling organogenesis and developmental programs. Unlike algae that largely have to deal with cellular physical cues, within the course of evolution land plants had to transfer this external information from the receiving organs to the target tissues, and mobile signals such as hormones were recruited and incorporated in the regulomes. Control of senescence by photoperiod, as suggested in this perspective, would be an accurate way to feed seasonal information into a newly developed function (senescence) using an ancient route (photoperiodic signaling). This way, the plant would assure that two coordinated aspects of development such as flowering and organ senescence were sequentially controlled. As in the case of senescence, there is growing evidence to support the idea that harnessing the reliability of photoperiod regulation over other, more labile signaling pathways could be used as a robust breeding tool to enhance plants against the harmful effects of climate change.
Collapse
|
58
|
The vascular targeted citrus FLOWERING LOCUS T3 gene promotes non-inductive early flowering in transgenic Carrizo rootstocks and grafted juvenile scions. Sci Rep 2020; 10:21404. [PMID: 33293614 PMCID: PMC7722890 DOI: 10.1038/s41598-020-78417-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/24/2020] [Indexed: 12/26/2022] Open
Abstract
Shortening the juvenile stage in citrus and inducing early flowering has been the focus of several citrus genetic improvement programs. FLOWERING LOCUS T (FT) is a small phloem-translocated protein that regulates precocious flowering. In this study, two populations of transgenic Carrizo citrange rootstocks expressing either Citrus clementina FT1 or FT3 genes under the control of the Arabidopsis thaliana phloem specific SUCROSE SYNTHASE 2 (AtSUC2) promoter were developed. The transgenic plants were morphologically similar to the non-transgenic controls (non-transgenic Carrizo citrange), however, only AtSUC2-CcFT3 was capable of inducing precocious flowers. The transgenic lines produced flowers 16 months after transformation and flower buds appeared 30-40 days on juvenile immature scions grafted onto transgenic rootstock. Gene expression analysis revealed that the expression of SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) and APETALA1 (AP1) were enhanced in the transgenics. Transcriptome profiling of a selected transgenic line showed the induction of genes in different groups including: genes from the flowering induction pathway, APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) family genes, and jasmonic acid (JA) pathway genes. Altogether, our results suggested that ectopic expression of CcFT3 in phloem tissues of Carrizo citrange triggered the expression of several genes to mediate early flowering.
Collapse
|
59
|
Pan J, Hu Y, Wang H, Guo Q, Chen Y, Howe GA, Yu D. Molecular Mechanism Underlying the Synergetic Effect of Jasmonate on Abscisic Acid Signaling during Seed Germination in Arabidopsis. THE PLANT CELL 2020; 32:3846-3865. [PMID: 33023956 PMCID: PMC7721325 DOI: 10.1105/tpc.19.00838] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 08/18/2020] [Accepted: 10/06/2020] [Indexed: 05/03/2023]
Abstract
Abscisic acid (ABA) is known to suppress seed germination and post-germinative growth of Arabidopsis (Arabidopsis thaliana), and jasmonate (JA) enhances ABA function. However, the molecular mechanism underlying the crosstalk between the ABA and JA signaling pathways remains largely elusive. Here, we show that exogenous coronatine, a JA analog structurally similar to the active conjugate jasmonate-isoleucine, significantly enhances the delayed seed germination response to ABA. Disruption of the JA receptor CORONATINE INSENSITIVE1 or accumulation of the JA signaling repressor JASMONATE ZIM-DOMAIN (JAZ) reduced ABA signaling, while jaz mutants enhanced ABA responses. Mechanistic investigations revealed that several JAZ repressors of JA signaling physically interact with ABSCISIC ACID INSENSITIVE3 (ABI3), a critical transcription factor that positively modulates ABA signaling, and that JAZ proteins repress the transcription of ABI3 and ABI5. Further genetic analyses showed that JA activates ABA signaling and requires functional ABI3 and ABI5. Overexpression of ABI3 and ABI5 simultaneously suppressed the ABA-insensitive phenotypes of the coi1-2 mutant and JAZ-accumulating (JAZ-ΔJas) plants. Together, our results reveal a previously uncharacterized signaling module in which JAZ repressors of the JA pathway regulate the ABA-responsive ABI3 and ABI5 transcription factors to integrate JA and ABA signals during seed germination and post-germinative growth.
Collapse
Affiliation(s)
- Jinjing Pan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Tobacco Science, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanru Hu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Houping Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Qiang Guo
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - Yani Chen
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - Gregg A Howe
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - Diqiu Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| |
Collapse
|
60
|
Wang W, Wang X, Wang Y, Zhou G, Wang C, Hussain S, Adnan, Lin R, Wang T, Wang S. SlEAD1, an EAR motif-containing ABA down-regulated novel transcription repressor regulates ABA response in tomato. GM CROPS & FOOD 2020; 11:275-289. [PMID: 32706315 DOI: 10.1080/21645698.2020.1790287] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
EAR motif-containing proteins are able to repress gene expression, therefore play important roles in regulating plants growth and development, plant response to environmental stimuli, as well as plant hormone signal transduction. ABA is a plant hormone that regulates abiotic stress tolerance in plants via signal transduction. ABA signaling via the PYR1/PYLs/RCARs receptors, the PP2Cs phosphatases, and SnRK2s protein kinases activates the ABF/AREB/ABI5-type bZIP transcription factors, resulting in the activation/repression of ABA response genes. However, functions of many ABA response genes remained largely unknown. We report here the identification of the ABA-responsive gene SlEAD1 (Solanum lycopersicum EAR motif-containing ABA down-regulated 1) as a novel EAR motif-containing transcription repressor gene in tomato. We found that the expression of SlEAD1 was down-regulated by ABA treatment, and SlEAD1 repressed reporter gene expression in transfected protoplasts. By using CRISPR gene editing, we generated transgene-free slead1 mutants and found that the mutants produced short roots. By using seed germination and root elongation assays, we examined ABA response of the slead1 mutants and found that ABA sensitivity in the mutants was increased. By using qRT-PCR, we further show that the expression of some of the ABA biosynthesis and signaling component genes were increased in the slead1 mutants. Taken together, our results suggest that SlEAD1 is an ABA response gene, that SlEAD1 is a novel EAR motif-containing transcription repressor, and that SlEAD1 negatively regulates ABA responses in tomato possibly by repressing the expression of some ABA biosynthesis and signaling genes.
Collapse
Affiliation(s)
- Wei Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University , Linyi, China.,Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University , Changchun, China
| | - Xutong Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University , Changchun, China
| | - Yating Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University , Changchun, China
| | - Ganghua Zhou
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University , Changchun, China
| | - Chen Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University , Changchun, China
| | - Saddam Hussain
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University , Changchun, China
| | - Adnan
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University , Changchun, China
| | - Rao Lin
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University , Changchun, China
| | - Tianya Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University , Changchun, China
| | - Shucai Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University , Linyi, China.,Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University , Changchun, China
| |
Collapse
|
61
|
Cai Y, Bartholomew ES, Dong M, Zhai X, Yin S, Zhang Y, Feng Z, Wu L, Liu W, Shan N, Zhang X, Ren H, Liu X. The HD-ZIP IV transcription factor GL2-LIKE regulates male flowering time and fertility in cucumber. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5425-5437. [PMID: 32490515 PMCID: PMC7501822 DOI: 10.1093/jxb/eraa251] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/27/2020] [Indexed: 05/19/2023]
Abstract
Cucumber is dioecious by nature, having both male and female flowers, and is a model system for unisexual flower development. Knowledge related to male flowering is limited, but it is reported to be regulated by transcription factors and hormone signals. Here, we report functional characterization of the cucumber (Cucumis sativus) GL2-LIKE gene, which encodes a homeodomain leucine zipper (HD-ZIP) IV transcription factor that plays an important role in regulating male flower development. Spatial-temporal expression analyses revealed high-level expression of CsGL2-LIKE in the male flower buds and anthers. CsGL2-LIKE is closely related to AtGL2, which is known to play a key role in trichome development. However, ectopic expression of CsGL2-LIKE in Arabidopsis gl2-8 mutant was unable to rescue the gl2-8 phenotype. Interestingly, the silencing of CsGL2-LIKE delayed male flowering by inhibiting the expression of the florigen gene FT and reduced pollen vigor and seed viability. Protein-protein interaction assays showed that CsGL2-LIKE interacts with the jasmonate ZIM domain protein CsJAZ1 to form a HD-ZIP IV-CsJAZ1 complex. Collectively, our study indicates that CsGL2-LIKE regulates male flowering in cucumber, and reveals a novel function of a HD-ZIP IV transcription factor in regulating male flower development of cucumber.
Collapse
Affiliation(s)
- Yanling Cai
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, P. R. China
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry of Education, College of Horticulture, China Agricultural University, Beijing, P. R. China
| | - Ezra S Bartholomew
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, P. R. China
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry of Education, College of Horticulture, China Agricultural University, Beijing, P. R. China
| | - Mingming Dong
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, P. R. China
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry of Education, College of Horticulture, China Agricultural University, Beijing, P. R. China
| | - Xuling Zhai
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, P. R. China
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry of Education, College of Horticulture, China Agricultural University, Beijing, P. R. China
| | - Shuai Yin
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, P. R. China
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry of Education, College of Horticulture, China Agricultural University, Beijing, P. R. China
| | - Yaqi Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, P. R. China
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry of Education, College of Horticulture, China Agricultural University, Beijing, P. R. China
| | - Zhongxuan Feng
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, P. R. China
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry of Education, College of Horticulture, China Agricultural University, Beijing, P. R. China
| | - Licai Wu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, P. R. China
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry of Education, College of Horticulture, China Agricultural University, Beijing, P. R. China
| | - Wan Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, P. R. China
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry of Education, College of Horticulture, China Agricultural University, Beijing, P. R. China
| | - Nan Shan
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, P. R. China
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry of Education, College of Horticulture, China Agricultural University, Beijing, P. R. China
| | - Xiao Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, P. R. China
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry of Education, College of Horticulture, China Agricultural University, Beijing, P. R. China
| | - Huazhong Ren
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, P. R. China
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry of Education, College of Horticulture, China Agricultural University, Beijing, P. R. China
| | - Xingwang Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, P. R. China
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry of Education, College of Horticulture, China Agricultural University, Beijing, P. R. China
- Correspondence:
| |
Collapse
|
62
|
Du SS, Li L, Li L, Wei X, Xu F, Xu P, Wang W, Xu P, Cao X, Miao L, Guo T, Wang S, Mao Z, Yang HQ. Photoexcited Cryptochrome2 Interacts Directly with TOE1 and TOE2 in Flowering Regulation. PLANT PHYSIOLOGY 2020; 184:487-505. [PMID: 32661061 PMCID: PMC7479908 DOI: 10.1104/pp.20.00486] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/22/2020] [Indexed: 05/25/2023]
Abstract
Cryptochromes are photolyase-like, blue-light (BL) photoreceptors found in various organisms. Arabidopsis (Arabidopsis thaliana) cryptochromes (CRYs; CRY1, and CRY2) mediate many light responses including photoperiodic floral initiation. Cryptochromes interact with COP1 and SPA1, causing the stabilization of CONSTANS (CO) and promotion of FLOWERING LOCUS T (FT) transcription and flowering. The AP2-like transcriptional factor TOE1 negatively regulates FT expression and flowering by indirectly inhibiting CO transcriptional activation activity and directly binding to FT Here, we demonstrate that CRY1 and CRY2 physically interact with TOE1 and TOE2 in a BL-dependent manner in flowering regulation. Genetic studies showed that mutation of TOE1 and TOE2 partially suppresses the late-flowering phenotype of cry1 cry2 mutant plants. BL-triggered interactions of CRY2 with TOE1 and TOE2 promote the dissociation of TOE1 and TOE2 from CO, resulting in alleviation of their inhibition of CO transcriptional activity and enhanced transcription of FT Furthermore, we show that CRY2 represses TOE1 binding to the regulatory element within the Block E enhancer of FT These results reveal that TOE1 and TOE2 act as downstream components of CRY2, thus partially mediating CRY2 regulation of photoperiodic flowering through modulation of CO activity and FT transcription.
Collapse
Affiliation(s)
- Sha-Sha Du
- School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ling Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li Li
- School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xuxu Wei
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Feng Xu
- School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Pengbo Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenxiu Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Peng Xu
- School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xiaoli Cao
- School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Langxi Miao
- School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Tongtong Guo
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Sheng Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhilei Mao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Hong-Quan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
63
|
Feng G, Yoo M, Davenport R, Boatwright JL, Koh J, Chen S, Barbazuk WB. Jasmonate induced alternative splicing responses in Arabidopsis. PLANT DIRECT 2020; 4:e00245. [PMID: 32875268 PMCID: PMC7450174 DOI: 10.1002/pld3.245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 06/04/2020] [Accepted: 06/24/2020] [Indexed: 05/14/2023]
Abstract
Jasmonate is an essential phytohormone regulating plant growth, development, and defense. Alternative splicing (AS) in jasmonate ZIM-domain (JAZ) repressors is well-characterized and plays an important role in jasmonate signaling regulation. However, it is unknown whether other genes in the jasmonate signaling pathway are regulated by AS. We explore the potential for AS regulation in three Arabidopsis genotypes (WT, jaz2, jaz7) in response to methyl jasmonate (MeJA) treatment with respect to: (a) differential AS, (b) differential miRNA targeted AS, and (c) AS isoforms with novel functions. AS events identified from transcriptomic data were validated with proteomic data. Protein interaction networks identified two genes, SKIP and ALY4 whose products have both DNA- and RNA-binding affinities, as potential key regulators mediating jasmonate signaling and AS regulation. We observed cases where AS alone, or AS and transcriptional regulation together, can influence gene expression in response to MeJA. Twenty-one genes contain predicted miRNA target sites subjected to AS, which implies that AS is coupled to miRNA regulation. We identified 30 cases where alternatively spliced isoforms may have novel functions. For example, AS of bHLH160 generates an isoform without a basic domain, which may convert it from an activator to a repressor. Our study identified potential key regulators in AS regulation of jasmonate signaling pathway. These findings highlight the importance of AS regulation in the jasmonate signaling pathway, both alone and in collaboration with other regulators. SIGNIFICANCE STATEMENT By exploring alternative splicing, we demonstrate its regulation in the jasmonate signaling pathway alone or in collaboration with other posttranscriptional regulations such as nonsense and microRNA-mediated decay. A signal transduction network model for alternative splicing in jasmonate signaling pathway was generated, contributing to our understanding for this important, prevalent, but relatively unexplored regulatory mechanism in plants.
Collapse
Affiliation(s)
- Guanqiao Feng
- Plant Molecular and Cellular Biology ProgramUniversity of FloridaGainesvilleFLUSA
| | - Mi‐Jeong Yoo
- Department of BiologyUniversity of FloridaGainesvilleFLUSA
| | - Ruth Davenport
- Department of BiologyUniversity of FloridaGainesvilleFLUSA
| | | | - Jin Koh
- The Interdisciplinary Center for Biotechnology Research (ICBR)University of FloridaGainesvilleFLUSA
| | - Sixue Chen
- Plant Molecular and Cellular Biology ProgramUniversity of FloridaGainesvilleFLUSA
- Department of BiologyUniversity of FloridaGainesvilleFLUSA
- The Interdisciplinary Center for Biotechnology Research (ICBR)University of FloridaGainesvilleFLUSA
- The Genetics InstituteUniversity of FloridaGainesvilleFLUSA
| | - W. Brad Barbazuk
- Plant Molecular and Cellular Biology ProgramUniversity of FloridaGainesvilleFLUSA
- Department of BiologyUniversity of FloridaGainesvilleFLUSA
- The Interdisciplinary Center for Biotechnology Research (ICBR)University of FloridaGainesvilleFLUSA
- The Genetics InstituteUniversity of FloridaGainesvilleFLUSA
| |
Collapse
|
64
|
Ding Q, Wang F, Xue J, Yang X, Fan J, Chen H, Li Y, Wu H. Identification and Expression Analysis of Hormone Biosynthetic and Metabolism Genes in the 2OGD Family for Identifying Genes That May Be Involved in Tomato Fruit Ripening. Int J Mol Sci 2020; 21:ijms21155344. [PMID: 32731334 PMCID: PMC7432023 DOI: 10.3390/ijms21155344] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/21/2022] Open
Abstract
Phytohormones play important roles in modulating tomato fruit development and ripening. The 2-oxoglutarate-dependent dioxygenase (2OGD) superfamily containing several subfamilies involved in hormone biosynthesis and metabolism. In this study, we aimed to identify hormone biosynthesis and metabolism-related to 2OGD proteins in tomato and explored their roles in fruit development and ripening. We identified nine 2OGD protein subfamilies involved in hormone biosynthesis and metabolism, including the gibberellin (GA) biosynthetic protein families GA20ox and GA3ox, GA degradation protein families C19-GA2ox and C20-GA2ox, ethylene biosynthetic protein family ACO, auxin degradation protein family DAO, jasmonate hydroxylation protein family JOX, salicylic acid degradation protein family DMR6, and strigolactone biosynthetic protein family LBO. These genes were differentially expressed in different tomato organs. The GA degradation gene SlGA2ox2, and the auxin degradation gene SlDAO1, showed significantly increased expression from the mature-green to the breaker stage during tomato fruit ripening, accompanied by decreased endogenous GA and auxin, indicating that SlGA2ox2 and SlDAO1 were responsible for the reduced GA and auxin concentrations. Additionally, exogenous gibberellin 3 (GA3) and indole-3-acetic acid (IAA) treatment of mature-green fruits delayed fruit ripening and increased the expression of SlGA2ox2 and SlDAO1, respectively. Therefore, SlGA2ox2 and SlDAO1 are implicated in the degradation of GAs and auxin during tomato fruit ripening.
Collapse
Affiliation(s)
- Qiangqiang Ding
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Q.D.); (F.W.); (J.X.); (X.Y.); (J.F.)
| | - Feng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Q.D.); (F.W.); (J.X.); (X.Y.); (J.F.)
| | - Juan Xue
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Q.D.); (F.W.); (J.X.); (X.Y.); (J.F.)
| | - Xinxin Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Q.D.); (F.W.); (J.X.); (X.Y.); (J.F.)
| | - Junmiao Fan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Q.D.); (F.W.); (J.X.); (X.Y.); (J.F.)
| | - Hong Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China;
| | - Yi Li
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT 06269, USA;
| | - Han Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Q.D.); (F.W.); (J.X.); (X.Y.); (J.F.)
- Correspondence:
| |
Collapse
|
65
|
Kinoshita A, Richter R. Genetic and molecular basis of floral induction in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2490-2504. [PMID: 32067033 PMCID: PMC7210760 DOI: 10.1093/jxb/eraa057] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 02/03/2020] [Indexed: 05/18/2023]
Abstract
Many plants synchronize their life cycles in response to changing seasons and initiate flowering under favourable environmental conditions to ensure reproductive success. To confer a robust seasonal response, plants use diverse genetic programmes that integrate environmental and endogenous cues and converge on central floral regulatory hubs. Technological advances have allowed us to understand these complex processes more completely. Here, we review recent progress in our understanding of genetic and molecular mechanisms that control flowering in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Atsuko Kinoshita
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan
- Correspondence: or
| | - René Richter
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, Australia
- Correspondence: or
| |
Collapse
|
66
|
Gattolin S, Cirilli M, Chessa S, Stella A, Bassi D, Rossini L. Mutations in orthologous PETALOSA TOE-type genes cause a dominant double-flower phenotype in phylogenetically distant eudicots. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2585-2595. [PMID: 31960023 PMCID: PMC7210751 DOI: 10.1093/jxb/eraa032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/17/2020] [Indexed: 05/04/2023]
Abstract
The double-flower phenotype has been selected by humans for its attractiveness in various plant species and it is of great commercial value for the ornamental market. In this study we investigated the genetic determinant of the dominant double-flower trait in carnation, petunia, and Rosa rugosa, and identified mutant alleles of TARGET OF EAT (TOE)-type genes characterized by a disruption of the miR172 target sequence and of the C-terminal portion of the encoded protein. Despite the phylogenetic distance between these eudicots, which diverged in the early Cretaceous, the orthologous genes carrying these mutations all belong to a single TOE-type subgroup, which we name as PETALOSA (PET). Homology searches allowed us to identify PET sequences in various other species. To confirm the results from naturally occurring mutations, we used CrispR-Cas9 to induce lesions within the miR172 target site of Nicotiana tabacum PET genes, and this resulted in the development of supernumerary petaloid structures. This study describes pet alleles in economically important ornamental species and provides evidence about the possibility of identifying and engineering PET genes to obtain the desirable double-flower trait in different plants.
Collapse
Affiliation(s)
- Stefano Gattolin
- CNR-Consiglio Nazionale delle Ricerche, Istituto di Biologia e Biotecnologia Agraria (IBBA), Milano, Italy
- PTP Science Park, Lodi, Italy
- Correspondence: or
| | - Marco Cirilli
- Università degli Studi di Milano – DiSAA, Milano, Italy
| | - Stefania Chessa
- CNR-Consiglio Nazionale delle Ricerche, Istituto di Biologia e Biotecnologia Agraria (IBBA), Milano, Italy
| | - Alessandra Stella
- CNR-Consiglio Nazionale delle Ricerche, Istituto di Biologia e Biotecnologia Agraria (IBBA), Milano, Italy
| | - Daniele Bassi
- Università degli Studi di Milano – DiSAA, Milano, Italy
| | - Laura Rossini
- Università degli Studi di Milano – DiSAA, Milano, Italy
- Correspondence: or
| |
Collapse
|
67
|
Gattolin S, Cirilli M, Chessa S, Stella A, Bassi D, Rossini L. Mutations in orthologous PETALOSA TOE-type genes cause a dominant double-flower phenotype in phylogenetically distant eudicots. JOURNAL OF EXPERIMENTAL BOTANY 2020. [PMID: 31960023 DOI: 10.1093/jxb/eraa032/5710789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The double-flower phenotype has been selected by humans for its attractiveness in various plant species and it is of great commercial value for the ornamental market. In this study we investigated the genetic determinant of the dominant double-flower trait in carnation, petunia, and Rosa rugosa, and identified mutant alleles of TARGET OF EAT (TOE)-type genes characterized by a disruption of the miR172 target sequence and of the C-terminal portion of the encoded protein. Despite the phylogenetic distance between these eudicots, which diverged in the early Cretaceous, the orthologous genes carrying these mutations all belong to a single TOE-type subgroup, which we name as PETALOSA (PET). Homology searches allowed us to identify PET sequences in various other species. To confirm the results from naturally occurring mutations, we used CrispR-Cas9 to induce lesions within the miR172 target site of Nicotiana tabacum PET genes, and this resulted in the development of supernumerary petaloid structures. This study describes pet alleles in economically important ornamental species and provides evidence about the possibility of identifying and engineering PET genes to obtain the desirable double-flower trait in different plants.
Collapse
Affiliation(s)
- Stefano Gattolin
- CNR-Consiglio Nazionale delle Ricerche, Istituto di Biologia e Biotecnologia Agraria (IBBA), Milano, Italy
- PTP Science Park, Lodi, Italy
| | - Marco Cirilli
- Università degli Studi di Milano - DiSAA, Milano, Italy
| | - Stefania Chessa
- CNR-Consiglio Nazionale delle Ricerche, Istituto di Biologia e Biotecnologia Agraria (IBBA), Milano, Italy
| | - Alessandra Stella
- CNR-Consiglio Nazionale delle Ricerche, Istituto di Biologia e Biotecnologia Agraria (IBBA), Milano, Italy
| | - Daniele Bassi
- Università degli Studi di Milano - DiSAA, Milano, Italy
| | - Laura Rossini
- Università degli Studi di Milano - DiSAA, Milano, Italy
| |
Collapse
|
68
|
Zhang H, Zhang Q, Zhai H, Gao S, Yang L, Wang Z, Xu Y, Huo J, Ren Z, Zhao N, Wang X, Li J, Liu Q, He S. IbBBX24 Promotes the Jasmonic Acid Pathway and Enhances Fusarium Wilt Resistance in Sweet Potato. THE PLANT CELL 2020; 32:1102-1123. [PMID: 32034034 PMCID: PMC7145486 DOI: 10.1105/tpc.19.00641] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/22/2020] [Accepted: 01/31/2020] [Indexed: 05/05/2023]
Abstract
Cultivated sweet potato (Ipomoea batatas) is an important source of food for both humans and domesticated animals. Here, we show that the B-box (BBX) family transcription factor IbBBX24 regulates the jasmonic acid (JA) pathway in sweet potato. When IbBBX24 was overexpressed in sweet potato, JA accumulation increased, whereas silencing this gene decreased JA levels. RNA sequencing analysis revealed that IbBBX24 modulates the expression of genes involved in the JA pathway. IbBBX24 regulates JA responses by antagonizing the JA signaling repressor IbJAZ10, which relieves IbJAZ10's repression of IbMYC2, a JA signaling activator. IbBBX24 binds to the IbJAZ10 promoter and activates its transcription, whereas it represses the transcription of IbMYC2 The interaction between IbBBX24 and IbJAZ10 interferes with IbJAZ10's repression of IbMYC2, thereby promoting the transcriptional activity of IbMYC2. Overexpressing IbBBX24 significantly increased Fusarium wilt disease resistance, suggesting that JA responses play a crucial role in regulating Fusarium wilt resistance in sweet potato. Finally, overexpressing IbBBX24 led to increased yields in sweet potato. Together, our findings indicate that IbBBX24 plays a pivotal role in regulating JA biosynthesis and signaling and increasing Fusarium wilt resistance and yield in sweet potato, thus providing a candidate gene for developing elite crop varieties with enhanced pathogen resistance but without yield penalty.
Collapse
Affiliation(s)
- Huan Zhang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qian Zhang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Hong Zhai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shaopei Gao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Li Yang
- State Key Laboratory of Protein and Plant Gene Research, The Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, 100871 Beijing, China
| | - Zhen Wang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yuetong Xu
- Department of Crop Genomics and Bioinformatics, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jinxi Huo
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhitong Ren
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ning Zhao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xiangfeng Wang
- Department of Crop Genomics and Bioinformatics, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jigang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qingchang Liu
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shaozhen He
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
69
|
Han X, Zhang M, Yang M, Hu Y. Arabidopsis JAZ Proteins Interact with and Suppress RHD6 Transcription Factor to Regulate Jasmonate-Stimulated Root Hair Development. THE PLANT CELL 2020; 32:1049-1062. [PMID: 31988260 PMCID: PMC7145492 DOI: 10.1105/tpc.19.00617] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/26/2019] [Accepted: 01/23/2020] [Indexed: 05/04/2023]
Abstract
Root hairs arise from trichoblasts and are crucial for plant anchorage, nutrient acquisition, and environmental interactions. The phytohormone jasmonate is known to regulate root hair development in Arabidopsis (Arabidopsis thaliana), but little is known about the molecular mechanism underlying jasmonate modulation in this process. Here, we show that the application of exogenous jasmonate significantly stimulated root hair elongation, but, on the contrary, blocking the perception or signaling of jasmonate resulted in defective root hairs. Jasmonate consistently elevated the expression levels of several crucial genes positively involved in root hair growth. Mechanistic investigation revealed that JASMONATE ZIM-DOMAIN (JAZ) proteins, critical repressors of jasmonate signaling, physically interacted with ROOT HAIR DEFECTIVE 6 (RHD6) and RHD6 LIKE1 (RSL1), two transcription factors that are essential for root hair development. JAZ proteins inhibited the transcriptional function of RHD6 and interfered with the interaction of RHD6 with RSL1. Genetic analysis indicated that jasmonate promoted root hair growth in a RHD6/RSL1-dependent manner. Moreover, overexpression of RHD6 largely rescued the root hair defects of JAZ-accumulating plants. Collectively, our study reveals a key signaling module in which JAZ repressors of the jasmonate pathway directly modulate RHD6 and RSL1 transcription factors to integrate jasmonate signaling and the root hair developmental process.
Collapse
Affiliation(s)
- Xiao Han
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Minghui Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Milian Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanru Hu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| |
Collapse
|
70
|
Genome-wide and expression pattern analysis of JAZ family involved in stress responses and postharvest processing treatments in Camellia sinensis. Sci Rep 2020; 10:2792. [PMID: 32066857 PMCID: PMC7026426 DOI: 10.1038/s41598-020-59675-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/03/2020] [Indexed: 12/22/2022] Open
Abstract
The JASMONATE-ZIM DOMAIN (JAZ) family genes are key repressors in the jasmonic acid signal transduction pathway. Recently, the JAZ gene family has been systematically characterized in many plants. However, this gene family has not been explored in the tea plant. In this study, 13 CsJAZ genes were identified in the tea plant genome. Phylogenetic analysis showed that the JAZ proteins from tea and other plants clustered into 11 sub-groups. The CsJAZ gene transcriptional regulatory network predictive and expression pattern analyses suggest that these genes play vital roles in abiotic stress responses, phytohormone crosstalk and growth and development of the tea plant. In addition, the CsJAZ gene expression profiles were associated with tea postharvest processing. Our work provides a comprehensive understanding of the CsJAZ family and will help elucidate their contributions to tea quality during tea postharvest processing.
Collapse
|
71
|
Different MicroRNA Families Involved in Regulating High Temperature Stress Response during Cotton ( Gossypium hirsutum L.) Anther Development. Int J Mol Sci 2020; 21:ijms21041280. [PMID: 32074966 PMCID: PMC7072957 DOI: 10.3390/ijms21041280] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/26/2020] [Accepted: 02/12/2020] [Indexed: 11/16/2022] Open
Abstract
MicroRNAs (miRNAs) are small molecule RNAs widely involved in responses to plant abiotic stresses. We performed small RNA sequencing of cotton anthers at four developmental stages under normal and high temperature (NT and HT, respectively) conditions to investigate the stress response characteristics of miRNA to HT. A total of 77 miRNAs, including 33 known miRNAs and 44 novel miRNAs, were identified, and 41 and 28 miRNAs were differentially expressed under NT and HT stress conditions, respectively. The sporogenous cell proliferation (SCP), meiotic phase (MP), microspore release period (MRP), and pollen maturity (PM) stages had 10 (including 12 miRNAs), four (including six miRNAs), four (including five miRNAs), and seven (including 11 miRNAs) HT stress-responsive miRNA families, respectively, which were identified after removing the changes in genotype-specific miRNAs under NT condition. Seven miRNA families (miR2949, miR167, and miR160 at the SCP stage; miR156 and miR172 at the MP stage; miR156 at the MRP stage; and miR393 and miR3476 at the PM stage), which had expression abundance of more than 10% of the total expression abundance, served as the main regulators responding to HT stress with positive or negative regulation patterns. These miRNAs orchestrated the expression of the corresponding target genes and led to different responses in the HT-tolerant and the HT-sensitive lines. The results revealed that the HT stress response of miRNAs in cotton anthers were stage-specific and differed with the development of anthers. Our study may enhance the understanding of the response of miRNAs to HT stress in cotton anthers and may clarify the mechanism of plant tolerance to HT stress.
Collapse
|
72
|
Huang H, Gong Y, Liu B, Wu D, Zhang M, Xie D, Song S. The DELLA proteins interact with MYB21 and MYB24 to regulate filament elongation in Arabidopsis. BMC PLANT BIOLOGY 2020; 20:64. [PMID: 32033528 PMCID: PMC7006197 DOI: 10.1186/s12870-020-2274-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 02/03/2020] [Indexed: 05/24/2023]
Abstract
BACKGROUND Gibberellin (GA) and jasmonate (JA) are two essential phytohormones for filament elongation in Arabidopsis. GA and JA trigger degradation of DELLAs and JASMONATE ZIM-domain (JAZ) proteins through SCFSLY1 and SCFCOI1 separately to activate filament elongation. In JA pathway, JAZs interact with MYB21 and MYB24 to control filament elongation. However, little is known how DELLAs regulate filament elongation. RESULTS Here we showed that DELLAs interact with MYB21 and MYB24, and that R2R3 domains of MYB21 and MYB24 are responsible for interaction with DELLAs. Furthermore, we demonstrated that DELLA and JAZ proteins coordinately repress the transcriptional function of MYB21 and MYB24 to inhibit filament elongation. CONCLUSION We discovered that DELLAs interact with MYB21 and MYB24, and that DELLAs and JAZs attenuate the transcriptional function of MYB21 and MYB24 to control filament elongation. This study reveals a novel cross-talk mechanism of GA and JA in the regulation of filament elongation in Arabidopsis.
Collapse
Affiliation(s)
- Huang Huang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, China.
| | - Yilong Gong
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, RNA Center, College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Bei Liu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, RNA Center, College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Dewei Wu
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009, China
| | - Min Zhang
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, RNA Center, College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Daoxin Xie
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Susheng Song
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, RNA Center, College of Life Sciences, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
73
|
Jasmonic Acid Signaling Pathway in Response to Abiotic Stresses in Plants. Int J Mol Sci 2020; 21:ijms21020621. [PMID: 31963549 PMCID: PMC7013817 DOI: 10.3390/ijms21020621] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/11/2020] [Accepted: 01/16/2020] [Indexed: 12/16/2022] Open
Abstract
Plants as immovable organisms sense the stressors in their environment and respond to them by means of dedicated stress response pathways. In response to stress, jasmonates (jasmonic acid, its precursors and derivatives), a class of polyunsaturated fatty acid-derived phytohormones, play crucial roles in several biotic and abiotic stresses. As the major immunity hormone, jasmonates participate in numerous signal transduction pathways, including those of gene networks, regulatory proteins, signaling intermediates, and proteins, enzymes, and molecules that act to protect cells from the toxic effects of abiotic stresses. As cellular hubs for integrating informational cues from the environment, jasmonates play significant roles in alleviating salt stress, drought stress, heavy metal toxicity, micronutrient toxicity, freezing stress, ozone stress, CO2 stress, and light stress. Besides these, jasmonates are involved in several developmental and physiological processes throughout the plant life. In this review, we discuss the biosynthesis and signal transduction pathways of the JAs and the roles of these molecules in the plant responses to abiotic stresses.
Collapse
|
74
|
Deng G, Zhou L, Wang Y, Zhang G, Chen X. Hydrogen sulfide acts downstream of jasmonic acid to inhibit stomatal development in Arabidopsis. PLANTA 2020; 251:42. [PMID: 31907619 DOI: 10.1007/s00425-019-03334-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/21/2019] [Indexed: 05/04/2023]
Abstract
Main conclusion: Jasmonic acid (JA) negatively regulates stomatal development by promoting LCD expression and hydrogen sulfide (H2S) biosynthesis. H2S inhibits the initiation of stomata formation and acts upstream of SPEECHLESS. Abstract: Stomatal development is strictly regulated by endogenous signals and environmental cues. We recently revealed that jasmonic acid (JA) negatively regulates stomatal development in Arabidopsis thaliana cotyledons (Han et al., Plant Physiol 176:2871-2885, 2018), but the underlying molecular mechanism remains largely unknown. Here, we uncovered a role for H2S in regulating stomatal development. The H2S scavenger hypotaurine reversed the JA-induced repression of stomatal development in the epidermis of wild-type Arabidopsis. The H2S-deficient mutant lcd displayed increased stomatal density and stomatal index values, which were rescued by treatment with sodium hydrosulfide (NaHS; an H2S donor) but not JA, suggesting that JA-mediated repression of stomatal development is dependent on H2S biosynthesis. The high stomatal density of JA-deficient mutants was rescued by exogenous NaHS treatment. Further analysis indicated that JA positively regulates LCD expression, L-cysteine desulfhydrases (L-CDes) activity, and endogenous H2S content. Furthermore, H2S represses the expression of stomate-associated genes and functions downstream of stomate-related signaling pathway components TOO MANY MOUTHS (TMM) and STOMATAL DENSITY AND DISTRIBUTION1 (SDD1) and upstream of SPEECHLESS (SPCH). Therefore, H2S acts downstream of JA signaling to regulate stomatal development in Arabidopsis cotyledons.
Collapse
Affiliation(s)
- Guobin Deng
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, 650224, Yunnan, China
| | - Lijuan Zhou
- College of Agriculture and Life Sciences, Kunming University, Kunming, 650214, Yunnan, China
| | - Yanyan Wang
- School of Life Sciences, Yunnan University, Kunming, 650091, Yunnan, China
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650223, Yunnan, China
| | - Gensong Zhang
- School of Life Sciences, Yunnan University, Kunming, 650091, Yunnan, China
| | - Xiaolan Chen
- School of Life Sciences, Yunnan University, Kunming, 650091, Yunnan, China.
| |
Collapse
|
75
|
A MYC2/MYC3/MYC4-dependent transcription factor network regulates water spray-responsive gene expression and jasmonate levels. Proc Natl Acad Sci U S A 2019; 116:23345-23356. [PMID: 31662474 DOI: 10.1073/pnas.1911758116] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mechanical stimuli, such as wind, rain, and touch affect plant development, growth, pest resistance, and ultimately reproductive success. Using water spray to simulate rain, we demonstrate that jasmonic acid (JA) signaling plays a key role in early gene-expression changes, well before it leads to developmental changes in flowering and plant architecture. The JA-activated transcription factors MYC2/MYC3/MYC4 modulate transiently induced expression of 266 genes, most of which peak within 30 min, and control 52% of genes induced >100-fold. Chromatin immunoprecipitation-sequencing analysis indicates that MYC2 dynamically binds >1,300 promoters and trans-activation assays show that MYC2 activates these promoters. By mining our multiomic datasets, we identified a core MYC2/MYC3/MYC4-dependent "regulon" of 82 genes containing many previously unknown MYC2 targets, including transcription factors bHLH19 and ERF109 bHLH19 can in turn directly activate the ORA47 promoter, indicating that MYC2/MYC3/MYC4 initiate a hierarchical network of downstream transcription factors. Finally, we also reveal that rapid water spray-induced accumulation of JA and JA-isoleucine is directly controlled by MYC2/MYC3/MYC4 through a positive amplification loop that regulates JA-biosynthesis genes.
Collapse
|
76
|
Qanmber G, Lu L, Liu Z, Yu D, Zhou K, Huo P, Li F, Yang Z. Genome-wide identification of GhAAI genes reveals that GhAAI66 triggers a phase transition to induce early flowering. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4721-4736. [PMID: 31106831 PMCID: PMC6760319 DOI: 10.1093/jxb/erz239] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 05/11/2019] [Indexed: 05/20/2023]
Abstract
Plants undergo a phase transition from vegetative to reproductive development that triggers floral induction. Genes containing an AAI (α-amylase inhibitor) domain form a large gene family, but there have been no comprehensive analyses of this gene family in any plant species. Here, we identified 336 AAI genes from nine plant species including122 AAI genes in cotton (Gossypium hirsutum). The AAI gene family has evolutionarily conserved amino acid residues throughout the plant kingdom. Phylogenetic analysis classified AAI genes into five major clades with significant polyploidization and showing effects of genome duplication. Our study identified 42 paralogous and 216 orthologous gene pairs resulting from segmental and whole-genome duplication, respectively, demonstrating significant contributions of gene duplication to expansion of the cotton AAI gene family. Further, GhAAI66 was preferentially expressed in flower tissue and as responses to phytohormone treatments. Ectopic expression of GhAAI66 in Arabidopsis and silencing in cotton revealed that GhAAI66 triggers a phase transition to induce early flowering. Further, GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis of RNA sequencing data and qRT-PCR (quantitative reverse transcription-PCR) analysis indicated that GhAAI66 integrates multiple flower signaling pathways including gibberellin, jasmonic acid, and floral integrators to trigger an early flowering cascade in Arabidopsis. Therefore, characterization of the AAI family provides invaluable insights for improving cotton breeding.
Collapse
Affiliation(s)
- Ghulam Qanmber
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Lili Lu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Zhao Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Daoqian Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Kehai Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Peng Huo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, Henan, China
- Correspondence: or
| | - Zuoren Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, Henan, China
- Correspondence: or
| |
Collapse
|
77
|
Patil V, McDermott HI, McAllister T, Cummins M, Silva JC, Mollison E, Meikle R, Morris J, Hedley PE, Waugh R, Dockter C, Hansson M, McKim SM. APETALA2 control of barley internode elongation. Development 2019; 146:dev.170373. [PMID: 31076487 PMCID: PMC6589076 DOI: 10.1242/dev.170373] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 05/02/2019] [Indexed: 01/08/2023]
Abstract
Many plants dramatically elongate their stems during flowering, yet how this response is coordinated with the reproductive phase is unclear. We demonstrate that microRNA (miRNA) control of APETALA2 (AP2) is required for rapid, complete elongation of stem internodes in barley, especially of the final ‘peduncle’ internode directly underneath the inflorescence. Disrupted miR172 targeting of AP2 in the Zeo1.b barley mutant caused lower mitotic activity, delayed growth dynamics and premature lignification in the peduncle leading to fewer and shorter cells. Stage- and tissue-specific comparative transcriptomics between Zeo1.b and its parent cultivar showed reduced expression of proliferation-associated genes, ectopic expression of maturation-related genes and persistent, elevated expression of genes associated with jasmonate and stress responses. We further show that applying methyl jasmonate (MeJA) phenocopied the stem elongation of Zeo1.b, and that Zeo1.b itself was hypersensitive to inhibition by MeJA but less responsive to promotion by gibberellin. Taken together, we propose that miR172-mediated restriction of AP2 may modulate the jasmonate pathway to facilitate gibberellin-promoted stem growth during flowering. Summary: Regulation of reproductive stem elongation in barley by APETALA2 suggests a pivotal role for phase change repression of JA-associated responses to promote internode growth.
Collapse
Affiliation(s)
- Vrushali Patil
- Division of Plant Sciences, School of Life Sciences, The University of Dundee at The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland
| | - Hannah I McDermott
- Division of Plant Sciences, School of Life Sciences, The University of Dundee at The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland
| | - Trisha McAllister
- Division of Plant Sciences, School of Life Sciences, The University of Dundee at The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland
| | - Michael Cummins
- Division of Plant Sciences, School of Life Sciences, The University of Dundee at The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland
| | - Joana C Silva
- Division of Plant Sciences, School of Life Sciences, The University of Dundee at The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland
| | - Ewan Mollison
- Division of Plant Sciences, School of Life Sciences, The University of Dundee at The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland
| | - Rowan Meikle
- Division of Plant Sciences, School of Life Sciences, The University of Dundee at The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland
| | - Jenny Morris
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland
| | - Pete E Hedley
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland
| | - Robbie Waugh
- Division of Plant Sciences, School of Life Sciences, The University of Dundee at The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland.,Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland
| | - Christoph Dockter
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Mats Hansson
- Department of Biology, Lund University, Sölvegatan 35B, 22362 Lund, Sweden
| | - Sarah M McKim
- Division of Plant Sciences, School of Life Sciences, The University of Dundee at The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland
| |
Collapse
|
78
|
Ruan J, Zhou Y, Zhou M, Yan J, Khurshid M, Weng W, Cheng J, Zhang K. Jasmonic Acid Signaling Pathway in Plants. Int J Mol Sci 2019; 20:ijms20102479. [PMID: 31137463 PMCID: PMC6566436 DOI: 10.3390/ijms20102479] [Citation(s) in RCA: 374] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/05/2019] [Accepted: 05/07/2019] [Indexed: 11/21/2022] Open
Abstract
Jasmonic acid (JA) and its precursors and dervatives, referred as jasmonates (JAs) are important molecules in the regulation of many physiological processes in plant growth and development, and especially the mediation of plant responses to biotic and abiotic stresses. JAs biosynthesis, perception, transport, signal transduction and action have been extensively investigated. In this review, we will discuss the initiation of JA signaling with a focus on environmental signal perception and transduction, JA biosynthesis and metabolism, transport of signaling molecules (local transmission, vascular bundle transmission, and airborne transportation), and biological function (JA signal receptors, regulated transcription factors, and biological processes involved).
Collapse
Affiliation(s)
- Jingjun Ruan
- College of Agriculture, Guizhou University, Guiyang 550025, China.
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Yuexia Zhou
- College of Agriculture, Guizhou University, Guiyang 550025, China.
| | - Meiliang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Jun Yan
- Schools of Pharmacy and Bioengineering, Chengdu University, Chengdu 610106, China.
| | - Muhammad Khurshid
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
- Institute of Biochemistry and Biotechnology, University of the Punjab, Lahore 54590, Pakistan.
| | - Wenfeng Weng
- College of Agriculture, Guizhou University, Guiyang 550025, China.
| | - Jianping Cheng
- College of Agriculture, Guizhou University, Guiyang 550025, China.
| | - Kaixuan Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
79
|
Collani S, Neumann M, Yant L, Schmid M. FT Modulates Genome-Wide DNA-Binding of the bZIP Transcription Factor FD. PLANT PHYSIOLOGY 2019; 180:367-380. [PMID: 30770462 PMCID: PMC6501114 DOI: 10.1104/pp.18.01505] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/05/2019] [Indexed: 05/02/2023]
Abstract
The transition to flowering is a crucial step in the plant life cycle that is controlled by multiple endogenous and environmental cues, including hormones, sugars, temperature, and photoperiod. Permissive photoperiod induces the expression of FLOWERING LOCUS T (FT) in the phloem companion cells of leaves. The FT protein then acts as a florigen that is transported to the shoot apical meristem, where it physically interacts with the Basic Leucine Zipper Domain transcription factor FD and 14-3-3 proteins. However, despite the importance of FD in promoting flowering, its direct transcriptional targets are largely unknown. Here, we combined chromatin immunoprecipitation sequencing and RNA sequencing to identify targets of FD at the genome scale and assessed the contribution of FT to DNA binding. We further investigated the ability of FD to form protein complexes with FT and TERMINAL FLOWER1 through interaction with 14-3-3 proteins. Importantly, we observed direct binding of FD to targets involved in several aspects of plant development. These target genes were previously unknown to be directly related to the regulation of flowering time. Our results confirm FD as a central regulator of floral transition at the shoot meristem and provide evidence for crosstalk between the regulation of flowering and other signaling pathways, such as pathways involved in hormone signaling.
Collapse
Affiliation(s)
- Silvio Collani
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
- Max Planck Institute for Developmental Biology, Department of Molecular Biology, 72076 Tübingen, Germany
| | - Manuela Neumann
- Max Planck Institute for Developmental Biology, Department of Molecular Biology, 72076 Tübingen, Germany
| | - Levi Yant
- Max Planck Institute for Developmental Biology, Department of Molecular Biology, 72076 Tübingen, Germany
| | - Markus Schmid
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
- Max Planck Institute for Developmental Biology, Department of Molecular Biology, 72076 Tübingen, Germany
- Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, People's Republic of China
| |
Collapse
|
80
|
Tian J, Cao L, Chen X, Chen M, Zhang P, Cao L, Persson S, Zhang D, Yuan Z. The OsJAZ1 degron modulates jasmonate signaling sensitivity during rice development. Development 2019; 146:dev.173419. [PMID: 30705076 DOI: 10.1242/dev.173419] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/22/2019] [Indexed: 01/14/2023]
Abstract
Jasmonates (JAs) are crucial to the coordination of plant stress responses and development. JA signaling depends on JASMONATE-ZIM DOMAIN (JAZ) proteins that are destroyed by the SCFCOI1-mediated 26S proteasome when the JAZ co-receptor COI1 binds active JA or the JA-mimicking phytotoxin coronatine (COR). JAZ degradation releases JAZ-interacting transcription factors that can execute stress and growth responses. The JAZ proteins typically contain Jas motifs that undergo conformational changes during JA signal transduction and that are important for the JAZ-COI1 interaction and JAZ protein degradation. However, how alterations in the Jas motif and, in particular, the JAZ degron part of the motif, influence protein stability and plant development have not been well explored. To clarify this issue, we performed bioassays and genetic experiments to uncover the function of the OsJAZ1 degron in rice JA signaling. We found that substitution or deletion of core segments of the degron altered the OsJAZ1-OsCOI1b interaction in a COR-dependent manner. We show that these altered interactions function as a regulator for JA signaling during flower and root development. Our study therefore expands our understanding of how the JAZ degron functions, and provides the means to change the sensitivity and specificity of JA signaling in rice.
Collapse
Affiliation(s)
- Jiaqi Tian
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lichun Cao
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaofei Chen
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingjiao Chen
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Peng Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liming Cao
- Crop Breeding & Cultivation Research Institute, Shanghai Academy of Agriculture Sciences, Shanghai 201403, China
| | - Staffan Persson
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,School of Biosciences, University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,Key Laboratory of Crop Marker-Assisted Breeding of Huaian Municipality, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaian 223300, China.,School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, South Australia 5064, Australia
| | - Zheng Yuan
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China .,Key Laboratory of Crop Marker-Assisted Breeding of Huaian Municipality, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaian 223300, China
| |
Collapse
|
81
|
Su P, Gao L, Liu S, Guan H, Wang J, Zhang Y, Zhao Y, Hu T, Tu L, Zhou J, Ma B, Liu X, Huang L, Gao W. Probing the function of protein farnesyltransferase in Tripterygium wilfordii. PLANT CELL REPORTS 2019; 38:211-220. [PMID: 30506368 DOI: 10.1007/s00299-018-2363-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/25/2018] [Indexed: 06/09/2023]
Abstract
We found two subunits FTase/GGTaseI-α and FTase-β formed a heterodimer to transfer a farnesyl group from FPP to protein N-dansyl-GCVLS, confirming they are responsible for protein farnesylation in planta. Tripterygium wilfordii is a medicinal plant with a broad spectrum of anti-inflammatory, immunosuppressive and anti-cancer activities. Recently, a number of studies have focused on investigating the biosynthetic pathways of its bioactive compounds, whereas little attention has been paid to the enzymes which play important roles in regulating diverse developmental processes of T. wilfordii. In this study, we report for the first time the identification and characterization of two subunits of farnesyltransferase (FTase), farnesyltransferase/geranylgeranyltransferase I-α (TwFTase/GGTase I-α) and farnesyltransferase-β (TwFTase-β), in this important medicinal plant. Cell-free in vivo assays, yeast two-hybrid (Y2H) and pull-down assays showed that the two subunits interact with each other to form a heterodimer to perform the role of specifically transferring a farnesyl group from FPP to the CAAX-box protein N-dansyl-GCVLS. Furthermore, we discovered that the two subunits had the same cytoplasmic localization pattern and displayed the same tissue expression pattern. These results indicated that we identified a functional TwFTase enzyme which contains two functionally complementary subunits TwFTase/GGTase I-α and TwFTase-β, which provides us promising genetic targets to construct transgenic plants or screen for more adaptable T. wilfordii mutants, which are able to survive in changing environments.
Collapse
Affiliation(s)
- Ping Su
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 10069, China
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Linhui Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 10069, China
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Shuang Liu
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Hongyu Guan
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 10069, China
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, 100029, China
| | - Jian Wang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yifeng Zhang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 10069, China
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yujun Zhao
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Tianyuan Hu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 10069, China
| | - Lichan Tu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 10069, China
| | - Jiawei Zhou
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 10069, China
| | - Baowei Ma
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 10069, China
| | - Xihong Liu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 10069, China
| | - Luqi Huang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Wei Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 10069, China.
| |
Collapse
|
82
|
Chang G, Yang W, Zhang Q, Huang J, Yang Y, Hu X. ABI5-BINDING PROTEIN2 Coordinates CONSTANS to Delay Flowering by Recruiting the Transcriptional Corepressor TPR2. PLANT PHYSIOLOGY 2019; 179:477-490. [PMID: 30514725 PMCID: PMC6426417 DOI: 10.1104/pp.18.00865] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/27/2018] [Indexed: 05/23/2023]
Abstract
ABI5-BINDING PROTEIN2 (AFP2) negatively regulates the abscisic acid signal by accelerating ABI5 degradation during seed germination in Arabidopsis (Arabidopsis thaliana). The abscisic acid signal is reported to delay flowering by up-regulating Flowering Locus C expression, but the role of AFP2 in regulating flowering time is unknown. Here, we found that flowering time was markedly delayed and CONSTANS (CO) expression was reduced in a transgenic Arabidopsis line overexpressing AFP2 under LD conditions. Conversely, the loss-of-function afp2 mutant showed slightly earlier flowering, with higher CO expression. These data suggest that AFP2 negatively regulates photoperiod-dependent flowering time by modulating the CO signal. We then found that AFP2 exhibited circadian expression rhythms that peaked during the night. Furthermore, the C-terminus of AFP2 interacted with CO, while its N-terminal ethylene response factor-associated amphiphilic repression motif interacted with the transcriptional corepressor TOPLESS-related protein2 (TPR2). Thus, AFP2 bridges CO and TPR2 to form the CO-AFP2-TPR2 complex. Biochemical and genetic analyses showed that AFP2 mediated CO degradation during the night. AFP2 also recruited histone deacetylase activity at Flowering Locus T chromatin through its interaction with TPR2. Taken together, our results reveal an elaborate mechanism by which AFP2 modulates flowering time through coordinating the activity and stability of CO.
Collapse
Affiliation(s)
- Guanxiao Chang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Wenjuan Yang
- Shanghai Key Laboratory of Bio-Energy Crops, Research Center for Natural Products, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Qili Zhang
- Shanghai Key Laboratory of Bio-Energy Crops, Research Center for Natural Products, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Jinling Huang
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475001, China
- Department of Biology, East Carolina University, Greenville, North Carolina 27858
| | - Yongping Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xiangyang Hu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Shanghai Key Laboratory of Bio-Energy Crops, Research Center for Natural Products, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
83
|
Jian H, Zhang A, Ma J, Wang T, Yang B, Shuang LS, Liu M, Li J, Xu X, Paterson AH, Liu L. Joint QTL mapping and transcriptome sequencing analysis reveal candidate flowering time genes in Brassica napus L. BMC Genomics 2019; 20:21. [PMID: 30626329 PMCID: PMC6325782 DOI: 10.1186/s12864-018-5356-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 12/09/2018] [Indexed: 01/10/2023] Open
Abstract
Background Optimum flowering time is a key agronomic trait in Brassica napus. To investigate the genetic architecture and genetic regulation of flowering time in this important crop, we conducted quantitative trait loci (QTL) analysis of flowering time in a recombinant inbred line (RIL) population, including lines with extreme differences in flowering time, in six environments, along with RNA-Seq analysis. Results We detected 27 QTLs distributed on eight chromosomes among six environments, including one major QTL on chromosome C02 that explained 11–25% of the phenotypic variation and was stably detected in all six environments. RNA-Seq analysis revealed 105 flowering time-related differentially expressed genes (DEGs) that play roles in the circadian clock/photoperiod, autonomous pathway, and hormone and vernalization pathways. We focused on DEGs related to the regulation of flowering time, especially DEGs in QTL regions. Conclusions We identified 45 flowering time-related genes in these QTL regions, eight of which are DEGs, including key flowering time genes PSEUDO RESPONSE REGULATOR 7 (PRR7) and FY (located in a major QTL region on C02). These findings provide insights into the genetic architecture of flowering time in B. napus. Electronic supplementary material The online version of this article (10.1186/s12864-018-5356-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hongju Jian
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Academy of Agricultural Sciences, Chongqing, 400715, China.,Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30605, USA
| | - Aoxiang Zhang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Academy of Agricultural Sciences, Chongqing, 400715, China
| | - Jinqi Ma
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Academy of Agricultural Sciences, Chongqing, 400715, China
| | - Tengyue Wang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Academy of Agricultural Sciences, Chongqing, 400715, China
| | - Bo Yang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Academy of Agricultural Sciences, Chongqing, 400715, China
| | - Lan Shuan Shuang
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30605, USA
| | - Min Liu
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30605, USA
| | - Jiana Li
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Academy of Agricultural Sciences, Chongqing, 400715, China
| | - Xinfu Xu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Academy of Agricultural Sciences, Chongqing, 400715, China
| | - Andrew H Paterson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30605, USA.
| | - Liezhao Liu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Academy of Agricultural Sciences, Chongqing, 400715, China.
| |
Collapse
|
84
|
Lu Y, Yao J. Chloroplasts at the Crossroad of Photosynthesis, Pathogen Infection and Plant Defense. Int J Mol Sci 2018; 19:E3900. [PMID: 30563149 PMCID: PMC6321325 DOI: 10.3390/ijms19123900] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 12/31/2022] Open
Abstract
Photosynthesis, pathogen infection, and plant defense are three important biological processes that have been investigated separately for decades. Photosynthesis generates ATP, NADPH, and carbohydrates. These resources are utilized for the synthesis of many important compounds, such as primary metabolites, defense-related hormones abscisic acid, ethylene, jasmonic acid, and salicylic acid, and antimicrobial compounds. In plants and algae, photosynthesis and key steps in the synthesis of defense-related hormones occur in chloroplasts. In addition, chloroplasts are major generators of reactive oxygen species and nitric oxide, and a site for calcium signaling. These signaling molecules are essential to plant defense as well. All plants grown naturally are attacked by pathogens. Bacterial pathogens enter host tissues through natural openings or wounds. Upon invasion, bacterial pathogens utilize a combination of different virulence factors to suppress host defense and promote pathogenicity. On the other hand, plants have developed elaborate defense mechanisms to protect themselves from pathogen infections. This review summarizes recent discoveries on defensive roles of signaling molecules made by plants (primarily in their chloroplasts), counteracting roles of chloroplast-targeted effectors and phytotoxins elicited by bacterial pathogens, and how all these molecules crosstalk and regulate photosynthesis, pathogen infection, and plant defense, using chloroplasts as a major battlefield.
Collapse
Affiliation(s)
- Yan Lu
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008, USA.
| | - Jian Yao
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008, USA.
| |
Collapse
|
85
|
Yang J, Liu Y, Yan H, Tian T, You Q, Zhang L, Xu W, Su Z. PlantEAR: Functional Analysis Platform for Plant EAR Motif-Containing Proteins. Front Genet 2018; 9:590. [PMID: 30555515 PMCID: PMC6283911 DOI: 10.3389/fgene.2018.00590] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 11/15/2018] [Indexed: 01/05/2023] Open
Abstract
The Ethylene-responsive element binding factor-associated Amphiphilic Repression (EAR) motifs, which were initially identified in members of the Arabidopsis ethylene response factor (ERF) family, are transcriptional repression motifs in plants and are defined by the consensus sequence patterns of either LxLxL or DLNxxP. EAR motif-containing proteins can function as transcription repressors, thus interacting with co-repressors, such as TOPLESS and AtSAP18, affecting the structure of chromatin by histone modifications and thereby repressing gene transcription. EAR motif-containing proteins are highly conserved across diverse plant species and play important roles in hormone signal transduction, stress responses and development, but they have not been identified in most plants. In this study, we identified 20,542 EAR motif-containing proteins from 71 plant species based on a Hidden Markov Model and orthologous gene search, and then we constructed a functional analysis platform for plant EAR motif-containing proteins (PlantEAR, http://structuralbiology.cau.edu.cn/plantEAR) by integrating a variety of functional annotations and processed data. Several tools were provided as functional support for EAR motif-containing proteins, such as browse, search, co-expression and protein-protein interaction (PPI) network analysis as well as cis-element analysis and gene set enrichment analysis (GSEA). In addition, basing on the identified EAR motif-containing proteins, we also explored their distribution in various species and found that the numbers of EAR motif-containing proteins showed an increasing trend in evolution from algae to angiosperms.
Collapse
Affiliation(s)
- Jiaotong Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yue Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hengyu Yan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tian Tian
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qi You
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Liwei Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wenying Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhen Su
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
86
|
Cai C, Yuan W, Miao H, Deng M, Wang M, Lin J, Zeng W, Wang Q. Functional Characterization of BoaMYB51s as Central Regulators of Indole Glucosinolate Biosynthesis in Brassica oleracea var. alboglabra Bailey. FRONTIERS IN PLANT SCIENCE 2018; 9:1599. [PMID: 30459789 PMCID: PMC6232877 DOI: 10.3389/fpls.2018.01599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/17/2018] [Indexed: 05/26/2023]
Abstract
R2R3-MYB transcription factor MYB51 is known to control indole glucosinolate (indole GSL) biosynthesis in Arabidopsis. Here, two copies of BoaMYB51 have been isolated in Chinese kale (Brassica oleracea var. alboglabra Bailey), designated BoaMYB51.1 and BoaMYB51.2, which exhibit overlapping but distinct expression levels among different organs and respond to signaling molecules in a similar pattern. It has been demonstrated a structural and functional conservation between BoaMYB51s and AtMYB51 by phylogenetic analysis, complementation studies and transient expression assay. To further investigate the transcriptional mechanism, we identified the transcriptional activation domain (TAD) and putative interacting proteins of BoaMYB51s by means of yeast (Saccharomyces cerevisiae) two hybrid. Using tobacco (Nicotiana benthamiana) transient expression assay, we confirmed that the carboxy-end is required for transcriptional activation activity of BoaMYB51s. In addition, several BoaMYB51-interacting proteins have been identified by yeast two-hybrid screening. These results provide important insights into the molecular mechanisms by which MYB51 transcriptionally regulates indole GSL biosynthesis.
Collapse
Affiliation(s)
- Congxi Cai
- State Agriculture Ministry Laboratory of Horticultural Crop Growth and Development, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, China
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Wenxin Yuan
- State Agriculture Ministry Laboratory of Horticultural Crop Growth and Development, Hangzhou, China
| | - Huiying Miao
- State Agriculture Ministry Laboratory of Horticultural Crop Growth and Development, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, China
| | - Mingdan Deng
- State Agriculture Ministry Laboratory of Horticultural Crop Growth and Development, Hangzhou, China
| | - Mengyu Wang
- State Agriculture Ministry Laboratory of Horticultural Crop Growth and Development, Hangzhou, China
| | - Jiayao Lin
- State Agriculture Ministry Laboratory of Horticultural Crop Growth and Development, Hangzhou, China
| | - Wei Zeng
- State Agriculture Ministry Laboratory of Horticultural Crop Growth and Development, Hangzhou, China
| | - Qiaomei Wang
- State Agriculture Ministry Laboratory of Horticultural Crop Growth and Development, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, China
| |
Collapse
|
87
|
Zou Y, Wang S, Zhou Y, Bai J, Huang G, Liu X, Zhang Y, Tang D, Lu D. Transcriptional Regulation of the Immune Receptor FLS2 Controls the Ontogeny of Plant Innate Immunity. THE PLANT CELL 2018; 30:2779-2794. [PMID: 30337428 PMCID: PMC6305972 DOI: 10.1105/tpc.18.00297] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 09/27/2018] [Accepted: 10/18/2018] [Indexed: 05/19/2023]
Abstract
Innate immunity plays a vital role in protecting plants and animals from pathogen infections. Immunity varies with age in both animals and plants. However, little is known about the ontogeny of plant innate immunity during seedling development. We report here that the Arabidopsis (Arabidopsis thaliana) microRNA miR172b regulates the transcription of the immune receptor gene FLAGELLIN-SENSING2 (FLS2) through TARGET OF EAT1 (TOE1) and TOE2, which directly bind to the FLS2 promoter and inhibit its activity. The level of miR172b is very low in the early stage of seedling development but increases over time, which results in decreased TOE1/2 protein accumulation and, consequently, increased FLS2 transcription and the ontogeny of FLS2-mediated immunity during seedling development. Our study reveals a role for the miR172b-TOE1/2 module in regulating plant innate immunity and elucidates a regulatory mechanism underlying the ontogeny of plant innate immunity.plantcell;30/11/2779/FX1F1fx1.
Collapse
Affiliation(s)
- Yanmin Zou
- State Key Laboratory of Plant Genomics, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| | - Shuangfeng Wang
- State Key Laboratory of Plant Genomics, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Zhou
- State Key Laboratory of Plant Genomics, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaojiao Bai
- State Key Laboratory of Plant Genomics, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Guozhong Huang
- State Key Laboratory of Plant Genomics, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaotong Liu
- State Key Laboratory of Plant Genomics, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| | - Yingying Zhang
- State Key Laboratory of Plant Genomics, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| | - Dingzhong Tang
- Key Laboratory of the Ministry of Education for Genetics, Breeding, and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dongping Lu
- State Key Laboratory of Plant Genomics, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| |
Collapse
|
88
|
Wang K, Yang Z, Qing D, Ren F, Liu S, Zheng Q, Liu J, Zhang W, Dai C, Wu M, Chehab EW, Braam J, Li N. Quantitative and functional posttranslational modification proteomics reveals that TREPH1 plays a role in plant touch-delayed bolting. Proc Natl Acad Sci U S A 2018; 115:E10265-E10274. [PMID: 30291188 PMCID: PMC6205429 DOI: 10.1073/pnas.1814006115] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Environmental mechanical forces, such as wind and touch, trigger gene-expression regulation and developmental changes, called "thigmomorphogenesis," in plants, demonstrating the ability of plants to perceive such stimuli. In Arabidopsis, a major thigmomorphogenetic response is delayed bolting, i.e., emergence of the flowering stem. The signaling components responsible for mechanotransduction of the touch response are largely unknown. Here, we performed a high-throughput SILIA (stable isotope labeling in Arabidopsis)-based quantitative phosphoproteomics analysis to profile changes in protein phosphorylation resulting from 40 seconds of force stimulation in Arabidopsis thaliana Of the 24 touch-responsive phosphopeptides identified, many were derived from kinases, phosphatases, cytoskeleton proteins, membrane proteins, and ion transporters. In addition, the previously uncharacterized protein TOUCH-REGULATED PHOSPHOPROTEIN1 (TREPH1) became rapidly phosphorylated in touch-stimulated plants, as confirmed by immunoblots. TREPH1 fractionates as a soluble protein and is shown to be required for the touch-induced delay of bolting and gene-expression changes. Furthermore, a nonphosphorylatable site-specific isoform of TREPH1 (S625A) failed to restore touch-induced flowering delay of treph1-1, indicating the necessity of S625 for TREPH1 function and providing evidence consistent with the possible functional relevance of the touch-regulated TREPH1 phosphorylation. Taken together, these findings identify a phosphoprotein player in Arabidopsis thigmomorphogenesis regulation and provide evidence that TREPH1 and its touch-induced phosphorylation may play a role in touch-induced bolting delay, a major component of thigmomorphogenesis.
Collapse
Affiliation(s)
- Kai Wang
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Energy Institute, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Institute for the Environment, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Zhu Yang
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Energy Institute, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Institute for the Environment, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- HKUST Shenzhen Research Institute, 518057 Shenzhen, China
| | - Dongjin Qing
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Energy Institute, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Institute for the Environment, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Feng Ren
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Energy Institute, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Institute for the Environment, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Shichang Liu
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Energy Institute, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Institute for the Environment, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Qingsong Zheng
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Energy Institute, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Institute for the Environment, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Proteomics Center, College of Resources and Environmental Sciences, Nanjing Agricultural University, 210095 Nanjing, China
| | - Jun Liu
- ASPEC Technologies Limited, 100101 Beijing, China
| | | | - Chen Dai
- Proteomics Center, College of Resources and Environmental Sciences, Nanjing Agricultural University, 210095 Nanjing, China
| | - Madeline Wu
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Energy Institute, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Institute for the Environment, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - E Wassim Chehab
- Department of BioSciences, Rice University, Houston, TX 77005
| | - Janet Braam
- Department of BioSciences, Rice University, Houston, TX 77005
| | - Ning Li
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China;
- Energy Institute, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Institute for the Environment, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- HKUST Shenzhen Research Institute, 518057 Shenzhen, China
| |
Collapse
|
89
|
Susila H, Nasim Z, Ahn JH. Ambient Temperature-Responsive Mechanisms Coordinate Regulation of Flowering Time. Int J Mol Sci 2018; 19:ijms19103196. [PMID: 30332820 PMCID: PMC6214042 DOI: 10.3390/ijms19103196] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/09/2018] [Accepted: 10/13/2018] [Indexed: 12/23/2022] Open
Abstract
In plants, environmental conditions such as temperature affect survival, growth, and fitness, particularly during key stages such as seedling growth and reproduction. To survive and thrive in changing conditions, plants have evolved adaptive responses that tightly regulate developmental processes such as hypocotyl elongation and flowering time in response to environmental temperature changes. Increases in temperature, coupled with increasing fluctuations in local climate and weather, severely affect our agricultural systems; therefore, understanding the mechanisms by which plants perceive and respond to temperature is critical for agricultural sustainability. In this review, we summarize recent findings on the molecular mechanisms of ambient temperature perception as well as possible temperature sensing components in plants. Based on recent publications, we highlight several temperature response mechanisms, including the deposition and eviction of histone variants, DNA methylation, alternative splicing, protein degradation, and protein localization. We discuss roles of each proposed temperature-sensing mechanism that affects plant development, with an emphasis on flowering time. Studies of plant ambient temperature responses are advancing rapidly, and this review provides insights for future research aimed at understanding the mechanisms of temperature perception and responses in plants.
Collapse
Affiliation(s)
- Hendry Susila
- Department of Life Sciences, Korea University, Seoul 02841, Korea.
| | - Zeeshan Nasim
- Department of Life Sciences, Korea University, Seoul 02841, Korea.
| | - Ji Hoon Ahn
- Department of Life Sciences, Korea University, Seoul 02841, Korea.
| |
Collapse
|
90
|
Huang H, Gao H, Liu B, Fan M, Wang J, Wang C, Tian H, Wang L, Xie C, Wu D, Liu L, Yan J, Qi T, Song S. bHLH13 Regulates Jasmonate-Mediated Defense Responses and Growth. Evol Bioinform Online 2018; 14:1176934318790265. [PMID: 30046236 PMCID: PMC6056788 DOI: 10.1177/1176934318790265] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/21/2018] [Indexed: 11/16/2022] Open
Abstract
Jasmonates (JAs) regulate plant growth and defense responses. On perception of bioactive JAs, the JA receptor CORONATINE INSENSITIVE1 (COI1) recruits JA ZIM-domain (JAZ) proteins for degradation, and JAZ-targeted transcription factors are released to regulate JA responses. The subgroup IIId bHLH transcriptional factors, including bHLH17, bHLH13, bHLH3, and bHLH14, interact with JAZs and repress JA responses. In this study, we show that IIId bHLH factors form dimers via the C-terminus in yeast. N-terminus of bHLH13 is essential for its transcriptional repression function. bHLH13 overexpression inhibits Arabidopsis resistance to the necrotrophic fungi Botrytis cinerea and defense against the insect Spodoptera exigua. COI1 mutation disrupts the oversensitivity of the quadruple mutant bhlh3 bhlh13 bhlh14 bhlh17 in various JA responses, including anthocyanin accumulation, root growth inhibition, and defense against B cinerea and S exigua. Disruption of the TTG1/bHLH/MYB complex blocks anthocyanin accumulation of bhlh3 bhlh13 bhlh14 bhlh17, whereas abolishment of MYC2 attenuates JA-inhibitory root growth of bhlh3 bhlh13 bhlh14 bhlh17. These results genetically demonstrate that IIId bHLH factors function downstream of COI1 to inhibit distinctive JA responses via antagonizing different transcriptional activators.
Collapse
Affiliation(s)
- Huang Huang
- Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture, College of Biological Sciences and Engineering, Beijing University of Agriculture, Beijing, China
| | - Hua Gao
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Bei Liu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing, China
| | - Meng Fan
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Jiaojiao Wang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Cuili Wang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Haixia Tian
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Lanxiang Wang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Chengyuan Xie
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Dewei Wu
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, China
| | - Liangyu Liu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing, China
| | - Jianbin Yan
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Tiancong Qi
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Susheng Song
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing, China
| |
Collapse
|
91
|
Han X, Hu Y, Zhang G, Jiang Y, Chen X, Yu D. Jasmonate Negatively Regulates Stomatal Development in Arabidopsis Cotyledons. PLANT PHYSIOLOGY 2018; 176:2871-2885. [PMID: 29496884 PMCID: PMC5884581 DOI: 10.1104/pp.17.00444] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 02/17/2018] [Indexed: 05/05/2023]
Abstract
Stomata are ports that facilitate gas and water vapor exchange between plants and their environment. Stomatal development is strictly regulated by endogenous signals and environmental cues. Jasmonate is an important signal that modulates multiple physiological processes in plants, yet the molecular mechanisms underlying its interactions with other developmental signaling pathways remain poorly understood. Here, we show that jasmonate negatively regulates stomatal development in Arabidopsis (Arabidopsis thaliana) cotyledons. Cotyledons of the wild type and stomata-overproliferating mutants (such as too many mouths-1 and stomatal density and distribution1-1) treated with methyl jasmonate exhibit a clear reduction in stomata number. By contrast, blocking endogenous jasmonate biosynthesis or perception enhanced stomatal development. Moreover, three MYC transcription factors involved in jasmonate signaling, MYC2, MYC3, and MYC4, were found to redundantly modulate jasmonate-inhibited stomatal development. A genetic analysis showed that these MYC proteins act upstream of the SPEECHLESS and FAMA transcription factors to mediate stomatal development. Furthermore, jasmonate repression of stomatal development is dependent on these three MYC transcription factors, as stomatal development of the myc2 myc3 myc4 triple mutant was insensitive to methyl jasmonate treatment. Collectively, our study demonstrates that jasmonate and MYC transcription factors negatively regulate stomatal development in Arabidopsis cotyledons.
Collapse
Affiliation(s)
- Xiao Han
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yanru Hu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Gensong Zhang
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | - Yanjuan Jiang
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xiaolan Chen
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | - Diqiu Yu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
92
|
He X, Zhu L, Wassan GM, Wang Y, Miao Y, Shaban M, Hu H, Sun H, Zhang X. GhJAZ2 attenuates cotton resistance to biotic stresses via the inhibition of the transcriptional activity of GhbHLH171. MOLECULAR PLANT PATHOLOGY 2018; 19:896-908. [PMID: 28665036 PMCID: PMC6638010 DOI: 10.1111/mpp.12575] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 05/29/2017] [Accepted: 06/26/2017] [Indexed: 05/19/2023]
Abstract
Plants have evolved effective mechanisms to protect themselves against multiple stresses, and employ jasmonates (JAs) as vital defence signals to defend against pathogen infection. The accumulation of JA, induced by signals from biotic and abiotic stresses, results in the degradation of Jasmonate-ZIM-domain (JAZ) proteins, followed by the de-repression of JAZ-repressed transcription factors (such as MYC2) to activate defence responses and developmental processes. Here, we characterized a JAZ family protein, GhJAZ2, from cotton (Gossypium hirsutum) which was induced by methyl jasmonate (MeJA) and inoculation of Verticillium dahliae. The overexpression of GhJAZ2 in cotton impairs the sensitivity to JA, decreases the expression level of JA-response genes (GhPDF1.2 and GhVSP) and enhances the susceptibility to V. dahliae and insect herbivory. Yeast two-hybrid and bimolecular fluorescence complementation assays showed that GhJAZ2 may be involved in the regulation of cotton disease resistance by interaction with further disease-response proteins, such as pathogenesis-related protein GhPR10, dirigent-like protein GhD2, nucleotide-binding site leucine-rich repeat (NBS-LRR) disease-resistant protein GhR1 and a basic helix-loop-helix transcription factor GhbHLH171. Unlike MYC2, overexpression of GhbHLH171 in cotton activates the JA synthesis and signalling pathway, and improves plant tolerance to the fungus V. dahliae. Molecular and genetic evidence shows that GhJAZ2 can interact with GhbHLH171 and inhibit its transcriptional activity and, as a result, can restrain the JA-mediated defence response. This study provides new insights into the molecular mechanisms of GhJAZ2 in the regulation of the cotton defence response.
Collapse
Affiliation(s)
- Xin He
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070China
| | - Ghulam Mustafa Wassan
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070China
| | - Yujing Wang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070China
| | - Yuhuan Miao
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070China
| | - Muhammad Shaban
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070China
| | - Haiyan Hu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070China
| | - Heng Sun
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070China
| |
Collapse
|
93
|
Li X, Wang Y, Duan E, Qi Q, Zhou K, Lin Q, Wang D, Wang Y, Long W, Zhao Z, Cheng Z, Lei C, Zhang X, Guo X, Wang J, Wu C, Jiang L, Wang C, Wan J. OPEN GLUME1: a key enzyme reducing the precursor of JA, participates in carbohydrate transport of lodicules during anthesis in rice. PLANT CELL REPORTS 2018; 37:329-346. [PMID: 29177846 DOI: 10.1007/s00299-017-2232-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 11/01/2017] [Indexed: 06/07/2023]
Abstract
OG1 is involved in JA-regulated anthesis by modulating carbohydrate transport of lodicules in rice. Flowering plants have evolved a sophisticated regulatory network to coordinate anthesis and maximize reproductive success. In addition to various environmental conditions, the plant hormone jasmonic acid and its derivatives (JAs) are involved in anthesis. However, the underlying mechanism remains largely unexplored. Here, we report a JA-defective mutant in rice (Oryza sativa), namely open glume 1, which has dysfunctional lodicules that lead to open glumes following anthesis. Map-based cloning and subsequent complementation tests confirmed that OG1 encodes a peroxisome-localized 12-oxo-phytodienoic acid reductase-a key enzyme that reduces the precursor of JA. Loss-of-function of OG1 resulted in almost no JA accumulation. Exogenous JA treatment completely rescued the defects caused by the og1 mutation. Further studies revealed that intracellular metabolism was disrupted in the lodicules of og1 mutant. At the mature plant stage, most seeds of the mutant were malformed with significantly reduced starch content. We speculate that JA or JA signaling mediates the carbohydrate transport of lodicules during anthesis, and signal the onset of cell degradation in lodicules after anthesis. We conclude that the OPEN GLUME 1 gene that produces a key enzyme involved in reducing the precursor of JA in JA biosynthesis and is involved in carbohydrate transport underlying normal lodicule function during anthesis in rice.
Collapse
Affiliation(s)
- Xiaohui Li
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yihua Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Erchao Duan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Qi Qi
- College of Life Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Kunneng Zhou
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Qiuyun Lin
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Di Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yunlong Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Wuhua Long
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Zhigang Zhao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Jiulin Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Chuanyin Wu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Chunming Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| |
Collapse
|
94
|
Su P, Guan H, Zhao Y, Tong Y, Xu M, Zhang Y, Hu T, Yang J, Cheng Q, Gao L, Liu Y, Zhou J, Peters RJ, Huang L, Gao W. Identification and functional characterization of diterpene synthases for triptolide biosynthesis from Tripterygium wilfordii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:50-65. [PMID: 29086455 PMCID: PMC5848467 DOI: 10.1111/tpj.13756] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 10/12/2017] [Accepted: 10/23/2017] [Indexed: 05/09/2023]
Abstract
Tripterygium wilfordii, which has long been used as a medicinal plant, exhibits impressive and effective anti-inflammatory, immunosuppressive and anti-tumor activities. The main active ingredients are diterpenoids and triterpenoids, such as triptolide and celastrol, respectively. A major challenge to harnessing these natural products is that they are found in very low amounts in planta. Access has been further limited by the lack of knowledge regarding their underlying biosynthetic pathways, particularly for the abeo-abietane tri-epoxide lactone triptolide. Here suspension cell cultures of T. wilfordii were found to produce triptolide in an inducible fashion, with feeding studies indicating that miltiradiene is the relevant abietane olefin precursor. Subsequently, transcriptome data were used to identify eight putative (di)terpene synthases that were then characterized for their potential involvement in triptolide biosynthesis. This included not only biochemical studies which revealed the expected presence of class II diterpene cyclases that produce the intermediate copalyl diphosphate (CPP), along with the more surprising finding of an atypical class I (di)terpene synthase that acts on CPP to produce the abietane olefin miltiradiene, but also their subcellular localization and, critically, genetic analysis. In particular, RNA interference targeting either both of the CPP synthases, TwTPS7v2 and TwTPS9v2, or the subsequently acting miltiradiene synthase, TwTPS27v2, led to decreased production of triptolide. Importantly, these results then both confirm that miltiradiene is the relevant precursor and the relevance of the identified diterpene synthases, enabling future studies of the biosynthesis of this important bioactive natural product.
Collapse
Affiliation(s)
- Ping Su
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Hongyu Guan
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yujun Zhao
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuru Tong
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Meimei Xu
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA, USA
| | - Yifeng Zhang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Tianyuan Hu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Jian Yang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiqing Cheng
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
| | - Linhui Gao
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yujia Liu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Jiawei Zhou
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Reuben J. Peters
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA, USA
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- For correspondence: Luqi Huang (), Wei Gao ()
| | - Wei Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
- For correspondence: Luqi Huang (), Wei Gao ()
| |
Collapse
|
95
|
Zheng Y, Lan Y, Shi T, Zhu Z. Diverse contributions of MYC2 and EIN3 in the regulation of Arabidopsis jasmonate-responsive gene expression. PLANT DIRECT 2017; 1:e00015. [PMID: 31245664 PMCID: PMC6508547 DOI: 10.1002/pld3.15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/16/2017] [Accepted: 09/01/2017] [Indexed: 05/26/2023]
Abstract
Derepression of transcription factors is the key mechanism for triggering plant jasmonate (JA) responses. Unlike regulating certain physiological functions for the majority of transcription factors in JA signaling, MYC2 and EIN3 control more diverse aspects. MYC2 predominantly participates in wounding response, metabolism, and root growth inhibition, while EIN3 (and its closest homolog EIL1) regulates defense gene expression and root hair development. Recently, it was reported that MYC2 and EIN3/EIL1 proteins mutually interact with each other and suppress their interaction partner's transcriptional activities. To understand their contributions in the modulation of transcriptomic network, we initially identified 1,495 differentially expressed jasmonate (JA)-responsive genes in wild-type Arabidopsis through RNA-seq analysis. Among them, 25% or 4.2% were independently regulated by EIN3/EIL1 or MYC2, respectively. Further analysis showed that EIN3/EIL1 and MYC2 interdependently regulate 16.3% of the JA-regulated transcriptome, including downregulation of three auxin-related genes, which might confer JA-inhibited root elongation. Lastly, we found that <30 genes were antagonistically regulated by MYC2 and EIN3/EIL1. We conclude that EIN3/EIL1 play a dominant role while MYC2 largely relies on EIN3/EIL1 for executing its transcriptional activity, either synergistically or antagonistically.
Collapse
Affiliation(s)
- Yuyu Zheng
- Jiangsu Key Laboratory for Biodiversity and BiotechnologyCollege of Life SciencesNanjing Normal UniversityNanjingChina
| | - Yiheng Lan
- Center for Bioinformatics and Computational BiologyShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Tieliu Shi
- Center for Bioinformatics and Computational BiologyShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Ziqiang Zhu
- Jiangsu Key Laboratory for Biodiversity and BiotechnologyCollege of Life SciencesNanjing Normal UniversityNanjingChina
| |
Collapse
|
96
|
Major IT, Yoshida Y, Campos ML, Kapali G, Xin X, Sugimoto K, de Oliveira Ferreira D, He SY, Howe GA. Regulation of growth-defense balance by the JASMONATE ZIM-DOMAIN (JAZ)-MYC transcriptional module. THE NEW PHYTOLOGIST 2017; 215. [PMID: 28649719 PMCID: PMC5542871 DOI: 10.1111/nph.14638] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The plant hormone jasmonate (JA) promotes the degradation of JASMONATE ZIM-DOMAIN (JAZ) proteins to relieve repression on diverse transcription factors (TFs) that execute JA responses. However, little is known about how combinatorial complexity among JAZ-TF interactions maintains control over myriad aspects of growth, development, reproduction, and immunity. We used loss-of-function mutations to define epistatic interactions within the core JA signaling pathway and to investigate the contribution of MYC TFs to JA responses in Arabidopsis thaliana. Constitutive JA signaling in a jaz quintuple mutant (jazQ) was largely eliminated by mutations that block JA synthesis or perception. Comparison of jazQ and a jazQ myc2 myc3 myc4 octuple mutant validated known functions of MYC2/3/4 in root growth, chlorophyll degradation, and susceptibility to the pathogen Pseudomonas syringae. We found that MYC TFs also control both the enhanced resistance of jazQ leaves to insect herbivory and restricted leaf growth of jazQ. Epistatic transcriptional profiles mirrored these phenotypes and further showed that triterpenoid biosynthetic and glucosinolate catabolic genes are up-regulated in jazQ independently of MYC TFs. Our study highlights the utility of genetic epistasis to unravel the complexities of JAZ-TF interactions and demonstrates that MYC TFs exert master control over a JAZ-repressible transcriptional hierarchy that governs growth-defense balance.
Collapse
Affiliation(s)
- Ian T. Major
- Department of Energy‐Plant Research LaboratoryMichigan State UniversityEast LansingMI48824USA
| | - Yuki Yoshida
- Department of Energy‐Plant Research LaboratoryMichigan State UniversityEast LansingMI48824USA
| | - Marcelo L. Campos
- Department of Energy‐Plant Research LaboratoryMichigan State UniversityEast LansingMI48824USA
| | - George Kapali
- Department of Energy‐Plant Research LaboratoryMichigan State UniversityEast LansingMI48824USA
| | - Xiu‐Fang Xin
- Department of Energy‐Plant Research LaboratoryMichigan State UniversityEast LansingMI48824USA
| | - Koichi Sugimoto
- Department of Energy‐Plant Research LaboratoryMichigan State UniversityEast LansingMI48824USA
| | | | - Sheng Yang He
- Department of Energy‐Plant Research LaboratoryMichigan State UniversityEast LansingMI48824USA
- Department of Plant BiologyMichigan State UniversityEast LansingMI48824USA
- Howard Hughes Medical InstituteMichigan State UniversityEast LansingMI48824USA
- Plant Resilience InstituteMichigan State UniversityEast LansingMI42284USA
| | - Gregg A. Howe
- Department of Energy‐Plant Research LaboratoryMichigan State UniversityEast LansingMI48824USA
- Plant Resilience InstituteMichigan State UniversityEast LansingMI42284USA
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI48824USA
| |
Collapse
|
97
|
Li R, Wang M, Wang Y, Schuman MC, Weinhold A, Schäfer M, Jiménez-Alemán GH, Barthel A, Baldwin IT. Flower-specific jasmonate signaling regulates constitutive floral defenses in wild tobacco. Proc Natl Acad Sci U S A 2017; 114:E7205-E7214. [PMID: 28784761 PMCID: PMC5576791 DOI: 10.1073/pnas.1703463114] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Optimal defense (OD) theory predicts that within a plant, tissues are defended in proportion to their fitness value and risk of predation. The fitness value of leaves varies greatly and leaves are protected by jasmonate (JA)-inducible defenses. Flowers are vehicles of Darwinian fitness in flowering plants and are attacked by herbivores and pathogens, but how they are defended is rarely investigated. We used Nicotiana attenuata, an ecological model plant with well-characterized herbivore interactions to characterize defense responses in flowers. Early floral stages constitutively accumulate greater amounts of two well-characterized defensive compounds, the volatile (E)-α-bergamotene and trypsin proteinase inhibitors (TPIs), which are also found in herbivore-induced leaves. Plants rendered deficient in JA biosynthesis or perception by RNA interference had significantly attenuated floral accumulations of defensive compounds known to be regulated by JA in leaves. By RNA-seq, we found a JAZ gene, NaJAZi, specifically expressed in early-stage floral tissues. Gene silencing revealed that NaJAZi functions as a flower-specific jasmonate repressor that regulates JAs, (E)-α-bergamotene, TPIs, and a defensin. Flowers silenced in NaJAZi are more resistant to tobacco budworm attack, a florivore. When the defensin was ectopically expressed in leaves, performance of Manduca sexta larvae, a folivore, decreased. NaJAZi physically interacts with a newly identified NINJA-like protein, but not the canonical NINJA. This NINJA-like recruits the corepressor TOPLESS that contributes to the suppressive function of NaJAZi on floral defenses. This study uncovers the defensive function of JA signaling in flowers, which includes components that tailor JA signaling to provide flower-specific defense.
Collapse
Affiliation(s)
- Ran Li
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Ming Wang
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Yang Wang
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Meredith C Schuman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Arne Weinhold
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Martin Schäfer
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | | | - Andrea Barthel
- Department of Entomology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany;
| |
Collapse
|
98
|
Arabidopsis JASMONATE-INDUCED OXYGENASES down-regulate plant immunity by hydroxylation and inactivation of the hormone jasmonic acid. Proc Natl Acad Sci U S A 2017; 114:6388-6393. [PMID: 28559313 DOI: 10.1073/pnas.1701101114] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The phytohormone jasmonic acid (JA) is vital in plant defense and development. Although biosynthesis of JA and activation of JA-responsive gene expression by the bioactive form JA-isoleucine have been well-studied, knowledge on JA metabolism is incomplete. In particular, the enzyme that hydroxylates JA to 12-OH-JA, an inactive form of JA that accumulates after wounding and pathogen attack, is unknown. Here, we report the identification of four paralogous 2-oxoglutarate/Fe(II)-dependent oxygenases in Arabidopsis thaliana as JA hydroxylases and show that they down-regulate JA-dependent responses. Because they are induced by JA we named them JASMONATE-INDUCED OXYGENASES (JOXs). Concurrent mutation of the four genes in a quadruple Arabidopsis mutant resulted in increased defense gene expression and increased resistance to the necrotrophic fungus Botrytis cinerea and the caterpillar Mamestra brassicae In addition, root and shoot growth of the plants was inhibited. Metabolite analysis of leaves showed that loss of function of the four JOX enzymes resulted in overaccumulation of JA and in reduced turnover of JA into 12-OH-JA. Transformation of the quadruple mutant with each JOX gene strongly reduced JA levels, demonstrating that all four JOXs inactivate JA in plants. The in vitro catalysis of 12-OH-JA from JA by recombinant enzyme could be confirmed for three JOXs. The identification of the enzymes responsible for hydroxylation of JA reveals a missing step in JA metabolism, which is important for the inactivation of the hormone and subsequent down-regulation of JA-dependent defenses.
Collapse
|
99
|
Li Y, Wang H, Li X, Liang G, Yu D. Two DELLA-interacting proteins bHLH48 and bHLH60 regulate flowering under long-day conditions in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2757-2767. [PMID: 28591805 PMCID: PMC5853475 DOI: 10.1093/jxb/erx143] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/13/2017] [Indexed: 05/07/2023]
Abstract
Gibberellin (GA) regulates many developmental transitions in the plant life cycle. Although great progress has been made, the GA signaling pathways have not been fully elucidated. Identifying and characterizing new targets of DELLA proteins is an effective approach to reveal the complicated GA signaling networks. In this study, two novel DELLA-interacting transcription factors, bHLH48 and bHLH60, were identified. Their overexpression caused plants to flower early under long-day conditions, whereas their functional repression resulted in the opposite result. The constitutive expression of bHLH48 and bHLH60 upregulated the transcription of the FLOWERING LOCUS T (FT) gene. Chromatin immunoprecipitation experiments confirmed that bHLH48 bound to the promoter of FT and that GA promoted the DNA-binding activity of bHLH48. Genetic analyses indicated that the early flowering phenotype of plants overexpressing bHLH48 and bHLH60 depended on FT and that the overexpression of bHLH48 and bHLH60 could rescue the late-flowering phenotypes of RGL1 overexpressing plants. Transient expression assays suggested that RGL1 inhibited the transcription activation ability of bHLH48 and bHLH60. Taken together, this study confirmed that bHLH48 and bHLH60 positively regulate GA-mediated flowering.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Houping Wang
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoli Li
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Kunming, Yunnan, China
| | - Gang Liang
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Kunming, Yunnan, China
- Correspondence: ;
| | - Diqiu Yu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Kunming, Yunnan, China
- Correspondence: ;
| |
Collapse
|
100
|
Conti L. Hormonal control of the floral transition: Can one catch them all? Dev Biol 2017; 430:288-301. [PMID: 28351648 DOI: 10.1016/j.ydbio.2017.03.024] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 01/05/2023]
Abstract
The transition to flowering marks a key adaptive developmental switch in plants which impacts on their survival and fitness. Different signaling pathways control the floral transition, conveying both endogenous and environmental cues. These cues are often relayed and/or modulated by different hormones, which might confer additional developmental flexibility to the floral process in the face of varying conditions. Among the different hormonal pathways, the phytohormone gibberellic acid (GA) plays a dominant role. GA is connected with the other floral pathways through the GA-regulated DELLA proteins, acting as versatile interacting modules for different signaling proteins. In this review, I will highlight the role of DELLAs as spatial and temporal modulators of different consolidated floral pathways. Next, building on recent data, I will provide an update on some emerging themes connecting other hormone signaling cascades to flowering time control. I will finally provide examples for some established as well as potential cross-regulatory mechanisms between hormonal pathways mediated by the DELLA proteins.
Collapse
Affiliation(s)
- Lucio Conti
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy.
| |
Collapse
|