51
|
Design and synthesis of nature-inspired chromenopyrroles as potential modulators of mitochondrial metabolism. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02669-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
52
|
Hayashi M, Yamada S, Kurimoto K, Tanabe H, Hirabayashi S, Sonohara F, Inokawa Y, Takami H, Kanda M, Tanaka C, Nakayama G, Koike M, Kodera Y. miR-23b-3p Plays an Oncogenic Role in Hepatocellular Carcinoma. Ann Surg Oncol 2020; 28:3416-3426. [PMID: 33140250 DOI: 10.1245/s10434-020-09283-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Reports show miR-23b to be a cancer-related biomarker in various cancer types. Interestingly, it has a dual role of oncogenic and tumor-suppressive functions, depending on the cancer type. This study focused on the unknown association of miR-23b-3p with hepatocellular carcinoma (HCC). METHODS Expression of miR-23b-3p was measured in nine HCC cell lines and 125 resected human HCC samples by TaqMan microRNA assays. To detect its downstream target, miR-23b-3p mimic and inhibitor constructs were transfected and analyzed. RESULTS HepG2, a high miR-23b-3p-expressing cell line, was transfected with a miR-23b-3p inhibitor construct, whereas SK-Hep1, a low miR-23b-3p-expressing cell line, was transfected with a mimic construct. Proliferation of HCC cells was activated by miR-23b-3p overexpression and diminished by its knockdown. Then, 125 clinical HCC samples were examined to measure miR-23b-3p expression. Tumor expression of miR-23b-3p was upregulated in 48 cases (38%) and downregulated in 77 cases (62%). The upregulated cases were correlated with elderly patients (P = 0.015). These patients also showed significantly poor overall survival [hazard ratio (HR), 3.10; 95% conflidence interval (CI), 1.57-6.29; P = 0.001] in a multivariate analysis. Furthermore, mitochondrial metabolism-related genes (MICU3 and AUH) were detected as specific binding targets. CONCLUSION The study showed that miR-23b-3p functions as an oncogenic microRNA in HCC cell lines. Its overexpression in resected HCC tissues was a significant prognostic factor of overall survival. Both MICU3 and AUH may be candidate gene targets of miR-23b-3p.
Collapse
Affiliation(s)
- Masamichi Hayashi
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Suguru Yamada
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Keisuke Kurimoto
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Tanabe
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sho Hirabayashi
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Fuminori Sonohara
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshikuni Inokawa
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideki Takami
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mitsuro Kanda
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Chie Tanaka
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Goro Nakayama
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiko Koike
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
53
|
Ammer LM, Vollmann-Zwerenz A, Ruf V, Wetzel CH, Riemenschneider MJ, Albert NL, Beckhove P, Hau P. The Role of Translocator Protein TSPO in Hallmarks of Glioblastoma. Cancers (Basel) 2020; 12:cancers12102973. [PMID: 33066460 PMCID: PMC7602186 DOI: 10.3390/cancers12102973] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 12/18/2022] Open
Abstract
Simple Summary The translocator protein (TSPO) has been under extensive investigation as a specific marker in positron emission tomography (PET) to visualize brain lesions following injury or disease. In recent years, TSPO is increasingly appreciated as a potential novel therapeutic target in cancer. In Glioblastoma (GBM), the most malignant primary brain tumor, TSPO expression levels are strongly elevated and scientific evidence accumulates, hinting at a pivotal role of TSPO in tumorigenesis and glioma progression. The aim of this review is to summarize the current literature on TSPO with respect to its role both in diagnostics and especially with regard to the critical hallmarks of cancer postulated by Hanahan and Weinberg. Overall, our review contributes to a better understanding of the functional significance of TSPO in Glioblastoma and draws attention to TSPO as a potential modulator of treatment response and thus an important factor that may influence the clinical outcome of GBM. Abstract Glioblastoma (GBM) is the most fatal primary brain cancer in adults. Despite extensive treatment, tumors inevitably recur, leading to an average survival time shorter than 1.5 years. The 18 kDa translocator protein (TSPO) is abundantly expressed throughout the body including the central nervous system. The expression of TSPO increases in states of inflammation and brain injury due to microglia activation. Not least due to its location in the outer mitochondrial membrane, TSPO has been implicated with a broad spectrum of functions. These include the regulation of proliferation, apoptosis, migration, as well as mitochondrial functions such as mitochondrial respiration and oxidative stress regulation. TSPO is frequently overexpressed in GBM. Its expression level has been positively correlated to WHO grade, glioma cell proliferation, and poor prognosis of patients. Several lines of evidence indicate that TSPO plays a functional part in glioma hallmark features such as resistance to apoptosis, invasiveness, and proliferation. This review provides a critical overview of how TSPO could regulate several aspects of tumorigenesis in GBM, particularly in the context of the hallmarks of cancer proposed by Hanahan and Weinberg in 2011.
Collapse
Affiliation(s)
- Laura-Marie Ammer
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, University Hospital Regensburg, 93053 Regensburg, Germany; (L.-M.A.); (A.V.-Z.)
| | - Arabel Vollmann-Zwerenz
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, University Hospital Regensburg, 93053 Regensburg, Germany; (L.-M.A.); (A.V.-Z.)
| | - Viktoria Ruf
- Center for Neuropathology and Prion Research, Ludwig Maximilians University of Munich, 81377 Munich, Germany;
| | - Christian H. Wetzel
- Molecular Neurosciences, Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany;
| | | | - Nathalie L. Albert
- Department of Nuclear Medicine, Ludwig-Maximilians-University Munich, 81377 Munich, Germany;
| | - Philipp Beckhove
- Regensburg Center for Interventional Immunology (RCI) and Department Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany;
| | - Peter Hau
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, University Hospital Regensburg, 93053 Regensburg, Germany; (L.-M.A.); (A.V.-Z.)
- Correspondence:
| |
Collapse
|
54
|
Involvement of Mitochondrial Mechanisms in the Cytostatic Effect of Desethylamiodarone in B16F10 Melanoma Cells. Int J Mol Sci 2020; 21:ijms21197346. [PMID: 33027919 PMCID: PMC7582344 DOI: 10.3390/ijms21197346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/24/2022] Open
Abstract
Previously, we showed that desethylamiodarone (DEA), a major metabolite of the widely used antiarrhythmic drug amiodarone, has direct mitochondrial effects. We hypothesized that these effects account for its observed cytotoxic properties and ability to limit in vivo metastasis. Accordingly, we examined DEA’s rapid (3–12 h) cytotoxicity and its early (3–6 h) effects on various mitochondrial processes in B16F10 melanoma cells. DEA did not affect cellular oxygen radical formation, as determined using two fluorescent dyes. However, it did decrease the mitochondrial transmembrane potential, as assessed by JC-1 dye and fluorescence microscopy. It also induced mitochondrial fragmentation, as visualized by confocal fluorescence microscopy. DEA decreased maximal respiration, ATP production, coupling efficiency, glycolysis, and non-mitochondrial oxygen consumption measured by a Seahorse cellular energy metabolism analyzer. In addition, it induced a cyclosporine A–independent mitochondrial permeability transition, as determined by Co2+-mediated calcein fluorescence quenching measured using a high-content imaging system. DEA also caused outer mitochondrial membrane permeabilization, as assessed by the immunoblot analysis of cytochrome C, apoptosis inducing factor, Akt, phospho-Akt, Bad, and phospho-Bad. All of these data supported our initial hypothesis.
Collapse
|
55
|
Fujita M, Imadome K, Somasundaram V, Kawanishi M, Karasawa K, Wink DA. Metabolic characterization of aggressive breast cancer cells exhibiting invasive phenotype: impact of non-cytotoxic doses of 2-DG on diminishing invasiveness. BMC Cancer 2020; 20:929. [PMID: 32993545 PMCID: PMC7525976 DOI: 10.1186/s12885-020-07414-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/15/2020] [Indexed: 01/08/2023] Open
Abstract
Background Metabolic reprogramming is being recognized as a fundamental hallmark of cancer, and efforts to identify drugs that can target cancer metabolism are underway. In this study, we used human breast cancer (BC) cell lines and established their invading phenotype (INV) collected from transwell inserts to compare metabolome differences and evaluate prognostic significance of the metabolome in aggressive BC invasiveness. Methods The invasiveness of seven human BC cell lines were compared using the transwell invasion assay. Among these, INV was collected from SUM149, which exhibited the highest invasiveness. Levels of metabolites in INV were compared with those of whole cultured SUM149 cells (WCC) using CE-TOFMS. The impact of glycolysis in INV was determined by glucose uptake assay using fluorescent derivative of glucose (2-NBDG), and significance of glycolysis, or tricarboxylic acid cycle (TCA) and electron transport chain (ETC) in the invasive process were further determined in aggressive BC cell lines, SUM149, MDA-MB-231, HCC1937, using invasion assays in the presence or absence of inhibitors of glycolysis, TCA cycle or ETC. Results SUM149 INV sub-population exhibited a persistent hyperinvasive phenotype. INV were hyper-glycolytic with increased glucose (2-NBDG) uptake; diminished glucose-6-phosphate (G6P) levels but elevated pyruvate and lactate, along with higher expression of phosphorylated-pyruvate dehydrogenase (pPDH) compared to WCC. Notably, inhibiting of glycolysis with lower doses of 2-DG (1 mM), non-cytotoxic to MDA-MB-231 and HCC1937, was effective in diminishing invasiveness of aggressive BC cell lines. In contrast, 3-Nitropropionic acid (3-NA), an inhibitor of succinate dehydrogenase, the enzyme that oxidizes succinate to fumarate in TCA cycle, and functions as complex II of ETC, had no significant effect on their invasiveness, although levels of TCA metabolites or detection of mitochondrial membrane potential with JC-1 staining, indicated that INV cells originally had functional TCA cycles and membrane potential. Conclusions Hyper-glycolytic phenotype of invading cells caters to rapid energy production required for invasion while TCA cycle/ETC cater to cellular energy needs for sustenance in aggressive BC. Lower, non-cytotoxic doses of 2-DG can hamper invasion and can potentially be used as an adjuvant with other anti-cancer therapies without the usual side-effects associated with cytotoxic doses.
Collapse
Affiliation(s)
- Mayumi Fujita
- Department of Basic Medical Science for Radiation Damages, National Institute of Radiological Sciences, NIRS, National Institute for Quantum and Radiological Science and Technology, QST, 4-9-1, Anagawa, Inage-ku, Chiba-shi, Chiba-ken, Japan.
| | - Kaori Imadome
- Department of Basic Medical Science for Radiation Damages, National Institute of Radiological Sciences, NIRS, National Institute for Quantum and Radiological Science and Technology, QST, 4-9-1, Anagawa, Inage-ku, Chiba-shi, Chiba-ken, Japan
| | - Veena Somasundaram
- Laboratory of Cancer Immunometabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Miki Kawanishi
- Department of Radiation Oncology, Tokyo Women's Medical University, Tokyo, Japan
| | - Kumiko Karasawa
- Department of Radiation Oncology, Tokyo Women's Medical University, Tokyo, Japan
| | - David A Wink
- Laboratory of Cancer Immunometabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| |
Collapse
|
56
|
Ortega MA, Fraile-Martínez O, Guijarro LG, Casanova C, Coca S, Álvarez-Mon M, Buján J, García-Honduvilla N, Asúnsolo Á. The Regulatory Role of Mitochondrial MicroRNAs (MitomiRs) in Breast Cancer: Translational Implications Present and Future. Cancers (Basel) 2020; 12:cancers12092443. [PMID: 32872155 PMCID: PMC7564393 DOI: 10.3390/cancers12092443] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Mitochondrial microRNAs (mitomiRs) are an emerging field of study in a wide range of tumours including breast cancer. By targeting mitochondrial, or non-mitochondrial products, mitomiRs are able to regulate the functions of this organelle, thus controlling multiple carcinogenic processes. The knowledge of this system may provide a novel approach for targeted therapies, as potential biomarkers or helping in the diagnosis of such a complex malignancy. Abstract Breast cancer is the most prevalent and incident female neoplasm worldwide. Although survival rates have considerably improved, it is still the leading cause of cancer-related mortality in women. MicroRNAs are small non-coding RNA molecules that regulate the posttranscriptional expression of a wide variety of genes. Although it is usually located in the cytoplasm, several studies have detected a regulatory role of microRNAs in other cell compartments such as the nucleus or mitochondrion, known as “mitomiRs”. MitomiRs are essential modulators of mitochondrion tasks and their abnormal expression has been linked to the aetiology of several human diseases related to mitochondrial dysfunction, including breast cancer. This review aims to examine basic knowledge of the role of mitomiRs in breast cancer and discusses their prospects as biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, Unit of Histology and Pathology, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (O.F.-M.); (C.C.); (S.C.); (M.Á.-M.); (J.B.); (N.G.-H.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28806 Alcalá de Henares, Madrid, Spain
- Correspondence: ; Tel.: +34-91-885-4540; Fax: +34-91-885-4885
| | - Oscar Fraile-Martínez
- Department of Medicine and Medical Specialities, Unit of Histology and Pathology, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (O.F.-M.); (C.C.); (S.C.); (M.Á.-M.); (J.B.); (N.G.-H.)
| | - Luis G. Guijarro
- Department of System Biology, Unit of Biochemistry and Molecular Biology (CIBEREHD), University of Alcalá, 28801 Alcalá de Henares, Spain;
| | - Carlos Casanova
- Department of Medicine and Medical Specialities, Unit of Histology and Pathology, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (O.F.-M.); (C.C.); (S.C.); (M.Á.-M.); (J.B.); (N.G.-H.)
| | - Santiago Coca
- Department of Medicine and Medical Specialities, Unit of Histology and Pathology, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (O.F.-M.); (C.C.); (S.C.); (M.Á.-M.); (J.B.); (N.G.-H.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, Unit of Histology and Pathology, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (O.F.-M.); (C.C.); (S.C.); (M.Á.-M.); (J.B.); (N.G.-H.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine, University Hospital Príncipe de Asturias, (CIBEREHD), 28806 Alcalá de Henares, Madrid, Spain
| | - Julia Buján
- Department of Medicine and Medical Specialities, Unit of Histology and Pathology, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (O.F.-M.); (C.C.); (S.C.); (M.Á.-M.); (J.B.); (N.G.-H.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Unit of Histology and Pathology, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (O.F.-M.); (C.C.); (S.C.); (M.Á.-M.); (J.B.); (N.G.-H.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
| | - Ángel Asúnsolo
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Madrid, Spain
| |
Collapse
|
57
|
Bencze G, Bencze S, Rivera KD, Watson JD, Hidvegi M, Orfi L, Tonks NK, Pappin DJ. Mito-oncology agent: fermented extract suppresses the Warburg effect, restores oxidative mitochondrial activity, and inhibits in vivo tumor growth. Sci Rep 2020; 10:14174. [PMID: 32843660 PMCID: PMC7447799 DOI: 10.1038/s41598-020-71118-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/10/2020] [Indexed: 01/15/2023] Open
Abstract
Mitochondrial dysfunction and significant changes in metabolic pathways accompany cancer development and are responsible for maintaining the tumor microenvironment. Normal mitochondria can trigger intrinsic apoptosis by releasing cytochrome c into the cytosol. The survival of malignant cells highly depends on the suppression of this function. We validated that A250, a highly purified fraction of fermented wheat germ extract (FWGE), increases the carbon flux into the mitochondria, the expression of key elements of the Krebs cycle and oxidative phosphorylation (OXPHOS). The increased respiratory chain activity is related to the mitochondria's ability to release cytochrome c into the cytosol, which triggers the apoptotic cascade. The 68% tumor growth inhibitory effect observed in the murine melanoma study is related to this effect, as proteomic analysis validated similar changes in mitochondrial protein levels in the isolated tumor tissue samples. Blood count data indicated that this effect was not accompanied by general toxicity. This study is significant, as it shows that a highly concentrated form of FWGE is an effective agent that increases normal mitochondrial functionality. The lack of hepatotoxic and general toxic effects makes A250 an excellent candidate targeting mitochondria function in cancer therapy.
Collapse
Affiliation(s)
- Gyula Bencze
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA.
- American Biosciences, Inc, Blauvelt, NY, 10913, USA.
| | - Szilvia Bencze
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Keith D Rivera
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - James D Watson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Mate Hidvegi
- Jewish Theological Seminary-University of Jewish Studies, Budapest, 1084, Hungary
| | - Laszlo Orfi
- Department of Pharmaceutical Chemistry, Semmelweis University, Budapest, 1085, Hungary
| | - Nicholas K Tonks
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Darryl J Pappin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| |
Collapse
|
58
|
Purushottam Dharaskar S, Paithankar K, Kanugovi Vijayavittal A, Shabbir Kara H, Amere Subbarao S. Mitochondrial chaperone, TRAP1 modulates mitochondrial dynamics and promotes tumor metastasis. Mitochondrion 2020; 54:92-101. [PMID: 32784002 DOI: 10.1016/j.mito.2020.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/26/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022]
Abstract
Mitochondria play a central role in regulating cellular energy metabolism. However, the present understanding of mitochondria has changed from its unipotent functions to pluripotent and insists on understanding the role of mitochondria not only in regulating the life and death of cells, but in pathological conditions such as cancer. Unlike other cellular organelles, subtle alterations in mitochondrial organization may significantly influence the balance between metabolic networks and cellular behavior. Therefore, the delicate balance between the fusion and fission dynamics of mitochondrion can indicate cell fate. Here, we present mitochondrial chaperone TRAP1 influence on mitochondrial architecture and its correlation with tumor growth and metastasis. We show that TRAP1 overexpression (TRAP1 OE) promotes mitochondrial fission, whereas, TRAP1 knockdown (TRAP1 KD) promotes mitochondrial fusion. Interestingly, TRAP1 OE or KD had a negligible effect on mitochondrial integrity. However, TRAP1 OE cells exhibited enhanced proliferative potential, while TRAP1 KD cells showing increased doubling time. Further, TRAP1 dependent mitochondrial dynamic alterations appeared to be unique since mitochondrial localization of TRAP1 is a mandate for dynamic changes. The expression patterns of fusion and fission genes have failed to correlate with TRAP1 expression, indicating a possibility that the dynamic changes can be independent of these genes. In agreement with enhanced proliferative potential, TRAP1 OE cells also exhibited enhanced migration in vitro and tumor metastasis in vivo. Further, TRAP1 OE cells showed altered homing properties, which may challenge site-specific anticancer treatments. Our findings unravel the TRAP1 role in tumor metastasis, which is in addition to altered energy metabolism.
Collapse
Affiliation(s)
- Shrikant Purushottam Dharaskar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, Telangana, India; AcSIR - Academy of Scientific & Innovative Research, Government of India, India
| | - Khanderao Paithankar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, Telangana, India
| | | | - Hatim Shabbir Kara
- Presently at Life Sciences & Chemistry, Jacobs University Bremen gGmbh, Bremen, Germany
| | - Sreedhar Amere Subbarao
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, Telangana, India.
| |
Collapse
|
59
|
Wang Y, Liu HH, Cao YT, Zhang LL, Huang F, Yi C. The Role of Mitochondrial Dynamics and Mitophagy in Carcinogenesis, Metastasis and Therapy. Front Cell Dev Biol 2020; 8:413. [PMID: 32587855 PMCID: PMC7297908 DOI: 10.3389/fcell.2020.00413] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/04/2020] [Indexed: 12/24/2022] Open
Abstract
Mitochondria are key cellular organelles and play vital roles in energy metabolism, apoptosis regulation and cellular homeostasis. Mitochondrial dynamics refers to the varying balance between mitochondrial fission and mitochondrial fusion that plays an important part in maintaining mitochondrial homeostasis and quality. Mitochondrial malfunction is involved in aging, metabolic disease, neurodegenerative disorders, and cancers. Mitophagy, a selective autophagy of mitochondria, can efficiently degrade, remove and recycle the malfunctioning or damaged mitochondria, and is crucial for quality control. In past decades, numerous studies have identified a series of factors that regulate mitophagy and are also involved in carcinogenesis, cancer cell migration and death. Therefore, it has become critically important to analyze signal pathways that regulate mitophagy to identify potential therapeutic targets. Here, we review recent progresses in mitochondrial dynamics, the mechanisms of mitophagy regulation, and the implications for understanding carcinogenesis, metastasis, treatment, and drug resistance.
Collapse
Affiliation(s)
- Yigang Wang
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Hui-Hui Liu
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yu-Ting Cao
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Lei-Lei Zhang
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Fang Huang
- Department of Pathology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Cong Yi
- Department of Biochemistry, Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
60
|
Ghosh P, Vidal C, Dey S, Zhang L. Mitochondria Targeting as an Effective Strategy for Cancer Therapy. Int J Mol Sci 2020; 21:E3363. [PMID: 32397535 PMCID: PMC7247703 DOI: 10.3390/ijms21093363] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are well known for their role in ATP production and biosynthesis of macromolecules. Importantly, increasing experimental evidence points to the roles of mitochondrial bioenergetics, dynamics, and signaling in tumorigenesis. Recent studies have shown that many types of cancer cells, including metastatic tumor cells, therapy-resistant tumor cells, and cancer stem cells, are reliant on mitochondrial respiration, and upregulate oxidative phosphorylation (OXPHOS) activity to fuel tumorigenesis. Mitochondrial metabolism is crucial for tumor proliferation, tumor survival, and metastasis. Mitochondrial OXPHOS dependency of cancer has been shown to underlie the development of resistance to chemotherapy and radiotherapy. Furthermore, recent studies have demonstrated that elevated heme synthesis and uptake leads to intensified mitochondrial respiration and ATP generation, thereby promoting tumorigenic functions in non-small cell lung cancer (NSCLC) cells. Also, lowering heme uptake/synthesis inhibits mitochondrial OXPHOS and effectively reduces oxygen consumption, thereby inhibiting cancer cell proliferation, migration, and tumor growth in NSCLC. Besides metabolic changes, mitochondrial dynamics such as fission and fusion are also altered in cancer cells. These alterations render mitochondria a vulnerable target for cancer therapy. This review summarizes recent advances in the understanding of mitochondrial alterations in cancer cells that contribute to tumorigenesis and the development of drug resistance. It highlights novel approaches involving mitochondria targeting in cancer therapy.
Collapse
Affiliation(s)
| | | | | | - Li Zhang
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA; (P.G.); (C.V.); (S.D.)
| |
Collapse
|
61
|
Neu C, Baumbach P, Plooij AK, Skitek K, Götze J, von Loeffelholz C, Schmidt-Winter C, Coldewey SM. Non-invasive Assessment of Mitochondrial Oxygen Metabolism in the Critically Ill Patient Using the Protoporphyrin IX-Triplet State Lifetime Technique-A Feasibility Study. Front Immunol 2020; 11:757. [PMID: 32457741 PMCID: PMC7221153 DOI: 10.3389/fimmu.2020.00757] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/03/2020] [Indexed: 12/15/2022] Open
Abstract
The imbalance of oxygen delivery and oxygen consumption resulting in insufficient tissue oxygenation is pathognomonic for all forms of shock. Mitochondrial function plays an important role in the cellular oxygen metabolism and has been shown to impact a variety of diseases in the intensive care setting, specifically sepsis. Clinical assessment of tissue oxygenation and mitochondrial function remains elusive. The in vivo protoporphyrin IX-triplet state lifetime technique (PpIX-TSLT) allows the direct, non-invasive measurement of mitochondrial oxygen tension (mitoPO2) in the human skin. Our recently established measurement protocol for the Cellular Oxygen Metabolism (COMET) Monitor, a novel device employing the PpIX-TSLT, additionally allows the evaluation of oxygen consumption (mitoVO2) and delivery (mitoDO2). In the intensive care setting, these variables might provide new insight into mitochondrial oxygen metabolism and especially mitoDO2 might be a surrogate parameter of microcirculatory function. However, the feasibility of the PpIX-TSLT in critically ill patients has not been analyzed systematically. In this interim study analysis, we evaluated PpIX-TSLT measurements of 40 patients during the acute phase of sepsis. We assessed (a) potential adverse side effects of the method, (b) the rate of analyzable measurements, (c) the stability of mitoPO2, mitoVO2, and mitoDO2, and (d) potential covariates. Due to excessive edema in patients with sepsis, we specifically analyzed the association of patients' hydration status, assessed by bioimpedance analysis (BIA), with the aforementioned variables. We observed no side effects and acquired analyzable measurements sessions in 92.5% of patients (n = 37/40). Different measures of stability indicated moderate to good repeatability of the PpIX-TSLT variables within one session of multiple measurements. The determined limits of agreement and minimum detectable differences may be helpful in identifying outlier measurements. In conjunction with signal quality they mark a first step in developing a previously unavailable standardized measurement quality protocol. Notably, higher levels of hydration were associated with lower mitochondrial oxygen tension. We conclude that COMET measurements are viable in patients with sepsis. To validate the clinical and diagnostic relevance of the PpIX-TSLT using the COMET in the intensive care setting, future studies in critically ill patients and healthy controls are needed.
Collapse
Affiliation(s)
- Charles Neu
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany.,Septomics Research Center, Jena University Hospital, Jena, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Philipp Baumbach
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany.,Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Alina K Plooij
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany.,Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Kornel Skitek
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany.,Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Juliane Götze
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany.,Septomics Research Center, Jena University Hospital, Jena, Germany
| | | | - Christiane Schmidt-Winter
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany.,Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Sina M Coldewey
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany.,Septomics Research Center, Jena University Hospital, Jena, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| |
Collapse
|
62
|
Raha S, Kim SM, Lee HJ, Yumnam S, Saralamma VV, Ha SE, Lee WS, Kim GS. Naringin Induces Lysosomal Permeabilization and Autophagy Cell Death in AGS Gastric Cancer Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:679-702. [PMID: 32329644 DOI: 10.1142/s0192415x20500342] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Autophagy is a process of active programmed cell death, where a dying cell induces autophagosomes and subsequently regulated by degradative machinery. The aim of this study was to investigate the mechanism behind induction of autophagic cell death by Naringin flavonoid in AGS cancer cells. Growth inhibition of AGS cells showed downregulation of PI3K/Akt/mTOR signaling by Naringin treatment. Transmission electron microscopy observation showed swollen mitochondria and lysosome near peri-nuclear zone fused with autophagic vacuoles. Rapamycin pre-treatment with Naringin showed significant decrease in mTOR phosphorylation and increase in LC3B activation in AGS cells. Decrease in mTOR phosphorylation is associated with lysosomal function activation was observed by time-dependent treatment of Naringin. Induction of lysosomal membrane permeabilization (LMP) was observed by LAMP1 activation leading lysosomal cell death by releasing Cathepsin D from lysosomal lumen to cytosol. Naringin treated AGS cells showed up-regulating BH3 domain Bad, down-regulating Bcl-xL, and Bad phosphorylation and significant mitochondrial fluorescence intensity expression. Significant localization of mitochondria and LC3B activation was examined by person coefficient correlation. Activation of ERK1/2-p38 MAPKs and production of intracellular ROS has been observed over Naringin treatment. It has also been elucidated that pre-treatment with NAC inhibited mitochondria-LC3B colocalization, where ROS acted as upstream of ERK1/2-p38 MAPKs activation. Lysosomal cell death involvement has been evaluated by BAF A1 pre-treatment, inhibiting LAMP1, Cathepsin D, ROS, and blocking autophagolysosome in AGS cell death. Taken together, these findings show that, Naringin induced autophagy cell death involves LMP mediated lysosomal damage and BH3 protein Bad activation in AGS cancer cells.
Collapse
Affiliation(s)
- Suchismita Raha
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea.,Department of Internal Medicine, Institute of Health Sciences, Gyeongsang National University, School of Medicine, 90 Chilam-dong, Jinju 52727, Republic of Korea
| | - Seong Min Kim
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea
| | - Ho Jeong Lee
- Biological Resources Research Group, Bioenvironmental Science & Toxicology, Division, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), 17 Jeigok-gil, Jinju 52834, Republic of Korea
| | - Silvia Yumnam
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea.,College of Pharmacy, Gachon University, 191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea
| | - Venu VenkatarameGowda Saralamma
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea
| | - Sang Eun Ha
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea
| | - Won Sup Lee
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea.,Department of Internal Medicine, Institute of Health Sciences, Gyeongsang National University, School of Medicine, 90 Chilam-dong, Jinju 52727, Republic of Korea
| | - Gon Sup Kim
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea
| |
Collapse
|
63
|
Zhang S, Lu Y, Li H, Ji Y, Fang F, Tang H, Qiu P. A steroidal saponin form Paris vietnamensis (Takht.) reverses temozolomide resistance in glioblastoma cells via inducing apoptosis through ROS/PI3K/Akt pathway. Biosci Trends 2020; 14:123-133. [PMID: 32173672 DOI: 10.5582/bst.2020.01005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Glioblastoma is one of the most difficult cancers to treat with a 5-year overall survival rate less than 5%. Temozolomide (TMZ) is an effective drug for prolonging the overall survival time of patients, while drug-resistance is an important clinical problem at present. Pennogenin-3-α-L-rhamnopyranosyl-(1→4)-[α-Lrhamno-pyranosyl-(1→2)]- β-D-glucopyranoside (N45), a steroidal saponin, was isolated from the rhizomes of Paris vietnamensis (Takht.), which is used as a Traditional Chinese Medicine and has been reported to possess preclinical anticancer efficacy in various cancer types. However, the mechanism of the inhibition of N45 on glioblastoma cells and its possible application in the treatment of chemotherapy-resistant glioblastoma cells are still unknown. In this study, we use cellular methodological experiments including cell counting kit-8 (CCK-8) assay, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining assay, flow cytometry assay, transmission electron microscopy (TEM) and Western blot. The results show that N45 significantly suppresses the proliferation of glioblastoma cells and TMZ-resistant glioblastoma cells (U87R) by inducing mitochondrial apoptosis through reactive oxygen species (ROS)/phosphoinositide 3-kinase (PI3K)/Akt signal pathway, and the N-acetyl-L-cysteine (NAC) combined with N45 effectively reduced N45-mediated apoptosis and reversed the inhibition of PI3K/Akt signal pathway. In addition, N45 decreased the drug-resistance by down-regulation of nuclear factor kappa-B p65 (NF-κB p65) to attenuate O6-methylguanine-DNA methyltransferase (MGMT) in TMZ-resistant glioblastoma cells (U87R). Our findings proved that N45 might be a potential therapeutic agent against glioblastoma and TMZ-resistant glioblastoma, promising to be a potential agent to reduce drug resistance.
Collapse
Affiliation(s)
- Shan Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yunyang Lu
- Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Hua Li
- Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Yuqiang Ji
- Central Laboratory of Xi'an No.1 Hospital, Xi'an, China
| | - Fei Fang
- Central Laboratory of Xi'an No.1 Hospital, Xi'an, China
| | - Haifeng Tang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China.,Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Pengcheng Qiu
- Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
64
|
Situ B, Ye X, Zhao Q, Mai L, Huang Y, Wang S, Chen J, Li B, He B, Zhang Y, Zou J, Tang BZ, Pan X, Zheng L. Identification and Single-Cell Analysis of Viable Circulating Tumor Cells by a Mitochondrion-Specific AIE Bioprobe. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902760. [PMID: 32099764 PMCID: PMC7029725 DOI: 10.1002/advs.201902760] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/08/2019] [Indexed: 05/21/2023]
Abstract
Liquid biopsies of cancer via single-cell molecular profiling of circulating tumor cells (CTCs) are hampered by the lack of ideal CTC markers. In this study, it is reported that TPN, a bioprobe with aggregation-induced emission (AIE) activity is capable of distinguishing various tumor cells from blood leukocytes based on the difference in cell mitochondria. TPN is a cell-permeant live-cell stain that has little effect on cell viability and integrity, enabling single-cell DNA/RNA analysis with improved efficiency compared with traditional antibody-based methods. Using TPN labeling, CTCs and CTC cluster are detected in the blood from patients with lung or liver cancer. The capability of TPN to identify rare tumor cells in the malignant pleural effusion samples is also demonstrated. Furthermore, RNA sequencing of single lung CTC identified by TPN is successfully performed. The findings presented here provide an antibody-free, low-cost, and nondisruptive approach for detection and genomic characterization of viable tumor cells based on a mitochondria-targeting AIE luminogen. It might serve as a new tool for monitoring of genomics dynamic of tumor and unraveling the mechanisms of tumor metastasis.
Collapse
Affiliation(s)
- Bo Situ
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhou510515China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Xinyi Ye
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhou510515China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Qianwen Zhao
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhou510515China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Liyao Mai
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
- Guangdong Provincial Key Laboratory of Single Cell Technology ApplicationGuangzhou510515China
| | - Yifang Huang
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhou510515China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Siqi Wang
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
- Guangdong Provincial Key Laboratory of Single Cell Technology ApplicationGuangzhou510515China
| | - Jing Chen
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhou510515China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Bo Li
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhou510515China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Bairong He
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhou510515China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Ye Zhang
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhou510515China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Jianjun Zou
- Department of OncologyGuangzhou Chest HospitalGuangzhou510515China
| | - Ben Zhong Tang
- Guangdong Province Key Laboratory of Biomedical EngineeringSouth China University of TechnologyGuangzhou510006China
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionThe Hong Kong University of Science & TechnologyClear Water BayKowloonHong KongChina
- HKUST‐Shenzhen Research InstituteNo. 9 Yuexing 1st RD, South Area, Hi‐tech Park, NanshanShenzhen518057China
| | - Xinghua Pan
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
- Guangdong Provincial Key Laboratory of Single Cell Technology ApplicationGuangzhou510515China
| | - Lei Zheng
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhou510515China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| |
Collapse
|
65
|
Metabolomics Reveals that Cysteine Metabolism Plays a Role in Celastrol-Induced Mitochondrial Apoptosis in HL-60 and NB-4 Cells. Sci Rep 2020; 10:471. [PMID: 31949255 PMCID: PMC6965619 DOI: 10.1038/s41598-019-57312-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 12/28/2019] [Indexed: 12/24/2022] Open
Abstract
Recently, celastrol has shown great potential for inducing apoptosis in acute myeloid leukemia cells, especially acute promyelocytic leukaemia cells. However, the mechanism is poorly understood. Metabolomics provides an overall understanding of metabolic mechanisms to illustrate celastrol's mechanism of action. We treated both nude mice bearing HL-60 cell xenografts in vivo and HL-60 cells as well as NB-4 cells in vitro with celastrol. Ultra-performance liquid chromatography coupled with mass spectrometry was used for metabolomics analysis of HL-60 cells in vivo and for targeted L-cysteine analysis in HL-60 and NB-4 cells in vitro. Flow cytometric analysis was performed to assess mitochondrial membrane potential, reactive oxygen species and apoptosis. Western blotting was conducted to detect the p53, Bax, cleaved caspase 9 and cleaved caspase 3 proteins. Celastrol inhibited tumour growth, induced apoptosis, and upregulated pro-apoptotic proteins in the xenograft tumour mouse model. Metabolomics showed that cysteine metabolism was the key metabolic alteration after celastrol treatment in HL-60 cells in vivo. Celastrol decreased L-cysteine in HL-60 cells. Acetylcysteine supplementation reversed reactive oxygen species accumulation and apoptosis induced by celastrol and reversed the dramatic decrease in the mitochondrial membrane potential and upregulation of pro-apoptotic proteins in HL-60 cells. In NB-4 cells, celastrol decreased L-cysteine, and acetylcysteine reversed celastrol-induced reactive oxygen species accumulation and apoptosis. We are the first to identify the involvement of a cysteine metabolism/reactive oxygen species/p53/Bax/caspase 9/caspase 3 pathway in celastrol-triggered mitochondrial apoptosis in HL-60 and NB-4 cells, providing a novel underlying mechanism through which celastrol could be used to treat acute myeloid leukaemia, especially acute promyelocytic leukaemia.
Collapse
|
66
|
Whitehall JC, Greaves LC. Aberrant mitochondrial function in ageing and cancer. Biogerontology 2019; 21:445-459. [PMID: 31802313 PMCID: PMC7347693 DOI: 10.1007/s10522-019-09853-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/23/2019] [Indexed: 12/12/2022]
Abstract
Alterations in mitochondrial metabolism have been described as one of the major hallmarks of both ageing cells and cancer. Age is the biggest risk factor for the development of a significant number of cancer types and this therefore raises the question of whether there is a link between age-related mitochondrial dysfunction and the advantageous changes in mitochondrial metabolism prevalent in cancer cells. A common underlying feature of both ageing and cancer cells is the presence of somatic mutations of the mitochondrial genome (mtDNA) which we postulate may drive compensatory alterations in mitochondrial metabolism that are advantageous for tumour growth. In this review, we discuss basic mitochondrial functions, mechanisms of mtDNA mutagenesis and their metabolic consequences, and review the evidence for and against a role for mtDNA mutations in cancer development.
Collapse
Affiliation(s)
- Julia C Whitehall
- The Medical School, Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Laura C Greaves
- The Medical School, Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
67
|
Kumari R, Saini AK, Kumar A, Saini RV. Apoptosis induction in lung and prostate cancer cells through silver nanoparticles synthesized from Pinus roxburghii bioactive fraction. J Biol Inorg Chem 2019; 25:23-37. [PMID: 31641851 DOI: 10.1007/s00775-019-01729-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/11/2019] [Indexed: 12/09/2022]
Abstract
The current study was carried out to synthesize silver nanoparticles (AgNPs) via bioactive fraction of Pinus roxburghii needles using a simple, cost-effective, and eco-friendly green chemistry method. As butanol fraction of P. roxburghii exhibited maximum anticancer activity on lung adenocarcinomas (A549) as compared to other fractions therefore, butanol fraction was used to synthesize silver nanoparticles (PNb-AgNPs). The characterization studies by UV-Vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS) and selected area electron diffraction (SAED) confirmed the synthesis of the nanoparticles. The field emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HRTEM) analysis showed the spherical structure of nanoparticles with an average diameter of approximately 80 nm. Interestingly, PNb-AgNPs exhibited significant cytotoxicity towards both A549 and prostatic small cell carcinomas (PC-3) with IC50 values of 11.28 ± 1.28 μg/ml and 56.27 ± 1.17 μg/ml, respectively, while lacking toxicity against normal human breast epithelial cells (fR2) and human peripheral blood lymphocytes (PBL). Further, enhanced reactive oxygen species generation, mitochondrial depolarization, apoptotic cell population (sub-G1) and DNA fragmentation observed in cancer cells were treated with PNb-AgNPs. Apoptosis was demonstrated by caspase-3 and PARP-1 activation in PNb-AgNPs-pretreated cancer cells. These results strongly suggest that PNb-AgNPs are capable of inducing cancer cell death and could act as a therapeutic nanoformulation for cancer.
Collapse
Affiliation(s)
- Reena Kumari
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Adesh K Saini
- Faculty of Basic Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India
| | - Amit Kumar
- Faculty of Basic Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India
| | - Reena V Saini
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| |
Collapse
|
68
|
Jeena MT, Jeong K, Go EM, Cho Y, Lee S, Jin S, Hwang SW, Jang JH, Kang CS, Bang WY, Lee E, Kwak SK, Kim S, Ryu JH. Heterochiral Assembly of Amphiphilic Peptides Inside the Mitochondria for Supramolecular Cancer Therapeutics. ACS NANO 2019; 13:11022-11033. [PMID: 31508938 DOI: 10.1021/acsnano.9b02522] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Self-assembly of peptides containing both l- and d-isomers often results in nanostructures with enhanced properties compared to their enantiomeric analogues, such as faster kinetics of formation, higher mechanical strength, and enzymatic stability. However, occurrence and consequences of the heterochiral assembly in the cellular microenvironment are unknown. In this study, we monitored heterochiral assembly of amphiphilic peptides inside the cell, specifically mitochondria of cancer cells, resulting in nanostructures with refined morphological and biological properties owing to the superior interaction between the backbones of opposite chirality. We have designed a mitochondria penetrating tripeptide containing a diphenyl alanine building unit, named as Mito-FF due to their mitochondria targeting ability. The short peptide amphiphile, Mito-FF co-assembled with its mirror pair, Mito-ff, induced superfibrils of around 100 nm in diameter and 0.5-1 μm in length, while enantiomers formed only narrow fibers of 10 nm in diameter. The co-administration of Mito-FF and Mito-ff in the cell induced drastic mitochondrial disruption both in vitro and in vivo. The experimental and theoretical analyses revealed that pyrene capping played a major role in inducing superfibril morphology upon the co-assembly of racemic peptides. This work shows the impact of chirality control over the peptide self-assembly inside the biological system, thus showing a potent strategy for fabricating promising peptide biomaterials by considering chirality as a design modality.
Collapse
Affiliation(s)
| | - Keunsoo Jeong
- Center for Theragnosis , Korea Institute of Science and Technology , Seoul 02792 , Republic of Korea
| | | | - Yuri Cho
- Center for Theragnosis , Korea Institute of Science and Technology , Seoul 02792 , Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology , Korea University , Seoul 02841 , Republic of Korea
| | - Seokyung Lee
- Center for Theragnosis , Korea Institute of Science and Technology , Seoul 02792 , Republic of Korea
| | | | - Suk-Won Hwang
- KU-KIST Graduate School of Converging Science and Technology , Korea University , Seoul 02841 , Republic of Korea
| | - Joo Hee Jang
- Division of Applied RI , Korea Institute of Radiological and Medical Sciences , Seoul 01812 , Republic of Korea
| | - Chi Soo Kang
- Division of Applied RI , Korea Institute of Radiological and Medical Sciences , Seoul 01812 , Republic of Korea
| | - Woo-Young Bang
- School of Materials Science and Engineering , Gwangju Institute of Science and Technology , Gwangju 61005 , Republic of Korea
| | - Eunji Lee
- School of Materials Science and Engineering , Gwangju Institute of Science and Technology , Gwangju 61005 , Republic of Korea
| | | | - Sehoon Kim
- Center for Theragnosis , Korea Institute of Science and Technology , Seoul 02792 , Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology , Korea University , Seoul 02841 , Republic of Korea
| | | |
Collapse
|
69
|
Force Spectrum Microscopy Using Mitochondrial Fluctuations of Control and ATP-Depleted Cells. Biophys J 2019; 114:2933-2944. [PMID: 29925029 DOI: 10.1016/j.bpj.2018.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/15/2018] [Accepted: 05/01/2018] [Indexed: 11/24/2022] Open
Abstract
A single-cell assay of active and passive intracellular mechanical properties of mammalian cells could give significant insight into cellular processes. Force spectrum microscopy (FSM) is one such technique, which combines the spontaneous motion of probe particles and the mechanical properties of the cytoskeleton measured by active microrheology using optical tweezers to determine the force spectrum of the cytoskeleton. A simpler and noninvasive method to perform FSM would be very useful, enabling its widespread adoption. Here, we develop an alternative method of FSM using measurement of the fluctuating motion of mitochondria. Mitochondria of the C3H-10T1/2 cell line were labeled and tracked using confocal microscopy. Mitochondrial probes were selected based on morphological characteristics, and their mean-square displacement, creep compliance, and distributions of directional change were measured. We found that the creep compliance of mitochondria resembles that of particles in viscoelastic media. However, comparisons of creep compliance between controls and cells treated with pharmacological agents showed that perturbations to the actomysoin network had surprisingly small effects on mitochondrial fluctuations, whereas microtubule disruption and ATP depletion led to a significantly decreased creep compliance. We used properties of the distribution of directional change to identify a regime of thermally dominated fluctuations in ATP-depleted cells, allowing us to estimate the viscoelastic parameters for a range of timescales. We then determined the force spectrum by combining these viscoelastic properties with measurements of spontaneous fluctuations tracked in control cells. Comparisons with previous measurements made using FSM revealed an excellent match.
Collapse
|
70
|
Zuhra K, Tomé CS, Masi L, Giardina G, Paulini G, Malagrinò F, Forte E, Vicente JB, Giuffrè A. N-Acetylcysteine Serves as Substrate of 3-Mercaptopyruvate Sulfurtransferase and Stimulates Sulfide Metabolism in Colon Cancer Cells. Cells 2019; 8:cells8080828. [PMID: 31382676 PMCID: PMC6721681 DOI: 10.3390/cells8080828] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 12/12/2022] Open
Abstract
Hydrogen sulfide (H2S) is an endogenously produced signaling molecule. The enzymes 3-mercaptopyruvate sulfurtransferase (MST), partly localized in mitochondria, and the inner mitochondrial membrane-associated sulfide:quinone oxidoreductase (SQR), besides being respectively involved in the synthesis and catabolism of H2S, generate sulfane sulfur species such as persulfides and polysulfides, currently recognized as mediating some of the H2S biological effects. Reprogramming of H2S metabolism was reported to support cellular proliferation and energy metabolism in cancer cells. As oxidative stress is a cancer hallmark and N-acetylcysteine (NAC) was recently suggested to act as an antioxidant by increasing intracellular levels of sulfane sulfur species, here we evaluated the effect of prolonged exposure to NAC on the H2S metabolism of SW480 colon cancer cells. Cells exposed to NAC for 24 h displayed increased expression and activity of MST and SQR. Furthermore, NAC was shown to: (i) persist at detectable levels inside the cells exposed to the drug for up to 24 h and (ii) sustain H2S synthesis by human MST more effectively than cysteine, as shown working on the isolated recombinant enzyme. We conclude that prolonged exposure of colon cancer cells to NAC stimulates H2S metabolism and that NAC can serve as a substrate for human MST.
Collapse
Affiliation(s)
- Karim Zuhra
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
- CNR Institute of Molecular Biology and Pathology, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Catarina S Tomé
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Avenida da República (EAN), 2780-157 Oeiras, Portugal
| | - Letizia Masi
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Giorgio Giardina
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Giulia Paulini
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Francesca Malagrinò
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Elena Forte
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy.
| | - João B Vicente
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Avenida da República (EAN), 2780-157 Oeiras, Portugal.
| | - Alessandro Giuffrè
- CNR Institute of Molecular Biology and Pathology, Piazzale Aldo Moro 5, I-00185 Rome, Italy.
| |
Collapse
|
71
|
Frión-Herrera Y, Gabbia D, Díaz-García A, Cuesta-Rubio O, Carrara M. Chemosensitizing activity of Cuban propolis and nemorosone in doxorubicin resistant human colon carcinoma cells. Fitoterapia 2019; 136:104173. [DOI: 10.1016/j.fitote.2019.104173] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/06/2019] [Accepted: 05/10/2019] [Indexed: 12/12/2022]
|
72
|
Kopecka J, Gazzano E, Castella B, Salaroglio IC, Mungo E, Massaia M, Riganti C. Mitochondrial metabolism: Inducer or therapeutic target in tumor immune-resistance? Semin Cell Dev Biol 2019; 98:80-89. [PMID: 31100351 DOI: 10.1016/j.semcdb.2019.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 02/08/2023]
Abstract
Mitochondria have been considered for a long time only as the principal source of building blocks and energy upon aerobic conditions. Recently they emerged as key players in cell proliferation, invasion and resistance to therapy. The most aggressive tumors are able to evade the immune-surveillance. Alterations in the mitochondria metabolism either in cancer cells or in host immune system cells are involved in such tumor-induced immune-suppression. This review will focus on the main mitochondrial dysfunctions in tumor and immune cell populations determining immune-resistance, and on the therapies that may target mitochondrial metabolism and restore a powerful anti-tumor immune-activity.
Collapse
Affiliation(s)
- Joanna Kopecka
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Torino, Italy
| | - Elena Gazzano
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Torino, Italy
| | - Barbara Castella
- Laboratory of Blood Tumor Immunology, Department of Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Iris C Salaroglio
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Torino, Italy
| | - Eleonora Mungo
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Torino, Italy
| | - Massimo Massaia
- Laboratory of Blood Tumor Immunology, Department of Molecular Biotechnology and Health Sciences, University of Torino, Italy; Hematology Division, AO S Croce e Carle, Cuneo, Italy; Interdepartmental Center of Research in Molecular Biotechnology, University of Torino, Italy
| | - Chiara Riganti
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Torino, Italy; Interdepartmental Center of Research in Molecular Biotechnology, University of Torino, Italy.
| |
Collapse
|
73
|
Ma YC, Zhu YL, Su N, Ke Y, Fan XX, Shi XJ, Liu HM, Wang AF. A novel ent-kaurane diterpenoid analog, DN3, selectively kills human gastric cancer cells via acting directly on mitochondria. Eur J Pharmacol 2019; 848:11-22. [DOI: 10.1016/j.ejphar.2019.01.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/09/2019] [Accepted: 01/14/2019] [Indexed: 11/25/2022]
|
74
|
Wang P, Guo X, Zong W, Li Y, Liu G, Lv Y, Zhu Y, He S. PGC-1α/SNAI1 axis regulates tumor growth and metastasis by targeting miR-128b in gastric cancer. J Cell Physiol 2019; 234:17232-17241. [PMID: 30684287 DOI: 10.1002/jcp.28193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/03/2019] [Accepted: 01/10/2019] [Indexed: 12/31/2022]
Abstract
Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) is a transcriptional coactivator that has been characterized as master regulators of mitochondrial biogenesis. It has been reported that aberrant regulation of PGC-1α is involved in a variety of human cancers. However, whether PGC-1α is involved in the regulation of tumor growth and metastasis in gastric cancer (GC) remains unknown. In the present study, we found that the expression of PGC-1α was upregulated in GC tissues and GC cell lines. Inhibition of PGC-1α inhibited cell viability, migration, and invasion, and promoted cell apoptosis of GC cells. Furthermore, inhibition of PGC-1α downregulated the SNAI1 expression, whereas upregulated microRNA (miR)-128b expression. The expression of SNAI1 was upregulated and the expression of miR-128b was downregulated in GC tissues. We further found that there was a positive correlation between PGC-1α and SNAI1 expression, and a negative correlation between PGC-1α and miR-128b expression or between SNAI1 and miR-128b expression in GC tissues. Moreover, PGC-1α inhibition-induced increased miR-128b expression, and PGC-1α overexpression-induced decreased miR-128b expression were both markedly suppressed by SNAI1 overexpression. In addition, SNAI1 overexpression or miR-128b inhibition partly reversed the effects of PGC-1α inhibition in GC cells. Furthermore, inhibition of PGC-1α suppressed the tumor growth in a nude mouse model, which may be related with the dysregulation of SNAI1 and miR-128b. In conclusion, these data indicate that the PGC-1α/SNAI1/miR-128b axis plays a vital role in GC via regulating cell viability, migration, invasion, and apoptosis.
Collapse
Affiliation(s)
- Ping Wang
- Department of Gastroenterology, The Third Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Xueyan Guo
- Department of Gastroenterology, The Third Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Wei Zong
- Department of Gastroenterology, The Third Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Yulong Li
- Department of Gastroenterology, The Third Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Guisheng Liu
- Department of Gastroenterology, The Third Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Yifei Lv
- Department of Gastroenterology, The Third Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Yunqing Zhu
- Department of Gastroenterology, The Third Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Shuixiang He
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
75
|
Khan TM, Gul NS, Lu X, Kumar R, Choudhary MI, Liang H, Chen ZF. Rhodium(iii) complexes with isoquinoline derivatives as potential anticancer agents: in vitro and in vivo activity studies. Dalton Trans 2019; 48:11469-11479. [DOI: 10.1039/c9dt01951k] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Two rhodium complexes Rh1 and Rh2 with isoquinoline derivatives were synthesized and characterized.
Collapse
Affiliation(s)
- Taj-Malook Khan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry & Pharmacy
- Guangxi Normal University
- Guilin 541004
- China
| | - Noor Shad Gul
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry & Pharmacy
- Guangxi Normal University
- Guilin 541004
- China
| | - Xing Lu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry & Pharmacy
- Guangxi Normal University
- Guilin 541004
- China
| | - Rajesh Kumar
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry & Pharmacy
- Guangxi Normal University
- Guilin 541004
- China
| | - Muhammad Iqbal Choudhary
- International Center for Chemical and Biological Sciences
- University of Karachi
- Karachi-74270
- Pakistan
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry & Pharmacy
- Guangxi Normal University
- Guilin 541004
- China
| | - Zhen-Feng Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry & Pharmacy
- Guangxi Normal University
- Guilin 541004
- China
| |
Collapse
|
76
|
Wu W, Gao H, Li X, Peng S, Yu J, Liu N, Zhan G, Zhu Y, Wang K, Guo X. β-hCG promotes epithelial ovarian cancer metastasis through ERK/MMP2 signaling pathway. Cell Cycle 2018; 18:46-59. [PMID: 30582718 PMCID: PMC6343691 DOI: 10.1080/15384101.2018.1558869] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynecologic malignancy, with typically extensive intraperitoneal implantation leading to poor prognosis. Our previous study preliminarily demonstrated β-hCG can promote tumorigenesis in immortalized nontumorigenic ovarian epithelial cells. In this study, the roles and mechanisms of β-hCG in regulating EOC proliferation and metastasis were thoroughly explored. First, histologically, β-hCG was aberrantly overexpressed in human EOC metastatic tissues, and significantly correlated with FIGO stage, tumor size, differentiation, histologic grade and high grade serous ovarian carcinoma (HGSOC) (P < 0.05). However, serologically, β-hCG expression showed no significant difference between EOC and nonmalignant ovarian patients. Second, β-hCG was confirmed to have no significant effects on EOC proliferation in vitro and in vivo, while β-hCG upregulation was proven to promote migration and invasion ability in ES-2 and OVCAR-3 cells in vitro (P < 0.05), and β-hCG downregulation in SKOV3 cells had the opposite effect. Moreover, more invadopodia protrusions, mitochondria accumulations and cytoskeletal rearrangements were observed in β-hCG-overexpressing ES-2 cells, while β-hCG-depleted SKOV3 cells produced the opposite effect. Furthermore, β-hCG was confirmed to clearly facilitate intraperitoneal metastasis in nude mouse orthotopic ovarian xenograft models. Importantly, these effects of β-hCG were mediated by activation of the ERK/MMP2 signaling pathway, independently of luteinizing hormone/chorionic gonadotropin receptor (LHCGR) presence, and inhibition the pathway with the p-ERK1/2 inhibitor SCH772984 significantly impaired the tumor-promoting effects induced by β-hCG. Collectively, these data provide new insight into the roles and mechanisms of β-hCG in regulating EOC metastasis through ERK/MMP2 signaling pathway and may become a new target for therapeutic intervention.
Collapse
Affiliation(s)
- Weimin Wu
- a Department of Obstetrics and Gynecology , Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine , Shanghai , China
| | - Hao Gao
- a Department of Obstetrics and Gynecology , Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine , Shanghai , China
| | - Xiaofeng Li
- a Department of Obstetrics and Gynecology , Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine , Shanghai , China
| | - Shumin Peng
- b Department of Obstetrics and Gynecology , Chongqing Health Center for Women and Children , Chongqing , China
| | - Jing Yu
- c Department of Pathology , Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine , Shanghai , China
| | - Na Liu
- a Department of Obstetrics and Gynecology , Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine , Shanghai , China
| | - Guangxi Zhan
- a Department of Obstetrics and Gynecology , Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine , Shanghai , China
| | - Yong Zhu
- d Department of Obstetrics and Gynecology , The First Affiliated Hospital, Shihezi University School of Medicine , Xinjiang , China
| | - Kai Wang
- e Clinical and Translational Research Center , Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine , Shanghai , China
| | - Xiaoqing Guo
- a Department of Obstetrics and Gynecology , Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine , Shanghai , China
| |
Collapse
|
77
|
Beadnell TC, Scheid AD, Vivian CJ, Welch DR. Roles of the mitochondrial genetics in cancer metastasis: not to be ignored any longer. Cancer Metastasis Rev 2018; 37:615-632. [PMID: 30542781 PMCID: PMC6358502 DOI: 10.1007/s10555-018-9772-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mitochondrial DNA (mtDNA) encodes for only a fraction of the proteins that are encoded within the nucleus, and therefore has typically been regarded as a lesser player in cancer biology and metastasis. Accumulating evidence, however, supports an increased role for mtDNA impacting tumor progression and metastatic susceptibility. Unfortunately, due to this delay, there is a dearth of data defining the relative contributions of specific mtDNA polymorphisms (SNP), which leads to an inability to effectively use these polymorphisms to guide and enhance therapeutic strategies and diagnosis. In addition, evidence also suggests that differences in mtDNA impact not only the cancer cells but also the cells within the surrounding tumor microenvironment, suggesting a broad encompassing role for mtDNA polymorphisms in regulating the disease progression. mtDNA may have profound implications in the regulation of cancer biology and metastasis. However, there are still great lengths to go to understand fully its contributions. Thus, herein, we discuss the recent advances in our understanding of mtDNA in cancer and metastasis, providing a framework for future functional validation and discovery.
Collapse
Affiliation(s)
- Thomas C Beadnell
- Department of Cancer Biology, The Kansas University Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| | - Adam D Scheid
- Department of Cancer Biology, The Kansas University Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| | - Carolyn J Vivian
- Department of Cancer Biology, The Kansas University Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| | - Danny R Welch
- Department of Cancer Biology, The Kansas University Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA.
- The University of Kansas Cancer Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA.
| |
Collapse
|
78
|
Murphy MP, Hartley RC. Mitochondria as a therapeutic target for common pathologies. Nat Rev Drug Discov 2018; 17:865-886. [PMID: 30393373 DOI: 10.1038/nrd.2018.174] [Citation(s) in RCA: 533] [Impact Index Per Article: 76.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Although the development of mitochondrial therapies has largely focused on diseases caused by mutations in mitochondrial DNA or in nuclear genes encoding mitochondrial proteins, it has been found that mitochondrial dysfunction also contributes to the pathology of many common disorders, including neurodegeneration, metabolic disease, heart failure, ischaemia-reperfusion injury and protozoal infections. Mitochondria therefore represent an important drug target for these highly prevalent diseases. Several strategies aimed at therapeutically restoring mitochondrial function are emerging, and a small number of agents have entered clinical trials. This Review discusses the opportunities and challenges faced for the further development of mitochondrial pharmacology for common pathologies.
Collapse
Affiliation(s)
- Michael P Murphy
- Medical Research Council (MRC) Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
79
|
Qiu M, Zhang S, Ke L, Tang H, Zeng X, Liu J. JS-K enhances chemosensitivity of prostate cancer cells to Taxol via reactive oxygen species activation. Oncol Lett 2018; 17:757-764. [PMID: 30655827 PMCID: PMC6312932 DOI: 10.3892/ol.2018.9684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 05/15/2018] [Indexed: 12/24/2022] Open
Abstract
The aim of the present study was to investigate the influence of the nitric oxide donor prodrug JS-K (C13H16N6O8) on Taxol-induced apoptosis in prostate cancer cells, and to investigate a potential reactive oxygen species (ROS)-associated mechanism. The effect of JS-K on the anticancer activity of Taxol was assessed in prostate cancer cells; cell viability, colony formation, apoptosis, ROS generation and expression levels of apoptosis-associated proteins were investigated. The function of ROS accumulation in the combined effects of JS-K and Taxol was determined using the antioxidant N-acetylcysteine (NAC) and the pro-oxidant oxidized glutathione (GSSG). The results of the present study demonstrated that JS-K was able to increase Taxol-induced suppression of prostate cancer cell proliferation, apoptosis, ROS accumulation and upregulation of apoptosis-associated proteins. Furthermore, NAC reversed the effect of JS-K on Taxol-induced apoptosis and conversely, the pro-oxidant GSSG exacerbated the effect of JS-K on Taxol-induced apoptosis in prostate cancer cells. In conclusion, JS-K enhances the chemosensitivity of prostate cancer cells to Taxol, via the upregulation of intracellular ROS.
Collapse
Affiliation(s)
- Mingning Qiu
- Laboratory of Urology, Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Sai Zhang
- Laboratory of Urology, Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Longzhi Ke
- Laboratory of Urology, Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Huancheng Tang
- Laboratory of Urology, Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Xin Zeng
- Laboratory of Urology, Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Jianjun Liu
- Laboratory of Urology, Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| |
Collapse
|
80
|
Ruan S, Zhang Z, Tian X, Huang D, Liu W, Yang B, Shen M, Tao F. Compound Fuling Granule Suppresses Ovarian Cancer Development and Progression by disrupting mitochondrial function, galactose and fatty acid metabolism. J Cancer 2018; 9:3382-3393. [PMID: 30271500 PMCID: PMC6160678 DOI: 10.7150/jca.25136] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 07/23/2018] [Indexed: 12/11/2022] Open
Abstract
Our previous studies have demonstrated that the compound fuling granule (CFG), a traditional Chinese medicine, suppresses ovarian cancer cell growth, migration and metastasis. However, the underlying mechanisms remain to be fully elucidated. In this study, we found that CFG could induce mitochondrial fragmentation, mitochondrial membrane potential reduction and cytochrome c release in ovarian SKOV3 cancer cells. In addition, both metabolomics and transcriptomics approaches were applied to illustrate the systemic mechanism of CFG on ovarian cancer formation and progression. To this end, we established two tumor-bearing mice models with subcutaneous injection or tail intravenous injection. Functionally, administration of CFG suppresses in situ tumor growth and distant lung metastasis. Subsequently, gas chromatography-mass spectrometry (GC-MS) was applied to determine the metabolic alterations among the plasma samples from these in vivo models. In the subcutaneous injection model, 26 distinguishable metabolites were identified and 12 metabolic pathways were reprogrammed. Meanwhile, 19 metabolites involved in 7 metabolic pathways showed significant differences in the tail intravenous injection model. Importantly, integrative metabolomics and transcriptomics analysis showed these metabolites were highly associated with galactose metabolism and fatty acid metabolism. This study suggests that CFG may suppress ovarian cancer cell proliferation and metastasis by regulating mitochondrion-related energy metabolisms.
Collapse
Affiliation(s)
- Shanming Ruan
- Department of Medical Oncology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310003, Zhejiang, China
| | - Zhiqian Zhang
- Tianjin International Joint Academy of Biomedicine (TJAB), Tianjin 300457, People's Republic of China.,State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, People's Republic of China
| | - Xinxin Tian
- Tianjin International Joint Academy of Biomedicine (TJAB), Tianjin 300457, People's Republic of China.,Department of Biochemistry and Biophysics, Texas A&M University and Texas AgriLife Research, College Station, TX 77843-2128, USA
| | - Dawei Huang
- Department of Chinese Medicine, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310003, Zhejiang, China
| | - Wenhong Liu
- Department of Immunology and Microbiology, Basic Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Bo Yang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Minhe Shen
- Department of Medical Oncology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310003, Zhejiang, China
| | - Fangfang Tao
- Department of Immunology and Microbiology, Basic Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
81
|
Larriba E, Rial E, Del Mazo J. The landscape of mitochondrial small non-coding RNAs in the PGCs of male mice, spermatogonia, gametes and in zygotes. BMC Genomics 2018; 19:634. [PMID: 30153810 PMCID: PMC6114042 DOI: 10.1186/s12864-018-5020-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/15/2018] [Indexed: 12/14/2022] Open
Abstract
Background Mitochondria are organelles that fulfill a fundamental role in cell bioenergetics, as well as in other processes like cell signaling and death. Small non-coding RNAs (sncRNA) are now being considered as pivotal post-transcriptional regulators, widening the landscape of their diversity and functions. In mammalian cells, small RNAs encoded by the mitochondrial genome, mitosRNAs were discovered recently, although their biological role remains uncertain. Results Here, using specific bioinformatics analyses, we have defined the diversity of mitosRNAs present in early differentiated germ cells of male mice (PGCs and spermatogonia), and in the gametes of both sexes and in zygotes. We found strong transcription of mitosRNAs relative to the size of the mtDNA, and classifying these mitosRNAs into different functional sncRNA groups highlighted the predominance of Piwi-interacting RNAs (piRNAs) relative to the other types of mitosRNAs. Mito-piRNAs were more abundant in oocytes and zygotes, where mitochondria fulfill key roles in fecundation process. Functional analysis of some particular mito-piRNAs (mito-piR-7,456,245), also expressed in 3T3-L1 cells, was assessed after exposure to RNA antagonists. Conclusions As far as we are aware, this is the first integrated analysis of sncRNAs encoded by mtDNA in germ cells and zygotes. The data obtained suggesting that mitosRNAs fulfill key roles in gamete differentiation and fertilization. Electronic supplementary material The online version of this article (10.1186/s12864-018-5020-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eduardo Larriba
- Department of Cellular & Molecular Biology, Centro de Investigaciones Biológicas C.I.B. (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Eduardo Rial
- Department of Chemical & Physical Biology, Centro de Investigaciones Biológicas C.I.B. (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Jesús Del Mazo
- Department of Cellular & Molecular Biology, Centro de Investigaciones Biológicas C.I.B. (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain.
| |
Collapse
|
82
|
Caglayan A, Katlan DC, Tuncer ZS, Yuce K, Sayal HB, Kocer-Gumusel B. Assessment of oxidant-antioxidant status alterations with tumor biomarkers and reproductive system hormones in uterine MYOMAS. Eur J Obstet Gynecol Reprod Biol 2018; 229:1-7. [PMID: 30096463 DOI: 10.1016/j.ejogrb.2018.07.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 05/30/2018] [Accepted: 07/31/2018] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Uterine myomas (UM) are responsible for significant morbidity and have adverse effects on quality of life in women. Reactive oxygen species (ROS) and antioxidant enzymes (AOE), as well as sex steroids play important roles in the reproductive physiology processes. Thus, we aimed to investigate the role of oxidant-antioxidant status in UM by measuring the AOE activities and lipid peroxidation (LPO) levels. This is the first study assessing these parameters together in UM based on also menopausal status and evaluating possible correlations between AOE activities, LPO markers, tumor biomarkers, female reproductive system hormone levels, comprehensively. STUDY DESIGN The study group consisted of patients who have undergone surgical resection with confirmed pathology of uterine myoma (UM, n = 25) and divided into subgroups; premenopausal (UMpre) and postmenopausal (UMpost). Erythrocyte copper-zinc superoxide dismutase (Cu,Zn-SOD), catalase (CAT), glutathione peroxidase (GPx1) activities were measured along with plasma malondialdehyde (MDA) and urinary 8-epi-prostaglandin F2α (8-epi-PGF2α) levels in patients with UM. The obtained data were compared to the data of healthy individuals (C, n = 25) and its subgroups; premenopausal (Cpre) and postmenopausal (Cpost). RESULTS All AOE activities were higher (∼40% for Cu,Zn-SOD, p = 0.003; ∼55% for CAT, p = 0.001; ∼15% for GPx1, p = 0.169) and the LPO levels were lower (∼60% for MDA, p = 0.011 and ∼45% for 8-epi-PGF2α, p = 0.055) in patients with UM vs control. Approximately similar alterations were observed in UMpre vs Cpre and in UMpost vs Cpost. A significant negative correlation between erythrocyte Cu,Zn-SOD activity and plasma MDA levels (r = -0.431, p = 0.005) was reported. CONCLUSION Decreased LPO levels might be the consequence of compensator high antioxidant enzyme activities against mild oxidative stress in the circulation of patients with UM. The marked negative correlation between erythrocyte Cu,Zn-SOD activity and plasma MDA levels also supported this finding.
Collapse
Affiliation(s)
- Aydan Caglayan
- Hacettepe University, Faculty of Pharmacy, Department of Toxicology, Ankara 06100, Turkey.
| | - Doruk Cevdi Katlan
- Hacettepe University, Faculty of Medicine, Department of Obstetrics and Gynecology, Ankara 06100, Turkey; Suleymaniye Research and Education Hospital, Obstetrics and Gynecology, İstanbul, 34116, Turkey.
| | - Zafer Selcuk Tuncer
- Hacettepe University, Faculty of Medicine, Department of Obstetrics and Gynecology, Ankara 06100, Turkey.
| | - Kunter Yuce
- Hacettepe University, Faculty of Medicine, Department of Obstetrics and Gynecology, Ankara 06100, Turkey.
| | - Hasan Berkan Sayal
- Hacettepe University, Faculty of Medicine, Department of Obstetrics and Gynecology, Ankara 06100, Turkey; Republic of Turkey Ministry of Health, Malatya Research and Education Hospital, Malatya, 44090,Turkey.
| | - Belma Kocer-Gumusel
- Hacettepe University, Faculty of Pharmacy, Department of Toxicology, Ankara 06100, Turkey; Lokman Hekim University, Faculty of Pharmacy, Department of Toxicology, Ankara, Turkey.
| |
Collapse
|
83
|
Imsnc761 and DDX6 synergistically suppress cell proliferation and promote apoptosis via p53 in testicular embryonal carcinoma cells. Biosci Rep 2018; 38:BSR20180271. [PMID: 29769412 PMCID: PMC6028756 DOI: 10.1042/bsr20180271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/02/2018] [Accepted: 05/10/2018] [Indexed: 12/25/2022] Open
Abstract
Intermediate-sized non-coding RNAs (imsncRNAs) have been shown to play important regulatory roles in the development of several eukaryotic organisms. In the present research, we selected imsncRNA 761 (imsnc761) as a research target. Expression analyses in a previous study showed that imsnc761 was down-regulated in maturation-arrested testis tissues as compared with the level in normal controls. In the present study, we found that imsnc761 could interact with DEAD-box helicase 6 (DDX6) to induce NTERA-2 (NT2 (testicular embryonal carcinoma cell)) cell apoptosis and proliferation inhibition via the p53 pathway. This interaction between imsnc761 and DDX6 also inhibited mitochondrial function and specific gene transcription and translation. To facilitate further research, we used label-free quantitation method to analyze the associated differences in Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathways and biological processes. This confirmed the changes in several specific pathways, which matched our molecular experimental results.
Collapse
|
84
|
Valdebenito S, Lou E, Baldoni J, Okafo G, Eugenin E. The Novel Roles of Connexin Channels and Tunneling Nanotubes in Cancer Pathogenesis. Int J Mol Sci 2018; 19:E1270. [PMID: 29695070 PMCID: PMC5983846 DOI: 10.3390/ijms19051270] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/13/2018] [Accepted: 04/18/2018] [Indexed: 12/28/2022] Open
Abstract
Neoplastic growth and cellular differentiation are critical hallmarks of tumor development. It is well established that cell-to-cell communication between tumor cells and "normal" surrounding cells regulates tumor differentiation and proliferation, aggressiveness, and resistance to treatment. Nevertheless, the mechanisms that result in tumor growth and spread as well as the adaptation of healthy surrounding cells to the tumor environment are poorly understood. A major component of these communication systems is composed of connexin (Cx)-containing channels including gap junctions (GJs), tunneling nanotubes (TNTs), and hemichannels (HCs). There are hundreds of reports about the role of Cx-containing channels in the pathogenesis of cancer, and most of them demonstrate a downregulation of these proteins. Nonetheless, new data demonstrate that a localized communication via Cx-containing GJs, HCs, and TNTs plays a key role in tumor growth, differentiation, and resistance to therapies. Moreover, the type and downstream effects of signals communicated between the different populations of tumor cells are still unknown. However, new approaches such as artificial intelligence (AI) and machine learning (ML) could provide new insights into these signals communicated between connected cells. We propose that the identification and characterization of these new communication systems and their associated signaling could provide new targets to prevent or reduce the devastating consequences of cancer.
Collapse
Affiliation(s)
- Silvana Valdebenito
- Public Health Research Institute (PHRI), Newark, NJ 07103, USA.
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers the State University of NJ, Newark, NJ 07103, USA.
| | - Emil Lou
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN 55455, USA.
| | - John Baldoni
- GlaxoSmithKline, In-Silico Drug Discovery Unit, 1250 South Collegeville Road, Collegeville, PA 19426, USA.
| | - George Okafo
- GlaxoSmithKline, In-Silico Drug Discovery Unit, Stevenage SG1 2NY, UK.
| | - Eliseo Eugenin
- Public Health Research Institute (PHRI), Newark, NJ 07103, USA.
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers the State University of NJ, Newark, NJ 07103, USA.
| |
Collapse
|
85
|
Docherty CK, Carswell A, Friel E, Mercer JR. Impaired mitochondrial respiration in human carotid plaque atherosclerosis: A potential role for Pink1 in vascular smooth muscle cell energetics. Atherosclerosis 2018; 268:1-11. [PMID: 29156421 PMCID: PMC6565844 DOI: 10.1016/j.atherosclerosis.2017.11.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/30/2017] [Accepted: 11/10/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS DNA damage and mitochondrial dysfunction are thought to play an essential role in ageing and the energetic decline of vascular smooth muscle cells (VSMCs) essential for maintaining plaque integrity. We aimed to better understand VSMCs and identify potentially useful compensatory pathways that could extend their lifespan. Moreover, we wanted to assess if defects in mitochondrial respiration exist in human atherosclerotic plaques and to identify the appropriate markers that may reflect a switch in VSMC energy metabolism. METHODS Human plaque tissue and cells were assessed for composition and evidence of DNA damage, repair capacity and mitochondrial dysfunction. Fresh plaque tissue was evaluated using high resolution oxygen respirometry to assess oxidative metabolism. Recruitment and processing of the mitochondrial regulator of autophagy Pink1 kinase was investigated in combination with transcriptional and protein markers associated with a potential switch to a more glycolytic metabolism. RESULTS Human VSMC have increased nuclear (nDNA) and mitochondrial (mtDNA) damage and reduced repair capacity. A subset of VSMCs within plaque cap had decreased oxidative phosphorylation and expression of Pink1 kinase. Plaque cells demonstrated increased glycolytic activity in response to loss of mitochondrial function. A potential compensatory glycolytic program may act as energetic switch via AMP kinase (AMPK) and hexokinase 2 (Hex2). CONCLUSIONS We have identified a subset of plaque VSMCs required for plaque stability that have increased mitochondrial dysfunction and decreased oxidative phosphorylation. Pink1 kinase may initiate a cellular response to promote a compensatory glycolytic program associated with upregulation of AMPK and Hex2.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/metabolism
- Carotid Arteries/enzymology
- Carotid Arteries/pathology
- Carotid Artery Diseases/enzymology
- Carotid Artery Diseases/genetics
- Carotid Artery Diseases/pathology
- Cells, Cultured
- DNA Damage
- DNA, Mitochondrial/genetics
- DNA, Mitochondrial/metabolism
- Energy Metabolism
- Glycolysis
- Hexokinase/metabolism
- Humans
- Mitochondria, Muscle/enzymology
- Mitochondria, Muscle/pathology
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Oxidative Phosphorylation
- Oxidative Stress
- Plaque, Atherosclerotic
- Protein Kinases/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Craig K Docherty
- Institute of Cardiovascular and Medical Sciences, College of Medical Veterinary and Life Sciences, University Avenue, University of Glasgow, Glasgow, G12 8TA, Scotland, United Kingdom
| | - Andy Carswell
- Institute of Cardiovascular and Medical Sciences, College of Medical Veterinary and Life Sciences, University Avenue, University of Glasgow, Glasgow, G12 8TA, Scotland, United Kingdom
| | - Elaine Friel
- Institute of Cardiovascular and Medical Sciences, College of Medical Veterinary and Life Sciences, University Avenue, University of Glasgow, Glasgow, G12 8TA, Scotland, United Kingdom
| | - John R Mercer
- Institute of Cardiovascular and Medical Sciences, College of Medical Veterinary and Life Sciences, University Avenue, University of Glasgow, Glasgow, G12 8TA, Scotland, United Kingdom.
| |
Collapse
|
86
|
Hertweck KL, Dasgupta S. The Landscape of mtDNA Modifications in Cancer: A Tale of Two Cities. Front Oncol 2017; 7:262. [PMID: 29164061 PMCID: PMC5673620 DOI: 10.3389/fonc.2017.00262] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 10/18/2017] [Indexed: 12/25/2022] Open
Abstract
Mitochondria from normal and cancerous cells represent a tale of two cities, wherein both execute similar processes but with different cellular and molecular effects. Given the number of reviews currently available which describe the functional implications of mitochondrial mutations in cancer, this article focuses on documenting current knowledge in the abundance and distribution of somatic mitochondrial mutations, followed by elucidation of processes which affect the fate of mutations in cancer cells. The conclusion includes an overview of translational implications for mtDNA mutations, as well as recommendations for future research uniting mitochondrial variants and tumorigenesis.
Collapse
Affiliation(s)
- Kate L Hertweck
- Department of Biology, The University of Texas at Tyler, Tyler, TX, United States
| | - Santanu Dasgupta
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
| |
Collapse
|
87
|
Buvall L, Hedman H, Khramova A, Najar D, Bergwall L, Ebefors K, Sihlbom C, Lundstam S, Herrmann A, Wallentin H, Roos E, Nilsson UA, Johansson M, Törnell J, Haraldsson B, Nyström J. Orellanine specifically targets renal clear cell carcinoma. Oncotarget 2017; 8:91085-91098. [PMID: 29207627 PMCID: PMC5710908 DOI: 10.18632/oncotarget.19555] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 07/11/2017] [Indexed: 11/25/2022] Open
Abstract
Renal cell carcinoma (RCC), arising from the proximal tubule in the kidney, accounts for approximately 85% of kidney cancers and causes over 140,000 annual deaths worldwide. In the last decade, several new therapies have been identified for treatment of metastatic RCC. Although these therapies increase survival time compared to standard care, none of them has curative properties. The nephrotoxin orellanine specifically targets proximal tubular epithelial cells, leaving other organs unaffected. We therefore hypothesized that the selective toxicity of orellanine extends to clear cell RCC (ccRCC) cells since they emanate from proximal tubular cells. Orellanine would thus target both primary and metastatic ccRCC in vitro and in vivo. We found that orellanine induces dose-dependent cell death in proximal tubular cells and in all ccRCC cells tested, both primary and cell lines, with no toxicity detected in control cells. The toxic action of orellanine involve decreased protein synthesis, disrupted cell metabolism and induction of apoptosis. In nude rats carrying human ccRCC xenografts, brief orellanine treatment eliminated more than 90% of viable tumor mass compared to control rats. This identifies orellanine as a potential treatment concept for ccRCC patients on dialysis, due to its unique selective toxicity towards ccRCC.
Collapse
Affiliation(s)
- Lisa Buvall
- Institute of Neuroscience and Physiology, Gothenburg, Sweden
| | | | - Alina Khramova
- Institute of Neuroscience and Physiology, Gothenburg, Sweden
| | - Deman Najar
- Institute of Neuroscience and Physiology, Gothenburg, Sweden
| | - Lovisa Bergwall
- Institute of Neuroscience and Physiology, Gothenburg, Sweden
| | - Kerstin Ebefors
- Institute of Neuroscience and Physiology, Gothenburg, Sweden
| | - Carina Sihlbom
- Proteomics Core Facility at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sven Lundstam
- Institute of Clinical Sciences at University of Gothenburg, Gothenburg, Sweden
| | | | - Hanna Wallentin
- Institute of Neuroscience and Physiology, Gothenburg, Sweden
| | - Emelie Roos
- Institute of Neuroscience and Physiology, Gothenburg, Sweden
| | | | - Martin Johansson
- Department of Laboratory Medicine, Pathology, Lund University, Malmö, Sweden
| | - Jan Törnell
- Institute of Neuroscience and Physiology, Gothenburg, Sweden
| | | | - Jenny Nyström
- Institute of Neuroscience and Physiology, Gothenburg, Sweden
| |
Collapse
|
88
|
Ahn KI, Choi EO, Kwon DH, HwangBo H, Kim MY, Kim HJ, Ji SY, Hong SH, Jeong JW, Park C, Kim ND, Kim WJ, Choi YH. Induction of apoptosis by ethanol extract of Citrus unshiu Markovich peel in human bladder cancer T24 cells through ROS-mediated inactivation of the PI3K/Akt pathway. Biosci Trends 2017; 11:565-573. [PMID: 29070760 DOI: 10.5582/bst.2017.01218] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Citrus unshiu peel has been used to prevent and treat various diseases in traditional East-Asian medicine including in Korea. Extracts of C. unshiu peel are known to have various pharmacological effects including antioxidant, anti-inflammatory, and antibacterial properties. Although the possibility of their anti-cancer activity has recently been reported, the exact mechanisms in human cancer cells have not been sufficiently studied. In this study, the inhibitory effect of ethanol extract of C. unshiu peel (EECU) on the growth of human bladder cancer T24 cells was evaluated and the underlying mechanism was investigated. The present study demonstrated that the suppression of T24 cell viability by EECU is associated with apoptosis induction. EECU-induced apoptosis was found to correlate with an activation of caspase-8, -9, and -3 in concomitance with a decrease in the expression of the inhibitor of apoptosis family of proteins and an increase in the Bax:Bcl-2 ratio accompanied by the proteolytic degradation of poly(ADP-ribose) polymerase. EECU also increased the generation of reactive oxygen species (ROS), collapse of mitochondrial membrane potential, and cytochrome c release to the cytosol, along with a truncation of Bid. In addition, EECU inactivated phosphatidylinositol 3-kinase (PI3K) as well as Akt, a downstream molecular target of PI3K, and LY294002, a specific PI3K inhibitor significantly enhanced EECU-induced apoptosis and cell viability reduction. However, N-acetyl cysteine, a general ROS scavenger, completely reversed the EECU-induced dephosphorylation of PI3K and Akt, as well as cell apoptosis. Taken together, these findings suggest that EECU inhibits T24 cell proliferation by activating intrinsic and extrinsic apoptosis pathways through a ROS-mediated inactivation of the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Kyu Im Ahn
- Open Laboratory for Muscular and Skeletal Disease, and Department of Biochemistry, Dongeui University College of Korean Medicine.,Anti-Aging Research Center, Dongeui University.,Department of Pharmacy, Molecular Inflammation Research Center for Aging Intervention, Pusan National University
| | - Eun Ok Choi
- Open Laboratory for Muscular and Skeletal Disease, and Department of Biochemistry, Dongeui University College of Korean Medicine.,Anti-Aging Research Center, Dongeui University
| | - Da He Kwon
- Open Laboratory for Muscular and Skeletal Disease, and Department of Biochemistry, Dongeui University College of Korean Medicine.,Anti-Aging Research Center, Dongeui University
| | - Hyun HwangBo
- Open Laboratory for Muscular and Skeletal Disease, and Department of Biochemistry, Dongeui University College of Korean Medicine.,Anti-Aging Research Center, Dongeui University
| | - Min Yeong Kim
- Open Laboratory for Muscular and Skeletal Disease, and Department of Biochemistry, Dongeui University College of Korean Medicine.,Anti-Aging Research Center, Dongeui University
| | - Hong Jae Kim
- Open Laboratory for Muscular and Skeletal Disease, and Department of Biochemistry, Dongeui University College of Korean Medicine.,Anti-Aging Research Center, Dongeui University
| | - Seon Yeong Ji
- Open Laboratory for Muscular and Skeletal Disease, and Department of Biochemistry, Dongeui University College of Korean Medicine.,Anti-Aging Research Center, Dongeui University
| | - Su-Hyun Hong
- Open Laboratory for Muscular and Skeletal Disease, and Department of Biochemistry, Dongeui University College of Korean Medicine.,Anti-Aging Research Center, Dongeui University
| | - Jin-Woo Jeong
- Open Laboratory for Muscular and Skeletal Disease, and Department of Biochemistry, Dongeui University College of Korean Medicine.,Anti-Aging Research Center, Dongeui University
| | - Cheol Park
- Department of Molecular Biology, College of Natural Sciences, Dongeui University
| | - Nam Deuk Kim
- Department of Pharmacy, Molecular Inflammation Research Center for Aging Intervention, Pusan National University
| | - Wun Jae Kim
- Personalized Tumor Engineering Research Center, Department of Urology, Chungbuk National University College of Medicine
| | - Yung Hyun Choi
- Open Laboratory for Muscular and Skeletal Disease, and Department of Biochemistry, Dongeui University College of Korean Medicine.,Anti-Aging Research Center, Dongeui University
| |
Collapse
|
89
|
Lim W, Yang C, Jeong M, Bazer FW, Song G. Coumestrol induces mitochondrial dysfunction by stimulating ROS production and calcium ion influx into mitochondria in human placental choriocarcinoma cells. Mol Hum Reprod 2017; 23:786-802. [DOI: 10.1093/molehr/gax052] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 10/06/2017] [Indexed: 12/11/2022] Open
Affiliation(s)
- Whasun Lim
- Department of Biomedical Sciences, Catholic Kwandong University, Gangneung 25601, Republic of Korea
| | - Changwon Yang
- Department of Biotechnology, Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Muhah Jeong
- Department of Biotechnology, Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Fuller W Bazer
- Department of Animal Science, Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, 77843–2471, TX, USA
| | - Gwonhwa Song
- Department of Biotechnology, Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
90
|
Abstract
MitoNEET (mNEET) is a dimeric mitochondrial outer membrane protein implicated in many facets of human pathophysiology, notably diabetes and cancer, but its molecular function remains poorly characterized. In this study, we generated and analyzed mNEET KO cells and found that in these cells the mitochondrial network was disturbed. Analysis of 3D-EM reconstructions and of thin sections revealed that genetic inactivation of mNEET did not affect the size of mitochondria but that the frequency of intermitochondrial junctions was reduced. Loss of mNEET decreased cellular respiration, because of a reduction in the total cellular mitochondrial volume, suggesting that intermitochondrial contacts stabilize individual mitochondria. Reexpression of mNEET in mNEET KO cells restored the WT morphology of the mitochondrial network, and reexpression of a mutant mNEET resistant to oxidative stress increased in addition the resistance of the mitochondrial network to H2O2-induced fragmentation. Finally, overexpression of mNEET increased strongly intermitochondrial contacts and resulted in the clustering of mitochondria. Our results suggest that mNEET plays a specific role in the formation of intermitochondrial junctions and thus participates in the adaptation of cells to physiological changes and to the control of mitochondrial homeostasis.
Collapse
|
91
|
Wang Y, Hou Q, Xiao G, Yang S, Di C, Si J, Zhou R, Ye Y, Zhang Y, Zhang H. Selective ATP hydrolysis inhibition in F1Fo ATP synthase enhances radiosensitivity in non-small-cell lung cancer cells (A549). Oncotarget 2017; 8:53602-53612. [PMID: 28881834 PMCID: PMC5581133 DOI: 10.18632/oncotarget.18657] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/23/2017] [Indexed: 12/26/2022] Open
Abstract
Background F1Fo-ATP synthase (F1Fo-ATPase) is a reversibly rotary molecular machine whose dual functions of synthesizing or hydrolyzing ATP switch upon the condition of cell physiology. The robust ATP-hydrolyzing activity occurs in ischemia for maintaining the transmembrane proton motive force of mitochondria inner membrane, but the effect of F1Fo-ATPase on X-ray response of non-small-cell lung cancer (NSCLC) cells is unknown. Methods and Findings We studied whether ATP hydrolysis affected X-ray radiation induced cell death. NSCLC cells (A549) were pretreated with BTB06584 (BTB), an elective ATP hydrolysis inhibitor, followed by X-ray radiation. Cell viability and clonogenic survival were markedly decreased, clear indications of enhanced radiosensitivity through BTB incubation. Additionally, ATP5α1 was upregulated in parallel with elevated ATP hydrolytic activity after X-ray radiation, showing an increased mitochondrial membrane potential (ΔΨm). ATP hydrolysis inhibition led to collapse of ΔΨm suggesting ATP hydrolytic activity could enhance ΔΨm after X-ray radiation. Furthermore, we also demonstrated that apoptosis was pronounced with the prolonged collapse of ΔΨm due to hydrolysis inhibition by BTB incubation. Conclusion Overall, these findings supported that ATP hydrolysis inhibition could enhance the radiosensitivity in NSCLC cells (A549) after X-ray radiation, which was due to the collapse of ΔΨm.
Collapse
Affiliation(s)
- Yupei Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China.,CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Lanzhou 730000, Gansu, China.,Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Institute of Modern Physics, Lanzhou 730000, Gansu, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinzheng Hou
- College of Life Science, Northwest Normal University, Lanzhou 730070, Gansu, China
| | - Guoqing Xiao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China
| | - Shifeng Yang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Cuixia Di
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China.,CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Lanzhou 730000, Gansu, China.,Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Institute of Modern Physics, Lanzhou 730000, Gansu, China
| | - Jing Si
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China.,CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Lanzhou 730000, Gansu, China.,Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Institute of Modern Physics, Lanzhou 730000, Gansu, China
| | - Rong Zhou
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China.,CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Lanzhou 730000, Gansu, China.,Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Institute of Modern Physics, Lanzhou 730000, Gansu, China
| | - Yancheng Ye
- Gansu Wuwei Tumor Hospital, Department of Science and Technology, Wuwei 733000, Gansu, China
| | - Yanshan Zhang
- Gansu Wuwei Tumor Hospital, Department of Science and Technology, Wuwei 733000, Gansu, China
| | - Hong Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China.,CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Lanzhou 730000, Gansu, China.,Gansu Wuwei Tumor Hospital, Department of Science and Technology, Wuwei 733000, Gansu, China.,Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Institute of Modern Physics, Lanzhou 730000, Gansu, China
| |
Collapse
|
92
|
Kim HK, Noh YH, Nilius B, Ko KS, Rhee BD, Kim N, Han J. Current and upcoming mitochondrial targets for cancer therapy. Semin Cancer Biol 2017. [PMID: 28627410 DOI: 10.1016/j.semcancer.2017.06.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mitochondria are essential intracellular organelles that regulate energy metabolism, cell death, and signaling pathways that are important for cell proliferation and differentiation. Therefore, mitochondria are fundamentally implicated in cancer biology, including initiation, growth, metastasis, relapse, and acquired drug resistance. Based on these implications, mitochondria have been proposed as a major therapeutic target for cancer treatment. In addition to classical view of mitochondria in cancer biology, recent studies found novel pathophysiological roles of mitochondria in cancer. In this review, we introduce recent concepts of mitochondrial roles in cancer biology including mitochondrial DNA mutation and epigenetic modulation, energy metabolism reprogramming, mitochondrial channels, involvement in metastasis and drug resistance, and cancer stem cells. We also discuss the role of mitochondria in emerging cancer therapeutic strategies, especially cancer immunotherapy and CRISPR-Cas9 system gene therapy.
Collapse
Affiliation(s)
- Hyoung Kyu Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea; Department of Integrated Biomedical Science, College of Medicine, Inje University, Busan, Republic of Korea
| | - Yeon Hee Noh
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Bernd Nilius
- KU Leuven, Department Cell Mol Medicine, Leuven, 3000, Belgium
| | - Kyung Soo Ko
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Byoung Doo Rhee
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Nari Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea.
| |
Collapse
|
93
|
Abstract
Mitochondria play a key role in ATP generation, redox homeostasis and regulation of apoptosis. Due to the essential role of mitochondria in metabolism and cell survival, targeting mitochondria in cancer cells is considered as an attractive therapeutic strategy. However, metabolic flexibility in cancer cells may enable the upregulation of compensatory pathways, such as glycolysis to support cancer cell survival when mitochondrial metabolism is inhibited. Thus, compounds capable of both targeting mitochondria and inhibiting glycolysis may be particularly useful to overcome such drug-resistant mechanism. This review provides an update on recent development in the field of targeting mitochondria and novel compounds that impact mitochondria, glycolysis or both. Key challenges in this research area and potential solutions are also discussed.
Collapse
|
94
|
Pal HC, Prasad R, Katiyar SK. Cryptolepine inhibits melanoma cell growth through coordinated changes in mitochondrial biogenesis, dynamics and metabolic tumor suppressor AMPKα1/2-LKB1. Sci Rep 2017; 7:1498. [PMID: 28473727 PMCID: PMC5431443 DOI: 10.1038/s41598-017-01659-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/29/2017] [Indexed: 01/09/2023] Open
Abstract
Dysregulated mitochondrial dynamics and biogenesis have been associated with various pathological conditions including cancers. Here, we assessed the therapeutic effect of cryptolepine, a pharmacologically active alkaloid derived from the roots of Cryptolepis sanguinolenta, on melanoma cell growth. Treatment of human melanoma cell lines (A375, Hs294t, SK-Mel28 and SK-Mel119) with cryptolepine (1.0, 2.5, 5.0 and 7.5 μM) for 24 and 48 h significantly (P < 0.001) inhibited the growth of melanoma cells but not normal melanocytes. The inhibitory effect of cryptolepine was associated with loss of mitochondrial membrane potential and reduced protein expression of Mfn1, Mfn2, Opa1 and p-Drp1 leading to disruption of mitochondrial dynamics. A decrease in the levels of ATP and mitochondrial mass were associated with activation of the metabolic tumor suppressor AMPKα1/2-LKB1, and a reduction in mTOR signaling. Decreased expression of SDH-A and COX-I demonstrated that cryptolepine treatment reduced mitochondrial biogenesis. In vivo treatment of A375 xenograft-bearing nude mice with cryptolepine (10 mg/Kg body weight, i.p.) resulted in significant inhibition of tumor growth, which was associated with disruption of mitochondrial dynamics and a reduction in mitochondrial biogenesis. Our study suggests that low toxicity phytochemicals like cryptolepine may be tested for the treatment of melanoma.
Collapse
Affiliation(s)
- Harish C Pal
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ram Prasad
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA.,Birmingham Veterans Affairs Medical Center, Birmingham, AL, USA
| | - Santosh K Katiyar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA. .,Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, AL, USA. .,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA. .,Birmingham Veterans Affairs Medical Center, Birmingham, AL, USA.
| |
Collapse
|
95
|
Abstract
The worldwide epidemic of obesity is a major public health concern. Obesity is a major risk factor for noncommunicable diseases such as type 2 diabetes and cardiovascular diseases, clustered in the so-called metabolic syndrome (MS). Other main chronic illnesses are promoted by excessive body weight, including cancer and neurodegenerative pathologies, both affecting a number of people worldwide. In recent years, the primary role of an excess of reactive oxygen species (oxidative stress) resulting from altered redox control in the etiology of all of these pathologies has been unveiled. Interestingly, it appears that oxidative stress is both the cause and the consequence of obesity and associated disorders. This Forum features reviews that recapitulate the current knowledge on the link between oxidative stress and MS in the physiopathology of different biological systems. Antioxid. Redox Signal. 26, 429-431.
Collapse
Affiliation(s)
- Alice Carrier
- CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Aix Marseille University , Marseille, France
| |
Collapse
|
96
|
Kerkhofs M, Giorgi C, Marchi S, Seitaj B, Parys JB, Pinton P, Bultynck G, Bittremieux M. Alterations in Ca 2+ Signalling via ER-Mitochondria Contact Site Remodelling in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 997:225-254. [PMID: 28815534 DOI: 10.1007/978-981-10-4567-7_17] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inter-organellar contact sites establish microdomains for localised Ca2+-signalling events. One of these microdomains is established between the ER and the mitochondria. Importantly, the so-called mitochondria-associated ER membranes (MAMs) contain, besides structural proteins and proteins involved in lipid exchange, several Ca2+-transport systems, mediating efficient Ca2+ transfer from the ER to the mitochondria. These Ca2+ signals critically control several mitochondrial functions, thereby impacting cell metabolism, cell death and survival, proliferation and migration. Hence, the MAMs have emerged as critical signalling hubs in physiology, while their dysregulation is an important factor that drives or at least contributes to oncogenesis and tumour progression. In this book chapter, we will provide an overview of the role of the MAMs in cell function and how alterations in the MAM composition contribute to oncogenic features and behaviours.
Collapse
Affiliation(s)
- Martijn Kerkhofs
- Laboratory Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut (LKI), KU Leuven, Campus Gasthuisberg O&N 1 Box 802, Herestraat 49, 3000, Leuven, Belgium
| | - Carlotta Giorgi
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Saverio Marchi
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Bruno Seitaj
- Laboratory Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut (LKI), KU Leuven, Campus Gasthuisberg O&N 1 Box 802, Herestraat 49, 3000, Leuven, Belgium
| | - Jan B Parys
- Laboratory Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut (LKI), KU Leuven, Campus Gasthuisberg O&N 1 Box 802, Herestraat 49, 3000, Leuven, Belgium
| | - Paolo Pinton
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Geert Bultynck
- Laboratory Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut (LKI), KU Leuven, Campus Gasthuisberg O&N 1 Box 802, Herestraat 49, 3000, Leuven, Belgium.
| | - Mart Bittremieux
- Laboratory Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut (LKI), KU Leuven, Campus Gasthuisberg O&N 1 Box 802, Herestraat 49, 3000, Leuven, Belgium
| |
Collapse
|
97
|
A survey of the mechanisms of action of anticancer transition metal complexes. Future Med Chem 2016; 8:2263-2286. [DOI: 10.4155/fmc-2016-0153] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Metal complexes have been the subject of numerous investigations in oncology but, despite the plethora of newly synthesized compounds, their precise mechanisms of action remain generally unknown or, for the best, incompletely determined. The continuous development of efficient and sensitive techniques in analytical chemistry and molecular biology gives scientists new tools to gather information on how metal complexes can be effective toward cancer. This review focuses on recent findings about the anticancer mechanism of action of metal complexes and how the ligands can be used to tune their pharmacological and physicochemical properties.
Collapse
|