51
|
Byrne H, Knight SJ, Josev EK, Scheinberg A, Beare R, Yang JYM, Oldham S, Rowe K, Seal ML. Hypothalamus Connectivity in Adolescent Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. J Neurosci Res 2024; 102:e25392. [PMID: 39431934 DOI: 10.1002/jnr.25392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/18/2024] [Accepted: 09/29/2024] [Indexed: 10/22/2024]
Abstract
Adolescent Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a disabling illness of unknown etiology. Increasing evidence suggests hypothalamic involvement in ME/CFS pathophysiology, which has rarely been explored using magnetic resonance imaging (MRI) in the condition. This work aimed to use MRI to examine hypothalamus connectivity in adolescents with ME/CFS and explore how this relates to fatigue severity and illness duration. 25 adolescents with ME/CFS and 23 healthy controls completed a neuroimaging protocol consisting of structural and multishell diffusion-weighted imaging sequences, in addition to the PedsQL Multidimensional Fatigue Scale to assess fatigue severity. Information about illness duration was acquired at diagnosis. Preprocessing and streamlines tractography was performed using QSIPrep combined with a custom parcellation scheme to create structural networks. The number (degree) and weight (strength) of connections between lateralized hypothalamus regions and cortical and subcortical nodes were extracted, and relationships between connectivity measures, fatigue severity, and illness duration were performed using Bayesian regression models. We observed weak-to-moderate evidence of increased degree, but not strength, of connections from the bilateral anterior-inferior (left: pd [%] = 99.18, median [95% CI] = -22.68[-40.96 to 4.45]; right: pd [%] = 99.86, median [95% CI] = -23.35[-38.47 to 8.20]), left anterior-superior (pd [%] = 99.33, median [95% CI] = -18.83[-33.45 to 4.07]) and total left hypothalamus (pd [%] = 99.44, median [95% CI] = -47.18[-83.74 to 11.03]) in the ME/CFS group compared with controls. Conversely, bilateral posterior hypothalamus degree decreased with increasing ME/CFS illness duration (left: pd [%] = 98.13, median [95% CI]: -0.47[-0.89 to 0.03]; right: pd [%] = 98.50, median [95% CI]:-0.43[-0.82 to 0.05]). Finally, a weak relationship between right intermediate hypothalamus connectivity strength and fatigue severity was identified in the ME/CFS group (pd [%] = 99.35, median [95% CI] = -0.28[-0.51 to 0.06]), which was absent in controls. These findings suggest changes in hypothalamus connectivity may occur in adolescents with ME/CFS, warranting further investigation.
Collapse
Affiliation(s)
- Hollie Byrne
- Developmental Imaging, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
- Neurodisability and Rehabilitation, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Sarah J Knight
- Neurodisability and Rehabilitation, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia
- School of Psychological Sciences, The University of Melbourne, Melbourne, Australia
| | - Elisha K Josev
- Neurodisability and Rehabilitation, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Adam Scheinberg
- Neurodisability and Rehabilitation, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Richard Beare
- Developmental Imaging, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
- National Centre for Healthy Ageing and Peninsula Clinical School, Monash University, Melbourne, Australia
| | - Joseph Y M Yang
- Developmental Imaging, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia
- Department of Neurosurgery, Neuroscience Advanced Clinical Imaging Service (NACIS), The Royal Children's Hospital, Melbourne, Australia
- Neuroscience Research, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
| | - Stuart Oldham
- Developmental Imaging, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
| | - Katherine Rowe
- Department of General Medicine, Royal Children's Hospital, Melbourne, Australia
| | - Marc L Seal
- Developmental Imaging, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
52
|
Ysbæk-Nielsen AT, Gogolu RF, Tranter M, Obel ZK. Structural brain differences in patients with schizophrenia spectrum disorders with and without auditory verbal hallucinations. Psychiatry Res Neuroimaging 2024; 344:111863. [PMID: 39151331 DOI: 10.1016/j.pscychresns.2024.111863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/14/2024] [Accepted: 07/31/2024] [Indexed: 08/19/2024]
Abstract
Schizophrenia spectrum disorders (SSD) are debilitating, with auditory verbal hallucinations (AVHs) being a core characteristic. While gray matter volume (GMV) reductions are commonly replicated in SSD populations, the neural basis of AVHs remains unclear. Using previously published data, this study comprises two main analyses, one of GMV dissimilarities between SSD and healthy controls (HC), and one of GMV differences specifically associated with AVHs. Structural brain images from 71 adults with (n = 46) and without (n = 25) SSD were employed. Group differences in GMVs of the cortex, anterior cingulate (ACC), superior temporal gyrus (STG), hippocampi, and thalami were assessed. Additionally, volumes of left Heschl's gyrus (HG) in a subgroup experiencing AVHs (AVH+, n = 23) were compared with those of patients who did not (AVH-, n = 23). SSD patients displayed reduced GMVs of the cortex, ACC, STG, hippocampi, and thalami compared to HC. AVH+ had significantly reduced left HG volume when compared to AVH-. Finally, a right-lateralized ventral prefrontal cluster was found to be uniquely associated with AVH severity. This study corroborates previous findings of GMV reductions in SSD cohorts. Chiefly, our secondary analysis suggests that AVHs are associated with language areas and their contralateral homologues.
Collapse
Affiliation(s)
| | | | - Maya Tranter
- Department of Psychology, University of Copenhagen, Denmark
| | | |
Collapse
|
53
|
Leclaire KN, Blujus JK, Korthauer LE, Driscoll I. APOE4-related differences in cortical thickness are modulated by sex in middle age. Brain Imaging Behav 2024; 18:1163-1171. [PMID: 39196521 PMCID: PMC11845251 DOI: 10.1007/s11682-024-00911-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 08/29/2024]
Abstract
Apolipoprotein E (APOE) ε4, the strongest genetic risk for late-onset Alzheimer's disease (AD), confers greater risk in females than males. While APOE4-related modulation of structural brain integrity in AD is well documented, extant literature on sex-APOE interactions has focused on older adults. The understanding of the healthy brain as a part of the normal aging process and as distinct from explicit disease or pathology is essential before comparison can be made with pathological states. Hence, it is crucial to characterize and better understand these relationships in middle-age prior to the onset of overt clinical symptoms and advanced neurodegeneration. The present study examined the relationships between sex, APOE status, and cortical thickness in 128 healthy, cognitively unimpaired, middle-aged adults (ages 40-60, M(SD) = 49.97(6.04); 77 females). All participants underwent structural magnetic resonance imaging and were genotyped for APOE (APOE4 + = 38; APOE4- = 90). Compared to males, females had thicker superior frontal cortices bilaterally, left middle temporal cortex, and left pars triangularis. APOE4 + had thinner left rostral middle frontal gyrus compared to APOE4-. Female compared to male APOE4- had thicker left banks of the superior temporal sulcus, left caudal anterior cingulate, left superior frontal, left superior parietal, and right precentral cortices. Female compared to male APOE4 + had thicker superior frontal cortices bilaterally. Female APOE4 + had thinner left rostral anterior cingulate cortex compared to female APOE4-. Overall, APOE-related differences in cortical thickness are more pronounced in females and detectable in middle age, well before the onset of overt clinical symptoms of AD.
Collapse
Affiliation(s)
- Kaitlynne N Leclaire
- Department of Psychology, University of Wisconsin-Milwaukee, 2441 E. Hartford Ave, Milwaukee, WI, 53211, USA
| | - Jenna K Blujus
- Department of Psychology, University of Wisconsin-Milwaukee, 2441 E. Hartford Ave, Milwaukee, WI, 53211, USA
| | - Laura E Korthauer
- Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, 02903, USA
| | - Ira Driscoll
- Department of Psychology, University of Wisconsin-Milwaukee, 2441 E. Hartford Ave, Milwaukee, WI, 53211, USA.
- Geriatrics and Gerontology, School of Medicine and Public Health, University of WI - Madison, Madison, WI, 53792, USA.
- Alzheimer's Disease Research Center, University of WI - Madison, J5/M192 Clinical Science Center, 00 Highland Avenue, Madison, WI, 53792, USA.
| |
Collapse
|
54
|
Veksler V, Leon-Rivera R, Fleysher L, Gonzalez J, Lopez JA, Rubin LH, Morgello S, Berman JW. CD14+CD16+ monocyte transmigration across the blood-brain barrier is associated with HIV-NCI despite viral suppression. JCI Insight 2024; 9:e179855. [PMID: 39253970 PMCID: PMC11385088 DOI: 10.1172/jci.insight.179855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/23/2024] [Indexed: 09/11/2024] Open
Abstract
HIV-associated neurocognitive impairment (HIV-NCI) affects 15%-50% of people with HIV (PWH), despite viral suppression with antiretroviral therapy (ART). HIV neuropathogenesis is mediated, in part, by transmigration of infected CD14+CD16+ monocytes across the blood-brain barrier (BBB) into the central nervous system (CNS). In the CNS, CD14+CD16+ monocytes contribute to infection and activation of parenchymal cells, resulting in production of neurotoxic viral and host factors that cause neuronal damage. Mechanisms by which CD14+CD16+ monocytes contribute to HIV-NCI have not been characterized in a study population of PWH on ART without contribution from confounders that affect cognition (e.g., substance use, hepatitis C virus coinfection). We assessed cognitive function, PBMC transmigration across the BBB, and neuronal health markers in a well-defined cohort of 56 PWH on ART using stringent criteria to eliminate confounding factors. We demonstrated that PWH on ART with HIV-NCI have significantly increased transmigration of their CD14+CD16+ monocytes across the BBB compared with those with normal cognition. We showed that hypertension and diabetes may be effect modifiers on the association between CD14+CD16+ monocyte transmigration and cognition. This study underscored the persistent role of CD14+CD16+ monocytes in HIV-NCI, even in PWH with viral suppression, suggesting them as potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Veronica Veksler
- Department of Pathology, Albert Einstein College of Medicine, New York, New York, USA
| | - Rosiris Leon-Rivera
- Department of Pathology, Albert Einstein College of Medicine, New York, New York, USA
| | - Lazar Fleysher
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jairo Gonzalez
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Johnny A. Lopez
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Leah H. Rubin
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Susan Morgello
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Joan W. Berman
- Department of Pathology, Albert Einstein College of Medicine, New York, New York, USA
| |
Collapse
|
55
|
Rezaii N, Hochberg D, Quimby M, Wong B, Brickhouse M, Touroutoglou A, Dickerson BC, Wolff P. Artificial intelligence classifies primary progressive aphasia from connected speech. Brain 2024; 147:3070-3082. [PMID: 38912855 PMCID: PMC11370793 DOI: 10.1093/brain/awae196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/08/2024] [Accepted: 05/21/2024] [Indexed: 06/25/2024] Open
Abstract
Neurodegenerative dementia syndromes, such as primary progressive aphasias (PPA), have traditionally been diagnosed based, in part, on verbal and non-verbal cognitive profiles. Debate continues about whether PPA is best divided into three variants and regarding the most distinctive linguistic features for classifying PPA variants. In this cross-sectional study, we initially harnessed the capabilities of artificial intelligence and natural language processing to perform unsupervised classification of short, connected speech samples from 78 pateints with PPA. We then used natural language processing to identify linguistic features that best dissociate the three PPA variants. Large language models discerned three distinct PPA clusters, with 88.5% agreement with independent clinical diagnoses. Patterns of cortical atrophy of three data-driven clusters corresponded to the localization in the clinical diagnostic criteria. In the subsequent supervised classification, 17 distinctive features emerged, including the observation that separating verbs into high- and low-frequency types significantly improved classification accuracy. Using these linguistic features derived from the analysis of short, connected speech samples, we developed a classifier that achieved 97.9% accuracy in classifying the four groups (three PPA variants and healthy controls). The data-driven section of this study showcases the ability of large language models to find natural partitioning in the speech of patients with PPA consistent with conventional variants. In addition, the work identifies a robust set of language features indicative of each PPA variant, emphasizing the significance of dividing verbs into high- and low-frequency categories. Beyond improving diagnostic accuracy, these findings enhance our understanding of the neurobiology of language processing.
Collapse
Affiliation(s)
- Neguine Rezaii
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Daisy Hochberg
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Megan Quimby
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Bonnie Wong
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Michael Brickhouse
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Alexandra Touroutoglou
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Psychology, Emory University, Atlanta, GA 30322, USA
| | - Bradford C Dickerson
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, MA 02129, USA
- Massachusetts Alzheimer's Disease Research Center, Harvard Medical School, Boston, MA 02114, USA
| | - Phillip Wolff
- Department of Psychology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
56
|
Saglam Y, Ermis C, Takir S, Oz A, Hamid R, Kose H, Bas A, Karacetin G. The Contribution of Explainable Machine Learning Algorithms Using ROI-based Brain Surface Morphology Parameters in Distinguishing Early-onset Schizophrenia From Bipolar Disorder. Acad Radiol 2024; 31:3597-3604. [PMID: 38704285 DOI: 10.1016/j.acra.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/25/2024] [Accepted: 04/11/2024] [Indexed: 05/06/2024]
Abstract
RATIONALE AND OBJECTIVES To differentiate early-onset schizophrenia (EOS) from early-onset bipolar disorder (EBD) using surface-based morphometry measurements and brain volumes using machine learning (ML) algorithms. METHOD High-resolution T1-weighted images were obtained to measure cortical thickness (CT), gyrification, gyrification index (GI), sulcal depth (SD), fractal dimension (FD), and brain volumes. After the feature selection step, ML classifiers were applied for each feature set and the combination of them. The SHapley Additive exPlanations (SHAP) technique was implemented to interpret the contribution of each feature. FINDINGS 144 adolescents (16.2 ± 1.4 years, female=39%) with EOS (n = 81) and EBD (n = 63) were included. The Adaptive Boosting (AdaBoost) algorithm had the highest accuracy (82.75%) in the whole dataset that includes all variables from Destrieux atlas. The best-performing algorithms were K-nearest neighbors (KNN) for FD subset, support vector machine (SVM) for SD subset, and AdaBoost for GI subset. The KNN algorithm had the highest accuracy (accuracy=79.31%) in the whole dataset from the Desikan-Killiany-Tourville atlas. CONCLUSION This study demonstrates the use of ML in the differential diagnosis of EOS and EBD using surface-based morphometry measurements. Future studies could focus on multicenter data for the validation of these results.
Collapse
Affiliation(s)
- Yesim Saglam
- Department of Child and Adolescent Psychiatry, University of Health Sciences, Bakirkoy Prof Dr Mazhar Osman Research and Training Hospital for Psychiatry, Neurology and Neurosurgery, Istanbul, Turkey.
| | - Cagatay Ermis
- Queen Silvia Children's Hospital, Department of Child Psychiatry, Gothenburg, Sweden
| | - Seyma Takir
- Department of Artificial Intelligence and Data Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Ahmet Oz
- Department of Radiology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Rauf Hamid
- Department of Radiology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Hatice Kose
- Department of Artificial Intelligence and Data Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Ahmet Bas
- Department of Radiology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Gul Karacetin
- Department of Child and Adolescent Psychiatry, University of Health Sciences, Bakirkoy Prof Dr Mazhar Osman Research and Training Hospital for Psychiatry, Neurology and Neurosurgery, Istanbul, Turkey
| |
Collapse
|
57
|
Simpson TG, Godfrey W, Torrecillos F, He S, Herz DM, Oswal A, Muthuraman M, Pogosyan A, Tan H. Cortical beta oscillations help synchronise muscles during static posture holding in healthy motor control. Neuroimage 2024; 298:120774. [PMID: 39103065 PMCID: PMC7617462 DOI: 10.1016/j.neuroimage.2024.120774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024] Open
Abstract
How cortical oscillations are involved in the coordination of functionally coupled muscles and how this is modulated by different movement contexts (static vs dynamic) remains unclear. Here, this is investigated by recording high-density electroencephalography (EEG) and electromyography (EMG) from different forearm muscles while healthy participants (n = 20) performed movement tasks (static and dynamic posture holding, and reaching) with their dominant hand. When dynamic perturbation was applied, beta band (15-35 Hz) activities in the motor cortex contralateral to the performing hand reduced during the holding phase, comparative to when there was no perturbation. During static posture holding, transient periods of increased cortical beta oscillations (beta bursts) were associated with greater corticomuscular coherence and increased phase synchrony between muscles (intermuscular coherence) in the beta frequency band compared to the no-burst period. This effect was not present when resisting dynamic perturbation. The results suggest that cortical beta bursts assist synchronisation of different muscles during static posture holding in healthy motor control, contributing to the maintenance and stabilisation of functional muscle groups. Theoretically, increased cortical beta oscillations could lead to exaggerated synchronisation in different muscles making the initialisation of movements more difficult, as observed in Parkinson's disease.
Collapse
Affiliation(s)
- Thomas G Simpson
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - William Godfrey
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Flavie Torrecillos
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Shenghong He
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Damian M Herz
- Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Ashwini Oswal
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Muthuraman Muthuraman
- Neural Engineering with Signal Analytics and Artificial Intelligence (NESA-AI), Department of Neurology, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Alek Pogosyan
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Huiling Tan
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| |
Collapse
|
58
|
Lipton ML, Fleysher R, Song JY, Ye K, Zimmerman ME, Lipton RB, Daily JP. Brain effects of mild COVID-19 in healthy young adults: A pilot study. Heliyon 2024; 10:e34764. [PMID: 39157305 PMCID: PMC11327499 DOI: 10.1016/j.heliyon.2024.e34764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 08/20/2024] Open
Abstract
Rationale and objectives This study examined the brain effects of mild severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection which are incompletely understood. Our objective was to ascertain within-person changes associated with mild coronavirus disease 2019 (COVID-19) in otherwise healthy adults. Materials and methods We leveraged existing pre-pandemic baseline neuroimaging and neurocognitive data, and collected follow-up data from uninfected controls and individuals with prior mild COVID-19, during December 2020 and January 2021, when vaccines were not yet available. We compared change during follow-up in patients (n = 5) versus controls (n = 15). Results We identified a decrease of intracellular volume fraction (ICVF), decrease of isotropic volume fraction (ISO) and decrease of orientation dispersion index (ODI) in multiple inferior frontal regions of interest in COVID-19 patients; this longitudinal change was significantly different from the control group which demonstrated increases in equivalent measures. This pattern suggests injury with neuronal loss and/or inflammation as underlying mechanisms. Neurocognitive studies identified a pattern of cognitive decline (processing speed, executive function, verbal learning, working memory) in patients, that did not reach significance. Conclusion Our pilot data suggests that mild COVID-19 may result in brain pathology and impact neurocognitive function in younger adults in a manner parallel to prior findings in older individuals. Though findings may not generalize to other SARS-CoV-2 variants, larger longitudinal studies of mild COVID-19 should be undertaken to understand the potential clinical implications of these findings over the longer term.
Collapse
Affiliation(s)
- Michael L. Lipton
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Roman Fleysher
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Joan Y. Song
- Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kenny Ye
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Richard B. Lipton
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Johanna P. Daily
- Department of Medicine (Infectious Disease), Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
59
|
Mensegere A, Singh S, Stezin A, Sundarakumar JS, Issac TG. Effect of early menopause on cognition and brain morphology in an Urban Indian Cohort. Alzheimers Dement 2024; 20:5607-5616. [PMID: 38946683 PMCID: PMC11350013 DOI: 10.1002/alz.14069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND Evidence for the effect of early menopause on cognition among older women is not consistent and is scant among the Indian population. METHODS We aimed to examine the effect of early menopause (≤45 years) on cognitive performance and brain morphology among older dementia-free females of the TLSA cohort using a multiple linear regression analysis. RESULTS In a sample of 528 women, 144 (27%) had early menopause. The linear regression analysis showed that women with early menopause performed poorly in cognition and had lesser total gray matter volume [β = -11973.94, p = 0.033], left middle frontal [β = -353.14, p = 0.033], and left superior frontal [β = -460.97, p < 0.026] volume. CONCLUSION Dementia-free women with early menopause had poorer cognition, lower total gray matter, and frontal lobe. More research is needed to explore the link between earlier menopause and cognitive decline and develop ways to address it. HIGHLIGHTS Evidence on the effect of early menopause on brain morphology is inconsistent and scant in low and middle-income countries, such as India. In a cohort of dementia-free individuals in urban Bangalore, we observed that participants with early menopause had significantly lower cognitive performance and lower total gray matter and frontal lobe volume. We recommend increasing awareness of this fact among the medical community and the general public. There is an urgent need to explore the underlying biological mechanism and to discover effective interventions to mitigate the effect.
Collapse
Affiliation(s)
| | - Sadhana Singh
- Centre for Brain ResearchIIScBangaloreKarnatakaIndia
| | - Albert Stezin
- Centre for Brain ResearchIIScBangaloreKarnatakaIndia
| | | | | |
Collapse
|
60
|
Cavallari M, Touroutoglou A, Katsumi Y, Fong TG, Schmitt E, Travison TG, Shafi MM, Libermann TA, Marcantonio ER, Alsop DC, Jones RN, Inouye SK, Dickerson BC. Relationship between cortical brain atrophy, delirium, and long-term cognitive decline in older surgical patients. Neurobiol Aging 2024; 140:130-139. [PMID: 38788524 PMCID: PMC11983869 DOI: 10.1016/j.neurobiolaging.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024]
Abstract
In older patients, delirium after surgery is associated with long-term cognitive decline (LTCD). The neural substrates of this association are unclear. Neurodegenerative changes associated with dementia are possible contributors. We investigated the relationship between brain atrophy rates in Alzheimer's disease (AD) and cognitive aging signature regions from magnetic resonance imaging before and one year after surgery, LTCD assessed by the general cognitive performance (GCP) score over 6 years post-operatively, and delirium in 117 elective surgery patients without dementia (mean age = 76). The annual change in cortical thickness was 0.2(1.7) % (AD-signature p = 0.09) and 0.4(1.7) % (aging-signature p = 0.01). Greater atrophy was associated with LTCD (AD-signature: beta(CI) = 0.24(0.06-0.42) points of GCP/mm of cortical thickness; p < 0.01, aging-signature: beta(CI) = 0.55(0.07-1.03); p = 0.03). Atrophy rates were not significantly different between participants with and without delirium. We found an interaction with delirium severity in the association between atrophy and LTCD (AD-signature: beta(CI) = 0.04(0.00-0.08), p = 0.04; aging-signature: beta(CI) = 0.08(0.03-0.12), p < 0.01). The rate of cortical atrophy and severity of delirium are independent, synergistic factors determining postoperative cognitive decline in the elderly.
Collapse
Affiliation(s)
- Michele Cavallari
- Center for Neurological Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexandra Touroutoglou
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yuta Katsumi
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tamara G Fong
- Aging Brain Center, Institute for Aging Research, Hebrew SeniorLife, Harvard Medical School, Boston, MA, USA; Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Eva Schmitt
- Aging Brain Center, Institute for Aging Research, Hebrew SeniorLife, Harvard Medical School, Boston, MA, USA
| | - Thomas G Travison
- Aging Brain Center, Institute for Aging Research, Hebrew SeniorLife, Harvard Medical School, Boston, MA, USA
| | - Mouhsin M Shafi
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Towia A Libermann
- Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Beth Israel Deaconess Medical Center Genomics, Proteomics, Bioinformatics and Systems Biology Center, Harvard Medical School, Boston, MA, USA
| | - Edward R Marcantonio
- Divisions of General Medicine and Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - David C Alsop
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Richard N Jones
- Departments of Psychiatry and Human Behavior and Neurology, Brown University Warren Alpert Medical School, Providence, RI, USA
| | - Sharon K Inouye
- Aging Brain Center, Institute for Aging Research, Hebrew SeniorLife, Harvard Medical School, Boston, MA, USA; Departments of Psychiatry and Human Behavior and Neurology, Brown University Warren Alpert Medical School, Providence, RI, USA
| | - Bradford C Dickerson
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
61
|
Dhamala E, Bassett DS, Yeo T, Holmes AJ. Functional brain networks are associated with both sex and gender in children. SCIENCE ADVANCES 2024; 10:eadn4202. [PMID: 38996031 PMCID: PMC11244548 DOI: 10.1126/sciadv.adn4202] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/12/2024] [Indexed: 07/14/2024]
Abstract
Sex and gender are associated with human behavior throughout the life span and across health and disease, but whether they are associated with similar or distinct neural phenotypes is unknown. Here, we demonstrate that, in children, sex and gender are uniquely reflected in the intrinsic functional connectivity of the brain. Somatomotor, visual, control, and limbic networks are preferentially associated with sex, while network correlates of gender are more distributed throughout the cortex. These results suggest that sex and gender are irreducible to one another not only in society but also in biology.
Collapse
Affiliation(s)
- Elvisha Dhamala
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Uniondale, NY, USA
| | - Dani S. Bassett
- University of Pennsylvania, Philadelphia, PA, USA
- Santa Fe Institute, Santa Fe, NM, USA
| | - Thomas Yeo
- Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Avram J. Holmes
- Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
62
|
Lee ZL, Siew SKH, Yu J. Intrinsic functional connectivity mediates the effect of personality traits on depressive symptoms. PLoS One 2024; 19:e0300462. [PMID: 38985695 PMCID: PMC11236141 DOI: 10.1371/journal.pone.0300462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/27/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Personality traits have been proposed as risk factors for depressive symptoms. However, the neural mechanism behind these relationships is unclear. This study examined the possible mediating effect of resting-state functional connectivity networks on these relationships. METHODS Data from 153 healthy Germans were obtained from the MPI-Leipzig Mind-Brain-Body: Neuroanatomy & Connectivity Protocol database. Network-based statistics were used to identify significant functional connectivity networks that were positively and negatively associated with the personality traits of neuroticism, conscientiousness, and extraversion, with and without demographical covariates. Mediation analyses were performed for each personality trait and depressive symptoms with the significant positive and negative network strengths of the respective personality traits as mediators. RESULTS Neuroticism, conscientiousness, and extraversion were significantly correlated with depressive symptoms. Network-based statistics identified patterns of functional connectivity that were significantly associated with neuroticism and conscientiousness. After controlling for demographical covariates, significant conscientiousness-associated and extraversion-associated networks emerged. Mediation analysis concluded that only the neuroticism-positive network mediated the effect of neuroticism on depressive symptoms. When age and sex were controlled, the extraversion-positive network completely mediated the effect of extraversion on depressive symptoms. CONCLUSIONS These findings revealed that patterns of intrinsic functional networks predict personality traits and suggest that the relationship between personality traits and depressive symptoms may in part be due to their common patterns of intrinsic functional networks.
Collapse
Affiliation(s)
- Zheng Long Lee
- School of Social Sciences, Psychology, Nanyang Technological University, Singapore, Singapore
| | - Savannah Kiah Hui Siew
- School of Social Sciences, Psychology, Nanyang Technological University, Singapore, Singapore
| | - Junhong Yu
- School of Social Sciences, Psychology, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
63
|
Wang T, Zeng J, Huang W, Xiong X, Su L. Right thalamic volume mediates impact of the dopamine beta-hydroxylase gene on the endowment effect. Behav Brain Res 2024; 469:115050. [PMID: 38761858 DOI: 10.1016/j.bbr.2024.115050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/24/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
The endowment effect is a tendency that individuals overvalue items belonging to them relative to those items that do not. Previous studies showed a strong relation between the dopamine beta-hydroxylase (DBH) gene and the endowment effect (EE), and a link between EE and task-based functional MRI activation in multiple brain regions. However, the role of brain structure on EE remains unclear. In this study, we have explored whether regional brain volume mediate the effect of the DBH gene on EE. Results showed that rs1611115, single-nucleotide polymorphisms (SNPs) at DBH loci, were significantly associated with right thalamus volume and the endowment effect in males but not in female participants. Specifically, male DBH rs1611115 T-carriers had larger right thalamus volume compared to carriers of CC genotype and exhibited a greater endowment effect. Importantly, we found that right thalamus volume mediated the effect of rs1611115 on the endowment effect in male participants. This study demonstrated how thalamic volume plays an important mediating role between genetics and decision-making in humans.
Collapse
Affiliation(s)
- Tao Wang
- Sino-Britain Centre for Cognition and Ageing Research, Faculty of Psychology, Southwest University, Beibei District, Chongqing 400715, China
| | - Jianmin Zeng
- Sino-Britain Centre for Cognition and Ageing Research, Faculty of Psychology, Southwest University, Beibei District, Chongqing 400715, China.
| | - Weijie Huang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; Department of Neuroscience, Neuroscience Institute, Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield S10 2HQ, United Kingdom
| | - Xiong Xiong
- Department of Neuroscience, Neuroscience Institute, Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield S10 2HQ, United Kingdom
| | - Li Su
- Department of Neuroscience, Neuroscience Institute, Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield S10 2HQ, United Kingdom; Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SZ, United Kingdom.
| |
Collapse
|
64
|
Jan TY, Wong LC, Hsu CJ, Huang CFJ, Peng SSF, Tseng WYI, Lee WT. Developmental change of brain volume in Rett syndrome in Taiwan. J Neurodev Disord 2024; 16:36. [PMID: 38961335 PMCID: PMC11223417 DOI: 10.1186/s11689-024-09549-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 05/28/2024] [Indexed: 07/05/2024] Open
Abstract
OBJECTIVE Rett syndrome (RTT) is characterized by neurological regression. This pioneering study investigated the effect of age on brain volume reduction by analyzing magnetic resonance imaging findings in participants with RTT, ranging from toddlers to adults. METHODS Functional evaluation and neuroimaging were performed. All scans were acquired using a Siemens Tim Trio 3 T scanner with a 32-channel head coil. RESULTS The total intracranial volume and cerebral white matter volume significantly increased with age in the control group compared with that in the RTT group (p < 0.05). Cortical gray matter volume reduction in the RTT group continued to increase in bilateral parietal lobes and left occipital lobes (p < 0.05). The differences in cortical gray matter volume between typically developing brain and RTT-affected brain may tend to continuously increase until adulthood in both temporal lobes although not significant after correction for multiple comparison. CONCLUSIONS A significant reduction in brain volume was observed in the RTT group. Cortical gray matter volume in the RTT group continued to reduce in bilateral parietal lobes and left occipital lobes. These results provide a baseline for future studies on the effect of RTT treatment and related neuroscience research.
Collapse
Affiliation(s)
- Tz-Yun Jan
- Graduate Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Lee-Chin Wong
- Department of Pediatrics, Cathay General Hospital, Taipei, Taiwan
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, 8, Chung-Shan South Road, Taipei, 100, Taiwan
| | - Chia-Jui Hsu
- Department of Pediatrics, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Chien-Feng Judith Huang
- Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan
- Institute of Biomedical Engineering, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Steven Shinn-Forng Peng
- Department of Medical Imaging, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wen-Yih Isaac Tseng
- Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
| | - Wang-Tso Lee
- Graduate Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei, Taiwan.
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, 8, Chung-Shan South Road, Taipei, 100, Taiwan.
| |
Collapse
|
65
|
Ysbæk-Nielsen AT. Exploring volumetric abnormalities in subcortical L-HPA axis structures in pediatric generalized anxiety disorder. Nord J Psychiatry 2024; 78:402-410. [PMID: 38573199 DOI: 10.1080/08039488.2024.2335980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Pediatric generalized anxiety disorder (GAD) is debilitating and increasingly prevalent, yet its etiology remains unclear. Some believe the disorder to be propagated by chronic dysregulation of the limbic-hypothalamic-pituitary-adrenal (L-HPA) axis, but morphometric studies of implicated subcortical areas have been largely inconclusive. Recognizing that certain subcortical subdivisions are more directly involved in L-HPA axis functioning, this study aims to detect specific abnormalities in these critical areas. METHODS Thirty-eight MRI scans of preschool children with (n = 15) and without (n = 23) GAD underwent segmentation and between-group volumetric comparisons of the basolateral amygdala (BLA), ventral hippocampal subiculum (vSC), and mediodorsal medial magnocellular (MDm) area of the thalamus. RESULTS Children with GAD displayed significantly larger vSC compared to healthy peers, F(1, 31) = 6.50, pFDR = .048. On average, children with GAD presented with larger BLA and MDm, Fs(1, 31) ≥ 4.86, psFDR ≤ .054. Exploratory analyses revealed right-hemispheric lateralization of all measures, most notably the MDm, F(1, 31) = 8.13, pFDR = .024, the size of which scaled with symptom severity, r = .83, pFDR = .033. CONCLUSION The BLA, vSC, and MDm are believed to be involved in the regulation of anxiety and stress, both individually and collectively through the excitation and inhibition of the L-HPA axis. All were found to be enlarged in children with GAD, perhaps reflecting hypertrophy related to hyperexcitability, or early neuronal overgrowth. Longitudinal studies should investigate the relationship between these early morphological differences and the long-term subcortical atrophy previously observed.
Collapse
|
66
|
Yang HH, Han KM, Kim A, Kang Y, Tae WS, Han MR, Ham BJ. Neuroimaging and epigenetic analysis reveal novel epigenetic loci in major depressive disorder. Psychol Med 2024; 54:2585-2598. [PMID: 38721773 DOI: 10.1017/s0033291724000709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
BACKGROUND Epigenetic modifications, such as DNA methylation, contribute to the pathophysiology of major depressive disorder (MDD). This study aimed to identify novel MDD-associated epigenetic loci using DNA methylation profiles and explore the correlations between epigenetic loci and cortical thickness changes in patients with MDD. METHODS A total of 350 patients with MDD and 161 healthy controls (HCs) were included in the epigenome-wide association studies (EWAS). We analyzed methylation, copy number alteration (CNA), and gene network profiles in the MDD group. A total of 234 patients with MDD and 135 HCs were included in neuroimaging methylation analysis. Pearson's partial correlation analysis was used to estimate the correlation between cortical thickness of brain regions and DNA methylation levels of the loci. RESULTS In total, 2018 differentially methylated probes (DMPs) and 351 differentially methylated regions (DMRs) were identified. DMP-related genes were enriched in two networks involved in the central nervous system. In neuroimaging analysis, patients with MDD showed cortical thinning in the prefrontal regions and cortical thickening in several occipital regions. Cortical thickness of the left ventrolateral prefrontal cortex (VLPFC, i.e. pars triangularis) was negatively correlated with eight DMPs associated with six genes (EML6, ZFP64, CLSTN3, KCNMA1, TAOK2, and NT5E). CONCLUSION Through combining DNA methylation and neuroimaging analyses, negative correlations were identified between the cortical thickness of the left VLPFC and DNA methylation levels of eight DMPs. Our findings could improve our understanding of the pathophysiology of MDD.
Collapse
Affiliation(s)
- Hyun-Ho Yang
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Kyu-Man Han
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
- Brain Convergence Research Center, Korea University College of Medicine, Seoul, Republic of Korea
| | - Aram Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Youbin Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Woo-Suk Tae
- Brain Convergence Research Center, Korea University College of Medicine, Seoul, Republic of Korea
| | - Mi-Ryung Han
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
- Brain Convergence Research Center, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
67
|
Torres-Carmona E, Ueno F, Iwata Y, Nakajima S, Song J, Mar W, Abdolizadeh A, Agarwal SM, de Luca V, Remington G, Gerretsen P, Graff-Guerrero A. Elevated intrinsic cortical curvature in treatment-resistant schizophrenia: Evidence of structural deformation in functional connectivity areas and comparison with alternate indices of structure. Schizophr Res 2024; 269:103-113. [PMID: 38761434 DOI: 10.1016/j.schres.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/14/2024] [Accepted: 05/02/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND Research suggests structural and connectivity abnormalities in patients with treatment-resistant schizophrenia (TRS) compared to first-line responders and healthy-controls. However, measures of these abnormalities are often influenced by external factors like nicotine and antipsychotics, limiting their clinical utility. Intrinsic-cortical-curvature (ICC) presents a millimetre-scale measure of brain gyrification, highly sensitive to schizophrenia differences, and associated with TRS-like traits in early stages of the disorder. Despite this evidence, ICC in TRS remains unexplored. This study investigates ICC as a marker for treatment resistance in TRS, alongside structural indices for comparison. METHODS We assessed ICC in anterior cingulate, dorsolateral prefrontal, temporal, and parietal cortices of 38 first-line responders, 30 clozapine-resistant TRS, 37 clozapine-responsive TRS, and 52 healthy-controls. For comparative purposes, Fold and Curvature indices were also analyzed. RESULTS Adjusting for age, sex, nicotine-use, and chlorpromazine equivalence, principal findings indicate ICC elevations in the left hemisphere dorsolateral prefrontal (p < 0.001, η2partial = 0.142) and temporal cortices (LH p = 0.007, η2partial = 0.060; RH p = 0.011, η2partial = 0.076) of both TRS groups, and left anterior cingulate cortex of clozapine-resistant TRS (p = 0.026, η2partial = 0.065), compared to healthy-controls. Elevations that correlated with reduced cognition (p = 0.001) and negative symptomology (p < 0.034) in clozapine-resistant TRS. Fold and Curvature indices only detected group differences in the right parietal cortex, showing interactions with age, sex, and nicotine use. ICC showed interactions with age. CONCLUSION ICC elevations were found among patients with TRS, and correlated with symptom severity. ICCs relative independence from sex, nicotine-use, and antipsychotics, may support ICC's potential as a viable marker for TRS, though age interactions should be considered.
Collapse
Affiliation(s)
- Edgardo Torres-Carmona
- Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Fumihiko Ueno
- Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Yusuke Iwata
- Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Department of Neuropsychiatry, Keio University, Minato, Tokyo, Japan
| | - Shinichiro Nakajima
- Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Department of Neuropsychiatry, Keio University, Minato, Tokyo, Japan
| | - Jianmeng Song
- Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Wanna Mar
- Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Ali Abdolizadeh
- Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Sri Mahavir Agarwal
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Campbell Institute Research Program, CAMH, Toronto, ON, Canada
| | - Vincenzo de Luca
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Campbell Institute Research Program, CAMH, Toronto, ON, Canada
| | - Gary Remington
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Campbell Institute Research Program, CAMH, Toronto, ON, Canada
| | - Philip Gerretsen
- Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Campbell Institute Research Program, CAMH, Toronto, ON, Canada
| | - Ariel Graff-Guerrero
- Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Campbell Institute Research Program, CAMH, Toronto, ON, Canada.
| |
Collapse
|
68
|
Shao S, Zou Y, Kennedy KG, Dimick MK, Andreazza AC, Young LT, Goncalves VF, MacIntosh BJ, Goldstein BI. Pilot study of circulating cell-free mitochondrial DNA in relation to brain structure in youth bipolar disorder. Int J Bipolar Disord 2024; 12:21. [PMID: 38874862 PMCID: PMC11178693 DOI: 10.1186/s40345-024-00334-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/08/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Mitochondrial dysfunction is implicated in the neuropathology of bipolar disorder (BD). Higher circulating cell-free mitochondrial DNA (ccf-mtDNA), generally reflecting poorer mitochondrial health, has been associated with greater symptoms severity in BD. The current study examines the association of serum ccf-mtDNA and brain structure in relation to youth BD. We hypothesized that higher ccf-mtDNA will be associated with measures of lower brain structure, particularly in the BD group. METHODS Participants included 40 youth (BD, n = 19; Control group [CG], n = 21; aged 13-20 years). Serum ccf-mtDNA levels were assayed. T1-weighted brain images were acquired using 3T-MRI. Region of interest (ROI) analyses examined prefrontal cortex (PFC) and whole brain gray matter, alongside exploratory vertex-wise analyses. Analyses examined ccf-mtDNA main-effects and ccf-mtDNA-by-diagnosis interaction effects controlling for age, sex, and intracranial volume. RESULTS There was no significant difference in ccf-mtDNA levels between BD and CG. In ROI analyses, higher ccf-mtDNA was associated with higher PFC surface area (SA) (β = 0.32 p < 0.001) and PFC volume (β = 0.32 p = 0.002) in the overall sample. In stratified analyses, higher ccf-mtDNA was associated with higher PFC SA within both subgroups (BD: β = 0.39 p = 0.02; CG: β = 0.24 p = 0.045). Higher ccf-mtDNA was associated with higher PFC volume within the BD group (β = 0.39 p = 0.046). In vertex-wise analyses, higher ccf-mtDNA was associated with higher SA and volume in frontal clusters within the overall sample and within the BD group. There were significant ccf-mtDNA-by-diagnosis interactions in three frontal and parietal clusters, whereby higher ccf-mtDNA was associated with higher neurostructural metrics in the BD group but lower neurostructural metrics in CG. CONCLUSIONS Contrasting our hypothesis, higher ccf-mtDNA was consistently associated with higher, rather than lower, regional neuralstructural metrics among youth with BD. While this finding may reflect a compensatory mechanism, future repeated-measures prospective studies evaluating the inter-relationship among ccf-mtDNA, mood, and brain structure across developmental epochs and illness stages are warranted.
Collapse
Affiliation(s)
- Suyi Shao
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Pharmacology & Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| | - Yi Zou
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Kody G Kennedy
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Mikaela K Dimick
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Ana C Andreazza
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology & Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - L Trevor Young
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Vanessa F Goncalves
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Bradley J MacIntosh
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Benjamin I Goldstein
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Pharmacology & Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
69
|
Smith DM, Parekh P, Kennedy J, Loughnan R, Frei O, Nichols TE, Andreassen OA, Jernigan TL, Dale AM. Partitioning variance in cortical morphometry into genetic, environmental, and subject-specific components. Cereb Cortex 2024; 34:bhae234. [PMID: 38850213 PMCID: PMC11161865 DOI: 10.1093/cercor/bhae234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/09/2024] [Accepted: 05/19/2024] [Indexed: 06/10/2024] Open
Abstract
The relative contributions of genetic variation and experience in shaping the morphology of the adolescent brain are not fully understood. Using longitudinal data from 11,665 subjects in the ABCD Study, we fit vertex-wise variance components including family effects, genetic effects, and subject-level effects using a computationally efficient framework. Variance in cortical thickness and surface area is largely attributable to genetic influence, whereas sulcal depth is primarily explained by subject-level effects. Our results identify areas with heterogeneous distributions of heritability estimates that have not been seen in previous work using data from cortical regions. We discuss the biological importance of subject-specific variance and its implications for environmental influences on cortical development and maturation.
Collapse
Affiliation(s)
- Diana M Smith
- Medical Scientist Training Program, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Neurosciences Graduate Program, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Center for Human Development, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Center for Multimodal Imaging and Genetics, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Pravesh Parekh
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Problemveien 11, 0313 Oslo, Norway
| | - Joseph Kennedy
- Center for Human Development, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Center for Multimodal Imaging and Genetics, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Robert Loughnan
- Population Neuroscience and Genetics Lab, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Oleksandr Frei
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Problemveien 11, 0313 Oslo, Norway
- Centre for Bioinformatics, Department of Informatics, University of Oslo, Problemveien 11, 0313 Oslo, Norway
| | - Thomas E Nichols
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Population Health, University of Oxford, Old Road Campus, Headington, Oxford, OX3 7FZ, UK
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
| | - Ole A Andreassen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Problemveien 11, 0313 Oslo, Norway
| | - Terry L Jernigan
- Center for Human Development, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Department of Cognitive Science, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Department of Radiology, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Department of Psychiatry, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Anders M Dale
- Center for Multimodal Imaging and Genetics, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Department of Cognitive Science, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Department of Radiology, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Department of Psychiatry, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Department of Neuroscience, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
70
|
Li JS, Tun SM, Ficek-Tani B, Xu W, Wang S, Horien CL, Toyonaga T, Nuli SS, Zeiss CJ, Powers AR, Zhao Y, Mormino EC, Fredericks CA. Medial amygdalar tau is associated with anxiety symptoms in preclinical Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.597160. [PMID: 38895308 PMCID: PMC11185761 DOI: 10.1101/2024.06.03.597160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
BACKGROUND While the amygdala receives early tau deposition in Alzheimer's disease (AD) and is involved in social and emotional processing, the relationship between amygdalar tau and early neuropsychiatric symptoms in AD is unknown. We sought to determine whether focal tau binding in the amygdala and abnormal amygdalar connectivity were detectable in a preclinical AD cohort and identify relationships between these and self-reported mood symptoms. METHODS We examined n=598 individuals (n=347 amyloid-positive (58% female), n=251 amyloid-negative (62% female); subset into tau PET and fMRI cohorts) from the A4 Study. In our tau PET cohort, we used amygdalar segmentations to examine representative nuclei from three functional divisions of the amygdala. We analyzed between-group differences in division-specific tau binding in the amygdala in preclinical AD. We conducted seed-based functional connectivity analyses from each division in the fMRI cohort. Finally, we conducted exploratory post-hoc correlation analyses between neuroimaging biomarkers of interest and anxiety and depression scores. RESULTS Amyloid-positive individuals demonstrated increased tau binding in medial and lateral amygdala (F(4,442)=14.61, p=0.00045; F(4,442)=5.83, p=0.024, respectively). Across amygdalar divisions, amyloid-positive individuals had relatively increased regional connectivity from amygdala to other temporal regions, insula, and orbitofrontal cortex. There was an interaction by amyloid group between tau binding in the medial and lateral amygdala and anxiety. Medial amygdala to retrosplenial connectivity negatively correlated with anxiety symptoms (rs=-0.103, p=0.015). CONCLUSIONS Our findings suggest that preclinical tau deposition in the amygdala may result in meaningful changes in functional connectivity which may predispose patients to mood symptoms.
Collapse
Affiliation(s)
- Joyce S Li
- Department of Neurology, Yale School of Medicine, New Haven, CT
| | - Samantha M Tun
- Department of Neurology, Yale School of Medicine, New Haven, CT
| | | | - Wanwan Xu
- Department of Biostatistics, Yale School of Medicine, New Haven, CT
| | - Selena Wang
- Department of Biostatistics, Yale School of Medicine, New Haven, CT
| | | | - Takuya Toyonaga
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT
| | | | - Caroline J Zeiss
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT
| | - Albert R Powers
- Department of Psychiatry, Yale School of Medicine, New Haven, CT
| | - Yize Zhao
- Department of Biostatistics, Yale School of Medicine, New Haven, CT
| | - Elizabeth C Mormino
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA
| | | |
Collapse
|
71
|
Economou M, Vanden Bempt F, Van Herck S, Glatz T, Wouters J, Ghesquière P, Vanderauwera J, Vandermosten M. Cortical Structure in Pre-Readers at Cognitive Risk for Dyslexia: Baseline Differences and Response to Intervention. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2024; 5:264-287. [PMID: 38832361 PMCID: PMC11093402 DOI: 10.1162/nol_a_00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 09/12/2023] [Indexed: 06/05/2024]
Abstract
Early childhood is a critical period for structural brain development as well as an important window for the identification and remediation of reading difficulties. Recent research supports the implementation of interventions in at-risk populations as early as kindergarten or first grade, yet the neurocognitive mechanisms following such interventions remain understudied. To address this, we investigated cortical structure by means of anatomical MRI before and after a 12-week tablet-based intervention in: (1) at-risk children receiving phonics-based training (n = 29; n = 16 complete pre-post datasets), (2) at-risk children engaging with AC training (n = 24; n = 15 complete pre-post datasets) and (3) typically developing children (n = 25; n = 14 complete pre-post datasets) receiving no intervention. At baseline, we found higher surface area of the right supramarginal gyrus in at-risk children compared to typically developing peers, extending previous evidence that early anatomical differences exist in children who may later develop dyslexia. Our longitudinal analysis revealed significant post-intervention thickening of the left supramarginal gyrus, present exclusively in the intervention group but not the active control or typical control groups. Altogether, this study contributes new knowledge to our understanding of the brain morphology associated with cognitive risk for dyslexia and response to early intervention, which in turn raises new questions on how early anatomy and plasticity may shape the trajectories of long-term literacy development.
Collapse
Affiliation(s)
| | | | | | - Toivo Glatz
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Jan Wouters
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | | | | | | |
Collapse
|
72
|
Hodgdon EA, Anderson R, Azzawi HA, Wilson TW, Calhoun VD, Wang YP, Solis I, Greve DN, Stephen JM, Ciesielski KTR. MRI morphometry of the anterior and posterior cerebellar vermis and its relationship to sensorimotor and cognitive functions in children. Dev Cogn Neurosci 2024; 67:101385. [PMID: 38713999 PMCID: PMC11096723 DOI: 10.1016/j.dcn.2024.101385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 05/09/2024] Open
Abstract
INTRODUCTION The human cerebellum emerges as a posterior brain structure integrating neural networks for sensorimotor, cognitive, and emotional processing across the lifespan. Developmental studies of the cerebellar anatomy and function are scant. We examine age-dependent MRI morphometry of the anterior cerebellar vermis, lobules I-V and posterior neocortical lobules VI-VII and their relationship to sensorimotor and cognitive functions. METHODS Typically developing children (TDC; n=38; age 9-15) and healthy adults (HAC; n=31; 18-40) participated in high-resolution MRI. Rigorous anatomically informed morphometry of the vermis lobules I-V and VI-VII and total brain volume (TBV) employed manual segmentation computer-assisted FreeSurfer Image Analysis Program [http://surfer.nmr.mgh.harvard.edu]. The neuropsychological scores (WASI-II) were normalized and related to volumes of anterior, posterior vermis, and TBV. RESULTS TBVs were age independent. Volumes of I-V and VI-VII were significantly reduced in TDC. The ratio of VI-VII to I-V (∼60%) was stable across age-groups; I-V correlated with visual-spatial-motor skills; VI-VII with verbal, visual-abstract and FSIQ. CONCLUSIONS In TDC neither anterior I-V nor posterior VI-VII vermis attained adult volumes. The "inverted U" developmental trajectory of gray matter peaking in adolescence does not explain this finding. The hypothesis of protracted development of oligodendrocyte/myelination is suggested as a contributor to TDC's lower cerebellar vermis volumes.
Collapse
Affiliation(s)
- Elizabeth A Hodgdon
- Pediatric Neuroscience Laboratory, Psychology Clinical Neuroscience Center, Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Ryan Anderson
- Pediatric Neuroscience Laboratory, Psychology Clinical Neuroscience Center, Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Hussein Al Azzawi
- Pediatric Neuroscience Laboratory, Psychology Clinical Neuroscience Center, Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Tony W Wilson
- Institute of Human Neuroscience, Boys Town National Research Hospital, 14090 Mother Teresa Lane, Boys Town, NE 68010, USA
| | - Vince D Calhoun
- Mind Research Network and Lovelace Biomedical and Environmental Research Institute, 1101 Yale Blvd N.E., Albuquerque, NM 87106, USA; Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, Emory, Atlanta, GA, USA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, 6823 St. Charles Ave, New Orleans, LA 70118, USA
| | - Isabel Solis
- Pediatric Neuroscience Laboratory, Psychology Clinical Neuroscience Center, Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Douglas N Greve
- MGH/MIT Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Julia M Stephen
- Mind Research Network and Lovelace Biomedical and Environmental Research Institute, 1101 Yale Blvd N.E., Albuquerque, NM 87106, USA
| | - Kristina T R Ciesielski
- Pediatric Neuroscience Laboratory, Psychology Clinical Neuroscience Center, Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA; MGH/MIT Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
73
|
Lim ZH, Ng TKS, Bao Z, Yu J, Mahendran R. LFC study: Protocol for a longitudinal follow-up cohort study on ageing and mental health in community-dwelling older adults in Singapore. MethodsX 2024; 12:102606. [PMID: 38379721 PMCID: PMC10877946 DOI: 10.1016/j.mex.2024.102606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
The rapid pace of population ageing worldwide has prompted the need to better understand the ageing process. The current study, titled the Longitudinal Follow-up of the CHI (LFC) study, was a 3-year follow-up study of an earlier study titled the Community Health and Intergenerational (CHI) study. The LFC study looked to examine longitudinal changes in their cognitive functioning and psychosocial outcomes across the 3-year period. Additionally, the current study built upon the earlier CHI study by collecting neuroimaging data and exploring the long-term effects of non-pharmacological interventions, which were not examined in the prior study. A total of 653 community-dwelling participants from the baseline CHI study cohort were invited to take part in the LFC study, where they underwent a battery of neuropsychological assessments, psychosocial questionnaires, a Magnetic Resonance Imaging scan and a voice recording segment. The current study would holistically track longitudinal changes in cognitive functioning and psychosocial outcomes in the ageing population in Singapore. Unique associations between linguistics and neuroimaging data alongside cognitive and psychosocial outcomes would be explored. This study also serves to guide the development of new interventions for older adults and assist in improving the well-being of the local and global ageing population.
Collapse
Affiliation(s)
- Zhi Hao Lim
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 12 Science Drive 2, MD1 – Tahir Foundation Building, 117549, Singapore
| | - Ted Kheng Siang Ng
- Department of Internal Medicine, Rush Institute for Healthy Aging, Rush University Medical Center, Chicago, IL, USA
| | - Zhiming Bao
- Department of English Language and Literature, Faculty of Arts and Social Sciences, National University of Singapore, The Shaw Foundation Building, Block AS7, Level 5, 5 Arts Link, Singapore
| | - Junhong Yu
- Psychology, School of Social Sciences, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore
| | - Rathi Mahendran
- Mind Science Centre, National University of Singapore, Mind Care Clinic @ SBF, 160 Robinson Road, #05-07 SBF Center, 068914, Singapore
| |
Collapse
|
74
|
Patterson RA, Brooks H, Mirjalili M, Rashidi-Ranjbar N, Zomorrodi R, Blumberger DM, Fischer CE, Flint AJ, Graff-Guerrero A, Herrmann N, Kennedy JL, Kumar S, Lanctôt KL, Mah L, Mulsant BH, Pollock BG, Voineskos AN, Wang W, Rajji TK. Neurophysiological and other features of working memory in older adults at risk for dementia. Cogn Neurodyn 2024; 18:795-811. [PMID: 38826646 PMCID: PMC11143125 DOI: 10.1007/s11571-023-09938-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 01/19/2023] [Accepted: 01/31/2023] [Indexed: 03/06/2023] Open
Abstract
Theta-gamma coupling (TGC) is a neurophysiological process that supports working memory. Working memory is associated with other clinical and biological features. The extent to which TGC is associated with these other features and whether it contributes to working memory beyond these features is unknown. Two-hundred-and-three older participants at risk for Alzheimer's dementia-98 with mild cognitive impairment (MCI), 39 with major depressive disorder (MDD) in remission, and 66 with MCI and MDD (MCI + MDD)-completed a clinical assessment, N-back-EEG, and brain MRI. Among them, 190 completed genetic testing, and 121 completed [11C] Pittsburgh Compound B ([11C] PIB) PET imaging. Hierarchical linear regressions were used to assess whether TGC is associated with demographic and clinical variables; Alzheimer's disease-related features (APOE ε4 carrier status and β-amyloid load); and structural features related to working memory. Then, linear regressions were used to assess whether TGC is associated with 2-back performance after accounting for these features. Other than age, TGC was not associated with any non-neurophysiological features. In contrast, TGC (β = 0.27; p = 0.006), age (β = - 0.29; p = 0.012), and parietal cortical thickness (β = 0.24; p = 0.020) were associated with 2-back performance. We also examined two other EEG features that are linked to working memory-theta event-related synchronization and alpha event-related desynchronization-and found them not to be associated with any feature or performance after accounting for TGC. Our findings suggest that TGC is a process that is independent of other clinical, genetic, neurochemical, and structural variables, and supports working memory in older adults at risk for dementia. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-023-09938-y.
Collapse
Affiliation(s)
| | - Heather Brooks
- Centre for Addiction and Mental Health, Toronto, ON M6J 1H4 Canada
| | - Mina Mirjalili
- Centre for Addiction and Mental Health, Toronto, ON M6J 1H4 Canada
| | | | - Reza Zomorrodi
- Centre for Addiction and Mental Health, Toronto, ON M6J 1H4 Canada
| | - Daniel M. Blumberger
- Centre for Addiction and Mental Health, Toronto, ON M6J 1H4 Canada
- Department of Psychiatry, TemertyFaculty of Medicine, University of Toronto, Toronto, ON M5S 1A1 Canada
- Temerty Centre for Therapeutic Brain Intervention, CAMH, Toronto, ON M6J 1H1 Canada
| | - Corinne E. Fischer
- Department of Psychiatry, TemertyFaculty of Medicine, University of Toronto, Toronto, ON M5S 1A1 Canada
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B, 1T8 Canada
| | - Alastair J. Flint
- Department of Psychiatry, TemertyFaculty of Medicine, University of Toronto, Toronto, ON M5S 1A1 Canada
- University Health Network, Toronto, ON M5G 1L7 Canada
| | - Ariel Graff-Guerrero
- Centre for Addiction and Mental Health, Toronto, ON M6J 1H4 Canada
- Department of Psychiatry, TemertyFaculty of Medicine, University of Toronto, Toronto, ON M5S 1A1 Canada
| | - Nathan Herrmann
- Department of Psychiatry, TemertyFaculty of Medicine, University of Toronto, Toronto, ON M5S 1A1 Canada
- Sunnybrook Health Sciences Centre, ON M4N 3M5 Toronto, Canada
| | - James L. Kennedy
- Centre for Addiction and Mental Health, Toronto, ON M6J 1H4 Canada
- Department of Psychiatry, TemertyFaculty of Medicine, University of Toronto, Toronto, ON M5S 1A1 Canada
| | - Sanjeev Kumar
- Centre for Addiction and Mental Health, Toronto, ON M6J 1H4 Canada
- Department of Psychiatry, TemertyFaculty of Medicine, University of Toronto, Toronto, ON M5S 1A1 Canada
- Toronto Dementia Research Alliance, University of Toronto, ON M5S 1A1 Toronto, Canada
| | - Krista L. Lanctôt
- Department of Psychiatry, TemertyFaculty of Medicine, University of Toronto, Toronto, ON M5S 1A1 Canada
- Sunnybrook Health Sciences Centre, ON M4N 3M5 Toronto, Canada
| | - Linda Mah
- Department of Psychiatry, TemertyFaculty of Medicine, University of Toronto, Toronto, ON M5S 1A1 Canada
- Rotman Research Institute, Baycrest, Toronto, ON M6A 2E1 Canada
| | - Benoit H. Mulsant
- Centre for Addiction and Mental Health, Toronto, ON M6J 1H4 Canada
- Department of Psychiatry, TemertyFaculty of Medicine, University of Toronto, Toronto, ON M5S 1A1 Canada
- Temerty Centre for Therapeutic Brain Intervention, CAMH, Toronto, ON M6J 1H1 Canada
| | - Bruce G. Pollock
- Centre for Addiction and Mental Health, Toronto, ON M6J 1H4 Canada
- Department of Psychiatry, TemertyFaculty of Medicine, University of Toronto, Toronto, ON M5S 1A1 Canada
- Toronto Dementia Research Alliance, University of Toronto, ON M5S 1A1 Toronto, Canada
| | - Aristotle N. Voineskos
- Centre for Addiction and Mental Health, Toronto, ON M6J 1H4 Canada
- Department of Psychiatry, TemertyFaculty of Medicine, University of Toronto, Toronto, ON M5S 1A1 Canada
| | - Wei Wang
- Centre for Addiction and Mental Health, Toronto, ON M6J 1H4 Canada
| | - Tarek K. Rajji
- Centre for Addiction and Mental Health, Toronto, ON M6J 1H4 Canada
- Department of Psychiatry, TemertyFaculty of Medicine, University of Toronto, Toronto, ON M5S 1A1 Canada
- Toronto Dementia Research Alliance, University of Toronto, ON M5S 1A1 Toronto, Canada
| |
Collapse
|
75
|
Kohli JS, Linke AC, Martindale IA, Wilkinson M, Kinnear MK, Lincoln AJ, Hau J, Shryock I, Omaleki V, Alemu K, Pedrahita S, Fishman I, Müller R, Carper RA. Associations between atypical intracortical myelin content and neuropsychological functions in middle to older aged adults with ASD. Brain Behav 2024; 14:e3594. [PMID: 38849980 PMCID: PMC11161394 DOI: 10.1002/brb3.3594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/06/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
INTRODUCTION In vivo myeloarchitectonic mapping based on Magnetic Resonance Imaging (MRI) provides a unique view of gray matter myelin content and offers information complementary to other morphological indices commonly employed in studies of autism spectrum disorder (ASD). The current study sought to determine if intracortical myelin content (MC) and its age-related trajectories differ between middle aged to older adults with ASD and age-matched typical comparison participants. METHODS Data from 30 individuals with ASD and 36 age-matched typical comparison participants aged 40-70 years were analyzed. Given substantial heterogeneity in both etiology and outcomes in ASD, we utilized both group-level and subject-level analysis approaches to test for signs of atypical intracortical MC as estimated by T1w/T2w ratio. RESULTS Group-level analyses showed no significant differences in average T1w/T2w ratio or its associations with age between groups, but revealed significant positive main effects of age bilaterally, with T1w/T2w ratio increasing with age across much of the cortex. In subject-level analyses, participants were classified into subgroups based on presence or absence of clusters of aberrant T1w/T2w ratio, and lower neuropsychological function was observed in the ASD subgroup with atypically high T1w/T2w ratio in spatially heterogeneous cortical regions. These differences were observed across several neuropsychological domains, including overall intellectual functioning, processing speed, and aspects of executive function. CONCLUSIONS The group-level and subject-level approaches employed here demonstrate the value of examining inter-individual variability and provide important preliminary insights into relationships between brain structure and cognition in the second half of the lifespan in ASD, suggesting shared factors contributing to atypical intracortical myelin content and poorer cognitive outcomes for a subset of middle aged to older autistic adults. These atypicalities likely reflect diverse histories of neurodevelopmental deficits, and possible compensatory changes, compounded by processes of aging, and may serve as useful markers of vulnerability to further cognitive decline in older adults with ASD.
Collapse
Affiliation(s)
- Jiwandeep S. Kohli
- Brain Development Imaging Laboratories, Department of PsychologySan Diego State UniversitySan DiegoCaliforniaUSA
- San Diego Joint Doctoral Program in Clinical PsychologySan Diego State University/University of CaliforniaSan DiegoCaliforniaUSA
| | - Annika C. Linke
- Brain Development Imaging Laboratories, Department of PsychologySan Diego State UniversitySan DiegoCaliforniaUSA
| | - Ian A. Martindale
- Brain Development Imaging Laboratories, Department of PsychologySan Diego State UniversitySan DiegoCaliforniaUSA
| | - Molly Wilkinson
- Brain Development Imaging Laboratories, Department of PsychologySan Diego State UniversitySan DiegoCaliforniaUSA
- San Diego Joint Doctoral Program in Clinical PsychologySan Diego State University/University of CaliforniaSan DiegoCaliforniaUSA
| | - Mikaela K. Kinnear
- Brain Development Imaging Laboratories, Department of PsychologySan Diego State UniversitySan DiegoCaliforniaUSA
| | - Alan J. Lincoln
- California School of Professional PsychologyAlliant International UniversitySan DiegoCaliforniaUSA
| | - Janice Hau
- Brain Development Imaging Laboratories, Department of PsychologySan Diego State UniversitySan DiegoCaliforniaUSA
| | - Ian Shryock
- Brain Development Imaging Laboratories, Department of PsychologySan Diego State UniversitySan DiegoCaliforniaUSA
| | - Vinton Omaleki
- Brain Development Imaging Laboratories, Department of PsychologySan Diego State UniversitySan DiegoCaliforniaUSA
| | - Kalekirstos Alemu
- Brain Development Imaging Laboratories, Department of PsychologySan Diego State UniversitySan DiegoCaliforniaUSA
| | - Stephanie Pedrahita
- Brain Development Imaging Laboratories, Department of PsychologySan Diego State UniversitySan DiegoCaliforniaUSA
| | - Inna Fishman
- Brain Development Imaging Laboratories, Department of PsychologySan Diego State UniversitySan DiegoCaliforniaUSA
| | - Ralph‐Axel Müller
- Brain Development Imaging Laboratories, Department of PsychologySan Diego State UniversitySan DiegoCaliforniaUSA
| | - Ruth A. Carper
- Brain Development Imaging Laboratories, Department of PsychologySan Diego State UniversitySan DiegoCaliforniaUSA
| |
Collapse
|
76
|
Hu Y, Zhu T, Zhang W. The characteristics of brain atrophy prior to the onset of Alzheimer's disease: a longitudinal study. Front Aging Neurosci 2024; 16:1344920. [PMID: 38863784 PMCID: PMC11165148 DOI: 10.3389/fnagi.2024.1344920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/02/2024] [Indexed: 06/13/2024] Open
Abstract
Objective We aimed to use the onset time of Alzheimer's disease (AD) as the reference time to longitudinally investigate the atrophic characteristics of brain structures prior to the onset of AD. Materials and methods A total of 328 participants from the ADNI database with clear onset of AD and structural imaging data were included in our study. The time before the onset of AD (abbreviated as BAD) was calculated. We investigated the longitudinal brain changes in 97 regions using multivariate linear mixed effects regression models. Results The average BAD was -28.15 months, with a range from -156 to 0 months. The 54 brain regions showed significant atrophy prior to the onset of AD, and these regions were mainly distributed in the frontal and temporal lobes. The parietal and occipital lobe exhibited relatively less atrophy than the other brain lobes. Sex, age, and magnetic field strength had greater direct impacts on structural indicators than APOE genotype and education. The analysis of interaction effects revealed that the APOE ε4 mutation carriers exhibited more severe structural changes in specific brain regions as the BAD increased. However, sex, age, and education had minimal regulatory influence on the structural changes associated with BAD. Conclusion Longitudinal analysis, with the onset time point of AD as the reference, can accurately describe the features of structural changes preceding the onset of AD and provide a comprehensive understanding of AD development.
Collapse
Affiliation(s)
- Ying Hu
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Zhu
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Zhang
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Mental Health Center of West China Hospital, Sichuan University, Chengdu, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| |
Collapse
|
77
|
Zhang Y, Huang J, Huang L, Peng L, Wang X, Zhang Q, Zeng Y, Yang J, Li Z, Sun X, Liang S. Atypical characteristic changes of surface morphology and structural covariance network in developmental dyslexia. Neurol Sci 2024; 45:2261-2270. [PMID: 37996775 DOI: 10.1007/s10072-023-07193-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Developmental dyslexia (DD) is a neurodevelopmental disorder that is characterized by difficulties with all aspects of information acquisition in the written word, including slow and inaccurate word recognition. The neural basis behind DD has not been fully elucidated. METHOD The study included 22 typically developing (TD) children, 16 children with isolated spelling disorder (SpD), and 20 children with DD. The cortical thickness, folding index, and mean curvature of Broca's area, including the triangular part of the left inferior frontal gyrus (IFGtriang) and the opercular part of the left inferior frontal gyrus, were assessed to explore the differences of surface morphology among the TD, SpD, and DD groups. Furthermore, the structural covariance network (SCN) of the triangular part of the left inferior frontal gyrus was analyzed to explore the changes of structural connectivity in the SpD and DD groups. RESULTS The DD group showed higher curvature and cortical folding of the left IFGtriang than the TD group and SpD group. In addition, compared with the TD group and the SpD group, the structural connectivity between the left IFGtriang and the left middle-frontal gyrus and the right mid-orbital frontal gyrus was increased in the DD group, and the structural connectivity between the left IFGtriang and the right precuneus and anterior cingulate was decreased in the DD group. CONCLUSION DD had atypical structural connectivity in brain regions related to visual attention, memory and which might impact the information input and integration needed for reading and spelling.
Collapse
Affiliation(s)
- Yusi Zhang
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Cognitive Rehabilitation, Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, 350001, Fujian, China
| | - Jiayang Huang
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Li Huang
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Lixin Peng
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Xiuxiu Wang
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Qingqing Zhang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Yi Zeng
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Junchao Yang
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Zuanfang Li
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Xi Sun
- College of Information Engineering, Nanyang Institute of Technology, Nanyang, 473004, China
| | - Shengxiang Liang
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
- Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
- Fujian Key Laboratory of Cognitive Rehabilitation, Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
78
|
Park Y, Lee MJ, Yoo S, Kim CY, Namgung JY, Park Y, Park H, Lee EC, Yoon YD, Paquola C, Bernhardt BC, Park BY. GAN-MAT: Generative adversarial network-based microstructural profile covariance analysis toolbox. Neuroimage 2024; 291:120595. [PMID: 38554782 DOI: 10.1016/j.neuroimage.2024.120595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024] Open
Abstract
Multimodal magnetic resonance imaging (MRI) provides complementary information for investigating brain structure and function; for example, an in vivo microstructure-sensitive proxy can be estimated using the ratio between T1- and T2-weighted structural MRI. However, acquiring multiple imaging modalities is challenging in patients with inattentive disorders. In this study, we proposed a comprehensive framework to provide multiple imaging features related to the brain microstructure using only T1-weighted MRI. Our toolbox consists of (i) synthesizing T2-weighted MRI from T1-weighted MRI using a conditional generative adversarial network; (ii) estimating microstructural features, including intracortical covariance and moment features of cortical layer-wise microstructural profiles; and (iii) generating a microstructural gradient, which is a low-dimensional representation of the intracortical microstructure profile. We trained and tested our toolbox using T1- and T2-weighted MRI scans of 1,104 healthy young adults obtained from the Human Connectome Project database. We found that the synthesized T2-weighted MRI was very similar to the actual image and that the synthesized data successfully reproduced the microstructural features. The toolbox was validated using an independent dataset containing healthy controls and patients with episodic migraine as well as the atypical developmental condition of autism spectrum disorder. Our toolbox may provide a new paradigm for analyzing multimodal structural MRI in the neuroscience community and is openly accessible at https://github.com/CAMIN-neuro/GAN-MAT.
Collapse
Affiliation(s)
- Yeongjun Park
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Mi Ji Lee
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | | | - Chae Yeon Kim
- Department of Data Science, Inha University, Incheon, South Korea
| | | | - Yunseo Park
- Department of Data Science, Inha University, Incheon, South Korea
| | - Hyunjin Park
- School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon, South Korea; Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
| | | | | | - Casey Paquola
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich, Jülich, Germany
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Bo-Yong Park
- Department of Data Science, Inha University, Incheon, South Korea; Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea; Department of Statistics and Data Science, Inha University, Incheon, South Korea.
| |
Collapse
|
79
|
Tripathy K, Fogarty M, Svoboda AM, Schroeder ML, Rafferty SM, Richter EJ, Tracy C, Mansfield PK, Booth M, Fishell AK, Sherafati A, Markow ZE, Wheelock MD, Arbeláez AM, Schlaggar BL, Smyser CD, Eggebrecht AT, Culver JP. Mapping brain function in adults and young children during naturalistic viewing with high-density diffuse optical tomography. Hum Brain Mapp 2024; 45:e26684. [PMID: 38703090 PMCID: PMC11069306 DOI: 10.1002/hbm.26684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 05/06/2024] Open
Abstract
Human studies of early brain development have been limited by extant neuroimaging methods. MRI scanners present logistical challenges for imaging young children, while alternative modalities like functional near-infrared spectroscopy have traditionally been limited by image quality due to sparse sampling. In addition, conventional tasks for brain mapping elicit low task engagement, high head motion, and considerable participant attrition in pediatric populations. As a result, typical and atypical developmental trajectories of processes such as language acquisition remain understudied during sensitive periods over the first years of life. We evaluate high-density diffuse optical tomography (HD-DOT) imaging combined with movie stimuli for high resolution optical neuroimaging in awake children ranging from 1 to 7 years of age. We built an HD-DOT system with design features geared towards enhancing both image quality and child comfort. Furthermore, we characterized a library of animated movie clips as a stimulus set for brain mapping and we optimized associated data analysis pipelines. Together, these tools could map cortical responses to movies and contained features such as speech in both adults and awake young children. This study lays the groundwork for future research to investigate response variability in larger pediatric samples and atypical trajectories of early brain development in clinical populations.
Collapse
Affiliation(s)
- Kalyan Tripathy
- Division of Biological and Biomedical SciencesWashington University in St. LouisSt. LouisMissouriUSA
- Mallinckrodt Institute of RadiologyWashington University School of MedicineSt. LouisMissouriUSA
- Western Psychiatric HospitalUniversity of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
| | - Morgan Fogarty
- Mallinckrodt Institute of RadiologyWashington University School of MedicineSt. LouisMissouriUSA
- Imaging Science ProgramWashington University in St. LouisSt. LouisMissouriUSA
| | - Alexandra M. Svoboda
- Mallinckrodt Institute of RadiologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Mariel L. Schroeder
- Mallinckrodt Institute of RadiologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Sean M. Rafferty
- Mallinckrodt Institute of RadiologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Edward J. Richter
- Department of Electrical and Systems EngineeringWashington University in St. LouisSt. LouisMissouriUSA
| | - Christopher Tracy
- Mallinckrodt Institute of RadiologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Patricia K. Mansfield
- Mallinckrodt Institute of RadiologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Madison Booth
- Mallinckrodt Institute of RadiologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Andrew K. Fishell
- Mallinckrodt Institute of RadiologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Arefeh Sherafati
- Mallinckrodt Institute of RadiologyWashington University School of MedicineSt. LouisMissouriUSA
- Department of PhysicsWashington University in St. LouisSt. LouisMissouriUSA
| | - Zachary E. Markow
- Mallinckrodt Institute of RadiologyWashington University School of MedicineSt. LouisMissouriUSA
- Department of Biomedical EngineeringWashington University in St. LouisSt. LouisMissouriUSA
| | - Muriah D. Wheelock
- Mallinckrodt Institute of RadiologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Ana María Arbeláez
- Department of PediatricsWashington University School of MedicineSt. LouisMissouriUSA
| | - Bradley L. Schlaggar
- Kennedy Krieger InstituteBaltimoreMarylandUSA
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of PediatricsJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Christopher D. Smyser
- Mallinckrodt Institute of RadiologyWashington University School of MedicineSt. LouisMissouriUSA
- Department of PediatricsWashington University School of MedicineSt. LouisMissouriUSA
- Department of NeurologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Adam T. Eggebrecht
- Division of Biological and Biomedical SciencesWashington University in St. LouisSt. LouisMissouriUSA
- Mallinckrodt Institute of RadiologyWashington University School of MedicineSt. LouisMissouriUSA
- Imaging Science ProgramWashington University in St. LouisSt. LouisMissouriUSA
- Department of Electrical and Systems EngineeringWashington University in St. LouisSt. LouisMissouriUSA
- Department of PhysicsWashington University in St. LouisSt. LouisMissouriUSA
- Department of Biomedical EngineeringWashington University in St. LouisSt. LouisMissouriUSA
| | - Joseph P. Culver
- Mallinckrodt Institute of RadiologyWashington University School of MedicineSt. LouisMissouriUSA
- Imaging Science ProgramWashington University in St. LouisSt. LouisMissouriUSA
- Department of PhysicsWashington University in St. LouisSt. LouisMissouriUSA
- Department of Biomedical EngineeringWashington University in St. LouisSt. LouisMissouriUSA
| |
Collapse
|
80
|
Achiron A, Falb R, Menascu S, Magalashvili D, Mandel M, Sonis P, Gurevich M. Deciphering the shift from benign to active relapsing-remitting multiple sclerosis: Insights into T regulatory cell dysfunction and apoptosis regulation. Neurobiol Dis 2024; 194:106475. [PMID: 38521093 DOI: 10.1016/j.nbd.2024.106475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/05/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Relapsing-remitting multiple sclerosis (RRMS), a common demyelinating disease among young adults, follows a benign course in 10-15% of cases, where patients experience minimal neurological disability for a decade following disease onset. However, there is potential for these benign cases to transition into a clinically active, relapsing state. OBJECTIVE To elucidate the biological mechanisms underlying the transition from benign to active RRMS using gene expression analysis. METHODS We employed complementary-DNA microarrays to examine peripheral-blood gene expression patterns in patients with benign MS, defined as having a disease duration exceeding 10 years and an Expanded Disability Status Scale (EDSS) score of ≤3.0. We compared the gene expression pattern between patients who switched to active disease (Switching BMS) with those who maintained a benign state (Permanent-BMS) during an additional 5-year follow-up. RESULTS We identified two primary mechanisms linked to the transition from benign MS to clinically active disease. The first involves the suppression of regulatory T cell activity, and the second pertains to the dysfunction of nuclear receptor 4 A family-dependent apoptosis. These mechanisms collectively contribute to an augmented autoimmune response and increased disease activity. CONCLUSIONS The intricate gene regulatory networks that operate in switching-BMS are related to suppression of immune tolerance and aberrant apoptosis. These findings may lead to new therapeutic targets to prevent the escalation to active disease.
Collapse
Affiliation(s)
- Anat Achiron
- Multiple Sclerosis Center, Sheba Medical Center, Ramat-Gan, Israel; Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| | - Rina Falb
- Multiple Sclerosis Center, Sheba Medical Center, Ramat-Gan, Israel
| | - Shay Menascu
- Multiple Sclerosis Center, Sheba Medical Center, Ramat-Gan, Israel; Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | - Mathilda Mandel
- Multiple Sclerosis Center, Sheba Medical Center, Ramat-Gan, Israel
| | - Polina Sonis
- Multiple Sclerosis Center, Sheba Medical Center, Ramat-Gan, Israel
| | - Michael Gurevich
- Multiple Sclerosis Center, Sheba Medical Center, Ramat-Gan, Israel; Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
81
|
Karakasli AA, Ozkan E, Karacam Dogan M, Cap D, Karaosmanoglu A, Karahan S, Zorlu N, Saka E, Ayhan Y. Clinical predictors of Alzheimer's disease-like brain atrophy in individuals with memory complaints. Brain Behav 2024; 14:e3506. [PMID: 38688882 PMCID: PMC11061206 DOI: 10.1002/brb3.3506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 05/02/2024] Open
Abstract
OBJECTIVES The definition and assessment methods for subjective cognitive decline (SCD) vary among studies. We aimed to investigate which features or assessment methods of SCD best predict Alzheimer's disease (AD)-related structural atrophy patterns. METHODS We assessed 104 individuals aged 55+ with memory complaints but normal cognitive screening. Our research questions were as follows: To improve the prediction of AD related morphological changes, (1) Would the use of a standardized cognitive screening scale be beneficial? (2) Is conducting a thorough neuropsychological evaluation necessary instead of relying solely on cognitive screening tests? (3) Should we apply SCD-plus research criteria, and if so, which criterion would be the most effective? (4) Is it necessary to consider medical and psychiatric comorbidities, vitamin deficiencies, vascular burden on MRI, and family history? We utilized Freesurfer to analyze cortical thickness and regional brain volume meta-scores linked to AD or predicting its development. We employed multiple linear regression models for each variable, with morphology as the dependent variable. RESULTS AD-like morphology was associated with subjective complaints in males, individuals with advanced age, and higher education. Later age of onset for complaints, complaints specifically related to memory, excessive deep white matter vascular lesions, and using medications that have negative implications for cognitive health (according to the Beers criteria) were predictive of AD-related morphology. The subjective cognitive memory questionnaire scores were found to be a better predictor of reduced volumes than a single-question assessment. It is important to note that not all SCD-plus criteria were evaluated in this study, particularly the APOE genotype, amyloid, and tau status, due to resource limitations. CONCLUSIONS The detection of AD-related structural changes is impacted by demographics and assessment methods. Standardizing SCD assessment methods can enhance predictive accuracy.
Collapse
Affiliation(s)
| | - Esra Ozkan
- Research Center for Translational Medicine, Koç UniversityİstanbulTurkey
| | | | - Duygu Cap
- Department of PsychologyUfuk UniversityAnkaraTurkey
| | - Ayca Karaosmanoglu
- Department of RadiologyHacettepe University Faculty of MedicineAnkaraTurkey
| | - Sevilay Karahan
- Department of BiostatisticsHacettepe University Faculty of MedicineAnkaraTurkey
| | - Nabi Zorlu
- Department of Psychiatryİzmir Katip Çelebi University Faculty of MedicineİzmirTurkey
| | - Esen Saka
- Department of NeurologyHacettepe University Faculty of MedicineAnkaraTurkey
| | - Yavuz Ayhan
- Department of PsychiatryHacettepe University Faculty of MedicineAnkaraTurkey
| |
Collapse
|
82
|
Katsumi Y, Howe IA, Eckbo R, Wong B, Quimby M, Hochberg D, McGinnis SM, Putcha D, Wolk DA, Touroutoglou A, Dickerson BC. Default mode network tau predicts future clinical decline in atypical early Alzheimer's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.17.24305620. [PMID: 38699357 PMCID: PMC11065041 DOI: 10.1101/2024.04.17.24305620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Identifying individuals with early stage Alzheimer's disease (AD) at greater risk of steeper clinical decline would allow professionals and loved ones to make better-informed medical, support, and life planning decisions. Despite accumulating evidence on the clinical prognostic value of tau PET in typical late-onset amnestic AD, its utility in predicting clinical decline in individuals with atypical forms of AD remains unclear. In this study, we examined the relationship between baseline tau PET signal and the rate of subsequent clinical decline in a sample of 48 A+/T+/N+ patients with mild cognitive impairment or mild dementia due to AD with atypical clinical phenotypes (Posterior Cortical Atrophy, logopenic variant Primary Progressive Aphasia, and amnestic syndrome with multi-domain impairment and age of onset < 65 years). All patients underwent structural magnetic resonance imaging (MRI), tau (18F-Flortaucipir) PET, and amyloid (either 18F-Florbetaben or 11C-Pittsburgh Compound B) PET scans at baseline. Each patient's longitudinal clinical decline was assessed by calculating the annualized change in the Clinical Dementia Rating Sum-of-Boxes (CDR-SB) scores from baseline to follow-up (mean time interval = 14.55 ± 3.97 months). Our sample of early atypical AD patients showed an increase in CDR-SB by 1.18 ± 1.25 points per year: t(47) = 6.56, p < .001, d = 0.95. These AD patients showed prominent baseline tau burden in posterior cortical regions including the major nodes of the default mode network, including the angular gyrus, posterior cingulate cortex/precuneus, and lateral temporal cortex. Greater baseline tau in the broader default mode network predicted faster clinical decline. Tau in the default mode network was the strongest predictor of clinical decline, outperforming baseline clinical impairment, tau in other functional networks, and the magnitude of cortical atrophy and amyloid burden in the default mode network. Overall, these findings point to the contribution of baseline tau burden within the default mode network of the cerebral cortex to predicting the magnitude of clinical decline in a sample of atypical early AD patients one year later. This simple measure based on a tau PET scan could aid the development of a personalized prognostic, monitoring, and treatment plan tailored to each individual patient, which would help clinicians not only predict the natural evolution of the disease but also estimate the effect of disease-modifying therapies on slowing subsequent clinical decline given the patient's tau burden while still early in the disease course.
Collapse
Affiliation(s)
- Yuta Katsumi
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Inola A Howe
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Ryan Eckbo
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Bonnie Wong
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Megan Quimby
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Daisy Hochberg
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Scott M McGinnis
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Center for Brain Mind Medicine, Department of Neurology, Brigham & Women's Hospital, Boston, MA 02115, USA
| | - Deepti Putcha
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Center for Brain Mind Medicine, Department of Neurology, Brigham & Women's Hospital, Boston, MA 02115, USA
| | - David A Wolk
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexandra Touroutoglou
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Alzheimer's Disease Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Bradford C Dickerson
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Alzheimer's Disease Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA
| |
Collapse
|
83
|
Cheung EYW, Wu RWK, Chu ESM, Mak HKF. Integrating Demographics and Imaging Features for Various Stages of Dementia Classification: Feed Forward Neural Network Multi-Class Approach. Biomedicines 2024; 12:896. [PMID: 38672253 PMCID: PMC11047992 DOI: 10.3390/biomedicines12040896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND MRI magnetization-prepared rapid acquisition (MPRAGE) is an easily available imaging modality for dementia diagnosis. Previous studies suggested that volumetric analysis plays a crucial role in various stages of dementia classification. In this study, volumetry, radiomics and demographics were integrated as inputs to develop an artificial intelligence model for various stages, including Alzheimer's disease (AD), mild cognitive decline (MCI) and cognitive normal (CN) dementia classifications. METHOD The Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset was separated into training and testing groups, and the Open Access Series of Imaging Studies (OASIS) dataset was used as the second testing group. The MRI MPRAGE image was reoriented via statistical parametric mapping (SPM12). Freesurfer was employed for brain segmentation, and 45 regional brain volumes were retrieved. The 3D Slicer software was employed for 107 radiomics feature extractions from within the whole brain. Data on patient demographics were collected from the datasets. The feed-forward neural network (FFNN) and the other most common artificial intelligence algorithms, including support vector machine (SVM), ensemble classifier (EC) and decision tree (DT), were used to build the models using various features. RESULTS The integration of brain regional volumes, radiomics and patient demographics attained the highest overall accuracy at 76.57% and 73.14% in ADNI and OASIS testing, respectively. The subclass accuracies in MCI, AD and CN were 78.29%, 89.71% and 85.14%, respectively, in ADNI testing, as well as 74.86%, 88% and 83.43% in OASIS testing. Balanced sensitivity and specificity were obtained for all subclass classifications in MCI, AD and CN. CONCLUSION The FFNN yielded good overall accuracy for MCI, AD and CN categorization, with balanced subclass accuracy, sensitivity and specificity. The proposed FFNN model is simple, and it may support the triage of patients for further confirmation of the diagnosis.
Collapse
Affiliation(s)
- Eva Y. W. Cheung
- School of Medical and Health Sciences, Tung Wah College, 31 Wylie Road, HoManTin, Hong Kong
| | - Ricky W. K. Wu
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK
| | - Ellie S. M. Chu
- School of Medical and Health Sciences, Tung Wah College, 31 Wylie Road, HoManTin, Hong Kong
| | - Henry K. F. Mak
- Department of Diagnostic Radiology, School of Clinical Medicine, LKS Faculty of Medicine, University of Hong Kong, Hong Kong
| |
Collapse
|
84
|
Cilia BJ, Eratne D, Wannan C, Malpas C, Janelidze S, Hansson O, Everall I, Bousman C, Thomas N, Santillo AF, Velakoulis D, Pantelis C. Associations between structural brain changes and blood neurofilament light chain protein in treatment-resistant schizophrenia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.07.24305362. [PMID: 38645076 PMCID: PMC11030485 DOI: 10.1101/2024.04.07.24305362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Background and Hypothesis Around 30% of people with schizophrenia are refractory to antipsychotic treatment (treatment-resistant schizophrenia; TRS). While abnormal structural neuroimaging findings, in particular volume and thickness reductions, are often observed in schizophrenia, it is anticipated that biomarkers of neuronal injury like neurofilament light chain protein (NfL) can improve our understanding of the pathological basis underlying schizophrenia. The current study aimed to determine whether people with TRS demonstrate different associations between plasma NfL levels and regional cortical thickness reductions compared with controls. Study Design Measurements of plasma NfL and cortical thickness were obtained from 39 individuals with TRS, and 43 healthy controls. T1-weighted magnetic resonance imaging sequences were obtained and processed via FreeSurfer. General linear mixed models adjusting for age and weight were estimated to determine whether the interaction between diagnostic group and plasma NfL level predicted lower cortical thickness across frontotemporal structures and the insula. Study Results Significant (false discovery rate corrected) cortical thinning of the left (p = 0.001, η2p = 0.104) and right (p < 0.001, η2p = 0.167) insula was associated with higher levels of plasma NfL in TRS, but not in healthy controls. Conclusions The association between regional thickness reduction of the insula bilaterally and plasma NfL may reflect a neurodegenerative process during the course of TRS. The findings of the present study suggest that some level of cortical degeneration localised to the bilateral insula may exist in people with TRS, which is not observed in the normal population.
Collapse
Affiliation(s)
- Brandon-Joe Cilia
- Neuropsychiatry, The Royal Melbourne Hospital, Parkville, VIC, Australia
- Melbourne Medical School, The University of Melbourne, Parkville, VIC, Australia
| | - Dhamidhu Eratne
- Neuropsychiatry, The Royal Melbourne Hospital, Parkville, VIC, Australia
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | - Cassandra Wannan
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Charles Malpas
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Faculty of Medicine, Lund University, Malmö, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | | | - Chad Bousman
- Department of Medical Genetics, University of Calgary
- Department of Psychiatry, University of Melbourne, Parkville, VIC, Australia
| | - Naveen Thomas
- Mental Health and Wellbeing Services, Western Health, St Albans VIC, Australia
| | - Alexander F Santillo
- Clinical Memory Research Unit, Department of Clinical Sciences, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Dennis Velakoulis
- Neuropsychiatry, The Royal Melbourne Hospital, Parkville, VIC, Australia
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
- Monash Institute of Pharmaceutical Sciences (MIPS), Faculty of Pharmacy and Pharmaceutical Sciences Monash University, Parkville, VIC, Australia
| |
Collapse
|
85
|
Gimbel SI, Hungerford LD, Twamley EW, Ettenhofer ML. White Matter Organization and Cortical Thickness Differ Among Active Duty Service Members With Chronic Mild, Moderate, and Severe Traumatic Brain Injury. J Neurotrauma 2024; 41:818-835. [PMID: 37800726 PMCID: PMC11005384 DOI: 10.1089/neu.2023.0336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Abstract
Abstract This study compared findings from whole-brain diffusion tensor imaging (DTI) and volumetric magnetic resonance imaging (MRI) among 90 Active Duty Service Members with chronic mild traumatic brain injury (TBI; n = 52), chronic moderate-to-severe TBI (n = 17), and TBI-negative controls (n = 21). Data were collected on a Philips Ingenia 3T MRI with DTI in 32 directions. Results demonstrated that history of TBI was associated with differences in white matter microstructure, white matter volume, and cortical thickness in both mild TBI and moderate-to-severe TBI groups relative to controls. However, the presence, pattern, and distribution of these findings varied substantially depending on the injury severity. Spatially-defined forms of DTI fractional anisotropy (FA) analyses identified altered white matter organization within the chronic moderate-to-severe TBI group, but they did not provide clear evidence of abnormalities within the chronic mild TBI group. In contrast, DTI FA "pothole" analyses identified widely distributed areas of decreased FA throughout the white matter in both the chronic mild TBI and chronic moderate-to-severe TBI groups. Additionally, decreased white matter volume was found in several brain regions for the chronic moderate-to-severe TBI group compared with the other groups. Greater number of DTI FA potholes and reduced cortical thickness were also related to greater severity of self-reported symptoms. In sum, this study expands upon a growing body of literature using advanced imaging techniques to identify potential effects of brain injury in military Service Members. These findings may differ from work in other TBI populations due to varying mechanisms and frequency of injury, as well as a potentially higher level of functioning in the current sample related to the ability to maintain continued Active Duty status after injury. In conclusion, this study provides DTI and volumetric MRI findings across the spectrum of TBI severity. These results provide support for the use of DTI and volumetric MRI to identify differences in white matter microstructure and volume related to TBI. In particular, DTI FA pothole analysis may provide greater sensitivity for detecting subtle forms of white matter injury than conventional DTI FA analyses.
Collapse
Affiliation(s)
- Sarah I. Gimbel
- Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland, USA
- Naval Medical Center San Diego, San Diego, California, USA
- General Dynamics Information Technology, Falls Church, Virginia, USA
| | - Lars D. Hungerford
- Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland, USA
- Naval Medical Center San Diego, San Diego, California, USA
- General Dynamics Information Technology, Falls Church, Virginia, USA
| | - Elizabeth W. Twamley
- University of California, San Diego, San Diego, California, USA
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, California, USA
| | - Mark L. Ettenhofer
- Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland, USA
- Naval Medical Center San Diego, San Diego, California, USA
- General Dynamics Information Technology, Falls Church, Virginia, USA
- University of California, San Diego, San Diego, California, USA
| |
Collapse
|
86
|
Roberts AG, Romano DJ, Şişman M, Dimov AV, Spincemaille P, Nguyen TD, Kovanlikaya I, Gauthier SA, Wang Y. Maximum spherical mean value filtering for whole-brain QSM. Magn Reson Med 2024; 91:1586-1597. [PMID: 38169132 PMCID: PMC11416845 DOI: 10.1002/mrm.29963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 10/30/2023] [Accepted: 11/19/2023] [Indexed: 01/05/2024]
Abstract
PURPOSE To develop a tissue field-filtering algorithm, called maximum spherical mean value (mSMV), for reducing shadow artifacts in QSM of the brain without requiring brain-tissue erosion. THEORY AND METHODS Residual background field is a major source of shadow artifacts in QSM. The mSMV algorithm filters large field-magnitude values near the border, where the maximum value of the harmonic background field is located. The effectiveness of mSMV for artifact removal was evaluated by comparing existing QSM algorithms in numerical brain simulation as well as using in vivo human data acquired from 11 healthy volunteers and 93 patients. RESULTS Numerical simulation showed that mSMV reduces shadow artifacts and improves QSM accuracy. Better shadow reduction, as demonstrated by lower QSM variation in the gray matter and higher QSM image quality score, was also observed in healthy subjects and in patients with hemorrhages, stroke, and multiple sclerosis. CONCLUSION The mSMV algorithm allows QSM maps that are substantially equivalent to those obtained using SMV-filtered dipole inversion without eroding the volume of interest.
Collapse
Affiliation(s)
- Alexandra G. Roberts
- Department of Electrical and Computer Engineering, Cornell University, Ithaca NY, USA
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Dominick J. Romano
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
- Meinig School of Biomedical Engineering, Cornell University, Ithaca NY, USA
| | - Mert Şişman
- Department of Electrical and Computer Engineering, Cornell University, Ithaca NY, USA
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Alexey V. Dimov
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | | | - Thanh D. Nguyen
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | | | | | - Yi Wang
- Department of Electrical and Computer Engineering, Cornell University, Ithaca NY, USA
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
- Meinig School of Biomedical Engineering, Cornell University, Ithaca NY, USA
| |
Collapse
|
87
|
Trišins M, Zdanovskis N, Platkājis A, Šneidere K, Kostiks A, Karelis G, Stepens A. Brodmann Areas, V1 Atlas and Cognitive Impairment: Assessing Cortical Thickness for Cognitive Impairment Diagnostics. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:587. [PMID: 38674233 PMCID: PMC11052167 DOI: 10.3390/medicina60040587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024]
Abstract
Background and Objectives: Magnetic resonance imaging is vital for diagnosing cognitive decline. Brodmann areas (BA), distinct regions of the cerebral cortex categorized by cytoarchitectural variances, provide insights into cognitive function. This study aims to compare cortical thickness measurements across brain areas identified by BA mapping. We assessed these measurements among patients with and without cognitive impairment, and across groups categorized by cognitive performance levels using the Montreal Cognitive Assessment (MoCA) test. Materials and Methods: In this cross-sectional study, we included 64 patients who were divided in two ways: in two groups with (CI) or without (NCI) impaired cognitive function and in three groups with normal (NC), moderate (MPG) and low (LPG) cognitive performance according to MoCA scores. Scans with a 3T MRI scanner were carried out, and cortical thickness data was acquired using Freesurfer 7.2.0 software. Results: By analyzing differences between the NCI and CI groups cortical thickness of BA3a in left hemisphere (U = 241.000, p = 0.016), BA4a in right hemisphere (U = 269.000, p = 0.048) and BA28 in left hemisphere (U = 584.000, p = 0.005) showed significant differences. In the LPG, MPG and NC cortical thickness in BA3a in left hemisphere (H (2) = 6.268, p = 0.044), in V2 in right hemisphere (H (2) = 6.339, p = 0.042), in BA28 in left hemisphere (H (2) = 23.195, p < 0.001) and in BA28 in right hemisphere (H (2) = 10.015, p = 0.007) showed significant differences. Conclusions: Our study found that cortical thickness in specific Brodmann Areas-BA3a and BA28 in the left hemisphere, and BA4a in the right-differ significantly between NCI and CI groups. Significant differences were also observed in BA3a (left), V2 (right), and BA28 (both hemispheres) across LPG, MPG, NC groups. Despite a small sample size, these findings suggest cortical thickness measurements can serve as effective biomarkers for cognitive impairment diagnosis, warranting further validation with a larger cohort.
Collapse
Affiliation(s)
- Maksims Trišins
- Department of Radiology, Riga Stradins University, LV-1007 Riga, Latvia; (M.T.)
| | - Nauris Zdanovskis
- Department of Radiology, Riga Stradins University, LV-1007 Riga, Latvia; (M.T.)
- Department of Radiology, Riga East University Hospital, LV-1038 Riga, Latvia
- Military Medicine Research and Study Centre, Riga Stradins University, LV-1007 Riga, Latvia
| | - Ardis Platkājis
- Department of Radiology, Riga Stradins University, LV-1007 Riga, Latvia; (M.T.)
- Department of Radiology, Riga East University Hospital, LV-1038 Riga, Latvia
| | - Kristīne Šneidere
- Military Medicine Research and Study Centre, Riga Stradins University, LV-1007 Riga, Latvia
- Department of Health Psychology and Pedagogy, Riga Stradins University, LV-1007 Riga, Latvia
| | - Andrejs Kostiks
- Department of Neurology and Neurosurgery, Riga East University Hospital, LV-1038 Riga, Latvia (G.K.)
| | - Guntis Karelis
- Department of Neurology and Neurosurgery, Riga East University Hospital, LV-1038 Riga, Latvia (G.K.)
- Department of Infectology, Riga Stradins University, LV-1007 Riga, Latvia
| | - Ainārs Stepens
- Military Medicine Research and Study Centre, Riga Stradins University, LV-1007 Riga, Latvia
| |
Collapse
|
88
|
Barber N, Valoumas I, Leger KR, Chang YL, Huang CM, Goh JOS, Gutchess A. Culture, prefrontal volume, and memory. PLoS One 2024; 19:e0298235. [PMID: 38551909 PMCID: PMC10980194 DOI: 10.1371/journal.pone.0298235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 01/19/2024] [Indexed: 04/01/2024] Open
Abstract
Prior cross-cultural studies have demonstrated differences among Eastern and Western cultures in memory and cognition along with variation in neuroanatomy and functional engagement. We further probed cultural neuroanatomical variability in terms of its relationship with memory performance. Specifically, we investigated how memory performance related to gray matter volume in several prefrontal lobe structures, including across cultures. For 58 American and 57 Taiwanese young adults, memory performance was measured with the California Verbal Learning Test (CVLT) using performance on learning trial 1, on which Americans had higher scores than the Taiwanese, and the long delayed free recall task, on which groups performed similarly. MRI data were reconstructed using FreeSurfer. Across both cultures, we observed that larger volumes of the bilateral rostral anterior cingulate were associated with lower scores on both CVLT tasks. In terms of effects of culture, the relationship between learning trial 1 scores and gray matter volumes in the right superior frontal gyrus had a trend for a positive relationship in Taiwanese but not in Americans. In addition to the a priori analysis of select frontal volumes, an exploratory whole-brain analysis compared volumes-without considering CVLT performance-across the two cultural groups in order to assess convergence with prior research. Several cultural differences were found, such that Americans had larger volumes in the bilateral superior frontal and lateral occipital cortex, whereas Taiwanese had larger volumes in the bilateral rostral middle frontal and inferior temporal cortex, and the right precuneus.
Collapse
Affiliation(s)
- Nicolette Barber
- Department of Psychology, Brandeis University, Waltham, MA, United States of America
| | - Ioannis Valoumas
- Department of Psychology, Brandeis University, Waltham, MA, United States of America
| | - Krystal R. Leger
- Department of Psychology, Brandeis University, Waltham, MA, United States of America
| | - Yu-Ling Chang
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
- Center for Artificial Intelligence and Advanced Robotics, National Taiwan University, Taipei, Taiwan
- Volen National Center for Complex Systems, Brandeis University, Waltham, MA, United States of America
| | - Chih-Mao Huang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Joshua Oon Soo Goh
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
- Center for Artificial Intelligence and Advanced Robotics, National Taiwan University, Taipei, Taiwan
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Angela Gutchess
- Department of Psychology, Brandeis University, Waltham, MA, United States of America
- Volen National Center for Complex Systems, Brandeis University, Waltham, MA, United States of America
| |
Collapse
|
89
|
Wedderburn CJ, Yeung S, Subramoney S, Fouche JP, Joshi SH, Narr KL, Rehman AM, Roos A, Gibb DM, Zar HJ, Stein DJ, Donald KA. Association of in utero HIV exposure with child brain structure and language development: a South African birth cohort study. BMC Med 2024; 22:129. [PMID: 38519887 PMCID: PMC10960435 DOI: 10.1186/s12916-024-03282-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 02/01/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND There is a growing population of children with in utero HIV exposure who are at risk of poor neurodevelopmental outcomes despite avoiding HIV infection. However, the underlying neurobiological pathways are not understood and neuroimaging studies are lacking. We aimed to investigate the cortical brain structure of children who are HIV-exposed and uninfected (HEU) compared to HIV-unexposed (HU) children and to examine the relationship with neurodevelopment. METHODS The Drakenstein Child Health birth cohort study enrolled pregnant women from a high HIV prevalence area in South Africa with longitudinal follow-up of mother-child pairs. High-resolution magnetic resonance imaging scans from 162 children (70 HEU; 92 HU) were acquired at 2-3 years of age. All HEU children were born to mothers taking antiretroviral therapy. Measures of brain structure (cortical thickness and surface area) in the prefrontal cortex regions were extracted from T1-weighted images and compared between groups using multivariate analysis of variance and linear regression. Child development, assessed using the Bayley Scales of Infant and Toddler Development-III, was correlated with cortical structure, and mediation analyses were performed. RESULTS Analyses demonstrated an association between HIV exposure and cortical thickness across the prefrontal cortex (p = 0.035). Children who were HEU had thicker cortices in prefrontal regions, with significantly greater cortical thickness in the medial orbitofrontal cortex (mOFC) bilaterally compared to HU children (3.21 mm versus 3.14 mm, p = 0.009, adjusted effect size 0.44 [95% CI 0.12 to 0.75]). Estimates held across multiple sensitivity analyses. There were no group differences in cortical surface area. Language scores, which were lower in HEU versus HU children (81.82 versus 86.25, p = 0.011, effect size - 0.44 [95% CI - 0.78 to - 0.09]), negatively correlated with prefrontal cortical thickness in both groups. Cortical thickness in the mOFC mediated the relationship between HIV exposure and poor language outcomes (Sobel test p = 0.032). CONCLUSIONS In this cohort study, exposure to HIV during pregnancy was associated with altered cortical structure in early life. Our findings indicate that differences in cortical thickness development in the prefrontal region in children who are HEU may be a pathway leading to language impairment. Longitudinal studies are needed to determine the lasting impact.
Collapse
Affiliation(s)
- Catherine J Wedderburn
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa.
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK.
- The Neuroscience Institute, University of Cape Town, Cape Town, South Africa.
| | - Shunmay Yeung
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| | - Sivenesi Subramoney
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
| | - Jean-Paul Fouche
- The Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry & Mental Health, University of Cape Town, Cape Town, South Africa
| | - Shantanu H Joshi
- Departments of Neurology, Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Katherine L Narr
- Departments of Neurology, Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Andrea M Rehman
- MRC International Statistics & Epidemiology Group, London School of Hygiene & Tropical Medicine, London, UK
| | - Annerine Roos
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
- The Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- SA MRC Unit On Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Diana M Gibb
- MRC Clinical Trials Unit, University College London, London, UK
| | - Heather J Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
- SA MRC Unit On Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Dan J Stein
- The Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry & Mental Health, University of Cape Town, Cape Town, South Africa
- SA MRC Unit On Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Kirsten A Donald
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
- The Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
90
|
Guma E, Beauchamp A, Liu S, Levitis E, Ellegood J, Pham L, Mars RB, Raznahan A, Lerch JP. Comparative neuroimaging of sex differences in human and mouse brain anatomy. eLife 2024; 13:RP92200. [PMID: 38488854 PMCID: PMC10942785 DOI: 10.7554/elife.92200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024] Open
Abstract
In vivo neuroimaging studies have established several reproducible volumetric sex differences in the human brain, but the causes of such differences are hard to parse. While mouse models are useful for understanding the cellular and mechanistic bases of sex-specific brain development, there have been no attempts to formally compare human and mouse neuroanatomical sex differences to ascertain how well they translate. Addressing this question would shed critical light on the use of the mouse as a translational model for sex differences in the human brain and provide insights into the degree to which sex differences in brain volume are conserved across mammals. Here, we use structural magnetic resonance imaging to conduct the first comparative neuroimaging study of sex-specific neuroanatomy of the human and mouse brain. In line with previous findings, we observe that in humans, males have significantly larger and more variable total brain volume; these sex differences are not mirrored in mice. After controlling for total brain volume, we observe modest cross-species congruence in the volumetric effect size of sex across 60 homologous regions (r=0.30). This cross-species congruence is greater in the cortex (r=0.33) than non-cortex (r=0.16). By incorporating regional measures of gene expression in both species, we reveal that cortical regions with greater cross-species congruence in volumetric sex differences also show greater cross-species congruence in the expression profile of 2835 homologous genes. This phenomenon differentiates primary sensory regions with high congruence of sex effects and gene expression from limbic cortices where congruence in both these features was weaker between species. These findings help identify aspects of sex-biased brain anatomy present in mice that are retained, lost, or inverted in humans. More broadly, our work provides an empirical basis for targeting mechanistic studies of sex-specific brain development in mice to brain regions that best echo sex-specific brain development in humans.
Collapse
Affiliation(s)
- Elisa Guma
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental HealthBethesdaUnited States
| | - Antoine Beauchamp
- Mouse Imaging CentreTorontoCanada
- The Hospital for Sick ChildrenTorontoCanada
- Department of Medical Biophysics, University of TorontoTorontoCanada
| | - Siyuan Liu
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental HealthBethesdaUnited States
| | - Elizabeth Levitis
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental HealthBethesdaUnited States
| | - Jacob Ellegood
- Mouse Imaging CentreTorontoCanada
- The Hospital for Sick ChildrenTorontoCanada
| | - Linh Pham
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental HealthBethesdaUnited States
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical 15 Neurosciences, University of OxfordOxfordUnited Kingdom
| | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical 15 Neurosciences, University of OxfordOxfordUnited Kingdom
- Donders Institute for Brain, Cognition and Behaviour, Radboud University NijmegenNijmegenNetherlands
| | - Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental HealthBethesdaUnited States
| | - Jason P Lerch
- Mouse Imaging CentreTorontoCanada
- The Hospital for Sick ChildrenTorontoCanada
- Department of Medical Biophysics, University of TorontoTorontoCanada
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical 15 Neurosciences, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
91
|
Yoo S, Jang Y, Hong SJ, Park H, Valk SL, Bernhardt BC, Park BY. Whole-brain structural connectome asymmetry in autism. Neuroimage 2024; 288:120534. [PMID: 38340881 DOI: 10.1016/j.neuroimage.2024.120534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/28/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024] Open
Abstract
Autism spectrum disorder is a common neurodevelopmental condition that manifests as a disruption in sensory and social skills. Although it has been shown that the brain morphology of individuals with autism is asymmetric, how this differentially affects the structural connectome organization of each hemisphere remains under-investigated. We studied whole-brain structural connectivity-based brain asymmetry in individuals with autism using diffusion magnetic resonance imaging obtained from the Autism Brain Imaging Data Exchange initiative. By leveraging dimensionality reduction techniques, we constructed low-dimensional representations of structural connectivity and calculated their asymmetry index. Comparing the asymmetry index between individuals with autism and neurotypical controls, we found atypical structural connectome asymmetry in the sensory and default-mode regions, particularly showing weaker asymmetry towards the right hemisphere in autism. Network communication provided topological underpinnings by demonstrating that the inferior temporal cortex and limbic and frontoparietal regions showed reduced global network communication efficiency and decreased send-receive network navigation in the inferior temporal and lateral visual cortices in individuals with autism. Finally, supervised machine learning revealed that structural connectome asymmetry could be used as a measure for predicting communication-related autistic symptoms and nonverbal intelligence. Our findings provide insights into macroscale structural connectome alterations in autism and their topological underpinnings.
Collapse
Affiliation(s)
- Seulki Yoo
- Convergence Research Institute, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yurim Jang
- Artificial Intelligence Convergence Research Center, Inha University, Incheon, Republic of Korea
| | - Seok-Jun Hong
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea; Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
| | - Hyunjin Park
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea; School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sofie L Valk
- Forschungszentrum Julich, Germany; Max Planck Institute for Cognitive and Brain Sciences, Leipzig, Germany; Systems Neuroscience, Heinrich Heine University, Duesseldorf, Germany
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Bo-Yong Park
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea; Department of Data Science, Inha University, Incheon, Republic of Korea; Department of Statistics and Data Science, Inha University, Incheon, Republic of Korea.
| |
Collapse
|
92
|
Falter-Wagner CM, Kiefer CM, Bailey AJ, Vogeley K, Dammers J. Perceptual Grouping in Autism Spectrum Disorder: An Exploratory Magnetoencephalography Study. J Autism Dev Disord 2024; 54:1101-1112. [PMID: 36512195 PMCID: PMC10907473 DOI: 10.1007/s10803-022-05844-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2022] [Indexed: 12/15/2022]
Abstract
Visual information is organised according to visual grouping principles. In visual grouping tasks individuals with ASD have shown equivocal performance. We explored neural correlates of Gestalt grouping in individuals with and without ASD. Neuromagnetic activity of individuals with (15) and without (18) ASD was compared during a visual grouping task testing grouping by proximity versus similarity. Individuals without ASD showed stronger evoked responses with earlier peaks in response to both grouping types indicating an earlier neuronal differentiation between grouping principles in individuals without ASD. In contrast, individuals with ASD showed particularly prolonged processing of grouping by similarity suggesting a high demand of neural resources. The neuronal processing differences found could explain less efficient grouping performance observed behaviourally in ASD.
Collapse
Affiliation(s)
| | - Christian M Kiefer
- Institute of Neuroscience and Medicine, INM-4, Forschungszentrum Jülich, Jülich, Germany
- Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen University, Aachen, Germany
| | - Anthony J Bailey
- UBC Department of Psychiatry, University of British Columbia, 2255 Westbrook Mall, Vancouver, BC, V6T 2A1, Canada
| | - Kai Vogeley
- Department of Psychiatry and Psychotherapy, University Hospital Cologne, Cologne, Germany
- Institute of Neurosciences and Medicine-Cognitive Neuroscience, INM-3, Forschungszentrum Jülich, Jülich, Germany
| | - Jürgen Dammers
- Institute of Neuroscience and Medicine, INM-4, Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
93
|
Kim JS, Han JW, Oh DJ, Suh SW, Kwon MJ, Park J, Jo S, Kim JH, Kim KW. Effects of sleep quality on diurnal variation of brain volume in older adults: A retrospective cross-sectional study. Neuroimage 2024; 288:120533. [PMID: 38340880 DOI: 10.1016/j.neuroimage.2024.120533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024] Open
Abstract
AIM Brain volume is influenced by several factors that can change throughout the day. In addition, most of these factors are influenced by sleep quality. This study investigated diurnal variation in brain volume and its relation to overnight sleep quality. METHODS We enrolled 1,003 healthy Koreans without any psychiatric disorders aged 60 years or older. We assessed sleep quality and average wake time using the Pittsburgh Sleep Quality Index, and divided sleep quality into good, moderate, and poor groups. We estimated the whole and regional brain volumes from three-dimensional T1-weighted brain MRI scans. We divided the interval between average wake-up time and MRI acquisition time (INT) into tertile groups: short (INT1), medium (INT2), and long (INT3). RESULTS Whole and regional brain volumes showed no significance with respect to INT. However, the `interaction between INT and sleep quality showed significance for whole brain, cerebral gray matter, and cerebrospinal fluid volumes (p < .05). The INT2 group showed significantly lower volumes of whole brain, whole gray matter, cerebral gray matter, cortical gray matter, subcortical gray matter, and cerebrospinal fluid than the INT1 and INT3 groups only in the individuals with good sleep quality. CONCLUSION Human brain volume changes significantly within a day associated with overnight sleep in the individuals with good sleep quality.
Collapse
Affiliation(s)
- Jun Sung Kim
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Ji Won Han
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea; Department of Psychiatry, Seoul National University, College of Medicine, Seoul, South Korea
| | - Dae Jong Oh
- Department of Psychiatry, Seoul National University, College of Medicine, Seoul, South Korea; Department of Psychiatry, SMG-SNU Boramae Medical Center, Seoul Korea
| | - Seung Wan Suh
- Department of Psychiatry, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Min Jeong Kwon
- Department of Brain and Cognitive Science, Seoul National University College of Natural Sciences, Seoul, South Korea
| | - Jieun Park
- Department of Brain and Cognitive Science, Seoul National University College of Natural Sciences, Seoul, South Korea
| | - Sungman Jo
- Department of Health Science and Technology, Graduate school of convergence science and technology, Seoul National University, Seoul, South Korea
| | - Jae Hyoung Kim
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Ki Woong Kim
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea; Department of Psychiatry, Seoul National University, College of Medicine, Seoul, South Korea; Department of Brain and Cognitive Science, Seoul National University College of Natural Sciences, Seoul, South Korea; Department of Health Science and Technology, Graduate school of convergence science and technology, Seoul National University, Seoul, South Korea.
| |
Collapse
|
94
|
Kumar M, Goyal P, Sagar R, Kumaran SS. Gray matter biomarkers for major depressive disorder and manic disorder using logistic regression. J Psychiatr Res 2024; 171:177-184. [PMID: 38295451 DOI: 10.1016/j.jpsychires.2024.01.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/02/2024]
Abstract
The study investigates morphometric changes using surface-based measures and logistic regression in Major depressive-disorder (MDD) and Manic-disorder patients as compared to controls. MDD (n = 21) and manic (n = 20) subjects were recruited from psychiatric clinics, along with 19 healthy-controls from local population, after structured and semi-structured clinical interview (DSM-IV, brief Psychotic-Rating Scale (BPRS), Young Mania Rating Scale (YMRS), Hamilton depression rating scale (HDRS), cognitive function by postgraduate Institute Battery of Brain Dysfunction (PGIBBD)). Using 3D T1-weighted images, gray matter (GM) cortical thickness and GM-based morphometric signatures (using logistic regression) were compared among MDD, manic disorder and controls using analysis of covariance (ANCOVA). No significant difference was found between the MDD and manic disorder patients. When compared to controls, cortical thinning was observed in bilateral rostral middle frontal gyrus and parsopercularis, right lateral occipital cortex, right lingual gyrus in MDD; and bilateral rostral middle frontal and superior frontal gyrus, right middle temporal gyrus, left supramarginal and left precentral gyrus in Manic disorders. Logistic regression analysis exhibited GM cortical thinning in the bilateral parsopercularis, right lateral occipital cortex and lingual gyrus in MDD; and bilateral rostral middle, superior frontal gyri, right middle temporal gyrus in Manic with a sensitivity and specificity of 85.7 % and 94.7 % and 90.0 % and 94.7 %, respectively in comparison with controls. Both groups exhibited GM loss in bilateral rostral middle frontal gyrus brain regions compared to controls. Multivariate analysis revealed common changes in GM in MDD and manic disorders associated with mood temperament, but differences when compared to controls.
Collapse
Affiliation(s)
- Mukesh Kumar
- Department of NMR, All India Institute of Medical Sciences, New Delhi, India.
| | - Prashant Goyal
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi, India.
| | - Rajesh Sagar
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi, India.
| | - S Senthil Kumaran
- Department of NMR, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
95
|
Lock C, Tan NSM, Long IJ, Keong NC. Neuroimaging data repositories and AI-driven healthcare-Global aspirations vs. ethical considerations in machine learning models of neurological disease. Front Artif Intell 2024; 6:1286266. [PMID: 38440234 PMCID: PMC10910099 DOI: 10.3389/frai.2023.1286266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/27/2023] [Indexed: 03/06/2024] Open
Abstract
Neuroimaging data repositories are data-rich resources comprising brain imaging with clinical and biomarker data. The potential for such repositories to transform healthcare is tremendous, especially in their capacity to support machine learning (ML) and artificial intelligence (AI) tools. Current discussions about the generalizability of such tools in healthcare provoke concerns of risk of bias-ML models underperform in women and ethnic and racial minorities. The use of ML may exacerbate existing healthcare disparities or cause post-deployment harms. Do neuroimaging data repositories and their capacity to support ML/AI-driven clinical discoveries, have both the potential to accelerate innovative medicine and harden the gaps of social inequities in neuroscience-related healthcare? In this paper, we examined the ethical concerns of ML-driven modeling of global community neuroscience needs arising from the use of data amassed within neuroimaging data repositories. We explored this in two parts; firstly, in a theoretical experiment, we argued for a South East Asian-based repository to redress global imbalances. Within this context, we then considered the ethical framework toward the inclusion vs. exclusion of the migrant worker population, a group subject to healthcare inequities. Secondly, we created a model simulating the impact of global variations in the presentation of anosmia risks in COVID-19 toward altering brain structural findings; we then performed a mini AI ethics experiment. In this experiment, we interrogated an actual pilot dataset (n = 17; 8 non-anosmic (47%) vs. 9 anosmic (53%) using an ML clustering model. To create the COVID-19 simulation model, we bootstrapped to resample and amplify the dataset. This resulted in three hypothetical datasets: (i) matched (n = 68; 47% anosmic), (ii) predominant non-anosmic (n = 66; 73% disproportionate), and (iii) predominant anosmic (n = 66; 76% disproportionate). We found that the differing proportions of the same cohorts represented in each hypothetical dataset altered not only the relative importance of key features distinguishing between them but even the presence or absence of such features. The main objective of our mini experiment was to understand if ML/AI methodologies could be utilized toward modelling disproportionate datasets, in a manner we term "AI ethics." Further work is required to expand the approach proposed here into a reproducible strategy.
Collapse
Affiliation(s)
- Christine Lock
- Department of Neurosurgery, National Neuroscience Institute, Singapore, Singapore
| | - Nicole Si Min Tan
- Department of Neurosurgery, National Neuroscience Institute, Singapore, Singapore
| | - Ian James Long
- Department of Neurosurgery, National Neuroscience Institute, Singapore, Singapore
| | - Nicole C. Keong
- Department of Neurosurgery, National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
96
|
Hostetler N, Tavares TP, Ritchie MB, Oliver LD, Chen VV, Greening S, Finger EC, Mitchell DGV. Prefrontal cortex structural and developmental associations with callous-unemotional traits and aggression. Sci Rep 2024; 14:4087. [PMID: 38374428 PMCID: PMC10876571 DOI: 10.1038/s41598-024-54481-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 02/13/2024] [Indexed: 02/21/2024] Open
Abstract
Youths with high levels of callous-unemotional (CU) traits and aggression are at an increased risk for developing antisocial behaviours into adulthood. In this population, neurostructural grey matter abnormalities have been observed in the prefrontal cortex. However, the directionality of these associations is inconsistent, prompting some to suggest they may vary across development. Although similar neurodevelopmental patterns have been observed for other disorders featuring emotional and behavioural dysregulation, few studies have tested this hypothesis for CU traits, and particularly not for aggression subtypes. The current study sought to examine grey matter correlates of CU traits and aggression (including its subtypes), and then determine whether these associations varied by age. Fifty-four youths (10-19 years old) who were characterized for CU traits and aggression underwent MRI. Grey matter volume and surface area within the anterior cingulate cortex was positively associated with CU traits. The correlation between CU traits and medial orbitofrontal cortex (mOFC) volume varied significantly as a function of age, as did the correlation between reactive aggression and mOFC surface area. These associations became more positive with age. There were no significant findings for proactive/total aggression. Results are interpreted considering the potential for delayed cortical maturation in youths with high CU traits/aggression.
Collapse
Affiliation(s)
- Nathan Hostetler
- Brain and Mind Institute, Western Interdisciplinary Research Building, Room 3190, Western University, London, ON, N6A 5B7, Canada
| | - Tamara P Tavares
- Brain and Mind Institute, Western Interdisciplinary Research Building, Room 3190, Western University, London, ON, N6A 5B7, Canada
- Neuroscience and Mental Health Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mary B Ritchie
- Brain and Mind Institute, Western Interdisciplinary Research Building, Room 3190, Western University, London, ON, N6A 5B7, Canada
- Department of Psychology, Western University, London, ON, Canada
| | - Lindsay D Oliver
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Vanessa V Chen
- Brain and Mind Institute, Western Interdisciplinary Research Building, Room 3190, Western University, London, ON, N6A 5B7, Canada
| | - Steven Greening
- Department of Psychology, University of Manitoba, Winnipeg, MB, Canada
| | - Elizabeth C Finger
- Robarts Institute, Western University, 100 Perth Drive, London, ON, Canada
- Lawson Health Research Institute, 268 Grosvenor Street, London, ON, Canada
- Parkwood Institute, St. Josephs Health Care, London, ON, Canada
| | - Derek G V Mitchell
- Brain and Mind Institute, Western Interdisciplinary Research Building, Room 3190, Western University, London, ON, N6A 5B7, Canada.
- Department of Psychology, Western University, London, ON, Canada.
- Department of Psychiatry, Western University, London, ON, Canada.
- Department of Anatomy & Cell Biology, Western University, London, ON, Canada.
| |
Collapse
|
97
|
Dönmezler S, Sönmez D, Yılbaş B, Öztürk Hİ, İskender G, Kurt İ. Thalamic nuclei volume differences in schizophrenia patients and healthy controls using probabilistic mapping: A comparative analysis. Schizophr Res 2024; 264:266-271. [PMID: 38198878 DOI: 10.1016/j.schres.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/13/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024]
Abstract
AIM We aimed to investigate potential discrepancies in the volume of thalamic nuclei between individuals with schizophrenia and healthy controls. METHODS The imaging data for this study were obtained from the MCICShare data repository within SchizConnect. We employed probabilistic mapping technique developed by Iglesias et al. (2018). The analytical component entailed volumetric segmentation of the thalamus using the FreeSurfer image analysis suite. Our analysis focused on evaluating the differences in the volumes of various thalamic nuclei groups within the thalami, specifically the anterior, intralaminar, medial, posterior, lateral, and ventral groups in both the right and left thalami, between schizophrenia patients and healthy controls. We employed MANCOVA to analyse these dependent variables (volumes of 12 distinct thalamic nuclei groups), with diagnosis (SCZ vs. HCs) as the main explanatory variable, while controlling for covariates such as eTIV and age. RESULTS The assumptions of MANCOVA, including the homogeneity of covariance matrices, were met. Specific univariate tests for the right thalamus revealed significant differences in the medial (F[1, 200] = 26.360, p < 0.001), and the ventral groups (F[1, 200] = 4.793, p = 0.030). For the left thalamus, the medial (F[1, 200] = 22.527, p < 0.001); posterior (F[1, 200] = 8.227, p = 0.005), lateral (F[1, 200] = 7.004, p = 0.009), and ventral groups (F[1, 200] = 9.309, p = 0.003) showed significant differences. CONCLUSION These findings suggest that particular thalamic nuclei groups in both the right and left thalami may be most affected in schizophrenia, with more pronounced differences observed in the left thalamic nuclei. FUNDINGS The authors received no financial support for the research.
Collapse
Affiliation(s)
- Süleyman Dönmezler
- Sanko University, School of Medicine, Department of Psychiatry, Gaziantep, Turkey.
| | - Doğuş Sönmez
- Bakirkoy Training and Research Hospital for Psychiatry, Neurology and Neurosurgery, Department of Psychiatry, Istanbul, Turkey
| | - Barış Yılbaş
- Sanko University, School of Medicine, Department of Psychiatry, Gaziantep, Turkey
| | - Halil İbrahim Öztürk
- Sanko University, School of Medicine, Department of Psychiatry, Gaziantep, Turkey
| | - Gizem İskender
- Istanbul Prof. Dr. Cemil Tascioglu City Hospital, Department of Psychiatry, Istanbul, Turkey
| | - İmren Kurt
- Başakşehir Çam and Sakura City Hospital, Department of Psychiatry, Istanbul, Turkey
| |
Collapse
|
98
|
Slušná D, Kohli JS, Hau J, Álvarez-Linera Prado J, Linke AC, Hinzen W. Functional dysregulation of the auditory cortex in bilateral perisylvian polymicrogyria: Multiparametric case analysis of the absent speech phenotype. Cortex 2024; 171:423-434. [PMID: 38109835 DOI: 10.1016/j.cortex.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 12/20/2023]
Abstract
The absence of speech is a clinical phenotype seen across neurodevelopmental syndromes, offering insights for neural language models. We present a case of bilateral perisylvian polymicrogyria (BPP) and complete absence of speech with considerable language comprehension and production difficulties. We extensively characterized the auditory speech perception and production circuitry by employing a multimodal neuroimaging approach. Results showed extensive cortical thickening in motor and auditory-language regions. The auditory cortex lacked sensitivity to speech stimuli despite relatively preserved thalamic projections yet had no intrinsic functional organization. Subcortical structures implicated in early stages of processing exhibited heightened sensitivity to speech. The arcuate fasciculus, a suggested marker of language in BPP, showed similar volume and integrity to a healthy control. The frontal aslant tract, linked to oromotor function, was partially reconstructed. These findings highlight the importance of assessing the auditory cortex beyond speech production structures to understand absent speech in BPP. Despite profound cortical alterations, the intrinsic motor network and motor-speech pathways remained largely intact. This case underscores the need for comprehensive phenotyping using multiple MRI modalities to uncover causes of severe disruption in language development.
Collapse
Affiliation(s)
- Dominika Slušná
- Department of Translation and Language Sciences, Campus Poblenou, Pompeu Fabra University, Barcelona, Spain.
| | - Jiwandeep S Kohli
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, CA, USA
| | - Janice Hau
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, CA, USA
| | | | - Annika C Linke
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, CA, USA
| | - Wolfram Hinzen
- Department of Translation and Language Sciences, Campus Poblenou, Pompeu Fabra University, Barcelona, Spain; Institució Catalana de Recerca I Estudis Avancats, ICREA, Barcelona, Spain
| |
Collapse
|
99
|
Rundfeldt HC, Lee CM, Lee H, Jung KH, Chang H, Kim HJ. Cerebral perfusion simulation using realistically generated synthetic trees for healthy and stroke patients. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 244:107956. [PMID: 38061114 DOI: 10.1016/j.cmpb.2023.107956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND AND OBJECTIVE Cerebral vascular diseases are among the most burdensome diseases faced by society. However, investigating the pathophysiology of diseases as well as developing future treatments still relies heavily on expensive in-vivo and in-vitro studies. The generation of realistic, patient-specific models of the cerebrovascular system capable of simulating hemodynamics and perfusion promises the ability to simulate diseased states, therefore accelerating development cycles using in silico studies and opening opportunities for the individual assessment of diseased states, treatment planning, and the prediction of outcomes. By providing a patient-specific, anatomically detailed and validated model of the human cerebral vascular system, we aim to provide the basis for future in silico investigations of the cerebral physiology and pathology. METHODS In this retrospective study, a processing pipeline for patient-specific quantification of cerebral perfusion was developed and applied to healthy individuals and a stroke patient. Major arteries are segmented from 3T MR angiography data. A synthetic tree generation algorithm titled tissue-growth based optimization (GBO)1 is used to extend vascular trees beyond the imaging resolution. To investigate the anatomical accuracy of the generated trees, morphological parameters are compared against those of 7 T MRI, 9.4 T MRI, and dissection data. Using the generated vessel model, hemodynamics and perfusion are simulated by solving one-dimensional blood flow equations combined with Darcy flow equations. RESULTS Morphological data of three healthy individuals (mean age 47 years ± 15.9 [SD], 2 female) was analyzed. Bifurcation and physiological characteristics of the synthetically generated vessels are comparable to those of dissection data. The inability of MRI based segmentation to resolve small branches and the small volume investigated cause a mismatch in the comparison to MRI data. Cerebral perfusion was estimated for healthy individuals and a stroke patient. The simulated perfusion is compared against Arterial-Spin-Labeling MRI perfusion data. Good qualitative agreement is found between simulated and measured cerebral blood flow (CBF)2. Ischemic regions are predicted well, however ischemia severity is overestimated. CONCLUSIONS GBO successfully generates detailed cerebral vascular models with realistic morphological parameters. Simulations based on the resulting networks predict perfusion territories and ischemic regions successfully.
Collapse
Affiliation(s)
- Hans Christian Rundfeldt
- Korea Advanced Institute of Science and Technology, Mechanical Engineering, Republic of Korea; Karlsruhe Institute of Technology, Mechanical Engineering, Germany
| | - Chang Min Lee
- Korea Advanced Institute of Science and Technology, Mechanical Engineering, Republic of Korea
| | - Hanyoung Lee
- Chung-ang University, College of Pharmacy, Republic of Korea
| | - Keun-Hwa Jung
- Seoul National University Hospital, Department of Neurology, Republic of Korea
| | - Hyeyeon Chang
- Konyang University Hospital, Department of Neurology, Republic of Korea
| | - Hyun Jin Kim
- Korea Advanced Institute of Science and Technology, Mechanical Engineering, Republic of Korea.
| |
Collapse
|
100
|
Khanna AR, Muñoz W, Kim YJ, Kfir Y, Paulk AC, Jamali M, Cai J, Mustroph ML, Caprara I, Hardstone R, Mejdell M, Meszéna D, Zuckerman A, Schweitzer J, Cash S, Williams ZM. Single-neuronal elements of speech production in humans. Nature 2024; 626:603-610. [PMID: 38297120 PMCID: PMC10866697 DOI: 10.1038/s41586-023-06982-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/14/2023] [Indexed: 02/02/2024]
Abstract
Humans are capable of generating extraordinarily diverse articulatory movement combinations to produce meaningful speech. This ability to orchestrate specific phonetic sequences, and their syllabification and inflection over subsecond timescales allows us to produce thousands of word sounds and is a core component of language1,2. The fundamental cellular units and constructs by which we plan and produce words during speech, however, remain largely unknown. Here, using acute ultrahigh-density Neuropixels recordings capable of sampling across the cortical column in humans, we discover neurons in the language-dominant prefrontal cortex that encoded detailed information about the phonetic arrangement and composition of planned words during the production of natural speech. These neurons represented the specific order and structure of articulatory events before utterance and reflected the segmentation of phonetic sequences into distinct syllables. They also accurately predicted the phonetic, syllabic and morphological components of upcoming words and showed a temporally ordered dynamic. Collectively, we show how these mixtures of cells are broadly organized along the cortical column and how their activity patterns transition from articulation planning to production. We also demonstrate how these cells reliably track the detailed composition of consonant and vowel sounds during perception and how they distinguish processes specifically related to speaking from those related to listening. Together, these findings reveal a remarkably structured organization and encoding cascade of phonetic representations by prefrontal neurons in humans and demonstrate a cellular process that can support the production of speech.
Collapse
Affiliation(s)
- Arjun R Khanna
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - William Muñoz
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Yoav Kfir
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Angelique C Paulk
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mohsen Jamali
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jing Cai
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Martina L Mustroph
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Irene Caprara
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Richard Hardstone
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mackenna Mejdell
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Domokos Meszéna
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Jeffrey Schweitzer
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sydney Cash
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ziv M Williams
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA.
- Harvard Medical School, Program in Neuroscience, Boston, MA, USA.
| |
Collapse
|