51
|
Khoso MA, Liu H, Zhao T, Zhao W, Huang Q, Sun Z, Dinislam K, Chen C, Kong L, Zhang Y, Liu X. Impact of plant-derived antioxidants on heart aging: a mechanistic outlook. Front Pharmacol 2025; 16:1524584. [PMID: 40191425 PMCID: PMC11969199 DOI: 10.3389/fphar.2025.1524584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/07/2025] [Indexed: 04/09/2025] Open
Abstract
Heart aging involves a complex interplay of genetic and environmental influences, leading to a gradual deterioration of cardiovascular integrity and function. Age-related physiological changes, including ventricular hypertrophy, diastolic dysfunction, myocardial fibrosis, increased arterial stiffness, and endothelial dysfunction, are influenced by key mechanisms like autophagy, inflammation, and oxidative stress. This review aims to explore the therapeutic potential of plant-derived bioactive antioxidants in mitigating heart aging. These compounds, often rich in polyphenols, flavonoids, and other phytochemicals, exhibit notable antioxidant, anti-inflammatory, and cardioprotective properties. These substances have intricate cardioprotective properties, including the ability to scavenge ROS, enhance endogenous antioxidant defenses, regulate signaling pathways, and impede fibrosis and inflammation-promoting processes. By focusing on key molecular mechanisms linked to cardiac aging, antioxidants produced from plants provide significant promise to reduce age-related cardiovascular decline and improve general heart health. Through a comprehensive analysis of preclinical and clinical studies, this work highlights the mechanisms associated with heart aging and the promising effects of plant-derived antioxidants. The findings may helpful for researchers in identifying specific molecules with therapeutic and preventive potential for aging heart.
Collapse
Affiliation(s)
- Muneer Ahmed Khoso
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Department of Cardiology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, China
| | - Heng Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Department of Cardiology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, China
| | - Tong Zhao
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Department of Cardiology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, China
| | - Wenjie Zhao
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Department of Cardiology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, China
| | - Qiang Huang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Department of Cardiology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, China
| | - Zeqi Sun
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Department of Cardiology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, China
| | - Khuzin Dinislam
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Department of Cardiology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, China
| | - Chen Chen
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Department of Cardiology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, China
| | - Lingyi Kong
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Department of Cardiology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, China
| | - Yong Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Department of Cardiology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, China
| | - Xin Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Department of Cardiology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, China
| |
Collapse
|
52
|
Ji K, Wen B, Wang X, Chen L, Chen Y, Wang L, Bao J, Pan X, Zhang G, Jiang Y, Liu H. HIF1A facilitates hypoxia-induced changes in H3K27ac modification to promote myometrial contractility. Commun Biol 2025; 8:475. [PMID: 40119120 PMCID: PMC11928739 DOI: 10.1038/s42003-025-07880-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 03/03/2025] [Indexed: 03/24/2025] Open
Abstract
Prior studies have established that myometrial hypoxia during labor is pivotal in intensifying contractions, the alterations in gene expression and histone modifications in myometrial cells under hypoxia have yet to be documented. Here, hypoxia's enhancement of cellular contractility was confirmed, and RNA-seq identified 2,262 differentially expressed genes in human myometrial smooth muscle cells (hMSMCs) under hypoxia. Chromatin immunoprecipitation (ChIP), high-throughput chromosome conformation capture followed by ChIP (Hi-ChIP) were employed to investigate the epigenetic changes, specifically histone modifications (H3K27ac, H3K4me1, H3K27me3, and H3K4me3), in hMSMCs under hypoxia. We identified the enhancer and super-enhancer regions in hMSMCs and found HIF1A as the key mediator of these H3K27ac changes under hypoxia. Labor-associated genes regulated by HIF1A have been identified. Validation experiments on these genes such as CXCL8, RUNX1, IL-6, and PTGES3 demonstrated that HIF1A knockdown reduces their expression and associated H3K27ac modifications in peak regions of their promoters or enhancers. These findings indicate that HIF1A probably mediate changes in histone H3K27ac modifications to regulate myometrial cell contractions under hypoxia, providing potential therapeutic and intervention targets for disorders related to parturition.
Collapse
Affiliation(s)
- Kaiyuan Ji
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Bolun Wen
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaodi Wang
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lina Chen
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yunshan Chen
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lele Wang
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Junjie Bao
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiuyu Pan
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Guozheng Zhang
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yanmin Jiang
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Huishu Liu
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
53
|
Shah DD, Chorawala MR, Raghani NR, Patel R, Fareed M, Kashid VA, Prajapati BG. Tumor microenvironment: recent advances in understanding and its role in modulating cancer therapies. Med Oncol 2025; 42:117. [PMID: 40102282 DOI: 10.1007/s12032-025-02641-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/24/2025] [Indexed: 03/20/2025]
Abstract
Tumor microenvironment (TME) denotes the non-cancerous cells and components presented in the tumor, including molecules produced and released by them. Interactions between cancer cells, immune cells, stromal cells, and the extracellular matrix within the TME create a dynamic ecosystem that can either promote or hinder tumor growth and spread. The TME plays a pivotal role in either promoting or inhibiting tumor growth and dissemination, making it a critical factor to consider in the development of effective cancer therapies. Understanding the intricate interplay within the TME is crucial for devising effective cancer therapies. Combination therapies involving inhibitors of immune checkpoint blockade (ICB), and/or chemotherapy now offer new approaches for cancer therapy. However, it remains uncertain how to best utilize these strategies in the context of the complex tumor microenvironment. Oncogene-driven changes in tumor cell metabolism can impact the TME to limit immune responses and present barriers to cancer therapy. Cellular and acellular components in tumor microenvironment can reprogram tumor initiation, growth, invasion, metastasis, and response to therapies. Components in the TME can reprogram tumor behavior and influence responses to treatments, facilitating immune evasion, nutrient deprivation, and therapeutic resistance. Moreover, the TME can influence angiogenesis, promoting the formation of blood vessels that sustain tumor growth. Notably, the TME facilitates immune evasion, establishes a nutrient-deprived milieu, and induces therapeutic resistance, hindering treatment efficacy. A paradigm shift from a cancer-centric model to a TME-centric one has revolutionized cancer research and treatment. However, effectively targeting specific cells or pathways within the TME remains a challenge, as the complexity of the TME poses hurdles in designing precise and effective therapies. This review highlights challenges in targeting the tumor microenvironment to achieve therapeutic efficacy; explore new approaches and technologies to better decipher the tumor microenvironment; and discuss strategies to intervene in the tumor microenvironment and maximize therapeutic benefits.
Collapse
Affiliation(s)
- Disha D Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India.
| | - Neha R Raghani
- Department of Pharmacology and Pharmacy Practice, Saraswati Institute of Pharmaceutical Sciences, Gandhinagar, Gujarat, 382355, India
| | - Rajanikant Patel
- Department of Product Development, Granules Pharmaceuticals Inc., 3701 Concorde Parkway, Chantilly, VA, 20151, USA
| | - Mohammad Fareed
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, 13713, Riyadh, Saudi Arabia
| | - Vivekanand A Kashid
- MABD Institute of Pharmaceutical Education and Research, Babhulgaon, Yeola, Nashik, India
| | - Bhupendra G Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education & Research, Ganpat University, Kherva, Mehsana, Gujarat, 384012, India.
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
54
|
Towler AG, Perciaccante AJ, Aballo TJ, Zhu Y, Wang F, Lloyd S, Kadoya K, He Y, Tian Y, Ge Y. A Single-Step Protein Extraction for Lung Extracellular Matrix Proteomics Enabled by the Photocleavable Surfactant Azo and timsTOF Pro. Mol Cell Proteomics 2025:100950. [PMID: 40107422 DOI: 10.1016/j.mcpro.2025.100950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025] Open
Abstract
The extracellular matrix (ECM) is a dynamic, complex network of proteins, collectively known as the 'matrisome', which not only provides essential structural support to cells and tissues but also regulates critical cellular processes. Dysregulation of the ECM is implicated in many diseases, underscoring the need to characterize the matrisome to better understand disease mechanisms. We have previously developed a dual-step protocol enabled by the photocleavable surfactant Azo for the extraction of ECM proteins from tissue using pH-neutral decellularization followed by solubilization by Azo. While effective for characterization of the ECM proteins, such a dual-step protocol requires two extracts per sample, limiting the throughput and complicating the comparison of protein quantitation across different extraction conditions. Here, we develop a single-step Azo-enabled protein extraction for the solubilization of ECM proteins from lung tissue to improve the throughput for studies with large sample sizes. Using this method, we identified 324 ECM proteins, including 137 core ECM and 187 ECM associated proteins. Core ECM proteins including elastin, fibronectin, and fibrillar collagens were reproducibly identified and quantified. We observed a 94.6% overlap in the ECM proteins identified between the single-step and dual-step Azo extracts, indicating the single-step Azo extraction achieves ECM protein coverage comparable to the dual-step extraction. Overall, we have demonstrated that this single-step Azo extraction is not only highly efficient but also comprehensive for ECM protein identification and quantification, making it a powerful method for ECM proteomics, especially for studies with large sample size.
Collapse
Affiliation(s)
- Anna G Towler
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | - Timothy J Aballo
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Yanlong Zhu
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA; Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Fei Wang
- Quantitative Translational & ADME Science, AbbVie Bioresearch Center, Worcester, MA 01605
| | - Sarah Lloyd
- Discovery Immunology, Pharmacology and Pathology, AbbVie, Inc., North Chicago, IL 60064
| | - Kuniko Kadoya
- Allergan Aesthetics, an AbbVie company, 2525 Dupont Drive, Irvine, CA 92612 USA
| | - Yupeng He
- Discovery Immunology, Pharmacology and Pathology, AbbVie, Inc., North Chicago, IL 60064.
| | - Yu Tian
- Quantitative Translational & ADME Science, AbbVie Bioresearch Center, Worcester, MA 01605.
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA; Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
55
|
Morabito M, Thibodot P, Gigandet A, Compagnon P, Toso C, Berishvili E, Lacotte S, Peloso A. Liver Extracellular Matrix in Colorectal Liver Metastasis. Cancers (Basel) 2025; 17:953. [PMID: 40149289 PMCID: PMC11939972 DOI: 10.3390/cancers17060953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/06/2025] [Accepted: 03/08/2025] [Indexed: 03/29/2025] Open
Abstract
The liver is the most common site of metastasis of colorectal cancer (CRC), and colorectal liver metastasis is one of the major causes of CRC-related deaths worldwide. The tumor microenvironment, particularly the extracellular matrix (ECM), plays a critical role in CRC metastasis and chemoresistance. Based on findings from clinical and basic research, this review attempts to offer a complete understanding of the role of the ECM in colorectal liver metastasis and to suggest potential ways for therapeutic intervention. First, the ECMs' role in regulating cancer cell fate is explored. We then discuss the hepatic ECM fingerprint and its influence on the metastatic behavior of CRC cells, highlighting key molecular interactions that promote metastasis. In addition, we examine how changes in the ECM within the metastatic niche contribute to chemoresistance, focusing on ECM remodeling by ECM stiffening and the activation of specific signaling pathways. Understanding these mechanisms is crucial for the development of novel strategies to overcome metastasis and improve outcomes for CRC patients.
Collapse
Affiliation(s)
- Marika Morabito
- General, Emergency and Transplant Surgery Department, ASST Settelaghi, University Hospital and Faculty of Medicine of Insubria, 21100 Varese, Italy
| | - Pauline Thibodot
- Hepato-Biliary Center, Paul-Brousse Hospital, Assistance Publique-Hôpitaux de Paris, 94800 Villejuif, France
| | - Anthony Gigandet
- School of Medecine, Faculty of Medecine, University of Geneva, 1211 Geneva, Switzerland
| | - Philippe Compagnon
- Division of Transplantation, Department of Surgery, Geneva University Hospitals and Faculty of Medicine, 1205 Geneva, Switzerland;
| | - Christian Toso
- Division of Abdominal Surgery and Transplantation, Department of Surgery, Geneva University Hospitals and Faculty of Medicine, 1205 Geneva, Switzerland
| | - Ekaterine Berishvili
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, 1211 Geneva, Switzerland;
| | - Stéphanie Lacotte
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland;
| | - Andrea Peloso
- Hepato-Biliary Center, Paul-Brousse Hospital, Assistance Publique-Hôpitaux de Paris, 94800 Villejuif, France
- Division of Transplantation, Department of Surgery, Geneva University Hospitals and Faculty of Medicine, 1205 Geneva, Switzerland;
- Division of Abdominal Surgery and Transplantation, Department of Surgery, Geneva University Hospitals and Faculty of Medicine, 1205 Geneva, Switzerland
| |
Collapse
|
56
|
Melrose J. Glycosaminoglycans, Instructive Biomolecules That Regulate Cellular Activity and Synaptic Neuronal Control of Specific Tissue Functional Properties. Int J Mol Sci 2025; 26:2554. [PMID: 40141196 PMCID: PMC11942259 DOI: 10.3390/ijms26062554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/22/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
Glycosaminoglycans (GAGs) are a diverse family of ancient biomolecules that evolved over millennia as key components in the glycocalyx that surrounds all cells. GAGs have molecular recognition and cell instructive properties when attached to cell surface and extracellular matrix (ECM) proteoglycans (PGs), which act as effector molecules that regulate cellular behavior. The perception of mechanical cues which arise from perturbations in the ECM microenvironment allow the cell to undertake appropriate biosynthetic responses to maintain ECM composition and tissue function. ECM PGs substituted with GAGs provide structural support to weight-bearing tissues and an ability to withstand shear forces in some tissue contexts. This review outlines the structural complexity of GAGs and the diverse functional properties they convey to cellular and ECM PGs. PGs have important roles in cartilaginous weight-bearing tissues and fibrocartilages subject to tension and high shear forces and also have important roles in vascular and neural tissues. Specific PGs have roles in synaptic stabilization and convey specificity and plasticity in the regulation of neurophysiological responses in the CNS/PNS that control tissue function. A better understanding of GAG instructional roles over cellular behavior may be insightful for the development of GAG-based biotherapeutics designed to treat tissue dysfunction in disease processes and in novel tissue repair strategies following trauma. GAGs have a significant level of sophistication over the control of cellular behavior in many tissue contexts, which needs to be fully deciphered in order to achieve a useful therapeutic product. GAG biotherapeutics offers exciting opportunities in the modern glycomics arena.
Collapse
Affiliation(s)
- James Melrose
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia;
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Northern Sydney Local Health District, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Sydney Medical School, Northern, University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| |
Collapse
|
57
|
Ten A, Yudintceva N, Samochernykh K, Combs SE, Jha HC, Gao H, Shevtsov M. Post-Secretion Processes and Modification of Extracellular Vesicles. Cells 2025; 14:408. [PMID: 40136657 PMCID: PMC11940929 DOI: 10.3390/cells14060408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 03/27/2025] Open
Abstract
Extracellular vesicles (EVs) are an important mediator of intercellular communication and the regulation of processes occurring in cells and tissues. The processes of EVs secretion by cells into the extracellular space (ECS) leads to their interaction with its participants. The ECS is a dynamic structure that also takes direct part in many processes of intercellular communication and regulation. Changes in the ECS can also be associated with pathological processes, such as increased acidity during the development of solid tumors, changes in the composition and nature of the organization of the extracellular matrix (ECM) during fibroblast activation, an increase in the content of soluble molecules during necrosis, and other processes. The interaction of these two systems, the EVs and the ESC, leads to structural and functional alteration in both participants. In the current review, we will focus on these alterations in the EVs which we termed post-secretory modification and processes (PSMPs) of EVs. PSPMs can have a significant effect on the immediate cellular environment and on the spread of the pathological process in the body as a whole. Thus, it can be assumed that PSPMs are one of the important stages in the regulation of intercellular communication, which has significant differences in the norm and in pathology.
Collapse
Affiliation(s)
- Artem Ten
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 Saint Petersburg, Russia; (A.T.); (N.Y.)
| | - Natalia Yudintceva
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 Saint Petersburg, Russia; (A.T.); (N.Y.)
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia;
| | - Konstantin Samochernykh
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia;
| | - Stephanie E. Combs
- Department of Radiation Oncology, Technishe Universität München (TUM), Klinikum Rechts der Isar, Ismaninger Str. 22, 81675 Munich, Germany;
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India;
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, China;
| | - Maxim Shevtsov
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 Saint Petersburg, Russia; (A.T.); (N.Y.)
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia;
- Department of Radiation Oncology, Technishe Universität München (TUM), Klinikum Rechts der Isar, Ismaninger Str. 22, 81675 Munich, Germany;
| |
Collapse
|
58
|
Liu X, Fang C, Yu H, Huang L, Feng J, Luo S, Song L, Wu M, Tan Y, Dong J, Gong T, Xiao P. Chondroitin Sulfate-Based Imatinib Nanoparticles Targeting Activated Hepatic Stellate Cells Against Hepatic Fibrosis. Pharmaceutics 2025; 17:351. [PMID: 40143016 PMCID: PMC11944399 DOI: 10.3390/pharmaceutics17030351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/16/2025] [Accepted: 02/28/2025] [Indexed: 03/28/2025] Open
Abstract
Background: Activated hepatic stellate cells (aHSCs) play a significant role during the onset of hepatic fibrosis, ultimately leading to excessive deposition of extracellular matrix (ECM) and other typical pathological features, and thus have become a popular target for the treatment of hepatic fibrosis. However, current aHSC-centric therapy strategies achieve unsatisfactory results, mainly due to the lack of approved anti-fibrosis drugs and sufficiently efficient aHSC-targeted delivery systems. In this study, our aim was to develop an Imatinib-loaded nanoparticle delivery system based on a chondroitin sulfate derivative to enhance aHSC targeting efficiency, improve the therapeutic effect for hepatic fibrosis, and investigate the underlying mechanism. Methods: The carboxyl group of chondroitin sulfate and the amino group of 1-hexadecylamine were linked by an amide bond in this study to produce the amphiphilic carrier CS-HDA. Then, the Imatinib-loaded nanoparticles (IM-CS NPs) were designed to efficiently target aHSCs through CD44-mediated endocytosis and effectively inhibit HSC overactivation via PDGF and TGF-β signaling pathways. Results: Both in vitro cellular uptake experiments and in vivo distribution experiments demonstrated that CS-HDA-modified nanoparticles (IM-CS NPs) exhibited a better targeting ability for aHSCs, which were subsequently utilized to treat carbon tetrachloride-induced hepatic fibrosis mouse models. Finally, significant fibrosis resolution was observed in the carbon tetrachloride-induced hepatic fibrosis mouse models after tail vein injection of the IM-CS NPs, along with their outstanding biocompatibility and biological safety. Conclusions: IM-loaded NPs based on an amphiphilic CS derivative have remarkable antifibrotic effects, providing a promising avenue for the clinical treatment of advanced hepatic fibrosis.
Collapse
Affiliation(s)
- Xunzhi Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; (X.L.); (H.Y.); (L.H.); (J.F.); (S.L.); (M.W.); (Y.T.); (T.G.)
| | - Changlong Fang
- Department of Pharmacy, Chongqing University Fuling Hospital, Chongqing University, Chongqing 408099, China;
| | - Hongling Yu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; (X.L.); (H.Y.); (L.H.); (J.F.); (S.L.); (M.W.); (Y.T.); (T.G.)
| | - Lu Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; (X.L.); (H.Y.); (L.H.); (J.F.); (S.L.); (M.W.); (Y.T.); (T.G.)
| | - Jiaxing Feng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; (X.L.); (H.Y.); (L.H.); (J.F.); (S.L.); (M.W.); (Y.T.); (T.G.)
| | - Shiqin Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; (X.L.); (H.Y.); (L.H.); (J.F.); (S.L.); (M.W.); (Y.T.); (T.G.)
| | - Li Song
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China;
| | - Mengying Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; (X.L.); (H.Y.); (L.H.); (J.F.); (S.L.); (M.W.); (Y.T.); (T.G.)
| | - Yulu Tan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; (X.L.); (H.Y.); (L.H.); (J.F.); (S.L.); (M.W.); (Y.T.); (T.G.)
| | - Jianxia Dong
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Tao Gong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; (X.L.); (H.Y.); (L.H.); (J.F.); (S.L.); (M.W.); (Y.T.); (T.G.)
| | - Peihong Xiao
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China;
| |
Collapse
|
59
|
Shakerian N, Tafazoli A, Razavinia A, Sadrzadeh Aghajani Z, Bana N, Mard-Soltani M, Khalesi B, Hashemi ZS, Khalili S. Current Understanding of Therapeutic and Diagnostic Applications of Exosomes in Pancreatic Cancer. Pancreas 2025; 54:e255-e267. [PMID: 39661050 DOI: 10.1097/mpa.0000000000002414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
ABSTRACT Unusual symptoms, rapid progression, lack of reliable early diagnostic biomarkers, and lack of efficient treatment choices are the ongoing challenges of pancreatic cancer. Numerous research studies have demonstrated the correlation between exosomes and various aspects of pancreatic cancer. In light of these facts, exosomes possess the potential to play functional roles in the treatment, prognosis, and diagnosis of the pancreatic cancer. In the present study, we reviewed the most recent developments in approaches for exosome separation, modification, monitoring, and communication. Moreover, we discussed the clinical uses of exosomes as less invasive liquid biopsies and drug carriers and their contribution to the control of angiogenic activity of pancreatic cancer. Better investigation of exosome biology would help to effectively engineer therapeutic exosomes with certain nucleic acids, proteins, and even exogenous drugs as their cargo. Circulating exosomes have shown promise as reliable candidates for pancreatic cancer early diagnosis and monitoring in high-risk people without clinical cancer manifestation. Although we have tried to reflect the status of exosome applications in the treatment and detection of pancreatic cancer, it is evident that further studies and clinical trials are required before exosomes may be employed as a routine therapeutic and diagnostic tools for pancreatic cancer.
Collapse
Affiliation(s)
- Neda Shakerian
- From the Department of Clinical Biochemistry, Faculty of Medical Sciences, Dezful University of Medical Sciences, Dezful
| | - Aida Tafazoli
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz
| | - Amir Razavinia
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, IR
| | | | - Nikoo Bana
- Kish International Campus, University of Teheran
| | - Maysam Mard-Soltani
- From the Department of Clinical Biochemistry, Faculty of Medical Sciences, Dezful University of Medical Sciences, Dezful
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj
| | - Zahra Sadat Hashemi
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| |
Collapse
|
60
|
Gao H, Pol M, Makara CA, Song J, Zhang H, Zou X, Benson JM, Burris DL, Fox JM, Jia X. Bio-orthogonal tuning of matrix properties during 3D cell culture to induce morphological and phenotypic changes. Nat Protoc 2025; 20:727-778. [PMID: 39501109 PMCID: PMC11898115 DOI: 10.1038/s41596-024-01066-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 08/21/2024] [Indexed: 03/12/2025]
Abstract
Described herein is a protocol for producing a synthetic extracellular matrix that can be modified in situ during three-dimensional cell culture. The hydrogel platform is established using modular building blocks employing bio-orthogonal tetrazine (Tz) ligation with slow (norbornene, Nb) and fast (trans-cyclooctene, TCO) dienophiles. A cell-laden gel construct is created via the slow, off-stoichiometric Tz/Nb reaction. After a few days of culture, matrix properties can be altered by supplementing the cell culture media with TCO-tagged molecules through the rapid reaction with the remaining Tz groups in the network at the gel-liquid interface. As the Tz/TCO reaction is faster than molecular diffusion, matrix properties can be modified in a spatiotemporal fashion simply by altering the identity of the diffusive species and the diffusion time/path. Our strategy does not interfere with native biochemical processes nor does it require external triggers or a second, independent chemistry. The biomimetic three-dimensional cultures can be analyzed by standard molecular and cellular techniques and visualized by confocal microscopy. We have previously used this method to demonstrate how in situ modulation of matrix properties induces epithelial-to-mesenchymal transition, elicits fibroblast transition from mesenchymal stem cells and regulates myofibroblast differentiation. Following the detailed procedures, individuals with a bachelor's in science and engineering fields can successfully complete the protocol in 4-5 weeks. This protocol can be applied to model tissue morphogenesis and disease progression and it can also be used to establish engineered constructs with tissue-like anisotropy and tissue-specific functions.
Collapse
Affiliation(s)
- Hanyuan Gao
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA
| | - Mugdha Pol
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Colette A Makara
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Jiyeon Song
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA
| | - He Zhang
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA
| | - Xiaoyu Zou
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA
| | - Jamie M Benson
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - David L Burris
- Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
| | - Joseph M Fox
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Xinqiao Jia
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA.
- Department of Biological Sciences, University of Delaware, Newark, DE, USA.
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA.
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA.
| |
Collapse
|
61
|
Bouchelkia I, Sadacharan C. Comprehensive Quantification of Collagen, Elastin, and Glycosaminoglycans in the Human Facial Dermis: Insights From a Pilot Study. Cureus 2025; 17:e81419. [PMID: 40296941 PMCID: PMC12036737 DOI: 10.7759/cureus.81419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2025] [Indexed: 04/30/2025] Open
Abstract
Background Age-related alterations in the dermal extracellular matrix (ECM) drive skin aging and are linked to numerous dermatological conditions, including diminished wound healing and compromised skin integrity. Our study aims to quantify and compare the distribution of collagen, elastic fibers, and glycosaminoglycans (GAGs) across different ages and analyze their patterns in vertical sections of the facial dermis. Methods Skin samples were collected from the under-eye (UE) and forehead (FH) regions of 24 male and female human cadavers aged 59-87. Samples were processed histologically. Collagen, elastic fibers, and GAG content were stained using trichrome, van Gieson, and alcian blue stains, respectively. The data was collected using ImageJ software. Two-way ANOVA with post hoc Tukey's test was used to analyze differences across regions and stain types. Results The FH region showed significantly higher GAGs in horizontal sections compared to vertical (p < 0.0001), with no significant differences in collagen (p = 0.9968) or elastic fibers (p = 0.8762). In the UE region, GAGs were also higher in horizontal sections (p = 0.0001), while collagen (p = 0.3954) and elastic fibers (p > 0.9999) showed no differences. Comparing FH and UE, vertical sections showed significant differences in collagen (p = 0.021) and GAGs (p = 0.0027), with higher values in FH. Horizontal sections showed significantly higher GAGs in FH (p = 0.001), with no differences in collagen (p = 0.5709) or elastic fibers (p > 0.9999). ECM changes were significant with age, but no differences were observed based on gender. Conclusions These findings offer novel insights into the structural and functional differences in the facial dermis, which can inform targeted anti-aging treatments, improve strategies for wound healing, and guide personalized dermatological interventions for skin integrity and rejuvenation.
Collapse
Affiliation(s)
- Iman Bouchelkia
- Biomedical Sciences, Tilman J. Fertitta Family College of Medicine, Houston, USA
| | | |
Collapse
|
62
|
Yamazaki M, Ishimoto T. Targeting Cancer-Associated Fibroblasts: Eliminate or Reprogram? Cancer Sci 2025; 116:613-621. [PMID: 39745128 PMCID: PMC11875776 DOI: 10.1111/cas.16443] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/08/2024] [Accepted: 12/20/2024] [Indexed: 03/05/2025] Open
Abstract
Cancer-associated fibroblasts (CAFs) are key components of the tumor microenvironment (TME). Given their various roles in tumor progression and treatment resistance, CAFs are promising therapeutic targets in cancer. The elimination of tumor-promoting CAFs has been investigated in various animal models to determine whether it effectively suppresses tumor growth. Based on recent evidence, several simple strategies have been proposed to eliminate tumor-promoting CAFs and attenuate these features. In addition, attention has focused on the critical role that CAFs play in the immunosuppressive TME. Therefore, the functional reprogramming of CAFs in combination with immune checkpoint inhibitors has also been investigated as a possible therapeutic approach. However, although potential targets in CAFs have been widely characterized, the plasticity and heterogeneity of CAFs complicate the understanding of their properties and present difficulties for clinical application. Moreover, the identification of tumor-suppressive CAFs highlights the necessity for the development of therapeutic approaches that can distinguish and switch between tumor-promoting and tumor-suppressive CAFs in an appropriate manner. In this review, we introduce the origins and diversity of CAFs, their role in cancer, and current therapeutic strategies aimed at targeting CAFs, including ongoing clinical evaluations.
Collapse
Affiliation(s)
- Masaya Yamazaki
- Division of CarcinogenesisThe Cancer Institute, Japanese Foundation for Cancer ResearchTokyoJapan
| | - Takatsugu Ishimoto
- Division of CarcinogenesisThe Cancer Institute, Japanese Foundation for Cancer ResearchTokyoJapan
- International Research Center of Medical Sciences (IRCMS)Kumamoto UniversityKumamotoJapan
| |
Collapse
|
63
|
Zhao J, Zhi Y, Ren H, Wang J, Zhao Y. Emerging biotechnologies for engineering liver organoids. Bioact Mater 2025; 45:1-18. [PMID: 39588483 PMCID: PMC11585797 DOI: 10.1016/j.bioactmat.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/02/2024] [Accepted: 11/02/2024] [Indexed: 11/27/2024] Open
Abstract
The engineering construction of the liver has attracted enormous attention. Organoids, as emerging miniature three-dimensional cultivation units, hold significant potential in the biomimetic simulation of liver structure and function. Despite notable successes, organoids still face limitations such as high variability and low maturity. To overcome these challenges, engineering strategies have been established to maintain organoid stability and enhance their efficacy, laying the groundwork for the development of advanced liver organoids. The present review comprehensively summarizes the construction of engineered liver organoids and their prospective applications in biomedicine. Initially, we briefly present the latest research progress on matrix materials that maintain the three-dimensional morphology of organoids. Next, we discuss the manipulative role of engineering technologies in organoid assembly. Additionally, we outline the impact of gene-level regulation on organoid growth and development. Further, we introduce the applications of liver organoids in disease modeling, drug screening and regenerative medicine. Lastly, we overview the current obstacles and forward-looking perspectives on the future of engineered liver organoids. We anticipate that ongoing innovations in engineered liver organoids will lead to significant advancements in medical applications.
Collapse
Affiliation(s)
- Junqi Zhao
- Department of Hepatobiliary Surgery, Hepatobiliary Institute, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yue Zhi
- Department of Hepatobiliary Surgery, Hepatobiliary Institute, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, China
| | - Haozhen Ren
- Department of Hepatobiliary Surgery, Hepatobiliary Institute, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, China
| | - Jinglin Wang
- Department of Hepatobiliary Surgery, Hepatobiliary Institute, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, China
| | - Yuanjin Zhao
- Department of Hepatobiliary Surgery, Hepatobiliary Institute, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
- Shenzhen Research Institute, Southeast University, Shenzhen, 518038, China
| |
Collapse
|
64
|
Yu Z, Fu J, Mantareva V, Blažević I, Wu Y, Wen D, Battulga T, Wang Y, Zhang J. The role of tumor-derived exosomal LncRNA in tumor metastasis. Cancer Gene Ther 2025; 32:273-285. [PMID: 40011710 DOI: 10.1038/s41417-024-00852-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/22/2024] [Accepted: 11/05/2024] [Indexed: 02/28/2025]
Abstract
Tumor metastasis regulated by multiple complicated pathways is closely related to variations in the tumor microenvironment. Exosomes can regulate the tumor microenvironment through various mechanisms. Exosomes derived from tumor cells carry a variety of substances, including long non-coding RNAs (lncRNAs), play important roles in intercellular communication and act as critical determinants influencing tumor metastasis. In this review, we elaborate on several pivotal processes through which lncRNAs regulate tumor metastasis, including the regulation of epithelial‒mesenchymal transition, promotion of angiogenesis and lymphangiogenesis, enhancement of the stemness of tumor cells, and evasion of immune clearance. Additionally, we comprehensively summarized a diverse array of potential tumor-derived exosomal lncRNA biomarkers to facilitate accurate diagnosis and prognosis in a clinical setting.
Collapse
Affiliation(s)
- Zhile Yu
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 510700, PR China
| | - Jiali Fu
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 510700, PR China
| | - Vanya Mantareva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Bld. 9, 1113, Sofia, Bulgaria
| | - Ivica Blažević
- Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000, Split, Croatia
| | - Yusong Wu
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 510700, PR China
| | - Dianchang Wen
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 510700, PR China
| | - Tungalag Battulga
- School of Pharmacy, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia.
| | - Yuqing Wang
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 510700, PR China.
- The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, 510140, PR China.
| | - Jianye Zhang
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 510700, PR China.
- The Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, 511518, PR China.
| |
Collapse
|
65
|
Tanzadehpanah H, Nobari S, Hoseini AJ, Ghotbani F, Mehrabzadeh M, Jalili shahri J, Alipour A, Sheykhhasan M, Manoochehri H, Darroudi S, Mahaki H. Effect of platelet-rich plasma on angiogenic and regenerative properties in patients with critical limb ischemia. Regen Ther 2025; 28:517-526. [PMID: 39995496 PMCID: PMC11848493 DOI: 10.1016/j.reth.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/01/2025] [Accepted: 01/10/2025] [Indexed: 02/26/2025] Open
Abstract
Platelet-rich plasma (PRP) is a promising regenerative therapy due to its simplicity, clinical application, safety, and ability to promote angiogenesis. It utilizes various angiogenic growth factors in platelets, including platelet-derived growth factor (PDGF), transforming growth factor-β (TGF-β), insulin-like growth factor-1 (IGF-1), vascular endothelial growth factor (VEGF), and epidermal growth factor (EGF), which are integral to the tissue repair. Critical limb ischemia (CLI) is a major symptom of peripheral arterial disease (PAD), and PRP therapy aims to improve blood circulation to the distal limb through the development of blood vessels. This review focuses on the extensive research on the molecular mechanisms of PRPs in treating CLI. A comprehensive search was conducted on Web of Science, PubMed, Google Scholar, and Scopus to find studies published during PRP therapy in critical limb ischemia up to June 2024. Current studies reveal that PRP composition varies by case, affecting preparation methods, storage duration, storage methods, and interaction with other materials. PRP-derived growth factors have shown promising results in treating CLI, but well-controlled human research is scarce despite positive animal studies.
Collapse
Affiliation(s)
- Hamid Tanzadehpanah
- Antimicrobial Resistance Research Center, Basic Science Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sima Nobari
- Deputy of Health, Iran University of Medical Science, Tehran, Iran
| | | | - Farzaneh Ghotbani
- Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Mehrabzadeh
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jamal Jalili shahri
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirreza Alipour
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Sheykhhasan
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Hamed Manoochehri
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Susan Darroudi
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hanie Mahaki
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
66
|
Dong W, Yang C, Guo D, Jia M, Wang Y, Wang J. PTX3-assembled pericellular hyaluronan matrix enhances endochondral ossification during fracture healing and heterotopic ossification. Bone 2025; 192:117385. [PMID: 39732447 DOI: 10.1016/j.bone.2024.117385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
Endochondral ossification (EO) is a pivotal process during fracture healing and traumatic heterotopic ossification (HO), involving the cartilaginous matrix synthesis and mineralization. Unlike the extracellular matrix, the hyaluronan (HA)-rich pericellular matrix (PCM) directly envelops chondrocytes, serving as the frontline for extracellular signal reception and undergoing dynamic remodeling. Pentraxin 3 (PTX3), a secreted glycoprotein, facilitates HA matrix assembly and remodeling. However, it remains unclear whether PTX3 affects EO by regulating HA-rich PCM assembly of chondrocytes, thereby impacting fracture healing and traumatic HO. This study demonstrates that PTX3 deficiency impairs fracture healing and inhibits traumatic HO, but dose not affect growth plate development in mice. PTX3 expression is up-regulated during chondrocyte matrix synthesis and maturation and is localized in the HA-rich PCM. PTX3 promotes the assembly of HA-rich PCM in a serum- and TSG6-dependent manner, fostering CD44 receptor clustering, activating the FAK/AKT signaling pathway, and promoting chondrocyte matrix synthesis and maturation. Local injection of PTX3/TSG6 matrix protein mixture effectively promotes fracture healing in mice. In conclusion, PTX3-assembled HA-rich PCM promotes chondrocyte matrix synthesis and maturation via CD44/FAK/AKT signaling. This mechanism facilitates EO during fracture healing and traumatic HO in mice.
Collapse
Affiliation(s)
- Wei Dong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Chang Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Donghua Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Meie Jia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jiawei Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
67
|
Barthelson K, Protzman RA, Snel MF, Hemsley K, Lardelli M. Multi-omics analyses of early-onset familial Alzheimer's disease and Sanfilippo syndrome zebrafish models reveal commonalities in disease mechanisms. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167651. [PMID: 39798820 DOI: 10.1016/j.bbadis.2024.167651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 12/03/2024] [Accepted: 12/27/2024] [Indexed: 01/15/2025]
Abstract
Sanfilippo syndrome (mucopolysaccharidosis type III, MPSIII) causes childhood dementia, while Alzheimer's disease is the most common type of adult-onset dementia. There is no cure for either of these diseases, and therapeutic options are extremely limited. Increasing evidence suggests commonalities in the pathogenesis of these diseases. However, a direct molecular-level comparison of these diseases has never been performed. Here, we exploited the power of zebrafish reproduction (large families of siblings from single mating events raised together in consistent environments) to conduct sensitive, internally controlled, comparative transcriptome and proteome analyses of zebrafish models of early-onset familial Alzheimer's disease (EOfAD, psen1Q96_K97del/+) and MPSIIIB (nagluA603fs/A603fs) within single families. We examined larval zebrafish (7 days post fertilisation), representing early disease stages. We also examined the brains of 6-month-old zebrafish, which are approximately equivalent to young adults in humans. We identified substantially more differentially expressed genes and pathways in MPS III zebrafish than in EOfAD-like zebrafish. This is consistent with MPS III being a rapidly progressing and earlier onset form of dementia. Similar changes in expression were detected between the two disease models in gene sets representing extracellular matrix receptor interactions in larvae, and the ribosome and lysosome pathways in 6-month-old adult brains. Cell type-specific changes were detected in MPSIIIB brains at 6 months of age, likely reflecting significant disturbances of oligodendrocyte, neural stem cell, and inflammatory cell functions and/or numbers. Our 'omics analyses have illuminated similar disease pathways between EOfAD and MPS III indicating where efforts to find mutually effective therapeutic strategies can be targeted.
Collapse
Affiliation(s)
- Karissa Barthelson
- Childhood Dementia Research Group, College of Medicine & Public Health, Flinders Health and Medical Research Institute, Flinders University, Sturt Road, Bedford Park, SA 5042, Australia; Alzheimer's Disease Genetics Laboratory, School of Molecular and Biomedical Sciences, Faculty of Sciences, Engineering and Technology, The University of Adelaide, North Terrace Campus, Adelaide, SA 5005, Australia.
| | - Rachael A Protzman
- Proteomics, Metabolomics and MS-Imaging Facility, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia
| | - Marten F Snel
- Proteomics, Metabolomics and MS-Imaging Facility, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia; School of Physics, Chemistry and Earth Science, Faculty of Sciences, Engineering and Technology, The University of Adelaide, North Terrace Campus, Adelaide, SA 5005, Australia
| | - Kim Hemsley
- Childhood Dementia Research Group, College of Medicine & Public Health, Flinders Health and Medical Research Institute, Flinders University, Sturt Road, Bedford Park, SA 5042, Australia
| | - Michael Lardelli
- Alzheimer's Disease Genetics Laboratory, School of Molecular and Biomedical Sciences, Faculty of Sciences, Engineering and Technology, The University of Adelaide, North Terrace Campus, Adelaide, SA 5005, Australia
| |
Collapse
|
68
|
Gomes KT, Prasad PR, Sandhu JS, Kumar A, Kumar NAN, Shridhar NB, Bisht B, Paul MK. Decellularization techniques: unveiling the blueprint for tracheal tissue engineering. Front Bioeng Biotechnol 2025; 13:1518905. [PMID: 40092377 PMCID: PMC11906413 DOI: 10.3389/fbioe.2025.1518905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/03/2025] [Indexed: 03/19/2025] Open
Abstract
Certain congenital or acquired diseases and defects such as tracheo-oesophageal fistula, tracheomalacia, tracheal stenosis, airway ischemia, infections, and tumours can cause damage to the trachea. Treatments available do not offer any permanent solutions. Moreover, long-segment defects in the trachea have no available surgical treatments. Tissue engineering has gained popularity in current regenerative medicine as a promising approach to bridge this gap. Among the various tissue engineering techniques, decellularization is a widely used approach that removes the cellular and nuclear contents from the tissue while preserving the native extracellular matrix components. The decellularized scaffolds exhibit significantly lower immunogenicity and retain the essential biomechanical and proangiogenic properties of native tissue, creating a foundation for trachea regeneration. The present review provides an overview of trachea decellularization advancements, exploring how recellularization approaches can be optimized by using various stem cells and tissue-specific cells to restore the scaffold's structure and function. We examine critical factors such as mechanical properties, revascularization, and immunogenicity involved in the transplantation of tissue-engineered grafts.
Collapse
Affiliation(s)
- Keisha T Gomes
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Palla Ranga Prasad
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Jagnoor Singh Sandhu
- Central Animal Research Facility, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
- Center for Animal Research, Ethics and Training (CARET), Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Ashwini Kumar
- Department of Forensic Medicine, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Naveena A N Kumar
- Department of Surgical Oncology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - N B Shridhar
- Department of Pharmacology and Toxicology, Obscure Disease Research Center, Veterinary College Campus, Shivamogga, Karnataka, India
| | - Bharti Bisht
- Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Manash K Paul
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, United States
| |
Collapse
|
69
|
Fang C, Zeng Z, Ye J, Ni B, Zou J, Zhang G. Progress of mesenchymal stem cells affecting extracellular matrix metabolism in the treatment of female stress urinary incontinence. Stem Cell Res Ther 2025; 16:95. [PMID: 40001265 PMCID: PMC11863768 DOI: 10.1186/s13287-025-04220-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Stress urinary incontinence (SUI) is a prevalent pelvic floor dysfunction in women post-pregnancy. Currently, conservative treatment options have low success rates, while surgical interventions often result in multiple complications. The altered state of the extracellular matrix (ECM) is a pivotal factor in the onset of various diseases and likely plays a significant role in the pathogenesis of SUI, particularly through changes in collagen and elastin levels. Recent advances in mesenchymal stem cells (MSCs) therapy have shown considerable promise in treating SUI by modulating ECM remodeling, thereby enhancing the supportive tissues of the female pelvic floor. MSCs exhibit substantial potential in enhancing urethral sphincter function, modulating connective tissue architecture, and stimulating fibroblast activity. They play a pivotal role in the reconstruction and functional recovery of the ECM by influencing various signaling pathways, including TGF-β/SMAD, JAK/STAT, Wnt/β-catenin, PI3K/AKT, and ERK/MAPK. We have reviewed the advancements in MSC-mediated ECM metabolism in SUI and, by integrating the functions of ECM in other diseases and how MSCs can ameliorate conditions through their impact on ECM metabolism, we have projected the future trajectory of SUI treatment development.
Collapse
Affiliation(s)
- Chunyun Fang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Zitao Zeng
- First Clinical College of Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Junsong Ye
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Bin Ni
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Junrong Zou
- Department of Urology, Institute of Urology, First Affiliated Hospital of Gannan Medical University, Jiangxi Engineering Technology Research Center of Calculi Prevention, Gannan Medical University, No. 128, Jinling Road, Zhanggong District, Ganzhou, Jiangxi, 341000, China
| | - Guoxi Zhang
- Department of Urology, Institute of Urology, First Affiliated Hospital of Gannan Medical University, Jiangxi Engineering Technology Research Center of Calculi Prevention, Gannan Medical University, No. 128, Jinling Road, Zhanggong District, Ganzhou, Jiangxi, 341000, China.
| |
Collapse
|
70
|
Lesko L, Jungova P, Culenova M, Thurzo A, Danisovic L. Polymer-Based Scaffolds as an Implantable Material in Regenerative Dentistry: A Review. J Funct Biomater 2025; 16:80. [PMID: 40137359 PMCID: PMC11943271 DOI: 10.3390/jfb16030080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/27/2025] Open
Abstract
Polymer-based scaffolds have emerged as transformative materials in regenerative dentistry, enabling the restoration and replacement of dental tissues through tissue engineering approaches. These scaffolds, derived from natural and synthetic polymers, mimic the extracellular matrix to promote cellular attachment, proliferation, and differentiation. Natural polymers such as collagen, chitosan, and alginate offer biocompatibility and bioactivity, while synthetic alternatives like polylactic acid (PLA) and polycaprolactone (PCL) provide tunable mechanical properties and degradation rates. Recent advancements highlight the integration of bioactive molecules and nanotechnology to enhance the regenerative potential of these materials. Furthermore, developing hybrid scaffolds combining natural and synthetic polymers addresses biocompatibility and mechanical strength challenges, paving the way for patient-specific treatments. Innovations in 3D bioprinting and stimuli-responsive biomaterials are expected to refine scaffold design further, improving therapeutic precision and clinical outcomes. This review underscores the critical role of polymer-based scaffolds in advancing regenerative dentistry, focusing on their applications, advantages, and limitations.
Collapse
Affiliation(s)
- Lubos Lesko
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia; (L.L.); (M.C.)
| | - Petra Jungova
- Department of Orthodontics, Regenerative and Forensic Dentistry, Faculty of Medicine, Comenius University in Bratislava, Dvořákovo nábrežie 4, 811 02 Bratislava, Slovakia; (P.J.); (A.T.)
| | - Martina Culenova
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia; (L.L.); (M.C.)
| | - Andrej Thurzo
- Department of Orthodontics, Regenerative and Forensic Dentistry, Faculty of Medicine, Comenius University in Bratislava, Dvořákovo nábrežie 4, 811 02 Bratislava, Slovakia; (P.J.); (A.T.)
| | - Lubos Danisovic
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia; (L.L.); (M.C.)
- National Institute of Rheumatic Diseases, Nábrežie I. Krasku 4, 921 12 Piešťany, Slovakia
- Regenmed Ltd., Medena 29, 811 01 Bratislava, Slovakia
| |
Collapse
|
71
|
Tian S, Bian W. Advanced biomaterials in pressure ulcer prevention and care: from basic research to clinical practice. Front Bioeng Biotechnol 2025; 13:1535588. [PMID: 40035022 PMCID: PMC11872921 DOI: 10.3389/fbioe.2025.1535588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/20/2025] [Indexed: 03/05/2025] Open
Abstract
Pressure ulcers are a common and serious medical condition. Conventional treatment methods often fall short in addressing the complexities of prevention and care. This paper provides a comprehensive review of recent advancements in advanced biomaterials for pressure ulcer management, emphasizing their potential to overcome these limitations. The study highlights the roles of biomaterials in enhancing wound healing, preventing infections, and accelerating recovery. Specific focus is placed on the innovation and application of multi-functional composite materials, intelligent systems, and personalized solutions. Future research should prioritize interdisciplinary collaboration to facilitate the clinical translation of these materials, providing more effective and tailored treatment approaches. These advancements aim to improve the quality of life and health outcomes for patients by offering more reliable, efficient, and patient-specific therapeutic options.
Collapse
Affiliation(s)
- Shaoqiang Tian
- Department of Emergency Medicine, The First People’s Hospital of Shenyang, Shenyang, China
| | - Wei Bian
- Department of Neurosurgery, The First People’s Hospital of Shenyang, Shenyang, China
| |
Collapse
|
72
|
Zhao W, Li Z, Ma S, Chen W, Wan Z, Zhu L, Li L, Wang D. Identification of pro-fibrotic cellular subpopulations in fascia of gluteal muscle contracture using single-cell RNA sequencing. J Transl Med 2025; 23:192. [PMID: 39962491 PMCID: PMC11834283 DOI: 10.1186/s12967-024-05889-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/15/2024] [Indexed: 02/20/2025] Open
Abstract
Fibrosis is a common and integral pathological feature in various chronic diseases, capable of affecting any tissue or organ. Fibrosis within deep fascia is implicated in many myofascial disorders, including gluteal muscle contracture (GMC), Dupuytren's disease, plantar fasciitis, iliotibial band syndrome, and chronic muscle pain. Despite its clinical significance, deep fascia fibrosis remains considerably under-researched compared to other fibrotic conditions. Single-cell RNA-sequencing (scRNA-seq) has been used to investigate cellular heterogeneity in fibrotic tissues. However, to our knowledge, only a few studies have applied scRNA-seq to explore cellular heterogeneity in deep fascia, and none have specifically examined fibrotic fascia. In this study, we performed scRNA-seq analysis on fibrotic fascia associated with GMC and compared them to nonfibrotic control fascial samples. Our findings show that fibroblast and macrophage cells play critical roles in pathological tissue remodeling within fibrotic deep fascia. We observed an upregulation of various collagens, proteoglycans, and extracellular matrix (ECM) glycoproteins in contracture deep fascia, attributed to the widespread activation of fibroblast subclusters. Additionally, two pro-fibrotic macrophage subpopulations, SPP1+ MP and ECM-like MP, appear to facilitate ECM deposition in fibrotic deep fascia by either regulating fibroblast activation or directly contributing to ECM production. The SPP1+ MP and ECM-like MP cells, as well as the signal interaction between SPP1+ MP and fibroblast cells, present potential therapeutic target for treating GMC and other related myofascial disorders.
Collapse
Affiliation(s)
- Weizhi Zhao
- Hengyang Medical School, University of South China, Hengyang, Hunan, 421200, China
- Institute for Future Sciences, University of South China, Changsha, Hunan, China
- MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, University of South China, Changsha, Hunan, China
| | - Zongchao Li
- Hengyang Medical School, University of South China, Hengyang, Hunan, 421200, China
- Institute for Future Sciences, University of South China, Changsha, Hunan, China
- MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, University of South China, Changsha, Hunan, China
| | - Suzhen Ma
- Hengyang Medical School, University of South China, Hengyang, Hunan, 421200, China
- Institute for Future Sciences, University of South China, Changsha, Hunan, China
- MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, University of South China, Changsha, Hunan, China
| | - Wen Chen
- Hengyang Medical School, University of South China, Hengyang, Hunan, 421200, China
- Institute for Future Sciences, University of South China, Changsha, Hunan, China
- MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, University of South China, Changsha, Hunan, China
| | - Zhengqing Wan
- Department of Medical Genetics, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China
| | - Lin Zhu
- Hengyang Medical School, University of South China, Hengyang, Hunan, 421200, China
- Institute for Future Sciences, University of South China, Changsha, Hunan, China
- MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, University of South China, Changsha, Hunan, China
| | - Liangjun Li
- The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China.
| | - Danling Wang
- Hengyang Medical School, University of South China, Hengyang, Hunan, 421200, China.
- Institute for Future Sciences, University of South China, Changsha, Hunan, China.
- MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, University of South China, Changsha, Hunan, China.
| |
Collapse
|
73
|
Sedano-Juarez CO, Gómez-Romero N, Alonso-Díaz MÁ, Barrera-Molina AI, Reyes-Guerrero DE, Lagunes-Quintanilla R. In Silico Analysis and Transcriptional Profiling of A Putative Metalloprotease ADAMTSL as A Potential Tick Antigen against Rhipicephalus microplus. Pathogens 2025; 14:190. [PMID: 40005565 PMCID: PMC11857931 DOI: 10.3390/pathogens14020190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
The cattle tick, Rhipicephalus microplus, is the most significant ectoparasite in the cattle industry. The application of acaricides constitutes the main control method. However, inadequate treatments have serious drawbacks, including the appearance of multi-resistant ticks. Tick vaccines offer a safe and economically sustainable alternative for controlling R. microplus. Nevertheless, the efficacy of existing vaccines has been limited by polymorphisms in target antigens among strains from different geographical regions. In this study, we characterized a putative Metalloprotease from the ADAMTSL family. We analyzed three regions to evaluate their transcriptional profiling in different R. microplus tick tissues, using two constitutive genes (β-tubulin and Elfa-1) as references. The expression levels showed that ADAMTSL-R1 was upregulated 39.37-fold (p ≤ 0.05) in salivary glands. The ADAMTSL-R2 showed the highest expression, rising 7.69-fold (p ≤ 0.05) in ovaries and up to 59.39-fold (p ≤ 0.05) in egg mass. Furthermore, this region showed the highest level of conservation among Rhipicephalus isolates. The ADAMTSL-R3 was upregulated only in the egg mass. The results of this study provide a basis for future research focused on elucidating the role of these protein variants in tick biology, including their feeding mechanisms and potential implications in pathogen transmission. Understanding these factors may aid in developing an effective tick vaccine.
Collapse
Affiliation(s)
- Cesar Onoshi Sedano-Juarez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad de México 04510, Mexico
| | - Ninnet Gómez-Romero
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad de México 04510, Mexico;
| | - Miguel Ángel Alonso-Díaz
- Centro de Enseñanza, Investigación y Extensión en Ganadería Tropical, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Km. 5.5 Carretera Federal Tlapacoyan-Martínez de La Torre, Martínez de La Torre 93600, Mexico;
| | - América Ivette Barrera-Molina
- Facultad de Nutrición, Universidad Autónoma del Estado de Morelos, Calle Ixtaccíhuatl 100, Vista Hermosa, Cuernavaca 62350, Mexico;
| | - David Emanuel Reyes-Guerrero
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad—INIFAP, Carretera Federal Cuernavaca—Cuautla 8534, Col. Progreso, Jiutepec 62550, Mexico;
| | - Rodolfo Lagunes-Quintanilla
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad—INIFAP, Carretera Federal Cuernavaca—Cuautla 8534, Col. Progreso, Jiutepec 62550, Mexico;
| |
Collapse
|
74
|
Rossi F, Luppi S, Fejza A, Giolo E, Ricci G, Andreuzzi E. Extracellular matrix and pregnancy: functions and opportunities caught in the net. Reprod Biol Endocrinol 2025; 23:24. [PMID: 39953593 PMCID: PMC11827249 DOI: 10.1186/s12958-025-01348-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/24/2025] [Indexed: 02/17/2025] Open
Abstract
The extracellular matrix is a complex network of macromolecules that support the growth and homeostatic development of organisms. By conveying multiple signaling cascades, it impacts on several biological processes and influences the behaviour of numerous cell types. During the endometrial cycle and the key events necessary for a correct embryo implantation and placentation, this bioactive meshwork is substantially modified to favour endometrial receptivity and vascular adaptation, trophoblast cell migration, and immune activation as well. A correct extracellular remodeling is fundamental for the establishment of a physiological pregnancy; indeed, the occurrence of altered matrix modifications associates with gestational disorders such as preeclampsia. In the present review, we will critically evaluate the role of pivotal matrix constituents in regulating the key steps of embryo implantation and placentation, provide up-to-date information concerning their primary mechanisms of action and discuss on their potential as a novel source of biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Francesca Rossi
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, 34137, Italy
| | - Stefania Luppi
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, 34137, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, 34127, Italy
| | - Albina Fejza
- UBT-Higher Education Institution, Kalabria, Street Rexhep Krasniqi Nr. 56, Prishtina, 10000, Kosovo
| | - Elena Giolo
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, 34137, Italy
| | - Giuseppe Ricci
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, 34137, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, 34127, Italy
| | - Eva Andreuzzi
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, 34137, Italy.
| |
Collapse
|
75
|
Zhang X, Zhong Y, Miao Z, Yang Q. Hyaluronic acid promotes hepatocellular carcinoma proliferation by upregulating CD44 expression and enhancing glucose metabolism flux. Int Immunopharmacol 2025; 147:114035. [PMID: 39798466 DOI: 10.1016/j.intimp.2025.114035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/31/2024] [Accepted: 01/03/2025] [Indexed: 01/15/2025]
Abstract
Hepatocellular carcinoma (HCC), known for its high malignancy, exhibits a critical feature in its progression through the alteration of metabolic pathways. Our study initially observed an increase in hyaluronic acid (HA) secretion by HCC cells through ELISA analysis. Further protein-protein interaction (PPI) network analysis highlighted CD44 and HAS2 as critical nodes, suggesting their pivotal roles in HA metabolism. Silencing of HAS2 markedly reduced HA production and suppressed cell proliferation, whereas overexpression of HAS2 enhanced HA synthesis and promoted cellular growth. Moreover, we found that HA, through binding to CD44, activates the downstream PI3K/AKT/MYC signaling pathway. This activation not only upregulates MYC expression but also leads to an increase in GLUT1 expression level. As a transcription factor for GLUT1, MYC directly facilitates its expression, thereby enhancing glucose uptake and glycolytic activity. Additionally, CD44 can directly interact with GLUT1, further promoting glucose flux. These mechanisms collectively boost anaerobic glycolysis and the hexosamine biosynthetic pathway (HBP), providing essential energy and metabolites for rapid liver cell proliferation. Our findings not only elucidate the central role of HA in regulating cellular metabolism but also lay a solid theoretical foundation for developing therapeutic strategies targeting HA-related metabolic pathways.
Collapse
Affiliation(s)
- Xiaorong Zhang
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Yifan Zhong
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Zeyu Miao
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Qing Yang
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China.
| |
Collapse
|
76
|
Rappold R, Kalogeropoulos K, La Regina G, auf dem Keller U, Slack E, Vogel V. Relaxation of mucosal fibronectin fibers in late gut inflammation following neutrophil infiltration in mice. NPJ BIOLOGICAL PHYSICS AND MECHANICS 2025; 2:4. [PMID: 39917413 PMCID: PMC11794144 DOI: 10.1038/s44341-024-00006-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/13/2024] [Indexed: 02/09/2025]
Abstract
The continuously remodeled extracellular matrix (ECM) plays a pivotal role in gastrointestinal health and disease, yet its precise functions remain elusive. In this study, we employed laser capture microdissection combined with low-input proteomics to investigate ECM remodeling during Salmonella-driven inflammation. To complement this, we probed how fibronectin fiber tension is altered using a mechanosensitive peptide probe. While fibronectin fibers in healthy intestinal tissue are typically stretched, many lose their tension in intestinal smooth muscles only hours after infection, despite the absence of bacteria in that area. In contrast, within the mucosa, where Salmonella is present starting 12 h post infection, fibronectin fiber relaxation occurred exclusively during late-stage infection at 72 h and was localized to already existing clusters of infiltrated neutrophils. Using N-terminomics, we identified three new cleavage sites in fibronectin in the inflamed cecum. The unique, tissue layer-specific changes in the molecular compositions and ECM fiber tension revealed herein might trigger new therapeutic strategies to fight acute intestinal inflammation.
Collapse
Affiliation(s)
- Ronja Rappold
- Institute of Translational Medicine, ETH Zurich, Zurich, Switzerland
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | | | - Gianna La Regina
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Ulrich auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Emma Slack
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
- Botnar Research Center for Child Health, Basel, Switzerland
| | - Viola Vogel
- Institute of Translational Medicine, ETH Zurich, Zurich, Switzerland
- Botnar Research Center for Child Health, Basel, Switzerland
| |
Collapse
|
77
|
Soltanmohammadi F, Mahmoudi Gharehbaba A, Alizadeh E, Javadzadeh Y. Innovative approaches to tissue engineering: Utilizing decellularized extracellular matrix hydrogels for mesenchymal stem cell transport. Int J Biol Macromol 2025; 290:138893. [PMID: 39706433 DOI: 10.1016/j.ijbiomac.2024.138893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/07/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
In recent years, the realm of tissue regeneration experienced significant advancements, leading to the development of innovative therapeutic agents. The systemic delivery of mesenchymal stem cells (MSCs) emerged as a promising strategy for promoting tissue regeneration. However, this approach is hindered by hurdles such as poor cell survival, limited cell propagation, and inadequate cell integration. Decellularized extracellular matrix (dECM) hydrogel serves as an innovative carrier that protects MSCs from the detrimental effects of the hostile microenvironment, facilitates their localization and retention at the injection site, and preserves their viability. Regarding its low immunogenicity, low cytotoxicity, high biocompatibility, and its ability to mimic natural extracellular matrix (ECM), this natural hydrogel offers a new avenue for systemic delivery of MSCs. This review digs into the properties of dECM hydrogels (dECMHs), the methods employed for decellularization and the utilization of dECMH as carriers for various types of MSCs for tissue regeneration purposes. This review also sheds light on the benefits of hybrid hydrogels composed of dECMH and other components such as proteins and polysaccharides. By addressing the limitations of conventional hydrogels and enhancing efficacy of cell therapy, dECMH opens new pathways for the future of tissue regeneration.
Collapse
Affiliation(s)
- Fatemeh Soltanmohammadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Adel Mahmoudi Gharehbaba
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Effat Alizadeh
- Endocrin Research Center and Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Yousef Javadzadeh
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
78
|
Torre-Cea I, Berlana-Galán P, Guerra-Paes E, Cáceres-Calle D, Carrera-Aguado I, Marcos-Zazo L, Sánchez-Juanes F, Muñoz-Félix JM. Basement membranes in lung metastasis growth and progression. Matrix Biol 2025; 135:135-152. [PMID: 39719224 DOI: 10.1016/j.matbio.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 12/26/2024]
Abstract
The lung is a highly vascularized tissue that often harbors metastases from various extrathoracic malignancies. Lung parenchyma consists of a complex network of alveolar epithelial cells and microvessels, structured within an architecture defined by basement membranes. Consequently, understanding the role of the extracellular matrix (ECM) in the growth of lung metastases is essential to uncover the biology of this pathology and developing targeted therapies. These basement membranes play a critical role in the progression of lung metastases, influencing multiple stages of the metastatic cascade, from the acquisition of an aggressive phenotype to intravasation, extravasation and colonization of secondary sites. This review examines the biological composition of basement membranes, focusing on their core components-collagens, fibronectin, and laminin-and their specific roles in cancer progression. Additionally, we discuss the function of integrins as primary mediators of cell adhesion and signaling between tumor cells, basement membranes and the extracellular matrix, as well as their implications for metastatic growth in the lung. We also explore vascular co-option (VCO) as a form of tumor growth resistance linked to basement membranes and tumor vasculature. Finally, the review covers current clinical therapies targeting tumor adhesion, extracellular matrix remodeling, and vascular development, aiming to improve the precision and effectiveness of treatments against lung metastases.
Collapse
Affiliation(s)
- Irene Torre-Cea
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Spain
| | - Patricia Berlana-Galán
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Spain
| | - Elena Guerra-Paes
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Spain
| | - Daniel Cáceres-Calle
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Spain
| | - Iván Carrera-Aguado
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Spain
| | - Laura Marcos-Zazo
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Spain
| | - Fernando Sánchez-Juanes
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Spain.
| | - José M Muñoz-Félix
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Spain.
| |
Collapse
|
79
|
Aradillas-Pérez M, Espinosa-López EM, Ortiz-Guisado B, Martín-Suárez EM, Gómez-Baena G, Galán-Rodríguez A. Quantitative proteomics analysis of cerebrospinal fluid reveals putative protein biomarkers for canine non-infectious meningoencephalomyelitis. Vet J 2025; 309:106285. [PMID: 39662837 DOI: 10.1016/j.tvjl.2024.106285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024]
Abstract
Accurate ante-mortem diagnosis of non-infectious meningoencephalomyelitis (NIME) in dogs is challenging due to the similarity of clinical presentations, imaging findings, and cerebrospinal fluid (CSF) analysis results with other diseases. This study aimed to apply state-of-the-art quantitative proteomic technology to identify novel biomarkers for NIME. Serum and CSF samples from 11 dogs were included, with the control group consisting of patients presenting with intervertebral disc disease (IVDD, n = 6) and the study group consisting of dogs suffering from NIME (n = 5). Mass spectrometry-based quantitative proteomics revealed a set of 36 proteins with significant differential abundance in CSF samples. Up-regulated proteins in NIME CSF included immunoglobulins, inter-alpha-trypsin inhibitor heavy chain 2, acid sphingomyelinase-like phosphodiesterase, and chitinase 3-like protein 1, all associated with immune response and inflammation. Conversely, significantly down-regulated proteins included neural cell adhesion molecule, contactin-1, and procollagen C-endopeptidase enhancer, which are involved in neurodevelopment and synaptic plasticity. No differences in serum profiles were observed among the groups. This study identified a panel of CSF protein biomarker candidates for NIME and provided new insights into the pathogenesis of the disease, suggesting that neuronal dysfunction and immune dysregulation may be involved.
Collapse
Affiliation(s)
- M Aradillas-Pérez
- Department of Animal Medicine and Surgery, Faculty of Veterinary Sciences, University of Córdoba, Campus Universitario de Rabanales, Córdoba 14014, Spain
| | - E M Espinosa-López
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Sciences, University of Córdoba, Campus Universitario de Rabanales, Córdoba 14014, Spain
| | - B Ortiz-Guisado
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Sciences, University of Córdoba, Campus Universitario de Rabanales, Córdoba 14014, Spain
| | - E M Martín-Suárez
- Department of Animal Medicine and Surgery, Faculty of Veterinary Sciences, University of Córdoba, Campus Universitario de Rabanales, Córdoba 14014, Spain
| | - G Gómez-Baena
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Sciences, University of Córdoba, Campus Universitario de Rabanales, Córdoba 14014, Spain.
| | - A Galán-Rodríguez
- Department of Animal Medicine and Surgery, Faculty of Veterinary Sciences, University of Córdoba, Campus Universitario de Rabanales, Córdoba 14014, Spain.
| |
Collapse
|
80
|
Ramos-Rodriguez DH, Fok SW, Dorais CJ, Filler AC, Caserta M, Leach JK. Decellularized Extracellular Matrix Improves Mesenchymal Stromal Cell Spheroid Response to Chondrogenic Stimuli. Tissue Eng Part A 2025; 31:139-151. [PMID: 39556314 PMCID: PMC11971541 DOI: 10.1089/ten.tea.2024.0267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/08/2024] [Indexed: 11/19/2024] Open
Abstract
Cartilage regeneration is hindered due to the low proliferative capacity of chondrocytes and the avascular nature of cartilaginous tissue. Mesenchymal stromal cells (MSCs) are widely studied for cartilage tissue engineering, and the aggregation of MSCs into high-density cell spheroids facilitates chondrogenic differentiation due to increased cell-cell contact. Despite the promise of MSCs, the field would benefit from improved strategies to regulate the chondrogenic potential of MSCs differentiated from induced pluripotent stem cells (iPSCs), which are advantageous for their capacity to yield large numbers of required cells. We previously demonstrated the ability of MSC-secreted extracellular matrix (ECM) to promote MSC chondrogenic differentiation, but the combinatorial effect of iPSC-derived MSC (iMSC) spheroids, iMSC-derived decellularized ECM (idECM), and other stimuli (e.g., oxygen tension and transforming growth factor [TGF]-β) on chondrogenic potential has not been described. Similar to MSCs, iMSCs secreted a collagen-rich ECM. When incorporated into spheroids, idECM increased spheroid diameter and promoted chondrogenic differentiation. The combination of idECM loading, chondrogenic media, and hypoxia enhanced glycosaminoglycan (GAG) content 1.6-fold (40.9 ± 4.6 ng vs. 25.6 ± 3.3 ng, p < 0.05) in iMSC spheroids. Compared with active TGF-β1, the presentation of latent TGF-β1 resulted in greater GAG content (26.6 ± 1.8 ng vs. 41.9 ± 4.3 ng, p < 0.01). Finally, we demonstrated the capacity of individual spheroids to self-assemble into larger constructs and undergo both chondrogenic and hypertrophic differentiation when maintained in lineage-inducing media. These results highlight the potential of idECM to enhance the efficacy of chondrogenic stimuli for improved cartilage regeneration using human MSCs and iMSCs.
Collapse
Affiliation(s)
| | - Shierly W. Fok
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, California, USA
- Department of Biomedical Engineering, University of California Davis, Davis, California, USA
| | - Connor J. Dorais
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, California, USA
| | - Andrea C. Filler
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, California, USA
- Department of Biomedical Engineering, University of California Davis, Davis, California, USA
| | - Mason Caserta
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, California, USA
| | - J. Kent Leach
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, California, USA
- Department of Biomedical Engineering, University of California Davis, Davis, California, USA
| |
Collapse
|
81
|
Sun W, Zhou S, Peng L, Wang W, Liu Y, Wang T, Cheng D, Li Z, Xiong H, Jia X, Lian W, Jiao J, Ni C. Fatty Acid Oxidation-Glycolysis Metabolic Transition Affects ECM Homeostasis in Silica-Induced Pulmonary Fibrosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407134. [PMID: 39721015 PMCID: PMC11831484 DOI: 10.1002/advs.202407134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/22/2024] [Indexed: 12/28/2024]
Abstract
Silicosis is a fatal occupational pulmonary disease that is characterized by irreversible replacement of lung parenchyma by aberrant Exracellular matrix (ECM). Metabolic reprogramming is a crucial mechanism for fibrosis. However, how the metabolic rewiring shifts the ECM homeostasis toward overaccumulation remains unclear. Herein, a phenotype with reduction in fatty acid oxidation (FAO) but enhanced glycolysis in myofibroblasts is shown. Perturbation of the glycolytic and FAO pathways, respectively, reveals distinct roles in the metabolic distribution of ECM deposition and degradation. Suppressed glycolysis leads to a decrease in insoluble ECM, primarily due to the inhibition of ECM-modifying enzyme activity and a decrease in glycine synthesis. Notably, promoted FAO facilitates the intracellular degradation pathway of ECM. In addition, the findings revealed that hypoxia-inducible factor-1 alpha (HIF-1α) serves as a crucial metabolic regulator in the transition from FAO to glycolysis, thereby playing a significant role in ECM deposition in silica-induced pulmonary fibrosis. Further, the promotion of FAO, inhibition of glycolysis and HIF-1α reduce ECM production and promote ECM degradation, ultimately impeding the progression of fibrosis and providing therapeutic relief for established pulmonary fibrosis in vivo. These findings unveil the metabolic rewire underpinning the deposition of ECM in silica-induced lung fibrosis and identify novel targets for promoting regression of pulmonary fibrosis.
Collapse
Affiliation(s)
- Wenqing Sun
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical UniversityWuxi Center for Disease Control and PreventionWuxi Medical CenterNanjing medical universityNanjing211166China
| | - Siyun Zhou
- Department of Occupational Medical and Environmental HealthKey Laboratory of Modern Toxicology of Ministry of EducationCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjing211166China
| | - Lan Peng
- Department of Occupational Medical and Environmental HealthKey Laboratory of Modern Toxicology of Ministry of EducationCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjing211166China
| | - Wei Wang
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical UniversityWuxi Center for Disease Control and PreventionWuxi Medical CenterNanjing medical universityNanjing211166China
| | - Yi Liu
- Department of Occupational Medical and Environmental HealthKey Laboratory of Modern Toxicology of Ministry of EducationCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjing211166China
| | - Ting Wang
- Department of Occupational Medical and Environmental HealthKey Laboratory of Modern Toxicology of Ministry of EducationCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjing211166China
- Department of PathologyNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjing210000China
| | - Demin Cheng
- Department of Occupational Medical and Environmental HealthKey Laboratory of Modern Toxicology of Ministry of EducationCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjing211166China
| | - Ziwei Li
- Department of Occupational Medical and Environmental HealthKey Laboratory of Modern Toxicology of Ministry of EducationCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjing211166China
| | - Haojie Xiong
- Department of Occupational Medical and Environmental HealthKey Laboratory of Modern Toxicology of Ministry of EducationCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjing211166China
| | - Xinying Jia
- Department of Occupational Medical and Environmental HealthKey Laboratory of Modern Toxicology of Ministry of EducationCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjing211166China
| | - Wenxiu Lian
- Department of Occupational Medical and Environmental HealthKey Laboratory of Modern Toxicology of Ministry of EducationCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjing211166China
| | - Jiandong Jiao
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical UniversityWuxi Center for Disease Control and PreventionWuxi Medical CenterNanjing medical universityNanjing211166China
| | - Chunhui Ni
- Department of Occupational Medical and Environmental HealthKey Laboratory of Modern Toxicology of Ministry of EducationCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjing211166China
- Department of Public HealthKangda College of Nanjing Medical UniversityLianyungang320700China
| |
Collapse
|
82
|
Klabukov I, Kabakov AE, Yakimova A, Baranovskii D, Sosin D, Atiakshin D, Ignatyuk M, Yatsenko E, Rybachuk V, Evstratova E, Eygel D, Kudlay D, Stepanenko V, Shegay P, Kaprin AD. Tumor-Associated Extracellular Matrix Obstacles for CAR-T Cell Therapy: Approaches to Overcoming. Curr Oncol 2025; 32:79. [PMID: 39996879 PMCID: PMC11854105 DOI: 10.3390/curroncol32020079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 02/26/2025] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy yields good results in the treatment of various hematologic malignancies. However, the efficacy of CAR-T cell therapy against solid tumors has proven to be limited, primarily because the tumor-associated extracellular matrix (ECM) creates an intractable barrier for the cytotoxic CAR-T cells that are supposed to kill cancer cells. This review unravels the multifaceted role of the tumor-associated ECM in impeding CAR-T cell infiltration, survival, and functions within solid tumors. We analyze the situations when intratumoral ECM limits the efficacy of CAR-T cell therapy by being a purely physical barrier that complicates lymphocyte penetration/migration and also acts as an immunosuppressive factor that impairs the antitumor activities of CAR-T cells. In addition, we highlight promising approaches such as engineering CAR-T cells with improved capabilities to penetrate and migrate into/through the intratumoral ECM, combination therapies aimed at attenuating the high density and immunosuppressive potential of the intratumoral ECM, and others that enable overcoming ECM-related obstacles. A detailed overview of the data of relevant studies not only helps to better understand the interactions between CAR-T cells and the intratumoral ECM but also outlines potential ways to more effectively use CAR-T cell therapy against solid tumors.
Collapse
Affiliation(s)
- Ilya Klabukov
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva St. 4, 249036 Obninsk, Russia
- A. Tsyb Medical Radiological Research Center—Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Zhukova St. 10, 249036 Obninsk, Russia
- GMP-Laboratory for Advanced Therapy Medicinal Products, Patrice Lumumba Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, 117198 Moscow, Russia
- Obninsk Institute for Nuclear Power Engineering of the National Research Nuclear University MEPhI, Studgorodok 1, 249039 Obninsk, Russia
| | - Alexander E. Kabakov
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva St. 4, 249036 Obninsk, Russia
- A. Tsyb Medical Radiological Research Center—Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Zhukova St. 10, 249036 Obninsk, Russia
| | - Anna Yakimova
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva St. 4, 249036 Obninsk, Russia
- A. Tsyb Medical Radiological Research Center—Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Zhukova St. 10, 249036 Obninsk, Russia
| | - Denis Baranovskii
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva St. 4, 249036 Obninsk, Russia
- A. Tsyb Medical Radiological Research Center—Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Zhukova St. 10, 249036 Obninsk, Russia
- GMP-Laboratory for Advanced Therapy Medicinal Products, Patrice Lumumba Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, 117198 Moscow, Russia
- University Hospital Basel, Basel University, 4001 Basel, Switzerland
| | - Dmitry Sosin
- Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, 119121 Moscow, Russia
| | - Dmitry Atiakshin
- Scientific and Educational Resource Center for Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis, Patrice Lumumba Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Michael Ignatyuk
- Scientific and Educational Resource Center for Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis, Patrice Lumumba Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Elena Yatsenko
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva St. 4, 249036 Obninsk, Russia
- A. Tsyb Medical Radiological Research Center—Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Zhukova St. 10, 249036 Obninsk, Russia
| | - Victoria Rybachuk
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva St. 4, 249036 Obninsk, Russia
| | - Ekaterina Evstratova
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva St. 4, 249036 Obninsk, Russia
- A. Tsyb Medical Radiological Research Center—Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Zhukova St. 10, 249036 Obninsk, Russia
| | - Daria Eygel
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva St. 4, 249036 Obninsk, Russia
- A. Tsyb Medical Radiological Research Center—Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Zhukova St. 10, 249036 Obninsk, Russia
| | - Dmitry Kudlay
- Immunology Department, Institute of Immunology FMBA of Russia, 115552 Moscow, Russia
- Department of Pharmacognosy and Industrial Pharmacy, Faculty of Fundamental Medicine, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Vasiliy Stepanenko
- Institute of Pharmacy, Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Peter Shegay
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva St. 4, 249036 Obninsk, Russia
| | - Andrey D. Kaprin
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva St. 4, 249036 Obninsk, Russia
- Scientific and Educational Resource Center for Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis, Patrice Lumumba Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| |
Collapse
|
83
|
Yang Y, Yu T, Tao M, Wang Y, Yao X, Zhu C, Xin F, Jiang M. Development of Recombinant Human Collagen-Based Porous Scaffolds for Skin Tissue Engineering: Enhanced Mechanical Strength and Biocompatibility. Polymers (Basel) 2025; 17:303. [PMID: 39940505 PMCID: PMC11820873 DOI: 10.3390/polym17030303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Skin tissue engineering scaffolds should possess key properties such as porosity, degradability, durability, and biocompatibility to effectively facilitate skin cell adhesion and growth. In this study, recombinant human collagen (RHC) was used to fabricate porous scaffolds via freeze-drying, offering an alternative to animal-derived collagen where bovine collagen (BC)-based scaffolds were also prepared for comparison. The internal morphology of the RHC scaffolds were characterized by scanning electron microscopy (SEM) and the pore size ranged from 68.39 to 117.52 µm. The results from compression and fatigue tests showed that the mechanical strength and durability of RHC scaffolds could be tailored by adjusting the RHC concentration, and the maximum compressive modulus reached to 0.003 MPa, which is comparable to that of BC scaffolds. The degradation test illustrated that the RHC scaffolds had a slower degradation rate compared to BC scaffolds. Finally, the biocompatibilities of the porous scaffolds were studied by seeding and culturing the human foreskin fibroblasts (HFFs) and human umbilical vein endothelial cells (HUVECs) in samples. The fluorescent images and Cell Counting Kit-8 (CCK-8) assay revealed RHC porous scaffolds were non-cytotoxic and supported the attachment as well as the proliferation of the seeded cells. Overall, the results demonstrated that RHC-based scaffolds exhibited adequate mechanical strength, ideal biodegradability, and exceptional biocompatibility, making them highly suitable for skin-tissue-engineering applications.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Ting Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Mengdan Tao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Yong Wang
- Ningbo Institute of Technology, Beihang University, 399 Kangda Road, Ningbo 315832, China
| | - Xinying Yao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Chenkai Zhu
- Ningbo Institute of Technology, Beihang University, 399 Kangda Road, Ningbo 315832, China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| |
Collapse
|
84
|
Cáceres-Calle D, Torre-Cea I, Marcos-Zazo L, Carrera-Aguado I, Guerra-Paes E, Berlana-Galán P, Muñoz-Félix JM, Sánchez-Juanes F. Integrins as Key Mediators of Metastasis. Int J Mol Sci 2025; 26:904. [PMID: 39940673 PMCID: PMC11816423 DOI: 10.3390/ijms26030904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Metastasis is currently becoming a major clinical concern, due to its potential to cause therapeutic resistance. Its development involves a series of phases that describe the metastatic cascade: preparation of the pre-metastatic niche, epithelial-mesenchymal transition, dissemination, latency and colonization of the new tissue. In the last few years, new therapeutic targets, such as integrins, are arising to face this disease. Integrins are transmembrane proteins found in every cell that have a key role in the metastatic cascade. They intervene in adhesion and intracellular signaling dependent on the extracellular matrix and cytokines found in the microenvironment. In this case, integrins can initiate the epithelial-mesenchymal transition, guide the formation of the pre-metastatic niche and increase tumor migration and survival. Integrins also take part in the tumor vascularization process necessary to sustain metastasis. This fact emphasizes the importance of inhibitory therapies capable of interfering with the function of integrins in metastasis.
Collapse
Affiliation(s)
- Daniel Cáceres-Calle
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (D.C.-C.); (I.T.-C.); (L.M.-Z.); (I.C.-A.); (E.G.-P.); (P.B.-G.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Irene Torre-Cea
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (D.C.-C.); (I.T.-C.); (L.M.-Z.); (I.C.-A.); (E.G.-P.); (P.B.-G.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Laura Marcos-Zazo
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (D.C.-C.); (I.T.-C.); (L.M.-Z.); (I.C.-A.); (E.G.-P.); (P.B.-G.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Iván Carrera-Aguado
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (D.C.-C.); (I.T.-C.); (L.M.-Z.); (I.C.-A.); (E.G.-P.); (P.B.-G.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Elena Guerra-Paes
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (D.C.-C.); (I.T.-C.); (L.M.-Z.); (I.C.-A.); (E.G.-P.); (P.B.-G.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Patricia Berlana-Galán
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (D.C.-C.); (I.T.-C.); (L.M.-Z.); (I.C.-A.); (E.G.-P.); (P.B.-G.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - José M. Muñoz-Félix
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (D.C.-C.); (I.T.-C.); (L.M.-Z.); (I.C.-A.); (E.G.-P.); (P.B.-G.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Fernando Sánchez-Juanes
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (D.C.-C.); (I.T.-C.); (L.M.-Z.); (I.C.-A.); (E.G.-P.); (P.B.-G.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| |
Collapse
|
85
|
Horta M, Soares P, Leite Pereira C, Lima RT. Emerging Approaches in Glioblastoma Treatment: Modulating the Extracellular Matrix Through Nanotechnology. Pharmaceutics 2025; 17:142. [PMID: 40006509 PMCID: PMC11859630 DOI: 10.3390/pharmaceutics17020142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 02/27/2025] Open
Abstract
Glioblastoma's (GB) complex tumor microenvironment (TME) promotes its progression and resistance to therapy. A critical component of TME is the extracellular matrix (ECM), which plays a pivotal role in promoting the tumor's invasive behavior and aggressiveness. Nanotechnology holds significant promise for GB treatment, with the potential to address challenges posed by both the blood-brain barrier and the GB ECM. By enabling targeted delivery of therapeutic and diagnostic agents, nanotechnology offers the prospect of improving treatment efficacy and diagnostic accuracy at the tumor site. This review provides a comprehensive exploration of GB, including its epidemiology, classification, and current treatment strategies, alongside the intricacies of its TME. It highlights nanotechnology-based strategies, focusing on nanoparticle formulations such as liposomes, polymeric nanoparticles, and gold nanoparticles, which have shown promise in GB therapy. Furthermore, it explores how different emerging nanotechnology strategies modulate the ECM to overcome the challenges posed by its high density, which restricts drug distribution within GB tumors. By emphasizing the intersection of nanotechnology and GB ECM, this review underscores an innovative approach to advancing GB treatment. It addresses the limitations of current therapies, identifies new research avenues, and emphasizes the potential of nanotechnology to improve patient outcomes.
Collapse
Affiliation(s)
- Miguel Horta
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (M.H.); (P.S.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- FMUP—Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Paula Soares
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (M.H.); (P.S.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- FMUP—Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Catarina Leite Pereira
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (M.H.); (P.S.)
- INEB—Instituto Nacional de Engenharia Biomédica, University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Raquel T. Lima
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (M.H.); (P.S.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- FMUP—Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
86
|
Martinier I, Trichet L, Fernandes FM. Biomimetic tubular materials: from native tissues to a unifying view of new vascular, tracheal, gastrointestinal, oesophageal, and urinary grafts. Chem Soc Rev 2025; 54:790-826. [PMID: 39606835 DOI: 10.1039/d4cs00429a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Repairing tubular tissues-the trachea, the esophagus, urinary and gastrointestinal tracts, and the circulatory system-from trauma or severe pathologies that require resection, calls for new, more effective graft materials. Currently, the relatively narrow family of materials available for these applications relies on synthetic polymers that fail to reproduce the biological and physical cues found in native tissues. Mimicking the structure and the composition of native tubular tissues to elaborate functional grafts is expected to outperform the materials currently in use, but remains one of the most challenging goals in the field of biomaterials. Despite their apparent diversity, tubular tissues share extensive compositional and structural features. Here, we assess the current state of the art through a dual layer model, reducing each tissue to an inner epithelial layer and an outer muscular layer. Based on this model, we examine the current strategies developed to mimic each layer and we underline how each fabrication method stands in providing a biomimetic material for future clinical translation. The analysis provided here, addressed to materials chemists, biomaterials engineers and clinical staff alike, sets new guidelines to foster the elaboration of new biomimetic materials for effective tubular tissue repair.
Collapse
Affiliation(s)
- Isabelle Martinier
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, UMR 7574, Paris 75005, France.
| | - Léa Trichet
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, UMR 7574, Paris 75005, France.
| | - Francisco M Fernandes
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, UMR 7574, Paris 75005, France.
| |
Collapse
|
87
|
Simpson MA. Impacts of Hyaluronan on Extracellular Vesicle Production and Signaling. Cells 2025; 14:139. [PMID: 39851567 PMCID: PMC11763598 DOI: 10.3390/cells14020139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/26/2025] Open
Abstract
Hyaluronan (HA) is a critical component of cell and tissue matrices and an important signaling molecule. The enzymes that synthesize and process HA, as well as the HA receptors through which the signaling properties of HA are transmitted, have been identified in extracellular vesicles and implicated in context-specific processes associated with health and disease. The goal of this review is to present a comprehensive summary of the research on HA and its related receptors and enzymes in extracellular vesicle biogenesis and the cellular responses to vesicles bearing these extracellular matrix modulators. When present in extracellular vesicles, HA is assumed to be on the outside of the vesicle and is sometimes found associated with CD44 or the HAS enzyme itself. Hyaluronidases may be inside the vesicles or present on the vesicle surface via a transmembrane domain or GPI linkage. The implication of presenting these signals in extracellular vesicles is that there is a greater range of systemic distribution and more complex delivery media than previously thought for secreted HA or hyaluronidase alone. Understanding the context for these HA signals offers new diagnostic and therapeutic insight.
Collapse
Affiliation(s)
- Melanie A Simpson
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695-7622, USA
| |
Collapse
|
88
|
Rossi A, Bassi G, Cunha C, Baldisserri C, Ravaglia N, Gardini D, Molinari F, Lista F, Teran FJ, Piperno A, Montesi M, Panseri S. Magnetically induced anisotropic structure in an injectable hydrogel for skeletal muscle regeneration. J Colloid Interface Sci 2025; 678:334-345. [PMID: 39298986 DOI: 10.1016/j.jcis.2024.09.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Skeletal muscle integrity and its intrinsic aligned architecture are crucial for locomotion, postural support, and respiration functions, impacting overall quality of life. However, volumetric muscle loss (VML) can exceed intrinsic regenerative potential, leading to fibrosis and impairments. Autologous muscle grafting, the current gold standard, is constrained by tissue availability and success rates. Therefore, innovative strategies like cell-based therapies and scaffold-based approaches are needed. Our minimally invasive approach involves a tunable injectable hydrogel capable of achieving an aligned architecture post-injection via a low-intensity static magnetic field (SMF). Our hydrogel formulation uses gellan gum as the backbone polymer, enriched with essential extracellular matrix components such as hyaluronic acid and collagen type I, enhancing bio-functionality. To achieve an aligned architectural biomimicry, collagen type I is coupled with iron oxide magnetic nanoparticles, creating magnetic collagen bundles (MagC) that align within the hydrogel when exposed to a SMF. An extensive study was performed to characterize MagC and assess the hydrogel's stability, mechanical properties, and biological response in vitro and in vivo. The proposed system, fully composed of natural polymers, exhibited mechanical properties similar to human skeletal muscle and demonstrated effective biological performances, supporting its potential as a safe and patient-friendly treatment for VML.
Collapse
Affiliation(s)
- Arianna Rossi
- Institute of Science, Technology and Sustainability for Ceramics, National Research Council of Italy, Via Granarolo 64, 48018 Faenza, Italy; University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale Ferdinando Stagno d'Alcontres, 31, 98166 Messina, Italy.
| | - Giada Bassi
- Institute of Science, Technology and Sustainability for Ceramics, National Research Council of Italy, Via Granarolo 64, 48018 Faenza, Italy; University of G. D'Annunzio, Department of Neurosciences, Imaging and Clinical Sciences, Via Luigi Polacchi, 11, 66100 Chieti, Italy
| | - Carla Cunha
- i3S - Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Carlo Baldisserri
- Institute of Science, Technology and Sustainability for Ceramics, National Research Council of Italy, Via Granarolo 64, 48018 Faenza, Italy
| | - Noemi Ravaglia
- Institute of Science, Technology and Sustainability for Ceramics, National Research Council of Italy, Via Granarolo 64, 48018 Faenza, Italy
| | - Davide Gardini
- Institute of Science, Technology and Sustainability for Ceramics, National Research Council of Italy, Via Granarolo 64, 48018 Faenza, Italy
| | - Filippo Molinari
- Defense Institute for Biomedical Sciences, IGESAN, Via di Santo Stefano Rotondo 4, 00184 Rome, Italy
| | - Florigio Lista
- Defense Institute for Biomedical Sciences, IGESAN, Via di Santo Stefano Rotondo 4, 00184 Rome, Italy
| | - Francisco J Teran
- iMdea Nanociencia, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain; Nanotech Solutions, Ctra Madrid 23, 40150 Villacastín, Spain
| | - Anna Piperno
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale Ferdinando Stagno d'Alcontres, 31, 98166 Messina, Italy
| | - Monica Montesi
- Institute of Science, Technology and Sustainability for Ceramics, National Research Council of Italy, Via Granarolo 64, 48018 Faenza, Italy
| | - Silvia Panseri
- Institute of Science, Technology and Sustainability for Ceramics, National Research Council of Italy, Via Granarolo 64, 48018 Faenza, Italy.
| |
Collapse
|
89
|
Rampal A, de la Fuente IF, Vu NK, Doungchawee J, Ranjan U, Peyton SR, Vachet RW. Decellularization and Enzymatic Digestion Methods to Enhance ECM Protein Detection via MALDI-MS Imaging. Anal Chem 2025; 97:886-893. [PMID: 39753373 DOI: 10.1021/acs.analchem.4c05562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) has been used to generate spatial maps of lipids, metabolites, peptides, proteins, and glycans in tissues; however, its use for mapping extracellular matrix (ECM) protein distributions is underexplored. ECM proteins play a major role in various pathological conditions, and changes in their spatial distributions affect the function and morphology of cells within tissues. ECM protein detection is challenging because they are large, insoluble, and undergo various post-translational modifications, such as glycosylation. We describe here decellularization of tissue sections coupled with serial enzymatic digestions with PNGaseF and trypsin to improve ECM protein detection in MALDI-MSI without disrupting ECM architecture. Decellularization leads to a 3-fold increase in the number of proteins that are measured by MALDI-MSI. We also introduce a binary colocalization method to improve protein identification, which increases the number of proteins that are confidently detected. Together, these methods enhance the spatial mapping of ECM proteins by MALDI-MSI.
Collapse
Affiliation(s)
- Akaansha Rampal
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Ina F de la Fuente
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Ngoc K Vu
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Jeerapat Doungchawee
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Ujjwal Ranjan
- RamoGnee Technologies, Gurugram, Haryana 132092, India
| | - Shelly R Peyton
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Richard W Vachet
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
90
|
Normoyle KP, Lillis KP, Egawa K, McNally MA, Paulchakrabarti M, Coudhury BP, Lau L, Shiu FH, Staley KJ. Displacement of extracellular chloride by immobile anionic constituents of the brain's extracellular matrix. J Physiol 2025; 603:353-378. [PMID: 39621449 PMCID: PMC11747837 DOI: 10.1113/jp285463] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/01/2024] [Indexed: 01/19/2025] Open
Abstract
GABA is the primary inhibitory neurotransmitter. Membrane currents evoked by GABAA receptor activation have uniquely small driving forces: their reversal potential (EGABA) is very close to the resting membrane potential. As a consequence, GABAA currents can flow in either direction, depending on both the membrane potential and the local intra and extracellular concentrations of the primary permeant ion, chloride (Cl). Local cytoplasmic Cl concentrations vary widely because of displacement of mobile Cl ions by relatively immobile anions. Here, we use new reporters of extracellular chloride (Cl- o) to demonstrate that Cl is displaced in the extracellular space by high and spatially heterogenous concentrations of immobile anions including sulfated glycosaminoglycans (sGAGs). Cl- o varies widely, and the mean Cl- o is only half the canonical concentration (i.e. the Cl concentration in the cerebrospinal fluid). These unexpectedly low and heterogenous Cl- o domains provide a mechanism to link the varied but highly stable distribution of sGAGs and other immobile anions in the brain's extracellular space to neuronal signal processing via the effects on the amplitude and direction of GABAA transmembrane Cl currents. KEY POINTS: Extracellular chloride concentrations in the brain were measured using a new chloride-sensitive organic fluorophore and two-photon fluorescence lifetime imaging. In vivo, the extracellular chloride concentration was spatially heterogenous and only half of the cerebrospinal fluid chloride concentration Stable displacement of extracellular chloride by immobile extracellular anions was responsible for the low extracellular chloride concentration The changes in extracellular chloride were of sufficient magnitude to alter the conductance and reversal potential of GABAA chloride currents The stability of the extracellular matrix, the impact of the component immobile anions, including sulfated glycosaminoglycans on extracellular chloride concentrations, and the consequent effect on GABAA signalling suggests a previously unappreciated mechanism for modulating GABAA signalling.
Collapse
Affiliation(s)
- Kieran P Normoyle
- Department of Neurology, Division of Child Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Kyle P Lillis
- Department of Neurology, Division of Child Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Kiyoshi Egawa
- Department of Medicine, Hokaiddo University, Sapporo, Hokaiddo, Japan
| | - Melanie A McNally
- Department of Neurology, Division of Child Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | | | - Biswa P Coudhury
- GlycoAnalytics Core, University of California San Diego, La Jolla, CA, USA
| | - Lauren Lau
- Department of Neurology, Division of Child Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Fu Hung Shiu
- Department of Neurology, Division of Child Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Kevin J Staley
- Department of Neurology, Division of Child Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
91
|
Singer J, Knezic N, Gohring G, Fite O, Christiansen J, Huard J. Synovial mesenchymal stem cells. ORTHOBIOLOGICS 2025:141-154. [DOI: 10.1016/b978-0-12-822902-6.00005-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
92
|
Maeda N, Watanabe T, Suzuki D, Iwasaki T, Shin Y, Imamura Y. Assembly of collagen fibers into contiguous dense and loose regions of subcutaneous fascia. Connect Tissue Res 2025; 66:26-36. [PMID: 39876037 DOI: 10.1080/03008207.2025.2455730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/14/2025] [Indexed: 01/30/2025]
Abstract
OBJECTIVE This study aimed to investigate the collagen fiber structure of the subcutaneous fascia, a connective tissue layer between the skin and epimysium. METHODS Fascia samples with varying extensibility were examined using biochemical and microscopic methods. RESULTS Loose fascia, the more extensible type, displayed sparsely distributed collagen fibers, while dense fascia showed tightly packed collagen fiber bundles. Elastase treatment, after urea pretreatment, caused the loosening of collagen fiber bundles and increased collagen fiber generation as the treatment time increased. This suggests that elastic fibers contribute to collagen fiber bundle formation. Additionally, elastase treatment stretched the fascia, indicating the presence of twodimensional tensile stress generated by elastic fibers. Either enzymes capable of cleaving elastic fibers may be activated or the stretching of elastic fibers accompanying tissue deformation may increase the enzyme sensitivity to elastic fibers, leading to the formation of localized collagen fibers in vivo. Tissue staining confirmed that loose and dense fascia corresponded to areas with sparse and dense collagen fibers, respectively. Some dense collagen fibers appeared to migrate and disperse into loose areas. CONCLUSION These findings provide insights into the structural organization and functional significance of collagen fibers within the subcutaneous fascia. They particularly highlight the role of elastic fibers in maintaining tissue integrity and facilitating dynamic remodeling.
Collapse
Affiliation(s)
- Natsuki Maeda
- Graduate School of Engineering, Kogakuin University, Hachioji, Tokyo, Japan
| | - Takafumi Watanabe
- Laboratory of Veterinary Anatomy, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Daisuke Suzuki
- Health Sciences Section, Hokkaido Chitose College of Rehabilitation, Chitose, Hokkaido, Japan
| | - Tomohito Iwasaki
- Department of Food Science and Human Wellness, College of Agriculture, Food and Environment Science, Ebetsu, Hokkaido, Japan
| | - Yongchol Shin
- Graduate School of Engineering, Kogakuin University, Hachioji, Tokyo, Japan
- School of Advanced Engineering, Hachioji,Tokyo, Japan
| | - Yasutada Imamura
- Graduate School of Engineering, Kogakuin University, Hachioji, Tokyo, Japan
- School of Advanced Engineering, Hachioji,Tokyo, Japan
| |
Collapse
|
93
|
Chi A, Yang C, Liu J, Zhai Z, Shi X. Reconstructing the Stem Leydig Cell Niche via the Testicular Extracellular Matrix for the Treatment of Testicular Leydig Cell Dysfunction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410808. [PMID: 39555675 PMCID: PMC11727238 DOI: 10.1002/advs.202410808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/24/2024] [Indexed: 11/19/2024]
Abstract
Therapies involving the use of stem Leydig cells (SLCs), as testicular mesenchymal stromal cells, have shown great promise in the treatment of Leydig cell (LC) dysfunction in aging males. However, the outcomes of these therapies are not satisfactory. In this study, it is demonstrated that the aging microenvironment of the testicular interstitium impairs the function of SLCs, leading to poor regeneration of LCs and, consequently, inefficient functional restoration. The study develops a decellularized testicular extracellular matrix (dTECM) hydrogel from young pigs and evaluates its safety and feasibility as a supportive niche for the expansion and differentiation of SLCs. dTECM hydrogel facilitates the steroidogenic differentiation of SLCs into LCs, the primary producers of testosterone. The combination of SLCs with a dTECM hydrogel leads to a significant and sustained increase in testosterone levels, which promotes the restoration of spermatogenesis and fertility in an LC-deficient and aged mouse model. Mechanistically, collagen 1 within the dTECM is identified as a key factor contributing to these effects. Notably, symptoms associated with testosterone deficiency syndrome are significantly alleviated in aged mice. These findings may aid the design of therapeutic interventions for patients with testosterone deficiency in the clinic.
Collapse
Affiliation(s)
- Ani Chi
- National Engineering Research Centre for Tissue Restoration and ReconstructionKey Laboratory of Biomedical Engineering of Guangdong ProvinceSouth China University of TechnologyGuangzhou510640P. R. China
| | - Chao Yang
- National Engineering Research Centre for Tissue Restoration and ReconstructionKey Laboratory of Biomedical Engineering of Guangdong ProvinceSouth China University of TechnologyGuangzhou510640P. R. China
| | - Jie Liu
- National Engineering Research Centre for Tissue Restoration and ReconstructionKey Laboratory of Biomedical Engineering of Guangdong ProvinceSouth China University of TechnologyGuangzhou510640P. R. China
| | - Zhichen Zhai
- National Engineering Research Centre for Tissue Restoration and ReconstructionKey Laboratory of Biomedical Engineering of Guangdong ProvinceSouth China University of TechnologyGuangzhou510640P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong ProvinceSouth China University of TechnologyGuangzhou510006P. R. China
- School of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510640P. R. China
| | - Xuetao Shi
- National Engineering Research Centre for Tissue Restoration and ReconstructionKey Laboratory of Biomedical Engineering of Guangdong ProvinceSouth China University of TechnologyGuangzhou510640P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong ProvinceSouth China University of TechnologyGuangzhou510006P. R. China
- School of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510640P. R. China
| |
Collapse
|
94
|
Martínez-López C, Martínez-Cáceres CM, Cortina-Navarro M, Izquierdo-Rico MJ, García-Vázquez FA. Characterization of decellularized porcine oviduct- and uterine-derived scaffolds evaluated by spermatozoa-based biocompatibility and biotoxicity. Theriogenology 2025; 231:36-51. [PMID: 39405946 DOI: 10.1016/j.theriogenology.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 11/15/2024]
Abstract
Decellularized extracellular matrix (dECM) are widely utilized in regenerative medicine and tissue engineering due to their ability to promote cell growth, proliferation, and differentiation. In reproduction, research is focused on the utilization of these scaffolds to treat pathologies causing reproductive dysfunction or to improve assisted reproduction technologies (ARTs). We developed an efficient protocol employing the immersion-agitation technique to decellularize porcine oviductal and uterine sections, comparing the efficacy of fresh versus frozen treatments. Both methods successfully generated acellular matrices with less than 3 % residual DNA, effectively preserving structural and protein integrity. Scanning and transmission electron microscopy confirmed the ultrastructural integrity, whereas Masson's Trichrome staining highlighted better collagen preservation in frozen treatments. Proteomic analysis of decellularized scaffolds revealed collagen and key macromolecules such as laminin, filamin, dermatopontin, and fibronectin, which are essential for extracellular matrix structure and cell functions such as adhesion and migration. Innovatively, we assessed the biocompatibility and cytotoxicity of the scaffolds using spermatozoa, demonstrating that thorough washing ensures the scaffold biocompatibility without compromising sperm viability or motility. Our findings not only contribute to the standardization of decellularization protocols for female reproductive organs but also emphasize the importance of evaluating sperm biocompatibility to ensure the safety of dECM scaffolds.
Collapse
Affiliation(s)
- Cristina Martínez-López
- Departamento de Fisiología, Facultad de Veterinaria, Universidad de Murcia, 30100, Murcia, Spain; Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Murcia, 30120, Murcia, Spain.
| | - Carlos Manuel Martínez-Cáceres
- Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB), Campus de Ciencias de la Salud, 30120, Murcia, Spain.
| | - María Cortina-Navarro
- Departamento de Fisiología, Facultad de Veterinaria, Universidad de Murcia, 30100, Murcia, Spain.
| | - Mª José Izquierdo-Rico
- Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Murcia, 30120, Murcia, Spain; Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB), Campus de Ciencias de la Salud, 30120, Murcia, Spain.
| | - Francisco Alberto García-Vázquez
- Departamento de Fisiología, Facultad de Veterinaria, Universidad de Murcia, 30100, Murcia, Spain; Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB), Campus de Ciencias de la Salud, 30120, Murcia, Spain.
| |
Collapse
|
95
|
Banovac I, Prkačin MV, Kirchbaum I, Trnski-Levak S, Bobić-Rasonja M, Sedmak G, Petanjek Z, Jovanov-Milosevic N. Morphological and Molecular Characteristics of Perineuronal Nets in the Human Prefrontal Cortex-A Possible Link to Microcircuitry Specialization. Mol Neurobiol 2025; 62:1094-1111. [PMID: 38958887 PMCID: PMC11711633 DOI: 10.1007/s12035-024-04306-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024]
Abstract
Perineuronal nets (PNNs) are a type of extracellular matrix (ECM) that play a significant role in synaptic activity and plasticity of interneurons in health and disease. We researched PNNs' regional and laminar representation and molecular composition using immunohistochemistry and transcriptome analysis of Brodmann areas (BA) 9, 14r, and 24 in 25 human postmortem brains aged 13-82 years. The numbers of VCAN- and NCAN-expressing PNNs, relative to the total number of neurons, were highest in cortical layers I and VI while WFA-binding (WFA+) PNNs were most abundant in layers III-V. The ECM glycosylation pattern was the most pronounced regional difference, shown by a significantly lower proportion of WFA+ PNNs in BA24 (3.27 ± 0.69%) compared to BA9 (6.32 ± 1.73%; P = 0.0449) and BA14 (5.64 ± 0.71%; P = 0.0278). The transcriptome of late developmental and mature stages revealed a relatively stable expression of PNN-related transcripts (log2-transformed expression values: 6.5-8.5 for VCAN and 8.0-9.5 for NCAN). Finally, we propose a classification of PNNs that envelop GABAergic neurons in the human cortex. The significant differences in PNNs' morphology, distribution, and molecular composition strongly suggest an involvement of PNNs in specifying distinct microcircuits in particular cortical regions and layers.
Collapse
Affiliation(s)
- Ivan Banovac
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Šalata 11, HR-10000, Zagreb, Croatia
- Croatian Institute for Brain Research, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine University of Zagreb, Šalata 12, HR-10000, Zagreb, Croatia
| | - Matija Vid Prkačin
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Šalata 11, HR-10000, Zagreb, Croatia
- Croatian Institute for Brain Research, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine University of Zagreb, Šalata 12, HR-10000, Zagreb, Croatia
| | - Ivona Kirchbaum
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Šalata 11, HR-10000, Zagreb, Croatia
| | - Sara Trnski-Levak
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Šalata 11, HR-10000, Zagreb, Croatia
| | - Mihaela Bobić-Rasonja
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Šalata 11, HR-10000, Zagreb, Croatia
- Department of Biology, University of Zagreb School of Medicine, Šalata 3, HR-10000, Zagreb, Croatia
| | - Goran Sedmak
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Šalata 11, HR-10000, Zagreb, Croatia
| | - Zdravko Petanjek
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Šalata 11, HR-10000, Zagreb, Croatia
- Croatian Institute for Brain Research, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine University of Zagreb, Šalata 12, HR-10000, Zagreb, Croatia
| | - Natasa Jovanov-Milosevic
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Šalata 11, HR-10000, Zagreb, Croatia.
- Croatian Institute for Brain Research, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine University of Zagreb, Šalata 12, HR-10000, Zagreb, Croatia.
- Department of Biology, University of Zagreb School of Medicine, Šalata 3, HR-10000, Zagreb, Croatia.
| |
Collapse
|
96
|
Ding J, Sun Z, Ma L, Wang L, Liao Z, Liang L, Yang H, Mao R. Microspheres of stem cells from human exfoliated deciduous teeth exhibit superior pulp regeneration capacity. Dent Mater 2025; 41:70-80. [PMID: 39500639 DOI: 10.1016/j.dental.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/25/2024] [Indexed: 12/21/2024]
Abstract
OBJECTIVES Engineering spheroids to create three-dimensional (3D) cell cultures has gained increasing attention in recent years due to their potential advantages over traditional two-dimensional (2D) tissue culture methods. Stem cells derived from human exfoliated deciduous teeth (SHEDs) demonstrate significant potential for pulpal regeneration applications. Nevertheless, the feasibility of microsphere formation of SHEDs and its impact on pulpal regeneration remain unclear. METHODS In this study, SHEDs were isolated, identified, and cultured in ultra-low attachment six-well plates to produce SHED microspheres. The biological properties of SHED microspheres were compared to those of traditional 2D culture using live-dead staining, Alizarin red staining, Oil-red O staining, scratch experiments, Immunofluorescence, Transmission electron microscopy scan, Western blotting, RNA sequencing, and a nude mice subcutaneous transplantation model. RESULTS We found SHED cells can form microspheres with a dense internal structure. SHED microspheres exhibited notable advantages over SHED cells in terms of biological properties, maintaining cell activity and enhancing cell differentiation, migration, and stemness in vitro. RNA-seq revealed that the SHED microspheres potentially influenced cell development, regulation of neurogenesis, skeletal system development, tissue morphogenesis singling pathway. In vivo, SHED microspheres promoted the generation of pulp tissue in dental pulp compared to traditional 2D culture. CONCLUSIONS Microsphereization of SHED through 3D cell culture enhances its pulp regeneration capacity, presenting a novel strategy for dental pulp regeneration and the clinical treatment of dental pulp diseases.
Collapse
Affiliation(s)
- Jianzhao Ding
- Yunnan Key Laboratory of Stomatology, Kunming Medical University, Kunming 650500, China; The First People's Hospital of Yunnan, Kunming 650032, China
| | - Zheyi Sun
- Yunnan Key Laboratory of Stomatology, Kunming Medical University, Kunming 650500, China; Department of Endodontology, Kunming Medical University School and Hospital of Stomatology, Kunming 650106, China
| | - Liya Ma
- Yunnan Key Laboratory of Stomatology, Kunming Medical University, Kunming 650500, China
| | - Limeiting Wang
- Yunnan Key Laboratory of Stomatology, Kunming Medical University, Kunming 650500, China
| | - Zhenhui Liao
- Yunnan Key Laboratory of Stomatology, Kunming Medical University, Kunming 650500, China
| | - Lu Liang
- Yunnan Key Laboratory of Stomatology, Kunming Medical University, Kunming 650500, China
| | - Hefeng Yang
- Yunnan Key Laboratory of Stomatology, Kunming Medical University, Kunming 650500, China.
| | - Rui Mao
- Department of Pediatric Dentistry, Kunming Medical University School and Hospital of Stomatology, Kunming 650106, China.
| |
Collapse
|
97
|
Negishi J, Yamaguchi A, Tanaka D, Hashimoto Y, Zhang Y, Funamoto S. A Method for Fabricating Tissue-Specific Extracellular Matrix Blocks From Decellularized Tissue Powders. Adv Biol (Weinh) 2025; 9:e2400398. [PMID: 39601529 DOI: 10.1002/adbi.202400398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/07/2024] [Indexed: 11/29/2024]
Abstract
Decellularized tissues retain the extracellular matrix (ECM), shape, and composition that are unique to the source tissue. Previous studies using decellularized tissue lysates and powders have shown that tissue-specific ECM plays a key role in cellular function and wound healing. However, creating decellularized tissues composed of tissue-specific ECM with customizable shapes and structures for use as scaffolding materials remains challenging. In this study, a method for compacting decellularized tissue powder into blocks is developed using cold isostatic pressing (CIP). Custom-shaped ECM blocks and composite ECM blocks are fabricated using silicone molds. Additionally, an ECM block with a two-layer structure is obtained through a two-step CIP process. Cells are observed to infiltrate porous ECM blocks that are created using sodium chloride and transglutaminase. These results highlight the development of an effective method for producing ECM blocks using CIP with customizable shapes, compositions, and structures, making them suitable for use as cell culture scaffolds.
Collapse
Affiliation(s)
- Jun Negishi
- Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567, Japan
- Department of Material-based Medical Engineering, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-006, Japan
| | - Ayana Yamaguchi
- Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567, Japan
| | - Dan Tanaka
- Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567, Japan
| | - Yoshihide Hashimoto
- Department of Material-based Medical Engineering, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-006, Japan
- Joining and Welding Research Institute, Osaka University, 11-1, Ibaraki, Osaka, 567-0047, Japan
| | - Yongwei Zhang
- Hangzhou Hopefan Biotechnology Co., Ltd., 199, Jintian Road, Jinnan Street, Linan District, Hangzhou, Zhejiang, 311399, China
| | - Seiichi Funamoto
- Brio Life Science, Inc., 503, 1-26-12, Takadano-baba, Shinjyuku-ku, Tokyo, 169-0075, Japan
| |
Collapse
|
98
|
Li S, Liu Y, Luo X, Hong W. Systematic Evaluation of Extracellular Coating Matrix on the Differentiation of Human-Induced Pluripotent Stem Cells to Cortical Neurons. Int J Mol Sci 2024; 26:230. [PMID: 39796088 PMCID: PMC11720352 DOI: 10.3390/ijms26010230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/30/2025] Open
Abstract
Induced pluripotent stem cell (iPSC)-derived neurons (iNs) have been widely used as models of neurodevelopment and neurodegenerative diseases. Coating cell culture vessels with extracellular matrixes (ECMs) gives structural support and facilitates cell communication and differentiation, ultimately enhances neuronal functions. However, the relevance of different ECMs to the natural environment and their impact on neuronal differentiation have not been fully characterized. In this study, we report the use of four commonly used extracellular matrixes, poly-D-lysine (PDL), poly-L-ornithine (PLO), Laminin and Matrigel, which we applied to compare the single-coating and double-coating conditions on iNs differentiation and maturation. Using the IncuCyte live-cell imaging system, we found that iNs cultured on single Matrigel- and Laminin-coated vessels have significantly higher density of neurite outgrowth and branch points than PLO or PDL but produce abnormal highly straight neurite outgrowth and larger cell body clumps. All the four double-coating conditions significantly reduced the clumping of neurons, in which the combination of PDL+Matrigel also enhanced neuronal purity. Double coating with PDL+Matrigel also tended to improve dendritic and axonal development and the distribution of pre and postsynaptic markers. These results demonstrate that the extracellular matrix contributes to the differentiation of cultured neurons and that double coating with PDL+Matrigel gives the best outcomes. Our study indicates that neuronal differentiation and maturation can be manipulated, to a certain extent, by adjusting the ECM recipe, and provides important technical guidance for the use of the ECM in neurological studies.
Collapse
Affiliation(s)
| | | | | | - Wei Hong
- Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (S.L.); (Y.L.); (X.L.)
| |
Collapse
|
99
|
Li YT, Takaki E, Ouchi Y, Tamai K. Guided monocyte fate to FRβ/CD163 + S1 macrophage antagonises atopic dermatitis via fibroblastic matrices in mouse hypodermis. Cell Mol Life Sci 2024; 82:14. [PMID: 39720957 DOI: 10.1007/s00018-024-05543-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/21/2024] [Accepted: 12/06/2024] [Indexed: 12/26/2024]
Abstract
Macrophages are versatile myeloid leukocytes with flexible cellular states to perform diverse tissue functions beyond immunity. This plasticity is however often hijacked by diseases to promote pathology. Scanning kinetics of macrophage states by single-cell transcriptomics and flow cytometry, we observed atopic dermatitis drastically exhausted a resident subtype S1. Characterized by FRβ/CD163 expression, S1 exhibited strong efferocytosis and chemoattracted monocytes and eosinophils. Here we have delineated mechanisms regulating monocyte decision to acquire S1 identity in skin. During M-CSF driven macrophage differentiation in healthy skin, FRβ was expressed via intrinsic control of STAT6 and ALK5 activities, and did not require heterotypic cellular crosstalk. In contrast, CD163 expression required exposure to fibroblastic secretion. This process depended on SHP1 activity and involved STAT5 inactivation. Suppressed STAT5 activity caused CD163 expression and rendered macrophage insensitive to further induction by fibroblasts. Parsing coculture experiments with in silico ligand expression, we identified laminin-α2 and type-V collagen secreted by hypodermal fibroblasts as CD163-driving factors. S1 identity loss in AD followed a stepwise cascade: reduced laminins availability first dampened CD163 expression, IL4 and TGFβ subsequently acted on CD163lo/- cells to downregulate FRβ. In AD skin, we showed that imitating this fibroblast-macrophage crosstalk with exogenous laminin-211 encouraged monocyte differentiation to S1 macrophages, fostered homeostatic commitment of extravasated eosinophils, and alleviated dermatitis. Hence, we demonstrated that reinforcing a steady-state cue from hypodermal fibroblasts could override maladaptive pressure on macrophage and restored tissue homeostasis.
Collapse
MESH Headings
- Dermatitis, Atopic/metabolism
- Dermatitis, Atopic/pathology
- Receptors, Cell Surface/metabolism
- Antigens, Differentiation, Myelomonocytic/metabolism
- Animals
- Antigens, CD/metabolism
- Antigens, CD/genetics
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Macrophages/metabolism
- Monocytes/metabolism
- Mice
- Cell Differentiation
- STAT6 Transcription Factor/metabolism
- Skin/metabolism
- Skin/pathology
- Receptor, Transforming Growth Factor-beta Type I/metabolism
- Receptor, Transforming Growth Factor-beta Type I/genetics
- Mice, Inbred C57BL
- Macrophage Colony-Stimulating Factor/metabolism
- Eosinophils/metabolism
- Laminin/metabolism
Collapse
Affiliation(s)
- Yu-Tung Li
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.
| | | | - Yuya Ouchi
- StemRIM Inc., Ibaraki, Osaka, 567-0085, Japan
| | - Katsuto Tamai
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
100
|
Berry-Kilgour C, Oey I, Cabral J, Dowd G, Wise L. Decellularized Green and Brown Macroalgae as Cellulose Matrices for Tissue Engineering. J Funct Biomater 2024; 15:390. [PMID: 39728190 DOI: 10.3390/jfb15120390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/14/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024] Open
Abstract
Scaffolds resembling the extracellular matrix (ECM) provide structural support for cells in the engineering of tissue constructs. Various material sources and fabrication techniques have been employed in scaffold production. Cellulose-based matrices are of interest due to their abundant supply, hydrophilicity, mechanical strength, and biological inertness. Terrestrial and marine plants offer diverse morphologies that can replicate the ECM of various tissues and be isolated through decellularization protocols. In this study, three marine macroalgae species-namely Durvillaea poha, Ulva lactuca, and Ecklonia radiata-were selected for their morphological variation. Low-intensity, chemical treatments were developed for each species to maintain native cellulose structures within the matrices while facilitating the clearance of DNA and pigment. Scaffolds generated from each seaweed species were non-toxic for human dermal fibroblasts but only the fibrous inner layer of those derived from E. radiata supported cell attachment and maturation over the seven days of culture. These findings demonstrate the potential of E. radiata-derived cellulose scaffolds for skin tissue engineering and highlight the influence of macroalgae ECM structures on decellularization efficiency, cellulose matrix properties, and scaffold utility.
Collapse
Affiliation(s)
- Caitlin Berry-Kilgour
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Indrawati Oey
- Department of Food Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Jaydee Cabral
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Georgina Dowd
- The New Zealand Institute for Plant and Food Research Limited, Nelson 7043, New Zealand
| | - Lyn Wise
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|