51
|
Svietlova N, Zhyr L, Reichelt M, Grabe V, Mithöfer A. Glutamine as sole nitrogen source prevents induction of nitrate transporter gene NRT2.4 and affects amino acid metabolism in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2024; 15:1369543. [PMID: 38633457 PMCID: PMC11022244 DOI: 10.3389/fpls.2024.1369543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/14/2024] [Indexed: 04/19/2024]
Abstract
Plants assimilate inorganic nitrogen (N) to glutamine. Glutamine is the most abundant amino acid in most plant species, the N-supplying precursor of all N-containing compounds in the cell and the first organic nitrogen molecule formed from inorganic nitrogen taken up by the roots. In addition to its role in plant nutrition, glutamine most likely also has a function as a signaling molecule in the regulation of nitrogen metabolism. We investigated whether glutamine influences the high-affinity transporter system for nitrate uptake. Therefore, we analyzed the expression of the nitrate transporter NRT2.4, which is inducible by N deficiency, in Arabidopsis thaliana grown under different nitrogen starvation scenarios, comparing nitrate or glutamine as the sole nitrogen source. Using the reporter line ProNRT2.4:GFP and two independent knockout lines, nrt2.4-1 and nrt2.4-2, we analyzed gene expression and amino acid profiles. We showed that the regulation of NRT2.4 expression depends on available nitrogen in general, for example on glutamine as a nitrogen source, and not specifically on nitrate. In contrast to high nitrate concentrations, amino acid profiles changed to an accumulation of amino acids containing more than one nitrogen during growth in high glutamine concentrations, indicating a switch to nitrogen storage metabolism. Furthermore, we demonstrated that the nrt2.4-2 line shows unexpected effects on NRT2.5 gene expression and the amino acids profile in shoots under high glutamine supply conditions compared to Arabidopsis wild type and nrt2.4-1, suggesting non-NRT2.4-related metabolic consequences in this knockout line.
Collapse
Affiliation(s)
- Nataliia Svietlova
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Liza Zhyr
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Veit Grabe
- Microscopic Imaging Service Group, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Axel Mithöfer
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
52
|
Wang FP, Wang JF, He T, Tian P, Song XQ, Li QS. Urea reduces the sustainability of soil Cd immobilization by upregulating the expression of AmSTOP1 and AmMATE genes in edible amaranth roots. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123505. [PMID: 38325515 DOI: 10.1016/j.envpol.2024.123505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
After cadmium (Cd) immobilization remediation in contaminated farmland soil, which forms of nitrogen fertilizer should be implemented to keep its sustainability? Urea and nitrate were used to compare for their effects on the remobilization of stabilized Cd in the rhizosphere soil of edible amaranth at nitrogen concentrations of 60, 95, and 130 mg kg-1. The results showed that compared to nitrate nitrogen, the Cd content in shoots increased by 76.2%, 65.6%, and 148% after applying three different concentrations of urea, and the total remobilization amount of Cd also increased by 16.0%, 24.9%, and 14.0% respectively. Urea application promotes root secretion of citric acid, malic acid, pyruvate, and γ-aminobutyric acid, crucial in remobilizing stable Cd. The application of urea promoted the expression of genes involved in sucrose transport, glycolysis, the TCA cycle, amino acid secretion, citric acid efflux, and proton efflux. Arabidopsis heterologous expression and yeast one-hybrid assays identify critical roles of AmMATE42 and AmMATE43 in citric acid and fumaric acid efflux, with AmSTOP1 activating their transcription. Inhibition of SIZ1 expression in urea treatment reduce AmSTOP1 SUMOylation, leading to increased expression of AmMATE42 and AmMATE43 and enhanced organic acids efflux. Using edible amaranth as a model vegetable, we discovered that urea is not beneficial to preserving the sustainability of stabilized Cd during the reuse of remediated farmlands contaminated with Cd.
Collapse
Affiliation(s)
- Fo-Peng Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Jun-Feng Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Tao He
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Ping Tian
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Xiao-Qian Song
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Qu-Sheng Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
53
|
Xu N, Cheng L, Kong Y, Chen G, Zhao L, Liu F. Functional analyses of the NRT2 family of nitrate transporters in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2024; 15:1351998. [PMID: 38501135 PMCID: PMC10944928 DOI: 10.3389/fpls.2024.1351998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/06/2024] [Indexed: 03/20/2024]
Abstract
Nitrogen is an essential macronutrient for plant growth and development. Nitrate is the major form of nitrogen acquired by most crops and also serves as a vital signaling molecule. Nitrate is absorbed from the soil into root cells usually by the low-affinity NRT1 NO3 - transporters and high-affinity NRT2 NO3 - transporters, with NRT2s serving to absorb NO3 - under NO3 -limiting conditions. Seven NRT2 members have been identified in Arabidopsis, and they have been shown to be involved in various biological processes. In this review, we summarize the spatiotemporal expression patterns, localization, and biotic and abiotic responses of these transporters with a focus on recent advances in the current understanding of the functions of the seven AtNRT2 genes. This review offers beneficial insight into the mechanisms by which plants adapt to changing environmental conditions and provides a theoretical basis for crop research in the near future.
Collapse
Affiliation(s)
- Na Xu
- School of Biological Science, Jining Medical University, Rizhao, Shandong, China
| | - Li Cheng
- School of Biological Science, Jining Medical University, Rizhao, Shandong, China
| | - Yuan Kong
- School of Biological Science, Jining Medical University, Rizhao, Shandong, China
| | - Guiling Chen
- School of Biological Science, Jining Medical University, Rizhao, Shandong, China
| | - Lufei Zhao
- Agricultural Science and Engineering School, Liaocheng University, Liaocheng, Shandong, China
| | - Fei Liu
- School of Biological Science, Jining Medical University, Rizhao, Shandong, China
| |
Collapse
|
54
|
DeLoose M, Clúa J, Cho H, Zheng L, Masmoudi K, Desnos T, Krouk G, Nussaume L, Poirier Y, Rouached H. Recent advances in unraveling the mystery of combined nutrient stress in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1764-1780. [PMID: 37921230 DOI: 10.1111/tpj.16511] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 11/04/2023]
Abstract
Efficiently regulating growth to adapt to varying resource availability is crucial for organisms, including plants. In particular, the acquisition of essential nutrients is vital for plant development, as a shortage of just one nutrient can significantly decrease crop yield. However, plants constantly experience fluctuations in the presence of multiple essential mineral nutrients, leading to combined nutrient stress conditions. Unfortunately, our understanding of how plants perceive and respond to these multiple stresses remains limited. Unlocking this mystery could provide valuable insights and help enhance plant nutrition strategies. This review focuses specifically on the regulation of phosphorous homeostasis in plants, with a primary emphasis on recent studies that have shed light on the intricate interactions between phosphorous and other essential elements, such as nitrogen, iron, and zinc, as well as non-essential elements like aluminum and sodium. By summarizing and consolidating these findings, this review aims to contribute to a better understanding of how plants respond to and cope with combined nutrient stress.
Collapse
Affiliation(s)
- Megan DeLoose
- The Plant Resilience Institute, Michigan State University, East Lansing, Michigan, 48824, USA
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Joaquin Clúa
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | - Huikyong Cho
- The Plant Resilience Institute, Michigan State University, East Lansing, Michigan, 48824, USA
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Luqing Zheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Khaled Masmoudi
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, Abu Dhabi, United Arab Emirates
| | - Thierry Desnos
- Aix Marseille Univ, CEA, CNRS, BIAM, EBMP, UMR7265, Cité des énergies, 13115, Saint-Paul-lez-Durance, France
| | - Gabriel Krouk
- IPSiM, Univ. Montpellier, CNRS, INRAE, Montpellier, France
| | - Laurent Nussaume
- Aix Marseille Univ, CEA, CNRS, BIAM, EBMP, UMR7265, Cité des énergies, 13115, Saint-Paul-lez-Durance, France
| | - Yves Poirier
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | - Hatem Rouached
- The Plant Resilience Institute, Michigan State University, East Lansing, Michigan, 48824, USA
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, 48824, USA
| |
Collapse
|
55
|
Li Q, Song HL, Zhou T, Pei MN, Wang B, Yan SX, Liu YQ, Wu PJ, Hua YP. Differential Morpho-Physiological, Ionomic, and Phytohormone Profiles, and Genome-Wide Expression Profiling Involving the Tolerance of Allohexaploid Wheat ( Triticum aestivum L.) to Nitrogen Limitation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3814-3831. [PMID: 38329036 DOI: 10.1021/acs.jafc.3c08626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Common wheat (Triticum aestivum L.) is a global staple food, while nitrogen (N) limitation severely hinders plant growth, seed yield, and grain quality of wheat. Genetic variations in the responses to low N stresses among allohexaploid wheat (AABBDD, 2n = 6x = 42) genotypes emphasize the complicated regulatory mechanisms underlying low N tolerance and N use efficiency (NUE). In this study, hydroponic culture, inductively coupled plasma mass spectrometry, noninvasive microtest, high-performance liquid chromatography, RNA-seq, and bioinformatics were used to determine the differential growth performance, ionome and phytohormone profiles, and genome-wide expression profiling of wheat plants grown under high N and low N conditions. Transcriptional profiling of NPFs, NRT2s, CLCs, SLACs/SLAHs, AAPs, UPSs, NIAs, and GSs characterized the core members, such as TaNPF6.3-6D, TaNRT2.3-3D, TaNIA1-6B, TaGLN1;2-4B, TaAAP14-5A/5D, and TaUPS2-5A, involved in the efficient transport and assimilation of nitrate and organic N nutrients. The low-N-sensitivity wheat cultivar XM26 showed obvious leaf chlorosis and accumulated higher levels of ABA, JA, and SA than the low-N-tolerant ZM578 under N limitation. The TaMYB59-3D-TaNPF7.3/NRT1.5-6D module-mediated shoot-to-root translocation and leaf remobilization of nitrate was proposed as an important pathway regulating the differential responses between ZM578 and XM26 to low N. This study provides some elite candidate genes for the selection and breeding of wheat germplasms with low N tolerance and high NUE.
Collapse
Affiliation(s)
- Qiong Li
- Department of Brewing Engineering, Moutai Institute, Renhuai 564507, Guizhou, China
| | - Hai-Li Song
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ting Zhou
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Min-Nan Pei
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Bing Wang
- Department of Brewing Engineering, Moutai Institute, Renhuai 564507, Guizhou, China
| | - Song-Xian Yan
- Department of Resources and Environment, Moutai Institute, Renhuai 564507, Guizhou, China
| | - Yun-Qi Liu
- Zhongguancun Xuyue Non-invasive Micro-test Technology Industrial Alliance, Beijing 10080, China
| | - Peng-Jia Wu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ying-Peng Hua
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
56
|
Li S, Yan L, Zhang W, Yi C, Haider S, Wang C, Liu Y, Shi L, Xu F, Ding G. Nitrate alleviates ammonium toxicity in Brassica napus by coordinating rhizosphere and cell pH and ammonium assimilation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:786-804. [PMID: 37955989 DOI: 10.1111/tpj.16529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023]
Abstract
In natural and agricultural situations, ammonium (NH 4 + ) is a preferred nitrogen (N) source for plants, but excessive amounts can be hazardous to them, known asNH 4 + toxicity. Nitrate (NO 3 - ) has long been recognized to reduceNH 4 + toxicity. However, little is known about Brassica napus, a major oil crop that is sensitive to highNH 4 + . Here, we found thatNO 3 - can mitigateNH 4 + toxicity by balancing rhizosphere and intracellular pH and accelerating ammonium assimilation in B. napus.NO 3 - increased the uptake ofNO 3 - andNH 4 + under highNH 4 + circumstances by triggering the expression ofNO 3 - andNH 4 + transporters, whileNO 3 - and H+ efflux from the cytoplasm to the apoplast was enhanced by promoting the expression ofNO 3 - efflux transporters and genes encoding plasma membrane H+ -ATPase. In addition,NO 3 - increased pH in the cytosol, vacuole, and rhizosphere, and down-regulated genes induced by acid stress. Root glutamine synthetase (GS) activity was elevated byNO 3 - under highNH 4 + conditions to enhance the assimilation ofNH 4 + into amino acids, thereby reducingNH 4 + accumulation and translocation to shoot in rapeseed. In addition, root GS activity was highly dependent on the environmental pH.NO 3 - might induce metabolites involved in amino acid biosynthesis and malate metabolism in the tricarboxylic acid cycle, and inhibit phenylpropanoid metabolism to mitigateNH 4 + toxicity. Collectively, our results indicate thatNO 3 - balances both rhizosphere and intracellular pH via effectiveNO 3 - transmembrane cycling, acceleratesNH 4 + assimilation, and up-regulates malate metabolism to mitigateNH 4 + toxicity in oilseed rape.
Collapse
Affiliation(s)
- Shuang Li
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs/National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lei Yan
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao, 266071, China
| | - Wen Zhang
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs/National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ceng Yi
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs/National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sharjeel Haider
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs/National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chuang Wang
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs/National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu Liu
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lei Shi
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs/National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fangsen Xu
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs/National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guangda Ding
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs/National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
57
|
Li D, Jin Y, Lu QH, Ren N, Wang YQ, Li QS. Genome-wide identification and expression analysis of NIN-like protein (NLP) genes: Exploring their potential roles in nitrate response in tea plant (Camellia sinensis). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108340. [PMID: 38199025 DOI: 10.1016/j.plaphy.2024.108340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
NIN-like proteins (NLPs) are evolutionarily conserved transcription factors that are unique to plants and play a pivotal role in responses to nitrate uptake and assimilation. However, a comprehensive analysis of NLP members in tea plants is lacking. The present study performed a genome-wide analysis and identified 33 NLP gene family members of Camellia sinensis that were distributed unequally across 5 chromosomes. Subcellular localisation predictions revealed that all CsNLP proteins were localised in the nucleus. Conservative domain analysis revealed that all of these proteins contained conserved RWP-RK and PB1 domains. Phylogenetic analysis grouped the CsNLP gene family into four clusters. The promoter regions of CsNLPs harboured cis-acting elements associated with plant hormones and abiotic stress responses. Expression profile analysis demonstrated that CsNLP8 was significantly upregulated in roots under nitrate stress conditions. Subcellular localisation analysis found CsNLP8 localised to the nucleus. Dual-luciferase reporter assay demonstrated that CsNLP8 positively regulated the expression of a nitrate transporter gene (CsNRT2.2). These findings provide a comprehensive characterisation of NLP genes in Camellia sinensis and offer insights into the biological function of CsNLP8 in regulating the response to nitrate-induced stress.
Collapse
Affiliation(s)
- Da Li
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Ya Jin
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China; College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, China
| | - Qin-Hua Lu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Ning Ren
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Ying-Qi Wang
- College of Tea Science and Tea Culture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Qing-Sheng Li
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
58
|
Cao H, Liu Z, Guo J, Jia Z, Shi Y, Kang K, Peng W, Wang Z, Chen L, Neuhaeuser B, Wang Y, Liu X, Hao D, Yuan L. ZmNRT1.1B (ZmNPF6.6) determines nitrogen use efficiency via regulation of nitrate transport and signalling in maize. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:316-329. [PMID: 37786281 PMCID: PMC10826987 DOI: 10.1111/pbi.14185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 10/04/2023]
Abstract
Nitrate (NO3 - ) is crucial for optimal plant growth and development and often limits crop productivity under low availability. In comparison with model plant Arabidopsis, the molecular mechanisms underlying NO3 - acquisition and utilization remain largely unclear in maize. In particular, only a few genes have been exploited to improve nitrogen use efficiency (NUE). Here, we demonstrated that NO3 - -inducible ZmNRT1.1B (ZmNPF6.6) positively regulated NO3 - -dependent growth and NUE in maize. We showed that the tandem duplicated proteoform ZmNRT1.1C is irrelevant to maize seedling growth under NO3 - supply; however, the loss of function of ZmNRT1.1B significantly weakened plant growth under adequate NO3 - supply under both hydroponic and field conditions. The 15 N-labelled NO3 - absorption assay indicated that ZmNRT1.1B mediated the high-affinity NO3 - -transport and root-to-shoot NO3 - translocation. Transcriptome analysis further showed, upon NO3 - supply, ZmNRT1.1B promotes cytoplasmic-to-nuclear shuttling of ZmNLP3.1 (ZmNLP8), which co-regulates the expression of genes involved in NO3 - response, cytokinin biosynthesis and carbon metabolism. Remarkably, overexpression of ZmNRT1.1B in modern maize hybrids improved grain yield under N-limiting fields. Taken together, our study revealed a crucial role of ZmNRT1.1B in high-affinity NO3 - transport and signalling and offers valuable genetic resource for breeding N use efficient high-yield cultivars.
Collapse
Affiliation(s)
- Huairong Cao
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green DevelopmentChina Agricultural UniversityBeijingChina
| | - Zhi Liu
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green DevelopmentChina Agricultural UniversityBeijingChina
| | - Jia Guo
- Key Laboratory for Agricultural Biotechnology of Jilin ProvincialInstitute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (JAAS)JilinChina
| | - Zhongtao Jia
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green DevelopmentChina Agricultural UniversityBeijingChina
| | - Yandong Shi
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green DevelopmentChina Agricultural UniversityBeijingChina
| | - Kai Kang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green DevelopmentChina Agricultural UniversityBeijingChina
| | - Wushuang Peng
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green DevelopmentChina Agricultural UniversityBeijingChina
| | - Zhangkui Wang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green DevelopmentChina Agricultural UniversityBeijingChina
| | - Limei Chen
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Center for Crop Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Benjamin Neuhaeuser
- Department of Nutritional Crop Physiology, Institute of Crop ScienceUniversity of HohenheimStuttgartGermany
| | - Yong Wang
- National Key Laboratory of Wheat Improvement, College of Life SciencesShandong Agricultural UniversityTai'anShandongChina
| | - Xiangguo Liu
- Key Laboratory for Agricultural Biotechnology of Jilin ProvincialInstitute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (JAAS)JilinChina
| | - Dongyun Hao
- Key Laboratory for Agricultural Biotechnology of Jilin ProvincialInstitute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (JAAS)JilinChina
| | - Lixing Yuan
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green DevelopmentChina Agricultural UniversityBeijingChina
| |
Collapse
|
59
|
Wang Y, Li P, Zhu Y, Shang Y, Wu Z, Tao Y, Wang H, Li D, Zhang C. Transcriptome Profiling Reveals the Gene Network Responding to Low Nitrogen Stress in Wheat. PLANTS (BASEL, SWITZERLAND) 2024; 13:371. [PMID: 38337903 PMCID: PMC10856819 DOI: 10.3390/plants13030371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
As one of the essential nutrients for plants, nitrogen (N) has a major impact on the yield and quality of wheat worldwide. Due to chemical fertilizer pollution, it has become increasingly important to improve crop yield by increasing N use efficiency (NUE). Therefore, understanding the response mechanisms to low N (LN) stress is essential for the regulation of NUE in wheat. In this study, LN stress significantly accelerated wheat root growth, but inhibited shoot growth. Further transcriptome analysis showed that 8468 differentially expressed genes (DEGs) responded to LN stress. The roots and shoots displayed opposite response patterns, of which the majority of DEGs in roots were up-regulated (66.15%; 2955/4467), but the majority of DEGs in shoots were down-regulated (71.62%; 3274/4565). GO and KEGG analyses showed that nitrate reductase activity, nitrate assimilation, and N metabolism were significantly enriched in both the roots and shoots. Transcription factor (TF) and protein kinase analysis showed that genes such as MYB-related (38/38 genes) may function in a tissue-specific manner to respond to LN stress. Moreover, 20 out of 107 N signaling homologous genes were differentially expressed in wheat. A total of 47 transcriptome datasets were used for weighted gene co-expression network analysis (17,840 genes), and five TFs were identified as the potential hub regulatory genes involved in the response to LN stress in wheat. Our findings provide insight into the functional mechanisms in response to LN stress and five candidate regulatory genes in wheat. These results will provide a basis for further research on promoting NUE in wheat.
Collapse
Affiliation(s)
- Yiwei Wang
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China;
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (P.L.); (Y.Z.); (Y.S.); (Z.W.); (Y.T.); (H.W.)
| | - Pengfeng Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (P.L.); (Y.Z.); (Y.S.); (Z.W.); (Y.T.); (H.W.)
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yiwang Zhu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (P.L.); (Y.Z.); (Y.S.); (Z.W.); (Y.T.); (H.W.)
| | - Yuping Shang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (P.L.); (Y.Z.); (Y.S.); (Z.W.); (Y.T.); (H.W.)
- College of Agronomy, Shanxi Agricultural University, Jinzhong 030801, China
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (P.L.); (Y.Z.); (Y.S.); (Z.W.); (Y.T.); (H.W.)
| | - Yongfu Tao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (P.L.); (Y.Z.); (Y.S.); (Z.W.); (Y.T.); (H.W.)
| | - Hongru Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (P.L.); (Y.Z.); (Y.S.); (Z.W.); (Y.T.); (H.W.)
| | - Dongxi Li
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China;
| | - Cuijun Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (P.L.); (Y.Z.); (Y.S.); (Z.W.); (Y.T.); (H.W.)
| |
Collapse
|
60
|
Zheng Y, Liu Q, Shi S, Zhu X, Chen Y, Lin S, Tian H, Huang L, Wei H. Nitrogen Deficiency Enhances Eggplant Defense against Western Flower Thrips via the Induction of the Jasmonate Pathway. PLANTS (BASEL, SWITZERLAND) 2024; 13:273. [PMID: 38256826 PMCID: PMC10820576 DOI: 10.3390/plants13020273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/22/2023] [Accepted: 01/13/2024] [Indexed: 01/24/2024]
Abstract
Plant nutrition is connected to defense against insect herbivores, but the exact mechanism underlying the effect of the nitrogen (N) supply on the anti-herbivore capacity of eggplants (Solanum melongena) has not been studied in detail. Therefore, we examined the impact of low (LN, 0.5 mM) and high (HN, 5 mM) nitrate levels on eggplant resistance against the western flower thrips Frankliniella occidentalis (WFT), a major destructive eggplant pest. Our results showed that LN plants displayed enhanced defense responses to WFT compared to HN plants. This included increased transcript levels of key genes in the jasmonic acid (JA) pathway, the accumulation of JA-amido conjugates (jasmonoyl-isoleucine, jasmonoyl-phenylalanine, and jasmonoyl-valine), JA precursor (12-oxophytodienoic acid), and methyl jasmonate, higher transcript levels of defense marker genes (MPK3, MPK7, and WRKY53), and increased activities of polyphenol oxidase and peroxidase upon a WFT attack. Our findings suggest that N deficiency can prime JA-mediated defense responses in eggplants, resulting in increased anti-herbivore resistance.
Collapse
Affiliation(s)
- Yueqin Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (Y.Z.); (Q.L.); (S.S.); (X.Z.); (Y.C.); (S.L.); (H.T.); (L.H.)
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou Scientific Observing and Experimental Station of Crop Pests of the Ministry of Agriculture, Fuzhou 350013, China
| | - Qianxia Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (Y.Z.); (Q.L.); (S.S.); (X.Z.); (Y.C.); (S.L.); (H.T.); (L.H.)
| | - Shuang Shi
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (Y.Z.); (Q.L.); (S.S.); (X.Z.); (Y.C.); (S.L.); (H.T.); (L.H.)
| | - Xiaowen Zhu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (Y.Z.); (Q.L.); (S.S.); (X.Z.); (Y.C.); (S.L.); (H.T.); (L.H.)
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yong Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (Y.Z.); (Q.L.); (S.S.); (X.Z.); (Y.C.); (S.L.); (H.T.); (L.H.)
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou Scientific Observing and Experimental Station of Crop Pests of the Ministry of Agriculture, Fuzhou 350013, China
| | - Shuo Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (Y.Z.); (Q.L.); (S.S.); (X.Z.); (Y.C.); (S.L.); (H.T.); (L.H.)
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou Scientific Observing and Experimental Station of Crop Pests of the Ministry of Agriculture, Fuzhou 350013, China
| | - Houjun Tian
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (Y.Z.); (Q.L.); (S.S.); (X.Z.); (Y.C.); (S.L.); (H.T.); (L.H.)
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou Scientific Observing and Experimental Station of Crop Pests of the Ministry of Agriculture, Fuzhou 350013, China
| | - Lanyan Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (Y.Z.); (Q.L.); (S.S.); (X.Z.); (Y.C.); (S.L.); (H.T.); (L.H.)
| | - Hui Wei
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (Y.Z.); (Q.L.); (S.S.); (X.Z.); (Y.C.); (S.L.); (H.T.); (L.H.)
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou Scientific Observing and Experimental Station of Crop Pests of the Ministry of Agriculture, Fuzhou 350013, China
| |
Collapse
|
61
|
Cerda A, Alvarez JM. Insights into molecular links and transcription networks integrating drought stress and nitrogen signaling. THE NEW PHYTOLOGIST 2024; 241:560-566. [PMID: 37974513 DOI: 10.1111/nph.19403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/03/2023] [Indexed: 11/19/2023]
Abstract
Drought and the availability of nitrate, the predominant source of nitrogen (N) in agriculture, are major factors limiting plant growth and crop productivity. The dissection of the transcriptional networks' components integrating droght stress and nitrate responses provides valuable insights into how plants effectively balance stress response with growth programs. Recent evidence in Arabidopsis thaliana indicates that transcription factors (TFs) involved in abscisic acid (ABA) signaling affect N metabolism and nitrate responses, and reciprocally, components of nitrate signaling might affect ABA and drought gene responses. Advances in understanding regulatory circuits of nitrate and drought crosstalk in plant tissues empower targeted genetic modifications to enhance plant development and stress resistance, critical traits for optimizing crop yield and promoting sustainable agriculture.
Collapse
Affiliation(s)
- Ariel Cerda
- Centro de Biotecnología Vegetal, Facultad de Ciencias, Universidad Andrés Bello, Santiago, 8370186, Chile
- Millennium Science Initiative - Millennium Institute for Integrative Biology (iBio), Santiago, 8331150, Chile
| | - José M Alvarez
- Centro de Biotecnología Vegetal, Facultad de Ciencias, Universidad Andrés Bello, Santiago, 8370186, Chile
- Millennium Science Initiative - Millennium Institute for Integrative Biology (iBio), Santiago, 8331150, Chile
| |
Collapse
|
62
|
Seo JS, Kim SH, Shim JS, Um T, Oh N, Park T, Kim YS, Oh SJ, Kim JK. The rice NUCLEAR FACTOR-YA5 and MICRORNA169a module promotes nitrogen utilization during nitrogen deficiency. PLANT PHYSIOLOGY 2023; 194:491-510. [PMID: 37723121 PMCID: PMC10756765 DOI: 10.1093/plphys/kiad504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/20/2023]
Abstract
Nitrogen (N) is essential for plant growth and development. Therefore, understanding its utilization is essential for improving crop productivity. However, much remains to be learned about plant N sensing and signaling. Here, rice (Oryza sativa) NUCLEAR FACTOR-YA5 (OsNF-YA5) expression was tightly regulated by N status and induced under N-deficient conditions. Overexpression (OE) of OsNF-YA5 in rice resulted in increased chlorophyll levels and delayed senescence compared to control plants under normal N conditions. Agronomic traits were significantly improved in OE plants and impaired in knockout mutants under N-deficient conditions. Using a dexamethasone-inducible system, we identified the putative targets of OsNF-YA5 that include amino acid, nitrate/peptide transporters, and NITRATE TRANSPORTER 1.1A (OsNRT1.1A), which functions as a key transporter in rice. OsNF-YA5 directly enhanced OsNRT1.1A expression and N uptake rate under N-deficient conditions. Besides, overexpression of OsNF-YA5 also enhanced the expression of GLUTAMINE SYNTHETASE 1/2 (GS1/2) and GLUTAMINE OXOGLUTARATE AMINOTRANSFERASE 1/2 (GOGAT1/2), increasing free amino acid contents under N-deficient conditions. Osa-miR169a expression showed an opposite pattern with OsNF-YA5 depending on N status. Further analysis revealed that osa-miR169a negatively regulates OsNF-YA5 expression and N utilization, demonstrating that an OsNF-YA5/osa-miR169a module tightly regulates rice N utilization for adaptation to N status.
Collapse
Affiliation(s)
- Jun Sung Seo
- GreenBio Science & Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Sung Hwan Kim
- Crop Biotechnology Institute, Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Jae Sung Shim
- GreenBio Science & Technology, Seoul National University, Pyeongchang 25354, Korea
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Taeyoung Um
- GreenBio Science & Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Nuri Oh
- Crop Biotechnology Institute, Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Taehyeon Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Youn Shic Kim
- GreenBio Science & Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Se-Jun Oh
- LaSemilla Co. Ltd., Pyeongchang 25354, Korea
| | - Ju-Kon Kim
- GreenBio Science & Technology, Seoul National University, Pyeongchang 25354, Korea
- Crop Biotechnology Institute, Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Korea
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea
- LaSemilla Co. Ltd., Pyeongchang 25354, Korea
| |
Collapse
|
63
|
Wang H, Yan X, Du Q, Yan P, Xi J, Meng X, Li X, Liu H, Liu G, Fu Z, Tang J, Li WX. Maize Dek407 Encodes the Nitrate Transporter 1.5 and Is Required for Kernel Development. Int J Mol Sci 2023; 24:17471. [PMID: 38139299 PMCID: PMC10743814 DOI: 10.3390/ijms242417471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
The kernel serves as the storage organ and harvestable component of maize, and it plays a crucial role in determining crop yield and quality. Understanding the molecular and genetic mechanisms of kernel development is of considerable importance for maize production. In this study, we obtained a mutant, which we designated defective kernel 407 (dek407), through ethyl methanesulfonate mutagenesis. The dek407 mutant exhibited reduced kernel size and kernel weight, as well as delayed grain filling compared with those of the wild type. Positional cloning and an allelism test revealed that Dek407 encodes a nitrate transporter 1/peptide transporter family (NPF) protein and is the allele of miniature 2 (mn2) that was responsible for a poorly filled defective kernel phenotype. A transcriptome analysis of the developing kernels showed that the mutation of Dek407 altered the expression of phytohormone-related genes, especially those genes associated with indole-3-acetic acid synthesis and signaling. Phytohormone measurements and analysis indicated that the endogenous indole-3-acetic acid content was significantly reduced by 66% in the dek407 kernels, which may be the primary cause of the defective phenotype. We further demonstrated that natural variation in Dek407 is associated with kernel weight and kernel size. Therefore, Dek407 is a potential target gene for improvement of maize yield.
Collapse
Affiliation(s)
- Hongqiu Wang
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Xiaolan Yan
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Qingguo Du
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Pengshuai Yan
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Jinjin Xi
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Xiaoruo Meng
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Xuguang Li
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Huijian Liu
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Guoqin Liu
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Zhongjun Fu
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China
| | - Jihua Tang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Wen-Xue Li
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
64
|
Prasanna JA, Mandal VK, Kumar D, Chakraborty N, Raghuram N. Nitrate-responsive transcriptome analysis of rice RGA1 mutant reveals the role of G-protein alpha subunit in negative regulation of nitrogen-sensitivity and use efficiency. PLANT CELL REPORTS 2023; 42:1987-2010. [PMID: 37874341 DOI: 10.1007/s00299-023-03078-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/19/2023] [Indexed: 10/25/2023]
Abstract
KEY MESSAGE Nitrate-responsive transcriptomic, phenotypic and physiological analyses of rice RGA1 mutant revealed many novel RGA1-regulated genes/processes/traits related to nitrogen use efficiency, and provided robust genetic evidence of RGA1-regulation of NUE. Nitrogen (N) use efficiency (NUE) is important for sustainable agriculture. G-protein signalling was implicated in N-response/NUE in rice, but needed firm genetic characterization of the role of alpha subunit (RGA1). The knock-out mutant of RGA1 in japonica rice exhibited lesser nitrate-dose sensitivity than the wild type (WT), in yield and NUE. We, therefore, investigated its genomewide nitrate-response relative to WT. It revealed 3416 differentially expressed genes (DEGs), including 719 associated with development, grain yield and phenotypic traits for NUE. The upregulated DEGs were related to photosynthesis, chlorophyll, tetrapyrrole and porphyrin biosynthesis, while the downregulated DEGs belonged to cellular protein metabolism and transport, small GTPase signalling, cell redox homeostasis, etc. We validated 26 nitrate-responsive DEGs across functional categories by RT-qPCR. Physiological validation of nitrate-response in the mutant and the WT at 1.5 and 15 mM doses revealed higher chlorophyll and stomatal length but decreased stomatal density, conductance and transpiration. The consequent increase in photosynthesis and water use efficiency may have contributed to better yield and NUE in the mutant, whereas the WT was N-dose sensitive. The mutant was not as N-dose-responsive as the WT in shoot/root growth, productive tillers and heading date, but equally responsive as WT in total N and protein content. The RGA1 mutant was less impacted by higher N-dose or salt stress in terms of yield, protein content, photosynthetic performance, relative water content, water use efficiency and catalase activity. PPI network analyses revealed known NUE-related proteins as RGA1 interactors. Therefore, RGA1 negatively regulates N-dose sensitivity and NUE in rice.
Collapse
Affiliation(s)
- Jangam Annie Prasanna
- Centre for Sustainable Nitrogen and Nutrient Management, School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi, 110078, India
| | - Vikas Kumar Mandal
- Centre for Sustainable Nitrogen and Nutrient Management, School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi, 110078, India
- Prof. H.S. Srivastava Foundation for Science and Society, 10B/7, Madan Mohan Malviya Marg, Lucknow, India
| | - Dinesh Kumar
- Division of Agronomy, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, India
| | - Navjyoti Chakraborty
- Centre for Sustainable Nitrogen and Nutrient Management, School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi, 110078, India.
| | - Nandula Raghuram
- Centre for Sustainable Nitrogen and Nutrient Management, School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi, 110078, India.
| |
Collapse
|
65
|
Chen E, Qin L, Li F, Yang Y, Liu Z, Wang R, Yu X, Niu J, Zhang H, Wang H, Liu B, Guan Y. Physiological and Transcriptomic Analysis Provides Insights into Low Nitrogen Stress in Foxtail Millet ( Setaria italica L.). Int J Mol Sci 2023; 24:16321. [PMID: 38003509 PMCID: PMC10671652 DOI: 10.3390/ijms242216321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Foxtail millet (Setaria italica (L.) P. Beauv) is an important food and forage crop that is well adapted to nutrient-poor soils. However, our understanding of how different LN-tolerant foxtail millet varieties adapt to long-term low nitrogen (LN) stress at the physiological and molecular levels remains limited. In this study, two foxtail millet varieties with contrasting LN tolerance properties were investigated through analyses of physiological parameters and transcriptomics. The physiological results indicate that JG20 (high tolerance to LN) exhibited superior biomass accumulation both in its shoots and roots, and higher nitrogen content, soluble sugar concentration, soluble protein concentration, zeatin concentration in shoot, and lower soluble sugar and soluble protein concentration in its roots compared to JG22 (sensitive to LN) under LN, this indicated that the LN-tolerant foxtail millet variety can allocate more functional substance to its shoots to sustain aboveground growth and maintain high root activity by utilizing low soluble sugar and protein under LN conditions. In the transcriptomics analysis, JG20 exhibited a greater number of differentially expressed genes (DEGs) compared to JG22 in both its shoots and roots in response to LN stress. These LN-responsive genes were enriched in glycolysis metabolism, photosynthesis, hormone metabolism, and nitrogen metabolism. Furthermore, in the shoots, the glutamine synthetase gene SiGS5, chlorophyll apoprotein of photosystem II gene SiPsbQ, ATP synthase subunit gene Sib, zeatin synthesis genes SiAHP1, and aldose 1-epimerase gene SiAEP, and, in the roots, the high-affinity nitrate transporter genes SiNRT2.3, SiNRT2.4, glutamate synthase gene SiGOGAT2, fructose-bisphosphate aldolase gene SiFBA5, were important genes involved in the LN tolerance of the foxtail millet variety. Hence, our study implies that the identified genes and metabolic pathways contribute valuable insights into the mechanisms underlying LN tolerance in foxtail millet.
Collapse
Affiliation(s)
- Erying Chen
- Featured Crops Engineering Laboratory of Shandong Province, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (E.C.); (L.Q.); (F.L.); (Y.Y.); (Z.L.); (R.W.); (H.Z.); (H.W.); (B.L.)
| | - Ling Qin
- Featured Crops Engineering Laboratory of Shandong Province, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (E.C.); (L.Q.); (F.L.); (Y.Y.); (Z.L.); (R.W.); (H.Z.); (H.W.); (B.L.)
| | - Feifei Li
- Featured Crops Engineering Laboratory of Shandong Province, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (E.C.); (L.Q.); (F.L.); (Y.Y.); (Z.L.); (R.W.); (H.Z.); (H.W.); (B.L.)
| | - Yanbing Yang
- Featured Crops Engineering Laboratory of Shandong Province, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (E.C.); (L.Q.); (F.L.); (Y.Y.); (Z.L.); (R.W.); (H.Z.); (H.W.); (B.L.)
| | - Zhenyu Liu
- Featured Crops Engineering Laboratory of Shandong Province, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (E.C.); (L.Q.); (F.L.); (Y.Y.); (Z.L.); (R.W.); (H.Z.); (H.W.); (B.L.)
| | - Runfeng Wang
- Featured Crops Engineering Laboratory of Shandong Province, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (E.C.); (L.Q.); (F.L.); (Y.Y.); (Z.L.); (R.W.); (H.Z.); (H.W.); (B.L.)
| | - Xiao Yu
- College of Life Science, Shandong Normal University, Jinan 250014, China; (X.Y.); (J.N.)
| | - Jiahong Niu
- College of Life Science, Shandong Normal University, Jinan 250014, China; (X.Y.); (J.N.)
| | - Huawen Zhang
- Featured Crops Engineering Laboratory of Shandong Province, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (E.C.); (L.Q.); (F.L.); (Y.Y.); (Z.L.); (R.W.); (H.Z.); (H.W.); (B.L.)
| | - Hailian Wang
- Featured Crops Engineering Laboratory of Shandong Province, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (E.C.); (L.Q.); (F.L.); (Y.Y.); (Z.L.); (R.W.); (H.Z.); (H.W.); (B.L.)
| | - Bin Liu
- Featured Crops Engineering Laboratory of Shandong Province, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (E.C.); (L.Q.); (F.L.); (Y.Y.); (Z.L.); (R.W.); (H.Z.); (H.W.); (B.L.)
| | - Yanan Guan
- Featured Crops Engineering Laboratory of Shandong Province, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (E.C.); (L.Q.); (F.L.); (Y.Y.); (Z.L.); (R.W.); (H.Z.); (H.W.); (B.L.)
- College of Life Science, Shandong Normal University, Jinan 250014, China; (X.Y.); (J.N.)
| |
Collapse
|
66
|
Ohki Y, Shinone T, Inoko S, Sudo M, Demura M, Kikukawa T, Tsukamoto T. The preferential transport of NO 3- by full-length Guillardia theta anion channelrhodopsin 1 is enhanced by its extended cytoplasmic domain. J Biol Chem 2023; 299:105305. [PMID: 37778732 PMCID: PMC10637977 DOI: 10.1016/j.jbc.2023.105305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/21/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023] Open
Abstract
Previous research of anion channelrhodopsins (ACRs) has been performed using cytoplasmic domain (CPD)-deleted constructs and therefore have overlooked the native functions of full-length ACRs and the potential functional role(s) of the CPD. In this study, we used the recombinant expression of full-length Guillardia theta ACR1 (GtACR1_full) for pH measurements in Pichia pastoris cell suspensions as an indirect method to assess its anion transport activity and for absorption spectroscopy and flash photolysis characterization of the purified protein. The results show that the CPD, which was predicted to be intrinsically disordered and possibly phosphorylated, enhanced NO3- transport compared to Cl- transport, which resulted in the preferential transport of NO3-. This correlated with the extended lifetime and large accumulation of the photocycle intermediate that is involved in the gate-open state. Considering that the depletion of a nitrogen source enhances the expression of GtACR1 in native algal cells, we suggest that NO3- transport could be the natural function of GtACR1_full in algal cells.
Collapse
Affiliation(s)
- Yuya Ohki
- Division of Soft Matter, Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Tsukasa Shinone
- Division of Soft Matter, Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Sayo Inoko
- Division of Macromolecular Functions, Department of Biological Science, School of Science, Hokkaido University, Sapporo, Japan
| | - Miu Sudo
- Division of Macromolecular Functions, Department of Biological Science, School of Science, Hokkaido University, Sapporo, Japan
| | - Makoto Demura
- Division of Soft Matter, Graduate School of Life Science, Hokkaido University, Sapporo, Japan; Division of Macromolecular Functions, Department of Biological Science, School of Science, Hokkaido University, Sapporo, Japan; Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Takashi Kikukawa
- Division of Soft Matter, Graduate School of Life Science, Hokkaido University, Sapporo, Japan; Division of Macromolecular Functions, Department of Biological Science, School of Science, Hokkaido University, Sapporo, Japan; Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Takashi Tsukamoto
- Division of Soft Matter, Graduate School of Life Science, Hokkaido University, Sapporo, Japan; Division of Macromolecular Functions, Department of Biological Science, School of Science, Hokkaido University, Sapporo, Japan; Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
67
|
Nedelyaeva OI, Khramov DE, Khalilova LA, Konoshenkova AO, Ryabova AV, Popova LG, Volkov VS, Balnokin YV. Molecular Cloning, Expression and Transport Activity of SaNPF6.3/SaNRT1.1, a Novel Protein of the Low-Affinity Nitrate Transporter Family from the Euhalophyte Suaeda altissima (L.) Pall. MEMBRANES 2023; 13:845. [PMID: 37888016 PMCID: PMC10608580 DOI: 10.3390/membranes13100845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/06/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
The SaNPF6.3 gene, a putative ortholog of the dual-affinity nitrate (NO3-) transporter gene AtNPF6.3/AtNRT1.1 from Arabidopsis thaliana, was cloned from the euhalophyte Suaeda altissima. The nitrate transporting activity of SaNPF6.3 was studied by heterologous expression of the gene in the yeast Hansenula (Ogataea) polymorpha mutant strain Δynt1 lacking the original nitrate transporter. Expression of SaNPF6.3 in Δynt1 cells rescued their ability to grow on the selective medium in the presence of nitrate and absorb nitrate from this medium. Confocal laser microscopy of the yeast cells expressing the fused protein GFP-SaNPF6.3 revealed GFP (green fluorescent protein) fluorescence localized predominantly in the cytoplasm and/or vacuoles. Apparently, in the heterologous expression system used, only a relatively small fraction of the GFP-SaNPF6.3 reached the plasma membrane of yeast cells. In S. altissima plants grown in media with either low (0.5 mM) or high (15 mM) NO3-; concentrations, SaNPF6.3 was expressed at various ontogenetic stages in different organs, with the highest expression levels in roots, pointing to an important role of SaNPF6.3 in nitrate uptake. SaNPF6.3 expression was induced in roots of nitrate-deprived plants in response to raising the nitrate concentration in the medium and was suppressed when the plants were transferred from sufficient nitrate to the lower concentration. When NaCl concentration in the nutrient solution was elevated, the SaNPF6.3 transcript abundance in the roots increased at the low nitrate concentration and decreased at the high one. We also determined nitrate and chloride concentrations in the xylem sap excreted by detached S. altissima roots as a function of their concentrations in the root medium. Based on a linear increase in Cl- concentrations in the xylem exudate as the external Cl- concentration increased and the results of SaNPF6.3 expression experiments, we hypothesize that SaNPF6.3 is involved in chloride transport along with nitrate transport in S. altissima plants.
Collapse
Affiliation(s)
- Olga I. Nedelyaeva
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow 127276, Russia; (D.E.K.); (L.A.K.); (A.O.K.); (L.G.P.); (Y.V.B.)
| | - Dmitrii E. Khramov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow 127276, Russia; (D.E.K.); (L.A.K.); (A.O.K.); (L.G.P.); (Y.V.B.)
| | - Lyudmila A. Khalilova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow 127276, Russia; (D.E.K.); (L.A.K.); (A.O.K.); (L.G.P.); (Y.V.B.)
| | - Alena O. Konoshenkova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow 127276, Russia; (D.E.K.); (L.A.K.); (A.O.K.); (L.G.P.); (Y.V.B.)
| | - Anastasia V. Ryabova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991, Russia;
| | - Larissa G. Popova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow 127276, Russia; (D.E.K.); (L.A.K.); (A.O.K.); (L.G.P.); (Y.V.B.)
| | - Vadim S. Volkov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow 127276, Russia; (D.E.K.); (L.A.K.); (A.O.K.); (L.G.P.); (Y.V.B.)
| | - Yurii V. Balnokin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow 127276, Russia; (D.E.K.); (L.A.K.); (A.O.K.); (L.G.P.); (Y.V.B.)
| |
Collapse
|
68
|
Scholz SS, Barth E, Clément G, Marmagne A, Ludwig-Müller J, Sakakibara H, Kiba T, Vicente-Carbajosa J, Pollmann S, Krapp A, Oelmüller R. The Root-Colonizing Endophyte Piriformospora indica Supports Nitrogen-Starved Arabidopsis thaliana Seedlings with Nitrogen Metabolites. Int J Mol Sci 2023; 24:15372. [PMID: 37895051 PMCID: PMC10607921 DOI: 10.3390/ijms242015372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
The root-colonizing endophytic fungus Piriformospora indica promotes the root and shoot growth of its host plants. We show that the growth promotion of Arabidopsis thaliana leaves is abolished when the seedlings are grown on media with nitrogen (N) limitation. The fungus neither stimulated the total N content nor did it promote 15NO3- uptake from agar plates to the leaves of the host under N-sufficient or N-limiting conditions. However, when the roots were co-cultivated with 15N-labelled P. indica, more labels were detected in the leaves of N-starved host plants but not in plants supplied with sufficient N. Amino acid and primary metabolite profiles, as well as the expression analyses of N metabolite transporter genes suggest that the fungus alleviates the adaptation of its host from the N limitation condition. P. indica alters the expression of transporter genes, which participate in the relocation of NO3-, NH4+ and N metabolites from the roots to the leaves under N limitation. We propose that P. indica participates in the plant's metabolomic adaptation against N limitation by delivering reduced N metabolites to the host, thus alleviating metabolic N starvation responses and reprogramming the expression of N metabolism-related genes.
Collapse
Affiliation(s)
- Sandra S. Scholz
- Department of Plant Physiology, Matthias-Schleiden-Institute, Friedrich-Schiller-University Jena, 07743 Jena, Germany;
| | - Emanuel Barth
- Bioinformatics Core Facility, Friedrich-Schiller-University Jena, 07743 Jena, Germany;
| | - Gilles Clément
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France (A.M.); (A.K.)
| | - Anne Marmagne
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France (A.M.); (A.K.)
| | - Jutta Ludwig-Müller
- Institute of Botany, Technische Universität Dresden, 01217 Dresden, Germany;
| | - Hitoshi Sakakibara
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan; (H.S.); (T.K.)
| | - Takatoshi Kiba
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan; (H.S.); (T.K.)
| | - Jesús Vicente-Carbajosa
- Centro de Biotechnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Universidad Politécnica de Madrid (UPM), Campus de Montegancedo, 28223 Madrid, Spain; (J.V.-C.); (S.P.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| | - Stephan Pollmann
- Centro de Biotechnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Universidad Politécnica de Madrid (UPM), Campus de Montegancedo, 28223 Madrid, Spain; (J.V.-C.); (S.P.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| | - Anne Krapp
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France (A.M.); (A.K.)
| | - Ralf Oelmüller
- Department of Plant Physiology, Matthias-Schleiden-Institute, Friedrich-Schiller-University Jena, 07743 Jena, Germany;
| |
Collapse
|
69
|
Zhang Z, Zhong Z, Xiong Y. Sailing in complex nutrient signaling networks: Where I am, where to go, and how to go? MOLECULAR PLANT 2023; 16:1635-1660. [PMID: 37740490 DOI: 10.1016/j.molp.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
To ensure survival and promote growth, sessile plants have developed intricate internal signaling networks tailored in diverse cells and organs with both shared and specialized functions that respond to various internal and external cues. A fascinating question arises: how can a plant cell or organ diagnose the spatial and temporal information it is experiencing to know "where I am," and then is able to make the accurate specific responses to decide "where to go" and "how to go," despite the absence of neuronal systems found in mammals. Drawing inspiration from recent comprehensive investigations into diverse nutrient signaling pathways in plants, this review focuses on the interactive nutrient signaling networks mediated by various nutrient sensors and transducers. We assess and illustrate examples of how cells and organs exhibit specific responses to changing spatial and temporal information within these interactive plant nutrient networks. In addition, we elucidate the underlying mechanisms by which plants employ posttranslational modification codes to integrate different upstream nutrient signals, thereby conferring response specificities to the signaling hub proteins. Furthermore, we discuss recent breakthrough studies that demonstrate the potential of modulating nutrient sensing and signaling as promising strategies to enhance crop yield, even with reduced fertilizer application.
Collapse
Affiliation(s)
- Zhenzhen Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Haixia Institute of Science and Technology, Synthetic Biology Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhaochen Zhong
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Haixia Institute of Science and Technology, Synthetic Biology Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yan Xiong
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Haixia Institute of Science and Technology, Synthetic Biology Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
70
|
Ma Q, Zhao C, Hu S, Zuo K. Arabidopsis calcium-dependent protein kinase CPK6 regulates drought tolerance under high nitrogen by the phosphorylation of NRT1.1. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5682-5693. [PMID: 37463320 DOI: 10.1093/jxb/erad277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/14/2023] [Indexed: 07/20/2023]
Abstract
Nitrogen (N) is an essential macronutrient for plant growth and development, and its availability is regulated to some extent by drought stress. Calcium-dependent protein kinases (CPKs) are a unique family of Ca2+ sensors with diverse functions in N uptake and drought-tolerance signaling pathways; however, how CPKs are involved in the crosstalk between drought stress and N transportation remains largely unknown. Here, we identify the drought-tolerance function of Arabidopsis CPK6 under high N conditions. CPK6 expression was induced by ABA and drought treatments. The mutant cpk6 was insensitive to ABA treatment and low N, but was sensitive to drought only under high N conditions. CPK6 interacted with the NRT1.1 (CHL1) protein and phosphorylated the Thr447 residue, which then repressed the NO3- transporting activity of Arabidopsis under high N and drought stress. Taken together, our results show that CPK6 regulates Arabidopsis drought tolerance through changing the phosphorylation state of NRT1.1, and improve our knowledge of N uptake in plants during drought stress.
Collapse
Affiliation(s)
- Qijun Ma
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunyan Zhao
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shi Hu
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kaijing Zuo
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
71
|
Pereyra ME, Costigliolo Rojas C, Jarrell AF, Hovland AS, Snipes SA, Nagpal P, Alabadí D, Blázquez MA, Gutiérrez RA, Reed JW, Gray WM, Casal JJ. PIF4 enhances the expression of SAUR genes to promote growth in response to nitrate. Proc Natl Acad Sci U S A 2023; 120:e2304513120. [PMID: 37725643 PMCID: PMC10523462 DOI: 10.1073/pnas.2304513120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 08/09/2023] [Indexed: 09/21/2023] Open
Abstract
Nitrate supply is fundamental to support shoot growth and crop performance, but the associated increase in stem height exacerbates the risks of lodging and yield losses. Despite their significance for agriculture, the mechanisms involved in the promotion of stem growth by nitrate remain poorly understood. Here, we show that the elongation of the hypocotyl of Arabidopsis thaliana, used as a model, responds rapidly and persistently to upshifts in nitrate concentration, rather than to the nitrate level itself. The response occurred even in shoots dissected from their roots and required NITRATE TRANSPORTER 1.1 (NRT1.1) in the phosphorylated state (but not NRT1.1 nitrate transport capacity) and NIN-LIKE PROTEIN 7 (NLP7). Nitrate increased PHYTOCHROME INTERACTING FACTOR 4 (PIF4) nuclear abundance by posttranscriptional mechanisms that depended on NRT1.1 and phytochrome B. In response to nitrate, PIF4 enhanced the expression of numerous SMALL AUXIN-UP RNA (SAUR) genes in the hypocotyl. The growth response to nitrate required PIF4, positive and negative regulators of its activity, including AUXIN RESPONSE FACTORs, and SAURs. PIF4 integrates cues from the soil (nitrate) and aerial (shade) environments adjusting plant stature to facilitate access to light.
Collapse
Affiliation(s)
- Matías Ezequiel Pereyra
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura, Facultad de Agronomía, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires1417, Argentina
- Fundaciόn Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires1405, Argentina
| | - Cecilia Costigliolo Rojas
- Fundaciόn Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires1405, Argentina
| | - Anne F. Jarrell
- Department of Biology, University of North Carolina, Chapel Hill, NC27599-3280
| | - Austin S. Hovland
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN55108
| | - Stephen A. Snipes
- Department of Biology, University of North Carolina, Chapel Hill, NC27599-3280
| | - Punita Nagpal
- Department of Biology, University of North Carolina, Chapel Hill, NC27599-3280
| | - David Alabadí
- Instituto de Biologίa Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Valencia46022, Spain
| | - Miguel A. Blázquez
- Instituto de Biologίa Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Valencia46022, Spain
| | - Rodrigo A. Gutiérrez
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago8331150, Chile
| | - Jason W. Reed
- Department of Biology, University of North Carolina, Chapel Hill, NC27599-3280
| | - William M. Gray
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN55108
| | - Jorge José Casal
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura, Facultad de Agronomía, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires1417, Argentina
- Fundaciόn Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires1405, Argentina
| |
Collapse
|
72
|
Zeiner A, Colina FJ, Citterico M, Wrzaczek M. CYSTEINE-RICH RECEPTOR-LIKE PROTEIN KINASES: their evolution, structure, and roles in stress response and development. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4910-4927. [PMID: 37345909 DOI: 10.1093/jxb/erad236] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/19/2023] [Indexed: 06/23/2023]
Abstract
Plant-specific receptor-like protein kinases (RLKs) are central components for sensing the extracellular microenvironment. CYSTEINE-RICH RLKs (CRKs) are members of one of the biggest RLK subgroups. Their physiological and molecular roles have only begun to be elucidated, but recent studies highlight the diverse types of proteins interacting with CRKs, as well as the localization of CRKs and their lateral organization within the plasma membrane. Originally the DOMAIN OF UNKNOWN FUNCTION 26 (DUF26)-containing extracellular region of the CRKs was proposed to act as a redox sensor, but the potential activating post-translational modification or ligands perceived remain elusive. Here, we summarize recent progress in the analysis of CRK evolution, molecular function, and role in plant development, abiotic stress responses, plant immunity, and symbiosis. The currently available information on CRKs and related proteins suggests that the CRKs are central regulators of plant signaling pathways. However, more research using classical methods and interdisciplinary approaches in various plant model species, as well as structural analyses, will not only enhance our understanding of the molecular function of CRKs, but also elucidate the contribution of other cellular components in CRK-mediated signaling pathways.
Collapse
Affiliation(s)
- Adam Zeiner
- Institute of Plant Molecular Biology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Francisco J Colina
- Institute of Plant Molecular Biology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
| | - Matteo Citterico
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Center, University of Helsinki, FI-00014 Helsinki, Finland
| | - Michael Wrzaczek
- Institute of Plant Molecular Biology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Center, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
73
|
Hua B, Liang F, Zhang W, Qiao D, Wang P, Teng H, Zhang Z, Liu J, Miao M. The Potential Role of bZIP55/65 in Nitrogen Uptake and Utilization in Cucumber Is Revealed via bZIP Gene Family Characterization. PLANTS (BASEL, SWITZERLAND) 2023; 12:3228. [PMID: 37765392 PMCID: PMC10537890 DOI: 10.3390/plants12183228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023]
Abstract
The bZIP (basic leucine zipper) proteins play crucial roles in various biological functions. Nitrogen (N) is an essential element for plant growth, especially in cucumber (Cucumis sativus) due to its shallow roots. However, the regulation of bZIP genes in cucumber nitrogen metabolism has not been studied yet. In this study, we identified a total of 72 bZIP genes (CsbZIPs) in the cucumber genome that could be classified into 13 groups. These genes were unevenly distributed on seven chromosomes, and synteny analysis showed that the CsbZIP genes were expanded in a segmentally duplicating manner. Furthermore, our genome-wide expression analysis suggested that CsbZIP genes had different patterns and that five CsbZIP genes were regulated by nitrogen treatment in both leaves and roots. Consistent with CsNPF, CsbZIP55 and CsbZIP65 were regulated by nitrogen treatment in leaves and roots. Moreover, the subcellular localization showed that CsbZIP55 and CsbZIP65 were specifically located in the nucleus, and the transcriptional activation assay showed that CsbZIP55 and CsbZIP65 have transcriptional activation activity. Additionally, in the CsbZIP55 and CsbZIP65 overexpression plants, most nitrogen-regulated CsNPF genes were downregulated. Taken together, our comprehensive analysis of the bZIP gene family lays a foundation for understanding the molecular and physiological functions of CsbZIPs.
Collapse
Affiliation(s)
- Bing Hua
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (B.H.); (F.L.); (W.Z.); (D.Q.); (P.W.); (H.T.); (Z.Z.); (J.L.)
| | - Fei Liang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (B.H.); (F.L.); (W.Z.); (D.Q.); (P.W.); (H.T.); (Z.Z.); (J.L.)
| | - Wenyan Zhang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (B.H.); (F.L.); (W.Z.); (D.Q.); (P.W.); (H.T.); (Z.Z.); (J.L.)
| | - Dan Qiao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (B.H.); (F.L.); (W.Z.); (D.Q.); (P.W.); (H.T.); (Z.Z.); (J.L.)
| | - Peiqi Wang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (B.H.); (F.L.); (W.Z.); (D.Q.); (P.W.); (H.T.); (Z.Z.); (J.L.)
| | - Haofeng Teng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (B.H.); (F.L.); (W.Z.); (D.Q.); (P.W.); (H.T.); (Z.Z.); (J.L.)
| | - Zhiping Zhang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (B.H.); (F.L.); (W.Z.); (D.Q.); (P.W.); (H.T.); (Z.Z.); (J.L.)
| | - Jiexia Liu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (B.H.); (F.L.); (W.Z.); (D.Q.); (P.W.); (H.T.); (Z.Z.); (J.L.)
| | - Minmin Miao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (B.H.); (F.L.); (W.Z.); (D.Q.); (P.W.); (H.T.); (Z.Z.); (J.L.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
74
|
Zanin L, Tomasi N, Casagrande D, Danuso F, Buoso S, Zamboni A, Varanini Z, Pinton R, Blanchini F. A mechanistic mathematical model for describing and predicting the dynamics of high-affinity nitrate intake into roots of maize and other plant species. PHYSIOLOGIA PLANTARUM 2023; 175:e14021. [PMID: 37882311 DOI: 10.1111/ppl.14021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 10/27/2023]
Abstract
A fully mechanistic dynamical model for plant nitrate uptake is presented. Based on physiological and regulatory pathways and based on physical laws, we form a dynamic system mathematically described by seven differential equations. The model evidences the presence of a short-term positive feedback on the high-affinity nitrate uptake, triggered by the presence of nitrate around the roots, which induces its intaking. In the long run, this positive feedback is overridden by two long-term negative feedback loops which drastically reduces the nitrate uptake capacity. These two negative feedbacks are due to the generation of ammonium and amino acids, respectively, and inhibit the synthesis and the activity of high-affinity nitrate transporters. This model faithfully predicts the typical spiking behavior of the nitrate uptake, in which an initial strong increase of nitrate absorption capacity is followed by a drop, which regulates the absorption down to the initial value. The model outcome was compared with experimental data and they fit quite nicely. The model predicts that after the initial exposure of the roots with nitrate, the absorption of the anion strongly increases and that, on the contrary, the intensity of the absorption is limited in presence of ammonium around the roots.
Collapse
Affiliation(s)
- Laura Zanin
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Nicola Tomasi
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Daniele Casagrande
- Dipartimento Politecnico di Ingegneria e Architettura, University of Udine, Udine, Italy
| | - Francesco Danuso
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Sara Buoso
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Anita Zamboni
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Zeno Varanini
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Roberto Pinton
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Franco Blanchini
- Dipartimento di Matematica, Informatica e Fisica, University of Udine, Udine, Italy
| |
Collapse
|
75
|
Zhang C, Zhang C, Azuma T, Maruyama H, Shinano T, Watanabe T. Different nitrogen acquirement and utilization strategies might determine the ecological competition between ferns and angiosperms. ANNALS OF BOTANY 2023; 131:1097-1106. [PMID: 36661261 PMCID: PMC10457029 DOI: 10.1093/aob/mcad009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND AIMS The abundance or decline of fern populations in response to environmental change has been found to be largely dependent on specific physiological properties that distinguish ferns from angiosperms. Many studies have focused on water use efficiency and stomatal behaviours, but the effects of nutrition acquirement and utilization strategies on niche competition between ferns and flowering plants are rarely reported. METHODS We collected 34 ferns and 42 angiosperms from the Botanic Garden of Hokkaido University for nitrogen (N), sulphur (S), NO3- and SO42- analysis. We then used a hydroponic system to compare the different N and S utilization strategies between ferns and angiosperms under N deficiency conditions. KEY RESULTS Ferns had a significantly higher NO3--N concentration and NO3--N/N ratio than angiosperms, although the total N concentration in ferns was remarkably lower than that in the angiosperms. Meanwhile, a positive correlation between N and S was found, indicating that nutrient concentration is involved in assimilation. Pteris cretica, a fern species subjected to further study, maintained a slow growth rate and lower N requirement in response to low N stress, while both the biomass and N concentration in wheat (Triticum aestivum) responded quickly to N deficiency conditions. CONCLUSIONS The different nutritional strategies employed by ferns and angiosperms depended mainly on the effects of phylogenetic and evolutionary diversity. Ferns tend to adopt an opportunistic strategy of limiting growth rate to reduce N demand and store more pooled nitrate, whereas angiosperms probably utilize N nutrition to ensure as much development as possible under low N stress. Identifying the effects of mineral nutrition on the evolutionary results of ecological competition between plant species remains a challenge.
Collapse
Affiliation(s)
- Chengming Zhang
- College of Chemistry and Life Sciences, Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Haike Road-99 East Section, Chengdu, 611130, China
- Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kitaku, Sapporo, 0608589, Japan
| | - Chaoqun Zhang
- Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kitaku, Sapporo, 0608589, Japan
| | - Takayuki Azuma
- Field Science Center for Northern Biosphere, Botanic Garden, Hokkaido University, Kita-3, Nishi-8, Chuoku, Sapporo, 0600003, Japan
| | - Hayato Maruyama
- Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kitaku, Sapporo, 0608589, Japan
| | - Takuro Shinano
- Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kitaku, Sapporo, 0608589, Japan
| | - Toshihiro Watanabe
- Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kitaku, Sapporo, 0608589, Japan
| |
Collapse
|
76
|
Xiong Y, Wang S, Cui C, Wu X, Zhu J. Suaeda salsa NRT1.1 Is Involved in the Regulation of Tolerance to Salt Stress in Transgenic Arabidopsis. Int J Mol Sci 2023; 24:12761. [PMID: 37628942 PMCID: PMC10454414 DOI: 10.3390/ijms241612761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Like other abiotic stresses, salt stress has become a major factor that restricts the growth, distribution and yield of crops. Research has shown that increasing the nitrogen content in soil can improve the salt tolerance of plants and nitrate transporter (NRT) is the primary nitrogen transporter in plants. Suaeda salsa (L.) Pall is a strong halophyte that can grow normally at a salt concentration of 200 mM. The salt stress transcriptome database of S. salsa was found to contain four putative genes that were homologous to NRT, including SsNRT1.1A, SsNRT1.1B, SsNRT1.1C and SsNRT1.1D. The cDNA of SsNRT1.1s was predicted to contain open reading frames of 1791, 1782, 1755 and 1746 bp, respectively. Sequence alignment and structural analysis showed that the SsNRT1.1 amino acids were inducible by salt and have conserved MFS and PTR2 domains. Subcellular localization showed they are on the endoplasmic reticulum. Overexpression of SsNRT1.1 genes in transgenic Arabidopsis improves its salt tolerance and SsNRT1.1C was more effective than others. We constructed a salt-stressed yeast cDNA library and used yeast two-hybrid and BiFC technology to find out that SsHINT1 and SsNRT1.1C have a protein interaction relationship. Overexpression of SsHINT1 in transgenic Arabidopsis also improves salt tolerance and the expressions of Na+ and K+ were increased and reduced, respectively. But the K+/Liratio was up-regulated 11.1-fold compared with the wild type. Thus, these results provide evidence that SsNRT1.1C through protein interactions with SsHINT1 increases the K+/Na+ ratio to improve salt tolerance and this signaling may be controlled by the salt overly sensitive (SOS) pathway.
Collapse
Affiliation(s)
| | | | | | | | - Jianbo Zhu
- College of Life Sciences, Shihezi University, Shihezi 832000, China; (Y.X.); (S.W.); (C.C.); (X.W.)
| |
Collapse
|
77
|
Zhang H, Zhang X, Xiao J. Epigenetic Regulation of Nitrogen Signaling and Adaptation in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:2725. [PMID: 37514337 PMCID: PMC10386408 DOI: 10.3390/plants12142725] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
Nitrogen (N) is a crucial nutrient that plays a significant role in enhancing crop yield. Its availability, including both supply and deficiency, serves as a crucial signal for plant development. However, excessive N use in agriculture leads to environmental and economic issues. Enhancing nitrogen use efficiency (NUE) is, therefore, essential to minimize negative impacts. Prior studies have investigated the genetic factors involved in N responses and the process of low-nitrogen (LN) adaptation. In this review, we discuss recent advances in understanding how epigenetic modifications, including DNA methylation, histone modification, and small RNA, participate in the regulation of N response and LN adaptation. We highlight the importance of decoding the epigenome at various levels to accelerate the functional study of how plants respond to N availability. Understanding the epigenetic control of N signaling and adaptation can lead to new strategies to improve NUE and enhance crop productivity sustainably.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyu Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Xiao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang 050024, China
- Centre of Excellence for Plant and Microbial Science (CEPAMS), JIC-CAS, Beijing 100101, China
| |
Collapse
|
78
|
Deng QY, Luo JT, Zheng JM, Tan WF, Pu ZJ, Wang F. Genome-wide systematic characterization of the NRT2 gene family and its expression profile in wheat (Triticum aestivum L.) during plant growth and in response to nitrate deficiency. BMC PLANT BIOLOGY 2023; 23:353. [PMID: 37420192 DOI: 10.1186/s12870-023-04333-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/06/2023] [Indexed: 07/09/2023]
Abstract
BACKGROUND Wheat (Triticum aestivum L.) is a major cereal crop that is grown worldwide, and it is highly dependent on sufficient N supply. The molecular mechanisms associated with nitrate uptake and assimilation are still poorly understood in wheat. In plants, NRT2 family proteins play a crucial role in NO3- acquisition and translocation under nitrate limited conditions. However, the biological functions of these genes in wheat are still unclear, especially their roles in NO3- uptake and assimilation. RESULTS In this study, a comprehensive analysis of wheat TaNRT2 genes was conducted using bioinformatics and molecular biology methods, and 49 TaNRT2 genes were identified. A phylogenetic analysis clustered the TaNRT2 genes into three clades. The genes that clustered on the same phylogenetic branch had similar gene structures and nitrate assimilation functions. The identified genes were further mapped onto the 13 wheat chromosomes, and the results showed that a large duplication event had occurred on chromosome 6. To explore the TaNRT2 gene expression profiles in wheat, we performed transcriptome sequencing after low nitrate treatment for three days. Transcriptome analysis revealed the expression levels of all TaNRT2 genes in shoots and roots, and based on the expression profiles, three highly expressed genes (TaNRT2-6A.2, TaNRT2-6A.6, and TaNRT2-6B.4) were selected for qPCR analysis in two different wheat cultivars ('Mianmai367' and 'Nanmai660') under nitrate-limited and normal conditions. All three genes were upregulated under nitrate-limited conditions and highly expressed in the high nitrogen use efficiency (NUE) wheat 'Mianmai367' under low nitrate conditions. CONCLUSION We systematically identified 49 NRT2 genes in wheat and analysed the transcript levels of all TaNRT2s under nitrate deficient conditions and over the whole growth period. The results suggest that these genes play important roles in nitrate absorption, distribution, and accumulation. This study provides valuable information and key candidate genes for further studies on the function of TaNRT2s in wheat.
Collapse
Affiliation(s)
- Qing-Yan Deng
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu, 610066, Sichuan, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China (Ministry of Agriculture and Rural Affairs of P.R.C.), Chengdu, Sichuan, 610066, China
| | - Jiang-Tao Luo
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu, 610066, Sichuan, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China (Ministry of Agriculture and Rural Affairs of P.R.C.), Chengdu, Sichuan, 610066, China
| | - Jian-Min Zheng
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu, 610066, Sichuan, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China (Ministry of Agriculture and Rural Affairs of P.R.C.), Chengdu, Sichuan, 610066, China
| | - Wen-Fang Tan
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China.
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu, 610066, Sichuan, China.
| | - Zong-Jun Pu
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China.
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu, 610066, Sichuan, China.
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China (Ministry of Agriculture and Rural Affairs of P.R.C.), Chengdu, Sichuan, 610066, China.
| | - Fang Wang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China.
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu, 610066, Sichuan, China.
| |
Collapse
|
79
|
Tejada-Jimenez M, Leon-Miranda E, Llamas A. Chlamydomonas reinhardtii-A Reference Microorganism for Eukaryotic Molybdenum Metabolism. Microorganisms 2023; 11:1671. [PMID: 37512844 PMCID: PMC10385300 DOI: 10.3390/microorganisms11071671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/19/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Molybdenum (Mo) is vital for the activity of a small but essential group of enzymes called molybdoenzymes. So far, specifically five molybdoenzymes have been discovered in eukaryotes: nitrate reductase, sulfite oxidase, xanthine dehydrogenase, aldehyde oxidase, and mARC. In order to become biologically active, Mo must be chelated to a pterin, forming the so-called Mo cofactor (Moco). Deficiency or mutation in any of the genes involved in Moco biosynthesis results in the simultaneous loss of activity of all molybdoenzymes, fully or partially preventing the normal development of the affected organism. To prevent this, the different mechanisms involved in Mo homeostasis must be finely regulated. Chlamydomonas reinhardtii is a unicellular, photosynthetic, eukaryotic microalga that has produced fundamental advances in key steps of Mo homeostasis over the last 30 years, which have been extrapolated to higher organisms, both plants and animals. These advances include the identification of the first two molybdate transporters in eukaryotes (MOT1 and MOT2), the characterization of key genes in Moco biosynthesis, the identification of the first enzyme that protects and transfers Moco (MCP1), the first characterization of mARC in plants, and the discovery of the crucial role of the nitrate reductase-mARC complex in plant nitric oxide production. This review aims to provide a comprehensive summary of the progress achieved in using C. reinhardtii as a model organism in Mo homeostasis and to propose how this microalga can continue improving with the advancements in this field in the future.
Collapse
Affiliation(s)
- Manuel Tejada-Jimenez
- Department of Biochemistry and Molecular Biology, Campus de Rabanales and Campus Internacional de Excelencia Agroalimentario (CeiA3), Edificio Severo Ochoa, University of Córdoba, 14071 Córdoba, Spain
| | - Esperanza Leon-Miranda
- Department of Biochemistry and Molecular Biology, Campus de Rabanales and Campus Internacional de Excelencia Agroalimentario (CeiA3), Edificio Severo Ochoa, University of Córdoba, 14071 Córdoba, Spain
| | - Angel Llamas
- Department of Biochemistry and Molecular Biology, Campus de Rabanales and Campus Internacional de Excelencia Agroalimentario (CeiA3), Edificio Severo Ochoa, University of Córdoba, 14071 Córdoba, Spain
| |
Collapse
|
80
|
Abualia R, Riegler S, Benkova E. Nitrate, Auxin and Cytokinin-A Trio to Tango. Cells 2023; 12:1613. [PMID: 37371083 DOI: 10.3390/cells12121613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/01/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Nitrogen is an important macronutrient required for plant growth and development, thus directly impacting agricultural productivity. In recent years, numerous studies have shown that nitrogen-driven growth depends on pathways that control nitrate/nitrogen homeostasis and hormonal networks that act both locally and systemically to coordinate growth and development of plant organs. In this review, we will focus on recent advances in understanding the role of the plant hormones auxin and cytokinin and their crosstalk in nitrate-regulated growth and discuss the significance of novel findings and possible missing links.
Collapse
Affiliation(s)
- Rashed Abualia
- School of Plant Sciences and Food Security, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Stefan Riegler
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Eva Benkova
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| |
Collapse
|
81
|
Wang L, Tian T, Liang J, Li R, Xin X, Qi Y, Zhou Y, Fan Q, Ning G, Becana M, Duanmu D. A transcription factor of the NAC family regulates nitrate-induced legume nodule senescence. THE NEW PHYTOLOGIST 2023; 238:2113-2129. [PMID: 36945893 DOI: 10.1111/nph.18896] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/12/2023] [Indexed: 05/04/2023]
Abstract
Legumes establish symbioses with rhizobia by forming nitrogen-fixing nodules. Nitrate is a major environmental factor that affects symbiotic functioning. However, the molecular mechanism of nitrate-induced nodule senescence is poorly understood. Comparative transcriptomic analysis reveals an NAC-type transcription factor in Lotus japonicus, LjNAC094, that acts as a positive regulator in nitrate-induced nodule senescence. Stable overexpression and mutant lines of NAC094 were constructed and used for phenotypic characterization. DNA-affinity purification sequencing was performed to identify NAC094 targeting genes and results were confirmed by electrophoretic mobility shift and transactivation assays. Overexpression of NAC094 induces premature nodule senescence. Knocking out NAC094 partially relieves nitrate-induced degradation of leghemoglobins and abolishes nodule expression of senescence-associated genes (SAGs) that contain a conserved binding motif for NAC094. Nitrate-triggered metabolic changes in wild-type nodules are largely affected in nac094 mutant nodules. Induction of NAC094 and its targeting SAGs was almost blocked in the nitrate-insensitive nlp1, nlp4, and nlp1 nlp4 mutants. We conclude that NAC094 functions downstream of NLP1 and NLP4 by regulating nitrate-induced expression of SAGs. Our study fills in a key gap between nitrate and the execution of nodule senescence, and provides a potential strategy to improve nitrogen fixation and stress tolerance of legumes.
Collapse
Affiliation(s)
- Longlong Wang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tao Tian
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianjun Liang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Runhui Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xian Xin
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Yongmei Qi
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yumiao Zhou
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiuling Fan
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guogui Ning
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Manuel Becana
- Departamento de Biología Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Avenida Montañana 1005, 50059, Zaragoza, Spain
| | - Deqiang Duanmu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
82
|
Liao HS, Chen YJ, Hsieh WY, Li YC, Hsieh MH. Arabidopsis ACT DOMAIN REPEAT9 represses glucose signaling pathways. PLANT PHYSIOLOGY 2023; 192:1532-1547. [PMID: 36843191 PMCID: PMC10231364 DOI: 10.1093/plphys/kiad127] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/06/2023] [Accepted: 02/01/2023] [Indexed: 06/01/2023]
Abstract
Nutrient sensing and signaling are critical for plants to coordinate growth and development in response to nutrient availability. Plant ACT DOMAIN REPEAT (ACR) proteins have been proposed to serve as nutrient sensors, but their functions remain largely unknown. Here, we showed that Arabidopsis (Arabidopsis thaliana) ACR9 might function as a repressor in glucose (Glc) signaling pathways. ACR9 was highly expressed in the leaves, and its expression was downregulated by sugars. Interestingly, the acr9-1 and acr9-2 T-DNA insertion mutants were hypersensitive to Glc during seedling growth, development, and anthocyanin accumulation. Nitrogen deficiency increased the mutants' sensitivity to Glc. The expression of sugar-responsive genes was also significantly enhanced in the acr9 mutants. By contrast, the 35S:ACR9 and 35S:ACR9-GFP overexpression (OE) lines were insensitive to Glc during early seedling development. The Glc signaling pathway is known to interact with the plant hormone abscisic acid (ABA). Notably, the acr9 mutants were also hypersensitive to ABA during early seedling development. The Glc sensor HEXOKINASE1 (HXK1) and the energy sensor SUCROSE NON-FERMENTING1 (SNF1)-RELATED PROTEIN KINASE1 (SnRK1) are key components of the Glc signaling pathways. The acr9-1/hxk1-3 and acr9-1/snrk1 double mutants were no longer hypersensitive to Glc, indicating that functional HXK1 and SnRK1 were required for the acr9-1 mutant to be hypersensitive to Glc. Together, these results suggest that ACR9 is a repressor of the Glc signaling pathway, which may act independently or upstream of the HXK1-SnRK1 signaling module.
Collapse
Affiliation(s)
- Hong-Sheng Liao
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ying-Jhu Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Wei-Yu Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Chiou Li
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan
| |
Collapse
|
83
|
Liu H, Qiao J, Shangguan J, Guo X, Xing Z, Zhou X, Zhao M, Zhu J. A Gene from Ganoderma lucidum with Similarity to nmrA of Filamentous Ascomycetes Contributes to Regulating AreA. J Fungi (Basel) 2023; 9:jof9050516. [PMID: 37233227 DOI: 10.3390/jof9050516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
Fungal AreA is a key nitrogen metabolism transcription factor in nitrogen metabolism repression (NMR). Studies have shown that there are different ways to regulate AreA activity in yeast and filamentous ascomycetes, but in Basidiomycota, how AreA is regulated is unknown. Here, a gene from Ganoderma lucidum with similarity to nmrA of filamentous ascomycetes was identified. The NmrA interacted with the C-terminal of AreA according to yeast two-hybrid assay. In order to determine the effect of NmrA on the AreA, 2 nmrA silenced strains of G. lucidum, with silencing efficiencies of 76% and 78%, were constructed using an RNA interference method. Silencing nmrA resulted in a decreased content of AreA. The content of AreA in nmrAi-3 and nmrAi-48 decreased by approximately 68% and 60%, respectively, compared with that in the WT in the ammonium condition. Under the nitrate culture condition, silencing nmrA resulted in a 40% decrease compared with the WT. Silencing nmrA also reduced the stability of the AreA protein. When the mycelia were treated with cycloheximide for 6 h, the AreA protein was almost undetectable in the nmrA silenced strains, while there was still approximately 80% of the AreA protein in the WT strains. In addition, under the nitrate culture, the content of AreA protein in the nuclei of the WT strains was significantly increased compared with that under the ammonium condition. However, when nmrA was silenced, the content of the AreA protein in the nuclei did not change compared with the WT. Compared with the WT, the expression of the glutamine synthetase gene in nmrAi-3 and nmrAi-48 strains increased by approximately 94% and 88%, respectively, under the ammonium condition, while the expression level of the nitrate reductase gene in nmrAi-3 and nmrAi-48 strains increased by approximately 100% and 93%, respectively, under the nitrate condition. Finally, silencing nmrA inhibited mycelial growth and increased ganoderic acid biosynthesis. Our findings are the first to reveal that a gene from G. lucidum with similarity to the nmrA of filamentous ascomycetes contributes to regulating AreA, which provides new insight into how AreA is regulated in Basidiomycota.
Collapse
Affiliation(s)
- He Liu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinjin Qiao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaolei Shangguan
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoyu Guo
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenzhen Xing
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaolin Zhou
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingwen Zhao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Zhu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
84
|
Durand M, Brehaut V, Clement G, Kelemen Z, Macé J, Feil R, Duville G, Launay-Avon A, Roux CPL, Lunn JE, Roudier F, Krapp A. The Arabidopsis transcription factor NLP2 regulates early nitrate responses and integrates nitrate assimilation with energy and carbon skeleton supply. THE PLANT CELL 2023; 35:1429-1454. [PMID: 36752317 PMCID: PMC10118280 DOI: 10.1093/plcell/koad025] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Nitrate signaling improves plant growth under limited nitrate availability and, hence, optimal resource use for crop production. Whereas several transcriptional regulators of nitrate signaling have been identified, including the Arabidopsis thaliana transcription factor NIN-LIKE PROTEIN7 (NLP7), additional regulators are expected to fine-tune this pivotal physiological response. Here, we characterized Arabidopsis NLP2 as a top-tier transcriptional regulator of the early nitrate response gene regulatory network. NLP2 interacts with NLP7 in vivo and shares key molecular features such as nitrate-dependent nuclear localization, DNA-binding motif, and some target genes with NLP7. Genetic, genomic, and metabolic approaches revealed a specific role for NLP2 in the nitrate-dependent regulation of carbon and energy-related processes that likely influence plant growth under distinct nitrogen environments. Our findings highlight the complementarity and specificity of NLP2 and NLP7 in orchestrating a multitiered nitrate regulatory network that links nitrate assimilation with carbon and energy metabolism for efficient nitrogen use and biomass production.
Collapse
Affiliation(s)
- Mickaël Durand
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin, Versailles 78000, France
- UMR CNRS 7267, EBI Ecologie et Biologie des Interactions, Université de Poitiers, Poitiers, France
| | - Virginie Brehaut
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin, Versailles 78000, France
| | - Gilles Clement
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin, Versailles 78000, France
| | - Zsolt Kelemen
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin, Versailles 78000, France
| | - Julien Macé
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm D-14476, Germany
| | - Garry Duville
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin, Versailles 78000, France
| | - Alexandra Launay-Avon
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette 91190, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette 91190, France
| | - Christine Paysant-Le Roux
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette 91190, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette 91190, France
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm D-14476, Germany
| | - François Roudier
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Anne Krapp
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin, Versailles 78000, France
| |
Collapse
|
85
|
Chan C. The distinct functions of NODULE INCEPTION-like proteins in nitrate response. THE PLANT CELL 2023; 35:1296-1297. [PMID: 36781394 PMCID: PMC10118256 DOI: 10.1093/plcell/koad038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
|
86
|
Ingargiola C, Jéhanno I, Forzani C, Marmagne A, Broutin J, Clément G, Leprince AS, Meyer C. The Arabidopsis Target of Rapamycin (TOR) kinase regulates ammonium assimilation and glutamine metabolism. PLANT PHYSIOLOGY 2023:kiad216. [PMID: 37042394 DOI: 10.1093/plphys/kiad216] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/01/2023] [Accepted: 04/11/2023] [Indexed: 06/19/2023]
Abstract
In eukaryotes, Target of Rapamycin (TOR) is a well conserved kinase that controls cell metabolism and growth in response to nutrients and environmental factors. Nitrogen (N) is an essential element for plants, and TOR functions as a crucial N and amino acid sensor in animals and yeast. However, knowledge on the connections between TOR and the overall N metabolism and assimilation in plants is still limited. In this study, we investigated the regulation of TOR in Arabidopsis (Arabidopsis thaliana) by the N source as well as the impact of TOR deficiency on N metabolism. Inhibition of TOR globally decreased ammonium uptake while triggering a massive accumulation of amino acids, such as Gln, but also of polyamines. Consistently, TOR complex mutants were hypersensitive to Gln. We also showed that the glutamine synthetase inhibitor glufosinate abolishes Gln accumulation resulting from TOR inhibition and improves the growth of TOR complex mutants. These results suggest that a high level of Gln contributes to the reduction in plant growth resulting from TOR inhibition. Glutamine synthetase activity was reduced by TOR inhibition while the enzyme amount increased. In conclusion, our findings show that the TOR pathway is intimately connected to N metabolism and that a decrease in TOR activity results in glutamine synthetase-dependent Gln and amino acid accumulation.
Collapse
Affiliation(s)
- Camille Ingargiola
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Isabelle Jéhanno
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Céline Forzani
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Anne Marmagne
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Justine Broutin
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Gilles Clément
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Anne-Sophie Leprince
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
- Faculté des Sciences et d'Ingénierie, Sorbonne Université, UFR 927, 4 Place Jussieu, 75252 Paris, France
| | - Christian Meyer
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| |
Collapse
|
87
|
Fan H, Quan S, Ye Q, Zhang L, Liu W, Zhu N, Zhang X, Ruan W, Yi K, Crawford NM, Wang Y. A molecular framework underlying low-nitrogen-induced early leaf senescence in Arabidopsis thaliana. MOLECULAR PLANT 2023; 16:756-774. [PMID: 36906802 DOI: 10.1016/j.molp.2023.03.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 02/09/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Nitrogen (N) deficiency causes early leaf senescence, resulting in accelerated whole-plant maturation and severely reduced crop yield. However, the molecular mechanisms underlying N-deficiency-induced early leaf senescence remain unclear, even in the model species Arabidopsis thaliana. In this study, we identified Growth, Development and Splicing 1 (GDS1), a previously reported transcription factor, as a new regulator of nitrate (NO3-) signaling by a yeast-one-hybrid screen using a NO3- enhancer fragment from the promoter of NRT2.1. We showed that GDS1 promotes NO3- signaling, absorption and assimilation by affecting the expression of multiple NO3- regulatory genes, including Nitrate Regulatory Gene2 (NRG2). Interestingly, we observed that gds1 mutants show early leaf senescence as well as reduced NO3- content and N uptake under N-deficient conditions. Further analyses indicated that GDS1 binds to the promoters of several senescence-related genes, including Phytochrome-Interacting Transcription Factors 4 and 5 (PIF4 and PIF5) and represses their expression. Interestingly, we found that N deficiency decreases GDS1 protein accumulation, and GDS1 could interact with Anaphase Promoting Complex Subunit 10 (APC10). Genetic and biochemical experiments demonstrated that Anaphase Promoting Complex or Cyclosome (APC/C) promotes the ubiquitination and degradation of GDS1 under N deficiency, resulting in loss of PIF4 and PIF5 repression and consequent early leaf senescence. Furthermore, we discovered that overexpression of GDS1 could delay leaf senescence and improve seed yield and N-use efficiency (NUE) in Arabidopsis. In summary, our study uncovers a molecular framework illustrating a new mechanism underlying low-N-induced early leaf senescence and provides potential targets for genetic improvement of crop varieties with increased yield and NUE.
Collapse
Affiliation(s)
- Hongmei Fan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Shuxuan Quan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Qing Ye
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Lei Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Wei Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Ning Zhu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Xiaoqi Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Wenyuan Ruan
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 10081, China
| | - Keke Yi
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 10081, China
| | - Nigel M Crawford
- Section of Cell and Developmental Biology, Division of Biological Science, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Yong Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| |
Collapse
|
88
|
Dai S, Wu H, Chen H, Wang Z, Yu X, Wang L, Jia X, Qin C, Zhu Y, Yi K, Zeng H. Comparative transcriptome analyses under individual and combined nutrient starvations provide insights into N/P/K interactions in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 197:107642. [PMID: 36989993 DOI: 10.1016/j.plaphy.2023.107642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Crops often suffer from simultaneous limitations of multiple nutrients in soils, including nitrogen (N), phosphorus (P) and potassium (K), which are three major macronutrients essential for ensuring growth and yield. Although plant responses to individual N, P, and K deficiency have been well documented, our understanding of the responses to combined nutrient deficiencies and the crosstalk between nutrient starvation responses is still limited. Here, we compared the physiological responses in rice under seven kinds of single and multiple low nutrient stress of N, P and K, and used RNA sequencing approaches to compare their transcriptome changes. A total of 13,000 genes were found to be differentially expressed under all these single and multiple low N/P/K stresses, and 66 and 174 of them were shared by all these stresses in roots and shoots, respectively. Functional enrichment analyses of the DEGs showed that a group of biological and metabolic processes were shared by these low N/P/K stresses. Comparative analyses indicated that DEGs under multiple low nutrient stress was not the simple summation of single nutrient stress. N was found to be the predominant factor affecting the transcriptome under combined nutrient stress. N, P, or K availability exhibited massive influences on the transcriptomic responses to starvation of other nutrients. Many genes involved in nutrient transport, hormone signaling, and transcriptional regulation were commonly responsive to low N/P/K stresses. Some transcription factors were predicted to regulate the expression of genes that are commonly responsive to N, P, and K starvations. These results revealed the interactions between N, P, and K starvation responses, and will be helpful for further elucidation of the molecular mechanisms underlying nutrient interactions.
Collapse
Affiliation(s)
- Senhuan Dai
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Haicheng Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Huiying Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Zihui Wang
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environment Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Yu
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environment Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Long Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xianqing Jia
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Cheng Qin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yiyong Zhu
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environment Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Keke Yi
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Houqing Zeng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
89
|
Pacheco JM, Song L, Kuběnová L, Ovečka M, Berdion Gabarain V, Peralta JM, Lehuedé TU, Ibeas MA, Ricardi MM, Zhu S, Shen Y, Schepetilnikov M, Ryabova LA, Alvarez JM, Gutierrez RA, Grossmann G, Šamaj J, Yu F, Estevez JM. Cell surface receptor kinase FERONIA linked to nutrient sensor TORC signaling controls root hair growth at low temperature linked to low nitrate in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2023; 238:169-185. [PMID: 36716782 DOI: 10.1111/nph.18723] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
Root hairs (RH) are excellent model systems for studying cell size and polarity since they elongate several hundred-fold their original size. Their tip growth is determined both by intrinsic and environmental signals. Although nutrient availability and temperature are key factors for a sustained plant growth, the molecular mechanisms underlying their sensing and downstream signaling pathways remain unclear. We use genetics to address the roles of the cell surface receptor kinase FERONIA (FER) and the nutrient sensing TOR Complex 1 (TORC) in RH growth. We identified that low temperature (10°C) triggers a strong RH elongation response in Arabidopsis thaliana involving FER and TORC. We found that FER is required to perceive limited nutrient availability caused by low temperature. FERONIA interacts with and activates TORC-downstream components to trigger RH growth. In addition, the small GTPase Rho of plants 2 (ROP2) is also involved in this RH growth response linking FER and TOR. We also found that limited nitrogen nutrient availability can mimic the RH growth response at 10°C in a NRT1.1-dependent manner. These results uncover a molecular mechanism by which a central hub composed by FER-ROP2-TORC is involved in the control of RH elongation under low temperature and nitrogen deficiency.
Collapse
Affiliation(s)
- Javier Martínez Pacheco
- Fundación Instituto Leloir and IIBBA-CONICET, Av Patricias Argentinas 435, Buenos Aires, C1405BWE, Argentina
| | - Limei Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China
- Laborarory of Species Interaction and Biological Invasion, School of Life Science, Hebei University, Baoding, 071002, China
| | - Lenka Kuběnová
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Miroslav Ovečka
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Victoria Berdion Gabarain
- Fundación Instituto Leloir and IIBBA-CONICET, Av Patricias Argentinas 435, Buenos Aires, C1405BWE, Argentina
| | - Juan Manuel Peralta
- Fundación Instituto Leloir and IIBBA-CONICET, Av Patricias Argentinas 435, Buenos Aires, C1405BWE, Argentina
| | - Tomás Urzúa Lehuedé
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, 8370186, Santiago, Chile
- ANID - Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), 8331150, Santiago, Chile
| | - Miguel Angel Ibeas
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, 8370186, Santiago, Chile
- ANID - Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), 8331150, Santiago, Chile
| | - Martiniano M Ricardi
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET) and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina
| | - Sirui Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China
| | - Yanan Shen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China
| | - Mikhail Schepetilnikov
- Institut de Biologie Moléculaire des Plantes, CNRS, UPR 2357, Université de Strasbourg, 67084, Strasbourg, France
| | - Lyubov A Ryabova
- Institut de Biologie Moléculaire des Plantes, CNRS, UPR 2357, Université de Strasbourg, 67084, Strasbourg, France
| | - José M Alvarez
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, 8370186, Santiago, Chile
- ANID - Millennium Institute for Integrative Biology (iBio), 7500000, Santiago, Chile
| | - Rodrigo A Gutierrez
- ANID - Millennium Institute for Integrative Biology (iBio), 7500000, Santiago, Chile
- Millennium Institute Center for Genome Regulation, 6904411, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile
| | - Guido Grossmann
- Institute of Cell and Interaction Biology, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
- Cluster of Excellence in Plant Sciences, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | - Jozef Šamaj
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Feng Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China
| | - José M Estevez
- Fundación Instituto Leloir and IIBBA-CONICET, Av Patricias Argentinas 435, Buenos Aires, C1405BWE, Argentina
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, 8370186, Santiago, Chile
- ANID - Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), 8331150, Santiago, Chile
- ANID - Millennium Institute for Integrative Biology (iBio), 7500000, Santiago, Chile
| |
Collapse
|
90
|
Liu B, Feng C, Fang X, Ma Z, Xiao C, Zhang S, Liu Z, Sun D, Shi H, Ding X, Qiu C, Li J, Luan S, Li L, He K. The anion channel SLAH3 interacts with potassium channels to regulate nitrogen-potassium homeostasis and the membrane potential in Arabidopsis. THE PLANT CELL 2023; 35:1259-1280. [PMID: 36653170 PMCID: PMC10052404 DOI: 10.1093/plcell/koad014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Nitrogen (N) and potassium (K) are essential macronutrients for plants. Sufficient N and K uptake from the environment is required for successful growth and development. However, how N and K influence each other at the molecular level in plants is largely unknown. In this study, we found loss-of-function mutation in SLAH3 (SLAC1 HOMOLOGUE 3), encoding a NO3- efflux channel in Arabidopsis thaliana, enhanced tolerance to high KNO3 concentrations. Surprisingly, slah3 mutants were less sensitive to high K+ but not NO3-. Addition of NO3- led to reduced phenotypic difference between wild-type and slah3 plants, suggesting SLAH3 orchestrates NO3--K+ balance. Non-invasive Micro-test Technology analysis revealed reduced NO3- efflux and enhanced K+ efflux in slah3 mutants, demonstrating that SLAH3-mediated NO3- transport and SLAH3-affected K+ flux are critical in response to high K +. Further investigation showed that two K+ efflux channels, GORK (GATED OUTWARDLY-RECTIFYING K+ CHANNEL) and SKOR (STELAR K+ OUTWARD RECTIFIER), interacted with SLAH3 and played key roles in high K+ response. The gork and skor mutants were slightly more sensitive to high K+ conditions. Less depolarization occurred in slah3 mutants and enhanced depolarization was observed in gork and skor mutants upon K+ treatment, suggesting NO3-/K+ efflux-mediated membrane potential regulation is involved in high K+ response. Electrophysiological results showed that SLAH3 partially inhibited the activities of GORK and SKOR in Xenopus laevis oocytes. This study revealed that the anion channel SLAH3 interacts with the potassium channels GORK and SKOR to modulate membrane potential by coordinating N-K balance.
Collapse
Affiliation(s)
- Beibei Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Changxin Feng
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Xianming Fang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zhen Ma
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Chengbin Xiao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shuaishuai Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zhenzhen Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Doudou Sun
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Hongyong Shi
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Xiaoqin Ding
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Chenyang Qiu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | - Legong Li
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Kai He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
91
|
Jie L, Sanagi M, Luo Y, Maeda H, Fukao Y, Chiba Y, Yanagisawa S, Yamaguchi J, Takagi J, Sato T. Histone chaperone NUCLEOSOME ASSEMBLY PROTEIN 1 proteins affect plant growth under nitrogen deficient conditions in Arabidopsis thaliana. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2023; 40:93-98. [PMID: 38439935 PMCID: PMC10910346 DOI: 10.5511/plantbiotechnology.22.1219a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/19/2022] [Indexed: 03/06/2024]
Abstract
Nitrogen (N) availability is one of the most important factors regulating plant metabolism and growth as it affects global gene expression profiles. Dynamic changes in chromatin structure, including histone modifications and nucleosome assembly/disassembly, have been extensively shown to regulate gene expression under various environmental stresses in plants. However, the involvement of chromatin related changes in plant nutrient responses has been demonstrated only in a few studies to date. In this study, we investigated the function of histone chaperone NUCLEOSOME ASSEMBLY PROTEIN1 (NAP1) proteins under N deficient conditions in Arabidopsis. In the nap1;1 nap1;2 nap1;3 triple mutant (m123-1), the expression of N-responsive marker genes and growth of lateral roots were decreased under N deficient conditions. In addition, the m123-1 plants showed a delay in N deficiency-induced leaf senescence. Taken together, these results suggest that NAP1s affect plant growth under N deficient conditions in Arabidopsis.
Collapse
Affiliation(s)
- Linnan Jie
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Miho Sanagi
- Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Yongming Luo
- Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Haruna Maeda
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Yoichiro Fukao
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Yukako Chiba
- Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Shuichi Yanagisawa
- Plant Functional Biotechnology, Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Junji Yamaguchi
- Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Junpei Takagi
- Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Takeo Sato
- Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
92
|
Gene expression during the formation of resting spores induced by nitrogen starvation in the marine diatom Chaetoceros socialis. BMC Genomics 2023; 24:106. [PMID: 36899305 PMCID: PMC9999646 DOI: 10.1186/s12864-023-09175-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/09/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND Dormancy is widespread in both multicellular and unicellular organisms. Among diatoms, unicellular microalgae at the base of all aquatic food webs, several species produce dormant cells (spores or resting cells) that can withstand long periods of adverse environmental conditions. RESULTS We present the first gene expression study during the process of spore formation induced by nitrogen depletion in the marine planktonic diatom Chaetoceros socialis. In this condition, genes related to photosynthesis and nitrate assimilation, including high-affinity nitrate transporters (NTRs), were downregulated. While the former result is a common reaction among diatoms under nitrogen stress, the latter seems to be exclusive of the spore-former C. socialis. The upregulation of catabolic pathways, such as tricarboxylic acid cycle, glyoxylate cycle and fatty acid beta-oxidation, suggests that this diatom could use lipids as a source of energy during the process of spore formation. Furthermore, the upregulation of a lipoxygenase and several aldehyde dehydrogenases (ALDHs) advocates the presence of oxylipin-mediated signaling, while the upregulation of genes involved in dormancy-related pathways conserved in other organisms (e.g. serine/threonine-protein kinases TOR and its inhibitor GATOR) provides interesting avenues for future explorations. CONCLUSIONS Our results demonstrate that the transition from an active growth phase to a resting one is characterized by marked metabolic changes and provides evidence for the presence of signaling pathways related to intercellular communication.
Collapse
|
93
|
Lepetit M, Brouquisse R. Control of the rhizobium-legume symbiosis by the plant nitrogen demand is tightly integrated at the whole plant level and requires inter-organ systemic signaling. FRONTIERS IN PLANT SCIENCE 2023; 14:1114840. [PMID: 36968361 PMCID: PMC10033964 DOI: 10.3389/fpls.2023.1114840] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Symbiotic nodules formed on legume roots with rhizobia fix atmospheric N2. Bacteria reduce N2 to NH4 + that is assimilated into amino acids by the plant. In return, the plant provides photosynthates to fuel the symbiotic nitrogen fixation. Symbiosis is tightly adjusted to the whole plant nutritional demand and to the plant photosynthetic capacities, but regulatory circuits behind this control remain poorly understood. The use of split-root systems combined with biochemical, physiological, metabolomic, transcriptomic, and genetic approaches revealed that multiple pathways are acting in parallel. Systemic signaling mechanisms of the plant N demand are required for the control of nodule organogenesis, mature nodule functioning, and nodule senescence. N-satiety/N-deficit systemic signaling correlates with rapid variations of the nodules' sugar levels, tuning symbiosis by C resources allocation. These mechanisms are responsible for the adjustment of plant symbiotic capacities to the mineral N resources. On the one hand, if mineral N can satisfy the plant N demand, nodule formation is inhibited, and nodule senescence is activated. On the other hand, local conditions (abiotic stresses) may impair symbiotic activity resulting in plant N limitation. In these conditions, systemic signaling may compensate the N deficit by stimulating symbiotic root N foraging. In the past decade, several molecular components of the systemic signaling pathways controlling nodule formation have been identified, but a major challenge remains, that is, to understand their specificity as compared to the mechanisms of non-symbiotic plants that control root development and how they contribute to the whole plant phenotypes. Less is known about the control of mature nodule development and functioning by N and C nutritional status of the plant, but a hypothetical model involving the sucrose allocation to the nodule as a systemic signaling process, the oxidative pentose phosphate pathway, and the redox status as potential effectors of this signaling is emerging. This work highlights the importance of organism integration in plant biology.
Collapse
|
94
|
Zhang M, Zhang W, Zheng Z, Zhang Z, Hua B, Liu J, Miao M. Genome-Wide Identification and Expression Analysis of NPF Genes in Cucumber ( Cucumis sativus L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:1252. [PMID: 36986940 PMCID: PMC10057324 DOI: 10.3390/plants12061252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
The NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family (NPF) proteins perform an essential role in regulating plant nitrate absorption and distribution and in improving plant nitrogen use efficiency. In this study, cucumber (Cucumis sativus L.) NPF genes were comprehensively analyzed at the whole genome level, and 54 NPF genes were found to be unevenly distributed on seven chromosomes in the cucumber genome. The phylogenetic analysis showed that these genes could be divided into eight subfamilies. We renamed all CsNPF genes according to the international nomenclature, based on their homology with AtNPF genes. By surveying the expression profiles of CsNPF genes in various tissues, we found that CsNPF6.4 was specifically expressed in roots, indicating that CsNPF6.4 may play a role in N absorption; CsNPF6.3 was highly expressed in petioles, which may be related to NO3- storage in petioles; and CsNPF2.8 was highly expressed in fruits, which may promote NO3- transport to the embryos. We further examined their expression patterns under different abiotic stress and nitrogen conditions, and found that CsNPF7.2 and CsNPF7.3 responded to salt, cold, and low nitrogen stress. Taken together, our study lays a foundation for further exploration of the molecular and physiological functions of cucumber nitrate transporters.
Collapse
Affiliation(s)
- Mengying Zhang
- College of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China
| | - Wenyan Zhang
- College of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China
| | - Zijian Zheng
- College of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China
| | - Zhiping Zhang
- College of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China
| | - Bing Hua
- College of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China
| | - Jiexia Liu
- College of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China
| | - Minmin Miao
- College of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
95
|
Wei M, Zhang M, Sun J, Zhao Y, Pak S, Ma M, Chen Y, Lu H, Yang J, Wei H, Li Y, Li C. PuHox52 promotes coordinated uptake of nitrate, phosphate, and iron under nitrogen deficiency in Populus ussuriensis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:791-809. [PMID: 36226597 DOI: 10.1111/jipb.13389] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
It is of great importance to better understand how trees regulate nitrogen (N) uptake under N deficiency conditions which severely challenge afforestation practices, yet the underlying molecular mechanisms have not been well elucidated. Here, we functionally characterized PuHox52, a Populus ussuriensis HD-ZIP transcription factor, whose overexpression greatly enhanced nutrient uptake and plant growth under N deficiency. We first conducted an RNA sequencing experiment to obtain root transcriptome using PuHox52-overexpression lines of P. ussuriensis under low N treatment. We then performed multiple genetic and phenotypic analyses to identify key target genes of PuHox52 and validated how they acted against N deficiency under PuHox52 regulation. PuHox52 was specifically induced in roots by N deficiency, and overexpression of PuHox52 promoted N uptake, plant growth, and root development. We demonstrated that several nitrate-responsive genes (PuNRT1.1, PuNRT2.4, PuCLC-b, PuNIA2, PuNIR1, and PuNLP1), phosphate-responsive genes (PuPHL1A and PuPHL1B), and an iron transporter gene (PuIRT1) were substantiated to be direct targets of PuHox52. Among them, PuNRT1.1, PuPHL1A/B, and PuIRT1 were upregulated to relatively higher levels during PuHox52-mediated responses against N deficiency in PuHox52-overexpression lines compared to WT. Our study revealed a novel regulatory mechanism underlying root adaption to N deficiency where PuHox52 modulated a coordinated uptake of nitrate, phosphate, and iron through 'PuHox52-PuNRT1.1', 'PuHox52-PuPHL1A/PuPHL1B', and 'PuHox52-PuIRT1' regulatory relationships in poplar roots.
Collapse
Affiliation(s)
- Ming Wei
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Mengqiu Zhang
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Jiali Sun
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Ying Zhao
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Solme Pak
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Miaomiao Ma
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Yingxi Chen
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Han Lu
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Jingli Yang
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan, 49931, USA
| | - Yuhua Li
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
| | - Chenghao Li
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, 150040, China
| |
Collapse
|
96
|
Xia X, Wei Q, Xiao C, Ye Y, Li Z, Marivingt-Mounir C, Chollet JF, Liu W, Wu H. Genomic survey of NPF and NRT2 transporter gene families in five inbred maize lines and their responses to pathogens infection. Genomics 2023; 115:110555. [PMID: 36596368 DOI: 10.1016/j.ygeno.2022.110555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/02/2022] [Accepted: 12/30/2022] [Indexed: 01/01/2023]
Abstract
Besides manipulating nitrate uptake and allocation, nitrate transporters (NRTs) are also known to play crucial roles in pathogen defense and stress response. By blasting with the model NRT genes of poplar and Arabidopsis, a total of 408 gene members were identified from 5 maize inbred lines in which the number of NRTs ranged from 72 to 88. Phylogenetic analysis showed that the NRT genes of maize were classified into NRT1/PTR (NPF), NRT2 and NRT3 subfamilies, respectively. Marked divergence of the duplication patterns of NRT genes were identified, which may be a new basis for classification and identification of maize varieties. In terms of biotic stress, NRT2.5A showed an enhanced expression during the pathogen infection of Colletotrichum graminicola, while NRT1c4C was down-regulated, suggesting that maize NRT transporters may have both positive and negative roles in the disease resistance response. This work will promote the further studies of NRT gene families in maize, as well as be beneficial for further understanding of their potential roles in plant-pathogen interactions.
Collapse
Affiliation(s)
- Xinyao Xia
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, China
| | - Qiuhe Wei
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, China
| | - Chunxia Xiao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, China
| | - Yiping Ye
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, China
| | - Zhiqiang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, China
| | - Cécile Marivingt-Mounir
- Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP), Unité Mixte de Recherche CNRS 7285, Université de Poitiers, 4 rue Michel Brunet, TSA 51106, F-86073 Poitiers, Cedex 9, France
| | - Jean-François Chollet
- Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP), Unité Mixte de Recherche CNRS 7285, Université de Poitiers, 4 rue Michel Brunet, TSA 51106, F-86073 Poitiers, Cedex 9, France
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, China.
| | - Hanxiang Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, China.
| |
Collapse
|
97
|
Huang X, Luoluo, Xie D, Li Z. Dissimilatory nitrate reduction to ammonium in four Pseudomonas spp. under aerobic conditions. Heliyon 2023; 9:e14983. [PMID: 37064473 PMCID: PMC10102415 DOI: 10.1016/j.heliyon.2023.e14983] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Dissimilatory nitrate reduction to ammonium (DNRA) has an important role in soil nitrogen retention and is considered to be constrained to anaerobic conditions. However, a recent study found that Pseudomonas putida Y-9 is capable of DNRA under aerobic conditions. In this study, four species of Pseudomonas spp. were found to produce ammonium during the nitrite reduction process under aerobic conditions, similar to the Y-9 strain. The detectable ammonium in the culture supernatant during the nitrite reduction process for each of the four strains originated intracellularly. A subsequent 15N isotope experiment showed that these four strains were able to transform 15NO2 - to 15NH4 + in 3 h under aerobic conditions. The NirBD sequence in each of the four strains showed high similarity with that in the Y-9 strain (approximately 94.61%). Moreover, the nirBD sequences in the four strains and the Y-9 strain were all similar to those of other Pseudomonas spp., while they were relatively distant in terms of their phylogenetic relationship from those of other genera. Overall, these results suggest that these four strains of Pseudomonas spp. are capable of DNRA under aerobic conditions, which might be attributed to the existence of nirBD.
Collapse
|
98
|
Wu C, Xiang Y, Huang P, Zhang M, Fang M, Yang W, Li W, Cao F, Liu LH, Pu W, Duan S. Molecular identification and physiological functional analysis of NtNRT1.1B that mediated nitrate long-distance transport and improved plant growth when overexpressed in tobacco. FRONTIERS IN PLANT SCIENCE 2023; 14:1078978. [PMID: 36925751 PMCID: PMC10011135 DOI: 10.3389/fpls.2023.1078978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Although recent physiological studies demonstrate that flue-cured tobacco preferentially utilizes nitrate ( NO 3 - ) or ammonium nitrate (NH4NO3), and possesses both high- and low-affinity uptake systems for NO 3 - , little is known about the molecular component(s) responsible for acquisition and translocation in this crop. Here we provide experimental data showing that NtNRT1.1B with a 1,785-bp coding sequence exhibited a function in mediating NO 3 - transport associated with tobacco growth on NO 3 - nutrition. Heterologous expression of NtNRT1.1B in the NO 3 - uptake-defective yeast Hp△ynt1 enabled a growth recovery of the mutant on 0.5 mM NO 3 - , suggesting a possible molecular function of NtNRT1.1B in the import of NO 3 - into cells. Transient expression of NtNRT1.1B::green fluorescent protein (GFP) in tobacco leaf cells revealed that NtNRT1.1B targeted mainly the plasma membrane, indicating the possibility of NO 3 - permeation across cell membranes via NtNRT1.1B. Furthermore, promoter activity assays using a GFP marker clearly indicated that NtNRT1.1B transcription in roots may be down-regulated by N starvation and induced by N resupply, including NO 3 - , after 3 days' N depletion. Significantly, constitutive overexpression of NtNRT1.1B could remarkably enhance tobacco growth by showing a higher accumulation of biomass and total N, NO 3 - , and even NH 4 + in plants supplied with NO 3 - ; this NtNRT1.1B-facilitated N acquisition/accumulation could be strengthened by short-term 15N- NO 3 - root influx assays, which showed 15%-20% higher NO 3 - deposition in NtNRT1.1B-overexpressors as well as a high affinity of NtNRT1.1B for NO 3 - at a K m of around 30-45 µM. Together with the detection of NtNRT1.1B promoter activity in the root stele and shoot-stem vascular tissues, and higher NO 3 - in both xylem exudate and the apoplastic washing fluid of NtNRT1.1B-transgenic lines, NtNRT1.1B could be considered as a valuable molecular breeding target aiming at improving crop N-use efficiency by manipulating the absorption and long-distance distribution/transport of nitrate, thus adding a new functional homolog as a nitrate permease to the plant NRT1 family.
Collapse
Affiliation(s)
- Changzheng Wu
- College of Resources and Environmental Sciences, Department of Plant Nutrition, Key Lab of Plant-Soil Interaction of Ministry of Education, China Agricultural University, Beijing, China
| | - Yucheng Xiang
- College of Resources and Environmental Sciences, Department of Plant Nutrition, Key Lab of Plant-Soil Interaction of Ministry of Education, China Agricultural University, Beijing, China
| | - Pingjun Huang
- Tobacco Research Institute of Technology Centre, China Tobacco Hunan Industrial Corporation, Changsha, China
| | - Mingfa Zhang
- Hunan Tobacco Research Institute (Changsha, Chenzhou, Xiangxi), China National Tobacco Corporation Hunan Company, Changsha, China
| | - Ming Fang
- Hunan Tobacco Research Institute (Changsha, Chenzhou, Xiangxi), China National Tobacco Corporation Hunan Company, Changsha, China
| | - Weiqin Yang
- College of Resources and Environmental Sciences, Department of Plant Nutrition, Key Lab of Plant-Soil Interaction of Ministry of Education, China Agricultural University, Beijing, China
| | - Wenrui Li
- College of Resources and Environmental Sciences, Department of Plant Nutrition, Key Lab of Plant-Soil Interaction of Ministry of Education, China Agricultural University, Beijing, China
| | - Fengchun Cao
- College of Resources and Environmental Sciences, Department of Plant Nutrition, Key Lab of Plant-Soil Interaction of Ministry of Education, China Agricultural University, Beijing, China
| | - Lai-Hua Liu
- College of Resources and Environmental Sciences, Department of Plant Nutrition, Key Lab of Plant-Soil Interaction of Ministry of Education, China Agricultural University, Beijing, China
| | - Wenxuan Pu
- Tobacco Research Institute of Technology Centre, China Tobacco Hunan Industrial Corporation, Changsha, China
| | - Shuhui Duan
- Hunan Tobacco Research Institute (Changsha, Chenzhou, Xiangxi), China National Tobacco Corporation Hunan Company, Changsha, China
| |
Collapse
|
99
|
Choi SJ, Lee Z, Jeong E, Kim S, Seo JS, Um T, Shim JS. Signaling pathways underlying nitrogen transport and metabolism in plants. BMB Rep 2023; 56:56-64. [PMID: 36658636 PMCID: PMC9978367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Indexed: 01/21/2023] Open
Abstract
Nitrogen (N) is an essential macronutrient required for plant growth and crop production. However, N in soil is usually insufficient for plant growth. Thus, chemical N fertilizer has been extensively used to increase crop production. Due to negative effects of N rich fertilizer on the environment, improving N usage has been a major issue in the field of plant science to achieve sustainable production of crops. For that reason, many efforts have been made to elucidate how plants regulate N uptake and utilization according to their surrounding habitat over the last 30 years. Here, we provide recent advances focusing on regulation of N uptake, allocation of N by N transporting system, and signaling pathway controlling N responses in plants. [BMB Reports 2023; 56(2): 56-64].
Collapse
Affiliation(s)
- Su Jeong Choi
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Zion Lee
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Eui Jeong
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Sohyun Kim
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Jun Sung Seo
- Crop Biotechnology Institute, Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Taeyoung Um
- Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon 24341, Korea
| | - Jae Sung Shim
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea,Corresponding author. Tel: +82-62-530-0507; Fax: +82-62-530-2199; E-mail:
| |
Collapse
|
100
|
Nishida H, Suzaki T. Lotus japonicus NLP1 and NLP4 transcription factors have different roles in the regulation of nitrate transporter family gene expression. Genes Genet Syst 2023; 97:257-260. [PMID: 36631110 DOI: 10.1266/ggs.22-00104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Root nodule symbiosis is promoted in nitrogen-deficient environments, whereas host plants cease the symbiosis if they can obtain enough nitrogen from their surrounding soil. In Lotus japonicus, recent reports indicate that two NODULE INCEPTION (NIN)-LIKE PROTEIN (NLP) transcription factors, LjNLP1 and LjNLP4, play important roles in the regulation of gene expression and nodulation in response to nitrate. To characterize the redundant and unique roles of LjNLP1 and LjNLP4 in more detail, we reanalyzed our previous transcriptome data using Ljnlp1 and Ljnlp4 mutants. Although downstream genes of LjNLP1 and LjNLP4 mostly overlapped, we found that nitrate-induced expression of NITRATE TRANSPORTER 2 (LjNRT2) family genes was specifically regulated by LjNLP1. In contrast, LjNRT1 gene family expression was regulated by both LjNLP1 and LjNLP4. Therefore, it is likely that the two NLPs play distinct roles in the regulation of nitrate transport.
Collapse
Affiliation(s)
- Hanna Nishida
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization
| | - Takuya Suzaki
- Faculty of Life and Environmental Sciences, University of Tsukuba.,Tsukuba Plant-Innovation Research Center, University of Tsukuba
| |
Collapse
|